SemaDecl.cpp revision db57a4cdb0a6abf3239f3a794a900ce312c5887b
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                             Scope *S, CXXScopeSpec *SS,
65                             bool isClassName, bool HasTrailingDot,
66                             ParsedType ObjectTypePtr,
67                             bool WantNontrivialTypeSourceInfo) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = ObjectTypePtr.get();
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isNotEmpty()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return ParsedType();
90
91        // We know from the grammar that this name refers to a type,
92        // so build a dependent node to describe the type.
93        if (WantNontrivialTypeSourceInfo)
94          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
95
96        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
97        QualType T =
98          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
99                            II, NameLoc);
100
101          return ParsedType::make(T);
102      }
103
104      return ParsedType();
105    }
106
107    if (!LookupCtx->isDependentContext() &&
108        RequireCompleteDeclContext(*SS, LookupCtx))
109      return ParsedType();
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    Result.suppressDiagnostics();
145    return ParsedType();
146
147  case LookupResult::Ambiguous:
148    // Recover from type-hiding ambiguities by hiding the type.  We'll
149    // do the lookup again when looking for an object, and we can
150    // diagnose the error then.  If we don't do this, then the error
151    // about hiding the type will be immediately followed by an error
152    // that only makes sense if the identifier was treated like a type.
153    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
154      Result.suppressDiagnostics();
155      return ParsedType();
156    }
157
158    // Look to see if we have a type anywhere in the list of results.
159    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
160         Res != ResEnd; ++Res) {
161      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
162        if (!IIDecl ||
163            (*Res)->getLocation().getRawEncoding() <
164              IIDecl->getLocation().getRawEncoding())
165          IIDecl = *Res;
166      }
167    }
168
169    if (!IIDecl) {
170      // None of the entities we found is a type, so there is no way
171      // to even assume that the result is a type. In this case, don't
172      // complain about the ambiguity. The parser will either try to
173      // perform this lookup again (e.g., as an object name), which
174      // will produce the ambiguity, or will complain that it expected
175      // a type name.
176      Result.suppressDiagnostics();
177      return ParsedType();
178    }
179
180    // We found a type within the ambiguous lookup; diagnose the
181    // ambiguity and then return that type. This might be the right
182    // answer, or it might not be, but it suppresses any attempt to
183    // perform the name lookup again.
184    break;
185
186  case LookupResult::Found:
187    IIDecl = Result.getFoundDecl();
188    break;
189  }
190
191  assert(IIDecl && "Didn't find decl");
192
193  QualType T;
194  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
195    DiagnoseUseOfDecl(IIDecl, NameLoc);
196
197    if (T.isNull())
198      T = Context.getTypeDeclType(TD);
199
200    if (SS && SS->isNotEmpty()) {
201      if (WantNontrivialTypeSourceInfo) {
202        // Construct a type with type-source information.
203        TypeLocBuilder Builder;
204        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
205
206        T = getElaboratedType(ETK_None, *SS, T);
207        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
208        ElabTL.setKeywordLoc(SourceLocation());
209        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
210        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
211      } else {
212        T = getElaboratedType(ETK_None, *SS, T);
213      }
214    }
215  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
216    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
217    if (!HasTrailingDot)
218      T = Context.getObjCInterfaceType(IDecl);
219  }
220
221  if (T.isNull()) {
222    // If it's not plausibly a type, suppress diagnostics.
223    Result.suppressDiagnostics();
224    return ParsedType();
225  }
226  return ParsedType::make(T);
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      default:         return DeclSpec::TST_unspecified;
243      case TTK_Struct: return DeclSpec::TST_struct;
244      case TTK_Union:  return DeclSpec::TST_union;
245      case TTK_Class:  return DeclSpec::TST_class;
246      case TTK_Enum:   return DeclSpec::TST_enum;
247      }
248    }
249
250  return DeclSpec::TST_unspecified;
251}
252
253/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
254/// if a CXXScopeSpec's type is equal to the type of one of the base classes
255/// then downgrade the missing typename error to a warning.
256/// This is needed for MSVC compatibility; Example:
257/// @code
258/// template<class T> class A {
259/// public:
260///   typedef int TYPE;
261/// };
262/// template<class T> class B : public A<T> {
263/// public:
264///   A<T>::TYPE a; // no typename required because A<T> is a base class.
265/// };
266/// @endcode
267bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
268  if (CurContext->isRecord()) {
269    const Type *Ty = SS->getScopeRep()->getAsType();
270
271    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
272    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
273          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
274      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
275        return true;
276  }
277  return false;
278}
279
280bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
281                                   SourceLocation IILoc,
282                                   Scope *S,
283                                   CXXScopeSpec *SS,
284                                   ParsedType &SuggestedType) {
285  // We don't have anything to suggest (yet).
286  SuggestedType = ParsedType();
287
288  // There may have been a typo in the name of the type. Look up typo
289  // results, in case we have something that we can suggest.
290  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
291                      NotForRedeclaration);
292
293  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
294    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
295      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
296          !Result->isInvalidDecl()) {
297        // We found a similarly-named type or interface; suggest that.
298        if (!SS || !SS->isSet())
299          Diag(IILoc, diag::err_unknown_typename_suggest)
300            << &II << Lookup.getLookupName()
301            << FixItHint::CreateReplacement(SourceRange(IILoc),
302                                            Result->getNameAsString());
303        else if (DeclContext *DC = computeDeclContext(*SS, false))
304          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
305            << &II << DC << Lookup.getLookupName() << SS->getRange()
306            << FixItHint::CreateReplacement(SourceRange(IILoc),
307                                            Result->getNameAsString());
308        else
309          llvm_unreachable("could not have corrected a typo here");
310
311        Diag(Result->getLocation(), diag::note_previous_decl)
312          << Result->getDeclName();
313
314        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
315                                    false, false, ParsedType(),
316                                    /*NonTrivialTypeSourceInfo=*/true);
317        return true;
318      }
319    } else if (Lookup.empty()) {
320      // We corrected to a keyword.
321      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
322      Diag(IILoc, diag::err_unknown_typename_suggest)
323        << &II << Corrected;
324      return true;
325    }
326  }
327
328  if (getLangOptions().CPlusPlus) {
329    // See if II is a class template that the user forgot to pass arguments to.
330    UnqualifiedId Name;
331    Name.setIdentifier(&II, IILoc);
332    CXXScopeSpec EmptySS;
333    TemplateTy TemplateResult;
334    bool MemberOfUnknownSpecialization;
335    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
336                       Name, ParsedType(), true, TemplateResult,
337                       MemberOfUnknownSpecialization) == TNK_Type_template) {
338      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
339      Diag(IILoc, diag::err_template_missing_args) << TplName;
340      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
341        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
342          << TplDecl->getTemplateParameters()->getSourceRange();
343      }
344      return true;
345    }
346  }
347
348  // FIXME: Should we move the logic that tries to recover from a missing tag
349  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
350
351  if (!SS || (!SS->isSet() && !SS->isInvalid()))
352    Diag(IILoc, diag::err_unknown_typename) << &II;
353  else if (DeclContext *DC = computeDeclContext(*SS, false))
354    Diag(IILoc, diag::err_typename_nested_not_found)
355      << &II << DC << SS->getRange();
356  else if (isDependentScopeSpecifier(*SS)) {
357    unsigned DiagID = diag::err_typename_missing;
358    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
359      DiagID = diag::war_typename_missing;
360
361    Diag(SS->getRange().getBegin(), DiagID)
362      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
363      << SourceRange(SS->getRange().getBegin(), IILoc)
364      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
365    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
366  } else {
367    assert(SS && SS->isInvalid() &&
368           "Invalid scope specifier has already been diagnosed");
369  }
370
371  return true;
372}
373
374// Determines the context to return to after temporarily entering a
375// context.  This depends in an unnecessarily complicated way on the
376// exact ordering of callbacks from the parser.
377DeclContext *Sema::getContainingDC(DeclContext *DC) {
378
379  // Functions defined inline within classes aren't parsed until we've
380  // finished parsing the top-level class, so the top-level class is
381  // the context we'll need to return to.
382  if (isa<FunctionDecl>(DC)) {
383    DC = DC->getLexicalParent();
384
385    // A function not defined within a class will always return to its
386    // lexical context.
387    if (!isa<CXXRecordDecl>(DC))
388      return DC;
389
390    // A C++ inline method/friend is parsed *after* the topmost class
391    // it was declared in is fully parsed ("complete");  the topmost
392    // class is the context we need to return to.
393    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
394      DC = RD;
395
396    // Return the declaration context of the topmost class the inline method is
397    // declared in.
398    return DC;
399  }
400
401  // ObjCMethodDecls are parsed (for some reason) outside the context
402  // of the class.
403  if (isa<ObjCMethodDecl>(DC))
404    return DC->getLexicalParent()->getLexicalParent();
405
406  return DC->getLexicalParent();
407}
408
409void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
410  assert(getContainingDC(DC) == CurContext &&
411      "The next DeclContext should be lexically contained in the current one.");
412  CurContext = DC;
413  S->setEntity(DC);
414}
415
416void Sema::PopDeclContext() {
417  assert(CurContext && "DeclContext imbalance!");
418
419  CurContext = getContainingDC(CurContext);
420  assert(CurContext && "Popped translation unit!");
421}
422
423/// EnterDeclaratorContext - Used when we must lookup names in the context
424/// of a declarator's nested name specifier.
425///
426void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
427  // C++0x [basic.lookup.unqual]p13:
428  //   A name used in the definition of a static data member of class
429  //   X (after the qualified-id of the static member) is looked up as
430  //   if the name was used in a member function of X.
431  // C++0x [basic.lookup.unqual]p14:
432  //   If a variable member of a namespace is defined outside of the
433  //   scope of its namespace then any name used in the definition of
434  //   the variable member (after the declarator-id) is looked up as
435  //   if the definition of the variable member occurred in its
436  //   namespace.
437  // Both of these imply that we should push a scope whose context
438  // is the semantic context of the declaration.  We can't use
439  // PushDeclContext here because that context is not necessarily
440  // lexically contained in the current context.  Fortunately,
441  // the containing scope should have the appropriate information.
442
443  assert(!S->getEntity() && "scope already has entity");
444
445#ifndef NDEBUG
446  Scope *Ancestor = S->getParent();
447  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
448  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
449#endif
450
451  CurContext = DC;
452  S->setEntity(DC);
453}
454
455void Sema::ExitDeclaratorContext(Scope *S) {
456  assert(S->getEntity() == CurContext && "Context imbalance!");
457
458  // Switch back to the lexical context.  The safety of this is
459  // enforced by an assert in EnterDeclaratorContext.
460  Scope *Ancestor = S->getParent();
461  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
462  CurContext = (DeclContext*) Ancestor->getEntity();
463
464  // We don't need to do anything with the scope, which is going to
465  // disappear.
466}
467
468/// \brief Determine whether we allow overloading of the function
469/// PrevDecl with another declaration.
470///
471/// This routine determines whether overloading is possible, not
472/// whether some new function is actually an overload. It will return
473/// true in C++ (where we can always provide overloads) or, as an
474/// extension, in C when the previous function is already an
475/// overloaded function declaration or has the "overloadable"
476/// attribute.
477static bool AllowOverloadingOfFunction(LookupResult &Previous,
478                                       ASTContext &Context) {
479  if (Context.getLangOptions().CPlusPlus)
480    return true;
481
482  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
483    return true;
484
485  return (Previous.getResultKind() == LookupResult::Found
486          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
487}
488
489/// Add this decl to the scope shadowed decl chains.
490void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
491  // Move up the scope chain until we find the nearest enclosing
492  // non-transparent context. The declaration will be introduced into this
493  // scope.
494  while (S->getEntity() &&
495         ((DeclContext *)S->getEntity())->isTransparentContext())
496    S = S->getParent();
497
498  // Add scoped declarations into their context, so that they can be
499  // found later. Declarations without a context won't be inserted
500  // into any context.
501  if (AddToContext)
502    CurContext->addDecl(D);
503
504  // Out-of-line definitions shouldn't be pushed into scope in C++.
505  // Out-of-line variable and function definitions shouldn't even in C.
506  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
507      D->isOutOfLine())
508    return;
509
510  // Template instantiations should also not be pushed into scope.
511  if (isa<FunctionDecl>(D) &&
512      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
513    return;
514
515  // If this replaces anything in the current scope,
516  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
517                               IEnd = IdResolver.end();
518  for (; I != IEnd; ++I) {
519    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
520      S->RemoveDecl(*I);
521      IdResolver.RemoveDecl(*I);
522
523      // Should only need to replace one decl.
524      break;
525    }
526  }
527
528  S->AddDecl(D);
529
530  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
531    // Implicitly-generated labels may end up getting generated in an order that
532    // isn't strictly lexical, which breaks name lookup. Be careful to insert
533    // the label at the appropriate place in the identifier chain.
534    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
535      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
536      if (IDC == CurContext) {
537        if (!S->isDeclScope(*I))
538          continue;
539      } else if (IDC->Encloses(CurContext))
540        break;
541    }
542
543    IdResolver.InsertDeclAfter(I, D);
544  } else {
545    IdResolver.AddDecl(D);
546  }
547}
548
549bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
550                         bool ExplicitInstantiationOrSpecialization) {
551  return IdResolver.isDeclInScope(D, Ctx, Context, S,
552                                  ExplicitInstantiationOrSpecialization);
553}
554
555Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
556  DeclContext *TargetDC = DC->getPrimaryContext();
557  do {
558    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
559      if (ScopeDC->getPrimaryContext() == TargetDC)
560        return S;
561  } while ((S = S->getParent()));
562
563  return 0;
564}
565
566static bool isOutOfScopePreviousDeclaration(NamedDecl *,
567                                            DeclContext*,
568                                            ASTContext&);
569
570/// Filters out lookup results that don't fall within the given scope
571/// as determined by isDeclInScope.
572static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
573                                 DeclContext *Ctx, Scope *S,
574                                 bool ConsiderLinkage,
575                                 bool ExplicitInstantiationOrSpecialization) {
576  LookupResult::Filter F = R.makeFilter();
577  while (F.hasNext()) {
578    NamedDecl *D = F.next();
579
580    if (SemaRef.isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
581      continue;
582
583    if (ConsiderLinkage &&
584        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
585      continue;
586
587    F.erase();
588  }
589
590  F.done();
591}
592
593static bool isUsingDecl(NamedDecl *D) {
594  return isa<UsingShadowDecl>(D) ||
595         isa<UnresolvedUsingTypenameDecl>(D) ||
596         isa<UnresolvedUsingValueDecl>(D);
597}
598
599/// Removes using shadow declarations from the lookup results.
600static void RemoveUsingDecls(LookupResult &R) {
601  LookupResult::Filter F = R.makeFilter();
602  while (F.hasNext())
603    if (isUsingDecl(F.next()))
604      F.erase();
605
606  F.done();
607}
608
609/// \brief Check for this common pattern:
610/// @code
611/// class S {
612///   S(const S&); // DO NOT IMPLEMENT
613///   void operator=(const S&); // DO NOT IMPLEMENT
614/// };
615/// @endcode
616static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
617  // FIXME: Should check for private access too but access is set after we get
618  // the decl here.
619  if (D->isThisDeclarationADefinition())
620    return false;
621
622  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
623    return CD->isCopyConstructor();
624  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
625    return Method->isCopyAssignmentOperator();
626  return false;
627}
628
629bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
630  assert(D);
631
632  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
633    return false;
634
635  // Ignore class templates.
636  if (D->getDeclContext()->isDependentContext() ||
637      D->getLexicalDeclContext()->isDependentContext())
638    return false;
639
640  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
641    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
642      return false;
643
644    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
645      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
646        return false;
647    } else {
648      // 'static inline' functions are used in headers; don't warn.
649      if (FD->getStorageClass() == SC_Static &&
650          FD->isInlineSpecified())
651        return false;
652    }
653
654    if (FD->isThisDeclarationADefinition() &&
655        Context.DeclMustBeEmitted(FD))
656      return false;
657
658  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
659    if (!VD->isFileVarDecl() ||
660        VD->getType().isConstant(Context) ||
661        Context.DeclMustBeEmitted(VD))
662      return false;
663
664    if (VD->isStaticDataMember() &&
665        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
666      return false;
667
668  } else {
669    return false;
670  }
671
672  // Only warn for unused decls internal to the translation unit.
673  if (D->getLinkage() == ExternalLinkage)
674    return false;
675
676  return true;
677}
678
679void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
680  if (!D)
681    return;
682
683  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
684    const FunctionDecl *First = FD->getFirstDeclaration();
685    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
686      return; // First should already be in the vector.
687  }
688
689  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
690    const VarDecl *First = VD->getFirstDeclaration();
691    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
692      return; // First should already be in the vector.
693  }
694
695   if (ShouldWarnIfUnusedFileScopedDecl(D))
696     UnusedFileScopedDecls.push_back(D);
697 }
698
699static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
700  if (D->isInvalidDecl())
701    return false;
702
703  if (D->isUsed() || D->hasAttr<UnusedAttr>())
704    return false;
705
706  if (isa<LabelDecl>(D))
707    return true;
708
709  // White-list anything that isn't a local variable.
710  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
711      !D->getDeclContext()->isFunctionOrMethod())
712    return false;
713
714  // Types of valid local variables should be complete, so this should succeed.
715  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
716
717    // White-list anything with an __attribute__((unused)) type.
718    QualType Ty = VD->getType();
719
720    // Only look at the outermost level of typedef.
721    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
722      if (TT->getDecl()->hasAttr<UnusedAttr>())
723        return false;
724    }
725
726    // If we failed to complete the type for some reason, or if the type is
727    // dependent, don't diagnose the variable.
728    if (Ty->isIncompleteType() || Ty->isDependentType())
729      return false;
730
731    if (const TagType *TT = Ty->getAs<TagType>()) {
732      const TagDecl *Tag = TT->getDecl();
733      if (Tag->hasAttr<UnusedAttr>())
734        return false;
735
736      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
737        // FIXME: Checking for the presence of a user-declared constructor
738        // isn't completely accurate; we'd prefer to check that the initializer
739        // has no side effects.
740        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
741          return false;
742      }
743    }
744
745    // TODO: __attribute__((unused)) templates?
746  }
747
748  return true;
749}
750
751/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
752/// unless they are marked attr(unused).
753void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
754  if (!ShouldDiagnoseUnusedDecl(D))
755    return;
756
757  unsigned DiagID;
758  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
759    DiagID = diag::warn_unused_exception_param;
760  else if (isa<LabelDecl>(D))
761    DiagID = diag::warn_unused_label;
762  else
763    DiagID = diag::warn_unused_variable;
764
765  Diag(D->getLocation(), DiagID) << D->getDeclName();
766}
767
768static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
769  // Verify that we have no forward references left.  If so, there was a goto
770  // or address of a label taken, but no definition of it.  Label fwd
771  // definitions are indicated with a null substmt.
772  if (L->getStmt() == 0)
773    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
774}
775
776void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
777  if (S->decl_empty()) return;
778  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
779         "Scope shouldn't contain decls!");
780
781  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
782       I != E; ++I) {
783    Decl *TmpD = (*I);
784    assert(TmpD && "This decl didn't get pushed??");
785
786    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
787    NamedDecl *D = cast<NamedDecl>(TmpD);
788
789    if (!D->getDeclName()) continue;
790
791    // Diagnose unused variables in this scope.
792    if (!S->hasErrorOccurred())
793      DiagnoseUnusedDecl(D);
794
795    // If this was a forward reference to a label, verify it was defined.
796    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
797      CheckPoppedLabel(LD, *this);
798
799    // Remove this name from our lexical scope.
800    IdResolver.RemoveDecl(D);
801  }
802}
803
804/// \brief Look for an Objective-C class in the translation unit.
805///
806/// \param Id The name of the Objective-C class we're looking for. If
807/// typo-correction fixes this name, the Id will be updated
808/// to the fixed name.
809///
810/// \param IdLoc The location of the name in the translation unit.
811///
812/// \param TypoCorrection If true, this routine will attempt typo correction
813/// if there is no class with the given name.
814///
815/// \returns The declaration of the named Objective-C class, or NULL if the
816/// class could not be found.
817ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
818                                              SourceLocation IdLoc,
819                                              bool TypoCorrection) {
820  // The third "scope" argument is 0 since we aren't enabling lazy built-in
821  // creation from this context.
822  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
823
824  if (!IDecl && TypoCorrection) {
825    // Perform typo correction at the given location, but only if we
826    // find an Objective-C class name.
827    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
828    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
829        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
830      Diag(IdLoc, diag::err_undef_interface_suggest)
831        << Id << IDecl->getDeclName()
832        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
833      Diag(IDecl->getLocation(), diag::note_previous_decl)
834        << IDecl->getDeclName();
835
836      Id = IDecl->getIdentifier();
837    }
838  }
839
840  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
841}
842
843/// getNonFieldDeclScope - Retrieves the innermost scope, starting
844/// from S, where a non-field would be declared. This routine copes
845/// with the difference between C and C++ scoping rules in structs and
846/// unions. For example, the following code is well-formed in C but
847/// ill-formed in C++:
848/// @code
849/// struct S6 {
850///   enum { BAR } e;
851/// };
852///
853/// void test_S6() {
854///   struct S6 a;
855///   a.e = BAR;
856/// }
857/// @endcode
858/// For the declaration of BAR, this routine will return a different
859/// scope. The scope S will be the scope of the unnamed enumeration
860/// within S6. In C++, this routine will return the scope associated
861/// with S6, because the enumeration's scope is a transparent
862/// context but structures can contain non-field names. In C, this
863/// routine will return the translation unit scope, since the
864/// enumeration's scope is a transparent context and structures cannot
865/// contain non-field names.
866Scope *Sema::getNonFieldDeclScope(Scope *S) {
867  while (((S->getFlags() & Scope::DeclScope) == 0) ||
868         (S->getEntity() &&
869          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
870         (S->isClassScope() && !getLangOptions().CPlusPlus))
871    S = S->getParent();
872  return S;
873}
874
875/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
876/// file scope.  lazily create a decl for it. ForRedeclaration is true
877/// if we're creating this built-in in anticipation of redeclaring the
878/// built-in.
879NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
880                                     Scope *S, bool ForRedeclaration,
881                                     SourceLocation Loc) {
882  Builtin::ID BID = (Builtin::ID)bid;
883
884  ASTContext::GetBuiltinTypeError Error;
885  QualType R = Context.GetBuiltinType(BID, Error);
886  switch (Error) {
887  case ASTContext::GE_None:
888    // Okay
889    break;
890
891  case ASTContext::GE_Missing_stdio:
892    if (ForRedeclaration)
893      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
894        << Context.BuiltinInfo.GetName(BID);
895    return 0;
896
897  case ASTContext::GE_Missing_setjmp:
898    if (ForRedeclaration)
899      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
900        << Context.BuiltinInfo.GetName(BID);
901    return 0;
902  }
903
904  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
905    Diag(Loc, diag::ext_implicit_lib_function_decl)
906      << Context.BuiltinInfo.GetName(BID)
907      << R;
908    if (Context.BuiltinInfo.getHeaderName(BID) &&
909        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
910          != Diagnostic::Ignored)
911      Diag(Loc, diag::note_please_include_header)
912        << Context.BuiltinInfo.getHeaderName(BID)
913        << Context.BuiltinInfo.GetName(BID);
914  }
915
916  FunctionDecl *New = FunctionDecl::Create(Context,
917                                           Context.getTranslationUnitDecl(),
918                                           Loc, Loc, II, R, /*TInfo=*/0,
919                                           SC_Extern,
920                                           SC_None, false,
921                                           /*hasPrototype=*/true);
922  New->setImplicit();
923
924  // Create Decl objects for each parameter, adding them to the
925  // FunctionDecl.
926  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
927    llvm::SmallVector<ParmVarDecl*, 16> Params;
928    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
929      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(),
930                                           SourceLocation(), 0,
931                                           FT->getArgType(i), /*TInfo=*/0,
932                                           SC_None, SC_None, 0));
933    New->setParams(Params.data(), Params.size());
934  }
935
936  AddKnownFunctionAttributes(New);
937
938  // TUScope is the translation-unit scope to insert this function into.
939  // FIXME: This is hideous. We need to teach PushOnScopeChains to
940  // relate Scopes to DeclContexts, and probably eliminate CurContext
941  // entirely, but we're not there yet.
942  DeclContext *SavedContext = CurContext;
943  CurContext = Context.getTranslationUnitDecl();
944  PushOnScopeChains(New, TUScope);
945  CurContext = SavedContext;
946  return New;
947}
948
949/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
950/// same name and scope as a previous declaration 'Old'.  Figure out
951/// how to resolve this situation, merging decls or emitting
952/// diagnostics as appropriate. If there was an error, set New to be invalid.
953///
954void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
955  // If the new decl is known invalid already, don't bother doing any
956  // merging checks.
957  if (New->isInvalidDecl()) return;
958
959  // Allow multiple definitions for ObjC built-in typedefs.
960  // FIXME: Verify the underlying types are equivalent!
961  if (getLangOptions().ObjC1) {
962    const IdentifierInfo *TypeID = New->getIdentifier();
963    switch (TypeID->getLength()) {
964    default: break;
965    case 2:
966      if (!TypeID->isStr("id"))
967        break;
968      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
969      // Install the built-in type for 'id', ignoring the current definition.
970      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
971      return;
972    case 5:
973      if (!TypeID->isStr("Class"))
974        break;
975      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
976      // Install the built-in type for 'Class', ignoring the current definition.
977      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
978      return;
979    case 3:
980      if (!TypeID->isStr("SEL"))
981        break;
982      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
983      // Install the built-in type for 'SEL', ignoring the current definition.
984      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
985      return;
986    case 8:
987      if (!TypeID->isStr("Protocol"))
988        break;
989      Context.setObjCProtoType(New->getUnderlyingType());
990      return;
991    }
992    // Fall through - the typedef name was not a builtin type.
993  }
994
995  // Verify the old decl was also a type.
996  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
997  if (!Old) {
998    Diag(New->getLocation(), diag::err_redefinition_different_kind)
999      << New->getDeclName();
1000
1001    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1002    if (OldD->getLocation().isValid())
1003      Diag(OldD->getLocation(), diag::note_previous_definition);
1004
1005    return New->setInvalidDecl();
1006  }
1007
1008  // If the old declaration is invalid, just give up here.
1009  if (Old->isInvalidDecl())
1010    return New->setInvalidDecl();
1011
1012  // Determine the "old" type we'll use for checking and diagnostics.
1013  QualType OldType;
1014  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1015    OldType = OldTypedef->getUnderlyingType();
1016  else
1017    OldType = Context.getTypeDeclType(Old);
1018
1019  // If the typedef types are not identical, reject them in all languages and
1020  // with any extensions enabled.
1021
1022  if (OldType != New->getUnderlyingType() &&
1023      Context.getCanonicalType(OldType) !=
1024      Context.getCanonicalType(New->getUnderlyingType())) {
1025    int Kind = 0;
1026    if (isa<TypeAliasDecl>(Old))
1027      Kind = 1;
1028    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1029      << Kind << New->getUnderlyingType() << OldType;
1030    if (Old->getLocation().isValid())
1031      Diag(Old->getLocation(), diag::note_previous_definition);
1032    return New->setInvalidDecl();
1033  }
1034
1035  // The types match.  Link up the redeclaration chain if the old
1036  // declaration was a typedef.
1037  // FIXME: this is a potential source of wierdness if the type
1038  // spellings don't match exactly.
1039  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1040    New->setPreviousDeclaration(Typedef);
1041
1042  if (getLangOptions().Microsoft)
1043    return;
1044
1045  if (getLangOptions().CPlusPlus) {
1046    // C++ [dcl.typedef]p2:
1047    //   In a given non-class scope, a typedef specifier can be used to
1048    //   redefine the name of any type declared in that scope to refer
1049    //   to the type to which it already refers.
1050    if (!isa<CXXRecordDecl>(CurContext))
1051      return;
1052
1053    // C++0x [dcl.typedef]p4:
1054    //   In a given class scope, a typedef specifier can be used to redefine
1055    //   any class-name declared in that scope that is not also a typedef-name
1056    //   to refer to the type to which it already refers.
1057    //
1058    // This wording came in via DR424, which was a correction to the
1059    // wording in DR56, which accidentally banned code like:
1060    //
1061    //   struct S {
1062    //     typedef struct A { } A;
1063    //   };
1064    //
1065    // in the C++03 standard. We implement the C++0x semantics, which
1066    // allow the above but disallow
1067    //
1068    //   struct S {
1069    //     typedef int I;
1070    //     typedef int I;
1071    //   };
1072    //
1073    // since that was the intent of DR56.
1074    if (!isa<TypedefNameDecl>(Old))
1075      return;
1076
1077    Diag(New->getLocation(), diag::err_redefinition)
1078      << New->getDeclName();
1079    Diag(Old->getLocation(), diag::note_previous_definition);
1080    return New->setInvalidDecl();
1081  }
1082
1083  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1084  // is normally mapped to an error, but can be controlled with
1085  // -Wtypedef-redefinition.  If either the original or the redefinition is
1086  // in a system header, don't emit this for compatibility with GCC.
1087  if (getDiagnostics().getSuppressSystemWarnings() &&
1088      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1089       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1090    return;
1091
1092  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1093    << New->getDeclName();
1094  Diag(Old->getLocation(), diag::note_previous_definition);
1095  return;
1096}
1097
1098/// DeclhasAttr - returns true if decl Declaration already has the target
1099/// attribute.
1100static bool
1101DeclHasAttr(const Decl *D, const Attr *A) {
1102  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1103  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1104    if ((*i)->getKind() == A->getKind()) {
1105      // FIXME: Don't hardcode this check
1106      if (OA && isa<OwnershipAttr>(*i))
1107        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1108      return true;
1109    }
1110
1111  return false;
1112}
1113
1114/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1115static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1116                                ASTContext &C) {
1117  if (!oldDecl->hasAttrs())
1118    return;
1119
1120  bool foundAny = newDecl->hasAttrs();
1121
1122  // Ensure that any moving of objects within the allocated map is done before
1123  // we process them.
1124  if (!foundAny) newDecl->setAttrs(AttrVec());
1125
1126  for (specific_attr_iterator<InheritableAttr>
1127       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1128       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1129    if (!DeclHasAttr(newDecl, *i)) {
1130      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1131      newAttr->setInherited(true);
1132      newDecl->addAttr(newAttr);
1133      foundAny = true;
1134    }
1135  }
1136
1137  if (!foundAny) newDecl->dropAttrs();
1138}
1139
1140/// mergeParamDeclAttributes - Copy attributes from the old parameter
1141/// to the new one.
1142static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1143                                     const ParmVarDecl *oldDecl,
1144                                     ASTContext &C) {
1145  if (!oldDecl->hasAttrs())
1146    return;
1147
1148  bool foundAny = newDecl->hasAttrs();
1149
1150  // Ensure that any moving of objects within the allocated map is
1151  // done before we process them.
1152  if (!foundAny) newDecl->setAttrs(AttrVec());
1153
1154  for (specific_attr_iterator<InheritableParamAttr>
1155       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1156       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1157    if (!DeclHasAttr(newDecl, *i)) {
1158      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1159      newAttr->setInherited(true);
1160      newDecl->addAttr(newAttr);
1161      foundAny = true;
1162    }
1163  }
1164
1165  if (!foundAny) newDecl->dropAttrs();
1166}
1167
1168namespace {
1169
1170/// Used in MergeFunctionDecl to keep track of function parameters in
1171/// C.
1172struct GNUCompatibleParamWarning {
1173  ParmVarDecl *OldParm;
1174  ParmVarDecl *NewParm;
1175  QualType PromotedType;
1176};
1177
1178}
1179
1180/// getSpecialMember - get the special member enum for a method.
1181Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1182  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1183    if (Ctor->isCopyConstructor())
1184      return Sema::CXXCopyConstructor;
1185
1186    return Sema::CXXConstructor;
1187  }
1188
1189  if (isa<CXXDestructorDecl>(MD))
1190    return Sema::CXXDestructor;
1191
1192  assert(MD->isCopyAssignmentOperator() &&
1193         "Must have copy assignment operator");
1194  return Sema::CXXCopyAssignment;
1195}
1196
1197/// canRedefineFunction - checks if a function can be redefined. Currently,
1198/// only extern inline functions can be redefined, and even then only in
1199/// GNU89 mode.
1200static bool canRedefineFunction(const FunctionDecl *FD,
1201                                const LangOptions& LangOpts) {
1202  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1203          FD->isInlineSpecified() &&
1204          FD->getStorageClass() == SC_Extern);
1205}
1206
1207/// MergeFunctionDecl - We just parsed a function 'New' from
1208/// declarator D which has the same name and scope as a previous
1209/// declaration 'Old'.  Figure out how to resolve this situation,
1210/// merging decls or emitting diagnostics as appropriate.
1211///
1212/// In C++, New and Old must be declarations that are not
1213/// overloaded. Use IsOverload to determine whether New and Old are
1214/// overloaded, and to select the Old declaration that New should be
1215/// merged with.
1216///
1217/// Returns true if there was an error, false otherwise.
1218bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1219  // Verify the old decl was also a function.
