SemaDecl.cpp revision df512bfbc4b8c00202ea7a8c900c59ec55890676
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Sema/DelayedDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/Triple.h"
43#include <algorithm>
44#include <cstring>
45#include <functional>
46using namespace clang;
47using namespace sema;
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
50  if (OwnedType) {
51    Decl *Group[2] = { OwnedType, Ptr };
52    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
53  }
54
55  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
56}
57
58/// \brief If the identifier refers to a type name within this scope,
59/// return the declaration of that type.
60///
61/// This routine performs ordinary name lookup of the identifier II
62/// within the given scope, with optional C++ scope specifier SS, to
63/// determine whether the name refers to a type. If so, returns an
64/// opaque pointer (actually a QualType) corresponding to that
65/// type. Otherwise, returns NULL.
66///
67/// If name lookup results in an ambiguity, this routine will complain
68/// and then return NULL.
69ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
70                             Scope *S, CXXScopeSpec *SS,
71                             bool isClassName, bool HasTrailingDot,
72                             ParsedType ObjectTypePtr,
73                             bool WantNontrivialTypeSourceInfo,
74                             IdentifierInfo **CorrectedII) {
75  // Determine where we will perform name lookup.
76  DeclContext *LookupCtx = 0;
77  if (ObjectTypePtr) {
78    QualType ObjectType = ObjectTypePtr.get();
79    if (ObjectType->isRecordType())
80      LookupCtx = computeDeclContext(ObjectType);
81  } else if (SS && SS->isNotEmpty()) {
82    LookupCtx = computeDeclContext(*SS, false);
83
84    if (!LookupCtx) {
85      if (isDependentScopeSpecifier(*SS)) {
86        // C++ [temp.res]p3:
87        //   A qualified-id that refers to a type and in which the
88        //   nested-name-specifier depends on a template-parameter (14.6.2)
89        //   shall be prefixed by the keyword typename to indicate that the
90        //   qualified-id denotes a type, forming an
91        //   elaborated-type-specifier (7.1.5.3).
92        //
93        // We therefore do not perform any name lookup if the result would
94        // refer to a member of an unknown specialization.
95        if (!isClassName)
96          return ParsedType();
97
98        // We know from the grammar that this name refers to a type,
99        // so build a dependent node to describe the type.
100        if (WantNontrivialTypeSourceInfo)
101          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
102
103        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
104        QualType T =
105          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
106                            II, NameLoc);
107
108          return ParsedType::make(T);
109      }
110
111      return ParsedType();
112    }
113
114    if (!LookupCtx->isDependentContext() &&
115        RequireCompleteDeclContext(*SS, LookupCtx))
116      return ParsedType();
117  }
118
119  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
120  // lookup for class-names.
121  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
122                                      LookupOrdinaryName;
123  LookupResult Result(*this, &II, NameLoc, Kind);
124  if (LookupCtx) {
125    // Perform "qualified" name lookup into the declaration context we
126    // computed, which is either the type of the base of a member access
127    // expression or the declaration context associated with a prior
128    // nested-name-specifier.
129    LookupQualifiedName(Result, LookupCtx);
130
131    if (ObjectTypePtr && Result.empty()) {
132      // C++ [basic.lookup.classref]p3:
133      //   If the unqualified-id is ~type-name, the type-name is looked up
134      //   in the context of the entire postfix-expression. If the type T of
135      //   the object expression is of a class type C, the type-name is also
136      //   looked up in the scope of class C. At least one of the lookups shall
137      //   find a name that refers to (possibly cv-qualified) T.
138      LookupName(Result, S);
139    }
140  } else {
141    // Perform unqualified name lookup.
142    LookupName(Result, S);
143  }
144
145  NamedDecl *IIDecl = 0;
146  switch (Result.getResultKind()) {
147  case LookupResult::NotFound:
148  case LookupResult::NotFoundInCurrentInstantiation:
149    if (CorrectedII) {
150      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
151                                              Kind, S, SS, 0, false,
152                                              Sema::CTC_Type);
153      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
154      TemplateTy Template;
155      bool MemberOfUnknownSpecialization;
156      UnqualifiedId TemplateName;
157      TemplateName.setIdentifier(NewII, NameLoc);
158      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
159      CXXScopeSpec NewSS, *NewSSPtr = SS;
160      if (SS && NNS) {
161        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
162        NewSSPtr = &NewSS;
163      }
164      if (Correction && (NNS || NewII != &II) &&
165          // Ignore a correction to a template type as the to-be-corrected
166          // identifier is not a template (typo correction for template names
167          // is handled elsewhere).
168          !(getLangOptions().CPlusPlus && NewSSPtr &&
169            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
170                           false, Template, MemberOfUnknownSpecialization))) {
171        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
172                                    isClassName, HasTrailingDot, ObjectTypePtr,
173                                    WantNontrivialTypeSourceInfo);
174        if (Ty) {
175          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
176          std::string CorrectedQuotedStr(
177              Correction.getQuoted(getLangOptions()));
178          Diag(NameLoc, diag::err_unknown_typename_suggest)
179              << Result.getLookupName() << CorrectedQuotedStr
180              << FixItHint::CreateReplacement(SourceRange(NameLoc),
181                                              CorrectedStr);
182          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
183            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
184              << CorrectedQuotedStr;
185
186          if (SS && NNS)
187            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
188          *CorrectedII = NewII;
189          return Ty;
190        }
191      }
192    }
193    // If typo correction failed or was not performed, fall through
194  case LookupResult::FoundOverloaded:
195  case LookupResult::FoundUnresolvedValue:
196    Result.suppressDiagnostics();
197    return ParsedType();
198
199  case LookupResult::Ambiguous:
200    // Recover from type-hiding ambiguities by hiding the type.  We'll
201    // do the lookup again when looking for an object, and we can
202    // diagnose the error then.  If we don't do this, then the error
203    // about hiding the type will be immediately followed by an error
204    // that only makes sense if the identifier was treated like a type.
205    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
206      Result.suppressDiagnostics();
207      return ParsedType();
208    }
209
210    // Look to see if we have a type anywhere in the list of results.
211    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
212         Res != ResEnd; ++Res) {
213      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
214        if (!IIDecl ||
215            (*Res)->getLocation().getRawEncoding() <
216              IIDecl->getLocation().getRawEncoding())
217          IIDecl = *Res;
218      }
219    }
220
221    if (!IIDecl) {
222      // None of the entities we found is a type, so there is no way
223      // to even assume that the result is a type. In this case, don't
224      // complain about the ambiguity. The parser will either try to
225      // perform this lookup again (e.g., as an object name), which
226      // will produce the ambiguity, or will complain that it expected
227      // a type name.
228      Result.suppressDiagnostics();
229      return ParsedType();
230    }
231
232    // We found a type within the ambiguous lookup; diagnose the
233    // ambiguity and then return that type. This might be the right
234    // answer, or it might not be, but it suppresses any attempt to
235    // perform the name lookup again.
236    break;
237
238  case LookupResult::Found:
239    IIDecl = Result.getFoundDecl();
240    break;
241  }
242
243  assert(IIDecl && "Didn't find decl");
244
245  QualType T;
246  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
247    DiagnoseUseOfDecl(IIDecl, NameLoc);
248
249    if (T.isNull())
250      T = Context.getTypeDeclType(TD);
251
252    if (SS && SS->isNotEmpty()) {
253      if (WantNontrivialTypeSourceInfo) {
254        // Construct a type with type-source information.
255        TypeLocBuilder Builder;
256        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
257
258        T = getElaboratedType(ETK_None, *SS, T);
259        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
260        ElabTL.setKeywordLoc(SourceLocation());
261        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
262        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
263      } else {
264        T = getElaboratedType(ETK_None, *SS, T);
265      }
266    }
267  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
268    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
269    if (!HasTrailingDot)
270      T = Context.getObjCInterfaceType(IDecl);
271  }
272
273  if (T.isNull()) {
274    // If it's not plausibly a type, suppress diagnostics.
275    Result.suppressDiagnostics();
276    return ParsedType();
277  }
278  return ParsedType::make(T);
279}
280
281/// isTagName() - This method is called *for error recovery purposes only*
282/// to determine if the specified name is a valid tag name ("struct foo").  If
283/// so, this returns the TST for the tag corresponding to it (TST_enum,
284/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
285/// where the user forgot to specify the tag.
286DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
287  // Do a tag name lookup in this scope.
288  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
289  LookupName(R, S, false);
290  R.suppressDiagnostics();
291  if (R.getResultKind() == LookupResult::Found)
292    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
293      switch (TD->getTagKind()) {
294      default:         return DeclSpec::TST_unspecified;
295      case TTK_Struct: return DeclSpec::TST_struct;
296      case TTK_Union:  return DeclSpec::TST_union;
297      case TTK_Class:  return DeclSpec::TST_class;
298      case TTK_Enum:   return DeclSpec::TST_enum;
299      }
300    }
301
302  return DeclSpec::TST_unspecified;
303}
304
305/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
306/// if a CXXScopeSpec's type is equal to the type of one of the base classes
307/// then downgrade the missing typename error to a warning.
308/// This is needed for MSVC compatibility; Example:
309/// @code
310/// template<class T> class A {
311/// public:
312///   typedef int TYPE;
313/// };
314/// template<class T> class B : public A<T> {
315/// public:
316///   A<T>::TYPE a; // no typename required because A<T> is a base class.
317/// };
318/// @endcode
319bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
320  if (CurContext->isRecord()) {
321    const Type *Ty = SS->getScopeRep()->getAsType();
322
323    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
324    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
325          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
326      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
327        return true;
328    return S->isFunctionPrototypeScope();
329  }
330  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
331}
332
333bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
334                                   SourceLocation IILoc,
335                                   Scope *S,
336                                   CXXScopeSpec *SS,
337                                   ParsedType &SuggestedType) {
338  // We don't have anything to suggest (yet).
339  SuggestedType = ParsedType();
340
341  // There may have been a typo in the name of the type. Look up typo
342  // results, in case we have something that we can suggest.
343  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
344                                             LookupOrdinaryName, S, SS, NULL,
345                                             false, CTC_Type)) {
346    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
347    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
348
349    if (Corrected.isKeyword()) {
350      // We corrected to a keyword.
351      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
352      Diag(IILoc, diag::err_unknown_typename_suggest)
353        << &II << CorrectedQuotedStr;
354      return true;
355    } else {
356      NamedDecl *Result = Corrected.getCorrectionDecl();
357      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
358          !Result->isInvalidDecl()) {
359        // We found a similarly-named type or interface; suggest that.
360        if (!SS || !SS->isSet())
361          Diag(IILoc, diag::err_unknown_typename_suggest)
362            << &II << CorrectedQuotedStr
363            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
364        else if (DeclContext *DC = computeDeclContext(*SS, false))
365          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
366            << &II << DC << CorrectedQuotedStr << SS->getRange()
367            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
368        else
369          llvm_unreachable("could not have corrected a typo here");
370
371        Diag(Result->getLocation(), diag::note_previous_decl)
372          << CorrectedQuotedStr;
373
374        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
375                                    false, false, ParsedType(),
376                                    /*NonTrivialTypeSourceInfo=*/true);
377        return true;
378      }
379    }
380  }
381
382  if (getLangOptions().CPlusPlus) {
383    // See if II is a class template that the user forgot to pass arguments to.
384    UnqualifiedId Name;
385    Name.setIdentifier(&II, IILoc);
386    CXXScopeSpec EmptySS;
387    TemplateTy TemplateResult;
388    bool MemberOfUnknownSpecialization;
389    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
390                       Name, ParsedType(), true, TemplateResult,
391                       MemberOfUnknownSpecialization) == TNK_Type_template) {
392      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
393      Diag(IILoc, diag::err_template_missing_args) << TplName;
394      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
395        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
396          << TplDecl->getTemplateParameters()->getSourceRange();
397      }
398      return true;
399    }
400  }
401
402  // FIXME: Should we move the logic that tries to recover from a missing tag
403  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
404
405  if (!SS || (!SS->isSet() && !SS->isInvalid()))
406    Diag(IILoc, diag::err_unknown_typename) << &II;
407  else if (DeclContext *DC = computeDeclContext(*SS, false))
408    Diag(IILoc, diag::err_typename_nested_not_found)
409      << &II << DC << SS->getRange();
410  else if (isDependentScopeSpecifier(*SS)) {
411    unsigned DiagID = diag::err_typename_missing;
412    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
413      DiagID = diag::warn_typename_missing;
414
415    Diag(SS->getRange().getBegin(), DiagID)
416      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
417      << SourceRange(SS->getRange().getBegin(), IILoc)
418      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
419    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
420                                                                         .get();
421  } else {
422    assert(SS && SS->isInvalid() &&
423           "Invalid scope specifier has already been diagnosed");
424  }
425
426  return true;
427}
428
429/// \brief Determine whether the given result set contains either a type name
430/// or
431static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
432  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
433                       NextToken.is(tok::less);
434
435  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
436    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
437      return true;
438
439    if (CheckTemplate && isa<TemplateDecl>(*I))
440      return true;
441  }
442
443  return false;
444}
445
446Sema::NameClassification Sema::ClassifyName(Scope *S,
447                                            CXXScopeSpec &SS,
448                                            IdentifierInfo *&Name,
449                                            SourceLocation NameLoc,
450                                            const Token &NextToken) {
451  DeclarationNameInfo NameInfo(Name, NameLoc);
452  ObjCMethodDecl *CurMethod = getCurMethodDecl();
453
454  if (NextToken.is(tok::coloncolon)) {
455    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
456                                QualType(), false, SS, 0, false);
457
458  }
459
460  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
461  LookupParsedName(Result, S, &SS, !CurMethod);
462
463  // Perform lookup for Objective-C instance variables (including automatically
464  // synthesized instance variables), if we're in an Objective-C method.
465  // FIXME: This lookup really, really needs to be folded in to the normal
466  // unqualified lookup mechanism.
467  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
468    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
469    if (E.get() || E.isInvalid())
470      return E;
471  }
472
473  bool SecondTry = false;
474  bool IsFilteredTemplateName = false;
475
476Corrected:
477  switch (Result.getResultKind()) {
478  case LookupResult::NotFound:
479    // If an unqualified-id is followed by a '(', then we have a function
480    // call.
481    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
482      // In C++, this is an ADL-only call.
483      // FIXME: Reference?
484      if (getLangOptions().CPlusPlus)
485        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
486
487      // C90 6.3.2.2:
488      //   If the expression that precedes the parenthesized argument list in a
489      //   function call consists solely of an identifier, and if no
490      //   declaration is visible for this identifier, the identifier is
491      //   implicitly declared exactly as if, in the innermost block containing
492      //   the function call, the declaration
493      //
494      //     extern int identifier ();
495      //
496      //   appeared.
497      //
498      // We also allow this in C99 as an extension.
499      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
500        Result.addDecl(D);
501        Result.resolveKind();
502        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
503      }
504    }
505
506    // In C, we first see whether there is a tag type by the same name, in
507    // which case it's likely that the user just forget to write "enum",
508    // "struct", or "union".
509    if (!getLangOptions().CPlusPlus && !SecondTry) {
510      Result.clear(LookupTagName);
511      LookupParsedName(Result, S, &SS);
512      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
513        const char *TagName = 0;
514        const char *FixItTagName = 0;
515        switch (Tag->getTagKind()) {
516          case TTK_Class:
517            TagName = "class";
518            FixItTagName = "class ";
519            break;
520
521          case TTK_Enum:
522            TagName = "enum";
523            FixItTagName = "enum ";
524            break;
525
526          case TTK_Struct:
527            TagName = "struct";
528            FixItTagName = "struct ";
529            break;
530
531          case TTK_Union:
532            TagName = "union";
533            FixItTagName = "union ";
534            break;
535        }
536
537        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
538          << Name << TagName << getLangOptions().CPlusPlus
539          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
540        break;
541      }
542
543      Result.clear(LookupOrdinaryName);
544    }
545
546    // Perform typo correction to determine if there is another name that is
547    // close to this name.
548    if (!SecondTry) {
549      SecondTry = true;
550      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
551                                                 Result.getLookupKind(), S,
552                                                 &SS)) {
553        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
554        unsigned QualifiedDiag = diag::err_no_member_suggest;
555        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
556        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
557
558        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
559        NamedDecl *UnderlyingFirstDecl
560          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
561        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
562            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
563          UnqualifiedDiag = diag::err_no_template_suggest;
564          QualifiedDiag = diag::err_no_member_template_suggest;
565        } else if (UnderlyingFirstDecl &&
566                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
567                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
568                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
569           UnqualifiedDiag = diag::err_unknown_typename_suggest;
570           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
571         }
572
573        if (SS.isEmpty())
574          Diag(NameLoc, UnqualifiedDiag)
575            << Name << CorrectedQuotedStr
576            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
577        else
578          Diag(NameLoc, QualifiedDiag)
579            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
580            << SS.getRange()
581            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
582
583        // Update the name, so that the caller has the new name.
584        Name = Corrected.getCorrectionAsIdentifierInfo();
585
586        // Also update the LookupResult...
587        // FIXME: This should probably go away at some point
588        Result.clear();
589        Result.setLookupName(Corrected.getCorrection());
590        if (FirstDecl) Result.addDecl(FirstDecl);
591
592        // Typo correction corrected to a keyword.
593        if (Corrected.isKeyword())
594          return Corrected.getCorrectionAsIdentifierInfo();
595
596        if (FirstDecl)
597          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
598            << CorrectedQuotedStr;
599
600        // If we found an Objective-C instance variable, let
601        // LookupInObjCMethod build the appropriate expression to
602        // reference the ivar.
603        // FIXME: This is a gross hack.