1220  FunctionDecl *Old = 0;
1221  if (FunctionTemplateDecl *OldFunctionTemplate
1222        = dyn_cast<FunctionTemplateDecl>(OldD))
1223    Old = OldFunctionTemplate->getTemplatedDecl();
1224  else
1225    Old = dyn_cast<FunctionDecl>(OldD);
1226  if (!Old) {
1227    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1228      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1229      Diag(Shadow->getTargetDecl()->getLocation(),
1230           diag::note_using_decl_target);
1231      Diag(Shadow->getUsingDecl()->getLocation(),
1232           diag::note_using_decl) << 0;
1233      return true;
1234    }
1235
1236    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1237      << New->getDeclName();
1238    Diag(OldD->getLocation(), diag::note_previous_definition);
1239    return true;
1240  }
1241
1242  // Determine whether the previous declaration was a definition,
1243  // implicit declaration, or a declaration.
1244  diag::kind PrevDiag;
1245  if (Old->isThisDeclarationADefinition())
1246    PrevDiag = diag::note_previous_definition;
1247  else if (Old->isImplicit())
1248    PrevDiag = diag::note_previous_implicit_declaration;
1249  else
1250    PrevDiag = diag::note_previous_declaration;
1251
1252  QualType OldQType = Context.getCanonicalType(Old->getType());
1253  QualType NewQType = Context.getCanonicalType(New->getType());
1254
1255  // Don't complain about this if we're in GNU89 mode and the old function
1256  // is an extern inline function.
1257  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1258      New->getStorageClass() == SC_Static &&
1259      Old->getStorageClass() != SC_Static &&
1260      !canRedefineFunction(Old, getLangOptions())) {
1261    Diag(New->getLocation(), diag::err_static_non_static)
1262      << New;
1263    Diag(Old->getLocation(), PrevDiag);
1264    return true;
1265  }
1266
1267  // If a function is first declared with a calling convention, but is
1268  // later declared or defined without one, the second decl assumes the
1269  // calling convention of the first.
1270  //
1271  // For the new decl, we have to look at the NON-canonical type to tell the
1272  // difference between a function that really doesn't have a calling
1273  // convention and one that is declared cdecl. That's because in
1274  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1275  // because it is the default calling convention.
1276  //
1277  // Note also that we DO NOT return at this point, because we still have
1278  // other tests to run.
1279  const FunctionType *OldType = cast<FunctionType>(OldQType);
1280  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1281  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1282  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1283  bool RequiresAdjustment = false;
1284  if (OldTypeInfo.getCC() != CC_Default &&
1285      NewTypeInfo.getCC() == CC_Default) {
1286    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1287    RequiresAdjustment = true;
1288  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1289                                     NewTypeInfo.getCC())) {
1290    // Calling conventions really aren't compatible, so complain.
1291    Diag(New->getLocation(), diag::err_cconv_change)
1292      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1293      << (OldTypeInfo.getCC() == CC_Default)
1294      << (OldTypeInfo.getCC() == CC_Default ? "" :
1295          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1296    Diag(Old->getLocation(), diag::note_previous_declaration);
1297    return true;
1298  }
1299
1300  // FIXME: diagnose the other way around?
1301  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1302    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1303    RequiresAdjustment = true;
1304  }
1305
1306  // Merge regparm attribute.
1307  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1308      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1309    if (NewTypeInfo.getHasRegParm()) {
1310      Diag(New->getLocation(), diag::err_regparm_mismatch)
1311        << NewType->getRegParmType()
1312        << OldType->getRegParmType();
1313      Diag(Old->getLocation(), diag::note_previous_declaration);
1314      return true;
1315    }
1316
1317    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1318    RequiresAdjustment = true;
1319  }
1320
1321  if (RequiresAdjustment) {
1322    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1323    New->setType(QualType(NewType, 0));
1324    NewQType = Context.getCanonicalType(New->getType());
1325  }
1326
1327  if (getLangOptions().CPlusPlus) {
1328    // (C++98 13.1p2):
1329    //   Certain function declarations cannot be overloaded:
1330    //     -- Function declarations that differ only in the return type
1331    //        cannot be overloaded.
1332    QualType OldReturnType = OldType->getResultType();
1333    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1334    QualType ResQT;
1335    if (OldReturnType != NewReturnType) {
1336      if (NewReturnType->isObjCObjectPointerType()
1337          && OldReturnType->isObjCObjectPointerType())
1338        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1339      if (ResQT.isNull()) {
1340        if (New->isCXXClassMember() && New->isOutOfLine())
1341          Diag(New->getLocation(),
1342               diag::err_member_def_does_not_match_ret_type) << New;
1343        else
1344          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1345        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1346        return true;
1347      }
1348      else
1349        NewQType = ResQT;
1350    }
1351
1352    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1353    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1354    if (OldMethod && NewMethod) {
1355      // Preserve triviality.
1356      NewMethod->setTrivial(OldMethod->isTrivial());
1357
1358      bool isFriend = NewMethod->getFriendObjectKind();
1359
1360      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1361        //    -- Member function declarations with the same name and the
1362        //       same parameter types cannot be overloaded if any of them
1363        //       is a static member function declaration.
1364        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1365          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1366          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1367          return true;
1368        }
1369
1370        // C++ [class.mem]p1:
1371        //   [...] A member shall not be declared twice in the
1372        //   member-specification, except that a nested class or member
1373        //   class template can be declared and then later defined.
1374        unsigned NewDiag;
1375        if (isa<CXXConstructorDecl>(OldMethod))
1376          NewDiag = diag::err_constructor_redeclared;
1377        else if (isa<CXXDestructorDecl>(NewMethod))
1378          NewDiag = diag::err_destructor_redeclared;
1379        else if (isa<CXXConversionDecl>(NewMethod))
1380          NewDiag = diag::err_conv_function_redeclared;
1381        else
1382          NewDiag = diag::err_member_redeclared;
1383
1384        Diag(New->getLocation(), NewDiag);
1385        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1386
1387      // Complain if this is an explicit declaration of a special
1388      // member that was initially declared implicitly.
1389      //
1390      // As an exception, it's okay to befriend such methods in order
1391      // to permit the implicit constructor/destructor/operator calls.
1392      } else if (OldMethod->isImplicit()) {
1393        if (isFriend) {
1394          NewMethod->setImplicit();
1395        } else {
1396          Diag(NewMethod->getLocation(),
1397               diag::err_definition_of_implicitly_declared_member)
1398            << New << getSpecialMember(OldMethod);
1399          return true;
1400        }
1401      }
1402    }
1403
1404    // (C++98 8.3.5p3):
1405    //   All declarations for a function shall agree exactly in both the
1406    //   return type and the parameter-type-list.
1407    // We also want to respect all the extended bits except noreturn.
1408
1409    // noreturn should now match unless the old type info didn't have it.
1410    QualType OldQTypeForComparison = OldQType;
1411    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1412      assert(OldQType == QualType(OldType, 0));
1413      const FunctionType *OldTypeForComparison
1414        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1415      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1416      assert(OldQTypeForComparison.isCanonical());
1417    }
1418
1419    if (OldQTypeForComparison == NewQType)
1420      return MergeCompatibleFunctionDecls(New, Old);
1421
1422    // Fall through for conflicting redeclarations and redefinitions.
1423  }
1424
1425  // C: Function types need to be compatible, not identical. This handles
1426  // duplicate function decls like "void f(int); void f(enum X);" properly.
1427  if (!getLangOptions().CPlusPlus &&
1428      Context.typesAreCompatible(OldQType, NewQType)) {
1429    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1430    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1431    const FunctionProtoType *OldProto = 0;
1432    if (isa<FunctionNoProtoType>(NewFuncType) &&
1433        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1434      // The old declaration provided a function prototype, but the
1435      // new declaration does not. Merge in the prototype.
1436      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1437      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1438                                                 OldProto->arg_type_end());
1439      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1440                                         ParamTypes.data(), ParamTypes.size(),
1441                                         OldProto->getExtProtoInfo());
1442      New->setType(NewQType);
1443      New->setHasInheritedPrototype();
1444
1445      // Synthesize a parameter for each argument type.
1446      llvm::SmallVector<ParmVarDecl*, 16> Params;
1447      for (FunctionProtoType::arg_type_iterator
1448             ParamType = OldProto->arg_type_begin(),
1449             ParamEnd = OldProto->arg_type_end();
1450           ParamType != ParamEnd; ++ParamType) {
1451        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1452                                                 SourceLocation(),
1453                                                 SourceLocation(), 0,
1454                                                 *ParamType, /*TInfo=*/0,
1455                                                 SC_None, SC_None,
1456                                                 0);
1457        Param->setImplicit();
1458        Params.push_back(Param);
1459      }
1460
1461      New->setParams(Params.data(), Params.size());
1462    }
1463
1464    return MergeCompatibleFunctionDecls(New, Old);
1465  }
1466
1467  // GNU C permits a K&R definition to follow a prototype declaration
1468  // if the declared types of the parameters in the K&R definition
1469  // match the types in the prototype declaration, even when the
1470  // promoted types of the parameters from the K&R definition differ
1471  // from the types in the prototype. GCC then keeps the types from
1472  // the prototype.
1473  //
1474  // If a variadic prototype is followed by a non-variadic K&R definition,
1475  // the K&R definition becomes variadic.  This is sort of an edge case, but
1476  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1477  // C99 6.9.1p8.
1478  if (!getLangOptions().CPlusPlus &&
1479      Old->hasPrototype() && !New->hasPrototype() &&
1480      New->getType()->getAs<FunctionProtoType>() &&
1481      Old->getNumParams() == New->getNumParams()) {
1482    llvm::SmallVector<QualType, 16> ArgTypes;
1483    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1484    const FunctionProtoType *OldProto
1485      = Old->getType()->getAs<FunctionProtoType>();
1486    const FunctionProtoType *NewProto
1487      = New->getType()->getAs<FunctionProtoType>();
1488
1489    // Determine whether this is the GNU C extension.
1490    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1491                                               NewProto->getResultType());
1492    bool LooseCompatible = !MergedReturn.isNull();
1493    for (unsigned Idx = 0, End = Old->getNumParams();
1494         LooseCompatible && Idx != End; ++Idx) {
1495      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1496      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1497      if (Context.typesAreCompatible(OldParm->getType(),
1498                                     NewProto->getArgType(Idx))) {
1499        ArgTypes.push_back(NewParm->getType());
1500      } else if (Context.typesAreCompatible(OldParm->getType(),
1501                                            NewParm->getType(),
1502                                            /*CompareUnqualified=*/true)) {
1503        GNUCompatibleParamWarning Warn
1504          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1505        Warnings.push_back(Warn);
1506        ArgTypes.push_back(NewParm->getType());
1507      } else
1508        LooseCompatible = false;
1509    }
1510
1511    if (LooseCompatible) {
1512      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1513        Diag(Warnings[Warn].NewParm->getLocation(),
1514             diag::ext_param_promoted_not_compatible_with_prototype)
1515          << Warnings[Warn].PromotedType
1516          << Warnings[Warn].OldParm->getType();
1517        if (Warnings[Warn].OldParm->getLocation().isValid())
1518          Diag(Warnings[Warn].OldParm->getLocation(),
1519               diag::note_previous_declaration);
1520      }
1521
1522      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1523                                           ArgTypes.size(),
1524                                           OldProto->getExtProtoInfo()));
1525      return MergeCompatibleFunctionDecls(New, Old);
1526    }
1527
1528    // Fall through to diagnose conflicting types.
1529  }
1530
1531  // A function that has already been declared has been redeclared or defined
1532  // with a different type- show appropriate diagnostic
1533  if (unsigned BuiltinID = Old->getBuiltinID()) {
1534    // The user has declared a builtin function with an incompatible
1535    // signature.
1536    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1537      // The function the user is redeclaring is a library-defined
1538      // function like 'malloc' or 'printf'. Warn about the
1539      // redeclaration, then pretend that we don't know about this
1540      // library built-in.
1541      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1542      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1543        << Old << Old->getType();
1544      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1545      Old->setInvalidDecl();
1546      return false;
1547    }
1548
1549    PrevDiag = diag::note_previous_builtin_declaration;
1550  }
1551
1552  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1553  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1554  return true;
1555}
1556
1557/// \brief Completes the merge of two function declarations that are
1558/// known to be compatible.
1559///
1560/// This routine handles the merging of attributes and other
1561/// properties of function declarations form the old declaration to
1562/// the new declaration, once we know that New is in fact a
1563/// redeclaration of Old.
1564///
1565/// \returns false
1566bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1567  // Merge the attributes
1568  mergeDeclAttributes(New, Old, Context);
1569
1570  // Merge the storage class.
1571  if (Old->getStorageClass() != SC_Extern &&
1572      Old->getStorageClass() != SC_None)
1573    New->setStorageClass(Old->getStorageClass());
1574
1575  // Merge "pure" flag.
1576  if (Old->isPure())
1577    New->setPure();
1578
1579  // Merge the "deleted" flag.
1580  if (Old->isDeleted())
1581    New->setDeleted();
1582
1583  // Merge attributes from the parameters.  These can mismatch with K&R
1584  // declarations.
1585  if (New->getNumParams() == Old->getNumParams())
1586    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1587      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1588                               Context);
1589
1590  if (getLangOptions().CPlusPlus)
1591    return MergeCXXFunctionDecl(New, Old);
1592
1593  return false;
1594}
1595
1596void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1597                                const ObjCMethodDecl *oldMethod) {
1598  // Merge the attributes.
1599  mergeDeclAttributes(newMethod, oldMethod, Context);
1600
1601  // Merge attributes from the parameters.
1602  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1603         ni = newMethod->param_begin(), ne = newMethod->param_end();
1604       ni != ne; ++ni, ++oi)
1605    mergeParamDeclAttributes(*ni, *oi, Context);
1606}
1607
1608/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1609/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1610/// emitting diagnostics as appropriate.
1611///
1612/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1613/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1614/// check them before the initializer is attached.
1615///
1616void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1617  if (New->isInvalidDecl() || Old->isInvalidDecl())
1618    return;
1619
1620  QualType MergedT;
1621  if (getLangOptions().CPlusPlus) {
1622    AutoType *AT = New->getType()->getContainedAutoType();
1623    if (AT && !AT->isDeduced()) {
1624      // We don't know what the new type is until the initializer is attached.
1625      return;
1626    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1627      // These could still be something that needs exception specs checked.
1628      return MergeVarDeclExceptionSpecs(New, Old);
1629    }
1630    // C++ [basic.link]p10:
1631    //   [...] the types specified by all declarations referring to a given
1632    //   object or function shall be identical, except that declarations for an
1633    //   array object can specify array types that differ by the presence or
1634    //   absence of a major array bound (8.3.4).
1635    else if (Old->getType()->isIncompleteArrayType() &&
1636             New->getType()->isArrayType()) {
1637      CanQual<ArrayType> OldArray
1638        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1639      CanQual<ArrayType> NewArray
1640        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1641      if (OldArray->getElementType() == NewArray->getElementType())
1642        MergedT = New->getType();
1643    } else if (Old->getType()->isArrayType() &&
1644             New->getType()->isIncompleteArrayType()) {
1645      CanQual<ArrayType> OldArray
1646        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1647      CanQual<ArrayType> NewArray
1648        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1649      if (OldArray->getElementType() == NewArray->getElementType())
1650        MergedT = Old->getType();
1651    } else if (New->getType()->isObjCObjectPointerType()
1652               && Old->getType()->isObjCObjectPointerType()) {
1653        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1654                                                        Old->getType());
1655    }
1656  } else {
1657    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1658  }
1659  if (MergedT.isNull()) {
1660    Diag(New->getLocation(), diag::err_redefinition_different_type)
1661      << New->getDeclName();
1662    Diag(Old->getLocation(), diag::note_previous_definition);
1663    return New->setInvalidDecl();
1664  }
1665  New->setType(MergedT);
1666}
1667
1668/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1669/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1670/// situation, merging decls or emitting diagnostics as appropriate.
1671///
1672/// Tentative definition rules (C99 6.9.2p2) are checked by
1673/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1674/// definitions here, since the initializer hasn't been attached.
1675///
1676void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1677  // If the new decl is already invalid, don't do any other checking.
1678  if (New->isInvalidDecl())
1679    return;
1680
1681  // Verify the old decl was also a variable.
1682  VarDecl *Old = 0;
1683  if (!Previous.isSingleResult() ||
1684      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1685    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1686      << New->getDeclName();
1687    Diag(Previous.getRepresentativeDecl()->getLocation(),
1688         diag::note_previous_definition);
1689    return New->setInvalidDecl();
1690  }
1691
1692  // C++ [class.mem]p1:
1693  //   A member shall not be declared twice in the member-specification [...]
1694  //
1695  // Here, we need only consider static data members.
1696  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1697    Diag(New->getLocation(), diag::err_duplicate_member)
1698      << New->getIdentifier();
1699    Diag(Old->getLocation(), diag::note_previous_declaration);
1700    New->setInvalidDecl();
1701  }
1702
1703  mergeDeclAttributes(New, Old, Context);
1704
1705  // Merge the types.
1706  MergeVarDeclTypes(New, Old);
1707  if (New->isInvalidDecl())
1708    return;
1709
1710  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1711  if (New->getStorageClass() == SC_Static &&
1712      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1713    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1714    Diag(Old->getLocation(), diag::note_previous_definition);
1715    return New->setInvalidDecl();
1716  }
1717  // C99 6.2.2p4:
1718  //   For an identifier declared with the storage-class specifier
1719  //   extern in a scope in which a prior declaration of that
1720  //   identifier is visible,23) if the prior declaration specifies
1721  //   internal or external linkage, the linkage of the identifier at
1722  //   the later declaration is the same as the linkage specified at
1723  //   the prior declaration. If no prior declaration is visible, or
1724  //   if the prior declaration specifies no linkage, then the
1725  //   identifier has external linkage.
1726  if (New->hasExternalStorage() && Old->hasLinkage())
1727    /* Okay */;
1728  else if (New->getStorageClass() != SC_Static &&
1729           Old->getStorageClass() == SC_Static) {
1730    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1731    Diag(Old->getLocation(), diag::note_previous_definition);
1732    return New->setInvalidDecl();
1733  }
1734
1735  // Check if extern is followed by non-extern and vice-versa.
1736  if (New->hasExternalStorage() &&
1737      !Old->hasLinkage() && Old->isLocalVarDecl()) {
1738    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
1739    Diag(Old->getLocation(), diag::note_previous_definition);
1740    return New->setInvalidDecl();
1741  }
1742  if (Old->hasExternalStorage() &&
1743      !New->hasLinkage() && New->isLocalVarDecl()) {
1744    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
1745    Diag(Old->getLocation(), diag::note_previous_definition);
1746    return New->setInvalidDecl();
1747  }
1748
1749  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1750
1751  // FIXME: The test for external storage here seems wrong? We still
1752  // need to check for mismatches.
1753  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1754      // Don't complain about out-of-line definitions of static members.
1755      !(Old->getLexicalDeclContext()->isRecord() &&
1756        !New->getLexicalDeclContext()->isRecord())) {
1757    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1758    Diag(Old->getLocation(), diag::note_previous_definition);
1759    return New->setInvalidDecl();
1760  }
1761
1762  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1763    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1764    Diag(Old->getLocation(), diag::note_previous_definition);
1765  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1766    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1767    Diag(Old->getLocation(), diag::note_previous_definition);
1768  }
1769
1770  // C++ doesn't have tentative definitions, so go right ahead and check here.
1771  const VarDecl *Def;
1772  if (getLangOptions().CPlusPlus &&
1773      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1774      (Def = Old->getDefinition())) {
1775    Diag(New->getLocation(), diag::err_redefinition)
1776      << New->getDeclName();
1777    Diag(Def->getLocation(), diag::note_previous_definition);
1778    New->setInvalidDecl();
1779    return;
1780  }
1781  // c99 6.2.2 P4.
1782  // For an identifier declared with the storage-class specifier extern in a
1783  // scope in which a prior declaration of that identifier is visible, if
1784  // the prior declaration specifies internal or external linkage, the linkage
1785  // of the identifier at the later declaration is the same as the linkage
1786  // specified at the prior declaration.
1787  // FIXME. revisit this code.
1788  if (New->hasExternalStorage() &&
1789      Old->getLinkage() == InternalLinkage &&
1790      New->getDeclContext() == Old->getDeclContext())
1791    New->setStorageClass(Old->getStorageClass());
1792
1793  // Keep a chain of previous declarations.
1794  New->setPreviousDeclaration(Old);
1795
1796  // Inherit access appropriately.
1797  New->setAccess(Old->getAccess());
1798}
1799
1800/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1801/// no declarator (e.g. "struct foo;") is parsed.
1802Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1803                                       DeclSpec &DS) {
1804  Decl *TagD = 0;
1805  TagDecl *Tag = 0;
1806  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1807      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1808      DS.getTypeSpecType() == DeclSpec::TST_union ||
1809      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1810    TagD = DS.getRepAsDecl();
1811
1812    if (!TagD) // We probably had an error
1813      return 0;
1814
1815    // Note that the above type specs guarantee that the
1816    // type rep is a Decl, whereas in many of the others
1817    // it's a Type.
1818    Tag = dyn_cast<TagDecl>(TagD);
1819  }
1820
1821  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1822    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1823    // or incomplete types shall not be restrict-qualified."
1824    if (TypeQuals & DeclSpec::TQ_restrict)
1825      Diag(DS.getRestrictSpecLoc(),
1826           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1827           << DS.getSourceRange();
1828  }
1829
1830  if (DS.isFriendSpecified()) {
1831    // If we're dealing with a decl but not a TagDecl, assume that
1832    // whatever routines created it handled the friendship aspect.
1833    if (TagD && !Tag)
1834      return 0;
1835    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1836  }
1837
1838  // Track whether we warned about the fact that there aren't any
1839  // declarators.
1840  bool emittedWarning = false;
1841
1842  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1843    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
1844
1845    if (!Record->getDeclName() && Record->isDefinition() &&
1846        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1847      if (getLangOptions().CPlusPlus ||
1848          Record->getDeclContext()->isRecord())
1849        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1850
1851      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1852        << DS.getSourceRange();
1853      emittedWarning = true;
1854    }
1855  }
1856
1857  // Check for Microsoft C extension: anonymous struct.
1858  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
1859      CurContext->isRecord() &&
1860      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
1861    // Handle 2 kinds of anonymous struct:
1862    //   struct STRUCT;
1863    // and
1864    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
1865    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
1866    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
1867        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1868         DS.getRepAsType().get()->isStructureType())) {
1869      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
1870        << DS.getSourceRange();
1871      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
1872    }
1873  }
1874
1875  if (getLangOptions().CPlusPlus &&
1876      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1877    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1878      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1879          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
1880        Diag(Enum->getLocation(), diag::ext_no_declarators)
1881          << DS.getSourceRange();
1882        emittedWarning = true;
1883      }
1884
1885  // Skip all the checks below if we have a type error.
1886  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
1887
1888  if (!DS.isMissingDeclaratorOk()) {
1889    // Warn about typedefs of enums without names, since this is an
1890    // extension in both Microsoft and GNU.
1891    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1892        Tag && isa<EnumDecl>(Tag)) {
1893      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1894        << DS.getSourceRange();
1895      return Tag;
1896    }
1897
1898    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1899      << DS.getSourceRange();
1900    emittedWarning = true;
1901  }
1902
1903  // We're going to complain about a bunch of spurious specifiers;
1904  // only do this if we're declaring a tag, because otherwise we
1905  // should be getting diag::ext_no_declarators.
1906  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
1907    return TagD;
1908
1909  // Note that a linkage-specification sets a storage class, but
1910  // 'extern "C" struct foo;' is actually valid and not theoretically
1911  // useless.
1912  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
1913    if (!DS.isExternInLinkageSpec())
1914      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
1915        << DeclSpec::getSpecifierName(scs);
1916
1917  if (DS.isThreadSpecified())
1918    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
1919  if (DS.getTypeQualifiers()) {
1920    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1921      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
1922    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1923      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
1924    // Restrict is covered above.
1925  }
1926  if (DS.isInlineSpecified())
1927    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
1928  if (DS.isVirtualSpecified())
1929    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
1930  if (DS.isExplicitSpecified())
1931    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
1932
1933  // FIXME: Warn on useless attributes
1934
1935  return TagD;
1936}
1937
1938/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1939/// builds a statement for it and returns it so it is evaluated.
1940StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1941  StmtResult R;
1942  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1943    Expr *Exp = DS.getRepAsExpr();
1944    QualType Ty = Exp->getType();
1945    if (Ty->isPointerType()) {
1946      do
1947        Ty = Ty->getAs<PointerType>()->getPointeeType();
1948      while (Ty->isPointerType());
1949    }
1950    if (Ty->isVariableArrayType()) {
1951      R = ActOnExprStmt(MakeFullExpr(Exp));
1952    }
1953  }
1954  return R;
1955}
1956
1957/// We are trying to inject an anonymous member into the given scope;
1958/// check if there's an existing declaration that can't be overloaded.
1959///
1960/// \return true if this is a forbidden redeclaration
1961static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1962                                         Scope *S,
1963                                         DeclContext *Owner,
1964                                         DeclarationName Name,
1965                                         SourceLocation NameLoc,
1966                                         unsigned diagnostic) {
1967  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1968                 Sema::ForRedeclaration);
1969  if (!SemaRef.LookupName(R, S)) return false;
1970
1971  if (R.getAsSingle<TagDecl>())
1972    return false;
1973
1974  // Pick a representative declaration.
1975  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1976  assert(PrevDecl && "Expected a non-null Decl");
1977
1978  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1979    return false;
1980
1981  SemaRef.Diag(NameLoc, diagnostic) << Name;
1982  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1983
1984  return true;
1985}
1986
1987/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1988/// anonymous struct or union AnonRecord into the owning context Owner
1989/// and scope S. This routine will be invoked just after we realize
1990/// that an unnamed union or struct is actually an anonymous union or
1991/// struct, e.g.,
1992///
1993/// @code
1994/// union {
1995///   int i;
1996///   float f;
1997/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1998///    // f into the surrounding scope.x
1999/// @endcode
2000///
2001/// This routine is recursive, injecting the names of nested anonymous
2002/// structs/unions into the owning context and scope as well.
2003static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2004                                                DeclContext *Owner,
2005                                                RecordDecl *AnonRecord,
2006                                                AccessSpecifier AS,
2007                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
2008                                                      bool MSAnonStruct) {
2009  unsigned diagKind
2010    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2011                            : diag::err_anonymous_struct_member_redecl;
2012
2013  bool Invalid = false;
2014
2015  // Look every FieldDecl and IndirectFieldDecl with a name.
2016  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2017                               DEnd = AnonRecord->decls_end();
2018       D != DEnd; ++D) {
2019    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2020        cast<NamedDecl>(*D)->getDeclName()) {
2021      ValueDecl *VD = cast<ValueDecl>(*D);
2022      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2023                                       VD->getLocation(), diagKind)) {
2024        // C++ [class.union]p2:
2025        //   The names of the members of an anonymous union shall be
2026        //   distinct from the names of any other entity in the
2027        //   scope in which the anonymous union is declared.
2028        Invalid = true;
2029      } else {
2030        // C++ [class.union]p2:
2031        //   For the purpose of name lookup, after the anonymous union
2032        //   definition, the members of the anonymous union are
2033        //   considered to have been defined in the scope in which the
2034        //   anonymous union is declared.
2035        unsigned OldChainingSize = Chaining.size();
2036        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2037          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2038               PE = IF->chain_end(); PI != PE; ++PI)
2039            Chaining.push_back(*PI);
2040        else
2041          Chaining.push_back(VD);
2042
2043        assert(Chaining.size() >= 2);
2044        NamedDecl **NamedChain =
2045          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2046        for (unsigned i = 0; i < Chaining.size(); i++)
2047          NamedChain[i] = Chaining[i];
2048
2049        IndirectFieldDecl* IndirectField =
2050          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2051                                    VD->getIdentifier(), VD->getType(),
2052                                    NamedChain, Chaining.size());
2053
2054        IndirectField->setAccess(AS);
2055        IndirectField->setImplicit();
2056        SemaRef.PushOnScopeChains(IndirectField, S);
2057
2058        // That includes picking up the appropriate access specifier.
2059        if (AS != AS_none) IndirectField->setAccess(AS);
2060
2061        Chaining.resize(OldChainingSize);
2062      }
2063    }
2064  }
2065
2066  return Invalid;
2067}
2068
2069/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2070/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2071/// illegal input values are mapped to SC_None.
2072static StorageClass
2073StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2074  switch (StorageClassSpec) {
2075  case DeclSpec::SCS_unspecified:    return SC_None;
2076  case DeclSpec::SCS_extern:         return SC_Extern;
2077  case DeclSpec::SCS_static:         return SC_Static;
2078  case DeclSpec::SCS_auto:           return SC_Auto;
2079  case DeclSpec::SCS_register:       return SC_Register;
2080  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2081    // Illegal SCSs map to None: error reporting is up to the caller.
2082  case DeclSpec::SCS_mutable:        // Fall through.
2083  case DeclSpec::SCS_typedef:        return SC_None;
2084  }
2085  llvm_unreachable("unknown storage class specifier");
2086}
2087
2088/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2089/// a StorageClass. Any error reporting is up to the caller:
2090/// illegal input values are mapped to SC_None.
2091static StorageClass
2092StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2093  switch (StorageClassSpec) {
2094  case DeclSpec::SCS_unspecified:    return SC_None;
2095  case DeclSpec::SCS_extern:         return SC_Extern;
2096  case DeclSpec::SCS_static:         return SC_Static;
2097  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2098    // Illegal SCSs map to None: error reporting is up to the caller.
2099  case DeclSpec::SCS_auto:           // Fall through.
2100  case DeclSpec::SCS_mutable:        // Fall through.
2101  case DeclSpec::SCS_register:       // Fall through.
2102  case DeclSpec::SCS_typedef:        return SC_None;
2103  }
2104  llvm_unreachable("unknown storage class specifier");
2105}
2106
2107/// BuildAnonymousStructOrUnion - Handle the declaration of an
2108/// anonymous structure or union. Anonymous unions are a C++ feature
2109/// (C++ [class.union]) and a GNU C extension; anonymous structures
2110/// are a GNU C and GNU C++ extension.
2111Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2112                                             AccessSpecifier AS,
2113                                             RecordDecl *Record) {
2114  DeclContext *Owner = Record->getDeclContext();
2115
2116  // Diagnose whether this anonymous struct/union is an extension.
2117  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2118    Diag(Record->getLocation(), diag::ext_anonymous_union);
2119  else if (!Record->isUnion())
2120    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2121
2122  // C and C++ require different kinds of checks for anonymous
2123  // structs/unions.
2124  bool Invalid = false;
2125  if (getLangOptions().CPlusPlus) {
2126    const char* PrevSpec = 0;
2127    unsigned DiagID;
2128    // C++ [class.union]p3:
2129    //   Anonymous unions declared in a named namespace or in the
2130    //   global namespace shall be declared static.
2131    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2132        (isa<TranslationUnitDecl>(Owner) ||
2133         (isa<NamespaceDecl>(Owner) &&
2134          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2135      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2136      Invalid = true;
2137
2138      // Recover by adding 'static'.
2139      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2140                             PrevSpec, DiagID, getLangOptions());
2141    }
2142    // C++ [class.union]p3:
2143    //   A storage class is not allowed in a declaration of an
2144    //   anonymous union in a class scope.
2145    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2146             isa<RecordDecl>(Owner)) {
2147      Diag(DS.getStorageClassSpecLoc(),
2148           diag::err_anonymous_union_with_storage_spec);
2149      Invalid = true;
2150
2151      // Recover by removing the storage specifier.
2152      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2153                             PrevSpec, DiagID, getLangOptions());
2154    }
2155
2156    // C++ [class.union]p2:
2157    //   The member-specification of an anonymous union shall only
2158    //   define non-static data members. [Note: nested types and
2159    //   functions cannot be declared within an anonymous union. ]
2160    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2161                                 MemEnd = Record->decls_end();
2162         Mem != MemEnd; ++Mem) {
2163      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2164        // C++ [class.union]p3:
2165        //   An anonymous union shall not have private or protected
2166        //   members (clause 11).
2167        assert(FD->getAccess() != AS_none);
2168        if (FD->getAccess() != AS_public) {
2169          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2170            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2171          Invalid = true;
2172        }
2173
2174        if (CheckNontrivialField(FD))
2175          Invalid = true;
2176      } else if ((*Mem)->isImplicit()) {
2177        // Any implicit members are fine.
2178      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2179        // This is a type that showed up in an
2180        // elaborated-type-specifier inside the anonymous struct or
2181        // union, but which actually declares a type outside of the
2182        // anonymous struct or union. It's okay.
2183      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2184        if (!MemRecord->isAnonymousStructOrUnion() &&
2185            MemRecord->getDeclName()) {
2186          // Visual C++ allows type definition in anonymous struct or union.
2187          if (getLangOptions().Microsoft)
2188            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2189              << (int)Record->isUnion();
2190          else {
2191            // This is a nested type declaration.
2192            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2193              << (int)Record->isUnion();
2194            Invalid = true;
2195          }
2196        }
2197      } else if (isa<AccessSpecDecl>(*Mem)) {
2198        // Any access specifier is fine.
2199      } else {
2200        // We have something that isn't a non-static data
2201        // member. Complain about it.
2202        unsigned DK = diag::err_anonymous_record_bad_member;
2203        if (isa<TypeDecl>(*Mem))
2204          DK = diag::err_anonymous_record_with_type;
2205        else if (isa<FunctionDecl>(*Mem))
2206          DK = diag::err_anonymous_record_with_function;
2207        else if (isa<VarDecl>(*Mem))
2208          DK = diag::err_anonymous_record_with_static;
2209
2210        // Visual C++ allows type definition in anonymous struct or union.
2211        if (getLangOptions().Microsoft &&
2212            DK == diag::err_anonymous_record_with_type)
2213          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2214            << (int)Record->isUnion();
2215        else {
2216          Diag((*Mem)->getLocation(), DK)
2217              << (int)Record->isUnion();
2218          Invalid = true;
2219        }
2220      }
2221    }
2222  }
2223
2224  if (!Record->isUnion() && !Owner->isRecord()) {
2225    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2226      << (int)getLangOptions().CPlusPlus;
2227    Invalid = true;
2228  }
2229
2230  // Mock up a declarator.
2231  Declarator Dc(DS, Declarator::TypeNameContext);
2232  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2233  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2234
2235  // Create a declaration for this anonymous struct/union.
2236  NamedDecl *Anon = 0;
2237  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2238    Anon = FieldDecl::Create(Context, OwningClass,
2239                             DS.getSourceRange().getBegin(),
2240                             Record->getLocation(),
2241                             /*IdentifierInfo=*/0,
2242                             Context.getTypeDeclType(Record),
2243                             TInfo,
2244                             /*BitWidth=*/0, /*Mutable=*/false);
2245    Anon->setAccess(AS);
2246    if (getLangOptions().CPlusPlus)
2247      FieldCollector->Add(cast<FieldDecl>(Anon));
2248  } else {
2249    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2250    assert(SCSpec != DeclSpec::SCS_typedef &&
2251           "Parser allowed 'typedef' as storage class VarDecl.");
2252    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2253    if (SCSpec == DeclSpec::SCS_mutable) {
2254      // mutable can only appear on non-static class members, so it's always
2255      // an error here
2256      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2257      Invalid = true;
2258      SC = SC_None;
2259    }
2260    SCSpec = DS.getStorageClassSpecAsWritten();
2261    VarDecl::StorageClass SCAsWritten
2262      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2263
2264    Anon = VarDecl::Create(Context, Owner,
2265                           DS.getSourceRange().getBegin(),
2266                           Record->getLocation(), /*IdentifierInfo=*/0,
2267                           Context.getTypeDeclType(Record),
2268                           TInfo, SC, SCAsWritten);
2269  }
2270  Anon->setImplicit();
2271
2272  // Add the anonymous struct/union object to the current
2273  // context. We'll be referencing this object when we refer to one of
2274  // its members.
2275  Owner->addDecl(Anon);
2276
2277  // Inject the members of the anonymous struct/union into the owning
2278  // context and into the identifier resolver chain for name lookup
2279  // purposes.
2280  llvm::SmallVector<NamedDecl*, 2> Chain;
2281  Chain.push_back(Anon);
2282
2283  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2284                                          Chain, false))
2285    Invalid = true;
2286
2287  // Mark this as an anonymous struct/union type. Note that we do not
2288  // do this until after we have already checked and injected the
2289  // members of this anonymous struct/union type, because otherwise
2290  // the members could be injected twice: once by DeclContext when it
2291  // builds its lookup table, and once by
2292  // InjectAnonymousStructOrUnionMembers.
2293  Record->setAnonymousStructOrUnion(true);
2294
2295  if (Invalid)
2296    Anon->setInvalidDecl();
2297
2298  return Anon;
2299}
2300
2301/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2302/// Microsoft C anonymous structure.
2303/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2304/// Example:
2305///
2306/// struct A { int a; };
2307/// struct B { struct A; int b; };
2308///
2309/// void foo() {
2310///   B var;
2311///   var.a = 3;
2312/// }
2313///
2314Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2315                                           RecordDecl *Record) {
2316
2317  // If there is no Record, get the record via the typedef.
2318  if (!Record)
2319    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2320
2321  // Mock up a declarator.
2322  Declarator Dc(DS, Declarator::TypeNameContext);
2323  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2324  assert(TInfo && "couldn't build declarator info for anonymous struct");
2325
2326  // Create a declaration for this anonymous struct.
2327  NamedDecl* Anon = FieldDecl::Create(Context,
2328                             cast<RecordDecl>(CurContext),
2329                             DS.getSourceRange().getBegin(),
2330                             DS.getSourceRange().getBegin(),
2331                             /*IdentifierInfo=*/0,
2332                             Context.getTypeDeclType(Record),
2333                             TInfo,
2334                             /*BitWidth=*/0, /*Mutable=*/false);
2335  Anon->setImplicit();
2336
2337  // Add the anonymous struct object to the current context.
2338  CurContext->addDecl(Anon);
2339
2340  // Inject the members of the anonymous struct into the current
2341  // context and into the identifier resolver chain for name lookup
2342  // purposes.
2343  llvm::SmallVector<NamedDecl*, 2> Chain;
2344  Chain.push_back(Anon);
2345
2346  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2347                                          Record->getDefinition(),
2348                                          AS_none, Chain, true))
2349    Anon->setInvalidDecl();
2350
2351  return Anon;
2352}
2353
2354/// GetNameForDeclarator - Determine the full declaration name for the
2355/// given Declarator.
2356DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2357  return GetNameFromUnqualifiedId(D.getName());
2358}
2359
2360/// \brief Retrieves the declaration name from a parsed unqualified-id.
2361DeclarationNameInfo
2362Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2363  DeclarationNameInfo NameInfo;
2364  NameInfo.setLoc(Name.StartLocation);
2365
2366  switch (Name.getKind()) {
2367
2368  case UnqualifiedId::IK_Identifier:
2369    NameInfo.setName(Name.Identifier);
2370    NameInfo.setLoc(Name.StartLocation);
2371    return NameInfo;
2372
2373  case UnqualifiedId::IK_OperatorFunctionId:
2374    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2375                                           Name.OperatorFunctionId.Operator));
2376    NameInfo.setLoc(Name.StartLocation);
2377    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2378      = Name.OperatorFunctionId.SymbolLocations[0];
2379    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2380      = Name.EndLocation.getRawEncoding();
2381    return NameInfo;
2382
2383  case UnqualifiedId::IK_LiteralOperatorId:
2384    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2385                                                           Name.Identifier));
2386    NameInfo.setLoc(Name.StartLocation);
2387    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2388    return NameInfo;
2389
2390  case UnqualifiedId::IK_ConversionFunctionId: {
2391    TypeSourceInfo *TInfo;
2392    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2393    if (Ty.isNull())
2394      return DeclarationNameInfo();
2395    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2396                                               Context.getCanonicalType(Ty)));
2397    NameInfo.setLoc(Name.StartLocation);
2398    NameInfo.setNamedTypeInfo(TInfo);
2399    return NameInfo;
2400  }
2401
2402  case UnqualifiedId::IK_ConstructorName: {
2403    TypeSourceInfo *TInfo;
2404    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2405    if (Ty.isNull())
2406      return DeclarationNameInfo();
2407    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2408                                              Context.getCanonicalType(Ty)));
2409    NameInfo.setLoc(Name.StartLocation);
2410    NameInfo.setNamedTypeInfo(TInfo);
2411    return NameInfo;
2412  }
2413
2414  case UnqualifiedId::IK_ConstructorTemplateId: {
2415    // In well-formed code, we can only have a constructor
2416    // template-id that refers to the current context, so go there
2417    // to find the actual type being constructed.
2418    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2419    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2420      return DeclarationNameInfo();
2421
2422    // Determine the type of the class being constructed.
2423    QualType CurClassType = Context.getTypeDeclType(CurClass);
2424
2425    // FIXME: Check two things: that the template-id names the same type as
2426    // CurClassType, and that the template-id does not occur when the name
2427    // was qualified.
2428
2429    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2430                                    Context.getCanonicalType(CurClassType)));
2431    NameInfo.setLoc(Name.StartLocation);
2432    // FIXME: should we retrieve TypeSourceInfo?
2433    NameInfo.setNamedTypeInfo(0);
2434    return NameInfo;
2435  }
2436
2437  case UnqualifiedId::IK_DestructorName: {
2438    TypeSourceInfo *TInfo;
2439    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2440    if (Ty.isNull())
2441      return DeclarationNameInfo();
2442    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2443                                              Context.getCanonicalType(Ty)));
2444    NameInfo.setLoc(Name.StartLocation);
2445    NameInfo.setNamedTypeInfo(TInfo);
2446    return NameInfo;
2447  }
2448
2449  case UnqualifiedId::IK_TemplateId: {
2450    TemplateName TName = Name.TemplateId->Template.get();
2451    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2452    return Context.getNameForTemplate(TName, TNameLoc);
2453  }
2454
2455  } // switch (Name.getKind())
2456
2457  assert(false && "Unknown name kind");
2458  return DeclarationNameInfo();
2459}
2460
2461/// isNearlyMatchingFunction - Determine whether the C++ functions
2462/// Declaration and Definition are "nearly" matching. This heuristic
2463/// is used to improve diagnostics in the case where an out-of-line
2464/// function definition doesn't match any declaration within
2465/// the class or namespace.
2466static bool isNearlyMatchingFunction(ASTContext &Context,
2467                                     FunctionDecl *Declaration,
2468                                     FunctionDecl *Definition) {
2469  if (Declaration->param_size() != Definition->param_size())
2470    return false;
2471  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2472    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2473    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2474
2475    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2476                                        DefParamTy.getNonReferenceType()))
2477      return false;
2478  }
2479
2480  return true;
2481}
2482
2483/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2484/// declarator needs to be rebuilt in the current instantiation.
2485/// Any bits of declarator which appear before the name are valid for
2486/// consideration here.  That's specifically the type in the decl spec
2487/// and the base type in any member-pointer chunks.
2488static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2489                                                    DeclarationName Name) {
2490  // The types we specifically need to rebuild are:
2491  //   - typenames, typeofs, and decltypes
2492  //   - types which will become injected class names
2493  // Of course, we also need to rebuild any type referencing such a
2494  // type.  It's safest to just say "dependent", but we call out a
2495  // few cases here.
2496
2497  DeclSpec &DS = D.getMutableDeclSpec();
2498  switch (DS.getTypeSpecType()) {
2499  case DeclSpec::TST_typename:
2500  case DeclSpec::TST_typeofType:
2501  case DeclSpec::TST_decltype: {
2502    // Grab the type from the parser.
2503    TypeSourceInfo *TSI = 0;
2504    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2505    if (T.isNull() || !T->isDependentType()) break;
2506
2507    // Make sure there's a type source info.  This isn't really much
2508    // of a waste; most dependent types should have type source info
2509    // attached already.
2510    if (!TSI)
2511      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2512
2513    // Rebuild the type in the current instantiation.
2514    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2515    if (!TSI) return true;
2516
2517    // Store the new type back in the decl spec.
2518    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2519    DS.UpdateTypeRep(LocType);
2520    break;
2521  }
2522
2523  case DeclSpec::TST_typeofExpr: {
2524    Expr *E = DS.getRepAsExpr();
2525    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2526    if (Result.isInvalid()) return true;
2527    DS.UpdateExprRep(Result.get());
2528    break;
2529  }
2530
2531  default:
2532    // Nothing to do for these decl specs.
2533    break;
2534  }
2535
2536  // It doesn't matter what order we do this in.
2537  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2538    DeclaratorChunk &Chunk = D.getTypeObject(I);
2539
2540    // The only type information in the declarator which can come
2541    // before the declaration name is the base type of a member
2542    // pointer.
2543    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2544      continue;
2545
2546    // Rebuild the scope specifier in-place.
2547    CXXScopeSpec &SS = Chunk.Mem.Scope();
2548    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2549      return true;
2550  }
2551
2552  return false;
2553}
2554
2555Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2556  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2557}
2558
2559/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2560///   If T is the name of a class, then each of the following shall have a
2561///   name different from T:
2562///     - every static data member of class T;
2563///     - every member function of class T
2564///     - every member of class T that is itself a type;
2565/// \returns true if the declaration name violates these rules.
2566bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2567                                   DeclarationNameInfo NameInfo) {
2568  DeclarationName Name = NameInfo.getName();
2569
2570  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2571    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2572      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2573      return true;
2574    }
2575
2576  return false;
2577}
2578
2579Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2580                             MultiTemplateParamsArg TemplateParamLists,
2581                             bool IsFunctionDefinition) {
2582  // TODO: consider using NameInfo for diagnostic.
2583  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2584  DeclarationName Name = NameInfo.getName();
2585
2586  // All of these full declarators require an identifier.  If it doesn't have
2587  // one, the ParsedFreeStandingDeclSpec action should be used.
2588  if (!Name) {
2589    if (!D.isInvalidType())  // Reject this if we think it is valid.
2590      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2591           diag::err_declarator_need_ident)
2592        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2593    return 0;
2594  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2595    return 0;
2596
2597  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2598  // we find one that is.
2599  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2600         (S->getFlags() & Scope::TemplateParamScope) != 0)
2601    S = S->getParent();
2602
2603  DeclContext *DC = CurContext;
2604  if (D.getCXXScopeSpec().isInvalid())
2605    D.setInvalidType();
2606  else if (D.getCXXScopeSpec().isSet()) {
2607    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2608                                        UPPC_DeclarationQualifier))
2609      return 0;
2610
2611    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2612    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2613    if (!DC) {
2614      // If we could not compute the declaration context, it's because the
2615      // declaration context is dependent but does not refer to a class,
2616      // class template, or class template partial specialization. Complain
2617      // and return early, to avoid the coming semantic disaster.
2618      Diag(D.getIdentifierLoc(),
2619           diag::err_template_qualified_declarator_no_match)
2620        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2621        << D.getCXXScopeSpec().getRange();
2622      return 0;
2623    }
2624
2625    bool IsDependentContext = DC->isDependentContext();
2626
2627    if (!IsDependentContext &&
2628        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2629      return 0;
2630
2631    if (isa<CXXRecordDecl>(DC)) {
2632      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2633        Diag(D.getIdentifierLoc(),
2634             diag::err_member_def_undefined_record)
2635          << Name << DC << D.getCXXScopeSpec().getRange();
2636        D.setInvalidType();
2637      } else if (isa<CXXRecordDecl>(CurContext) &&
2638                 !D.getDeclSpec().isFriendSpecified()) {
2639        // The user provided a superfluous scope specifier inside a class
2640        // definition:
2641        //
2642        // class X {
2643        //   void X::f();
2644        // };
2645        if (CurContext->Equals(DC))
2646          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2647            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2648        else
2649          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2650            << Name << D.getCXXScopeSpec().getRange();
2651
2652        // Pretend that this qualifier was not here.
2653        D.getCXXScopeSpec().clear();
2654      }
2655    }
2656
2657    // Check whether we need to rebuild the type of the given
2658    // declaration in the current instantiation.
2659    if (EnteringContext && IsDependentContext &&
2660        TemplateParamLists.size() != 0) {
2661      ContextRAII SavedContext(*this, DC);
2662      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2663        D.setInvalidType();
2664    }
2665  }
2666
2667  if (DiagnoseClassNameShadow(DC, NameInfo))
2668    // If this is a typedef, we'll end up spewing multiple diagnostics.
2669    // Just return early; it's safer.
2670    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2671      return 0;
2672
2673  NamedDecl *New;
2674
2675  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2676  QualType R = TInfo->getType();
2677
2678  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2679                                      UPPC_DeclarationType))
2680    D.setInvalidType();
2681
2682  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2683                        ForRedeclaration);
2684
2685  // See if this is a redefinition of a variable in the same scope.
2686  if (!D.getCXXScopeSpec().isSet()) {
2687    bool IsLinkageLookup = false;
2688
2689    // If the declaration we're planning to build will be a function
2690    // or object with linkage, then look for another declaration with
2691    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2692    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2693      /* Do nothing*/;
2694    else if (R->isFunctionType()) {
2695      if (CurContext->isFunctionOrMethod() ||
2696          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2697        IsLinkageLookup = true;
2698    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2699      IsLinkageLookup = true;
2700    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2701             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2702      IsLinkageLookup = true;
2703
2704    if (IsLinkageLookup)
2705      Previous.clear(LookupRedeclarationWithLinkage);
2706
2707    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2708  } else { // Something like "int foo::x;"
2709    LookupQualifiedName(Previous, DC);
2710
2711    // Don't consider using declarations as previous declarations for
2712    // out-of-line members.
2713    RemoveUsingDecls(Previous);
2714
2715    // C++ 7.3.1.2p2:
2716    // Members (including explicit specializations of templates) of a named
2717    // namespace can also be defined outside that namespace by explicit
2718    // qualification of the name being defined, provided that the entity being
2719    // defined was already declared in the namespace and the definition appears
2720    // after the point of declaration in a namespace that encloses the
2721    // declarations namespace.
2722    //
2723    // Note that we only check the context at this point. We don't yet
2724    // have enough information to make sure that PrevDecl is actually
2725    // the declaration we want to match. For example, given:
2726    //
2727    //   class X {
2728    //     void f();
2729    //     void f(float);
2730    //   };
2731    //
2732    //   void X::f(int) { } // ill-formed
2733    //
2734    // In this case, PrevDecl will point to the overload set
2735    // containing the two f's declared in X, but neither of them
2736    // matches.
2737
2738    // First check whether we named the global scope.
2739    if (isa<TranslationUnitDecl>(DC)) {
2740      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2741        << Name << D.getCXXScopeSpec().getRange();
2742    } else {
2743      DeclContext *Cur = CurContext;
2744      while (isa<LinkageSpecDecl>(Cur))
2745        Cur = Cur->getParent();
2746      if (!Cur->Encloses(DC)) {
2747        // The qualifying scope doesn't enclose the original declaration.
2748        // Emit diagnostic based on current scope.
2749        SourceLocation L = D.getIdentifierLoc();
2750        SourceRange R = D.getCXXScopeSpec().getRange();
2751        if (isa<FunctionDecl>(Cur))
2752          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2753        else
2754          Diag(L, diag::err_invalid_declarator_scope)
2755            << Name << cast<NamedDecl>(DC) << R;
2756        D.setInvalidType();
2757      }
2758    }
2759  }
2760
2761  if (Previous.isSingleResult() &&
2762      Previous.getFoundDecl()->isTemplateParameter()) {
2763    // Maybe we will complain about the shadowed template parameter.
2764    if (!D.isInvalidType())
2765      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2766                                          Previous.getFoundDecl()))
2767        D.setInvalidType();
2768
2769    // Just pretend that we didn't see the previous declaration.
2770    Previous.clear();
2771  }
2772
2773  // In C++, the previous declaration we find might be a tag type
2774  // (class or enum). In this case, the new declaration will hide the
2775  // tag type. Note that this does does not apply if we're declaring a
2776  // typedef (C++ [dcl.typedef]p4).
2777  if (Previous.isSingleTagDecl() &&
2778      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2779    Previous.clear();
2780
2781  bool Redeclaration = false;
2782  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2783    if (TemplateParamLists.size()) {
2784      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2785      return 0;
2786    }
2787
2788    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2789  } else if (R->isFunctionType()) {
2790    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2791                                  move(TemplateParamLists),
2792                                  IsFunctionDefinition, Redeclaration);
2793  } else {
2794    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2795                                  move(TemplateParamLists),
2796                                  Redeclaration);
2797  }
2798
2799  if (New == 0)
2800    return 0;
2801
2802  // If this has an identifier and is not an invalid redeclaration or
2803  // function template specialization, add it to the scope stack.
2804  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2805    PushOnScopeChains(New, S);
2806
2807  return New;
2808}
2809
2810/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2811/// types into constant array types in certain situations which would otherwise
2812/// be errors (for GCC compatibility).
2813static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2814                                                    ASTContext &Context,
2815                                                    bool &SizeIsNegative,
2816                                                    llvm::APSInt &Oversized) {
2817  // This method tries to turn a variable array into a constant
2818  // array even when the size isn't an ICE.  This is necessary
2819  // for compatibility with code that depends on gcc's buggy
2820  // constant expression folding, like struct {char x[(int)(char*)2];}
2821  SizeIsNegative = false;
2822  Oversized = 0;
2823
2824  if (T->isDependentType())
2825    return QualType();
2826
2827  QualifierCollector Qs;
2828  const Type *Ty = Qs.strip(T);
2829
2830  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2831    QualType Pointee = PTy->getPointeeType();
2832    QualType FixedType =
2833        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2834                                            Oversized);
2835    if (FixedType.isNull()) return FixedType;
2836    FixedType = Context.getPointerType(FixedType);
2837    return Qs.apply(Context, FixedType);
2838  }
2839  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
2840    QualType Inner = PTy->getInnerType();
2841    QualType FixedType =
2842        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
2843                                            Oversized);
2844    if (FixedType.isNull()) return FixedType;
2845    FixedType = Context.getParenType(FixedType);
2846    return Qs.apply(Context, FixedType);
2847  }
2848
2849  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2850  if (!VLATy)
2851    return QualType();
2852  // FIXME: We should probably handle this case
2853  if (VLATy->getElementType()->isVariablyModifiedType())
2854    return QualType();
2855
2856  Expr::EvalResult EvalResult;
2857  if (!VLATy->getSizeExpr() ||
2858      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2859      !EvalResult.Val.isInt())
2860    return QualType();
2861
2862  // Check whether the array size is negative.
2863  llvm::APSInt &Res = EvalResult.Val.getInt();
2864  if (Res.isSigned() && Res.isNegative()) {
2865    SizeIsNegative = true;
2866    return QualType();
2867  }
2868
2869  // Check whether the array is too large to be addressed.
2870  unsigned ActiveSizeBits
2871    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2872                                              Res);
2873  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2874    Oversized = Res;
2875    return QualType();
2876  }
2877
2878  return Context.getConstantArrayType(VLATy->getElementType(),
2879                                      Res, ArrayType::Normal, 0);
2880}
2881
2882/// \brief Register the given locally-scoped external C declaration so
2883/// that it can be found later for redeclarations
2884void
2885Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2886                                       const LookupResult &Previous,
2887                                       Scope *S) {
2888  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2889         "Decl is not a locally-scoped decl!");
2890  // Note that we have a locally-scoped external with this name.
2891  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2892
2893  if (!Previous.isSingleResult())
2894    return;
2895
2896  NamedDecl *PrevDecl = Previous.getFoundDecl();
2897
2898  // If there was a previous declaration of this variable, it may be
2899  // in our identifier chain. Update the identifier chain with the new
2900  // declaration.
2901  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2902    // The previous declaration was found on the identifer resolver
2903    // chain, so remove it from its scope.
2904    while (S && !S->isDeclScope(PrevDecl))
2905      S = S->getParent();
2906
2907    if (S)
2908      S->RemoveDecl(PrevDecl);
2909  }
2910}
2911
2912/// \brief Diagnose function specifiers on a declaration of an identifier that
2913/// does not identify a function.
2914void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2915  // FIXME: We should probably indicate the identifier in question to avoid
2916  // confusion for constructs like "inline int a(), b;"
2917  if (D.getDeclSpec().isInlineSpecified())
2918    Diag(D.getDeclSpec().getInlineSpecLoc(),
2919         diag::err_inline_non_function);
2920
2921  if (D.getDeclSpec().isVirtualSpecified())
2922    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2923         diag::err_virtual_non_function);
2924
2925  if (D.getDeclSpec().isExplicitSpecified())
2926    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2927         diag::err_explicit_non_function);
2928}
2929
2930NamedDecl*
2931Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2932                             QualType R,  TypeSourceInfo *TInfo,
2933                             LookupResult &Previous, bool &Redeclaration) {
2934  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2935  if (D.getCXXScopeSpec().isSet()) {
2936    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2937      << D.getCXXScopeSpec().getRange();
2938    D.setInvalidType();
2939    // Pretend we didn't see the scope specifier.
2940    DC = CurContext;
2941    Previous.clear();
2942  }
2943
2944  if (getLangOptions().CPlusPlus) {
2945    // Check that there are no default arguments (C++ only).
2946    CheckExtraCXXDefaultArguments(D);
2947  }
2948
2949  DiagnoseFunctionSpecifiers(D);
2950
2951  if (D.getDeclSpec().isThreadSpecified())
2952    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2953
2954  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2955    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2956      << D.getName().getSourceRange();
2957    return 0;
2958  }
2959
2960  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2961  if (!NewTD) return 0;
2962
2963  // Handle attributes prior to checking for duplicates in MergeVarDecl
2964  ProcessDeclAttributes(S, NewTD, D);
2965
2966  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
2967}
2968
2969/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
2970/// declares a typedef-name, either using the 'typedef' type specifier or via
2971/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
2972NamedDecl*
2973Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
2974                           LookupResult &Previous, bool &Redeclaration) {
2975  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2976  // then it shall have block scope.
2977  // Note that variably modified types must be fixed before merging the decl so
2978  // that redeclarations will match.
2979  QualType T = NewTD->getUnderlyingType();
2980  if (T->isVariablyModifiedType()) {
2981    getCurFunction()->setHasBranchProtectedScope();
2982
2983    if (S->getFnParent() == 0) {
2984      bool SizeIsNegative;
2985      llvm::APSInt Oversized;
2986      QualType FixedTy =
2987          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2988                                              Oversized);
2989      if (!FixedTy.isNull()) {
2990        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
2991        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2992      } else {
2993        if (SizeIsNegative)
2994          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
2995        else if (T->isVariableArrayType())
2996          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
2997        else if (Oversized.getBoolValue())
2998          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
2999        else
3000          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3001        NewTD->setInvalidDecl();
3002      }
3003    }
3004  }
3005
3006  // Merge the decl with the existing one if appropriate. If the decl is
3007  // in an outer scope, it isn't the same thing.
3008  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false,
3009                       /*ExplicitInstantiationOrSpecialization=*/false);
3010  if (!Previous.empty()) {
3011    Redeclaration = true;
3012    MergeTypedefNameDecl(NewTD, Previous);
3013  }
3014
3015  // If this is the C FILE type, notify the AST context.
3016  if (IdentifierInfo *II = NewTD->getIdentifier())
3017    if (!NewTD->isInvalidDecl() &&
3018        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3019      if (II->isStr("FILE"))
3020        Context.setFILEDecl(NewTD);
3021      else if (II->isStr("jmp_buf"))
3022        Context.setjmp_bufDecl(NewTD);
3023      else if (II->isStr("sigjmp_buf"))
3024        Context.setsigjmp_bufDecl(NewTD);
3025      else if (II->isStr("__builtin_va_list"))
3026        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3027    }
3028
3029  return NewTD;
3030}
3031
3032/// \brief Determines whether the given declaration is an out-of-scope
3033/// previous declaration.
3034///
3035/// This routine should be invoked when name lookup has found a
3036/// previous declaration (PrevDecl) that is not in the scope where a
3037/// new declaration by the same name is being introduced. If the new
3038/// declaration occurs in a local scope, previous declarations with
3039/// linkage may still be considered previous declarations (C99
3040/// 6.2.2p4-5, C++ [basic.link]p6).
3041///
3042/// \param PrevDecl the previous declaration found by name
3043/// lookup
3044///
3045/// \param DC the context in which the new declaration is being
3046/// declared.
3047///
3048/// \returns true if PrevDecl is an out-of-scope previous declaration
3049/// for a new delcaration with the same name.
3050static bool
3051isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3052                                ASTContext &Context) {
3053  if (!PrevDecl)
3054    return false;
3055
3056  if (!PrevDecl->hasLinkage())
3057    return false;
3058
3059  if (Context.getLangOptions().CPlusPlus) {
3060    // C++ [basic.link]p6:
3061    //   If there is a visible declaration of an entity with linkage
3062    //   having the same name and type, ignoring entities declared
3063    //   outside the innermost enclosing namespace scope, the block
3064    //   scope declaration declares that same entity and receives the
3065    //   linkage of the previous declaration.
3066    DeclContext *OuterContext = DC->getRedeclContext();
3067    if (!OuterContext->isFunctionOrMethod())
3068      // This rule only applies to block-scope declarations.
3069      return false;
3070
3071    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3072    if (PrevOuterContext->isRecord())
3073      // We found a member function: ignore it.
3074      return false;
3075
3076    // Find the innermost enclosing namespace for the new and
3077    // previous declarations.
3078    OuterContext = OuterContext->getEnclosingNamespaceContext();
3079    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3080
3081    // The previous declaration is in a different namespace, so it
3082    // isn't the same function.
3083    if (!OuterContext->Equals(PrevOuterContext))
3084      return false;
3085  }
3086
3087  return true;
3088}
3089
3090static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3091  CXXScopeSpec &SS = D.getCXXScopeSpec();
3092  if (!SS.isSet()) return;
3093  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3094}
3095
3096NamedDecl*
3097Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3098                              QualType R, TypeSourceInfo *TInfo,
3099                              LookupResult &Previous,
3100                              MultiTemplateParamsArg TemplateParamLists,
3101                              bool &Redeclaration) {
3102  DeclarationName Name = GetNameForDeclarator(D).getName();
3103
3104  // Check that there are no default arguments (C++ only).
3105  if (getLangOptions().CPlusPlus)
3106    CheckExtraCXXDefaultArguments(D);
3107
3108  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3109  assert(SCSpec != DeclSpec::SCS_typedef &&
3110         "Parser allowed 'typedef' as storage class VarDecl.");
3111  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3112  if (SCSpec == DeclSpec::SCS_mutable) {
3113    // mutable can only appear on non-static class members, so it's always
3114    // an error here
3115    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3116    D.setInvalidType();
3117    SC = SC_None;
3118  }
3119  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3120  VarDecl::StorageClass SCAsWritten
3121    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3122
3123  IdentifierInfo *II = Name.getAsIdentifierInfo();
3124  if (!II) {
3125    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3126      << Name.getAsString();
3127    return 0;
3128  }
3129
3130  DiagnoseFunctionSpecifiers(D);
3131
3132  if (!DC->isRecord() && S->getFnParent() == 0) {
3133    // C99 6.9p2: The storage-class specifiers auto and register shall not
3134    // appear in the declaration specifiers in an external declaration.
3135    if (SC == SC_Auto || SC == SC_Register) {
3136
3137      // If this is a register variable with an asm label specified, then this
3138      // is a GNU extension.
3139      if (SC == SC_Register && D.getAsmLabel())
3140        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3141      else
3142        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3143      D.setInvalidType();
3144    }
3145  }
3146
3147  bool isExplicitSpecialization = false;
3148  VarDecl *NewVD;
3149  if (!getLangOptions().CPlusPlus) {
3150    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3151                            D.getIdentifierLoc(), II,
3152                            R, TInfo, SC, SCAsWritten);
3153
3154    if (D.isInvalidType())
3155      NewVD->setInvalidDecl();
3156  } else {
3157    if (DC->isRecord() && !CurContext->isRecord()) {
3158      // This is an out-of-line definition of a static data member.
3159      if (SC == SC_Static) {
3160        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3161             diag::err_static_out_of_line)
3162          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3163      } else if (SC == SC_None)
3164        SC = SC_Static;
3165    }
3166    if (SC == SC_Static) {
3167      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3168        if (RD->isLocalClass())
3169          Diag(D.getIdentifierLoc(),
3170               diag::err_static_data_member_not_allowed_in_local_class)
3171            << Name << RD->getDeclName();
3172
3173        // C++ [class.union]p1: If a union contains a static data member,
3174        // the program is ill-formed.
3175        //
3176        // We also disallow static data members in anonymous structs.
3177        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3178          Diag(D.getIdentifierLoc(),
3179               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3180            << Name << RD->isUnion();
3181      }
3182    }
3183
3184    // Match up the template parameter lists with the scope specifier, then
3185    // determine whether we have a template or a template specialization.
3186    isExplicitSpecialization = false;
3187    bool Invalid = false;
3188    if (TemplateParameterList *TemplateParams
3189        = MatchTemplateParametersToScopeSpecifier(
3190                                                  D.getDeclSpec().getSourceRange().getBegin(),
3191                                                  D.getCXXScopeSpec(),
3192                                                  TemplateParamLists.get(),
3193                                                  TemplateParamLists.size(),
3194                                                  /*never a friend*/ false,
3195                                                  isExplicitSpecialization,
3196                                                  Invalid)) {
3197      if (TemplateParams->size() > 0) {
3198        // There is no such thing as a variable template.
3199        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3200          << II
3201          << SourceRange(TemplateParams->getTemplateLoc(),
3202                         TemplateParams->getRAngleLoc());
3203        return 0;
3204      } else {
3205        // There is an extraneous 'template<>' for this variable. Complain
3206        // about it, but allow the declaration of the variable.
3207        Diag(TemplateParams->getTemplateLoc(),
3208             diag::err_template_variable_noparams)
3209          << II
3210          << SourceRange(TemplateParams->getTemplateLoc(),
3211                         TemplateParams->getRAngleLoc());
3212        isExplicitSpecialization = true;
3213      }
3214    }
3215
3216    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3217                            D.getIdentifierLoc(), II,
3218                            R, TInfo, SC, SCAsWritten);
3219
3220    // If this decl has an auto type in need of deduction, make a note of the
3221    // Decl so we can diagnose uses of it in its own initializer.
3222    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3223        R->getContainedAutoType())
3224      ParsingInitForAutoVars.insert(NewVD);
3225
3226    if (D.isInvalidType() || Invalid)
3227      NewVD->setInvalidDecl();
3228
3229    SetNestedNameSpecifier(NewVD, D);
3230
3231    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3232      NewVD->setTemplateParameterListsInfo(Context,
3233                                           TemplateParamLists.size(),
3234                                           TemplateParamLists.release());
3235    }
3236  }
3237
3238  if (D.getDeclSpec().isThreadSpecified()) {
3239    if (NewVD->hasLocalStorage())
3240      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3241    else if (!Context.Target.isTLSSupported())
3242      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3243    else
3244      NewVD->setThreadSpecified(true);
3245  }
3246
3247  // Set the lexical context. If the declarator has a C++ scope specifier, the
3248  // lexical context will be different from the semantic context.