604        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
605          Result.clear();
606          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
607          return move(E);
608        }
609
610        goto Corrected;
611      }
612    }
613
614    // We failed to correct; just fall through and let the parser deal with it.
615    Result.suppressDiagnostics();
616    return NameClassification::Unknown();
617
618  case LookupResult::NotFoundInCurrentInstantiation:
619    // We performed name lookup into the current instantiation, and there were
620    // dependent bases, so we treat this result the same way as any other
621    // dependent nested-name-specifier.
622
623    // C++ [temp.res]p2:
624    //   A name used in a template declaration or definition and that is
625    //   dependent on a template-parameter is assumed not to name a type
626    //   unless the applicable name lookup finds a type name or the name is
627    //   qualified by the keyword typename.
628    //
629    // FIXME: If the next token is '<', we might want to ask the parser to
630    // perform some heroics to see if we actually have a
631    // template-argument-list, which would indicate a missing 'template'
632    // keyword here.
633    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
634
635  case LookupResult::Found:
636  case LookupResult::FoundOverloaded:
637  case LookupResult::FoundUnresolvedValue:
638    break;
639
640  case LookupResult::Ambiguous:
641    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
642        hasAnyAcceptableTemplateNames(Result)) {
643      // C++ [temp.local]p3:
644      //   A lookup that finds an injected-class-name (10.2) can result in an
645      //   ambiguity in certain cases (for example, if it is found in more than
646      //   one base class). If all of the injected-class-names that are found
647      //   refer to specializations of the same class template, and if the name
648      //   is followed by a template-argument-list, the reference refers to the
649      //   class template itself and not a specialization thereof, and is not
650      //   ambiguous.
651      //
652      // This filtering can make an ambiguous result into an unambiguous one,
653      // so try again after filtering out template names.
654      FilterAcceptableTemplateNames(Result);
655      if (!Result.isAmbiguous()) {
656        IsFilteredTemplateName = true;
657        break;
658      }
659    }
660
661    // Diagnose the ambiguity and return an error.
662    return NameClassification::Error();
663  }
664
665  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
666      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
667    // C++ [temp.names]p3:
668    //   After name lookup (3.4) finds that a name is a template-name or that
669    //   an operator-function-id or a literal- operator-id refers to a set of
670    //   overloaded functions any member of which is a function template if
671    //   this is followed by a <, the < is always taken as the delimiter of a
672    //   template-argument-list and never as the less-than operator.
673    if (!IsFilteredTemplateName)
674      FilterAcceptableTemplateNames(Result);
675
676    if (!Result.empty()) {
677      bool IsFunctionTemplate;
678      TemplateName Template;
679      if (Result.end() - Result.begin() > 1) {
680        IsFunctionTemplate = true;
681        Template = Context.getOverloadedTemplateName(Result.begin(),
682                                                     Result.end());
683      } else {
684        TemplateDecl *TD
685          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
686        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
687
688        if (SS.isSet() && !SS.isInvalid())
689          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
690                                                    /*TemplateKeyword=*/false,
691                                                      TD);
692        else
693          Template = TemplateName(TD);
694      }
695
696      if (IsFunctionTemplate) {
697        // Function templates always go through overload resolution, at which
698        // point we'll perform the various checks (e.g., accessibility) we need
699        // to based on which function we selected.
700        Result.suppressDiagnostics();
701
702        return NameClassification::FunctionTemplate(Template);
703      }
704
705      return NameClassification::TypeTemplate(Template);
706    }
707  }
708
709  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
710  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
711    DiagnoseUseOfDecl(Type, NameLoc);
712    QualType T = Context.getTypeDeclType(Type);
713    return ParsedType::make(T);
714  }
715
716  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
717  if (!Class) {
718    // FIXME: It's unfortunate that we don't have a Type node for handling this.
719    if (ObjCCompatibleAliasDecl *Alias
720                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
721      Class = Alias->getClassInterface();
722  }
723
724  if (Class) {
725    DiagnoseUseOfDecl(Class, NameLoc);
726
727    if (NextToken.is(tok::period)) {
728      // Interface. <something> is parsed as a property reference expression.
729      // Just return "unknown" as a fall-through for now.
730      Result.suppressDiagnostics();
731      return NameClassification::Unknown();
732    }
733
734    QualType T = Context.getObjCInterfaceType(Class);
735    return ParsedType::make(T);
736  }
737
738  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
739    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
740
741  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
742  return BuildDeclarationNameExpr(SS, Result, ADL);
743}
744
745// Determines the context to return to after temporarily entering a
746// context.  This depends in an unnecessarily complicated way on the
747// exact ordering of callbacks from the parser.
748DeclContext *Sema::getContainingDC(DeclContext *DC) {
749
750  // Functions defined inline within classes aren't parsed until we've
751  // finished parsing the top-level class, so the top-level class is
752  // the context we'll need to return to.
753  if (isa<FunctionDecl>(DC)) {
754    DC = DC->getLexicalParent();
755
756    // A function not defined within a class will always return to its
757    // lexical context.
758    if (!isa<CXXRecordDecl>(DC))
759      return DC;
760
761    // A C++ inline method/friend is parsed *after* the topmost class
762    // it was declared in is fully parsed ("complete");  the topmost
763    // class is the context we need to return to.
764    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
765      DC = RD;
766
767    // Return the declaration context of the topmost class the inline method is
768    // declared in.
769    return DC;
770  }
771
772  return DC->getLexicalParent();
773}
774
775void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
776  assert(getContainingDC(DC) == CurContext &&
777      "The next DeclContext should be lexically contained in the current one.");
778  CurContext = DC;
779  S->setEntity(DC);
780}
781
782void Sema::PopDeclContext() {
783  assert(CurContext && "DeclContext imbalance!");
784
785  CurContext = getContainingDC(CurContext);
786  assert(CurContext && "Popped translation unit!");
787}
788
789/// EnterDeclaratorContext - Used when we must lookup names in the context
790/// of a declarator's nested name specifier.
791///
792void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
793  // C++0x [basic.lookup.unqual]p13:
794  //   A name used in the definition of a static data member of class
795  //   X (after the qualified-id of the static member) is looked up as
796  //   if the name was used in a member function of X.
797  // C++0x [basic.lookup.unqual]p14:
798  //   If a variable member of a namespace is defined outside of the
799  //   scope of its namespace then any name used in the definition of
800  //   the variable member (after the declarator-id) is looked up as
801  //   if the definition of the variable member occurred in its
802  //   namespace.
803  // Both of these imply that we should push a scope whose context
804  // is the semantic context of the declaration.  We can't use
805  // PushDeclContext here because that context is not necessarily
806  // lexically contained in the current context.  Fortunately,
807  // the containing scope should have the appropriate information.
808
809  assert(!S->getEntity() && "scope already has entity");
810
811#ifndef NDEBUG
812  Scope *Ancestor = S->getParent();
813  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
814  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
815#endif
816
817  CurContext = DC;
818  S->setEntity(DC);
819}
820
821void Sema::ExitDeclaratorContext(Scope *S) {
822  assert(S->getEntity() == CurContext && "Context imbalance!");
823
824  // Switch back to the lexical context.  The safety of this is
825  // enforced by an assert in EnterDeclaratorContext.
826  Scope *Ancestor = S->getParent();
827  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
828  CurContext = (DeclContext*) Ancestor->getEntity();
829
830  // We don't need to do anything with the scope, which is going to
831  // disappear.
832}
833
834
835void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
836  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
837  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
838    // We assume that the caller has already called
839    // ActOnReenterTemplateScope
840    FD = TFD->getTemplatedDecl();
841  }
842  if (!FD)
843    return;
844
845  PushDeclContext(S, FD);
846  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
847    ParmVarDecl *Param = FD->getParamDecl(P);
848    // If the parameter has an identifier, then add it to the scope
849    if (Param->getIdentifier()) {
850      S->AddDecl(Param);
851      IdResolver.AddDecl(Param);
852    }
853  }
854}
855
856
857/// \brief Determine whether we allow overloading of the function
858/// PrevDecl with another declaration.
859///
860/// This routine determines whether overloading is possible, not
861/// whether some new function is actually an overload. It will return
862/// true in C++ (where we can always provide overloads) or, as an
863/// extension, in C when the previous function is already an
864/// overloaded function declaration or has the "overloadable"
865/// attribute.
866static bool AllowOverloadingOfFunction(LookupResult &Previous,
867                                       ASTContext &Context) {
868  if (Context.getLangOptions().CPlusPlus)
869    return true;
870
871  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
872    return true;
873
874  return (Previous.getResultKind() == LookupResult::Found
875          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
876}
877
878/// Add this decl to the scope shadowed decl chains.
879void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
880  // Move up the scope chain until we find the nearest enclosing
881  // non-transparent context. The declaration will be introduced into this
882  // scope.
883  while (S->getEntity() &&
884         ((DeclContext *)S->getEntity())->isTransparentContext())
885    S = S->getParent();
886
887  // Add scoped declarations into their context, so that they can be
888  // found later. Declarations without a context won't be inserted
889  // into any context.
890  if (AddToContext)
891    CurContext->addDecl(D);
892
893  // Out-of-line definitions shouldn't be pushed into scope in C++.
894  // Out-of-line variable and function definitions shouldn't even in C.
895  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
896      D->isOutOfLine() &&
897      !D->getDeclContext()->getRedeclContext()->Equals(
898        D->getLexicalDeclContext()->getRedeclContext()))
899    return;
900
901  // Template instantiations should also not be pushed into scope.
902  if (isa<FunctionDecl>(D) &&
903      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
904    return;
905
906  // If this replaces anything in the current scope,
907  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
908                               IEnd = IdResolver.end();
909  for (; I != IEnd; ++I) {
910    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
911      S->RemoveDecl(*I);
912      IdResolver.RemoveDecl(*I);
913
914      // Should only need to replace one decl.
915      break;
916    }
917  }
918
919  S->AddDecl(D);
920
921  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
922    // Implicitly-generated labels may end up getting generated in an order that
923    // isn't strictly lexical, which breaks name lookup. Be careful to insert
924    // the label at the appropriate place in the identifier chain.
925    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
926      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
927      if (IDC == CurContext) {
928        if (!S->isDeclScope(*I))
929          continue;
930      } else if (IDC->Encloses(CurContext))
931        break;
932    }
933
934    IdResolver.InsertDeclAfter(I, D);
935  } else {
936    IdResolver.AddDecl(D);
937  }
938}
939
940void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
941  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
942    TUScope->AddDecl(D);
943}
944
945bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
946                         bool ExplicitInstantiationOrSpecialization) {
947  return IdResolver.isDeclInScope(D, Ctx, Context, S,
948                                  ExplicitInstantiationOrSpecialization);
949}
950
951Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
952  DeclContext *TargetDC = DC->getPrimaryContext();
953  do {
954    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
955      if (ScopeDC->getPrimaryContext() == TargetDC)
956        return S;
957  } while ((S = S->getParent()));
958
959  return 0;
960}
961
962static bool isOutOfScopePreviousDeclaration(NamedDecl *,
963                                            DeclContext*,
964                                            ASTContext&);
965
966/// Filters out lookup results that don't fall within the given scope
967/// as determined by isDeclInScope.
968void Sema::FilterLookupForScope(LookupResult &R,
969                                DeclContext *Ctx, Scope *S,
970                                bool ConsiderLinkage,
971                                bool ExplicitInstantiationOrSpecialization) {
972  LookupResult::Filter F = R.makeFilter();
973  while (F.hasNext()) {
974    NamedDecl *D = F.next();
975
976    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
977      continue;
978
979    if (ConsiderLinkage &&
980        isOutOfScopePreviousDeclaration(D, Ctx, Context))
981      continue;
982
983    F.erase();
984  }
985
986  F.done();
987}
988
989static bool isUsingDecl(NamedDecl *D) {
990  return isa<UsingShadowDecl>(D) ||
991         isa<UnresolvedUsingTypenameDecl>(D) ||
992         isa<UnresolvedUsingValueDecl>(D);
993}
994
995/// Removes using shadow declarations from the lookup results.
996static void RemoveUsingDecls(LookupResult &R) {
997  LookupResult::Filter F = R.makeFilter();
998  while (F.hasNext())
999    if (isUsingDecl(F.next()))
1000      F.erase();
1001
1002  F.done();
1003}
1004
1005/// \brief Check for this common pattern:
1006/// @code
1007/// class S {
1008///   S(const S&); // DO NOT IMPLEMENT
1009///   void operator=(const S&); // DO NOT IMPLEMENT
1010/// };
1011/// @endcode
1012static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1013  // FIXME: Should check for private access too but access is set after we get
1014  // the decl here.
1015  if (D->doesThisDeclarationHaveABody())
1016    return false;
1017
1018  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1019    return CD->isCopyConstructor();
1020  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1021    return Method->isCopyAssignmentOperator();
1022  return false;
1023}
1024
1025bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1026  assert(D);
1027
1028  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1029    return false;
1030
1031  // Ignore class templates.
1032  if (D->getDeclContext()->isDependentContext() ||
1033      D->getLexicalDeclContext()->isDependentContext())
1034    return false;
1035
1036  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1037    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1038      return false;
1039
1040    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1041      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1042        return false;
1043    } else {
1044      // 'static inline' functions are used in headers; don't warn.
1045      if (FD->getStorageClass() == SC_Static &&
1046          FD->isInlineSpecified())
1047        return false;
1048    }
1049
1050    if (FD->doesThisDeclarationHaveABody() &&
1051        Context.DeclMustBeEmitted(FD))
1052      return false;
1053  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1054    if (!VD->isFileVarDecl() ||
1055        VD->getType().isConstant(Context) ||
1056        Context.DeclMustBeEmitted(VD))
1057      return false;
1058
1059    if (VD->isStaticDataMember() &&
1060        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1061      return false;
1062
1063  } else {
1064    return false;
1065  }
1066
1067  // Only warn for unused decls internal to the translation unit.
1068  if (D->getLinkage() == ExternalLinkage)
1069    return false;
1070
1071  return true;
1072}
1073
1074void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1075  if (!D)
1076    return;
1077
1078  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1079    const FunctionDecl *First = FD->getFirstDeclaration();
1080    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1081      return; // First should already be in the vector.
1082  }
1083
1084  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1085    const VarDecl *First = VD->getFirstDeclaration();
1086    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1087      return; // First should already be in the vector.
1088  }
1089
1090   if (ShouldWarnIfUnusedFileScopedDecl(D))
1091     UnusedFileScopedDecls.push_back(D);
1092 }
1093
1094static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1095  if (D->isInvalidDecl())
1096    return false;
1097
1098  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1099    return false;
1100
1101  if (isa<LabelDecl>(D))
1102    return true;
1103
1104  // White-list anything that isn't a local variable.
1105  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1106      !D->getDeclContext()->isFunctionOrMethod())
1107    return false;
1108
1109  // Types of valid local variables should be complete, so this should succeed.
1110  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1111
1112    // White-list anything with an __attribute__((unused)) type.
1113    QualType Ty = VD->getType();
1114
1115    // Only look at the outermost level of typedef.
1116    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1117      if (TT->getDecl()->hasAttr<UnusedAttr>())
1118        return false;
1119    }
1120
1121    // If we failed to complete the type for some reason, or if the type is
1122    // dependent, don't diagnose the variable.
1123    if (Ty->isIncompleteType() || Ty->isDependentType())
1124      return false;
1125
1126    if (const TagType *TT = Ty->getAs<TagType>()) {
1127      const TagDecl *Tag = TT->getDecl();
1128      if (Tag->hasAttr<UnusedAttr>())
1129        return false;
1130
1131      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1132        // FIXME: Checking for the presence of a user-declared constructor
1133        // isn't completely accurate; we'd prefer to check that the initializer
1134        // has no side effects.
1135        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1136          return false;
1137      }
1138    }
1139
1140    // TODO: __attribute__((unused)) templates?
1141  }
1142
1143  return true;
1144}
1145
1146static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1147                                     FixItHint &Hint) {
1148  if (isa<LabelDecl>(D)) {
1149    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1150                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1151    if (AfterColon.isInvalid())
1152      return;
1153    Hint = FixItHint::CreateRemoval(CharSourceRange::
1154                                    getCharRange(D->getLocStart(), AfterColon));
1155  }
1156  return;
1157}
1158
1159/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1160/// unless they are marked attr(unused).
1161void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1162  FixItHint Hint;
1163  if (!ShouldDiagnoseUnusedDecl(D))
1164    return;
1165
1166  GenerateFixForUnusedDecl(D, Context, Hint);
1167
1168  unsigned DiagID;
1169  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1170    DiagID = diag::warn_unused_exception_param;
1171  else if (isa<LabelDecl>(D))
1172    DiagID = diag::warn_unused_label;
1173  else
1174    DiagID = diag::warn_unused_variable;
1175
1176  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1177}
1178
1179static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1180  // Verify that we have no forward references left.  If so, there was a goto
1181  // or address of a label taken, but no definition of it.  Label fwd
1182  // definitions are indicated with a null substmt.
1183  if (L->getStmt() == 0)
1184    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1185}
1186
1187void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1188  if (S->decl_empty()) return;
1189  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1190         "Scope shouldn't contain decls!");
1191
1192  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1193       I != E; ++I) {
1194    Decl *TmpD = (*I);
1195    assert(TmpD && "This decl didn't get pushed??");
1196
1197    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1198    NamedDecl *D = cast<NamedDecl>(TmpD);
1199
1200    if (!D->getDeclName()) continue;
1201
1202    // Diagnose unused variables in this scope.
1203    if (!S->hasErrorOccurred())
1204      DiagnoseUnusedDecl(D);
1205
1206    // If this was a forward reference to a label, verify it was defined.
1207    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1208      CheckPoppedLabel(LD, *this);
1209
1210    // Remove this name from our lexical scope.
1211    IdResolver.RemoveDecl(D);
1212  }
1213}
1214
1215/// \brief Look for an Objective-C class in the translation unit.
1216///
1217/// \param Id The name of the Objective-C class we're looking for. If
1218/// typo-correction fixes this name, the Id will be updated
1219/// to the fixed name.
1220///
1221/// \param IdLoc The location of the name in the translation unit.
1222///
1223/// \param TypoCorrection If true, this routine will attempt typo correction
1224/// if there is no class with the given name.
1225///
1226/// \returns The declaration of the named Objective-C class, or NULL if the
1227/// class could not be found.
1228ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1229                                              SourceLocation IdLoc,
1230                                              bool DoTypoCorrection) {
1231  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1232  // creation from this context.
1233  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1234
1235  if (!IDecl && DoTypoCorrection) {
1236    // Perform typo correction at the given location, but only if we
1237    // find an Objective-C class name.
1238    TypoCorrection C;
1239    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1240                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1241        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1242      Diag(IdLoc, diag::err_undef_interface_suggest)
1243        << Id << IDecl->getDeclName()
1244        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1245      Diag(IDecl->getLocation(), diag::note_previous_decl)
1246        << IDecl->getDeclName();
1247
1248      Id = IDecl->getIdentifier();
1249    }
1250  }
1251
1252  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1253}
1254
1255/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1256/// from S, where a non-field would be declared. This routine copes
1257/// with the difference between C and C++ scoping rules in structs and
1258/// unions. For example, the following code is well-formed in C but
1259/// ill-formed in C++:
1260/// @code
1261/// struct S6 {
1262///   enum { BAR } e;
1263/// };
1264///
1265/// void test_S6() {
1266///   struct S6 a;
1267///   a.e = BAR;
1268/// }
1269/// @endcode
1270/// For the declaration of BAR, this routine will return a different
1271/// scope. The scope S will be the scope of the unnamed enumeration
1272/// within S6. In C++, this routine will return the scope associated
1273/// with S6, because the enumeration's scope is a transparent
1274/// context but structures can contain non-field names. In C, this
1275/// routine will return the translation unit scope, since the
1276/// enumeration's scope is a transparent context and structures cannot
1277/// contain non-field names.
1278Scope *Sema::getNonFieldDeclScope(Scope *S) {
1279  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1280         (S->getEntity() &&
1281          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1282         (S->isClassScope() && !getLangOptions().CPlusPlus))
1283    S = S->getParent();
1284  return S;
1285}
1286
1287/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1288/// file scope.  lazily create a decl for it. ForRedeclaration is true
1289/// if we're creating this built-in in anticipation of redeclaring the
1290/// built-in.
1291NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1292                                     Scope *S, bool ForRedeclaration,
1293                                     SourceLocation Loc) {
1294  Builtin::ID BID = (Builtin::ID)bid;
1295
1296  ASTContext::GetBuiltinTypeError Error;
1297  QualType R = Context.GetBuiltinType(BID, Error);
1298  switch (Error) {
1299  case ASTContext::GE_None:
1300    // Okay
1301    break;
1302
1303  case ASTContext::GE_Missing_stdio:
1304    if (ForRedeclaration)
1305      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1306        << Context.BuiltinInfo.GetName(BID);
1307    return 0;
1308
1309  case ASTContext::GE_Missing_setjmp:
1310    if (ForRedeclaration)
1311      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1312        << Context.BuiltinInfo.GetName(BID);
1313    return 0;
1314
1315  case ASTContext::GE_Missing_ucontext:
1316    if (ForRedeclaration)
1317      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1318        << Context.BuiltinInfo.GetName(BID);
1319    return 0;
1320  }
1321
1322  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1323    Diag(Loc, diag::ext_implicit_lib_function_decl)
1324      << Context.BuiltinInfo.GetName(BID)
1325      << R;
1326    if (Context.BuiltinInfo.getHeaderName(BID) &&
1327        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1328          != DiagnosticsEngine::Ignored)
1329      Diag(Loc, diag::note_please_include_header)
1330        << Context.BuiltinInfo.getHeaderName(BID)
1331        << Context.BuiltinInfo.GetName(BID);
1332  }
1333
1334  FunctionDecl *New = FunctionDecl::Create(Context,
1335                                           Context.getTranslationUnitDecl(),
1336                                           Loc, Loc, II, R, /*TInfo=*/0,
1337                                           SC_Extern,
1338                                           SC_None, false,
1339                                           /*hasPrototype=*/true);
1340  New->setImplicit();
1341
1342  // Create Decl objects for each parameter, adding them to the
1343  // FunctionDecl.
1344  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1345    SmallVector<ParmVarDecl*, 16> Params;
1346    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1347      ParmVarDecl *parm =
1348        ParmVarDecl::Create(Context, New, SourceLocation(),
1349                            SourceLocation(), 0,
1350                            FT->getArgType(i), /*TInfo=*/0,
1351                            SC_None, SC_None, 0);
1352      parm->setScopeInfo(0, i);
1353      Params.push_back(parm);
1354    }
1355    New->setParams(Params);
1356  }
1357
1358  AddKnownFunctionAttributes(New);
1359
1360  // TUScope is the translation-unit scope to insert this function into.
1361  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1362  // relate Scopes to DeclContexts, and probably eliminate CurContext
1363  // entirely, but we're not there yet.
1364  DeclContext *SavedContext = CurContext;
1365  CurContext = Context.getTranslationUnitDecl();
1366  PushOnScopeChains(New, TUScope);
1367  CurContext = SavedContext;
1368  return New;
1369}
1370
1371/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1372/// same name and scope as a previous declaration 'Old'.  Figure out
1373/// how to resolve this situation, merging decls or emitting
1374/// diagnostics as appropriate. If there was an error, set New to be invalid.
1375///
1376void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1377  // If the new decl is known invalid already, don't bother doing any
1378  // merging checks.
1379  if (New->isInvalidDecl()) return;
1380
1381  // Allow multiple definitions for ObjC built-in typedefs.
1382  // FIXME: Verify the underlying types are equivalent!
1383  if (getLangOptions().ObjC1) {
1384    const IdentifierInfo *TypeID = New->getIdentifier();
1385    switch (TypeID->getLength()) {
1386    default: break;
1387    case 2:
1388      if (!TypeID->isStr("id"))
1389        break;
1390      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1391      // Install the built-in type for 'id', ignoring the current definition.
1392      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1393      return;
1394    case 5:
1395      if (!TypeID->isStr("Class"))
1396        break;
1397      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1398      // Install the built-in type for 'Class', ignoring the current definition.
1399      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1400      return;
1401    case 3:
1402      if (!TypeID->isStr("SEL"))
1403        break;
1404      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1405      // Install the built-in type for 'SEL', ignoring the current definition.
1406      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1407      return;
1408    }
1409    // Fall through - the typedef name was not a builtin type.
1410  }
1411
1412  // Verify the old decl was also a type.
1413  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1414  if (!Old) {
1415    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1416      << New->getDeclName();
1417
1418    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1419    if (OldD->getLocation().isValid())
1420      Diag(OldD->getLocation(), diag::note_previous_definition);
1421
1422    return New->setInvalidDecl();
1423  }
1424
1425  // If the old declaration is invalid, just give up here.
1426  if (Old->isInvalidDecl())
1427    return New->setInvalidDecl();
1428
1429  // Determine the "old" type we'll use for checking and diagnostics.
1430  QualType OldType;
1431  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1432    OldType = OldTypedef->getUnderlyingType();
1433  else
1434    OldType = Context.getTypeDeclType(Old);
1435
1436  // If the typedef types are not identical, reject them in all languages and
1437  // with any extensions enabled.
1438
1439  if (OldType != New->getUnderlyingType() &&
1440      Context.getCanonicalType(OldType) !=
1441      Context.getCanonicalType(New->getUnderlyingType())) {
1442    int Kind = 0;
1443    if (isa<TypeAliasDecl>(Old))
1444      Kind = 1;
1445    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1446      << Kind << New->getUnderlyingType() << OldType;
1447    if (Old->getLocation().isValid())
1448      Diag(Old->getLocation(), diag::note_previous_definition);
1449    return New->setInvalidDecl();
1450  }
1451
1452  // The types match.  Link up the redeclaration chain if the old
1453  // declaration was a typedef.
1454  // FIXME: this is a potential source of weirdness if the type
1455  // spellings don't match exactly.
1456  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1457    New->setPreviousDeclaration(Typedef);
1458
1459  // __module_private__ is propagated to later declarations.
1460  if (Old->isModulePrivate())
1461    New->setModulePrivate();
1462  else if (New->isModulePrivate())
1463    diagnoseModulePrivateRedeclaration(New, Old);
1464
1465  if (getLangOptions().MicrosoftExt)
1466    return;
1467
1468  if (getLangOptions().CPlusPlus) {
1469    // C++ [dcl.typedef]p2:
1470    //   In a given non-class scope, a typedef specifier can be used to
1471    //   redefine the name of any type declared in that scope to refer
1472    //   to the type to which it already refers.
1473    if (!isa<CXXRecordDecl>(CurContext))
1474      return;
1475
1476    // C++0x [dcl.typedef]p4:
1477    //   In a given class scope, a typedef specifier can be used to redefine
1478    //   any class-name declared in that scope that is not also a typedef-name
1479    //   to refer to the type to which it already refers.
1480    //
1481    // This wording came in via DR424, which was a correction to the
1482    // wording in DR56, which accidentally banned code like:
1483    //
1484    //   struct S {
1485    //     typedef struct A { } A;
1486    //   };
1487    //
1488    // in the C++03 standard. We implement the C++0x semantics, which
1489    // allow the above but disallow
1490    //
1491    //   struct S {
1492    //     typedef int I;
1493    //     typedef int I;
1494    //   };
1495    //
1496    // since that was the intent of DR56.
1497    if (!isa<TypedefNameDecl>(Old))
1498      return;
1499
1500    Diag(New->getLocation(), diag::err_redefinition)
1501      << New->getDeclName();
1502    Diag(Old->getLocation(), diag::note_previous_definition);
1503    return New->setInvalidDecl();
1504  }
1505
1506  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1507  // is normally mapped to an error, but can be controlled with
1508  // -Wtypedef-redefinition.  If either the original or the redefinition is
1509  // in a system header, don't emit this for compatibility with GCC.
1510  if (getDiagnostics().getSuppressSystemWarnings() &&
1511      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1512       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1513    return;
1514
1515  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1516    << New->getDeclName();
1517  Diag(Old->getLocation(), diag::note_previous_definition);
1518  return;
1519}
1520
1521/// DeclhasAttr - returns true if decl Declaration already has the target
1522/// attribute.
1523static bool
1524DeclHasAttr(const Decl *D, const Attr *A) {
1525  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1526  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1527  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1528    if ((*i)->getKind() == A->getKind()) {
1529      if (Ann) {
1530        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1531          return true;
1532        continue;
1533      }
1534      // FIXME: Don't hardcode this check
1535      if (OA && isa<OwnershipAttr>(*i))
1536        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1537      return true;
1538    }
1539
1540  return false;
1541}
1542
1543/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1544static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1545                                ASTContext &C, bool mergeDeprecation = true) {
1546  if (!oldDecl->hasAttrs())
1547    return;
1548
1549  bool foundAny = newDecl->hasAttrs();
1550
1551  // Ensure that any moving of objects within the allocated map is done before
1552  // we process them.
1553  if (!foundAny) newDecl->setAttrs(AttrVec());
1554
1555  for (specific_attr_iterator<InheritableAttr>
1556       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1557       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1558    // Ignore deprecated/unavailable/availability attributes if requested.
1559    if (!mergeDeprecation &&
1560        (isa<DeprecatedAttr>(*i) ||
1561         isa<UnavailableAttr>(*i) ||
1562         isa<AvailabilityAttr>(*i)))
1563      continue;
1564
1565    if (!DeclHasAttr(newDecl, *i)) {
1566      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1567      newAttr->setInherited(true);
1568      newDecl->addAttr(newAttr);
1569      foundAny = true;
1570    }
1571  }
1572
1573  if (!foundAny) newDecl->dropAttrs();
1574}
1575
1576/// mergeParamDeclAttributes - Copy attributes from the old parameter
1577/// to the new one.
1578static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1579                                     const ParmVarDecl *oldDecl,
1580                                     ASTContext &C) {
1581  if (!oldDecl->hasAttrs())
1582    return;
1583
1584  bool foundAny = newDecl->hasAttrs();
1585
1586  // Ensure that any moving of objects within the allocated map is
1587  // done before we process them.
1588  if (!foundAny) newDecl->setAttrs(AttrVec());
1589
1590  for (specific_attr_iterator<InheritableParamAttr>
1591       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1592       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1593    if (!DeclHasAttr(newDecl, *i)) {
1594      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1595      newAttr->setInherited(true);
1596      newDecl->addAttr(newAttr);
1597      foundAny = true;
1598    }
1599  }
1600
1601  if (!foundAny) newDecl->dropAttrs();
1602}
1603
1604namespace {
1605
1606/// Used in MergeFunctionDecl to keep track of function parameters in
1607/// C.
1608struct GNUCompatibleParamWarning {
1609  ParmVarDecl *OldParm;
1610  ParmVarDecl *NewParm;
1611  QualType PromotedType;
1612};
1613
1614}
1615
1616/// getSpecialMember - get the special member enum for a method.
1617Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1618  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1619    if (Ctor->isDefaultConstructor())
1620      return Sema::CXXDefaultConstructor;
1621
1622    if (Ctor->isCopyConstructor())
1623      return Sema::CXXCopyConstructor;
1624
1625    if (Ctor->isMoveConstructor())
1626      return Sema::CXXMoveConstructor;
1627  } else if (isa<CXXDestructorDecl>(MD)) {
1628    return Sema::CXXDestructor;
1629  } else if (MD->isCopyAssignmentOperator()) {
1630    return Sema::CXXCopyAssignment;
1631  } else if (MD->isMoveAssignmentOperator()) {
1632    return Sema::CXXMoveAssignment;
1633  }
1634
1635  return Sema::CXXInvalid;
1636}
1637
1638/// canRedefineFunction - checks if a function can be redefined. Currently,
1639/// only extern inline functions can be redefined, and even then only in
1640/// GNU89 mode.
1641static bool canRedefineFunction(const FunctionDecl *FD,
1642                                const LangOptions& LangOpts) {
1643  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1644          !LangOpts.CPlusPlus &&
1645          FD->isInlineSpecified() &&
1646          FD->getStorageClass() == SC_Extern);
1647}
1648
1649/// MergeFunctionDecl - We just parsed a function 'New' from
1650/// declarator D which has the same name and scope as a previous
1651/// declaration 'Old'.  Figure out how to resolve this situation,
1652/// merging decls or emitting diagnostics as appropriate.
1653///
1654/// In C++, New and Old must be declarations that are not
1655/// overloaded. Use IsOverload to determine whether New and Old are
1656/// overloaded, and to select the Old declaration that New should be
1657/// merged with.
1658///
1659/// Returns true if there was an error, false otherwise.
1660bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1661  // Verify the old decl was also a function.
1662  FunctionDecl *Old = 0;
1663  if (FunctionTemplateDecl *OldFunctionTemplate
1664        = dyn_cast<FunctionTemplateDecl>(OldD))
1665    Old = OldFunctionTemplate->getTemplatedDecl();
1666  else
1667    Old = dyn_cast<FunctionDecl>(OldD);
1668  if (!Old) {
1669    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1670      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1671      Diag(Shadow->getTargetDecl()->getLocation(),
1672           diag::note_using_decl_target);
1673      Diag(Shadow->getUsingDecl()->getLocation(),
1674           diag::note_using_decl) << 0;
1675      return true;
1676    }
1677
1678    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1679      << New->getDeclName();
1680    Diag(OldD->getLocation(), diag::note_previous_definition);
1681    return true;
1682  }
1683
1684  // Determine whether the previous declaration was a definition,
1685  // implicit declaration, or a declaration.
1686  diag::kind PrevDiag;
1687  if (Old->isThisDeclarationADefinition())
1688    PrevDiag = diag::note_previous_definition;
1689  else if (Old->isImplicit())
1690    PrevDiag = diag::note_previous_implicit_declaration;
1691  else
1692    PrevDiag = diag::note_previous_declaration;
1693
1694  QualType OldQType = Context.getCanonicalType(Old->getType());
1695  QualType NewQType = Context.getCanonicalType(New->getType());
1696
1697  // Don't complain about this if we're in GNU89 mode and the old function
1698  // is an extern inline function.
1699  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1700      New->getStorageClass() == SC_Static &&
1701      Old->getStorageClass() != SC_Static &&
1702      !canRedefineFunction(Old, getLangOptions())) {
1703    if (getLangOptions().MicrosoftExt) {
1704      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1705      Diag(Old->getLocation(), PrevDiag);
1706    } else {
1707      Diag(New->getLocation(), diag::err_static_non_static) << New;
1708      Diag(Old->getLocation(), PrevDiag);
1709      return true;
1710    }
1711  }
1712
1713  // If a function is first declared with a calling convention, but is
1714  // later declared or defined without one, the second decl assumes the
1715  // calling convention of the first.
1716  //
1717  // For the new decl, we have to look at the NON-canonical type to tell the
1718  // difference between a function that really doesn't have a calling
1719  // convention and one that is declared cdecl. That's because in
1720  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1721  // because it is the default calling convention.
1722  //
1723  // Note also that we DO NOT return at this point, because we still have
1724  // other tests to run.