3249  NewVD->setLexicalDeclContext(CurContext);
3250
3251  // Handle attributes prior to checking for duplicates in MergeVarDecl
3252  ProcessDeclAttributes(S, NewVD, D);
3253
3254  // Handle GNU asm-label extension (encoded as an attribute).
3255  if (Expr *E = (Expr*)D.getAsmLabel()) {
3256    // The parser guarantees this is a string.
3257    StringLiteral *SE = cast<StringLiteral>(E);
3258    llvm::StringRef Label = SE->getString();
3259    if (S->getFnParent() != 0) {
3260      switch (SC) {
3261      case SC_None:
3262      case SC_Auto:
3263        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3264        break;
3265      case SC_Register:
3266        if (!Context.Target.isValidGCCRegisterName(Label))
3267          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3268        break;
3269      case SC_Static:
3270      case SC_Extern:
3271      case SC_PrivateExtern:
3272        break;
3273      }
3274    }
3275
3276    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3277                                                Context, Label));
3278  }
3279
3280  // Diagnose shadowed variables before filtering for scope.
3281  if (!D.getCXXScopeSpec().isSet())
3282    CheckShadow(S, NewVD, Previous);
3283
3284  // Don't consider existing declarations that are in a different
3285  // scope and are out-of-semantic-context declarations (if the new
3286  // declaration has linkage).
3287  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage(),
3288                       isExplicitSpecialization);
3289
3290  if (!getLangOptions().CPlusPlus)
3291    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3292  else {
3293    // Merge the decl with the existing one if appropriate.
3294    if (!Previous.empty()) {
3295      if (Previous.isSingleResult() &&
3296          isa<FieldDecl>(Previous.getFoundDecl()) &&
3297          D.getCXXScopeSpec().isSet()) {
3298        // The user tried to define a non-static data member
3299        // out-of-line (C++ [dcl.meaning]p1).
3300        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3301          << D.getCXXScopeSpec().getRange();
3302        Previous.clear();
3303        NewVD->setInvalidDecl();
3304      }
3305    } else if (D.getCXXScopeSpec().isSet()) {
3306      // No previous declaration in the qualifying scope.
3307      Diag(D.getIdentifierLoc(), diag::err_no_member)
3308        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3309        << D.getCXXScopeSpec().getRange();
3310      NewVD->setInvalidDecl();
3311    }
3312
3313    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3314
3315    // This is an explicit specialization of a static data member. Check it.
3316    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3317        CheckMemberSpecialization(NewVD, Previous))
3318      NewVD->setInvalidDecl();
3319  }
3320
3321  // attributes declared post-definition are currently ignored
3322  // FIXME: This should be handled in attribute merging, not
3323  // here.
3324  if (Previous.isSingleResult()) {
3325    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3326    if (Def && (Def = Def->getDefinition()) &&
3327        Def != NewVD && D.hasAttributes()) {
3328      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3329      Diag(Def->getLocation(), diag::note_previous_definition);
3330    }
3331  }
3332
3333  // If this is a locally-scoped extern C variable, update the map of
3334  // such variables.
3335  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3336      !NewVD->isInvalidDecl())
3337    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3338
3339  // If there's a #pragma GCC visibility in scope, and this isn't a class
3340  // member, set the visibility of this variable.
3341  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3342    AddPushedVisibilityAttribute(NewVD);
3343
3344  MarkUnusedFileScopedDecl(NewVD);
3345
3346  return NewVD;
3347}
3348
3349/// \brief Diagnose variable or built-in function shadowing.  Implements
3350/// -Wshadow.
3351///
3352/// This method is called whenever a VarDecl is added to a "useful"
3353/// scope.
3354///
3355/// \param S the scope in which the shadowing name is being declared
3356/// \param R the lookup of the name
3357///
3358void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3359  // Return if warning is ignored.
3360  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3361        Diagnostic::Ignored)
3362    return;
3363
3364  // Don't diagnose declarations at file scope.
3365  DeclContext *NewDC = D->getDeclContext();
3366  if (NewDC->isFileContext())
3367    return;
3368
3369  // Only diagnose if we're shadowing an unambiguous field or variable.
3370  if (R.getResultKind() != LookupResult::Found)
3371    return;
3372
3373  NamedDecl* ShadowedDecl = R.getFoundDecl();
3374  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3375    return;
3376
3377  // Fields are not shadowed by variables in C++ static methods.
3378  if (isa<FieldDecl>(ShadowedDecl))
3379    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3380      if (MD->isStatic())
3381        return;
3382
3383  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3384    if (shadowedVar->isExternC()) {
3385      // Don't warn for this case:
3386      //
3387      // @code
3388      // extern int bob;
3389      // void f() {
3390      //   extern int bob;
3391      // }
3392      // @endcode
3393      if (D->isExternC())
3394        return;
3395
3396      // For shadowing external vars, make sure that we point to the global
3397      // declaration, not a locally scoped extern declaration.
3398      for (VarDecl::redecl_iterator
3399             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3400           I != E; ++I)
3401        if (I->isFileVarDecl()) {
3402          ShadowedDecl = *I;
3403          break;
3404        }
3405    }
3406
3407  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3408
3409  // Only warn about certain kinds of shadowing for class members.
3410  if (NewDC && NewDC->isRecord()) {
3411    // In particular, don't warn about shadowing non-class members.
3412    if (!OldDC->isRecord())
3413      return;
3414
3415    // TODO: should we warn about static data members shadowing
3416    // static data members from base classes?
3417
3418    // TODO: don't diagnose for inaccessible shadowed members.
3419    // This is hard to do perfectly because we might friend the
3420    // shadowing context, but that's just a false negative.
3421  }
3422
3423  // Determine what kind of declaration we're shadowing.
3424  unsigned Kind;
3425  if (isa<RecordDecl>(OldDC)) {
3426    if (isa<FieldDecl>(ShadowedDecl))
3427      Kind = 3; // field
3428    else
3429      Kind = 2; // static data member
3430  } else if (OldDC->isFileContext())
3431    Kind = 1; // global
3432  else
3433    Kind = 0; // local
3434
3435  DeclarationName Name = R.getLookupName();
3436
3437  // Emit warning and note.
3438  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3439  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3440}
3441
3442/// \brief Check -Wshadow without the advantage of a previous lookup.
3443void Sema::CheckShadow(Scope *S, VarDecl *D) {
3444  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3445        Diagnostic::Ignored)
3446    return;
3447
3448  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3449                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3450  LookupName(R, S);
3451  CheckShadow(S, D, R);
3452}
3453
3454/// \brief Perform semantic checking on a newly-created variable
3455/// declaration.
3456///
3457/// This routine performs all of the type-checking required for a
3458/// variable declaration once it has been built. It is used both to
3459/// check variables after they have been parsed and their declarators
3460/// have been translated into a declaration, and to check variables
3461/// that have been instantiated from a template.
3462///
3463/// Sets NewVD->isInvalidDecl() if an error was encountered.
3464void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3465                                    LookupResult &Previous,
3466                                    bool &Redeclaration) {
3467  // If the decl is already known invalid, don't check it.
3468  if (NewVD->isInvalidDecl())
3469    return;
3470
3471  QualType T = NewVD->getType();
3472
3473  if (T->isObjCObjectType()) {
3474    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3475    return NewVD->setInvalidDecl();
3476  }
3477
3478  // Emit an error if an address space was applied to decl with local storage.
3479  // This includes arrays of objects with address space qualifiers, but not
3480  // automatic variables that point to other address spaces.
3481  // ISO/IEC TR 18037 S5.1.2
3482  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3483    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3484    return NewVD->setInvalidDecl();
3485  }
3486
3487  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3488      && !NewVD->hasAttr<BlocksAttr>())
3489    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3490
3491  bool isVM = T->isVariablyModifiedType();
3492  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3493      NewVD->hasAttr<BlocksAttr>())
3494    getCurFunction()->setHasBranchProtectedScope();
3495
3496  if ((isVM && NewVD->hasLinkage()) ||
3497      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3498    bool SizeIsNegative;
3499    llvm::APSInt Oversized;
3500    QualType FixedTy =
3501        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3502                                            Oversized);
3503
3504    if (FixedTy.isNull() && T->isVariableArrayType()) {
3505      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3506      // FIXME: This won't give the correct result for
3507      // int a[10][n];
3508      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3509
3510      if (NewVD->isFileVarDecl())
3511        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3512        << SizeRange;
3513      else if (NewVD->getStorageClass() == SC_Static)
3514        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3515        << SizeRange;
3516      else
3517        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3518        << SizeRange;
3519      return NewVD->setInvalidDecl();
3520    }
3521
3522    if (FixedTy.isNull()) {
3523      if (NewVD->isFileVarDecl())
3524        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3525      else
3526        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3527      return NewVD->setInvalidDecl();
3528    }
3529
3530    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3531    NewVD->setType(FixedTy);
3532  }
3533
3534  if (Previous.empty() && NewVD->isExternC()) {
3535    // Since we did not find anything by this name and we're declaring
3536    // an extern "C" variable, look for a non-visible extern "C"
3537    // declaration with the same name.
3538    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3539      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3540    if (Pos != LocallyScopedExternalDecls.end())
3541      Previous.addDecl(Pos->second);
3542  }
3543
3544  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3545    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3546      << T;
3547    return NewVD->setInvalidDecl();
3548  }
3549
3550  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3551    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3552    return NewVD->setInvalidDecl();
3553  }
3554
3555  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3556    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3557    return NewVD->setInvalidDecl();
3558  }
3559
3560  // Function pointers and references cannot have qualified function type, only
3561  // function pointer-to-members can do that.
3562  QualType Pointee;
3563  unsigned PtrOrRef = 0;
3564  if (const PointerType *Ptr = T->getAs<PointerType>())
3565    Pointee = Ptr->getPointeeType();
3566  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3567    Pointee = Ref->getPointeeType();
3568    PtrOrRef = 1;
3569  }
3570  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3571      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3572    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3573        << PtrOrRef;
3574    return NewVD->setInvalidDecl();
3575  }
3576
3577  if (!Previous.empty()) {
3578    Redeclaration = true;
3579    MergeVarDecl(NewVD, Previous);
3580  }
3581}
3582
3583/// \brief Data used with FindOverriddenMethod
3584struct FindOverriddenMethodData {
3585  Sema *S;
3586  CXXMethodDecl *Method;
3587};
3588
3589/// \brief Member lookup function that determines whether a given C++
3590/// method overrides a method in a base class, to be used with
3591/// CXXRecordDecl::lookupInBases().
3592static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3593                                 CXXBasePath &Path,
3594                                 void *UserData) {
3595  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3596
3597  FindOverriddenMethodData *Data
3598    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3599
3600  DeclarationName Name = Data->Method->getDeclName();
3601
3602  // FIXME: Do we care about other names here too?
3603  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3604    // We really want to find the base class destructor here.
3605    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3606    CanQualType CT = Data->S->Context.getCanonicalType(T);
3607
3608    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3609  }
3610
3611  for (Path.Decls = BaseRecord->lookup(Name);
3612       Path.Decls.first != Path.Decls.second;
3613       ++Path.Decls.first) {
3614    NamedDecl *D = *Path.Decls.first;
3615    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3616      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3617        return true;
3618    }
3619  }
3620
3621  return false;
3622}
3623
3624/// AddOverriddenMethods - See if a method overrides any in the base classes,
3625/// and if so, check that it's a valid override and remember it.
3626bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3627  // Look for virtual methods in base classes that this method might override.
3628  CXXBasePaths Paths;
3629  FindOverriddenMethodData Data;
3630  Data.Method = MD;
3631  Data.S = this;
3632  bool AddedAny = false;
3633  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3634    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3635         E = Paths.found_decls_end(); I != E; ++I) {
3636      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3637        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3638            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3639            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
3640          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3641          AddedAny = true;
3642        }
3643      }
3644    }
3645  }
3646
3647  return AddedAny;
3648}
3649
3650static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3651  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3652                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3653  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3654  assert(!Prev.isAmbiguous() &&
3655         "Cannot have an ambiguity in previous-declaration lookup");
3656  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3657       Func != FuncEnd; ++Func) {
3658    if (isa<FunctionDecl>(*Func) &&
3659        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3660      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3661  }
3662}
3663
3664NamedDecl*
3665Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3666                              QualType R, TypeSourceInfo *TInfo,
3667                              LookupResult &Previous,
3668                              MultiTemplateParamsArg TemplateParamLists,
3669                              bool IsFunctionDefinition, bool &Redeclaration) {
3670  assert(R.getTypePtr()->isFunctionType());
3671
3672  // TODO: consider using NameInfo for diagnostic.
3673  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3674  DeclarationName Name = NameInfo.getName();
3675  FunctionDecl::StorageClass SC = SC_None;
3676  switch (D.getDeclSpec().getStorageClassSpec()) {
3677  default: assert(0 && "Unknown storage class!");
3678  case DeclSpec::SCS_auto:
3679  case DeclSpec::SCS_register:
3680  case DeclSpec::SCS_mutable:
3681    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3682         diag::err_typecheck_sclass_func);
3683    D.setInvalidType();
3684    break;
3685  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3686  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3687  case DeclSpec::SCS_static: {
3688    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3689      // C99 6.7.1p5:
3690      //   The declaration of an identifier for a function that has
3691      //   block scope shall have no explicit storage-class specifier
3692      //   other than extern
3693      // See also (C++ [dcl.stc]p4).
3694      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3695           diag::err_static_block_func);
3696      SC = SC_None;
3697    } else
3698      SC = SC_Static;
3699    break;
3700  }
3701  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3702  }
3703
3704  if (D.getDeclSpec().isThreadSpecified())
3705    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3706
3707  // Do not allow returning a objc interface by-value.
3708  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3709    Diag(D.getIdentifierLoc(),
3710         diag::err_object_cannot_be_passed_returned_by_value) << 0
3711    << R->getAs<FunctionType>()->getResultType();
3712    D.setInvalidType();
3713  }
3714
3715  FunctionDecl *NewFD;
3716  bool isInline = D.getDeclSpec().isInlineSpecified();
3717  bool isFriend = false;
3718  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3719  FunctionDecl::StorageClass SCAsWritten
3720    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3721  FunctionTemplateDecl *FunctionTemplate = 0;
3722  bool isExplicitSpecialization = false;
3723  bool isFunctionTemplateSpecialization = false;
3724
3725  if (!getLangOptions().CPlusPlus) {
3726    // Determine whether the function was written with a
3727    // prototype. This true when:
3728    //   - there is a prototype in the declarator, or
3729    //   - the type R of the function is some kind of typedef or other reference
3730    //     to a type name (which eventually refers to a function type).
3731    bool HasPrototype =
3732    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
3733    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3734
3735    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3736                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3737                                 HasPrototype);
3738    if (D.isInvalidType())
3739      NewFD->setInvalidDecl();
3740
3741    // Set the lexical context.
3742    NewFD->setLexicalDeclContext(CurContext);
3743    // Filter out previous declarations that don't match the scope.
3744    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
3745                         /*ExplicitInstantiationOrSpecialization=*/false);
3746  } else {
3747    isFriend = D.getDeclSpec().isFriendSpecified();
3748    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3749    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3750    bool isVirtualOkay = false;
3751
3752    // Check that the return type is not an abstract class type.
3753    // For record types, this is done by the AbstractClassUsageDiagnoser once
3754    // the class has been completely parsed.
3755    if (!DC->isRecord() &&
3756      RequireNonAbstractType(D.getIdentifierLoc(),
3757                             R->getAs<FunctionType>()->getResultType(),
3758                             diag::err_abstract_type_in_decl,
3759                             AbstractReturnType))
3760      D.setInvalidType();
3761
3762    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3763      // This is a C++ constructor declaration.
3764      assert(DC->isRecord() &&
3765             "Constructors can only be declared in a member context");
3766
3767      R = CheckConstructorDeclarator(D, R, SC);
3768
3769      // Create the new declaration
3770      NewFD = CXXConstructorDecl::Create(Context,
3771                                         cast<CXXRecordDecl>(DC),
3772                                         D.getSourceRange().getBegin(),
3773                                         NameInfo, R, TInfo,
3774                                         isExplicit, isInline,
3775                                         /*isImplicitlyDeclared=*/false);
3776    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3777      // This is a C++ destructor declaration.
3778      if (DC->isRecord()) {
3779        R = CheckDestructorDeclarator(D, R, SC);
3780
3781        NewFD = CXXDestructorDecl::Create(Context,
3782                                          cast<CXXRecordDecl>(DC),
3783                                          D.getSourceRange().getBegin(),
3784                                          NameInfo, R, TInfo,
3785                                          isInline,
3786                                          /*isImplicitlyDeclared=*/false);
3787        isVirtualOkay = true;
3788      } else {
3789        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3790
3791        // Create a FunctionDecl to satisfy the function definition parsing
3792        // code path.
3793        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3794                                     D.getIdentifierLoc(), Name, R, TInfo,
3795                                     SC, SCAsWritten, isInline,
3796                                     /*hasPrototype=*/true);
3797        D.setInvalidType();
3798      }
3799    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3800      if (!DC->isRecord()) {
3801        Diag(D.getIdentifierLoc(),
3802             diag::err_conv_function_not_member);
3803        return 0;
3804      }
3805
3806      CheckConversionDeclarator(D, R, SC);
3807      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3808                                        D.getSourceRange().getBegin(),
3809                                        NameInfo, R, TInfo,
3810                                        isInline, isExplicit,
3811                                        SourceLocation());
3812
3813      isVirtualOkay = true;
3814    } else if (DC->isRecord()) {
3815      // If the of the function is the same as the name of the record, then this
3816      // must be an invalid constructor that has a return type.
3817      // (The parser checks for a return type and makes the declarator a
3818      // constructor if it has no return type).
3819      // must have an invalid constructor that has a return type
3820      if (Name.getAsIdentifierInfo() &&
3821          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3822        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3823          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3824          << SourceRange(D.getIdentifierLoc());
3825        return 0;
3826      }
3827
3828      bool isStatic = SC == SC_Static;
3829
3830      // [class.free]p1:
3831      // Any allocation function for a class T is a static member
3832      // (even if not explicitly declared static).
3833      if (Name.getCXXOverloadedOperator() == OO_New ||
3834          Name.getCXXOverloadedOperator() == OO_Array_New)
3835        isStatic = true;
3836
3837      // [class.free]p6 Any deallocation function for a class X is a static member
3838      // (even if not explicitly declared static).
3839      if (Name.getCXXOverloadedOperator() == OO_Delete ||
3840          Name.getCXXOverloadedOperator() == OO_Array_Delete)
3841        isStatic = true;
3842
3843      // This is a C++ method declaration.
3844      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3845                                    D.getSourceRange().getBegin(),
3846                                    NameInfo, R, TInfo,
3847                                    isStatic, SCAsWritten, isInline,
3848                                    SourceLocation());
3849
3850      isVirtualOkay = !isStatic;
3851    } else {
3852      // Determine whether the function was written with a
3853      // prototype. This true when:
3854      //   - we're in C++ (where every function has a prototype),
3855      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3856                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3857                                   true/*HasPrototype*/);
3858    }
3859
3860    if (isFriend && !isInline && IsFunctionDefinition) {
3861      // C++ [class.friend]p5
3862      //   A function can be defined in a friend declaration of a
3863      //   class . . . . Such a function is implicitly inline.
3864      NewFD->setImplicitlyInline();
3865    }
3866
3867    SetNestedNameSpecifier(NewFD, D);
3868    isExplicitSpecialization = false;
3869    isFunctionTemplateSpecialization = false;
3870    if (D.isInvalidType())
3871      NewFD->setInvalidDecl();
3872
3873    // Set the lexical context. If the declarator has a C++
3874    // scope specifier, or is the object of a friend declaration, the
3875    // lexical context will be different from the semantic context.
3876    NewFD->setLexicalDeclContext(CurContext);
3877
3878    // Match up the template parameter lists with the scope specifier, then
3879    // determine whether we have a template or a template specialization.
3880    bool Invalid = false;
3881    if (TemplateParameterList *TemplateParams
3882          = MatchTemplateParametersToScopeSpecifier(
3883                                  D.getDeclSpec().getSourceRange().getBegin(),
3884                                  D.getCXXScopeSpec(),
3885                                  TemplateParamLists.get(),
3886                                  TemplateParamLists.size(),
3887                                  isFriend,
3888                                  isExplicitSpecialization,
3889                                  Invalid)) {
3890      if (TemplateParams->size() > 0) {
3891        // This is a function template
3892
3893        // Check that we can declare a template here.
3894        if (CheckTemplateDeclScope(S, TemplateParams))
3895          return 0;
3896
3897        // A destructor cannot be a template.
3898        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3899          Diag(NewFD->getLocation(), diag::err_destructor_template);
3900          return 0;
3901        }
3902
3903        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3904                                                        NewFD->getLocation(),
3905                                                        Name, TemplateParams,
3906                                                        NewFD);
3907        FunctionTemplate->setLexicalDeclContext(CurContext);
3908        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3909
3910        // For source fidelity, store the other template param lists.
3911        if (TemplateParamLists.size() > 1) {
3912          NewFD->setTemplateParameterListsInfo(Context,
3913                                               TemplateParamLists.size() - 1,
3914                                               TemplateParamLists.release());
3915        }
3916      } else {
3917        // This is a function template specialization.
3918        isFunctionTemplateSpecialization = true;
3919        // For source fidelity, store all the template param lists.
3920        NewFD->setTemplateParameterListsInfo(Context,
3921                                             TemplateParamLists.size(),
3922                                             TemplateParamLists.release());
3923
3924        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3925        if (isFriend) {
3926          // We want to remove the "template<>", found here.
3927          SourceRange RemoveRange = TemplateParams->getSourceRange();
3928
3929          // If we remove the template<> and the name is not a
3930          // template-id, we're actually silently creating a problem:
3931          // the friend declaration will refer to an untemplated decl,
3932          // and clearly the user wants a template specialization.  So
3933          // we need to insert '<>' after the name.
3934          SourceLocation InsertLoc;
3935          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3936            InsertLoc = D.getName().getSourceRange().getEnd();
3937            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3938          }
3939
3940          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3941            << Name << RemoveRange
3942            << FixItHint::CreateRemoval(RemoveRange)
3943            << FixItHint::CreateInsertion(InsertLoc, "<>");
3944        }
3945      }
3946    }
3947    else {
3948      // All template param lists were matched against the scope specifier:
3949      // this is NOT (an explicit specialization of) a template.
3950      if (TemplateParamLists.size() > 0)
3951        // For source fidelity, store all the template param lists.
3952        NewFD->setTemplateParameterListsInfo(Context,
3953                                             TemplateParamLists.size(),
3954                                             TemplateParamLists.release());
3955    }
3956
3957    if (Invalid) {
3958      NewFD->setInvalidDecl();
3959      if (FunctionTemplate)
3960        FunctionTemplate->setInvalidDecl();
3961    }
3962
3963    // C++ [dcl.fct.spec]p5:
3964    //   The virtual specifier shall only be used in declarations of
3965    //   nonstatic class member functions that appear within a
3966    //   member-specification of a class declaration; see 10.3.
3967    //
3968    if (isVirtual && !NewFD->isInvalidDecl()) {
3969      if (!isVirtualOkay) {
3970        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3971             diag::err_virtual_non_function);
3972      } else if (!CurContext->isRecord()) {
3973        // 'virtual' was specified outside of the class.
3974        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3975             diag::err_virtual_out_of_class)
3976          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3977      } else if (NewFD->getDescribedFunctionTemplate()) {
3978        // C++ [temp.mem]p3:
3979        //  A member function template shall not be virtual.
3980        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3981             diag::err_virtual_member_function_template)
3982          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3983      } else {
3984        // Okay: Add virtual to the method.
3985        NewFD->setVirtualAsWritten(true);
3986      }
3987    }
3988
3989    // C++ [dcl.fct.spec]p3:
3990    //  The inline specifier shall not appear on a block scope function declaration.
3991    if (isInline && !NewFD->isInvalidDecl()) {
3992      if (CurContext->isFunctionOrMethod()) {
3993        // 'inline' is not allowed on block scope function declaration.
3994        Diag(D.getDeclSpec().getInlineSpecLoc(),
3995             diag::err_inline_declaration_block_scope) << Name
3996          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3997      }
3998    }
3999
4000    // C++ [dcl.fct.spec]p6:
4001    //  The explicit specifier shall be used only in the declaration of a
4002    //  constructor or conversion function within its class definition; see 12.3.1
4003    //  and 12.3.2.
4004    if (isExplicit && !NewFD->isInvalidDecl()) {
4005      if (!CurContext->isRecord()) {
4006        // 'explicit' was specified outside of the class.
4007        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4008             diag::err_explicit_out_of_class)
4009          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4010      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4011                 !isa<CXXConversionDecl>(NewFD)) {
4012        // 'explicit' was specified on a function that wasn't a constructor
4013        // or conversion function.
4014        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4015             diag::err_explicit_non_ctor_or_conv_function)
4016          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4017      }
4018    }
4019
4020    // Filter out previous declarations that don't match the scope.
4021    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
4022                         isExplicitSpecialization ||
4023                         isFunctionTemplateSpecialization);
4024
4025    if (isFriend) {
4026      // For now, claim that the objects have no previous declaration.
4027      if (FunctionTemplate) {
4028        FunctionTemplate->setObjectOfFriendDecl(false);
4029        FunctionTemplate->setAccess(AS_public);
4030      }
4031      NewFD->setObjectOfFriendDecl(false);
4032      NewFD->setAccess(AS_public);
4033    }
4034
4035    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4036      // A method is implicitly inline if it's defined in its class
4037      // definition.
4038      NewFD->setImplicitlyInline();
4039    }
4040
4041    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4042        !CurContext->isRecord()) {
4043      // C++ [class.static]p1:
4044      //   A data or function member of a class may be declared static
4045      //   in a class definition, in which case it is a static member of
4046      //   the class.
4047
4048      // Complain about the 'static' specifier if it's on an out-of-line
4049      // member function definition.
4050      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4051           diag::err_static_out_of_line)
4052        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4053    }
4054  }
4055
4056  // Handle GNU asm-label extension (encoded as an attribute).
4057  if (Expr *E = (Expr*) D.getAsmLabel()) {
4058    // The parser guarantees this is a string.
4059    StringLiteral *SE = cast<StringLiteral>(E);
4060    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4061                                                SE->getString()));
4062  }
4063
4064  // Copy the parameter declarations from the declarator D to the function
4065  // declaration NewFD, if they are available.  First scavenge them into Params.
4066  llvm::SmallVector<ParmVarDecl*, 16> Params;
4067  if (D.isFunctionDeclarator()) {
4068    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4069
4070    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4071    // function that takes no arguments, not a function that takes a
4072    // single void argument.
4073    // We let through "const void" here because Sema::GetTypeForDeclarator
4074    // already checks for that case.
4075    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4076        FTI.ArgInfo[0].Param &&
4077        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4078      // Empty arg list, don't push any params.
4079      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4080
4081      // In C++, the empty parameter-type-list must be spelled "void"; a
4082      // typedef of void is not permitted.
4083      if (getLangOptions().CPlusPlus &&
4084          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4085        bool IsTypeAlias = false;
4086        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4087          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4088        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4089          << IsTypeAlias;
4090      }
4091    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4092      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4093        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4094        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4095        Param->setDeclContext(NewFD);
4096        Params.push_back(Param);
4097
4098        if (Param->isInvalidDecl())
4099          NewFD->setInvalidDecl();
4100      }
4101    }
4102
4103  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4104    // When we're declaring a function with a typedef, typeof, etc as in the
4105    // following example, we'll need to synthesize (unnamed)
4106    // parameters for use in the declaration.
4107    //
4108    // @code
4109    // typedef void fn(int);
4110    // fn f;
4111    // @endcode
4112
4113    // Synthesize a parameter for each argument type.
4114    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4115         AE = FT->arg_type_end(); AI != AE; ++AI) {
4116      ParmVarDecl *Param =
4117        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4118      Params.push_back(Param);
4119    }
4120  } else {
4121    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4122           "Should not need args for typedef of non-prototype fn");
4123  }
4124  // Finally, we know we have the right number of parameters, install them.
4125  NewFD->setParams(Params.data(), Params.size());
4126
4127  // Process the non-inheritable attributes on this declaration.
4128  ProcessDeclAttributes(S, NewFD, D,
4129                        /*NonInheritable=*/true, /*Inheritable=*/false);
4130
4131  if (!getLangOptions().CPlusPlus) {
4132    // Perform semantic checking on the function declaration.
4133    bool isExplctSpecialization=false;
4134    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
4135                             Redeclaration);
4136    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4137            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4138           "previous declaration set still overloaded");
4139  } else {
4140    // If the declarator is a template-id, translate the parser's template
4141    // argument list into our AST format.
4142    bool HasExplicitTemplateArgs = false;
4143    TemplateArgumentListInfo TemplateArgs;
4144    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4145      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4146      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4147      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4148      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4149                                         TemplateId->getTemplateArgs(),
4150                                         TemplateId->NumArgs);
4151      translateTemplateArguments(TemplateArgsPtr,
4152                                 TemplateArgs);
4153      TemplateArgsPtr.release();
4154
4155      HasExplicitTemplateArgs = true;
4156
4157      if (FunctionTemplate) {
4158        // Function template with explicit template arguments.
4159        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4160          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4161
4162        HasExplicitTemplateArgs = false;
4163      } else if (!isFunctionTemplateSpecialization &&
4164                 !D.getDeclSpec().isFriendSpecified()) {
4165        // We have encountered something that the user meant to be a
4166        // specialization (because it has explicitly-specified template
4167        // arguments) but that was not introduced with a "template<>" (or had
4168        // too few of them).
4169        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4170          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4171          << FixItHint::CreateInsertion(
4172                                        D.getDeclSpec().getSourceRange().getBegin(),
4173                                                  "template<> ");
4174        isFunctionTemplateSpecialization = true;
4175      } else {
4176        // "friend void foo<>(int);" is an implicit specialization decl.
4177        isFunctionTemplateSpecialization = true;
4178      }
4179    } else if (isFriend && isFunctionTemplateSpecialization) {
4180      // This combination is only possible in a recovery case;  the user
4181      // wrote something like:
4182      //   template <> friend void foo(int);
4183      // which we're recovering from as if the user had written:
4184      //   friend void foo<>(int);
4185      // Go ahead and fake up a template id.
4186      HasExplicitTemplateArgs = true;
4187        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4188      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4189    }
4190
4191    // If it's a friend (and only if it's a friend), it's possible
4192    // that either the specialized function type or the specialized
4193    // template is dependent, and therefore matching will fail.  In
4194    // this case, don't check the specialization yet.
4195    if (isFunctionTemplateSpecialization && isFriend &&
4196        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4197      assert(HasExplicitTemplateArgs &&
4198             "friend function specialization without template args");
4199      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4200                                                       Previous))
4201        NewFD->setInvalidDecl();
4202    } else if (isFunctionTemplateSpecialization) {
4203      if (CurContext->isDependentContext() && CurContext->isRecord()
4204          && !isFriend) {
4205        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4206          << NewFD->getDeclName();
4207        NewFD->setInvalidDecl();
4208        return 0;
4209      } else if (CheckFunctionTemplateSpecialization(NewFD,
4210                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4211                                                     Previous))
4212        NewFD->setInvalidDecl();
4213    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4214      if (CheckMemberSpecialization(NewFD, Previous))
4215          NewFD->setInvalidDecl();
4216    }
4217
4218    // Perform semantic checking on the function declaration.
4219    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4220                             Redeclaration);
4221
4222    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4223            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4224           "previous declaration set still overloaded");
4225
4226    NamedDecl *PrincipalDecl = (FunctionTemplate
4227                                ? cast<NamedDecl>(FunctionTemplate)
4228                                : NewFD);
4229
4230    if (isFriend && Redeclaration) {
4231      AccessSpecifier Access = AS_public;
4232      if (!NewFD->isInvalidDecl())
4233        Access = NewFD->getPreviousDeclaration()->getAccess();
4234
4235      NewFD->setAccess(Access);
4236      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4237
4238      PrincipalDecl->setObjectOfFriendDecl(true);
4239    }
4240
4241    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4242        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4243      PrincipalDecl->setNonMemberOperator();
4244
4245    // If we have a function template, check the template parameter
4246    // list. This will check and merge default template arguments.
4247    if (FunctionTemplate) {
4248      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4249      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4250                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4251                            D.getDeclSpec().isFriendSpecified()
4252                              ? (IsFunctionDefinition
4253                                   ? TPC_FriendFunctionTemplateDefinition
4254                                   : TPC_FriendFunctionTemplate)
4255                              : (D.getCXXScopeSpec().isSet() &&
4256                                 DC && DC->isRecord() &&
4257                                 DC->isDependentContext())
4258                                  ? TPC_ClassTemplateMember
4259                                  : TPC_FunctionTemplate);
4260    }
4261
4262    if (NewFD->isInvalidDecl()) {
4263      // Ignore all the rest of this.
4264    } else if (!Redeclaration) {
4265      // Fake up an access specifier if it's supposed to be a class member.
4266      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4267        NewFD->setAccess(AS_public);
4268
4269      // Qualified decls generally require a previous declaration.