1725  const FunctionType *OldType = cast<FunctionType>(OldQType);
1726  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1727  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1728  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1729  bool RequiresAdjustment = false;
1730  if (OldTypeInfo.getCC() != CC_Default &&
1731      NewTypeInfo.getCC() == CC_Default) {
1732    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1733    RequiresAdjustment = true;
1734  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1735                                     NewTypeInfo.getCC())) {
1736    // Calling conventions really aren't compatible, so complain.
1737    Diag(New->getLocation(), diag::err_cconv_change)
1738      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1739      << (OldTypeInfo.getCC() == CC_Default)
1740      << (OldTypeInfo.getCC() == CC_Default ? "" :
1741          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1742    Diag(Old->getLocation(), diag::note_previous_declaration);
1743    return true;
1744  }
1745
1746  // FIXME: diagnose the other way around?
1747  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1748    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1749    RequiresAdjustment = true;
1750  }
1751
1752  // Merge regparm attribute.
1753  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1754      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1755    if (NewTypeInfo.getHasRegParm()) {
1756      Diag(New->getLocation(), diag::err_regparm_mismatch)
1757        << NewType->getRegParmType()
1758        << OldType->getRegParmType();
1759      Diag(Old->getLocation(), diag::note_previous_declaration);
1760      return true;
1761    }
1762
1763    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1764    RequiresAdjustment = true;
1765  }
1766
1767  // Merge ns_returns_retained attribute.
1768  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1769    if (NewTypeInfo.getProducesResult()) {
1770      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1771      Diag(Old->getLocation(), diag::note_previous_declaration);
1772      return true;
1773    }
1774
1775    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1776    RequiresAdjustment = true;
1777  }
1778
1779  if (RequiresAdjustment) {
1780    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1781    New->setType(QualType(NewType, 0));
1782    NewQType = Context.getCanonicalType(New->getType());
1783  }
1784
1785  if (getLangOptions().CPlusPlus) {
1786    // (C++98 13.1p2):
1787    //   Certain function declarations cannot be overloaded:
1788    //     -- Function declarations that differ only in the return type
1789    //        cannot be overloaded.
1790    QualType OldReturnType = OldType->getResultType();
1791    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1792    QualType ResQT;
1793    if (OldReturnType != NewReturnType) {
1794      if (NewReturnType->isObjCObjectPointerType()
1795          && OldReturnType->isObjCObjectPointerType())
1796        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1797      if (ResQT.isNull()) {
1798        if (New->isCXXClassMember() && New->isOutOfLine())
1799          Diag(New->getLocation(),
1800               diag::err_member_def_does_not_match_ret_type) << New;
1801        else
1802          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1803        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1804        return true;
1805      }
1806      else
1807        NewQType = ResQT;
1808    }
1809
1810    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1811    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1812    if (OldMethod && NewMethod) {
1813      // Preserve triviality.
1814      NewMethod->setTrivial(OldMethod->isTrivial());
1815
1816      // MSVC allows explicit template specialization at class scope:
1817      // 2 CXMethodDecls referring to the same function will be injected.
1818      // We don't want a redeclartion error.
1819      bool IsClassScopeExplicitSpecialization =
1820                              OldMethod->isFunctionTemplateSpecialization() &&
1821                              NewMethod->isFunctionTemplateSpecialization();
1822      bool isFriend = NewMethod->getFriendObjectKind();
1823
1824      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1825          !IsClassScopeExplicitSpecialization) {
1826        //    -- Member function declarations with the same name and the
1827        //       same parameter types cannot be overloaded if any of them
1828        //       is a static member function declaration.
1829        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1830          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1831          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1832          return true;
1833        }
1834
1835        // C++ [class.mem]p1:
1836        //   [...] A member shall not be declared twice in the
1837        //   member-specification, except that a nested class or member
1838        //   class template can be declared and then later defined.
1839        unsigned NewDiag;
1840        if (isa<CXXConstructorDecl>(OldMethod))
1841          NewDiag = diag::err_constructor_redeclared;
1842        else if (isa<CXXDestructorDecl>(NewMethod))
1843          NewDiag = diag::err_destructor_redeclared;
1844        else if (isa<CXXConversionDecl>(NewMethod))
1845          NewDiag = diag::err_conv_function_redeclared;
1846        else
1847          NewDiag = diag::err_member_redeclared;
1848
1849        Diag(New->getLocation(), NewDiag);
1850        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1851
1852      // Complain if this is an explicit declaration of a special
1853      // member that was initially declared implicitly.
1854      //
1855      // As an exception, it's okay to befriend such methods in order
1856      // to permit the implicit constructor/destructor/operator calls.
1857      } else if (OldMethod->isImplicit()) {
1858        if (isFriend) {
1859          NewMethod->setImplicit();
1860        } else {
1861          Diag(NewMethod->getLocation(),
1862               diag::err_definition_of_implicitly_declared_member)
1863            << New << getSpecialMember(OldMethod);
1864          return true;
1865        }
1866      } else if (OldMethod->isExplicitlyDefaulted()) {
1867        Diag(NewMethod->getLocation(),
1868             diag::err_definition_of_explicitly_defaulted_member)
1869          << getSpecialMember(OldMethod);
1870        return true;
1871      }
1872    }
1873
1874    // (C++98 8.3.5p3):
1875    //   All declarations for a function shall agree exactly in both the
1876    //   return type and the parameter-type-list.
1877    // We also want to respect all the extended bits except noreturn.
1878
1879    // noreturn should now match unless the old type info didn't have it.
1880    QualType OldQTypeForComparison = OldQType;
1881    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1882      assert(OldQType == QualType(OldType, 0));
1883      const FunctionType *OldTypeForComparison
1884        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1885      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1886      assert(OldQTypeForComparison.isCanonical());
1887    }
1888
1889    if (OldQTypeForComparison == NewQType)
1890      return MergeCompatibleFunctionDecls(New, Old);
1891
1892    // Fall through for conflicting redeclarations and redefinitions.
1893  }
1894
1895  // C: Function types need to be compatible, not identical. This handles
1896  // duplicate function decls like "void f(int); void f(enum X);" properly.
1897  if (!getLangOptions().CPlusPlus &&
1898      Context.typesAreCompatible(OldQType, NewQType)) {
1899    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1900    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1901    const FunctionProtoType *OldProto = 0;
1902    if (isa<FunctionNoProtoType>(NewFuncType) &&
1903        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1904      // The old declaration provided a function prototype, but the
1905      // new declaration does not. Merge in the prototype.
1906      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1907      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1908                                                 OldProto->arg_type_end());
1909      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1910                                         ParamTypes.data(), ParamTypes.size(),
1911                                         OldProto->getExtProtoInfo());
1912      New->setType(NewQType);
1913      New->setHasInheritedPrototype();
1914
1915      // Synthesize a parameter for each argument type.
1916      SmallVector<ParmVarDecl*, 16> Params;
1917      for (FunctionProtoType::arg_type_iterator
1918             ParamType = OldProto->arg_type_begin(),
1919             ParamEnd = OldProto->arg_type_end();
1920           ParamType != ParamEnd; ++ParamType) {
1921        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1922                                                 SourceLocation(),
1923                                                 SourceLocation(), 0,
1924                                                 *ParamType, /*TInfo=*/0,
1925                                                 SC_None, SC_None,
1926                                                 0);
1927        Param->setScopeInfo(0, Params.size());
1928        Param->setImplicit();
1929        Params.push_back(Param);
1930      }
1931
1932      New->setParams(Params);
1933    }
1934
1935    return MergeCompatibleFunctionDecls(New, Old);
1936  }
1937
1938  // GNU C permits a K&R definition to follow a prototype declaration
1939  // if the declared types of the parameters in the K&R definition
1940  // match the types in the prototype declaration, even when the
1941  // promoted types of the parameters from the K&R definition differ
1942  // from the types in the prototype. GCC then keeps the types from
1943  // the prototype.
1944  //
1945  // If a variadic prototype is followed by a non-variadic K&R definition,
1946  // the K&R definition becomes variadic.  This is sort of an edge case, but
1947  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1948  // C99 6.9.1p8.
1949  if (!getLangOptions().CPlusPlus &&
1950      Old->hasPrototype() && !New->hasPrototype() &&
1951      New->getType()->getAs<FunctionProtoType>() &&
1952      Old->getNumParams() == New->getNumParams()) {
1953    SmallVector<QualType, 16> ArgTypes;
1954    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1955    const FunctionProtoType *OldProto
1956      = Old->getType()->getAs<FunctionProtoType>();
1957    const FunctionProtoType *NewProto
1958      = New->getType()->getAs<FunctionProtoType>();
1959
1960    // Determine whether this is the GNU C extension.
1961    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1962                                               NewProto->getResultType());
1963    bool LooseCompatible = !MergedReturn.isNull();
1964    for (unsigned Idx = 0, End = Old->getNumParams();
1965         LooseCompatible && Idx != End; ++Idx) {
1966      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1967      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1968      if (Context.typesAreCompatible(OldParm->getType(),
1969                                     NewProto->getArgType(Idx))) {
1970        ArgTypes.push_back(NewParm->getType());
1971      } else if (Context.typesAreCompatible(OldParm->getType(),
1972                                            NewParm->getType(),
1973                                            /*CompareUnqualified=*/true)) {
1974        GNUCompatibleParamWarning Warn
1975          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1976        Warnings.push_back(Warn);
1977        ArgTypes.push_back(NewParm->getType());
1978      } else
1979        LooseCompatible = false;
1980    }
1981
1982    if (LooseCompatible) {
1983      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1984        Diag(Warnings[Warn].NewParm->getLocation(),
1985             diag::ext_param_promoted_not_compatible_with_prototype)
1986          << Warnings[Warn].PromotedType
1987          << Warnings[Warn].OldParm->getType();
1988        if (Warnings[Warn].OldParm->getLocation().isValid())
1989          Diag(Warnings[Warn].OldParm->getLocation(),
1990               diag::note_previous_declaration);
1991      }
1992
1993      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1994                                           ArgTypes.size(),
1995                                           OldProto->getExtProtoInfo()));
1996      return MergeCompatibleFunctionDecls(New, Old);
1997    }
1998
1999    // Fall through to diagnose conflicting types.
2000  }
2001
2002  // A function that has already been declared has been redeclared or defined
2003  // with a different type- show appropriate diagnostic
2004  if (unsigned BuiltinID = Old->getBuiltinID()) {
2005    // The user has declared a builtin function with an incompatible
2006    // signature.
2007    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2008      // The function the user is redeclaring is a library-defined
2009      // function like 'malloc' or 'printf'. Warn about the
2010      // redeclaration, then pretend that we don't know about this
2011      // library built-in.
2012      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2013      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2014        << Old << Old->getType();
2015      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2016      Old->setInvalidDecl();
2017      return false;
2018    }
2019
2020    PrevDiag = diag::note_previous_builtin_declaration;
2021  }
2022
2023  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2024  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2025  return true;
2026}
2027
2028/// \brief Completes the merge of two function declarations that are
2029/// known to be compatible.
2030///
2031/// This routine handles the merging of attributes and other
2032/// properties of function declarations form the old declaration to
2033/// the new declaration, once we know that New is in fact a
2034/// redeclaration of Old.
2035///
2036/// \returns false
2037bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2038  // Merge the attributes
2039  mergeDeclAttributes(New, Old, Context);
2040
2041  // Merge the storage class.
2042  if (Old->getStorageClass() != SC_Extern &&
2043      Old->getStorageClass() != SC_None)
2044    New->setStorageClass(Old->getStorageClass());
2045
2046  // Merge "pure" flag.
2047  if (Old->isPure())
2048    New->setPure();
2049
2050  // __module_private__ is propagated to later declarations.
2051  if (Old->isModulePrivate())
2052    New->setModulePrivate();
2053  else if (New->isModulePrivate())
2054    diagnoseModulePrivateRedeclaration(New, Old);
2055
2056  // Merge attributes from the parameters.  These can mismatch with K&R
2057  // declarations.
2058  if (New->getNumParams() == Old->getNumParams())
2059    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2060      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2061                               Context);
2062
2063  if (getLangOptions().CPlusPlus)
2064    return MergeCXXFunctionDecl(New, Old);
2065
2066  return false;
2067}
2068
2069
2070void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2071                                const ObjCMethodDecl *oldMethod) {
2072  // We don't want to merge unavailable and deprecated attributes
2073  // except from interface to implementation.
2074  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2075
2076  // Merge the attributes.
2077  mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation);
2078
2079  // Merge attributes from the parameters.
2080  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2081  for (ObjCMethodDecl::param_iterator
2082         ni = newMethod->param_begin(), ne = newMethod->param_end();
2083       ni != ne; ++ni, ++oi)
2084    mergeParamDeclAttributes(*ni, *oi, Context);
2085
2086  CheckObjCMethodOverride(newMethod, oldMethod, true);
2087}
2088
2089/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2090/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2091/// emitting diagnostics as appropriate.
2092///
2093/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2094/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2095/// check them before the initializer is attached.
2096///
2097void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2098  if (New->isInvalidDecl() || Old->isInvalidDecl())
2099    return;
2100
2101  QualType MergedT;
2102  if (getLangOptions().CPlusPlus) {
2103    AutoType *AT = New->getType()->getContainedAutoType();
2104    if (AT && !AT->isDeduced()) {
2105      // We don't know what the new type is until the initializer is attached.
2106      return;
2107    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2108      // These could still be something that needs exception specs checked.
2109      return MergeVarDeclExceptionSpecs(New, Old);
2110    }
2111    // C++ [basic.link]p10:
2112    //   [...] the types specified by all declarations referring to a given
2113    //   object or function shall be identical, except that declarations for an
2114    //   array object can specify array types that differ by the presence or
2115    //   absence of a major array bound (8.3.4).
2116    else if (Old->getType()->isIncompleteArrayType() &&
2117             New->getType()->isArrayType()) {
2118      CanQual<ArrayType> OldArray
2119        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2120      CanQual<ArrayType> NewArray
2121        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2122      if (OldArray->getElementType() == NewArray->getElementType())
2123        MergedT = New->getType();
2124    } else if (Old->getType()->isArrayType() &&
2125             New->getType()->isIncompleteArrayType()) {
2126      CanQual<ArrayType> OldArray
2127        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2128      CanQual<ArrayType> NewArray
2129        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2130      if (OldArray->getElementType() == NewArray->getElementType())
2131        MergedT = Old->getType();
2132    } else if (New->getType()->isObjCObjectPointerType()
2133               && Old->getType()->isObjCObjectPointerType()) {
2134        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2135                                                        Old->getType());
2136    }
2137  } else {
2138    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2139  }
2140  if (MergedT.isNull()) {
2141    Diag(New->getLocation(), diag::err_redefinition_different_type)
2142      << New->getDeclName();
2143    Diag(Old->getLocation(), diag::note_previous_definition);
2144    return New->setInvalidDecl();
2145  }
2146  New->setType(MergedT);
2147}
2148
2149/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2150/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2151/// situation, merging decls or emitting diagnostics as appropriate.
2152///
2153/// Tentative definition rules (C99 6.9.2p2) are checked by
2154/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2155/// definitions here, since the initializer hasn't been attached.
2156///
2157void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2158  // If the new decl is already invalid, don't do any other checking.
2159  if (New->isInvalidDecl())
2160    return;
2161
2162  // Verify the old decl was also a variable.
2163  VarDecl *Old = 0;
2164  if (!Previous.isSingleResult() ||
2165      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2166    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2167      << New->getDeclName();
2168    Diag(Previous.getRepresentativeDecl()->getLocation(),
2169         diag::note_previous_definition);
2170    return New->setInvalidDecl();
2171  }
2172
2173  // C++ [class.mem]p1:
2174  //   A member shall not be declared twice in the member-specification [...]
2175  //
2176  // Here, we need only consider static data members.
2177  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2178    Diag(New->getLocation(), diag::err_duplicate_member)
2179      << New->getIdentifier();
2180    Diag(Old->getLocation(), diag::note_previous_declaration);
2181    New->setInvalidDecl();
2182  }
2183
2184  mergeDeclAttributes(New, Old, Context);
2185  // Warn if an already-declared variable is made a weak_import in a subsequent
2186  // declaration
2187  if (New->getAttr<WeakImportAttr>() &&
2188      Old->getStorageClass() == SC_None &&
2189      !Old->getAttr<WeakImportAttr>()) {
2190    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2191    Diag(Old->getLocation(), diag::note_previous_definition);
2192    // Remove weak_import attribute on new declaration.
2193    New->dropAttr<WeakImportAttr>();
2194  }
2195
2196  // Merge the types.
2197  MergeVarDeclTypes(New, Old);
2198  if (New->isInvalidDecl())
2199    return;
2200
2201  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2202  if (New->getStorageClass() == SC_Static &&
2203      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2204    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2205    Diag(Old->getLocation(), diag::note_previous_definition);
2206    return New->setInvalidDecl();
2207  }
2208  // C99 6.2.2p4:
2209  //   For an identifier declared with the storage-class specifier
2210  //   extern in a scope in which a prior declaration of that
2211  //   identifier is visible,23) if the prior declaration specifies
2212  //   internal or external linkage, the linkage of the identifier at
2213  //   the later declaration is the same as the linkage specified at
2214  //   the prior declaration. If no prior declaration is visible, or
2215  //   if the prior declaration specifies no linkage, then the
2216  //   identifier has external linkage.
2217  if (New->hasExternalStorage() && Old->hasLinkage())
2218    /* Okay */;
2219  else if (New->getStorageClass() != SC_Static &&
2220           Old->getStorageClass() == SC_Static) {
2221    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2222    Diag(Old->getLocation(), diag::note_previous_definition);
2223    return New->setInvalidDecl();
2224  }
2225
2226  // Check if extern is followed by non-extern and vice-versa.
2227  if (New->hasExternalStorage() &&
2228      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2229    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2230    Diag(Old->getLocation(), diag::note_previous_definition);
2231    return New->setInvalidDecl();
2232  }
2233  if (Old->hasExternalStorage() &&
2234      !New->hasLinkage() && New->isLocalVarDecl()) {
2235    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2236    Diag(Old->getLocation(), diag::note_previous_definition);
2237    return New->setInvalidDecl();
2238  }
2239
2240  // __module_private__ is propagated to later declarations.
2241  if (Old->isModulePrivate())
2242    New->setModulePrivate();
2243  else if (New->isModulePrivate())
2244    diagnoseModulePrivateRedeclaration(New, Old);
2245
2246  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2247
2248  // FIXME: The test for external storage here seems wrong? We still
2249  // need to check for mismatches.
2250  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2251      // Don't complain about out-of-line definitions of static members.
2252      !(Old->getLexicalDeclContext()->isRecord() &&
2253        !New->getLexicalDeclContext()->isRecord())) {
2254    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2255    Diag(Old->getLocation(), diag::note_previous_definition);
2256    return New->setInvalidDecl();
2257  }
2258
2259  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2260    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2261    Diag(Old->getLocation(), diag::note_previous_definition);
2262  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2263    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2264    Diag(Old->getLocation(), diag::note_previous_definition);
2265  }
2266
2267  // C++ doesn't have tentative definitions, so go right ahead and check here.
2268  const VarDecl *Def;
2269  if (getLangOptions().CPlusPlus &&
2270      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2271      (Def = Old->getDefinition())) {
2272    Diag(New->getLocation(), diag::err_redefinition)
2273      << New->getDeclName();
2274    Diag(Def->getLocation(), diag::note_previous_definition);
2275    New->setInvalidDecl();
2276    return;
2277  }
2278  // c99 6.2.2 P4.
2279  // For an identifier declared with the storage-class specifier extern in a
2280  // scope in which a prior declaration of that identifier is visible, if
2281  // the prior declaration specifies internal or external linkage, the linkage
2282  // of the identifier at the later declaration is the same as the linkage
2283  // specified at the prior declaration.
2284  // FIXME. revisit this code.
2285  if (New->hasExternalStorage() &&
2286      Old->getLinkage() == InternalLinkage &&
2287      New->getDeclContext() == Old->getDeclContext())
2288    New->setStorageClass(Old->getStorageClass());
2289
2290  // Keep a chain of previous declarations.
2291  New->setPreviousDeclaration(Old);
2292
2293  // Inherit access appropriately.
2294  New->setAccess(Old->getAccess());
2295}
2296
2297/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2298/// no declarator (e.g. "struct foo;") is parsed.
2299Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2300                                       DeclSpec &DS) {
2301  return ParsedFreeStandingDeclSpec(S, AS, DS,
2302                                    MultiTemplateParamsArg(*this, 0, 0));
2303}
2304
2305/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2306/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2307/// parameters to cope with template friend declarations.
2308Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2309                                       DeclSpec &DS,
2310                                       MultiTemplateParamsArg TemplateParams) {
2311  Decl *TagD = 0;
2312  TagDecl *Tag = 0;
2313  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2314      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2315      DS.getTypeSpecType() == DeclSpec::TST_union ||
2316      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2317    TagD = DS.getRepAsDecl();
2318
2319    if (!TagD) // We probably had an error
2320      return 0;
2321
2322    // Note that the above type specs guarantee that the
2323    // type rep is a Decl, whereas in many of the others
2324    // it's a Type.
2325    if (isa<TagDecl>(TagD))
2326      Tag = cast<TagDecl>(TagD);
2327    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2328      Tag = CTD->getTemplatedDecl();
2329  }
2330
2331  if (Tag)
2332    Tag->setFreeStanding();
2333
2334  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2335    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2336    // or incomplete types shall not be restrict-qualified."
2337    if (TypeQuals & DeclSpec::TQ_restrict)
2338      Diag(DS.getRestrictSpecLoc(),
2339           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2340           << DS.getSourceRange();
2341  }
2342
2343  if (DS.isConstexprSpecified()) {
2344    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2345    // and definitions of functions and variables.
2346    if (Tag)
2347      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2348        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2349            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2350            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2351    else
2352      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2353    // Don't emit warnings after this error.
2354    return TagD;
2355  }
2356
2357  if (DS.isFriendSpecified()) {
2358    // If we're dealing with a decl but not a TagDecl, assume that
2359    // whatever routines created it handled the friendship aspect.
2360    if (TagD && !Tag)
2361      return 0;
2362    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2363  }
2364
2365  // Track whether we warned about the fact that there aren't any
2366  // declarators.
2367  bool emittedWarning = false;
2368
2369  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2370    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2371
2372    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2373        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2374      if (getLangOptions().CPlusPlus ||
2375          Record->getDeclContext()->isRecord())
2376        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2377
2378      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2379        << DS.getSourceRange();
2380      emittedWarning = true;
2381    }
2382  }
2383
2384  // Check for Microsoft C extension: anonymous struct.
2385  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2386      CurContext->isRecord() &&
2387      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2388    // Handle 2 kinds of anonymous struct:
2389    //   struct STRUCT;
2390    // and
2391    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2392    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2393    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2394        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2395         DS.getRepAsType().get()->isStructureType())) {
2396      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2397        << DS.getSourceRange();
2398      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2399    }
2400  }
2401
2402  if (getLangOptions().CPlusPlus &&
2403      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2404    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2405      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2406          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2407        Diag(Enum->getLocation(), diag::ext_no_declarators)
2408          << DS.getSourceRange();
2409        emittedWarning = true;
2410      }
2411
2412  // Skip all the checks below if we have a type error.
2413  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2414
2415  if (!DS.isMissingDeclaratorOk()) {
2416    // Warn about typedefs of enums without names, since this is an
2417    // extension in both Microsoft and GNU.
2418    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2419        Tag && isa<EnumDecl>(Tag)) {
2420      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2421        << DS.getSourceRange();
2422      return Tag;
2423    }
2424
2425    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2426      << DS.getSourceRange();
2427    emittedWarning = true;
2428  }
2429
2430  // We're going to complain about a bunch of spurious specifiers;
2431  // only do this if we're declaring a tag, because otherwise we
2432  // should be getting diag::ext_no_declarators.
2433  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2434    return TagD;
2435
2436  // Note that a linkage-specification sets a storage class, but
2437  // 'extern "C" struct foo;' is actually valid and not theoretically
2438  // useless.
2439  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2440    if (!DS.isExternInLinkageSpec())
2441      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2442        << DeclSpec::getSpecifierName(scs);
2443
2444  if (DS.isThreadSpecified())
2445    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2446  if (DS.getTypeQualifiers()) {
2447    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2448      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2449    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2450      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2451    // Restrict is covered above.
2452  }
2453  if (DS.isInlineSpecified())
2454    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2455  if (DS.isVirtualSpecified())
2456    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2457  if (DS.isExplicitSpecified())
2458    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2459
2460  if (DS.isModulePrivateSpecified() &&
2461      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2462    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2463      << Tag->getTagKind()
2464      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2465
2466  // FIXME: Warn on useless attributes
2467
2468  return TagD;
2469}
2470
2471/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2472/// builds a statement for it and returns it so it is evaluated.
2473StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2474  StmtResult R;
2475  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2476    Expr *Exp = DS.getRepAsExpr();
2477    QualType Ty = Exp->getType();
2478    if (Ty->isPointerType()) {
2479      do
2480        Ty = Ty->getAs<PointerType>()->getPointeeType();
2481      while (Ty->isPointerType());
2482    }
2483    if (Ty->isVariableArrayType()) {
2484      R = ActOnExprStmt(MakeFullExpr(Exp));
2485    }
2486  }
2487  return R;
2488}
2489
2490/// We are trying to inject an anonymous member into the given scope;
2491/// check if there's an existing declaration that can't be overloaded.
2492///
2493/// \return true if this is a forbidden redeclaration
2494static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2495                                         Scope *S,
2496                                         DeclContext *Owner,
2497                                         DeclarationName Name,
2498                                         SourceLocation NameLoc,
2499                                         unsigned diagnostic) {
2500  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2501                 Sema::ForRedeclaration);
2502  if (!SemaRef.LookupName(R, S)) return false;
2503
2504  if (R.getAsSingle<TagDecl>())
2505    return false;
2506
2507  // Pick a representative declaration.
2508  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2509  assert(PrevDecl && "Expected a non-null Decl");
2510
2511  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2512    return false;
2513
2514  SemaRef.Diag(NameLoc, diagnostic) << Name;
2515  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2516
2517  return true;
2518}
2519
2520/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2521/// anonymous struct or union AnonRecord into the owning context Owner
2522/// and scope S. This routine will be invoked just after we realize
2523/// that an unnamed union or struct is actually an anonymous union or
2524/// struct, e.g.,
2525///
2526/// @code
2527/// union {
2528///   int i;
2529///   float f;
2530/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2531///    // f into the surrounding scope.x
2532/// @endcode
2533///
2534/// This routine is recursive, injecting the names of nested anonymous
2535/// structs/unions into the owning context and scope as well.
2536static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2537                                                DeclContext *Owner,
2538                                                RecordDecl *AnonRecord,
2539                                                AccessSpecifier AS,
2540                              SmallVector<NamedDecl*, 2> &Chaining,
2541                                                      bool MSAnonStruct) {
2542  unsigned diagKind
2543    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2544                            : diag::err_anonymous_struct_member_redecl;
2545
2546  bool Invalid = false;
2547
2548  // Look every FieldDecl and IndirectFieldDecl with a name.
2549  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2550                               DEnd = AnonRecord->decls_end();
2551       D != DEnd; ++D) {
2552    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2553        cast<NamedDecl>(*D)->getDeclName()) {
2554      ValueDecl *VD = cast<ValueDecl>(*D);
2555      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2556                                       VD->getLocation(), diagKind)) {
2557        // C++ [class.union]p2:
2558        //   The names of the members of an anonymous union shall be
2559        //   distinct from the names of any other entity in the
2560        //   scope in which the anonymous union is declared.
2561        Invalid = true;
2562      } else {
2563        // C++ [class.union]p2:
2564        //   For the purpose of name lookup, after the anonymous union
2565        //   definition, the members of the anonymous union are
2566        //   considered to have been defined in the scope in which the
2567        //   anonymous union is declared.
2568        unsigned OldChainingSize = Chaining.size();
2569        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2570          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2571               PE = IF->chain_end(); PI != PE; ++PI)
2572            Chaining.push_back(*PI);
2573        else
2574          Chaining.push_back(VD);
2575
2576        assert(Chaining.size() >= 2);
2577        NamedDecl **NamedChain =
2578          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2579        for (unsigned i = 0; i < Chaining.size(); i++)
2580          NamedChain[i] = Chaining[i];
2581
2582        IndirectFieldDecl* IndirectField =
2583          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2584                                    VD->getIdentifier(), VD->getType(),
2585                                    NamedChain, Chaining.size());
2586
2587        IndirectField->setAccess(AS);
2588        IndirectField->setImplicit();
2589        SemaRef.PushOnScopeChains(IndirectField, S);
2590
2591        // That includes picking up the appropriate access specifier.
2592        if (AS != AS_none) IndirectField->setAccess(AS);
2593
2594        Chaining.resize(OldChainingSize);
2595      }
2596    }
2597  }
2598
2599  return Invalid;
2600}
2601
2602/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2603/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2604/// illegal input values are mapped to SC_None.
2605static StorageClass
2606StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2607  switch (StorageClassSpec) {
2608  case DeclSpec::SCS_unspecified:    return SC_None;
2609  case DeclSpec::SCS_extern:         return SC_Extern;
2610  case DeclSpec::SCS_static:         return SC_Static;
2611  case DeclSpec::SCS_auto:           return SC_Auto;
2612  case DeclSpec::SCS_register:       return SC_Register;
2613  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2614    // Illegal SCSs map to None: error reporting is up to the caller.
2615  case DeclSpec::SCS_mutable:        // Fall through.
2616  case DeclSpec::SCS_typedef:        return SC_None;
2617  }
2618  llvm_unreachable("unknown storage class specifier");
2619}
2620
2621/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2622/// a StorageClass. Any error reporting is up to the caller:
2623/// illegal input values are mapped to SC_None.
2624static StorageClass
2625StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2626  switch (StorageClassSpec) {
2627  case DeclSpec::SCS_unspecified:    return SC_None;
2628  case DeclSpec::SCS_extern:         return SC_Extern;
2629  case DeclSpec::SCS_static:         return SC_Static;
2630  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2631    // Illegal SCSs map to None: error reporting is up to the caller.
2632  case DeclSpec::SCS_auto:           // Fall through.
2633  case DeclSpec::SCS_mutable:        // Fall through.
2634  case DeclSpec::SCS_register:       // Fall through.
2635  case DeclSpec::SCS_typedef:        return SC_None;
2636  }
2637  llvm_unreachable("unknown storage class specifier");
2638}
2639
2640/// BuildAnonymousStructOrUnion - Handle the declaration of an
2641/// anonymous structure or union. Anonymous unions are a C++ feature
2642/// (C++ [class.union]) and a GNU C extension; anonymous structures
2643/// are a GNU C and GNU C++ extension.
2644Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2645                                             AccessSpecifier AS,
2646                                             RecordDecl *Record) {
2647  DeclContext *Owner = Record->getDeclContext();
2648
2649  // Diagnose whether this anonymous struct/union is an extension.
2650  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2651    Diag(Record->getLocation(), diag::ext_anonymous_union);
2652  else if (!Record->isUnion())
2653    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2654
2655  // C and C++ require different kinds of checks for anonymous
2656  // structs/unions.
2657  bool Invalid = false;
2658  if (getLangOptions().CPlusPlus) {
2659    const char* PrevSpec = 0;
2660    unsigned DiagID;
2661    if (Record->isUnion()) {
2662      // C++ [class.union]p6:
2663      //   Anonymous unions declared in a named namespace or in the
2664      //   global namespace shall be declared static.
2665      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2666          (isa<TranslationUnitDecl>(Owner) ||
2667           (isa<NamespaceDecl>(Owner) &&
2668            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2669        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2670          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2671
2672        // Recover by adding 'static'.
2673        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2674                               PrevSpec, DiagID);
2675      }
2676      // C++ [class.union]p6:
2677      //   A storage class is not allowed in a declaration of an
2678      //   anonymous union in a class scope.
2679      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2680               isa<RecordDecl>(Owner)) {
2681        Diag(DS.getStorageClassSpecLoc(),
2682             diag::err_anonymous_union_with_storage_spec)
2683          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2684
2685        // Recover by removing the storage specifier.
2686        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2687                               SourceLocation(),
2688                               PrevSpec, DiagID);
2689      }
2690    }
2691
2692    // Ignore const/volatile/restrict qualifiers.
2693    if (DS.getTypeQualifiers()) {
2694      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2695        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2696          << Record->isUnion() << 0
2697          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2698      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2699        Diag(DS.getVolatileSpecLoc(),
2700             diag::ext_anonymous_struct_union_qualified)
2701          << Record->isUnion() << 1
2702          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2703      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2704        Diag(DS.getRestrictSpecLoc(),
2705             diag::ext_anonymous_struct_union_qualified)
2706          << Record->isUnion() << 2
2707          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2708
2709      DS.ClearTypeQualifiers();
2710    }
2711
2712    // C++ [class.union]p2:
2713    //   The member-specification of an anonymous union shall only
2714    //   define non-static data members. [Note: nested types and
2715    //   functions cannot be declared within an anonymous union. ]
2716    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2717                                 MemEnd = Record->decls_end();
2718         Mem != MemEnd; ++Mem) {
2719      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2720        // C++ [class.union]p3:
2721        //   An anonymous union shall not have private or protected
2722        //   members (clause 11).
2723        assert(FD->getAccess() != AS_none);
2724        if (FD->getAccess() != AS_public) {
2725          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2726            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2727          Invalid = true;
2728        }
2729
2730        // C++ [class.union]p1
2731        //   An object of a class with a non-trivial constructor, a non-trivial
2732        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2733        //   assignment operator cannot be a member of a union, nor can an
2734        //   array of such objects.
2735        if (CheckNontrivialField(FD))
2736          Invalid = true;
2737      } else if ((*Mem)->isImplicit()) {
2738        // Any implicit members are fine.
2739      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2740        // This is a type that showed up in an
2741        // elaborated-type-specifier inside the anonymous struct or
2742        // union, but which actually declares a type outside of the
2743        // anonymous struct or union. It's okay.
2744      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2745        if (!MemRecord->isAnonymousStructOrUnion() &&
2746            MemRecord->getDeclName()) {
2747          // Visual C++ allows type definition in anonymous struct or union.
2748          if (getLangOptions().MicrosoftExt)
2749            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2750              << (int)Record->isUnion();
2751          else {
2752            // This is a nested type declaration.
2753            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2754              << (int)Record->isUnion();
2755            Invalid = true;
2756          }
2757        }
2758      } else if (isa<AccessSpecDecl>(*Mem)) {
2759        // Any access specifier is fine.
2760      } else {
2761        // We have something that isn't a non-static data
2762        // member. Complain about it.
2763        unsigned DK = diag::err_anonymous_record_bad_member;
2764        if (isa<TypeDecl>(*Mem))
2765          DK = diag::err_anonymous_record_with_type;
2766        else if (isa<FunctionDecl>(*Mem))
2767          DK = diag::err_anonymous_record_with_function;
2768        else if (isa<VarDecl>(*Mem))
2769          DK = diag::err_anonymous_record_with_static;
2770
2771        // Visual C++ allows type definition in anonymous struct or union.