4270      if (D.getCXXScopeSpec().isSet()) {
4271        // ...with the major exception of templated-scope or
4272        // dependent-scope friend declarations.
4273
4274        // TODO: we currently also suppress this check in dependent
4275        // contexts because (1) the parameter depth will be off when
4276        // matching friend templates and (2) we might actually be
4277        // selecting a friend based on a dependent factor.  But there
4278        // are situations where these conditions don't apply and we
4279        // can actually do this check immediately.
4280        if (isFriend &&
4281            (TemplateParamLists.size() ||
4282             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4283             CurContext->isDependentContext())) {
4284              // ignore these
4285            } else {
4286              // The user tried to provide an out-of-line definition for a
4287              // function that is a member of a class or namespace, but there
4288              // was no such member function declared (C++ [class.mfct]p2,
4289              // C++ [namespace.memdef]p2). For example:
4290              //
4291              // class X {
4292              //   void f() const;
4293              // };
4294              //
4295              // void X::f() { } // ill-formed
4296              //
4297              // Complain about this problem, and attempt to suggest close
4298              // matches (e.g., those that differ only in cv-qualifiers and
4299              // whether the parameter types are references).
4300              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4301              << Name << DC << D.getCXXScopeSpec().getRange();
4302              NewFD->setInvalidDecl();
4303
4304              DiagnoseInvalidRedeclaration(*this, NewFD);
4305            }
4306
4307        // Unqualified local friend declarations are required to resolve
4308        // to something.
4309        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4310          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4311          NewFD->setInvalidDecl();
4312          DiagnoseInvalidRedeclaration(*this, NewFD);
4313        }
4314
4315    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4316               !isFriend && !isFunctionTemplateSpecialization &&
4317               !isExplicitSpecialization) {
4318      // An out-of-line member function declaration must also be a
4319      // definition (C++ [dcl.meaning]p1).
4320      // Note that this is not the case for explicit specializations of
4321      // function templates or member functions of class templates, per
4322      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4323      // for compatibility with old SWIG code which likes to generate them.
4324      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4325        << D.getCXXScopeSpec().getRange();
4326    }
4327  }
4328
4329
4330  // Handle attributes. We need to have merged decls when handling attributes
4331  // (for example to check for conflicts, etc).
4332  // FIXME: This needs to happen before we merge declarations. Then,
4333  // let attribute merging cope with attribute conflicts.
4334  ProcessDeclAttributes(S, NewFD, D,
4335                        /*NonInheritable=*/false, /*Inheritable=*/true);
4336
4337  // attributes declared post-definition are currently ignored
4338  // FIXME: This should happen during attribute merging
4339  if (Redeclaration && Previous.isSingleResult()) {
4340    const FunctionDecl *Def;
4341    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4342    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4343      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4344      Diag(Def->getLocation(), diag::note_previous_definition);
4345    }
4346  }
4347
4348  AddKnownFunctionAttributes(NewFD);
4349
4350  if (NewFD->hasAttr<OverloadableAttr>() &&
4351      !NewFD->getType()->getAs<FunctionProtoType>()) {
4352    Diag(NewFD->getLocation(),
4353         diag::err_attribute_overloadable_no_prototype)
4354      << NewFD;
4355
4356    // Turn this into a variadic function with no parameters.
4357    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4358    FunctionProtoType::ExtProtoInfo EPI;
4359    EPI.Variadic = true;
4360    EPI.ExtInfo = FT->getExtInfo();
4361
4362    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4363    NewFD->setType(R);
4364  }
4365
4366  // If there's a #pragma GCC visibility in scope, and this isn't a class
4367  // member, set the visibility of this function.
4368  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4369    AddPushedVisibilityAttribute(NewFD);
4370
4371  // If this is a locally-scoped extern C function, update the
4372  // map of such names.
4373  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4374      && !NewFD->isInvalidDecl())
4375    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4376
4377  // Set this FunctionDecl's range up to the right paren.
4378  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4379
4380  if (getLangOptions().CPlusPlus) {
4381    if (FunctionTemplate) {
4382      if (NewFD->isInvalidDecl())
4383        FunctionTemplate->setInvalidDecl();
4384      return FunctionTemplate;
4385    }
4386  }
4387
4388  MarkUnusedFileScopedDecl(NewFD);
4389
4390  if (getLangOptions().CUDA)
4391    if (IdentifierInfo *II = NewFD->getIdentifier())
4392      if (!NewFD->isInvalidDecl() &&
4393          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4394        if (II->isStr("cudaConfigureCall")) {
4395          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4396            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4397
4398          Context.setcudaConfigureCallDecl(NewFD);
4399        }
4400      }
4401
4402  return NewFD;
4403}
4404
4405/// \brief Perform semantic checking of a new function declaration.
4406///
4407/// Performs semantic analysis of the new function declaration
4408/// NewFD. This routine performs all semantic checking that does not
4409/// require the actual declarator involved in the declaration, and is
4410/// used both for the declaration of functions as they are parsed
4411/// (called via ActOnDeclarator) and for the declaration of functions
4412/// that have been instantiated via C++ template instantiation (called
4413/// via InstantiateDecl).
4414///
4415/// \param IsExplicitSpecialiation whether this new function declaration is
4416/// an explicit specialization of the previous declaration.
4417///
4418/// This sets NewFD->isInvalidDecl() to true if there was an error.
4419void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4420                                    LookupResult &Previous,
4421                                    bool IsExplicitSpecialization,
4422                                    bool &Redeclaration) {
4423  // If NewFD is already known erroneous, don't do any of this checking.
4424  if (NewFD->isInvalidDecl()) {
4425    // If this is a class member, mark the class invalid immediately.
4426    // This avoids some consistency errors later.
4427    if (isa<CXXMethodDecl>(NewFD))
4428      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4429
4430    return;
4431  }
4432
4433  if (NewFD->getResultType()->isVariablyModifiedType()) {
4434    // Functions returning a variably modified type violate C99 6.7.5.2p2
4435    // because all functions have linkage.
4436    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4437    return NewFD->setInvalidDecl();
4438  }
4439
4440  if (NewFD->isMain())
4441    CheckMain(NewFD);
4442
4443  // Check for a previous declaration of this name.
4444  if (Previous.empty() && NewFD->isExternC()) {
4445    // Since we did not find anything by this name and we're declaring
4446    // an extern "C" function, look for a non-visible extern "C"
4447    // declaration with the same name.
4448    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4449      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4450    if (Pos != LocallyScopedExternalDecls.end())
4451      Previous.addDecl(Pos->second);
4452  }
4453
4454  // Merge or overload the declaration with an existing declaration of
4455  // the same name, if appropriate.
4456  if (!Previous.empty()) {
4457    // Determine whether NewFD is an overload of PrevDecl or
4458    // a declaration that requires merging. If it's an overload,
4459    // there's no more work to do here; we'll just add the new
4460    // function to the scope.
4461
4462    NamedDecl *OldDecl = 0;
4463    if (!AllowOverloadingOfFunction(Previous, Context)) {
4464      Redeclaration = true;
4465      OldDecl = Previous.getFoundDecl();
4466    } else {
4467      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4468                            /*NewIsUsingDecl*/ false)) {
4469      case Ovl_Match:
4470        Redeclaration = true;
4471        break;
4472
4473      case Ovl_NonFunction:
4474        Redeclaration = true;
4475        break;
4476
4477      case Ovl_Overload:
4478        Redeclaration = false;
4479        break;
4480      }
4481
4482      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4483        // If a function name is overloadable in C, then every function
4484        // with that name must be marked "overloadable".
4485        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4486          << Redeclaration << NewFD;
4487        NamedDecl *OverloadedDecl = 0;
4488        if (Redeclaration)
4489          OverloadedDecl = OldDecl;
4490        else if (!Previous.empty())
4491          OverloadedDecl = Previous.getRepresentativeDecl();
4492        if (OverloadedDecl)
4493          Diag(OverloadedDecl->getLocation(),
4494               diag::note_attribute_overloadable_prev_overload);
4495        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4496                                                        Context));
4497      }
4498    }
4499
4500    if (Redeclaration) {
4501      // NewFD and OldDecl represent declarations that need to be
4502      // merged.
4503      if (MergeFunctionDecl(NewFD, OldDecl))
4504        return NewFD->setInvalidDecl();
4505
4506      Previous.clear();
4507      Previous.addDecl(OldDecl);
4508
4509      if (FunctionTemplateDecl *OldTemplateDecl
4510                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4511        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4512        FunctionTemplateDecl *NewTemplateDecl
4513          = NewFD->getDescribedFunctionTemplate();
4514        assert(NewTemplateDecl && "Template/non-template mismatch");
4515        if (CXXMethodDecl *Method
4516              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4517          Method->setAccess(OldTemplateDecl->getAccess());
4518          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4519        }
4520
4521        // If this is an explicit specialization of a member that is a function
4522        // template, mark it as a member specialization.
4523        if (IsExplicitSpecialization &&
4524            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4525          NewTemplateDecl->setMemberSpecialization();
4526          assert(OldTemplateDecl->isMemberSpecialization());
4527        }
4528      } else {
4529        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4530          NewFD->setAccess(OldDecl->getAccess());
4531        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4532      }
4533    }
4534  }
4535
4536  // Semantic checking for this function declaration (in isolation).
4537  if (getLangOptions().CPlusPlus) {
4538    // C++-specific checks.
4539    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4540      CheckConstructor(Constructor);
4541    } else if (CXXDestructorDecl *Destructor =
4542                dyn_cast<CXXDestructorDecl>(NewFD)) {
4543      CXXRecordDecl *Record = Destructor->getParent();
4544      QualType ClassType = Context.getTypeDeclType(Record);
4545
4546      // FIXME: Shouldn't we be able to perform this check even when the class
4547      // type is dependent? Both gcc and edg can handle that.
4548      if (!ClassType->isDependentType()) {
4549        DeclarationName Name
4550          = Context.DeclarationNames.getCXXDestructorName(
4551                                        Context.getCanonicalType(ClassType));
4552        if (NewFD->getDeclName() != Name) {
4553          Diag(NewFD->getLocation(), diag::err_destructor_name);
4554          return NewFD->setInvalidDecl();
4555        }
4556      }
4557    } else if (CXXConversionDecl *Conversion
4558               = dyn_cast<CXXConversionDecl>(NewFD)) {
4559      ActOnConversionDeclarator(Conversion);
4560    }
4561
4562    // Find any virtual functions that this function overrides.
4563    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4564      if (!Method->isFunctionTemplateSpecialization() &&
4565          !Method->getDescribedFunctionTemplate()) {
4566        if (AddOverriddenMethods(Method->getParent(), Method)) {
4567          // If the function was marked as "static", we have a problem.
4568          if (NewFD->getStorageClass() == SC_Static) {
4569            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4570              << NewFD->getDeclName();
4571            for (CXXMethodDecl::method_iterator
4572                      Overridden = Method->begin_overridden_methods(),
4573                   OverriddenEnd = Method->end_overridden_methods();
4574                 Overridden != OverriddenEnd;
4575                 ++Overridden) {
4576              Diag((*Overridden)->getLocation(),
4577                   diag::note_overridden_virtual_function);
4578            }
4579          }
4580        }
4581      }
4582    }
4583
4584    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4585    if (NewFD->isOverloadedOperator() &&
4586        CheckOverloadedOperatorDeclaration(NewFD))
4587      return NewFD->setInvalidDecl();
4588
4589    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4590    if (NewFD->getLiteralIdentifier() &&
4591        CheckLiteralOperatorDeclaration(NewFD))
4592      return NewFD->setInvalidDecl();
4593
4594    // In C++, check default arguments now that we have merged decls. Unless
4595    // the lexical context is the class, because in this case this is done
4596    // during delayed parsing anyway.
4597    if (!CurContext->isRecord())
4598      CheckCXXDefaultArguments(NewFD);
4599
4600    // If this function declares a builtin function, check the type of this
4601    // declaration against the expected type for the builtin.
4602    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4603      ASTContext::GetBuiltinTypeError Error;
4604      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4605      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4606        // The type of this function differs from the type of the builtin,
4607        // so forget about the builtin entirely.
4608        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4609      }
4610    }
4611  }
4612}
4613
4614void Sema::CheckMain(FunctionDecl* FD) {
4615  // C++ [basic.start.main]p3:  A program that declares main to be inline
4616  //   or static is ill-formed.
4617  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4618  //   shall not appear in a declaration of main.
4619  // static main is not an error under C99, but we should warn about it.
4620  bool isInline = FD->isInlineSpecified();
4621  bool isStatic = FD->getStorageClass() == SC_Static;
4622  if (isInline || isStatic) {
4623    unsigned diagID = diag::warn_unusual_main_decl;
4624    if (isInline || getLangOptions().CPlusPlus)
4625      diagID = diag::err_unusual_main_decl;
4626
4627    int which = isStatic + (isInline << 1) - 1;
4628    Diag(FD->getLocation(), diagID) << which;
4629  }
4630
4631  QualType T = FD->getType();
4632  assert(T->isFunctionType() && "function decl is not of function type");
4633  const FunctionType* FT = T->getAs<FunctionType>();
4634
4635  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4636    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
4637    FD->setInvalidDecl(true);
4638  }
4639
4640  // Treat protoless main() as nullary.
4641  if (isa<FunctionNoProtoType>(FT)) return;
4642
4643  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4644  unsigned nparams = FTP->getNumArgs();
4645  assert(FD->getNumParams() == nparams);
4646
4647  bool HasExtraParameters = (nparams > 3);
4648
4649  // Darwin passes an undocumented fourth argument of type char**.  If
4650  // other platforms start sprouting these, the logic below will start
4651  // getting shifty.
4652  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
4653    HasExtraParameters = false;
4654
4655  if (HasExtraParameters) {
4656    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4657    FD->setInvalidDecl(true);
4658    nparams = 3;
4659  }
4660
4661  // FIXME: a lot of the following diagnostics would be improved
4662  // if we had some location information about types.
4663
4664  QualType CharPP =
4665    Context.getPointerType(Context.getPointerType(Context.CharTy));
4666  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4667
4668  for (unsigned i = 0; i < nparams; ++i) {
4669    QualType AT = FTP->getArgType(i);
4670
4671    bool mismatch = true;
4672
4673    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4674      mismatch = false;
4675    else if (Expected[i] == CharPP) {
4676      // As an extension, the following forms are okay:
4677      //   char const **
4678      //   char const * const *
4679      //   char * const *
4680
4681      QualifierCollector qs;
4682      const PointerType* PT;
4683      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4684          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4685          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4686        qs.removeConst();
4687        mismatch = !qs.empty();
4688      }
4689    }
4690
4691    if (mismatch) {
4692      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4693      // TODO: suggest replacing given type with expected type
4694      FD->setInvalidDecl(true);
4695    }
4696  }
4697
4698  if (nparams == 1 && !FD->isInvalidDecl()) {
4699    Diag(FD->getLocation(), diag::warn_main_one_arg);
4700  }
4701
4702  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4703    Diag(FD->getLocation(), diag::err_main_template_decl);
4704    FD->setInvalidDecl();
4705  }
4706}
4707
4708bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4709  // FIXME: Need strict checking.  In C89, we need to check for
4710  // any assignment, increment, decrement, function-calls, or
4711  // commas outside of a sizeof.  In C99, it's the same list,
4712  // except that the aforementioned are allowed in unevaluated
4713  // expressions.  Everything else falls under the
4714  // "may accept other forms of constant expressions" exception.
4715  // (We never end up here for C++, so the constant expression
4716  // rules there don't matter.)
4717  if (Init->isConstantInitializer(Context, false))
4718    return false;
4719  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4720    << Init->getSourceRange();
4721  return true;
4722}
4723
4724namespace {
4725  // Visits an initialization expression to see if OrigDecl is evaluated in
4726  // its own initialization and throws a warning if it does.
4727  class SelfReferenceChecker
4728      : public EvaluatedExprVisitor<SelfReferenceChecker> {
4729    Sema &S;
4730    Decl *OrigDecl;
4731
4732  public:
4733    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
4734
4735    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
4736                                                    S(S), OrigDecl(OrigDecl) { }
4737
4738    void VisitExpr(Expr *E) {
4739      if (isa<ObjCMessageExpr>(*E)) return;
4740      Inherited::VisitExpr(E);
4741    }
4742
4743    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
4744      CheckForSelfReference(E);
4745      Inherited::VisitImplicitCastExpr(E);
4746    }
4747
4748    void CheckForSelfReference(ImplicitCastExpr *E) {
4749      if (E->getCastKind() != CK_LValueToRValue) return;
4750      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
4751      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
4752      if (!DRE) return;
4753      Decl* ReferenceDecl = DRE->getDecl();
4754      if (OrigDecl != ReferenceDecl) return;
4755      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
4756                          Sema::NotForRedeclaration);
4757      S.Diag(SubExpr->getLocStart(), diag::warn_uninit_self_reference_in_init)
4758        << Result.getLookupName() << OrigDecl->getLocation()
4759        << SubExpr->getSourceRange();
4760    }
4761  };
4762}
4763
4764/// AddInitializerToDecl - Adds the initializer Init to the
4765/// declaration dcl. If DirectInit is true, this is C++ direct
4766/// initialization rather than copy initialization.
4767void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
4768                                bool DirectInit, bool TypeMayContainAuto) {
4769  // If there is no declaration, there was an error parsing it.  Just ignore
4770  // the initializer.
4771  if (RealDecl == 0 || RealDecl->isInvalidDecl())
4772    return;
4773
4774  // Check for self-references within variable initializers.
4775  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
4776    // Variables declared within a function/method body are handled
4777    // by a dataflow analysis.
4778    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
4779      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
4780  }
4781  else {
4782    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
4783  }
4784
4785  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4786    // With declarators parsed the way they are, the parser cannot
4787    // distinguish between a normal initializer and a pure-specifier.
4788    // Thus this grotesque test.
4789    IntegerLiteral *IL;
4790    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4791        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4792      CheckPureMethod(Method, Init->getSourceRange());
4793    else {
4794      Diag(Method->getLocation(), diag::err_member_function_initialization)
4795        << Method->getDeclName() << Init->getSourceRange();
4796      Method->setInvalidDecl();
4797    }
4798    return;
4799  }
4800
4801  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4802  if (!VDecl) {
4803    if (getLangOptions().CPlusPlus &&
4804        RealDecl->getLexicalDeclContext()->isRecord() &&
4805        isa<NamedDecl>(RealDecl))
4806      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4807    else
4808      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4809    RealDecl->setInvalidDecl();
4810    return;
4811  }
4812
4813  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
4814  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
4815    TypeSourceInfo *DeducedType = 0;
4816    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
4817      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
4818        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
4819        << Init->getSourceRange();
4820    if (!DeducedType) {
4821      RealDecl->setInvalidDecl();
4822      return;
4823    }
4824    VDecl->setTypeSourceInfo(DeducedType);
4825    VDecl->setType(DeducedType->getType());
4826
4827    // If this is a redeclaration, check that the type we just deduced matches
4828    // the previously declared type.
4829    if (VarDecl *Old = VDecl->getPreviousDeclaration())
4830      MergeVarDeclTypes(VDecl, Old);
4831  }
4832
4833
4834  // A definition must end up with a complete type, which means it must be
4835  // complete with the restriction that an array type might be completed by the
4836  // initializer; note that later code assumes this restriction.
4837  QualType BaseDeclType = VDecl->getType();
4838  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4839    BaseDeclType = Array->getElementType();
4840  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4841                          diag::err_typecheck_decl_incomplete_type)) {
4842    RealDecl->setInvalidDecl();
4843    return;
4844  }
4845
4846  // The variable can not have an abstract class type.
4847  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4848                             diag::err_abstract_type_in_decl,
4849                             AbstractVariableType))
4850    VDecl->setInvalidDecl();
4851
4852  const VarDecl *Def;
4853  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4854    Diag(VDecl->getLocation(), diag::err_redefinition)
4855      << VDecl->getDeclName();
4856    Diag(Def->getLocation(), diag::note_previous_definition);
4857    VDecl->setInvalidDecl();
4858    return;
4859  }
4860
4861  const VarDecl* PrevInit = 0;
4862  if (getLangOptions().CPlusPlus) {
4863    // C++ [class.static.data]p4
4864    //   If a static data member is of const integral or const
4865    //   enumeration type, its declaration in the class definition can
4866    //   specify a constant-initializer which shall be an integral
4867    //   constant expression (5.19). In that case, the member can appear
4868    //   in integral constant expressions. The member shall still be
4869    //   defined in a namespace scope if it is used in the program and the
4870    //   namespace scope definition shall not contain an initializer.
4871    //
4872    // We already performed a redefinition check above, but for static
4873    // data members we also need to check whether there was an in-class
4874    // declaration with an initializer.
4875    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4876      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4877      Diag(PrevInit->getLocation(), diag::note_previous_definition);
4878      return;
4879    }
4880
4881    if (VDecl->hasLocalStorage())
4882      getCurFunction()->setHasBranchProtectedScope();
4883
4884    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
4885      VDecl->setInvalidDecl();
4886      return;
4887    }
4888  }
4889
4890  // Capture the variable that is being initialized and the style of
4891  // initialization.
4892  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4893
4894  // FIXME: Poor source location information.
4895  InitializationKind Kind
4896    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4897                                                   Init->getLocStart(),
4898                                                   Init->getLocEnd())
4899                : InitializationKind::CreateCopy(VDecl->getLocation(),
4900                                                 Init->getLocStart());
4901
4902  // Get the decls type and save a reference for later, since
4903  // CheckInitializerTypes may change it.
4904  QualType DclT = VDecl->getType(), SavT = DclT;
4905  if (VDecl->isLocalVarDecl()) {
4906    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4907      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4908      VDecl->setInvalidDecl();
4909    } else if (!VDecl->isInvalidDecl()) {
4910      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4911      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4912                                                MultiExprArg(*this, &Init, 1),
4913                                                &DclT);
4914      if (Result.isInvalid()) {
4915        VDecl->setInvalidDecl();
4916        return;
4917      }
4918
4919      Init = Result.takeAs<Expr>();
4920
4921      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4922      // Don't check invalid declarations to avoid emitting useless diagnostics.
4923      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4924        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4925          CheckForConstantInitializer(Init, DclT);
4926      }
4927    }
4928  } else if (VDecl->isStaticDataMember() &&
4929             VDecl->getLexicalDeclContext()->isRecord()) {
4930    // This is an in-class initialization for a static data member, e.g.,
4931    //
4932    // struct S {
4933    //   static const int value = 17;
4934    // };
4935
4936    // Try to perform the initialization regardless.
4937    if (!VDecl->isInvalidDecl()) {
4938      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4939      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4940                                          MultiExprArg(*this, &Init, 1),
4941                                          &DclT);
4942      if (Result.isInvalid()) {
4943        VDecl->setInvalidDecl();
4944        return;
4945      }
4946
4947      Init = Result.takeAs<Expr>();
4948    }
4949
4950    // C++ [class.mem]p4:
4951    //   A member-declarator can contain a constant-initializer only
4952    //   if it declares a static member (9.4) of const integral or
4953    //   const enumeration type, see 9.4.2.
4954    QualType T = VDecl->getType();
4955
4956    // Do nothing on dependent types.
4957    if (T->isDependentType()) {
4958
4959    // Require constness.
4960    } else if (!T.isConstQualified()) {
4961      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4962        << Init->getSourceRange();
4963      VDecl->setInvalidDecl();
4964
4965    // We allow integer constant expressions in all cases.
4966    } else if (T->isIntegralOrEnumerationType()) {
4967      if (!Init->isValueDependent()) {
4968        // Check whether the expression is a constant expression.
4969        llvm::APSInt Value;
4970        SourceLocation Loc;
4971        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4972          Diag(Loc, diag::err_in_class_initializer_non_constant)
4973            << Init->getSourceRange();
4974          VDecl->setInvalidDecl();
4975        }
4976      }
4977
4978    // We allow floating-point constants as an extension in C++03, and
4979    // C++0x has far more complicated rules that we don't really
4980    // implement fully.
4981    } else {
4982      bool Allowed = false;
4983      if (getLangOptions().CPlusPlus0x) {
4984        Allowed = T->isLiteralType();
4985      } else if (T->isFloatingType()) { // also permits complex, which is ok
4986        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4987          << T << Init->getSourceRange();
4988        Allowed = true;
4989      }
4990
4991      if (!Allowed) {
4992        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4993          << T << Init->getSourceRange();
4994        VDecl->setInvalidDecl();
4995
4996      // TODO: there are probably expressions that pass here that shouldn't.
4997      } else if (!Init->isValueDependent() &&
4998                 !Init->isConstantInitializer(Context, false)) {
4999        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5000          << Init->getSourceRange();
5001        VDecl->setInvalidDecl();
5002      }
5003    }
5004  } else if (VDecl->isFileVarDecl()) {
5005    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5006        (!getLangOptions().CPlusPlus ||
5007         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5008      Diag(VDecl->getLocation(), diag::warn_extern_init);
5009    if (!VDecl->isInvalidDecl()) {
5010      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5011      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5012                                                MultiExprArg(*this, &Init, 1),
5013                                                &DclT);
5014      if (Result.isInvalid()) {
5015        VDecl->setInvalidDecl();
5016        return;
5017      }
5018
5019      Init = Result.takeAs<Expr>();
5020    }
5021
5022    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5023    // Don't check invalid declarations to avoid emitting useless diagnostics.
5024    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5025      // C99 6.7.8p4. All file scoped initializers need to be constant.
5026      CheckForConstantInitializer(Init, DclT);
5027    }
5028  }
5029  // If the type changed, it means we had an incomplete type that was
5030  // completed by the initializer. For example:
5031  //   int ary[] = { 1, 3, 5 };
5032  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5033  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5034    VDecl->setType(DclT);
5035    Init->setType(DclT);
5036  }
5037
5038
5039  // If this variable is a local declaration with record type, make sure it
5040  // doesn't have a flexible member initialization.  We only support this as a
5041  // global/static definition.
5042  if (VDecl->hasLocalStorage())
5043    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5044      if (RT->getDecl()->hasFlexibleArrayMember()) {
5045        // Check whether the initializer tries to initialize the flexible
5046        // array member itself to anything other than an empty initializer list.
5047        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5048          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5049                                         RT->getDecl()->field_end()) - 1;
5050          if (Index < ILE->getNumInits() &&
5051              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5052                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5053            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5054            VDecl->setInvalidDecl();
5055          }
5056        }
5057      }
5058
5059  // Check any implicit conversions within the expression.
5060  CheckImplicitConversions(Init, VDecl->getLocation());
5061
5062  Init = MaybeCreateExprWithCleanups(Init);
5063  // Attach the initializer to the decl.
5064  VDecl->setInit(Init);
5065
5066  CheckCompleteVariableDeclaration(VDecl);
5067}
5068
5069/// ActOnInitializerError - Given that there was an error parsing an
5070/// initializer for the given declaration, try to return to some form
5071/// of sanity.
5072void Sema::ActOnInitializerError(Decl *D) {
5073  // Our main concern here is re-establishing invariants like "a
5074  // variable's type is either dependent or complete".
5075  if (!D || D->isInvalidDecl()) return;
5076
5077  VarDecl *VD = dyn_cast<VarDecl>(D);
5078  if (!VD) return;
5079
5080  // Auto types are meaningless if we can't make sense of the initializer.
5081  if (ParsingInitForAutoVars.count(D)) {
5082    D->setInvalidDecl();
5083    return;
5084  }
5085
5086  QualType Ty = VD->getType();
5087  if (Ty->isDependentType()) return;
5088
5089  // Require a complete type.
5090  if (RequireCompleteType(VD->getLocation(),
5091                          Context.getBaseElementType(Ty),
5092                          diag::err_typecheck_decl_incomplete_type)) {
5093    VD->setInvalidDecl();
5094    return;
5095  }
5096
5097  // Require an abstract type.
5098  if (RequireNonAbstractType(VD->getLocation(), Ty,
5099                             diag::err_abstract_type_in_decl,
5100                             AbstractVariableType)) {
5101    VD->setInvalidDecl();
5102    return;
5103  }
5104
5105  // Don't bother complaining about constructors or destructors,
5106  // though.
5107}
5108
5109void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5110                                  bool TypeMayContainAuto) {
5111  // If there is no declaration, there was an error parsing it. Just ignore it.
5112  if (RealDecl == 0)
5113    return;
5114
5115  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5116    QualType Type = Var->getType();
5117
5118    // C++0x [dcl.spec.auto]p3
5119    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5120      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5121        << Var->getDeclName() << Type;
5122      Var->setInvalidDecl();
5123      return;
5124    }
5125
5126    switch (Var->isThisDeclarationADefinition()) {
5127    case VarDecl::Definition:
5128      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5129        break;
5130
5131      // We have an out-of-line definition of a static data member
5132      // that has an in-class initializer, so we type-check this like
5133      // a declaration.
5134      //
5135      // Fall through
5136
5137    case VarDecl::DeclarationOnly:
5138      // It's only a declaration.
5139
5140      // Block scope. C99 6.7p7: If an identifier for an object is
5141      // declared with no linkage (C99 6.2.2p6), the type for the
5142      // object shall be complete.
5143      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5144          !Var->getLinkage() && !Var->isInvalidDecl() &&
5145          RequireCompleteType(Var->getLocation(), Type,
5146                              diag::err_typecheck_decl_incomplete_type))
5147        Var->setInvalidDecl();
5148
5149      // Make sure that the type is not abstract.
5150      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5151          RequireNonAbstractType(Var->getLocation(), Type,
5152                                 diag::err_abstract_type_in_decl,
5153                                 AbstractVariableType))
5154        Var->setInvalidDecl();
5155      return;
5156
5157    case VarDecl::TentativeDefinition:
5158      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5159      // object that has file scope without an initializer, and without a
5160      // storage-class specifier or with the storage-class specifier "static",
5161      // constitutes a tentative definition. Note: A tentative definition with
5162      // external linkage is valid (C99 6.2.2p5).
5163      if (!Var->isInvalidDecl()) {
5164        if (const IncompleteArrayType *ArrayT
5165                                    = Context.getAsIncompleteArrayType(Type)) {
5166          if (RequireCompleteType(Var->getLocation(),
5167                                  ArrayT->getElementType(),
5168                                  diag::err_illegal_decl_array_incomplete_type))
5169            Var->setInvalidDecl();
5170        } else if (Var->getStorageClass() == SC_Static) {
5171          // C99 6.9.2p3: If the declaration of an identifier for an object is
5172          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5173          // declared type shall not be an incomplete type.
5174          // NOTE: code such as the following
5175          //     static struct s;
5176          //     struct s { int a; };
5177          // is accepted by gcc. Hence here we issue a warning instead of
5178          // an error and we do not invalidate the static declaration.
5179          // NOTE: to avoid multiple warnings, only check the first declaration.
5180          if (Var->getPreviousDeclaration() == 0)
5181            RequireCompleteType(Var->getLocation(), Type,
5182                                diag::ext_typecheck_decl_incomplete_type);
5183        }
5184      }
5185
5186      // Record the tentative definition; we're done.
5187      if (!Var->isInvalidDecl())
5188        TentativeDefinitions.push_back(Var);
5189      return;
5190    }
5191
5192    // Provide a specific diagnostic for uninitialized variable
5193    // definitions with incomplete array type.
5194    if (Type->isIncompleteArrayType()) {
5195      Diag(Var->getLocation(),
5196           diag::err_typecheck_incomplete_array_needs_initializer);
5197      Var->setInvalidDecl();
5198      return;
5199    }
5200
5201    // Provide a specific diagnostic for uninitialized variable
5202    // definitions with reference type.
5203    if (Type->isReferenceType()) {
5204      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5205        << Var->getDeclName()
5206        << SourceRange(Var->getLocation(), Var->getLocation());
5207      Var->setInvalidDecl();
5208      return;
5209    }
5210
5211    // Do not attempt to type-check the default initializer for a
5212    // variable with dependent type.
5213    if (Type->isDependentType())
5214      return;
5215
5216    if (Var->isInvalidDecl())
5217      return;
5218
5219    if (RequireCompleteType(Var->getLocation(),
5220                            Context.getBaseElementType(Type),
5221                            diag::err_typecheck_decl_incomplete_type)) {
5222      Var->setInvalidDecl();
5223      return;
5224    }
5225
5226    // The variable can not have an abstract class type.
5227    if (RequireNonAbstractType(Var->getLocation(), Type,
5228                               diag::err_abstract_type_in_decl,
5229                               AbstractVariableType)) {
5230      Var->setInvalidDecl();
5231      return;
5232    }
5233
5234    const RecordType *Record
5235      = Context.getBaseElementType(Type)->getAs<RecordType>();
5236    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
5237        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
5238      // C++03 [dcl.init]p9:
5239      //   If no initializer is specified for an object, and the
5240      //   object is of (possibly cv-qualified) non-POD class type (or
5241      //   array thereof), the object shall be default-initialized; if
5242      //   the object is of const-qualified type, the underlying class
5243      //   type shall have a user-declared default
5244      //   constructor. Otherwise, if no initializer is specified for
5245      //   a non- static object, the object and its subobjects, if
5246      //   any, have an indeterminate initial value); if the object
5247      //   or any of its subobjects are of const-qualified type, the
5248      //   program is ill-formed.
5249      // FIXME: DPG thinks it is very fishy that C++0x disables this.
5250    } else {
5251      // Check for jumps past the implicit initializer.  C++0x
5252      // clarifies that this applies to a "variable with automatic
5253      // storage duration", not a "local variable".