2772        if (getLangOptions().MicrosoftExt &&
2773            DK == diag::err_anonymous_record_with_type)
2774          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2775            << (int)Record->isUnion();
2776        else {
2777          Diag((*Mem)->getLocation(), DK)
2778              << (int)Record->isUnion();
2779          Invalid = true;
2780        }
2781      }
2782    }
2783  }
2784
2785  if (!Record->isUnion() && !Owner->isRecord()) {
2786    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2787      << (int)getLangOptions().CPlusPlus;
2788    Invalid = true;
2789  }
2790
2791  // Mock up a declarator.
2792  Declarator Dc(DS, Declarator::MemberContext);
2793  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2794  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2795
2796  // Create a declaration for this anonymous struct/union.
2797  NamedDecl *Anon = 0;
2798  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2799    Anon = FieldDecl::Create(Context, OwningClass,
2800                             DS.getSourceRange().getBegin(),
2801                             Record->getLocation(),
2802                             /*IdentifierInfo=*/0,
2803                             Context.getTypeDeclType(Record),
2804                             TInfo,
2805                             /*BitWidth=*/0, /*Mutable=*/false,
2806                             /*HasInit=*/false);
2807    Anon->setAccess(AS);
2808    if (getLangOptions().CPlusPlus)
2809      FieldCollector->Add(cast<FieldDecl>(Anon));
2810  } else {
2811    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2812    assert(SCSpec != DeclSpec::SCS_typedef &&
2813           "Parser allowed 'typedef' as storage class VarDecl.");
2814    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2815    if (SCSpec == DeclSpec::SCS_mutable) {
2816      // mutable can only appear on non-static class members, so it's always
2817      // an error here
2818      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2819      Invalid = true;
2820      SC = SC_None;
2821    }
2822    SCSpec = DS.getStorageClassSpecAsWritten();
2823    VarDecl::StorageClass SCAsWritten
2824      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2825
2826    Anon = VarDecl::Create(Context, Owner,
2827                           DS.getSourceRange().getBegin(),
2828                           Record->getLocation(), /*IdentifierInfo=*/0,
2829                           Context.getTypeDeclType(Record),
2830                           TInfo, SC, SCAsWritten);
2831
2832    // Default-initialize the implicit variable. This initialization will be
2833    // trivial in almost all cases, except if a union member has an in-class
2834    // initializer:
2835    //   union { int n = 0; };
2836    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2837  }
2838  Anon->setImplicit();
2839
2840  // Add the anonymous struct/union object to the current
2841  // context. We'll be referencing this object when we refer to one of
2842  // its members.
2843  Owner->addDecl(Anon);
2844
2845  // Inject the members of the anonymous struct/union into the owning
2846  // context and into the identifier resolver chain for name lookup
2847  // purposes.
2848  SmallVector<NamedDecl*, 2> Chain;
2849  Chain.push_back(Anon);
2850
2851  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2852                                          Chain, false))
2853    Invalid = true;
2854
2855  // Mark this as an anonymous struct/union type. Note that we do not
2856  // do this until after we have already checked and injected the
2857  // members of this anonymous struct/union type, because otherwise
2858  // the members could be injected twice: once by DeclContext when it
2859  // builds its lookup table, and once by
2860  // InjectAnonymousStructOrUnionMembers.
2861  Record->setAnonymousStructOrUnion(true);
2862
2863  if (Invalid)
2864    Anon->setInvalidDecl();
2865
2866  return Anon;
2867}
2868
2869/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2870/// Microsoft C anonymous structure.
2871/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2872/// Example:
2873///
2874/// struct A { int a; };
2875/// struct B { struct A; int b; };
2876///
2877/// void foo() {
2878///   B var;
2879///   var.a = 3;
2880/// }
2881///
2882Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2883                                           RecordDecl *Record) {
2884
2885  // If there is no Record, get the record via the typedef.
2886  if (!Record)
2887    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2888
2889  // Mock up a declarator.
2890  Declarator Dc(DS, Declarator::TypeNameContext);
2891  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2892  assert(TInfo && "couldn't build declarator info for anonymous struct");
2893
2894  // Create a declaration for this anonymous struct.
2895  NamedDecl* Anon = FieldDecl::Create(Context,
2896                             cast<RecordDecl>(CurContext),
2897                             DS.getSourceRange().getBegin(),
2898                             DS.getSourceRange().getBegin(),
2899                             /*IdentifierInfo=*/0,
2900                             Context.getTypeDeclType(Record),
2901                             TInfo,
2902                             /*BitWidth=*/0, /*Mutable=*/false,
2903                             /*HasInit=*/false);
2904  Anon->setImplicit();
2905
2906  // Add the anonymous struct object to the current context.
2907  CurContext->addDecl(Anon);
2908
2909  // Inject the members of the anonymous struct into the current
2910  // context and into the identifier resolver chain for name lookup
2911  // purposes.
2912  SmallVector<NamedDecl*, 2> Chain;
2913  Chain.push_back(Anon);
2914
2915  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2916                                          Record->getDefinition(),
2917                                          AS_none, Chain, true))
2918    Anon->setInvalidDecl();
2919
2920  return Anon;
2921}
2922
2923/// GetNameForDeclarator - Determine the full declaration name for the
2924/// given Declarator.
2925DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2926  return GetNameFromUnqualifiedId(D.getName());
2927}
2928
2929/// \brief Retrieves the declaration name from a parsed unqualified-id.
2930DeclarationNameInfo
2931Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2932  DeclarationNameInfo NameInfo;
2933  NameInfo.setLoc(Name.StartLocation);
2934
2935  switch (Name.getKind()) {
2936
2937  case UnqualifiedId::IK_ImplicitSelfParam:
2938  case UnqualifiedId::IK_Identifier:
2939    NameInfo.setName(Name.Identifier);
2940    NameInfo.setLoc(Name.StartLocation);
2941    return NameInfo;
2942
2943  case UnqualifiedId::IK_OperatorFunctionId:
2944    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2945                                           Name.OperatorFunctionId.Operator));
2946    NameInfo.setLoc(Name.StartLocation);
2947    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2948      = Name.OperatorFunctionId.SymbolLocations[0];
2949    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2950      = Name.EndLocation.getRawEncoding();
2951    return NameInfo;
2952
2953  case UnqualifiedId::IK_LiteralOperatorId:
2954    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2955                                                           Name.Identifier));
2956    NameInfo.setLoc(Name.StartLocation);
2957    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2958    return NameInfo;
2959
2960  case UnqualifiedId::IK_ConversionFunctionId: {
2961    TypeSourceInfo *TInfo;
2962    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2963    if (Ty.isNull())
2964      return DeclarationNameInfo();
2965    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2966                                               Context.getCanonicalType(Ty)));
2967    NameInfo.setLoc(Name.StartLocation);
2968    NameInfo.setNamedTypeInfo(TInfo);
2969    return NameInfo;
2970  }
2971
2972  case UnqualifiedId::IK_ConstructorName: {
2973    TypeSourceInfo *TInfo;
2974    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2975    if (Ty.isNull())
2976      return DeclarationNameInfo();
2977    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2978                                              Context.getCanonicalType(Ty)));
2979    NameInfo.setLoc(Name.StartLocation);
2980    NameInfo.setNamedTypeInfo(TInfo);
2981    return NameInfo;
2982  }
2983
2984  case UnqualifiedId::IK_ConstructorTemplateId: {
2985    // In well-formed code, we can only have a constructor
2986    // template-id that refers to the current context, so go there
2987    // to find the actual type being constructed.
2988    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2989    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2990      return DeclarationNameInfo();
2991
2992    // Determine the type of the class being constructed.
2993    QualType CurClassType = Context.getTypeDeclType(CurClass);
2994
2995    // FIXME: Check two things: that the template-id names the same type as
2996    // CurClassType, and that the template-id does not occur when the name
2997    // was qualified.
2998
2999    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3000                                    Context.getCanonicalType(CurClassType)));
3001    NameInfo.setLoc(Name.StartLocation);
3002    // FIXME: should we retrieve TypeSourceInfo?
3003    NameInfo.setNamedTypeInfo(0);
3004    return NameInfo;
3005  }
3006
3007  case UnqualifiedId::IK_DestructorName: {
3008    TypeSourceInfo *TInfo;
3009    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3010    if (Ty.isNull())
3011      return DeclarationNameInfo();
3012    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3013                                              Context.getCanonicalType(Ty)));
3014    NameInfo.setLoc(Name.StartLocation);
3015    NameInfo.setNamedTypeInfo(TInfo);
3016    return NameInfo;
3017  }
3018
3019  case UnqualifiedId::IK_TemplateId: {
3020    TemplateName TName = Name.TemplateId->Template.get();
3021    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3022    return Context.getNameForTemplate(TName, TNameLoc);
3023  }
3024
3025  } // switch (Name.getKind())
3026
3027  llvm_unreachable("Unknown name kind");
3028}
3029
3030static QualType getCoreType(QualType Ty) {
3031  do {
3032    if (Ty->isPointerType() || Ty->isReferenceType())
3033      Ty = Ty->getPointeeType();
3034    else if (Ty->isArrayType())
3035      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3036    else
3037      return Ty.withoutLocalFastQualifiers();
3038  } while (true);
3039}
3040
3041/// hasSimilarParameters - Determine whether the C++ functions Declaration
3042/// and Definition have "nearly" matching parameters. This heuristic is
3043/// used to improve diagnostics in the case where an out-of-line function
3044/// definition doesn't match any declaration within the class or namespace.
3045/// Also sets Params to the list of indices to the parameters that differ
3046/// between the declaration and the definition. If hasSimilarParameters
3047/// returns true and Params is empty, then all of the parameters match.
3048static bool hasSimilarParameters(ASTContext &Context,
3049                                     FunctionDecl *Declaration,
3050                                     FunctionDecl *Definition,
3051                                     llvm::SmallVectorImpl<unsigned> &Params) {
3052  Params.clear();
3053  if (Declaration->param_size() != Definition->param_size())
3054    return false;
3055  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3056    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3057    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3058
3059    // The parameter types are identical
3060    if (Context.hasSameType(DefParamTy, DeclParamTy))
3061      continue;
3062
3063    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3064    QualType DefParamBaseTy = getCoreType(DefParamTy);
3065    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3066    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3067
3068    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3069        (DeclTyName && DeclTyName == DefTyName))
3070      Params.push_back(Idx);
3071    else  // The two parameters aren't even close
3072      return false;
3073  }
3074
3075  return true;
3076}
3077
3078/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3079/// declarator needs to be rebuilt in the current instantiation.
3080/// Any bits of declarator which appear before the name are valid for
3081/// consideration here.  That's specifically the type in the decl spec
3082/// and the base type in any member-pointer chunks.
3083static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3084                                                    DeclarationName Name) {
3085  // The types we specifically need to rebuild are:
3086  //   - typenames, typeofs, and decltypes
3087  //   - types which will become injected class names
3088  // Of course, we also need to rebuild any type referencing such a
3089  // type.  It's safest to just say "dependent", but we call out a
3090  // few cases here.
3091
3092  DeclSpec &DS = D.getMutableDeclSpec();
3093  switch (DS.getTypeSpecType()) {
3094  case DeclSpec::TST_typename:
3095  case DeclSpec::TST_typeofType:
3096  case DeclSpec::TST_decltype:
3097  case DeclSpec::TST_underlyingType:
3098  case DeclSpec::TST_atomic: {
3099    // Grab the type from the parser.
3100    TypeSourceInfo *TSI = 0;
3101    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3102    if (T.isNull() || !T->isDependentType()) break;
3103
3104    // Make sure there's a type source info.  This isn't really much
3105    // of a waste; most dependent types should have type source info
3106    // attached already.
3107    if (!TSI)
3108      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3109
3110    // Rebuild the type in the current instantiation.
3111    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3112    if (!TSI) return true;
3113
3114    // Store the new type back in the decl spec.
3115    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3116    DS.UpdateTypeRep(LocType);
3117    break;
3118  }
3119
3120  case DeclSpec::TST_typeofExpr: {
3121    Expr *E = DS.getRepAsExpr();
3122    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3123    if (Result.isInvalid()) return true;
3124    DS.UpdateExprRep(Result.get());
3125    break;
3126  }
3127
3128  default:
3129    // Nothing to do for these decl specs.
3130    break;
3131  }
3132
3133  // It doesn't matter what order we do this in.
3134  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3135    DeclaratorChunk &Chunk = D.getTypeObject(I);
3136
3137    // The only type information in the declarator which can come
3138    // before the declaration name is the base type of a member
3139    // pointer.
3140    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3141      continue;
3142
3143    // Rebuild the scope specifier in-place.
3144    CXXScopeSpec &SS = Chunk.Mem.Scope();
3145    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3146      return true;
3147  }
3148
3149  return false;
3150}
3151
3152Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3153  D.setFunctionDefinitionKind(FDK_Declaration);
3154  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3155
3156  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3157      Dcl->getDeclContext()->isFileContext())
3158    Dcl->setTopLevelDeclInObjCContainer();
3159
3160  return Dcl;
3161}
3162
3163/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3164///   If T is the name of a class, then each of the following shall have a
3165///   name different from T:
3166///     - every static data member of class T;
3167///     - every member function of class T
3168///     - every member of class T that is itself a type;
3169/// \returns true if the declaration name violates these rules.
3170bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3171                                   DeclarationNameInfo NameInfo) {
3172  DeclarationName Name = NameInfo.getName();
3173
3174  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3175    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3176      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3177      return true;
3178    }
3179
3180  return false;
3181}
3182
3183Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3184                             MultiTemplateParamsArg TemplateParamLists) {
3185  // TODO: consider using NameInfo for diagnostic.
3186  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3187  DeclarationName Name = NameInfo.getName();
3188
3189  // All of these full declarators require an identifier.  If it doesn't have
3190  // one, the ParsedFreeStandingDeclSpec action should be used.
3191  if (!Name) {
3192    if (!D.isInvalidType())  // Reject this if we think it is valid.
3193      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3194           diag::err_declarator_need_ident)
3195        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3196    return 0;
3197  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3198    return 0;
3199
3200  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3201  // we find one that is.
3202  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3203         (S->getFlags() & Scope::TemplateParamScope) != 0)
3204    S = S->getParent();
3205
3206  if (NestedNameSpecifierLoc SpecLoc =
3207        D.getCXXScopeSpec().getWithLocInContext(Context)) {
3208    while (SpecLoc.getPrefix())
3209      SpecLoc = SpecLoc.getPrefix();
3210    if (dyn_cast_or_null<DecltypeType>(
3211          SpecLoc.getNestedNameSpecifier()->getAsType()))
3212      Diag(SpecLoc.getBeginLoc(), diag::err_decltype_in_declarator)
3213        << SpecLoc.getTypeLoc().getSourceRange();
3214  }
3215
3216  DeclContext *DC = CurContext;
3217  if (D.getCXXScopeSpec().isInvalid())
3218    D.setInvalidType();
3219  else if (D.getCXXScopeSpec().isSet()) {
3220    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3221                                        UPPC_DeclarationQualifier))
3222      return 0;
3223
3224    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3225    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3226    if (!DC) {
3227      // If we could not compute the declaration context, it's because the
3228      // declaration context is dependent but does not refer to a class,
3229      // class template, or class template partial specialization. Complain
3230      // and return early, to avoid the coming semantic disaster.
3231      Diag(D.getIdentifierLoc(),
3232           diag::err_template_qualified_declarator_no_match)
3233        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3234        << D.getCXXScopeSpec().getRange();
3235      return 0;
3236    }
3237    bool IsDependentContext = DC->isDependentContext();
3238
3239    if (!IsDependentContext &&
3240        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3241      return 0;
3242
3243    if (isa<CXXRecordDecl>(DC)) {
3244      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3245        Diag(D.getIdentifierLoc(),
3246             diag::err_member_def_undefined_record)
3247          << Name << DC << D.getCXXScopeSpec().getRange();
3248        D.setInvalidType();
3249      } else if (isa<CXXRecordDecl>(CurContext) &&
3250                 !D.getDeclSpec().isFriendSpecified()) {
3251        // The user provided a superfluous scope specifier inside a class
3252        // definition:
3253        //
3254        // class X {
3255        //   void X::f();
3256        // };
3257        if (CurContext->Equals(DC)) {
3258          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3259            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3260        } else {
3261          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3262            << Name << D.getCXXScopeSpec().getRange();
3263
3264          // C++ constructors and destructors with incorrect scopes can break
3265          // our AST invariants by having the wrong underlying types. If
3266          // that's the case, then drop this declaration entirely.
3267          if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3268               Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3269              !Context.hasSameType(Name.getCXXNameType(),
3270                 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))))
3271            return 0;
3272        }
3273
3274        // Pretend that this qualifier was not here.
3275        D.getCXXScopeSpec().clear();
3276      }
3277    }
3278
3279    // Check whether we need to rebuild the type of the given
3280    // declaration in the current instantiation.
3281    if (EnteringContext && IsDependentContext &&
3282        TemplateParamLists.size() != 0) {
3283      ContextRAII SavedContext(*this, DC);
3284      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3285        D.setInvalidType();
3286    }
3287  }
3288
3289  if (DiagnoseClassNameShadow(DC, NameInfo))
3290    // If this is a typedef, we'll end up spewing multiple diagnostics.
3291    // Just return early; it's safer.
3292    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3293      return 0;
3294
3295  NamedDecl *New;
3296
3297  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3298  QualType R = TInfo->getType();
3299
3300  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3301                                      UPPC_DeclarationType))
3302    D.setInvalidType();
3303
3304  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3305                        ForRedeclaration);
3306
3307  // See if this is a redefinition of a variable in the same scope.
3308  if (!D.getCXXScopeSpec().isSet()) {
3309    bool IsLinkageLookup = false;
3310
3311    // If the declaration we're planning to build will be a function
3312    // or object with linkage, then look for another declaration with
3313    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3314    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3315      /* Do nothing*/;
3316    else if (R->isFunctionType()) {
3317      if (CurContext->isFunctionOrMethod() ||
3318          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3319        IsLinkageLookup = true;
3320    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3321      IsLinkageLookup = true;
3322    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3323             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3324      IsLinkageLookup = true;
3325
3326    if (IsLinkageLookup)
3327      Previous.clear(LookupRedeclarationWithLinkage);
3328
3329    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3330  } else { // Something like "int foo::x;"
3331    LookupQualifiedName(Previous, DC);
3332
3333    // Don't consider using declarations as previous declarations for
3334    // out-of-line members.
3335    RemoveUsingDecls(Previous);
3336
3337    // C++ 7.3.1.2p2:
3338    // Members (including explicit specializations of templates) of a named
3339    // namespace can also be defined outside that namespace by explicit
3340    // qualification of the name being defined, provided that the entity being
3341    // defined was already declared in the namespace and the definition appears
3342    // after the point of declaration in a namespace that encloses the
3343    // declarations namespace.
3344    //
3345    // Note that we only check the context at this point. We don't yet
3346    // have enough information to make sure that PrevDecl is actually
3347    // the declaration we want to match. For example, given:
3348    //
3349    //   class X {
3350    //     void f();
3351    //     void f(float);
3352    //   };
3353    //
3354    //   void X::f(int) { } // ill-formed
3355    //
3356    // In this case, PrevDecl will point to the overload set
3357    // containing the two f's declared in X, but neither of them
3358    // matches.
3359
3360    // First check whether we named the global scope.
3361    if (isa<TranslationUnitDecl>(DC)) {
3362      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3363        << Name << D.getCXXScopeSpec().getRange();
3364    } else {
3365      DeclContext *Cur = CurContext;
3366      while (isa<LinkageSpecDecl>(Cur))
3367        Cur = Cur->getParent();
3368      if (!Cur->Encloses(DC)) {
3369        // The qualifying scope doesn't enclose the original declaration.
3370        // Emit diagnostic based on current scope.
3371        SourceLocation L = D.getIdentifierLoc();
3372        SourceRange R = D.getCXXScopeSpec().getRange();
3373        if (isa<FunctionDecl>(Cur))
3374          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3375        else
3376          Diag(L, diag::err_invalid_declarator_scope)
3377            << Name << cast<NamedDecl>(DC) << R;
3378        D.setInvalidType();
3379      }
3380    }
3381  }
3382
3383  if (Previous.isSingleResult() &&
3384      Previous.getFoundDecl()->isTemplateParameter()) {
3385    // Maybe we will complain about the shadowed template parameter.
3386    if (!D.isInvalidType())
3387      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3388                                      Previous.getFoundDecl());
3389
3390    // Just pretend that we didn't see the previous declaration.
3391    Previous.clear();
3392  }
3393
3394  // In C++, the previous declaration we find might be a tag type
3395  // (class or enum). In this case, the new declaration will hide the
3396  // tag type. Note that this does does not apply if we're declaring a
3397  // typedef (C++ [dcl.typedef]p4).
3398  if (Previous.isSingleTagDecl() &&
3399      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3400    Previous.clear();
3401
3402  bool AddToScope = true;
3403  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3404    if (TemplateParamLists.size()) {
3405      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3406      return 0;
3407    }
3408
3409    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3410  } else if (R->isFunctionType()) {
3411    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3412                                  move(TemplateParamLists),
3413                                  AddToScope);
3414  } else {
3415    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3416                                  move(TemplateParamLists));
3417  }
3418
3419  if (New == 0)
3420    return 0;
3421
3422  // If this has an identifier and is not an invalid redeclaration or
3423  // function template specialization, add it to the scope stack.
3424  if (New->getDeclName() && AddToScope &&
3425       !(D.isRedeclaration() && New->isInvalidDecl()))
3426    PushOnScopeChains(New, S);
3427
3428  return New;
3429}
3430
3431/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3432/// types into constant array types in certain situations which would otherwise
3433/// be errors (for GCC compatibility).
3434static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3435                                                    ASTContext &Context,
3436                                                    bool &SizeIsNegative,
3437                                                    llvm::APSInt &Oversized) {
3438  // This method tries to turn a variable array into a constant
3439  // array even when the size isn't an ICE.  This is necessary
3440  // for compatibility with code that depends on gcc's buggy
3441  // constant expression folding, like struct {char x[(int)(char*)2];}
3442  SizeIsNegative = false;
3443  Oversized = 0;
3444
3445  if (T->isDependentType())
3446    return QualType();
3447
3448  QualifierCollector Qs;
3449  const Type *Ty = Qs.strip(T);
3450
3451  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3452    QualType Pointee = PTy->getPointeeType();
3453    QualType FixedType =
3454        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3455                                            Oversized);
3456    if (FixedType.isNull()) return FixedType;
3457    FixedType = Context.getPointerType(FixedType);
3458    return Qs.apply(Context, FixedType);
3459  }
3460  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3461    QualType Inner = PTy->getInnerType();
3462    QualType FixedType =
3463        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3464                                            Oversized);
3465    if (FixedType.isNull()) return FixedType;
3466    FixedType = Context.getParenType(FixedType);
3467    return Qs.apply(Context, FixedType);
3468  }
3469
3470  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3471  if (!VLATy)
3472    return QualType();
3473  // FIXME: We should probably handle this case
3474  if (VLATy->getElementType()->isVariablyModifiedType())
3475    return QualType();
3476
3477  llvm::APSInt Res;
3478  if (!VLATy->getSizeExpr() ||
3479      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3480    return QualType();
3481
3482  // Check whether the array size is negative.
3483  if (Res.isSigned() && Res.isNegative()) {
3484    SizeIsNegative = true;
3485    return QualType();
3486  }
3487
3488  // Check whether the array is too large to be addressed.
3489  unsigned ActiveSizeBits
3490    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3491                                              Res);
3492  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3493    Oversized = Res;
3494    return QualType();
3495  }
3496
3497  return Context.getConstantArrayType(VLATy->getElementType(),
3498                                      Res, ArrayType::Normal, 0);
3499}
3500
3501/// \brief Register the given locally-scoped external C declaration so
3502/// that it can be found later for redeclarations
3503void
3504Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3505                                       const LookupResult &Previous,
3506                                       Scope *S) {
3507  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3508         "Decl is not a locally-scoped decl!");
3509  // Note that we have a locally-scoped external with this name.
3510  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3511
3512  if (!Previous.isSingleResult())
3513    return;
3514
3515  NamedDecl *PrevDecl = Previous.getFoundDecl();
3516
3517  // If there was a previous declaration of this variable, it may be
3518  // in our identifier chain. Update the identifier chain with the new
3519  // declaration.
3520  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3521    // The previous declaration was found on the identifer resolver
3522    // chain, so remove it from its scope.
3523
3524    if (S->isDeclScope(PrevDecl)) {
3525      // Special case for redeclarations in the SAME scope.
3526      // Because this declaration is going to be added to the identifier chain
3527      // later, we should temporarily take it OFF the chain.
3528      IdResolver.RemoveDecl(ND);
3529
3530    } else {
3531      // Find the scope for the original declaration.
3532      while (S && !S->isDeclScope(PrevDecl))
3533        S = S->getParent();
3534    }
3535
3536    if (S)
3537      S->RemoveDecl(PrevDecl);
3538  }
3539}
3540
3541llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3542Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3543  if (ExternalSource) {
3544    // Load locally-scoped external decls from the external source.
3545    SmallVector<NamedDecl *, 4> Decls;
3546    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3547    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3548      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3549        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3550      if (Pos == LocallyScopedExternalDecls.end())
3551        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3552    }
3553  }
3554
3555  return LocallyScopedExternalDecls.find(Name);
3556}
3557
3558/// \brief Diagnose function specifiers on a declaration of an identifier that
3559/// does not identify a function.
3560void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3561  // FIXME: We should probably indicate the identifier in question to avoid
3562  // confusion for constructs like "inline int a(), b;"
3563  if (D.getDeclSpec().isInlineSpecified())
3564    Diag(D.getDeclSpec().getInlineSpecLoc(),
3565         diag::err_inline_non_function);
3566
3567  if (D.getDeclSpec().isVirtualSpecified())
3568    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3569         diag::err_virtual_non_function);
3570
3571  if (D.getDeclSpec().isExplicitSpecified())
3572    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3573         diag::err_explicit_non_function);
3574}
3575
3576NamedDecl*
3577Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3578                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3579  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3580  if (D.getCXXScopeSpec().isSet()) {
3581    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3582      << D.getCXXScopeSpec().getRange();
3583    D.setInvalidType();
3584    // Pretend we didn't see the scope specifier.
3585    DC = CurContext;
3586    Previous.clear();
3587  }
3588
3589  if (getLangOptions().CPlusPlus) {
3590    // Check that there are no default arguments (C++ only).
3591    CheckExtraCXXDefaultArguments(D);
3592  }
3593
3594  DiagnoseFunctionSpecifiers(D);
3595
3596  if (D.getDeclSpec().isThreadSpecified())
3597    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3598  if (D.getDeclSpec().isConstexprSpecified())
3599    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3600      << 1;
3601
3602  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3603    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3604      << D.getName().getSourceRange();
3605    return 0;
3606  }
3607
3608  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3609  if (!NewTD) return 0;
3610
3611  // Handle attributes prior to checking for duplicates in MergeVarDecl
3612  ProcessDeclAttributes(S, NewTD, D);
3613
3614  CheckTypedefForVariablyModifiedType(S, NewTD);
3615
3616  bool Redeclaration = D.isRedeclaration();
3617  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3618  D.setRedeclaration(Redeclaration);
3619  return ND;
3620}
3621
3622void
3623Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3624  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3625  // then it shall have block scope.
3626  // Note that variably modified types must be fixed before merging the decl so
3627  // that redeclarations will match.
3628  QualType T = NewTD->getUnderlyingType();
3629  if (T->isVariablyModifiedType()) {
3630    getCurFunction()->setHasBranchProtectedScope();
3631
3632    if (S->getFnParent() == 0) {
3633      bool SizeIsNegative;
3634      llvm::APSInt Oversized;
3635      QualType FixedTy =
3636          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3637                                              Oversized);
3638      if (!FixedTy.isNull()) {
3639        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3640        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3641      } else {
3642        if (SizeIsNegative)
3643          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3644        else if (T->isVariableArrayType())
3645          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3646        else if (Oversized.getBoolValue())
3647          Diag(NewTD->getLocation(), diag::err_array_too_large)
3648            << Oversized.toString(10);
3649        else
3650          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3651        NewTD->setInvalidDecl();
3652      }
3653    }
3654  }
3655}
3656
3657
3658/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3659/// declares a typedef-name, either using the 'typedef' type specifier or via
3660/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3661NamedDecl*
3662Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3663                           LookupResult &Previous, bool &Redeclaration) {
3664  // Merge the decl with the existing one if appropriate. If the decl is
3665  // in an outer scope, it isn't the same thing.
3666  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3667                       /*ExplicitInstantiationOrSpecialization=*/false);
3668  if (!Previous.empty()) {
3669    Redeclaration = true;
3670    MergeTypedefNameDecl(NewTD, Previous);
3671  }
3672
3673  // If this is the C FILE type, notify the AST context.
3674  if (IdentifierInfo *II = NewTD->getIdentifier())
3675    if (!NewTD->isInvalidDecl() &&
3676        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3677      if (II->isStr("FILE"))
3678        Context.setFILEDecl(NewTD);
3679      else if (II->isStr("jmp_buf"))
3680        Context.setjmp_bufDecl(NewTD);
3681      else if (II->isStr("sigjmp_buf"))
3682        Context.setsigjmp_bufDecl(NewTD);
3683      else if (II->isStr("ucontext_t"))
3684        Context.setucontext_tDecl(NewTD);
3685      else if (II->isStr("__builtin_va_list"))
3686        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3687    }
3688
3689  return NewTD;
3690}
3691
3692/// \brief Determines whether the given declaration is an out-of-scope
3693/// previous declaration.
3694///
3695/// This routine should be invoked when name lookup has found a
3696/// previous declaration (PrevDecl) that is not in the scope where a
3697/// new declaration by the same name is being introduced. If the new
3698/// declaration occurs in a local scope, previous declarations with
3699/// linkage may still be considered previous declarations (C99
3700/// 6.2.2p4-5, C++ [basic.link]p6).
3701///
3702/// \param PrevDecl the previous declaration found by name
3703/// lookup
3704///
3705/// \param DC the context in which the new declaration is being
3706/// declared.
3707///
3708/// \returns true if PrevDecl is an out-of-scope previous declaration
3709/// for a new delcaration with the same name.
3710static bool
3711isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3712                                ASTContext &Context) {
3713  if (!PrevDecl)
3714    return false;
3715
3716  if (!PrevDecl->hasLinkage())
3717    return false;
3718
3719  if (Context.getLangOptions().CPlusPlus) {
3720    // C++ [basic.link]p6:
3721    //   If there is a visible declaration of an entity with linkage
3722    //   having the same name and type, ignoring entities declared
3723    //   outside the innermost enclosing namespace scope, the block
3724    //   scope declaration declares that same entity and receives the
3725    //   linkage of the previous declaration.
3726    DeclContext *OuterContext = DC->getRedeclContext();
3727    if (!OuterContext->isFunctionOrMethod())
3728      // This rule only applies to block-scope declarations.
3729      return false;
3730
3731    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3732    if (PrevOuterContext->isRecord())
3733      // We found a member function: ignore it.
3734      return false;
3735
3736    // Find the innermost enclosing namespace for the new and
3737    // previous declarations.
3738    OuterContext = OuterContext->getEnclosingNamespaceContext();
3739    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3740
3741    // The previous declaration is in a different namespace, so it
3742    // isn't the same function.
3743    if (!OuterContext->Equals(PrevOuterContext))
3744      return false;
3745  }
3746
3747  return true;
3748}
3749
3750static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3751  CXXScopeSpec &SS = D.getCXXScopeSpec();
3752  if (!SS.isSet()) return;
3753  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3754}
3755
3756bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3757  QualType type = decl->getType();
3758  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3759  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3760    // Various kinds of declaration aren't allowed to be __autoreleasing.
3761    unsigned kind = -1U;
3762    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3763      if (var->hasAttr<BlocksAttr>())
3764        kind = 0; // __block
3765      else if (!var->hasLocalStorage())
3766        kind = 1; // global
3767    } else if (isa<ObjCIvarDecl>(decl)) {
3768      kind = 3; // ivar
3769    } else if (isa<FieldDecl>(decl)) {
3770      kind = 2; // field
3771    }
3772
3773    if (kind != -1U) {
3774      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3775        << kind;
3776    }
3777  } else if (lifetime == Qualifiers::OCL_None) {
3778    // Try to infer lifetime.
3779    if (!type->isObjCLifetimeType())
3780      return false;
3781
3782    lifetime = type->getObjCARCImplicitLifetime();
3783    type = Context.getLifetimeQualifiedType(type, lifetime);
3784    decl->setType(type);
3785  }
3786
3787  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3788    // Thread-local variables cannot have lifetime.
3789    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3790        var->isThreadSpecified()) {
3791      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3792        << var->getType();
3793      return true;
3794    }
3795  }
3796
3797  return false;
3798}
3799
3800NamedDecl*
3801Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3802                              TypeSourceInfo *TInfo, LookupResult &Previous,
3803                              MultiTemplateParamsArg TemplateParamLists) {
3804  QualType R = TInfo->getType();
3805  DeclarationName Name = GetNameForDeclarator(D).getName();
3806
3807  // Check that there are no default arguments (C++ only).
3808  if (getLangOptions().CPlusPlus)
3809    CheckExtraCXXDefaultArguments(D);
3810
3811  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3812  assert(SCSpec != DeclSpec::SCS_typedef &&
3813         "Parser allowed 'typedef' as storage class VarDecl.");
3814  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3815  if (SCSpec == DeclSpec::SCS_mutable) {
3816    // mutable can only appear on non-static class members, so it's always
3817    // an error here
3818    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3819    D.setInvalidType();
3820    SC = SC_None;
3821  }
3822  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3823  VarDecl::StorageClass SCAsWritten
3824    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3825
3826  IdentifierInfo *II = Name.getAsIdentifierInfo();
3827  if (!II) {
3828    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3829      << Name;
3830    return 0;
3831  }
3832
3833  DiagnoseFunctionSpecifiers(D);
3834
3835  if (!DC->isRecord() && S->getFnParent() == 0) {
3836    // C99 6.9p2: The storage-class specifiers auto and register shall not
3837    // appear in the declaration specifiers in an external declaration.
3838    if (SC == SC_Auto || SC == SC_Register) {
3839
3840      // If this is a register variable with an asm label specified, then this
3841      // is a GNU extension.
3842      if (SC == SC_Register && D.getAsmLabel())
3843        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3844      else
3845        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3846      D.setInvalidType();
3847    }
3848  }
3849
3850  if (getLangOptions().OpenCL) {
3851    // Set up the special work-group-local storage class for variables in the
3852    // OpenCL __local address space.