5254      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
5255        getCurFunction()->setHasBranchProtectedScope();
5256
5257      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5258      InitializationKind Kind
5259        = InitializationKind::CreateDefault(Var->getLocation());
5260
5261      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5262      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5263                                        MultiExprArg(*this, 0, 0));
5264      if (Init.isInvalid())
5265        Var->setInvalidDecl();
5266      else if (Init.get())
5267        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5268    }
5269
5270    CheckCompleteVariableDeclaration(Var);
5271  }
5272}
5273
5274void Sema::ActOnCXXForRangeDecl(Decl *D) {
5275  VarDecl *VD = dyn_cast<VarDecl>(D);
5276  if (!VD) {
5277    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5278    D->setInvalidDecl();
5279    return;
5280  }
5281
5282  VD->setCXXForRangeDecl(true);
5283
5284  // for-range-declaration cannot be given a storage class specifier.
5285  int Error = -1;
5286  switch (VD->getStorageClassAsWritten()) {
5287  case SC_None:
5288    break;
5289  case SC_Extern:
5290    Error = 0;
5291    break;
5292  case SC_Static:
5293    Error = 1;
5294    break;
5295  case SC_PrivateExtern:
5296    Error = 2;
5297    break;
5298  case SC_Auto:
5299    Error = 3;
5300    break;
5301  case SC_Register:
5302    Error = 4;
5303    break;
5304  }
5305  // FIXME: constexpr isn't allowed here.
5306  //if (DS.isConstexprSpecified())
5307  //  Error = 5;
5308  if (Error != -1) {
5309    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5310      << VD->getDeclName() << Error;
5311    D->setInvalidDecl();
5312  }
5313}
5314
5315void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5316  if (var->isInvalidDecl()) return;
5317
5318  // All the following checks are C++ only.
5319  if (!getLangOptions().CPlusPlus) return;
5320
5321  QualType baseType = Context.getBaseElementType(var->getType());
5322  if (baseType->isDependentType()) return;
5323
5324  // __block variables might require us to capture a copy-initializer.
5325  if (var->hasAttr<BlocksAttr>()) {
5326    // It's currently invalid to ever have a __block variable with an
5327    // array type; should we diagnose that here?
5328
5329    // Regardless, we don't want to ignore array nesting when
5330    // constructing this copy.
5331    QualType type = var->getType();
5332
5333    if (type->isStructureOrClassType()) {
5334      SourceLocation poi = var->getLocation();
5335      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5336      ExprResult result =
5337        PerformCopyInitialization(
5338                        InitializedEntity::InitializeBlock(poi, type, false),
5339                                  poi, Owned(varRef));
5340      if (!result.isInvalid()) {
5341        result = MaybeCreateExprWithCleanups(result);
5342        Expr *init = result.takeAs<Expr>();
5343        Context.setBlockVarCopyInits(var, init);
5344      }
5345    }
5346  }
5347
5348  // Check for global constructors.
5349  if (!var->getDeclContext()->isDependentContext() &&
5350      var->hasGlobalStorage() &&
5351      !var->isStaticLocal() &&
5352      var->getInit() &&
5353      !var->getInit()->isConstantInitializer(Context,
5354                                             baseType->isReferenceType()))
5355    Diag(var->getLocation(), diag::warn_global_constructor)
5356      << var->getInit()->getSourceRange();
5357
5358  // Require the destructor.
5359  if (const RecordType *recordType = baseType->getAs<RecordType>())
5360    FinalizeVarWithDestructor(var, recordType);
5361}
5362
5363/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5364/// any semantic actions necessary after any initializer has been attached.
5365void
5366Sema::FinalizeDeclaration(Decl *ThisDecl) {
5367  // Note that we are no longer parsing the initializer for this declaration.
5368  ParsingInitForAutoVars.erase(ThisDecl);
5369}
5370
5371Sema::DeclGroupPtrTy
5372Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5373                              Decl **Group, unsigned NumDecls) {
5374  llvm::SmallVector<Decl*, 8> Decls;
5375
5376  if (DS.isTypeSpecOwned())
5377    Decls.push_back(DS.getRepAsDecl());
5378
5379  for (unsigned i = 0; i != NumDecls; ++i)
5380    if (Decl *D = Group[i])
5381      Decls.push_back(D);
5382
5383  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5384                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5385}
5386
5387/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5388/// group, performing any necessary semantic checking.
5389Sema::DeclGroupPtrTy
5390Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5391                           bool TypeMayContainAuto) {
5392  // C++0x [dcl.spec.auto]p7:
5393  //   If the type deduced for the template parameter U is not the same in each
5394  //   deduction, the program is ill-formed.
5395  // FIXME: When initializer-list support is added, a distinction is needed
5396  // between the deduced type U and the deduced type which 'auto' stands for.
5397  //   auto a = 0, b = { 1, 2, 3 };
5398  // is legal because the deduced type U is 'int' in both cases.
5399  if (TypeMayContainAuto && NumDecls > 1) {
5400    QualType Deduced;
5401    CanQualType DeducedCanon;
5402    VarDecl *DeducedDecl = 0;
5403    for (unsigned i = 0; i != NumDecls; ++i) {
5404      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5405        AutoType *AT = D->getType()->getContainedAutoType();
5406        // Don't reissue diagnostics when instantiating a template.
5407        if (AT && D->isInvalidDecl())
5408          break;
5409        if (AT && AT->isDeduced()) {
5410          QualType U = AT->getDeducedType();
5411          CanQualType UCanon = Context.getCanonicalType(U);
5412          if (Deduced.isNull()) {
5413            Deduced = U;
5414            DeducedCanon = UCanon;
5415            DeducedDecl = D;
5416          } else if (DeducedCanon != UCanon) {
5417            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5418                 diag::err_auto_different_deductions)
5419              << Deduced << DeducedDecl->getDeclName()
5420              << U << D->getDeclName()
5421              << DeducedDecl->getInit()->getSourceRange()
5422              << D->getInit()->getSourceRange();
5423            D->setInvalidDecl();
5424            break;
5425          }
5426        }
5427      }
5428    }
5429  }
5430
5431  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5432}
5433
5434
5435/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5436/// to introduce parameters into function prototype scope.
5437Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5438  const DeclSpec &DS = D.getDeclSpec();
5439
5440  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5441  VarDecl::StorageClass StorageClass = SC_None;
5442  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5443  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5444    StorageClass = SC_Register;
5445    StorageClassAsWritten = SC_Register;
5446  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5447    Diag(DS.getStorageClassSpecLoc(),
5448         diag::err_invalid_storage_class_in_func_decl);
5449    D.getMutableDeclSpec().ClearStorageClassSpecs();
5450  }
5451
5452  if (D.getDeclSpec().isThreadSpecified())
5453    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5454
5455  DiagnoseFunctionSpecifiers(D);
5456
5457  TagDecl *OwnedDecl = 0;
5458  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5459  QualType parmDeclType = TInfo->getType();
5460
5461  if (getLangOptions().CPlusPlus) {
5462    // Check that there are no default arguments inside the type of this
5463    // parameter.
5464    CheckExtraCXXDefaultArguments(D);
5465
5466    if (OwnedDecl && OwnedDecl->isDefinition()) {
5467      // C++ [dcl.fct]p6:
5468      //   Types shall not be defined in return or parameter types.
5469      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5470        << Context.getTypeDeclType(OwnedDecl);
5471    }
5472
5473    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5474    if (D.getCXXScopeSpec().isSet()) {
5475      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5476        << D.getCXXScopeSpec().getRange();
5477      D.getCXXScopeSpec().clear();
5478    }
5479  }
5480
5481  // Ensure we have a valid name
5482  IdentifierInfo *II = 0;
5483  if (D.hasName()) {
5484    II = D.getIdentifier();
5485    if (!II) {
5486      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5487        << GetNameForDeclarator(D).getName().getAsString();
5488      D.setInvalidType(true);
5489    }
5490  }
5491
5492  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5493  if (II) {
5494    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5495                   ForRedeclaration);
5496    LookupName(R, S);
5497    if (R.isSingleResult()) {
5498      NamedDecl *PrevDecl = R.getFoundDecl();
5499      if (PrevDecl->isTemplateParameter()) {
5500        // Maybe we will complain about the shadowed template parameter.
5501        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5502        // Just pretend that we didn't see the previous declaration.
5503        PrevDecl = 0;
5504      } else if (S->isDeclScope(PrevDecl)) {
5505        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5506        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5507
5508        // Recover by removing the name
5509        II = 0;
5510        D.SetIdentifier(0, D.getIdentifierLoc());
5511        D.setInvalidType(true);
5512      }
5513    }
5514  }
5515
5516  // Temporarily put parameter variables in the translation unit, not
5517  // the enclosing context.  This prevents them from accidentally
5518  // looking like class members in C++.
5519  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5520                                    D.getSourceRange().getBegin(),
5521                                    D.getIdentifierLoc(), II,
5522                                    parmDeclType, TInfo,
5523                                    StorageClass, StorageClassAsWritten);
5524
5525  if (D.isInvalidType())
5526    New->setInvalidDecl();
5527
5528  // Add the parameter declaration into this scope.
5529  S->AddDecl(New);
5530  if (II)
5531    IdResolver.AddDecl(New);
5532
5533  ProcessDeclAttributes(S, New, D);
5534
5535  if (New->hasAttr<BlocksAttr>()) {
5536    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5537  }
5538  return New;
5539}
5540
5541/// \brief Synthesizes a variable for a parameter arising from a
5542/// typedef.
5543ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5544                                              SourceLocation Loc,
5545                                              QualType T) {
5546  /* FIXME: setting StartLoc == Loc.
5547     Would it be worth to modify callers so as to provide proper source
5548     location for the unnamed parameters, embedding the parameter's type? */
5549  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5550                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5551                                           SC_None, SC_None, 0);
5552  Param->setImplicit();
5553  return Param;
5554}
5555
5556void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5557                                    ParmVarDecl * const *ParamEnd) {
5558  // Don't diagnose unused-parameter errors in template instantiations; we
5559  // will already have done so in the template itself.
5560  if (!ActiveTemplateInstantiations.empty())
5561    return;
5562
5563  for (; Param != ParamEnd; ++Param) {
5564    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5565        !(*Param)->hasAttr<UnusedAttr>()) {
5566      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5567        << (*Param)->getDeclName();
5568    }
5569  }
5570}
5571
5572void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5573                                                  ParmVarDecl * const *ParamEnd,
5574                                                  QualType ReturnTy,
5575                                                  NamedDecl *D) {
5576  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5577    return;
5578
5579  // Warn if the return value is pass-by-value and larger than the specified
5580  // threshold.
5581  if (ReturnTy->isPODType()) {
5582    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5583    if (Size > LangOpts.NumLargeByValueCopy)
5584      Diag(D->getLocation(), diag::warn_return_value_size)
5585          << D->getDeclName() << Size;
5586  }
5587
5588  // Warn if any parameter is pass-by-value and larger than the specified
5589  // threshold.
5590  for (; Param != ParamEnd; ++Param) {
5591    QualType T = (*Param)->getType();
5592    if (!T->isPODType())
5593      continue;
5594    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5595    if (Size > LangOpts.NumLargeByValueCopy)
5596      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5597          << (*Param)->getDeclName() << Size;
5598  }
5599}
5600
5601ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
5602                                  SourceLocation NameLoc, IdentifierInfo *Name,
5603                                  QualType T, TypeSourceInfo *TSInfo,
5604                                  VarDecl::StorageClass StorageClass,
5605                                  VarDecl::StorageClass StorageClassAsWritten) {
5606  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
5607                                         adjustParameterType(T), TSInfo,
5608                                         StorageClass, StorageClassAsWritten,
5609                                         0);
5610
5611  // Parameters can not be abstract class types.
5612  // For record types, this is done by the AbstractClassUsageDiagnoser once
5613  // the class has been completely parsed.
5614  if (!CurContext->isRecord() &&
5615      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5616                             AbstractParamType))
5617    New->setInvalidDecl();
5618
5619  // Parameter declarators cannot be interface types. All ObjC objects are
5620  // passed by reference.
5621  if (T->isObjCObjectType()) {
5622    Diag(NameLoc,
5623         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5624    New->setInvalidDecl();
5625  }
5626
5627  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5628  // duration shall not be qualified by an address-space qualifier."
5629  // Since all parameters have automatic store duration, they can not have
5630  // an address space.
5631  if (T.getAddressSpace() != 0) {
5632    Diag(NameLoc, diag::err_arg_with_address_space);
5633    New->setInvalidDecl();
5634  }
5635
5636  return New;
5637}
5638
5639void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5640                                           SourceLocation LocAfterDecls) {
5641  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5642
5643  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5644  // for a K&R function.
5645  if (!FTI.hasPrototype) {
5646    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5647      --i;
5648      if (FTI.ArgInfo[i].Param == 0) {
5649        llvm::SmallString<256> Code;
5650        llvm::raw_svector_ostream(Code) << "  int "
5651                                        << FTI.ArgInfo[i].Ident->getName()
5652                                        << ";\n";
5653        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5654          << FTI.ArgInfo[i].Ident
5655          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5656
5657        // Implicitly declare the argument as type 'int' for lack of a better
5658        // type.
5659        AttributeFactory attrs;
5660        DeclSpec DS(attrs);
5661        const char* PrevSpec; // unused
5662        unsigned DiagID; // unused
5663        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5664                           PrevSpec, DiagID);
5665        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5666        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5667        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5668      }
5669    }
5670  }
5671}
5672
5673Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5674                                         Declarator &D) {
5675  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5676  assert(D.isFunctionDeclarator() && "Not a function declarator!");
5677  Scope *ParentScope = FnBodyScope->getParent();
5678
5679  Decl *DP = HandleDeclarator(ParentScope, D,
5680                              MultiTemplateParamsArg(*this),
5681                              /*IsFunctionDefinition=*/true);
5682  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5683}
5684
5685static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5686  // Don't warn about invalid declarations.
5687  if (FD->isInvalidDecl())
5688    return false;
5689
5690  // Or declarations that aren't global.
5691  if (!FD->isGlobal())
5692    return false;
5693
5694  // Don't warn about C++ member functions.
5695  if (isa<CXXMethodDecl>(FD))
5696    return false;
5697
5698  // Don't warn about 'main'.
5699  if (FD->isMain())
5700    return false;
5701
5702  // Don't warn about inline functions.
5703  if (FD->isInlined())
5704    return false;
5705
5706  // Don't warn about function templates.
5707  if (FD->getDescribedFunctionTemplate())
5708    return false;
5709
5710  // Don't warn about function template specializations.
5711  if (FD->isFunctionTemplateSpecialization())
5712    return false;
5713
5714  bool MissingPrototype = true;
5715  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5716       Prev; Prev = Prev->getPreviousDeclaration()) {
5717    // Ignore any declarations that occur in function or method
5718    // scope, because they aren't visible from the header.
5719    if (Prev->getDeclContext()->isFunctionOrMethod())
5720      continue;
5721
5722    MissingPrototype = !Prev->getType()->isFunctionProtoType();
5723    break;
5724  }
5725
5726  return MissingPrototype;
5727}
5728
5729Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5730  // Clear the last template instantiation error context.
5731  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5732
5733  if (!D)
5734    return D;
5735  FunctionDecl *FD = 0;
5736
5737  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5738    FD = FunTmpl->getTemplatedDecl();
5739  else
5740    FD = cast<FunctionDecl>(D);
5741
5742  // Enter a new function scope
5743  PushFunctionScope();
5744
5745  // See if this is a redefinition.
5746  // But don't complain if we're in GNU89 mode and the previous definition
5747  // was an extern inline function.
5748  const FunctionDecl *Definition;
5749  if (FD->hasBody(Definition) &&
5750      !canRedefineFunction(Definition, getLangOptions())) {
5751    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5752        Definition->getStorageClass() == SC_Extern)
5753      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5754        << FD->getDeclName() << getLangOptions().CPlusPlus;
5755    else
5756      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5757    Diag(Definition->getLocation(), diag::note_previous_definition);
5758  }
5759
5760  // Builtin functions cannot be defined.
5761  if (unsigned BuiltinID = FD->getBuiltinID()) {
5762    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5763      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5764      FD->setInvalidDecl();
5765    }
5766  }
5767
5768  // The return type of a function definition must be complete
5769  // (C99 6.9.1p3, C++ [dcl.fct]p6).
5770  QualType ResultType = FD->getResultType();
5771  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5772      !FD->isInvalidDecl() &&
5773      RequireCompleteType(FD->getLocation(), ResultType,
5774                          diag::err_func_def_incomplete_result))
5775    FD->setInvalidDecl();
5776
5777  // GNU warning -Wmissing-prototypes:
5778  //   Warn if a global function is defined without a previous
5779  //   prototype declaration. This warning is issued even if the
5780  //   definition itself provides a prototype. The aim is to detect
5781  //   global functions that fail to be declared in header files.
5782  if (ShouldWarnAboutMissingPrototype(FD))
5783    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5784
5785  if (FnBodyScope)
5786    PushDeclContext(FnBodyScope, FD);
5787
5788  // Check the validity of our function parameters
5789  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5790                           /*CheckParameterNames=*/true);
5791
5792  // Introduce our parameters into the function scope
5793  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5794    ParmVarDecl *Param = FD->getParamDecl(p);
5795    Param->setOwningFunction(FD);
5796
5797    // If this has an identifier, add it to the scope stack.
5798    if (Param->getIdentifier() && FnBodyScope) {
5799      CheckShadow(FnBodyScope, Param);
5800
5801      PushOnScopeChains(Param, FnBodyScope);
5802    }
5803  }
5804
5805  // Checking attributes of current function definition
5806  // dllimport attribute.
5807  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5808  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5809    // dllimport attribute cannot be directly applied to definition.
5810    // Microsoft accepts dllimport for functions defined within class scope.
5811    if (!DA->isInherited() &&
5812        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
5813      Diag(FD->getLocation(),
5814           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5815        << "dllimport";
5816      FD->setInvalidDecl();
5817      return FD;
5818    }
5819
5820    // Visual C++ appears to not think this is an issue, so only issue
5821    // a warning when Microsoft extensions are disabled.
5822    if (!LangOpts.Microsoft) {
5823      // If a symbol previously declared dllimport is later defined, the
5824      // attribute is ignored in subsequent references, and a warning is
5825      // emitted.
5826      Diag(FD->getLocation(),
5827           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5828        << FD->getName() << "dllimport";
5829    }
5830  }
5831  return FD;
5832}
5833
5834/// \brief Given the set of return statements within a function body,
5835/// compute the variables that are subject to the named return value
5836/// optimization.
5837///
5838/// Each of the variables that is subject to the named return value
5839/// optimization will be marked as NRVO variables in the AST, and any
5840/// return statement that has a marked NRVO variable as its NRVO candidate can
5841/// use the named return value optimization.
5842///
5843/// This function applies a very simplistic algorithm for NRVO: if every return
5844/// statement in the function has the same NRVO candidate, that candidate is
5845/// the NRVO variable.
5846///
5847/// FIXME: Employ a smarter algorithm that accounts for multiple return
5848/// statements and the lifetimes of the NRVO candidates. We should be able to
5849/// find a maximal set of NRVO variables.
5850static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5851  ReturnStmt **Returns = Scope->Returns.data();
5852
5853  const VarDecl *NRVOCandidate = 0;
5854  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5855    if (!Returns[I]->getNRVOCandidate())
5856      return;
5857
5858    if (!NRVOCandidate)
5859      NRVOCandidate = Returns[I]->getNRVOCandidate();
5860    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5861      return;
5862  }
5863
5864  if (NRVOCandidate)
5865    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5866}
5867
5868Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5869  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5870}
5871
5872Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5873                                    bool IsInstantiation) {
5874  FunctionDecl *FD = 0;
5875  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5876  if (FunTmpl)
5877    FD = FunTmpl->getTemplatedDecl();
5878  else
5879    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5880
5881  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5882  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
5883
5884  if (FD) {
5885    FD->setBody(Body);
5886    if (FD->isMain()) {
5887      // C and C++ allow for main to automagically return 0.
5888      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5889      FD->setHasImplicitReturnZero(true);
5890      WP.disableCheckFallThrough();
5891    }
5892
5893    if (!FD->isInvalidDecl()) {
5894      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5895      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5896                                             FD->getResultType(), FD);
5897
5898      // If this is a constructor, we need a vtable.
5899      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5900        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5901
5902      ComputeNRVO(Body, getCurFunction());
5903    }
5904
5905    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5906  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5907    assert(MD == getCurMethodDecl() && "Method parsing confused");
5908    MD->setBody(Body);
5909    if (Body)
5910      MD->setEndLoc(Body->getLocEnd());
5911    if (!MD->isInvalidDecl()) {
5912      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5913      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5914                                             MD->getResultType(), MD);
5915    }
5916  } else {
5917    return 0;
5918  }
5919
5920  // Verify and clean out per-function state.
5921  if (Body) {
5922    // C++ constructors that have function-try-blocks can't have return
5923    // statements in the handlers of that block. (C++ [except.handle]p14)
5924    // Verify this.
5925    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5926      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5927
5928    // Verify that that gotos and switch cases don't jump into scopes illegally.
5929    // Verify that that gotos and switch cases don't jump into scopes illegally.
5930    if (getCurFunction()->NeedsScopeChecking() &&
5931        !dcl->isInvalidDecl() &&
5932        !hasAnyErrorsInThisFunction())
5933      DiagnoseInvalidJumps(Body);
5934
5935    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5936      if (!Destructor->getParent()->isDependentType())
5937        CheckDestructor(Destructor);
5938
5939      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5940                                             Destructor->getParent());
5941    }
5942
5943    // If any errors have occurred, clear out any temporaries that may have
5944    // been leftover. This ensures that these temporaries won't be picked up for
5945    // deletion in some later function.
5946    if (PP.getDiagnostics().hasErrorOccurred() ||
5947        PP.getDiagnostics().getSuppressAllDiagnostics())
5948      ExprTemporaries.clear();
5949    else if (!isa<FunctionTemplateDecl>(dcl)) {
5950      // Since the body is valid, issue any analysis-based warnings that are
5951      // enabled.
5952      ActivePolicy = &WP;
5953    }
5954
5955    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5956  }
5957
5958  if (!IsInstantiation)
5959    PopDeclContext();
5960
5961  PopFunctionOrBlockScope(ActivePolicy, dcl);
5962
5963  // If any errors have occurred, clear out any temporaries that may have
5964  // been leftover. This ensures that these temporaries won't be picked up for
5965  // deletion in some later function.
5966  if (getDiagnostics().hasErrorOccurred())
5967    ExprTemporaries.clear();
5968
5969  return dcl;
5970}
5971
5972/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5973/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5974NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5975                                          IdentifierInfo &II, Scope *S) {
5976  // Before we produce a declaration for an implicitly defined
5977  // function, see whether there was a locally-scoped declaration of
5978  // this name as a function or variable. If so, use that
5979  // (non-visible) declaration, and complain about it.
5980  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5981    = LocallyScopedExternalDecls.find(&II);
5982  if (Pos != LocallyScopedExternalDecls.end()) {
5983    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5984    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5985    return Pos->second;
5986  }
5987
5988  // Extension in C99.  Legal in C90, but warn about it.
5989  if (II.getName().startswith("__builtin_"))
5990    Diag(Loc, diag::warn_builtin_unknown) << &II;
5991  else if (getLangOptions().C99)
5992    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5993  else
5994    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5995
5996  // Set a Declarator for the implicit definition: int foo();
5997  const char *Dummy;
5998  AttributeFactory attrFactory;
5999  DeclSpec DS(attrFactory);
6000  unsigned DiagID;
6001  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6002  (void)Error; // Silence warning.
6003  assert(!Error && "Error setting up implicit decl!");
6004  Declarator D(DS, Declarator::BlockContext);
6005  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6006                                             0, 0, true, SourceLocation(),
6007                                             EST_None, SourceLocation(),
6008                                             0, 0, 0, 0, Loc, Loc, D),
6009                DS.getAttributes(),
6010                SourceLocation());
6011  D.SetIdentifier(&II, Loc);
6012
6013  // Insert this function into translation-unit scope.
6014
6015  DeclContext *PrevDC = CurContext;
6016  CurContext = Context.getTranslationUnitDecl();
6017
6018  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6019  FD->setImplicit();
6020
6021  CurContext = PrevDC;
6022
6023  AddKnownFunctionAttributes(FD);
6024
6025  return FD;
6026}
6027
6028/// \brief Adds any function attributes that we know a priori based on
6029/// the declaration of this function.
6030///
6031/// These attributes can apply both to implicitly-declared builtins
6032/// (like __builtin___printf_chk) or to library-declared functions
6033/// like NSLog or printf.
6034void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6035  if (FD->isInvalidDecl())
6036    return;
6037
6038  // If this is a built-in function, map its builtin attributes to
6039  // actual attributes.
6040  if (unsigned BuiltinID = FD->getBuiltinID()) {
6041    // Handle printf-formatting attributes.
6042    unsigned FormatIdx;
6043    bool HasVAListArg;
6044    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6045      if (!FD->getAttr<FormatAttr>())
6046        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6047                                                "printf", FormatIdx+1,
6048                                               HasVAListArg ? 0 : FormatIdx+2));
6049    }
6050    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6051                                             HasVAListArg)) {
6052     if (!FD->getAttr<FormatAttr>())
6053       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6054                                              "scanf", FormatIdx+1,
6055                                              HasVAListArg ? 0 : FormatIdx+2));
6056    }
6057
6058    // Mark const if we don't care about errno and that is the only
6059    // thing preventing the function from being const. This allows
6060    // IRgen to use LLVM intrinsics for such functions.
6061    if (!getLangOptions().MathErrno &&
6062        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6063      if (!FD->getAttr<ConstAttr>())
6064        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6065    }
6066
6067    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
6068      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6069    if (Context.BuiltinInfo.isConst(BuiltinID))
6070      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6071  }
6072
6073  IdentifierInfo *Name = FD->getIdentifier();
6074  if (!Name)
6075    return;
6076  if ((!getLangOptions().CPlusPlus &&
6077       FD->getDeclContext()->isTranslationUnit()) ||
6078      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6079       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6080       LinkageSpecDecl::lang_c)) {
6081    // Okay: this could be a libc/libm/Objective-C function we know
6082    // about.
6083  } else
6084    return;
6085
6086  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6087    // FIXME: NSLog and NSLogv should be target specific
6088    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6089      // FIXME: We known better than our headers.
6090      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6091    } else
6092      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6093                                             "printf", 1,
6094                                             Name->isStr("NSLogv") ? 0 : 2));
6095  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6096    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6097    // target-specific builtins, perhaps?
6098    if (!FD->getAttr<FormatAttr>())
6099      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6100                                             "printf", 2,
6101                                             Name->isStr("vasprintf") ? 0 : 3));
6102  }
6103}
6104
6105TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6106                                    TypeSourceInfo *TInfo) {
6107  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6108  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6109
6110  if (!TInfo) {
6111    assert(D.isInvalidType() && "no declarator info for valid type");
6112    TInfo = Context.getTrivialTypeSourceInfo(T);
6113  }
6114
6115  // Scope manipulation handled by caller.
6116  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6117                                           D.getSourceRange().getBegin(),
6118                                           D.getIdentifierLoc(),
6119                                           D.getIdentifier(),
6120                                           TInfo);
6121
6122  // Bail out immediately if we have an invalid declaration.
6123  if (D.isInvalidType()) {
6124    NewTD->setInvalidDecl();
6125    return NewTD;
6126  }
6127
6128  // C++ [dcl.typedef]p8:
6129  //   If the typedef declaration defines an unnamed class (or
6130  //   enum), the first typedef-name declared by the declaration
6131  //   to be that class type (or enum type) is used to denote the
6132  //   class type (or enum type) for linkage purposes only.
6133  // We need to check whether the type was declared in the declaration.
6134  switch (D.getDeclSpec().getTypeSpecType()) {
6135  case TST_enum:
6136  case TST_struct:
6137  case TST_union:
6138  case TST_class: {
6139    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6140
6141    // Do nothing if the tag is not anonymous or already has an
6142    // associated typedef (from an earlier typedef in this decl group).
6143    if (tagFromDeclSpec->getIdentifier()) break;
6144    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6145
6146    // A well-formed anonymous tag must always be a TUK_Definition.
6147    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6148
6149    // The type must match the tag exactly;  no qualifiers allowed.
6150    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6151      break;
6152
6153    // Otherwise, set this is the anon-decl typedef for the tag.
6154    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6155    break;
6156  }
6157
6158  default:
6159    break;
6160  }
6161
6162  return NewTD;
6163}
6164
6165
6166/// \brief Determine whether a tag with a given kind is acceptable
6167/// as a redeclaration of the given tag declaration.
6168///
6169/// \returns true if the new tag kind is acceptable, false otherwise.
6170bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6171                                        TagTypeKind NewTag,
6172                                        SourceLocation NewTagLoc,
6173                                        const IdentifierInfo &Name) {
6174  // C++ [dcl.type.elab]p3:
6175  //   The class-key or enum keyword present in the
6176  //   elaborated-type-specifier shall agree in kind with the
6177  //   declaration to which the name in the elaborated-type-specifier
6178  //   refers. This rule also applies to the form of
6179  //   elaborated-type-specifier that declares a class-name or
6180  //   friend class since it can be construed as referring to the
6181  //   definition of the class. Thus, in any
6182  //   elaborated-type-specifier, the enum keyword shall be used to
6183  //   refer to an enumeration (7.2), the union class-key shall be
6184  //   used to refer to a union (clause 9), and either the class or
6185  //   struct class-key shall be used to refer to a class (clause 9)
6186  //   declared using the class or struct class-key.
6187  TagTypeKind OldTag = Previous->getTagKind();
6188  if (OldTag == NewTag)
6189    return true;
6190
6191  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6192      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6193    // Warn about the struct/class tag mismatch.
6194    bool isTemplate = false;
6195    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6196      isTemplate = Record->getDescribedClassTemplate();
6197
6198    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6199      << (NewTag == TTK_Class)
6200      << isTemplate << &Name
6201      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6202                              OldTag == TTK_Class? "class" : "struct");
6203    Diag(Previous->getLocation(), diag::note_previous_use);
6204    return true;
6205  }
6206  return false;
6207}
6208
6209/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6210/// former case, Name will be non-null.  In the later case, Name will be null.
6211/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6212/// reference/declaration/definition of a tag.
6213Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6214                     SourceLocation KWLoc, CXXScopeSpec &SS,
6215                     IdentifierInfo *Name, SourceLocation NameLoc,
6216                     AttributeList *Attr, AccessSpecifier AS,
6217                     MultiTemplateParamsArg TemplateParameterLists,
6218                     bool &OwnedDecl, bool &IsDependent,
6219                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6220                     TypeResult UnderlyingType) {
6221  // If this is not a definition, it must have a name.
6222  assert((Name != 0 || TUK == TUK_Definition) &&
6223         "Nameless record must be a definition!");
6224  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6225
6226  OwnedDecl = false;
6227  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6228
6229  // FIXME: Check explicit specializations more carefully.
6230  bool isExplicitSpecialization = false;
6231  bool Invalid = false;
6232
6233  // We only need to do this matching if we have template parameters
6234  // or a scope specifier, which also conveniently avoids this work
6235  // for non-C++ cases.
6236  if (TemplateParameterLists.size() > 0 ||
6237      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6238    if (TemplateParameterList *TemplateParams
6239          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
6240                                                TemplateParameterLists.get(),
6241                                                TemplateParameterLists.size(),
6242                                                    TUK == TUK_Friend,
6243                                                    isExplicitSpecialization,
6244                                                    Invalid)) {
6245      if (TemplateParams->size() > 0) {
6246        // This is a declaration or definition of a class template (which may
6247        // be a member of another template).
6248
6249        if (Invalid)
6250          return 0;
6251
6252        OwnedDecl = false;
6253        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6254                                               SS, Name, NameLoc, Attr,
6255                                               TemplateParams, AS,
6256                                           TemplateParameterLists.size() - 1,
6257                 (TemplateParameterList**) TemplateParameterLists.release());
6258        return Result.get();
6259      } else {
6260        // The "template<>" header is extraneous.
6261        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6262          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6263        isExplicitSpecialization = true;
6264      }
6265    }
6266  }
6267
6268  // Figure out the underlying type if this a enum declaration. We need to do
6269  // this early, because it's needed to detect if this is an incompatible
6270  // redeclaration.
6271  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6272
6273  if (Kind == TTK_Enum) {
6274    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6275      // No underlying type explicitly specified, or we failed to parse the
6276      // type, default to int.
6277      EnumUnderlying = Context.IntTy.getTypePtr();
6278    else if (UnderlyingType.get()) {
6279      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6280      // integral type; any cv-qualification is ignored.
6281      TypeSourceInfo *TI = 0;
6282      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6283      EnumUnderlying = TI;
6284
6285      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6286
6287      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6288        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6289          << T;
6290        // Recover by falling back to int.
6291        EnumUnderlying = Context.IntTy.getTypePtr();
6292      }
6293
6294      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6295                                          UPPC_FixedUnderlyingType))
6296        EnumUnderlying = Context.IntTy.getTypePtr();
6297
6298    } else if (getLangOptions().Microsoft)
6299      // Microsoft enums are always of int type.
6300      EnumUnderlying = Context.IntTy.getTypePtr();
6301  }
6302
6303  DeclContext *SearchDC = CurContext;
6304  DeclContext *DC = CurContext;
6305  bool isStdBadAlloc = false;
6306
6307  RedeclarationKind Redecl = ForRedeclaration;
6308  if (TUK == TUK_Friend || TUK == TUK_Reference)
6309    Redecl = NotForRedeclaration;
6310
6311  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6312
6313  if (Name && SS.isNotEmpty()) {
6314    // We have a nested-name tag ('struct foo::bar').
6315
6316    // Check for invalid 'foo::'.
6317    if (SS.isInvalid()) {
6318      Name = 0;
6319      goto CreateNewDecl;
6320    }
6321
6322    // If this is a friend or a reference to a class in a dependent
6323    // context, don't try to make a decl for it.
6324    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6325      DC = computeDeclContext(SS, false);
6326      if (!DC) {
6327        IsDependent = true;
6328        return 0;
6329      }
6330    } else {
6331      DC = computeDeclContext(SS, true);
6332      if (!DC) {
6333        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6334          << SS.getRange();
6335        return 0;
6336      }
6337    }
6338
6339    if (RequireCompleteDeclContext(SS, DC))
6340      return 0;
6341
6342    SearchDC = DC;
6343    // Look-up name inside 'foo::'.
6344    LookupQualifiedName(Previous, DC);
6345
6346    if (Previous.isAmbiguous())
6347      return 0;
6348
6349    if (Previous.empty()) {
6350      // Name lookup did not find anything. However, if the
6351      // nested-name-specifier refers to the current instantiation,
6352      // and that current instantiation has any dependent base
6353      // classes, we might find something at instantiation time: treat
6354      // this as a dependent elaborated-type-specifier.
6355      // But this only makes any sense for reference-like lookups.
6356      if (Previous.wasNotFoundInCurrentInstantiation() &&
6357          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6358        IsDependent = true;
6359        return 0;
6360      }
6361
6362      // A tag 'foo::bar' must already exist.
6363      Diag(NameLoc, diag::err_not_tag_in_scope)
6364        << Kind << Name << DC << SS.getRange();
6365      Name = 0;
6366      Invalid = true;
6367      goto CreateNewDecl;
6368    }
6369  } else if (Name) {
6370    // If this is a named struct, check to see if there was a previous forward
6371    // declaration or definition.
6372    // FIXME: We're looking into outer scopes here, even when we
6373    // shouldn't be. Doing so can result in ambiguities that we
6374    // shouldn't be diagnosing.
6375    LookupName(Previous, S);
6376
6377    // Note:  there used to be some attempt at recovery here.
6378    if (Previous.isAmbiguous())
6379      return 0;
6380
6381    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6382      // FIXME: This makes sure that we ignore the contexts associated
6383      // with C structs, unions, and enums when looking for a matching
6384      // tag declaration or definition. See the similar lookup tweak
6385      // in Sema::LookupName; is there a better way to deal with this?
6386      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6387        SearchDC = SearchDC->getParent();
6388    }
6389  } else if (S->isFunctionPrototypeScope()) {
6390    // If this is an enum declaration in function prototype scope, set its
6391    // initial context to the translation unit.
6392    SearchDC = Context.getTranslationUnitDecl();
6393  }
6394
6395  if (Previous.isSingleResult() &&
6396      Previous.getFoundDecl()->isTemplateParameter()) {
6397    // Maybe we will complain about the shadowed template parameter.
6398    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6399    // Just pretend that we didn't see the previous declaration.
6400    Previous.clear();
6401  }
6402
6403  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6404      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6405    // This is a declaration of or a reference to "std::bad_alloc".
6406    isStdBadAlloc = true;
6407
6408    if (Previous.empty() && StdBadAlloc) {
6409      // std::bad_alloc has been implicitly declared (but made invisible to
6410      // name lookup). Fill in this implicit declaration as the previous
6411      // declaration, so that the declarations get chained appropriately.
6412      Previous.addDecl(getStdBadAlloc());
6413    }
6414  }
6415
6416  // If we didn't find a previous declaration, and this is a reference
6417  // (or friend reference), move to the correct scope.  In C++, we
6418  // also need to do a redeclaration lookup there, just in case
6419  // there's a shadow friend decl.
6420  if (Name && Previous.empty() &&
6421      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6422    if (Invalid) goto CreateNewDecl;
6423    assert(SS.isEmpty());
6424
6425    if (TUK == TUK_Reference) {
6426      // C++ [basic.scope.pdecl]p5:
6427      //   -- for an elaborated-type-specifier of the form
6428      //
6429      //          class-key identifier
6430      //
6431      //      if the elaborated-type-specifier is used in the
6432      //      decl-specifier-seq or parameter-declaration-clause of a
6433      //      function defined in namespace scope, the identifier is
6434      //      declared as a class-name in the namespace that contains
6435      //      the declaration; otherwise, except as a friend
6436      //      declaration, the identifier is declared in the smallest
6437      //      non-class, non-function-prototype scope that contains the
6438      //      declaration.
6439      //
6440      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6441      // C structs and unions.
6442      //
6443      // It is an error in C++ to declare (rather than define) an enum
6444      // type, including via an elaborated type specifier.  We'll
6445      // diagnose that later; for now, declare the enum in the same
6446      // scope as we would have picked for any other tag type.
6447      //
6448      // GNU C also supports this behavior as part of its incomplete
6449      // enum types extension, while GNU C++ does not.
6450      //
6451      // Find the context where we'll be declaring the tag.
6452      // FIXME: We would like to maintain the current DeclContext as the
6453      // lexical context,
6454      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6455        SearchDC = SearchDC->getParent();
6456
6457      // Find the scope where we'll be declaring the tag.
6458      while (S->isClassScope() ||
6459             (getLangOptions().CPlusPlus &&
6460              S->isFunctionPrototypeScope()) ||
6461             ((S->getFlags() & Scope::DeclScope) == 0) ||
6462             (S->getEntity() &&
6463              ((DeclContext *)S->getEntity())->isTransparentContext()))
6464        S = S->getParent();
6465    } else {
6466      assert(TUK == TUK_Friend);
6467      // C++ [namespace.memdef]p3:
6468      //   If a friend declaration in a non-local class first declares a
6469      //   class or function, the friend class or function is a member of
6470      //   the innermost enclosing namespace.
6471      SearchDC = SearchDC->getEnclosingNamespaceContext();
6472    }
6473
6474    // In C++, we need to do a redeclaration lookup to properly
6475    // diagnose some problems.
6476    if (getLangOptions().CPlusPlus) {
6477      Previous.setRedeclarationKind(ForRedeclaration);
6478      LookupQualifiedName(Previous, SearchDC);
6479    }
6480  }
6481
6482  if (!Previous.empty()) {
6483    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6484
6485    // It's okay to have a tag decl in the same scope as a typedef
6486    // which hides a tag decl in the same scope.  Finding this
6487    // insanity with a redeclaration lookup can only actually happen
6488    // in C++.
6489    //
6490    // This is also okay for elaborated-type-specifiers, which is
6491    // technically forbidden by the current standard but which is
6492    // okay according to the likely resolution of an open issue;
6493    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6494    if (getLangOptions().CPlusPlus) {
6495      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
6496        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6497          TagDecl *Tag = TT->getDecl();
6498          if (Tag->getDeclName() == Name &&
6499              Tag->getDeclContext()->getRedeclContext()
6500                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6501            PrevDecl = Tag;
6502            Previous.clear();
6503            Previous.addDecl(Tag);
6504            Previous.resolveKind();
6505          }
6506        }
6507      }
6508    }
6509
6510    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6511      // If this is a use of a previous tag, or if the tag is already declared
6512      // in the same scope (so that the definition/declaration completes or
6513      // rementions the tag), reuse the decl.
6514      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6515          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
6516        // Make sure that this wasn't declared as an enum and now used as a
6517        // struct or something similar.
6518        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6519          bool SafeToContinue
6520            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6521               Kind != TTK_Enum);
6522          if (SafeToContinue)
6523            Diag(KWLoc, diag::err_use_with_wrong_tag)
6524              << Name
6525              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6526                                              PrevTagDecl->getKindName());
6527          else
6528            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6529          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6530
6531          if (SafeToContinue)
6532            Kind = PrevTagDecl->getTagKind();
6533          else {
6534            // Recover by making this an anonymous redefinition.
6535            Name = 0;
6536            Previous.clear();
6537            Invalid = true;
6538          }
6539        }
6540
6541        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6542          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6543
6544          // All conflicts with previous declarations are recovered by
6545          // returning the previous declaration.
6546          if (ScopedEnum != PrevEnum->isScoped()) {
6547            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6548              << PrevEnum->isScoped();
6549            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6550            return PrevTagDecl;
6551          }
6552          else if (EnumUnderlying && PrevEnum->isFixed()) {
6553            QualType T;
6554            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6555                T = TI->getType();
6556            else
6557                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6558
6559            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6560              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6561                   diag::err_enum_redeclare_type_mismatch)
6562                << T
6563                << PrevEnum->getIntegerType();
6564              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6565              return PrevTagDecl;
6566            }
6567          }
6568          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6569            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6570              << PrevEnum->isFixed();
6571            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6572            return PrevTagDecl;
6573          }
6574        }
6575
6576        if (!Invalid) {
6577          // If this is a use, just return the declaration we found.
6578
6579          // FIXME: In the future, return a variant or some other clue
6580          // for the consumer of this Decl to know it doesn't own it.
6581          // For our current ASTs this shouldn't be a problem, but will
6582          // need to be changed with DeclGroups.
6583          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6584              TUK == TUK_Friend)
6585            return PrevTagDecl;
6586
6587          // Diagnose attempts to redefine a tag.
6588          if (TUK == TUK_Definition) {
6589            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6590              // If we're defining a specialization and the previous definition
6591              // is from an implicit instantiation, don't emit an error
6592              // here; we'll catch this in the general case below.
6593              if (!isExplicitSpecialization ||
6594                  !isa<CXXRecordDecl>(Def) ||
6595                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6596                                               == TSK_ExplicitSpecialization) {
6597                Diag(NameLoc, diag::err_redefinition) << Name;
6598                Diag(Def->getLocation(), diag::note_previous_definition);
6599                // If this is a redefinition, recover by making this
6600                // struct be anonymous, which will make any later
6601                // references get the previous definition.
6602                Name = 0;
6603                Previous.clear();
6604                Invalid = true;
6605              }
6606            } else {
6607              // If the type is currently being defined, complain
6608              // about a nested redefinition.
6609              const TagType *Tag
6610                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6611              if (Tag->isBeingDefined()) {
6612                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6613                Diag(PrevTagDecl->getLocation(),
6614                     diag::note_previous_definition);
6615                Name = 0;
6616                Previous.clear();
6617                Invalid = true;
6618              }
6619            }
6620
6621            // Okay, this is definition of a previously declared or referenced
6622            // tag PrevDecl. We're going to create a new Decl for it.
6623          }
6624        }
6625        // If we get here we have (another) forward declaration or we
6626        // have a definition.  Just create a new decl.
6627
6628      } else {
6629        // If we get here, this is a definition of a new tag type in a nested
6630        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6631        // new decl/type.  We set PrevDecl to NULL so that the entities
6632        // have distinct types.
6633        Previous.clear();
6634      }
6635      // If we get here, we're going to create a new Decl. If PrevDecl
6636      // is non-NULL, it's a definition of the tag declared by
6637      // PrevDecl. If it's NULL, we have a new definition.
6638
6639
6640    // Otherwise, PrevDecl is not a tag, but was found with tag
6641    // lookup.  This is only actually possible in C++, where a few
6642    // things like templates still live in the tag namespace.
6643    } else {
6644      assert(getLangOptions().CPlusPlus);
6645
6646      // Use a better diagnostic if an elaborated-type-specifier
6647      // found the wrong kind of type on the first
6648      // (non-redeclaration) lookup.
6649      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6650          !Previous.isForRedeclaration()) {
6651        unsigned Kind = 0;
6652        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6653        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
6654        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
6655        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6656        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6657        Invalid = true;
6658
6659      // Otherwise, only diagnose if the declaration is in scope.
6660      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
6661                                isExplicitSpecialization)) {
6662        // do nothing
6663
6664      // Diagnose implicit declarations introduced by elaborated types.
6665      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6666        unsigned Kind = 0;
6667        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6668        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
6669        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
6670        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6671        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6672        Invalid = true;
6673
6674      // Otherwise it's a declaration.  Call out a particularly common
6675      // case here.
6676      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
6677        unsigned Kind = 0;
6678        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
6679        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6680          << Name << Kind << TND->getUnderlyingType();
6681        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6682        Invalid = true;
6683
6684      // Otherwise, diagnose.
6685      } else {
6686        // The tag name clashes with something else in the target scope,
6687        // issue an error and recover by making this tag be anonymous.
6688        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6689        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6690        Name = 0;
6691        Invalid = true;
6692      }
6693
6694      // The existing declaration isn't relevant to us; we're in a
6695      // new scope, so clear out the previous declaration.
6696      Previous.clear();
6697    }
6698  }
6699
6700CreateNewDecl:
6701
6702  TagDecl *PrevDecl = 0;
6703  if (Previous.isSingleResult())
6704    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6705
6706  // If there is an identifier, use the location of the identifier as the
6707  // location of the decl, otherwise use the location of the struct/union
6708  // keyword.
6709  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6710
6711  // Otherwise, create a new declaration. If there is a previous
6712  // declaration of the same entity, the two will be linked via
6713  // PrevDecl.
6714  TagDecl *New;
6715
6716  bool IsForwardReference = false;
6717  if (Kind == TTK_Enum) {
6718    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6719    // enum X { A, B, C } D;    D should chain to X.
6720    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
6721                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6722                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
6723    // If this is an undefined enum, warn.
6724    if (TUK != TUK_Definition && !Invalid) {
6725      TagDecl *Def;
6726      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6727        // C++0x: 7.2p2: opaque-enum-declaration.
6728        // Conflicts are diagnosed above. Do nothing.
6729      }
6730      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6731        Diag(Loc, diag::ext_forward_ref_enum_def)
6732          << New;
6733        Diag(Def->getLocation(), diag::note_previous_definition);
6734      } else {
6735        unsigned DiagID = diag::ext_forward_ref_enum;
6736        if (getLangOptions().Microsoft)
6737          DiagID = diag::ext_ms_forward_ref_enum;
6738        else if (getLangOptions().CPlusPlus)
6739          DiagID = diag::err_forward_ref_enum;
6740        Diag(Loc, DiagID);
6741
6742        // If this is a forward-declared reference to an enumeration, make a
6743        // note of it; we won't actually be introducing the declaration into
6744        // the declaration context.
6745        if (TUK == TUK_Reference)
6746          IsForwardReference = true;
6747      }
6748    }
6749
6750    if (EnumUnderlying) {
6751      EnumDecl *ED = cast<EnumDecl>(New);
6752      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6753        ED->setIntegerTypeSourceInfo(TI);
6754      else
6755        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6756      ED->setPromotionType(ED->getIntegerType());
6757    }
6758
6759  } else {
6760    // struct/union/class
6761
6762    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6763    // struct X { int A; } D;    D should chain to X.
6764    if (getLangOptions().CPlusPlus) {
6765      // FIXME: Look for a way to use RecordDecl for simple structs.
6766      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
6767                                  cast_or_null<CXXRecordDecl>(PrevDecl));
6768
6769      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6770        StdBadAlloc = cast<CXXRecordDecl>(New);
6771    } else
6772      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
6773                               cast_or_null<RecordDecl>(PrevDecl));
6774  }
6775
6776  // Maybe add qualifier info.
6777  if (SS.isNotEmpty()) {
6778    if (SS.isSet()) {
6779      New->setQualifierInfo(SS.getWithLocInContext(Context));
6780      if (TemplateParameterLists.size() > 0) {
6781        New->setTemplateParameterListsInfo(Context,
6782                                           TemplateParameterLists.size(),
6783                    (TemplateParameterList**) TemplateParameterLists.release());
6784      }
6785    }
6786    else
6787      Invalid = true;
6788  }
6789
6790  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6791    // Add alignment attributes if necessary; these attributes are checked when
6792    // the ASTContext lays out the structure.
6793    //
6794    // It is important for implementing the correct semantics that this
6795    // happen here (in act on tag decl). The #pragma pack stack is
6796    // maintained as a result of parser callbacks which can occur at
6797    // many points during the parsing of a struct declaration (because
6798    // the #pragma tokens are effectively skipped over during the
6799    // parsing of the struct).
6800    AddAlignmentAttributesForRecord(RD);
6801  }
6802
6803  // If this is a specialization of a member class (of a class template),
6804  // check the specialization.
6805  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6806    Invalid = true;
6807
6808  if (Invalid)
6809    New->setInvalidDecl();
6810
6811  if (Attr)
6812    ProcessDeclAttributeList(S, New, Attr);
6813
6814  // If we're declaring or defining a tag in function prototype scope
6815  // in C, note that this type can only be used within the function.
6816  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6817    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6818
6819  // Set the lexical context. If the tag has a C++ scope specifier, the
6820  // lexical context will be different from the semantic context.
6821  New->setLexicalDeclContext(CurContext);
6822
6823  // Mark this as a friend decl if applicable.
6824  if (TUK == TUK_Friend)
6825    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6826
6827  // Set the access specifier.
6828  if (!Invalid && SearchDC->isRecord())
6829    SetMemberAccessSpecifier(New, PrevDecl, AS);
6830
6831  if (TUK == TUK_Definition)
6832    New->startDefinition();
6833
6834  // If this has an identifier, add it to the scope stack.
6835  if (TUK == TUK_Friend) {
6836    // We might be replacing an existing declaration in the lookup tables;
6837    // if so, borrow its access specifier.
6838    if (PrevDecl)
6839      New->setAccess(PrevDecl->getAccess());
6840
6841    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6842    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6843    if (Name) // can be null along some error paths
6844      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6845        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6846  } else if (Name) {
6847    S = getNonFieldDeclScope(S);
6848    PushOnScopeChains(New, S, !IsForwardReference);
6849    if (IsForwardReference)
6850      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6851
6852  } else {
6853    CurContext->addDecl(New);
6854  }
6855
6856  // If this is the C FILE type, notify the AST context.
6857  if (IdentifierInfo *II = New->getIdentifier())
6858    if (!New->isInvalidDecl() &&
6859        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6860        II->isStr("FILE"))
6861      Context.setFILEDecl(New);
6862
6863  OwnedDecl = true;
6864  return New;
6865}
6866
6867void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6868  AdjustDeclIfTemplate(TagD);
6869  TagDecl *Tag = cast<TagDecl>(TagD);
6870
6871  // Enter the tag context.
6872  PushDeclContext(S, Tag);
6873}
6874
6875void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6876                                           SourceLocation FinalLoc,
6877                                           SourceLocation LBraceLoc) {
6878  AdjustDeclIfTemplate(TagD);
6879  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6880
6881  FieldCollector->StartClass();
6882
6883  if (!Record->getIdentifier())
6884    return;
6885
6886  if (FinalLoc.isValid())
6887    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
6888
6889  // C++ [class]p2:
6890  //   [...] The class-name is also inserted into the scope of the
6891  //   class itself; this is known as the injected-class-name. For
6892  //   purposes of access checking, the injected-class-name is treated
6893  //   as if it were a public member name.
6894  CXXRecordDecl *InjectedClassName
6895    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
6896                            Record->getLocStart(), Record->getLocation(),
6897                            Record->getIdentifier(),
6898                            /*PrevDecl=*/0,
6899                            /*DelayTypeCreation=*/true);
6900  Context.getTypeDeclType(InjectedClassName, Record);
6901  InjectedClassName->setImplicit();
6902  InjectedClassName->setAccess(AS_public);
6903  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6904      InjectedClassName->setDescribedClassTemplate(Template);
6905  PushOnScopeChains(InjectedClassName, S);
6906  assert(InjectedClassName->isInjectedClassName() &&
6907         "Broken injected-class-name");
6908}
6909
6910void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6911                                    SourceLocation RBraceLoc) {
6912  AdjustDeclIfTemplate(TagD);
6913  TagDecl *Tag = cast<TagDecl>(TagD);
6914  Tag->setRBraceLoc(RBraceLoc);
6915
6916  if (isa<CXXRecordDecl>(Tag))
6917    FieldCollector->FinishClass();
6918
6919  // Exit this scope of this tag's definition.
6920  PopDeclContext();
6921
6922  // Notify the consumer that we've defined a tag.
6923  Consumer.HandleTagDeclDefinition(Tag);
6924}
6925
6926void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6927  AdjustDeclIfTemplate(TagD);
6928  TagDecl *Tag = cast<TagDecl>(TagD);
6929  Tag->setInvalidDecl();
6930
6931  // We're undoing ActOnTagStartDefinition here, not
6932  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6933  // the FieldCollector.
6934
6935  PopDeclContext();
6936}
6937
6938// Note that FieldName may be null for anonymous bitfields.
6939bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6940                          QualType FieldTy, const Expr *BitWidth,
6941                          bool *ZeroWidth) {
6942  // Default to true; that shouldn't confuse checks for emptiness
6943  if (ZeroWidth)
6944    *ZeroWidth = true;
6945
6946  // C99 6.7.2.1p4 - verify the field type.
6947  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6948  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6949    // Handle incomplete types with specific error.
6950    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6951      return true;
6952    if (FieldName)
6953      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6954        << FieldName << FieldTy << BitWidth->getSourceRange();
6955    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6956      << FieldTy << BitWidth->getSourceRange();
6957  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
6958                                             UPPC_BitFieldWidth))
6959    return true;
6960
6961  // If the bit-width is type- or value-dependent, don't try to check
6962  // it now.
6963  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6964    return false;
6965
6966  llvm::APSInt Value;
6967  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6968    return true;
6969
6970  if (Value != 0 && ZeroWidth)
6971    *ZeroWidth = false;
6972
6973  // Zero-width bitfield is ok for anonymous field.
6974  if (Value == 0 && FieldName)
6975    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6976
6977  if (Value.isSigned() && Value.isNegative()) {
6978    if (FieldName)
6979      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6980               << FieldName << Value.toString(10);
6981    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6982      << Value.toString(10);
6983  }
6984
6985  if (!FieldTy->isDependentType()) {
6986    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6987    if (Value.getZExtValue() > TypeSize) {
6988      if (!getLangOptions().CPlusPlus) {
6989        if (FieldName)
6990          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6991            << FieldName << (unsigned)Value.getZExtValue()
6992            << (unsigned)TypeSize;
6993
6994        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6995          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6996      }
6997
6998      if (FieldName)
6999        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7000          << FieldName << (unsigned)Value.getZExtValue()
7001          << (unsigned)TypeSize;
7002      else
7003        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7004          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7005    }
7006  }
7007
7008  return false;
7009}
7010
7011/// ActOnField - Each field of a struct/union/class is passed into this in order
7012/// to create a FieldDecl object for it.
7013Decl *Sema::ActOnField(Scope *S, Decl *TagD,
7014                                 SourceLocation DeclStart,
7015                                 Declarator &D, ExprTy *BitfieldWidth) {
7016  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7017                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7018                               AS_public);
7019  return Res;
7020}
7021
7022/// HandleField - Analyze a field of a C struct or a C++ data member.
7023///
7024FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7025                             SourceLocation DeclStart,
7026                             Declarator &D, Expr *BitWidth,
7027                             AccessSpecifier AS) {
7028  IdentifierInfo *II = D.getIdentifier();
7029  SourceLocation Loc = DeclStart;
7030  if (II) Loc = D.getIdentifierLoc();
7031
7032  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7033  QualType T = TInfo->getType();
7034  if (getLangOptions().CPlusPlus) {
7035    CheckExtraCXXDefaultArguments(D);
7036
7037    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7038                                        UPPC_DataMemberType)) {
7039      D.setInvalidType();
7040      T = Context.IntTy;
7041      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7042    }
7043  }
7044
7045  DiagnoseFunctionSpecifiers(D);
7046
7047  if (D.getDeclSpec().isThreadSpecified())
7048    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7049
7050  // Check to see if this name was declared as a member previously
7051  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7052  LookupName(Previous, S);
7053  assert((Previous.empty() || Previous.isOverloadedResult() ||
7054          Previous.isSingleResult())
7055    && "Lookup of member name should be either overloaded, single or null");
7056
7057  // If the name is overloaded then get any declaration else get the single result
7058  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7059    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7060
7061  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7062    // Maybe we will complain about the shadowed template parameter.
7063    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7064    // Just pretend that we didn't see the previous declaration.
7065    PrevDecl = 0;
7066  }
7067
7068  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7069    PrevDecl = 0;
7070
7071  bool Mutable
7072    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7073  SourceLocation TSSL = D.getSourceRange().getBegin();
7074  FieldDecl *NewFD
7075    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
7076                     AS, PrevDecl, &D);
7077
7078  if (NewFD->isInvalidDecl())
7079    Record->setInvalidDecl();
7080
7081  if (NewFD->isInvalidDecl() && PrevDecl) {
7082    // Don't introduce NewFD into scope; there's already something
7083    // with the same name in the same scope.
7084  } else if (II) {
7085    PushOnScopeChains(NewFD, S);
7086  } else
7087    Record->addDecl(NewFD);
7088
7089  return NewFD;
7090}
7091
7092/// \brief Build a new FieldDecl and check its well-formedness.
7093///
7094/// This routine builds a new FieldDecl given the fields name, type,
7095/// record, etc. \p PrevDecl should refer to any previous declaration
7096/// with the same name and in the same scope as the field to be
7097/// created.
7098///
7099/// \returns a new FieldDecl.
7100///
7101/// \todo The Declarator argument is a hack. It will be removed once
7102FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7103                                TypeSourceInfo *TInfo,
7104                                RecordDecl *Record, SourceLocation Loc,
7105                                bool Mutable, Expr *BitWidth,
7106                                SourceLocation TSSL,
7107                                AccessSpecifier AS, NamedDecl *PrevDecl,
7108                                Declarator *D) {
7109  IdentifierInfo *II = Name.getAsIdentifierInfo();
7110  bool InvalidDecl = false;
7111  if (D) InvalidDecl = D->isInvalidType();
7112
7113  // If we receive a broken type, recover by assuming 'int' and
7114  // marking this declaration as invalid.
7115  if (T.isNull()) {
7116    InvalidDecl = true;
7117    T = Context.IntTy;
7118  }
7119
7120  QualType EltTy = Context.getBaseElementType(T);
7121  if (!EltTy->isDependentType() &&
7122      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7123    // Fields of incomplete type force their record to be invalid.
7124    Record->setInvalidDecl();
7125    InvalidDecl = true;
7126  }
7127
7128  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7129  // than a variably modified type.
7130  if (!InvalidDecl && T->isVariablyModifiedType()) {
7131    bool SizeIsNegative;
7132    llvm::APSInt Oversized;
7133    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7134                                                           SizeIsNegative,
7135                                                           Oversized);
7136    if (!FixedTy.isNull()) {
7137      Diag(Loc, diag::warn_illegal_constant_array_size);
7138      T = FixedTy;
7139    } else {
7140      if (SizeIsNegative)
7141        Diag(Loc, diag::err_typecheck_negative_array_size);
7142      else if (Oversized.getBoolValue())
7143        Diag(Loc, diag::err_array_too_large)
7144          << Oversized.toString(10);
7145      else
7146        Diag(Loc, diag::err_typecheck_field_variable_size);
7147      InvalidDecl = true;
7148    }
7149  }
7150
7151  // Fields can not have abstract class types
7152  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7153                                             diag::err_abstract_type_in_decl,
7154                                             AbstractFieldType))
7155    InvalidDecl = true;
7156
7157  bool ZeroWidth = false;
7158  // If this is declared as a bit-field, check the bit-field.
7159  if (!InvalidDecl && BitWidth &&
7160      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7161    InvalidDecl = true;
7162    BitWidth = 0;
7163    ZeroWidth = false;
7164  }
7165
7166  // Check that 'mutable' is consistent with the type of the declaration.
7167  if (!InvalidDecl && Mutable) {
7168    unsigned DiagID = 0;
7169    if (T->isReferenceType())
7170      DiagID = diag::err_mutable_reference;
7171    else if (T.isConstQualified())
7172      DiagID = diag::err_mutable_const;
7173
7174    if (DiagID) {
7175      SourceLocation ErrLoc = Loc;
7176      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7177        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7178      Diag(ErrLoc, DiagID);
7179      Mutable = false;
7180      InvalidDecl = true;
7181    }
7182  }
7183
7184  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7185                                       BitWidth, Mutable);
7186  if (InvalidDecl)
7187    NewFD->setInvalidDecl();
7188
7189  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7190    Diag(Loc, diag::err_duplicate_member) << II;
7191    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7192    NewFD->setInvalidDecl();
7193  }
7194
7195  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7196    if (Record->isUnion()) {
7197      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7198        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7199        if (RDecl->getDefinition()) {
7200          // C++ [class.union]p1: An object of a class with a non-trivial
7201          // constructor, a non-trivial copy constructor, a non-trivial
7202          // destructor, or a non-trivial copy assignment operator
7203          // cannot be a member of a union, nor can an array of such
7204          // objects.
7205          // TODO: C++0x alters this restriction significantly.
7206          if (CheckNontrivialField(NewFD))
7207            NewFD->setInvalidDecl();
7208        }
7209      }
7210
7211      // C++ [class.union]p1: If a union contains a member of reference type,
7212      // the program is ill-formed.
7213      if (EltTy->isReferenceType()) {
7214        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7215          << NewFD->getDeclName() << EltTy;
7216        NewFD->setInvalidDecl();
7217      }
7218    }
7219  }
7220
7221  // FIXME: We need to pass in the attributes given an AST
7222  // representation, not a parser representation.
7223  if (D)
7224    // FIXME: What to pass instead of TUScope?
7225    ProcessDeclAttributes(TUScope, NewFD, *D);
7226
7227  if (T.isObjCGCWeak())
7228    Diag(Loc, diag::warn_attribute_weak_on_field);
7229
7230  NewFD->setAccess(AS);
7231  return NewFD;
7232}
7233
7234bool Sema::CheckNontrivialField(FieldDecl *FD) {
7235  assert(FD);
7236  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7237
7238  if (FD->isInvalidDecl())
7239    return true;
7240
7241  QualType EltTy = Context.getBaseElementType(FD->getType());
7242  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7243    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7244    if (RDecl->getDefinition()) {
7245      // We check for copy constructors before constructors
7246      // because otherwise we'll never get complaints about
7247      // copy constructors.
7248
7249      CXXSpecialMember member = CXXInvalid;
7250      if (!RDecl->hasTrivialCopyConstructor())
7251        member = CXXCopyConstructor;
7252      else if (!RDecl->hasTrivialConstructor())
7253        member = CXXConstructor;
7254      else if (!RDecl->hasTrivialCopyAssignment())
7255        member = CXXCopyAssignment;
7256      else if (!RDecl->hasTrivialDestructor())
7257        member = CXXDestructor;
7258
7259      if (member != CXXInvalid) {
7260        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7261              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7262        DiagnoseNontrivial(RT, member);
7263        return true;
7264      }
7265    }
7266  }
7267
7268  return false;
7269}
7270
7271/// DiagnoseNontrivial - Given that a class has a non-trivial
7272/// special member, figure out why.
7273void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7274  QualType QT(T, 0U);
7275  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7276
7277  // Check whether the member was user-declared.
7278  switch (member) {
7279  case CXXInvalid:
7280    break;
7281
7282  case CXXConstructor:
7283    if (RD->hasUserDeclaredConstructor()) {
7284      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7285      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7286        const FunctionDecl *body = 0;
7287        ci->hasBody(body);
7288        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7289          SourceLocation CtorLoc = ci->getLocation();
7290          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7291          return;
7292        }
7293      }
7294
7295      assert(0 && "found no user-declared constructors");
7296      return;
7297    }
7298    break;
7299
7300  case CXXCopyConstructor:
7301    if (RD->hasUserDeclaredCopyConstructor()) {
7302      SourceLocation CtorLoc =
7303        RD->getCopyConstructor(Context, 0)->getLocation();
7304      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7305      return;
7306    }
7307    break;
7308
7309  case CXXCopyAssignment:
7310    if (RD->hasUserDeclaredCopyAssignment()) {
7311      // FIXME: this should use the location of the copy
7312      // assignment, not the type.
7313      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7314      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7315      return;
7316    }
7317    break;
7318
7319  case CXXDestructor:
7320    if (RD->hasUserDeclaredDestructor()) {
7321      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7322      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7323      return;
7324    }
7325    break;
7326  }
7327
7328  typedef CXXRecordDecl::base_class_iterator base_iter;
7329
7330  // Virtual bases and members inhibit trivial copying/construction,
7331  // but not trivial destruction.
7332  if (member != CXXDestructor) {
7333    // Check for virtual bases.  vbases includes indirect virtual bases,
7334    // so we just iterate through the direct bases.
7335    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7336      if (bi->isVirtual()) {
7337        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7338        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7339        return;
7340      }
7341
7342    // Check for virtual methods.
7343    typedef CXXRecordDecl::method_iterator meth_iter;
7344    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7345         ++mi) {
7346      if (mi->isVirtual()) {
7347        SourceLocation MLoc = mi->getSourceRange().getBegin();
7348        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7349        return;
7350      }
7351    }
7352  }
7353
7354  bool (CXXRecordDecl::*hasTrivial)() const;
7355  switch (member) {
7356  case CXXConstructor:
7357    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
7358  case CXXCopyConstructor:
7359    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7360  case CXXCopyAssignment:
7361    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7362  case CXXDestructor:
7363    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7364  default:
7365    assert(0 && "unexpected special member"); return;
7366  }
7367
7368  // Check for nontrivial bases (and recurse).
7369  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7370    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7371    assert(BaseRT && "Don't know how to handle dependent bases");
7372    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7373    if (!(BaseRecTy->*hasTrivial)()) {
7374      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7375      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7376      DiagnoseNontrivial(BaseRT, member);
7377      return;
7378    }
7379  }
7380
7381  // Check for nontrivial members (and recurse).
7382  typedef RecordDecl::field_iterator field_iter;
7383  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7384       ++fi) {
7385    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7386    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7387      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7388
7389      if (!(EltRD->*hasTrivial)()) {
7390        SourceLocation FLoc = (*fi)->getLocation();
7391        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7392        DiagnoseNontrivial(EltRT, member);
7393        return;
7394      }
7395    }
7396  }
7397
7398  assert(0 && "found no explanation for non-trivial member");
7399}
7400
7401/// TranslateIvarVisibility - Translate visibility from a token ID to an
7402///  AST enum value.
7403static ObjCIvarDecl::AccessControl
7404TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7405  switch (ivarVisibility) {
7406  default: assert(0 && "Unknown visitibility kind");
7407  case tok::objc_private: return ObjCIvarDecl::Private;
7408  case tok::objc_public: return ObjCIvarDecl::Public;
7409  case tok::objc_protected: return ObjCIvarDecl::Protected;
7410  case tok::objc_package: return ObjCIvarDecl::Package;
7411  }
7412}
7413
7414/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7415/// in order to create an IvarDecl object for it.
7416Decl *Sema::ActOnIvar(Scope *S,
7417                                SourceLocation DeclStart,
7418                                Decl *IntfDecl,
7419                                Declarator &D, ExprTy *BitfieldWidth,
7420                                tok::ObjCKeywordKind Visibility) {
7421
7422  IdentifierInfo *II = D.getIdentifier();
7423  Expr *BitWidth = (Expr*)BitfieldWidth;
7424  SourceLocation Loc = DeclStart;
7425  if (II) Loc = D.getIdentifierLoc();
7426
7427  // FIXME: Unnamed fields can be handled in various different ways, for
7428  // example, unnamed unions inject all members into the struct namespace!
7429
7430  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7431  QualType T = TInfo->getType();
7432
7433  if (BitWidth) {
7434    // 6.7.2.1p3, 6.7.2.1p4
7435    if (VerifyBitField(Loc, II, T, BitWidth)) {
7436      D.setInvalidType();
7437      BitWidth = 0;
7438    }
7439  } else {
7440    // Not a bitfield.
7441
7442    // validate II.
7443
7444  }
7445  if (T->isReferenceType()) {
7446    Diag(Loc, diag::err_ivar_reference_type);
7447    D.setInvalidType();
7448  }
7449  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7450  // than a variably modified type.
7451  else if (T->isVariablyModifiedType()) {
7452    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7453    D.setInvalidType();
7454  }
7455
7456  // Get the visibility (access control) for this ivar.
7457  ObjCIvarDecl::AccessControl ac =
7458    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7459                                        : ObjCIvarDecl::None;
7460  // Must set ivar's DeclContext to its enclosing interface.
7461  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7462  ObjCContainerDecl *EnclosingContext;
7463  if (ObjCImplementationDecl *IMPDecl =
7464      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7465    if (!LangOpts.ObjCNonFragileABI2) {
7466    // Case of ivar declared in an implementation. Context is that of its class.
7467      EnclosingContext = IMPDecl->getClassInterface();
7468      assert(EnclosingContext && "Implementation has no class interface!");
7469    }
7470    else
7471      EnclosingContext = EnclosingDecl;
7472  } else {
7473    if (ObjCCategoryDecl *CDecl =
7474        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7475      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7476        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7477        return 0;
7478      }
7479    }
7480    EnclosingContext = EnclosingDecl;
7481  }
7482
7483  // Construct the decl.
7484  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
7485                                             DeclStart, Loc, II, T,
7486                                             TInfo, ac, (Expr *)BitfieldWidth);
7487
7488  if (II) {
7489    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7490                                           ForRedeclaration);
7491    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7492        && !isa<TagDecl>(PrevDecl)) {
7493      Diag(Loc, diag::err_duplicate_member) << II;
7494      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7495      NewID->setInvalidDecl();
7496    }
7497  }
7498
7499  // Process attributes attached to the ivar.
7500  ProcessDeclAttributes(S, NewID, D);
7501
7502  if (D.isInvalidType())
7503    NewID->setInvalidDecl();
7504
7505  if (II) {
7506    // FIXME: When interfaces are DeclContexts, we'll need to add
7507    // these to the interface.
7508    S->AddDecl(NewID);
7509    IdResolver.AddDecl(NewID);
7510  }
7511
7512  return NewID;
7513}
7514
7515/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7516/// class and class extensions. For every class @interface and class
7517/// extension @interface, if the last ivar is a bitfield of any type,
7518/// then add an implicit `char :0` ivar to the end of that interface.
7519void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7520                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7521  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7522    return;
7523
7524  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7525  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7526
7527  if (!Ivar->isBitField())
7528    return;
7529  uint64_t BitFieldSize =
7530    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7531  if (BitFieldSize == 0)
7532    return;
7533  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7534  if (!ID) {
7535    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7536      if (!CD->IsClassExtension())
7537        return;
7538    }
7539    // No need to add this to end of @implementation.
7540    else
7541      return;
7542  }
7543  // All conditions are met. Add a new bitfield to the tail end of ivars.
7544  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7545  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7546
7547  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7548                              DeclLoc, DeclLoc, 0,
7549                              Context.CharTy,
7550                              Context.CreateTypeSourceInfo(Context.CharTy),
7551                              ObjCIvarDecl::Private, BW,
7552                              true);
7553  AllIvarDecls.push_back(Ivar);
7554}
7555
7556void Sema::ActOnFields(Scope* S,
7557                       SourceLocation RecLoc, Decl *EnclosingDecl,
7558                       Decl **Fields, unsigned NumFields,
7559                       SourceLocation LBrac, SourceLocation RBrac,
7560                       AttributeList *Attr) {
7561  assert(EnclosingDecl && "missing record or interface decl");
7562
7563  // If the decl this is being inserted into is invalid, then it may be a
7564  // redeclaration or some other bogus case.  Don't try to add fields to it.
7565  if (EnclosingDecl->isInvalidDecl()) {
7566    // FIXME: Deallocate fields?
7567    return;
7568  }
7569
7570
7571  // Verify that all the fields are okay.
7572  unsigned NumNamedMembers = 0;
7573  llvm::SmallVector<FieldDecl*, 32> RecFields;
7574
7575  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7576  for (unsigned i = 0; i != NumFields; ++i) {
7577    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7578
7579    // Get the type for the field.
7580    const Type *FDTy = FD->getType().getTypePtr();
7581
7582    if (!FD->isAnonymousStructOrUnion()) {
7583      // Remember all fields written by the user.
7584      RecFields.push_back(FD);
7585    }
7586
7587    // If the field is already invalid for some reason, don't emit more
7588    // diagnostics about it.
7589    if (FD->isInvalidDecl()) {
7590      EnclosingDecl->setInvalidDecl();
7591      continue;
7592    }
7593
7594    // C99 6.7.2.1p2:
7595    //   A structure or union shall not contain a member with
7596    //   incomplete or function type (hence, a structure shall not
7597    //   contain an instance of itself, but may contain a pointer to
7598    //   an instance of itself), except that the last member of a
7599    //   structure with more than one named member may have incomplete
7600    //   array type; such a structure (and any union containing,
7601    //   possibly recursively, a member that is such a structure)
7602    //   shall not be a member of a structure or an element of an
7603    //   array.
7604    if (FDTy->isFunctionType()) {
7605      // Field declared as a function.
7606      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7607        << FD->getDeclName();
7608      FD->setInvalidDecl();
7609      EnclosingDecl->setInvalidDecl();
7610      continue;
7611    } else if (FDTy->isIncompleteArrayType() && Record &&
7612               ((i == NumFields - 1 && !Record->isUnion()) ||
7613                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
7614                 (i == NumFields - 1 || Record->isUnion())))) {
7615      // Flexible array member.
7616      // Microsoft and g++ is more permissive regarding flexible array.
7617      // It will accept flexible array in union and also
7618      // as the sole element of a struct/class.
7619      if (getLangOptions().Microsoft) {
7620        if (Record->isUnion())
7621          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
7622            << FD->getDeclName();
7623        else if (NumFields == 1)
7624          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
7625            << FD->getDeclName() << Record->getTagKind();
7626      } else if (getLangOptions().CPlusPlus) {
7627        if (Record->isUnion())
7628          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
7629            << FD->getDeclName();
7630        else if (NumFields == 1)
7631          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
7632            << FD->getDeclName() << Record->getTagKind();
7633      } else if (NumNamedMembers < 1) {
7634        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7635          << FD->getDeclName();
7636        FD->setInvalidDecl();
7637        EnclosingDecl->setInvalidDecl();
7638        continue;
7639      }
7640      if (!FD->getType()->isDependentType() &&
7641          !Context.getBaseElementType(FD->getType())->isPODType()) {
7642        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7643          << FD->getDeclName() << FD->getType();
7644        FD->setInvalidDecl();
7645        EnclosingDecl->setInvalidDecl();
7646        continue;
7647      }
7648      // Okay, we have a legal flexible array member at the end of the struct.
7649      if (Record)
7650        Record->setHasFlexibleArrayMember(true);
7651    } else if (!FDTy->isDependentType() &&
7652               RequireCompleteType(FD->getLocation(), FD->getType(),
7653                                   diag::err_field_incomplete)) {
7654      // Incomplete type
7655      FD->setInvalidDecl();
7656      EnclosingDecl->setInvalidDecl();
7657      continue;
7658    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7659      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7660        // If this is a member of a union, then entire union becomes "flexible".
7661        if (Record && Record->isUnion()) {
7662          Record->setHasFlexibleArrayMember(true);
7663        } else {
7664          // If this is a struct/class and this is not the last element, reject
7665          // it.  Note that GCC supports variable sized arrays in the middle of
7666          // structures.
7667          if (i != NumFields-1)
7668            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7669              << FD->getDeclName() << FD->getType();
7670          else {
7671            // We support flexible arrays at the end of structs in
7672            // other structs as an extension.
7673            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7674              << FD->getDeclName();
7675            if (Record)
7676              Record->setHasFlexibleArrayMember(true);
7677          }
7678        }
7679      }
7680      if (Record && FDTTy->getDecl()->hasObjectMember())
7681        Record->setHasObjectMember(true);
7682    } else if (FDTy->isObjCObjectType()) {
7683      /// A field cannot be an Objective-c object
7684      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7685      FD->setInvalidDecl();
7686      EnclosingDecl->setInvalidDecl();
7687      continue;
7688    } else if (getLangOptions().ObjC1 &&
7689               getLangOptions().getGCMode() != LangOptions::NonGC &&
7690               Record &&
7691               (FD->getType()->isObjCObjectPointerType() ||
7692                FD->getType().isObjCGCStrong()))
7693      Record->setHasObjectMember(true);
7694    else if (Context.getAsArrayType(FD->getType())) {
7695      QualType BaseType = Context.getBaseElementType(FD->getType());
7696      if (Record && BaseType->isRecordType() &&
7697          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7698        Record->setHasObjectMember(true);
7699    }
7700    // Keep track of the number of named members.
7701    if (FD->getIdentifier())
7702      ++NumNamedMembers;
7703  }
7704
7705  // Okay, we successfully defined 'Record'.
7706  if (Record) {
7707    bool Completed = false;
7708    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7709      if (!CXXRecord->isInvalidDecl()) {
7710        // Set access bits correctly on the directly-declared conversions.
7711        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7712        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7713             I != E; ++I)
7714          Convs->setAccess(I, (*I)->getAccess());
7715
7716        if (!CXXRecord->isDependentType()) {
7717          // Add any implicitly-declared members to this class.
7718          AddImplicitlyDeclaredMembersToClass(CXXRecord);
7719
7720          // If we have virtual base classes, we may end up finding multiple
7721          // final overriders for a given virtual function. Check for this
7722          // problem now.
7723          if (CXXRecord->getNumVBases()) {
7724            CXXFinalOverriderMap FinalOverriders;
7725            CXXRecord->getFinalOverriders(FinalOverriders);
7726
7727            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7728                                             MEnd = FinalOverriders.end();
7729                 M != MEnd; ++M) {
7730              for (OverridingMethods::iterator SO = M->second.begin(),
7731                                            SOEnd = M->second.end();
7732                   SO != SOEnd; ++SO) {
7733                assert(SO->second.size() > 0 &&
7734                       "Virtual function without overridding functions?");
7735                if (SO->second.size() == 1)
7736                  continue;
7737
7738                // C++ [class.virtual]p2:
7739                //   In a derived class, if a virtual member function of a base
7740                //   class subobject has more than one final overrider the
7741                //   program is ill-formed.
7742                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7743                  << (NamedDecl *)M->first << Record;
7744                Diag(M->first->getLocation(),
7745                     diag::note_overridden_virtual_function);
7746                for (OverridingMethods::overriding_iterator
7747                          OM = SO->second.begin(),
7748                       OMEnd = SO->second.end();
7749                     OM != OMEnd; ++OM)
7750                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
7751                    << (NamedDecl *)M->first << OM->Method->getParent();
7752
7753                Record->setInvalidDecl();
7754              }
7755            }
7756            CXXRecord->completeDefinition(&FinalOverriders);
7757            Completed = true;
7758          }
7759        }
7760      }
7761    }
7762
7763    if (!Completed)
7764      Record->completeDefinition();
7765  } else {
7766    ObjCIvarDecl **ClsFields =
7767      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7768    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7769      ID->setLocEnd(RBrac);
7770      // Add ivar's to class's DeclContext.
7771      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7772        ClsFields[i]->setLexicalDeclContext(ID);
7773        ID->addDecl(ClsFields[i]);
7774      }
7775      // Must enforce the rule that ivars in the base classes may not be
7776      // duplicates.
7777      if (ID->getSuperClass())
7778        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7779    } else if (ObjCImplementationDecl *IMPDecl =
7780                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7781      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7782      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7783        // Ivar declared in @implementation never belongs to the implementation.
7784        // Only it is in implementation's lexical context.
7785        ClsFields[I]->setLexicalDeclContext(IMPDecl);
7786      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7787    } else if (ObjCCategoryDecl *CDecl =
7788                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7789      // case of ivars in class extension; all other cases have been
7790      // reported as errors elsewhere.
7791      // FIXME. Class extension does not have a LocEnd field.
7792      // CDecl->setLocEnd(RBrac);
7793      // Add ivar's to class extension's DeclContext.
7794      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7795        ClsFields[i]->setLexicalDeclContext(CDecl);
7796        CDecl->addDecl(ClsFields[i]);
7797      }
7798    }
7799  }
7800
7801  if (Attr)
7802    ProcessDeclAttributeList(S, Record, Attr);
7803
7804  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7805  // set the visibility of this record.
7806  if (Record && !Record->getDeclContext()->isRecord())
7807    AddPushedVisibilityAttribute(Record);
7808}
7809
7810/// \brief Determine whether the given integral value is representable within
7811/// the given type T.
7812static bool isRepresentableIntegerValue(ASTContext &Context,
7813                                        llvm::APSInt &Value,
7814                                        QualType T) {
7815  assert(T->isIntegralType(Context) && "Integral type required!");
7816  unsigned BitWidth = Context.getIntWidth(T);
7817
7818  if (Value.isUnsigned() || Value.isNonNegative()) {
7819    if (T->isSignedIntegerType())
7820      --BitWidth;
7821    return Value.getActiveBits() <= BitWidth;
7822  }
7823  return Value.getMinSignedBits() <= BitWidth;
7824}
7825
7826// \brief Given an integral type, return the next larger integral type
7827// (or a NULL type of no such type exists).
7828static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7829  // FIXME: Int128/UInt128 support, which also needs to be introduced into
7830  // enum checking below.
7831  assert(T->isIntegralType(Context) && "Integral type required!");
7832  const unsigned NumTypes = 4;
7833  QualType SignedIntegralTypes[NumTypes] = {
7834    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7835  };
7836  QualType UnsignedIntegralTypes[NumTypes] = {
7837    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7838    Context.UnsignedLongLongTy
7839  };
7840
7841  unsigned BitWidth = Context.getTypeSize(T);
7842  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7843                                            : UnsignedIntegralTypes;
7844  for (unsigned I = 0; I != NumTypes; ++I)
7845    if (Context.getTypeSize(Types[I]) > BitWidth)
7846      return Types[I];
7847
7848  return QualType();
7849}
7850
7851EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7852                                          EnumConstantDecl *LastEnumConst,
7853                                          SourceLocation IdLoc,
7854                                          IdentifierInfo *Id,
7855                                          Expr *Val) {
7856  unsigned IntWidth = Context.Target.getIntWidth();
7857  llvm::APSInt EnumVal(IntWidth);
7858  QualType EltTy;
7859
7860  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
7861    Val = 0;
7862
7863  if (Val) {
7864    if (Enum->isDependentType() || Val->isTypeDependent())
7865      EltTy = Context.DependentTy;
7866    else {
7867      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7868      SourceLocation ExpLoc;
7869      if (!Val->isValueDependent() &&
7870          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7871        Val = 0;
7872      } else {
7873        if (!getLangOptions().CPlusPlus) {
7874          // C99 6.7.2.2p2:
7875          //   The expression that defines the value of an enumeration constant
7876          //   shall be an integer constant expression that has a value
7877          //   representable as an int.
7878
7879          // Complain if the value is not representable in an int.
7880          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7881            Diag(IdLoc, diag::ext_enum_value_not_int)
7882              << EnumVal.toString(10) << Val->getSourceRange()
7883              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7884          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7885            // Force the type of the expression to 'int'.
7886            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
7887          }
7888        }
7889
7890        if (Enum->isFixed()) {
7891          EltTy = Enum->getIntegerType();
7892
7893          // C++0x [dcl.enum]p5:
7894          //   ... if the initializing value of an enumerator cannot be
7895          //   represented by the underlying type, the program is ill-formed.
7896          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7897            if (getLangOptions().Microsoft) {
7898              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7899              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
7900            } else
7901              Diag(IdLoc, diag::err_enumerator_too_large)
7902                << EltTy;
7903          } else
7904            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
7905        }
7906        else {
7907          // C++0x [dcl.enum]p5:
7908          //   If the underlying type is not fixed, the type of each enumerator
7909          //   is the type of its initializing value:
7910          //     - If an initializer is specified for an enumerator, the
7911          //       initializing value has the same type as the expression.
7912          EltTy = Val->getType();
7913        }
7914      }
7915    }
7916  }
7917
7918  if (!Val) {
7919    if (Enum->isDependentType())
7920      EltTy = Context.DependentTy;
7921    else if (!LastEnumConst) {
7922      // C++0x [dcl.enum]p5:
7923      //   If the underlying type is not fixed, the type of each enumerator
7924      //   is the type of its initializing value:
7925      //     - If no initializer is specified for the first enumerator, the
7926      //       initializing value has an unspecified integral type.
7927      //
7928      // GCC uses 'int' for its unspecified integral type, as does
7929      // C99 6.7.2.2p3.
7930      if (Enum->isFixed()) {
7931        EltTy = Enum->getIntegerType();
7932      }
7933      else {
7934        EltTy = Context.IntTy;
7935      }
7936    } else {
7937      // Assign the last value + 1.
7938      EnumVal = LastEnumConst->getInitVal();
7939      ++EnumVal;
7940      EltTy = LastEnumConst->getType();
7941
7942      // Check for overflow on increment.
7943      if (EnumVal < LastEnumConst->getInitVal()) {
7944        // C++0x [dcl.enum]p5:
7945        //   If the underlying type is not fixed, the type of each enumerator
7946        //   is the type of its initializing value:
7947        //
7948        //     - Otherwise the type of the initializing value is the same as
7949        //       the type of the initializing value of the preceding enumerator
7950        //       unless the incremented value is not representable in that type,
7951        //       in which case the type is an unspecified integral type
7952        //       sufficient to contain the incremented value. If no such type
7953        //       exists, the program is ill-formed.
7954        QualType T = getNextLargerIntegralType(Context, EltTy);
7955        if (T.isNull() || Enum->isFixed()) {
7956          // There is no integral type larger enough to represent this
7957          // value. Complain, then allow the value to wrap around.
7958          EnumVal = LastEnumConst->getInitVal();
7959          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
7960          ++EnumVal;
7961          if (Enum->isFixed())
7962            // When the underlying type is fixed, this is ill-formed.
7963            Diag(IdLoc, diag::err_enumerator_wrapped)
7964              << EnumVal.toString(10)
7965              << EltTy;
7966          else
7967            Diag(IdLoc, diag::warn_enumerator_too_large)
7968              << EnumVal.toString(10);
7969        } else {
7970          EltTy = T;
7971        }
7972
7973        // Retrieve the last enumerator's value, extent that type to the
7974        // type that is supposed to be large enough to represent the incremented
7975        // value, then increment.
7976        EnumVal = LastEnumConst->getInitVal();
7977        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7978        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7979        ++EnumVal;
7980
7981        // If we're not in C++, diagnose the overflow of enumerator values,
7982        // which in C99 means that the enumerator value is not representable in
7983        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7984        // permits enumerator values that are representable in some larger
7985        // integral type.
7986        if (!getLangOptions().CPlusPlus && !T.isNull())
7987          Diag(IdLoc, diag::warn_enum_value_overflow);
7988      } else if (!getLangOptions().CPlusPlus &&
7989                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7990        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7991        Diag(IdLoc, diag::ext_enum_value_not_int)
7992          << EnumVal.toString(10) << 1;
7993      }
7994    }
7995  }
7996
7997  if (!EltTy->isDependentType()) {
7998    // Make the enumerator value match the signedness and size of the
7999    // enumerator's type.
8000    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8001    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8002  }
8003
8004  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8005                                  Val, EnumVal);
8006}
8007
8008
8009Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8010                              SourceLocation IdLoc, IdentifierInfo *Id,
8011                              AttributeList *Attr,
8012                              SourceLocation EqualLoc, ExprTy *val) {
8013  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8014  EnumConstantDecl *LastEnumConst =
8015    cast_or_null<EnumConstantDecl>(lastEnumConst);
8016  Expr *Val = static_cast<Expr*>(val);
8017
8018  // The scope passed in may not be a decl scope.  Zip up the scope tree until
8019  // we find one that is.
8020  S = getNonFieldDeclScope(S);
8021
8022  // Verify that there isn't already something declared with this name in this
8023  // scope.
8024  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8025                                         ForRedeclaration);
8026  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8027    // Maybe we will complain about the shadowed template parameter.
8028    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8029    // Just pretend that we didn't see the previous declaration.
8030    PrevDecl = 0;
8031  }
8032
8033  if (PrevDecl) {
8034    // When in C++, we may get a TagDecl with the same name; in this case the
8035    // enum constant will 'hide' the tag.
8036    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8037           "Received TagDecl when not in C++!");
8038    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8039      if (isa<EnumConstantDecl>(PrevDecl))
8040        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8041      else
8042        Diag(IdLoc, diag::err_redefinition) << Id;
8043      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8044      return 0;
8045    }
8046  }
8047
8048  // C++ [class.mem]p13:
8049  //   If T is the name of a class, then each of the following shall have a
8050  //   name different from T:
8051  //     - every enumerator of every member of class T that is an enumerated
8052  //       type
8053  if (CXXRecordDecl *Record
8054                      = dyn_cast<CXXRecordDecl>(
8055                             TheEnumDecl->getDeclContext()->getRedeclContext()))
8056    if (Record->getIdentifier() && Record->getIdentifier() == Id)
8057      Diag(IdLoc, diag::err_member_name_of_class) << Id;
8058
8059  EnumConstantDecl *New =
8060    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8061
8062  if (New) {
8063    // Process attributes.
8064    if (Attr) ProcessDeclAttributeList(S, New, Attr);
8065
8066    // Register this decl in the current scope stack.
8067    New->setAccess(TheEnumDecl->getAccess());
8068    PushOnScopeChains(New, S);
8069  }
8070
8071  return New;
8072}
8073
8074void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8075                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8076                         Decl **Elements, unsigned NumElements,
8077                         Scope *S, AttributeList *Attr) {
8078  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8079  QualType EnumType = Context.getTypeDeclType(Enum);
8080
8081  if (Attr)
8082    ProcessDeclAttributeList(S, Enum, Attr);
8083
8084  if (Enum->isDependentType()) {
8085    for (unsigned i = 0; i != NumElements; ++i) {
8086      EnumConstantDecl *ECD =
8087        cast_or_null<EnumConstantDecl>(Elements[i]);
8088      if (!ECD) continue;
8089
8090      ECD->setType(EnumType);
8091    }
8092
8093    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8094    return;
8095  }
8096
8097  // TODO: If the result value doesn't fit in an int, it must be a long or long
8098  // long value.  ISO C does not support this, but GCC does as an extension,
8099  // emit a warning.
8100  unsigned IntWidth = Context.Target.getIntWidth();
8101  unsigned CharWidth = Context.Target.getCharWidth();
8102  unsigned ShortWidth = Context.Target.getShortWidth();
8103
8104  // Verify that all the values are okay, compute the size of the values, and
8105  // reverse the list.
8106  unsigned NumNegativeBits = 0;
8107  unsigned NumPositiveBits = 0;
8108
8109  // Keep track of whether all elements have type int.
8110  bool AllElementsInt = true;
8111
8112  for (unsigned i = 0; i != NumElements; ++i) {
8113    EnumConstantDecl *ECD =
8114      cast_or_null<EnumConstantDecl>(Elements[i]);
8115    if (!ECD) continue;  // Already issued a diagnostic.
8116
8117    const llvm::APSInt &InitVal = ECD->getInitVal();
8118
8119    // Keep track of the size of positive and negative values.
8120    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8121      NumPositiveBits = std::max(NumPositiveBits,
8122                                 (unsigned)InitVal.getActiveBits());
8123    else
8124      NumNegativeBits = std::max(NumNegativeBits,
8125                                 (unsigned)InitVal.getMinSignedBits());
8126
8127    // Keep track of whether every enum element has type int (very commmon).
8128    if (AllElementsInt)
8129      AllElementsInt = ECD->getType() == Context.IntTy;
8130  }
8131
8132  // Figure out the type that should be used for this enum.
8133  QualType BestType;
8134  unsigned BestWidth;
8135
8136  // C++0x N3000 [conv.prom]p3:
8137  //   An rvalue of an unscoped enumeration type whose underlying
8138  //   type is not fixed can be converted to an rvalue of the first
8139  //   of the following types that can represent all the values of
8140  //   the enumeration: int, unsigned int, long int, unsigned long
8141  //   int, long long int, or unsigned long long int.
8142  // C99 6.4.4.3p2:
8143  //   An identifier declared as an enumeration constant has type int.
8144  // The C99 rule is modified by a gcc extension
8145  QualType BestPromotionType;
8146
8147  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8148  // -fshort-enums is the equivalent to specifying the packed attribute on all
8149  // enum definitions.
8150  if (LangOpts.ShortEnums)
8151    Packed = true;
8152
8153  if (Enum->isFixed()) {
8154    BestType = BestPromotionType = Enum->getIntegerType();
8155    // We don't need to set BestWidth, because BestType is going to be the type
8156    // of the enumerators, but we do anyway because otherwise some compilers
8157    // warn that it might be used uninitialized.
8158    BestWidth = CharWidth;
8159  }
8160  else if (NumNegativeBits) {
8161    // If there is a negative value, figure out the smallest integer type (of
8162    // int/long/longlong) that fits.
8163    // If it's packed, check also if it fits a char or a short.
8164    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8165      BestType = Context.SignedCharTy;
8166      BestWidth = CharWidth;
8167    } else if (Packed && NumNegativeBits <= ShortWidth &&
8168               NumPositiveBits < ShortWidth) {
8169      BestType = Context.ShortTy;
8170      BestWidth = ShortWidth;
8171    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8172      BestType = Context.IntTy;
8173      BestWidth = IntWidth;
8174    } else {
8175      BestWidth = Context.Target.getLongWidth();
8176
8177      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8178        BestType = Context.LongTy;
8179      } else {
8180        BestWidth = Context.Target.getLongLongWidth();
8181
8182        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8183          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8184        BestType = Context.LongLongTy;
8185      }
8186    }
8187    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8188  } else {
8189    // If there is no negative value, figure out the smallest type that fits
8190    // all of the enumerator values.
8191    // If it's packed, check also if it fits a char or a short.
8192    if (Packed && NumPositiveBits <= CharWidth) {
8193      BestType = Context.UnsignedCharTy;
8194      BestPromotionType = Context.IntTy;
8195      BestWidth = CharWidth;
8196    } else if (Packed && NumPositiveBits <= ShortWidth) {
8197      BestType = Context.UnsignedShortTy;
8198      BestPromotionType = Context.IntTy;
8199      BestWidth = ShortWidth;
8200    } else if (NumPositiveBits <= IntWidth) {
8201      BestType = Context.UnsignedIntTy;
8202      BestWidth = IntWidth;
8203      BestPromotionType
8204        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8205                           ? Context.UnsignedIntTy : Context.IntTy;
8206    } else if (NumPositiveBits <=
8207               (BestWidth = Context.Target.getLongWidth())) {
8208      BestType = Context.UnsignedLongTy;
8209      BestPromotionType
8210        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8211                           ? Context.UnsignedLongTy : Context.LongTy;
8212    } else {
8213      BestWidth = Context.Target.getLongLongWidth();
8214      assert(NumPositiveBits <= BestWidth &&
8215             "How could an initializer get larger than ULL?");
8216      BestType = Context.UnsignedLongLongTy;
8217      BestPromotionType
8218        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8219                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8220    }
8221  }
8222
8223  // Loop over all of the enumerator constants, changing their types to match
8224  // the type of the enum if needed.
8225  for (unsigned i = 0; i != NumElements; ++i) {
8226    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8227    if (!ECD) continue;  // Already issued a diagnostic.
8228
8229    // Standard C says the enumerators have int type, but we allow, as an
8230    // extension, the enumerators to be larger than int size.  If each
8231    // enumerator value fits in an int, type it as an int, otherwise type it the
8232    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8233    // that X has type 'int', not 'unsigned'.
8234
8235    // Determine whether the value fits into an int.
8236    llvm::APSInt InitVal = ECD->getInitVal();
8237
8238    // If it fits into an integer type, force it.  Otherwise force it to match
8239    // the enum decl type.
8240    QualType NewTy;
8241    unsigned NewWidth;
8242    bool NewSign;
8243    if (!getLangOptions().CPlusPlus &&
8244        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8245      NewTy = Context.IntTy;
8246      NewWidth = IntWidth;
8247      NewSign = true;
8248    } else if (ECD->getType() == BestType) {
8249      // Already the right type!
8250      if (getLangOptions().CPlusPlus)
8251        // C++ [dcl.enum]p4: Following the closing brace of an
8252        // enum-specifier, each enumerator has the type of its
8253        // enumeration.
8254        ECD->setType(EnumType);
8255      continue;
8256    } else {
8257      NewTy = BestType;
8258      NewWidth = BestWidth;
8259      NewSign = BestType->isSignedIntegerType();
8260    }
8261
8262    // Adjust the APSInt value.
8263    InitVal = InitVal.extOrTrunc(NewWidth);
8264    InitVal.setIsSigned(NewSign);
8265    ECD->setInitVal(InitVal);
8266
8267    // Adjust the Expr initializer and type.
8268    if (ECD->getInitExpr() &&
8269	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8270      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8271                                                CK_IntegralCast,
8272                                                ECD->getInitExpr(),
8273                                                /*base paths*/ 0,
8274                                                VK_RValue));
8275    if (getLangOptions().CPlusPlus)
8276      // C++ [dcl.enum]p4: Following the closing brace of an
8277      // enum-specifier, each enumerator has the type of its
8278      // enumeration.
8279      ECD->setType(EnumType);
8280    else
8281      ECD->setType(NewTy);
8282  }
8283
8284  Enum->completeDefinition(BestType, BestPromotionType,
8285                           NumPositiveBits, NumNegativeBits);
8286}
8287
8288Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8289                                  SourceLocation StartLoc,
8290                                  SourceLocation EndLoc) {
8291  StringLiteral *AsmString = cast<StringLiteral>(expr);
8292
8293  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8294                                                   AsmString, StartLoc,
8295                                                   EndLoc);
8296  CurContext->addDecl(New);
8297  return New;
8298}
8299
8300void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8301                             SourceLocation PragmaLoc,
8302                             SourceLocation NameLoc) {
8303  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8304
8305  if (PrevDecl) {
8306    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8307  } else {
8308    (void)WeakUndeclaredIdentifiers.insert(
8309      std::pair<IdentifierInfo*,WeakInfo>
8310        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8311  }
8312}
8313
8314void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8315                                IdentifierInfo* AliasName,
8316                                SourceLocation PragmaLoc,
8317                                SourceLocation NameLoc,
8318                                SourceLocation AliasNameLoc) {
8319  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8320                                    LookupOrdinaryName);
8321  WeakInfo W = WeakInfo(Name, NameLoc);
8322
8323  if (PrevDecl) {
8324    if (!PrevDecl->hasAttr<AliasAttr>())
8325      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8326        DeclApplyPragmaWeak(TUScope, ND, W);
8327  } else {
8328    (void)WeakUndeclaredIdentifiers.insert(
8329      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8330  }
8331}
8332