3853    if (R.getAddressSpace() == LangAS::opencl_local)
3854      SC = SC_OpenCLWorkGroupLocal;
3855  }
3856
3857  bool isExplicitSpecialization = false;
3858  VarDecl *NewVD;
3859  if (!getLangOptions().CPlusPlus) {
3860    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3861                            D.getIdentifierLoc(), II,
3862                            R, TInfo, SC, SCAsWritten);
3863
3864    if (D.isInvalidType())
3865      NewVD->setInvalidDecl();
3866  } else {
3867    if (DC->isRecord() && !CurContext->isRecord()) {
3868      // This is an out-of-line definition of a static data member.
3869      if (SC == SC_Static) {
3870        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3871             diag::err_static_out_of_line)
3872          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3873      } else if (SC == SC_None)
3874        SC = SC_Static;
3875    }
3876    if (SC == SC_Static) {
3877      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3878        if (RD->isLocalClass())
3879          Diag(D.getIdentifierLoc(),
3880               diag::err_static_data_member_not_allowed_in_local_class)
3881            << Name << RD->getDeclName();
3882
3883        // C++ [class.union]p1: If a union contains a static data member,
3884        // the program is ill-formed.
3885        //
3886        // We also disallow static data members in anonymous structs.
3887        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3888          Diag(D.getIdentifierLoc(),
3889               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3890            << Name << RD->isUnion();
3891      }
3892    }
3893
3894    // Match up the template parameter lists with the scope specifier, then
3895    // determine whether we have a template or a template specialization.
3896    isExplicitSpecialization = false;
3897    bool Invalid = false;
3898    if (TemplateParameterList *TemplateParams
3899        = MatchTemplateParametersToScopeSpecifier(
3900                                  D.getDeclSpec().getSourceRange().getBegin(),
3901                                                  D.getIdentifierLoc(),
3902                                                  D.getCXXScopeSpec(),
3903                                                  TemplateParamLists.get(),
3904                                                  TemplateParamLists.size(),
3905                                                  /*never a friend*/ false,
3906                                                  isExplicitSpecialization,
3907                                                  Invalid)) {
3908      if (TemplateParams->size() > 0) {
3909        // There is no such thing as a variable template.
3910        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3911          << II
3912          << SourceRange(TemplateParams->getTemplateLoc(),
3913                         TemplateParams->getRAngleLoc());
3914        return 0;
3915      } else {
3916        // There is an extraneous 'template<>' for this variable. Complain
3917        // about it, but allow the declaration of the variable.
3918        Diag(TemplateParams->getTemplateLoc(),
3919             diag::err_template_variable_noparams)
3920          << II
3921          << SourceRange(TemplateParams->getTemplateLoc(),
3922                         TemplateParams->getRAngleLoc());
3923      }
3924    }
3925
3926    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3927                            D.getIdentifierLoc(), II,
3928                            R, TInfo, SC, SCAsWritten);
3929
3930    // If this decl has an auto type in need of deduction, make a note of the
3931    // Decl so we can diagnose uses of it in its own initializer.
3932    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3933        R->getContainedAutoType())
3934      ParsingInitForAutoVars.insert(NewVD);
3935
3936    if (D.isInvalidType() || Invalid)
3937      NewVD->setInvalidDecl();
3938
3939    SetNestedNameSpecifier(NewVD, D);
3940
3941    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3942      NewVD->setTemplateParameterListsInfo(Context,
3943                                           TemplateParamLists.size(),
3944                                           TemplateParamLists.release());
3945    }
3946
3947    if (D.getDeclSpec().isConstexprSpecified()) {
3948      // FIXME: once we know whether there's an initializer, apply this to
3949      // static data members too.
3950      if (!NewVD->isStaticDataMember() &&
3951          !NewVD->isThisDeclarationADefinition()) {
3952        // 'constexpr' is redundant and ill-formed on a non-defining declaration
3953        // of a variable. Suggest replacing it with 'const' if appropriate.
3954        SourceLocation ConstexprLoc = D.getDeclSpec().getConstexprSpecLoc();
3955        SourceRange ConstexprRange(ConstexprLoc, ConstexprLoc);
3956        // If the declarator is complex, we need to move the keyword to the
3957        // innermost chunk as we switch it from 'constexpr' to 'const'.
3958        int Kind = DeclaratorChunk::Paren;
3959        for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3960          Kind = D.getTypeObject(I).Kind;
3961          if (Kind != DeclaratorChunk::Paren)
3962            break;
3963        }
3964        if ((D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) ||
3965            Kind == DeclaratorChunk::Reference)
3966          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3967            << FixItHint::CreateRemoval(ConstexprRange);
3968        else if (Kind == DeclaratorChunk::Paren)
3969          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3970            << FixItHint::CreateReplacement(ConstexprRange, "const");
3971        else
3972          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3973            << FixItHint::CreateRemoval(ConstexprRange)
3974            << FixItHint::CreateInsertion(D.getIdentifierLoc(), "const ");
3975      } else {
3976        NewVD->setConstexpr(true);
3977      }
3978    }
3979  }
3980
3981  // Set the lexical context. If the declarator has a C++ scope specifier, the
3982  // lexical context will be different from the semantic context.
3983  NewVD->setLexicalDeclContext(CurContext);
3984
3985  if (D.getDeclSpec().isThreadSpecified()) {
3986    if (NewVD->hasLocalStorage())
3987      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3988    else if (!Context.getTargetInfo().isTLSSupported())
3989      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3990    else
3991      NewVD->setThreadSpecified(true);
3992  }
3993
3994  if (D.getDeclSpec().isModulePrivateSpecified()) {
3995    if (isExplicitSpecialization)
3996      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
3997        << 2
3998        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3999    else if (NewVD->hasLocalStorage())
4000      Diag(NewVD->getLocation(), diag::err_module_private_local)
4001        << 0 << NewVD->getDeclName()
4002        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4003        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4004    else
4005      NewVD->setModulePrivate();
4006  }
4007
4008  // Handle attributes prior to checking for duplicates in MergeVarDecl
4009  ProcessDeclAttributes(S, NewVD, D);
4010
4011  // In auto-retain/release, infer strong retension for variables of
4012  // retainable type.
4013  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4014    NewVD->setInvalidDecl();
4015
4016  // Handle GNU asm-label extension (encoded as an attribute).
4017  if (Expr *E = (Expr*)D.getAsmLabel()) {
4018    // The parser guarantees this is a string.
4019    StringLiteral *SE = cast<StringLiteral>(E);
4020    StringRef Label = SE->getString();
4021    if (S->getFnParent() != 0) {
4022      switch (SC) {
4023      case SC_None:
4024      case SC_Auto:
4025        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4026        break;
4027      case SC_Register:
4028        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4029          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4030        break;
4031      case SC_Static:
4032      case SC_Extern:
4033      case SC_PrivateExtern:
4034      case SC_OpenCLWorkGroupLocal:
4035        break;
4036      }
4037    }
4038
4039    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4040                                                Context, Label));
4041  }
4042
4043  // Diagnose shadowed variables before filtering for scope.
4044  if (!D.getCXXScopeSpec().isSet())
4045    CheckShadow(S, NewVD, Previous);
4046
4047  // Don't consider existing declarations that are in a different
4048  // scope and are out-of-semantic-context declarations (if the new
4049  // declaration has linkage).
4050  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4051                       isExplicitSpecialization);
4052
4053  if (!getLangOptions().CPlusPlus) {
4054    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4055  } else {
4056    // Merge the decl with the existing one if appropriate.
4057    if (!Previous.empty()) {
4058      if (Previous.isSingleResult() &&
4059          isa<FieldDecl>(Previous.getFoundDecl()) &&
4060          D.getCXXScopeSpec().isSet()) {
4061        // The user tried to define a non-static data member
4062        // out-of-line (C++ [dcl.meaning]p1).
4063        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4064          << D.getCXXScopeSpec().getRange();
4065        Previous.clear();
4066        NewVD->setInvalidDecl();
4067      }
4068    } else if (D.getCXXScopeSpec().isSet()) {
4069      // No previous declaration in the qualifying scope.
4070      Diag(D.getIdentifierLoc(), diag::err_no_member)
4071        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4072        << D.getCXXScopeSpec().getRange();
4073      NewVD->setInvalidDecl();
4074    }
4075
4076    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4077
4078    // This is an explicit specialization of a static data member. Check it.
4079    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4080        CheckMemberSpecialization(NewVD, Previous))
4081      NewVD->setInvalidDecl();
4082  }
4083
4084  // attributes declared post-definition are currently ignored
4085  // FIXME: This should be handled in attribute merging, not
4086  // here.
4087  if (Previous.isSingleResult()) {
4088    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4089    if (Def && (Def = Def->getDefinition()) &&
4090        Def != NewVD && D.hasAttributes()) {
4091      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4092      Diag(Def->getLocation(), diag::note_previous_definition);
4093    }
4094  }
4095
4096  // If this is a locally-scoped extern C variable, update the map of
4097  // such variables.
4098  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4099      !NewVD->isInvalidDecl())
4100    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4101
4102  // If there's a #pragma GCC visibility in scope, and this isn't a class
4103  // member, set the visibility of this variable.
4104  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4105    AddPushedVisibilityAttribute(NewVD);
4106
4107  MarkUnusedFileScopedDecl(NewVD);
4108
4109  return NewVD;
4110}
4111
4112/// \brief Diagnose variable or built-in function shadowing.  Implements
4113/// -Wshadow.
4114///
4115/// This method is called whenever a VarDecl is added to a "useful"
4116/// scope.
4117///
4118/// \param S the scope in which the shadowing name is being declared
4119/// \param R the lookup of the name
4120///
4121void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4122  // Return if warning is ignored.
4123  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4124        DiagnosticsEngine::Ignored)
4125    return;
4126
4127  // Don't diagnose declarations at file scope.
4128  if (D->hasGlobalStorage())
4129    return;
4130
4131  DeclContext *NewDC = D->getDeclContext();
4132
4133  // Only diagnose if we're shadowing an unambiguous field or variable.
4134  if (R.getResultKind() != LookupResult::Found)
4135    return;
4136
4137  NamedDecl* ShadowedDecl = R.getFoundDecl();
4138  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4139    return;
4140
4141  // Fields are not shadowed by variables in C++ static methods.
4142  if (isa<FieldDecl>(ShadowedDecl))
4143    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4144      if (MD->isStatic())
4145        return;
4146
4147  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4148    if (shadowedVar->isExternC()) {
4149      // For shadowing external vars, make sure that we point to the global
4150      // declaration, not a locally scoped extern declaration.
4151      for (VarDecl::redecl_iterator
4152             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4153           I != E; ++I)
4154        if (I->isFileVarDecl()) {
4155          ShadowedDecl = *I;
4156          break;
4157        }
4158    }
4159
4160  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4161
4162  // Only warn about certain kinds of shadowing for class members.
4163  if (NewDC && NewDC->isRecord()) {
4164    // In particular, don't warn about shadowing non-class members.
4165    if (!OldDC->isRecord())
4166      return;
4167
4168    // TODO: should we warn about static data members shadowing
4169    // static data members from base classes?
4170
4171    // TODO: don't diagnose for inaccessible shadowed members.
4172    // This is hard to do perfectly because we might friend the
4173    // shadowing context, but that's just a false negative.
4174  }
4175
4176  // Determine what kind of declaration we're shadowing.
4177  unsigned Kind;
4178  if (isa<RecordDecl>(OldDC)) {
4179    if (isa<FieldDecl>(ShadowedDecl))
4180      Kind = 3; // field
4181    else
4182      Kind = 2; // static data member
4183  } else if (OldDC->isFileContext())
4184    Kind = 1; // global
4185  else
4186    Kind = 0; // local
4187
4188  DeclarationName Name = R.getLookupName();
4189
4190  // Emit warning and note.
4191  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4192  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4193}
4194
4195/// \brief Check -Wshadow without the advantage of a previous lookup.
4196void Sema::CheckShadow(Scope *S, VarDecl *D) {
4197  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4198        DiagnosticsEngine::Ignored)
4199    return;
4200
4201  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4202                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4203  LookupName(R, S);
4204  CheckShadow(S, D, R);
4205}
4206
4207/// \brief Perform semantic checking on a newly-created variable
4208/// declaration.
4209///
4210/// This routine performs all of the type-checking required for a
4211/// variable declaration once it has been built. It is used both to
4212/// check variables after they have been parsed and their declarators
4213/// have been translated into a declaration, and to check variables
4214/// that have been instantiated from a template.
4215///
4216/// Sets NewVD->isInvalidDecl() if an error was encountered.
4217///
4218/// Returns true if the variable declaration is a redeclaration.
4219bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4220                                    LookupResult &Previous) {
4221  // If the decl is already known invalid, don't check it.
4222  if (NewVD->isInvalidDecl())
4223    return false;
4224
4225  QualType T = NewVD->getType();
4226
4227  if (T->isObjCObjectType()) {
4228    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4229      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4230    T = Context.getObjCObjectPointerType(T);
4231    NewVD->setType(T);
4232  }
4233
4234  // Emit an error if an address space was applied to decl with local storage.
4235  // This includes arrays of objects with address space qualifiers, but not
4236  // automatic variables that point to other address spaces.
4237  // ISO/IEC TR 18037 S5.1.2
4238  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4239    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4240    NewVD->setInvalidDecl();
4241    return false;
4242  }
4243
4244  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4245      && !NewVD->hasAttr<BlocksAttr>()) {
4246    if (getLangOptions().getGC() != LangOptions::NonGC)
4247      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4248    else
4249      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4250  }
4251
4252  bool isVM = T->isVariablyModifiedType();
4253  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4254      NewVD->hasAttr<BlocksAttr>())
4255    getCurFunction()->setHasBranchProtectedScope();
4256
4257  if ((isVM && NewVD->hasLinkage()) ||
4258      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4259    bool SizeIsNegative;
4260    llvm::APSInt Oversized;
4261    QualType FixedTy =
4262        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4263                                            Oversized);
4264
4265    if (FixedTy.isNull() && T->isVariableArrayType()) {
4266      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4267      // FIXME: This won't give the correct result for
4268      // int a[10][n];
4269      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4270
4271      if (NewVD->isFileVarDecl())
4272        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4273        << SizeRange;
4274      else if (NewVD->getStorageClass() == SC_Static)
4275        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4276        << SizeRange;
4277      else
4278        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4279        << SizeRange;
4280      NewVD->setInvalidDecl();
4281      return false;
4282    }
4283
4284    if (FixedTy.isNull()) {
4285      if (NewVD->isFileVarDecl())
4286        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4287      else
4288        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4289      NewVD->setInvalidDecl();
4290      return false;
4291    }
4292
4293    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4294    NewVD->setType(FixedTy);
4295  }
4296
4297  if (Previous.empty() && NewVD->isExternC()) {
4298    // Since we did not find anything by this name and we're declaring
4299    // an extern "C" variable, look for a non-visible extern "C"
4300    // declaration with the same name.
4301    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4302      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4303    if (Pos != LocallyScopedExternalDecls.end())
4304      Previous.addDecl(Pos->second);
4305  }
4306
4307  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4308    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4309      << T;
4310    NewVD->setInvalidDecl();
4311    return false;
4312  }
4313
4314  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4315    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4316    NewVD->setInvalidDecl();
4317    return false;
4318  }
4319
4320  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4321    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4322    NewVD->setInvalidDecl();
4323    return false;
4324  }
4325
4326  // Function pointers and references cannot have qualified function type, only
4327  // function pointer-to-members can do that.
4328  QualType Pointee;
4329  unsigned PtrOrRef = 0;
4330  if (const PointerType *Ptr = T->getAs<PointerType>())
4331    Pointee = Ptr->getPointeeType();
4332  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4333    Pointee = Ref->getPointeeType();
4334    PtrOrRef = 1;
4335  }
4336  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4337      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4338    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4339        << PtrOrRef;
4340    NewVD->setInvalidDecl();
4341    return false;
4342  }
4343
4344  if (!Previous.empty()) {
4345    MergeVarDecl(NewVD, Previous);
4346    return true;
4347  }
4348  return false;
4349}
4350
4351/// \brief Data used with FindOverriddenMethod
4352struct FindOverriddenMethodData {
4353  Sema *S;
4354  CXXMethodDecl *Method;
4355};
4356
4357/// \brief Member lookup function that determines whether a given C++
4358/// method overrides a method in a base class, to be used with
4359/// CXXRecordDecl::lookupInBases().
4360static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4361                                 CXXBasePath &Path,
4362                                 void *UserData) {
4363  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4364
4365  FindOverriddenMethodData *Data
4366    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4367
4368  DeclarationName Name = Data->Method->getDeclName();
4369
4370  // FIXME: Do we care about other names here too?
4371  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4372    // We really want to find the base class destructor here.
4373    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4374    CanQualType CT = Data->S->Context.getCanonicalType(T);
4375
4376    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4377  }
4378
4379  for (Path.Decls = BaseRecord->lookup(Name);
4380       Path.Decls.first != Path.Decls.second;
4381       ++Path.Decls.first) {
4382    NamedDecl *D = *Path.Decls.first;
4383    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4384      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4385        return true;
4386    }
4387  }
4388
4389  return false;
4390}
4391
4392/// AddOverriddenMethods - See if a method overrides any in the base classes,
4393/// and if so, check that it's a valid override and remember it.
4394bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4395  // Look for virtual methods in base classes that this method might override.
4396  CXXBasePaths Paths;
4397  FindOverriddenMethodData Data;
4398  Data.Method = MD;
4399  Data.S = this;
4400  bool AddedAny = false;
4401  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4402    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4403         E = Paths.found_decls_end(); I != E; ++I) {
4404      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4405        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4406        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4407            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4408            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4409          AddedAny = true;
4410        }
4411      }
4412    }
4413  }
4414
4415  return AddedAny;
4416}
4417
4418namespace {
4419  // Struct for holding all of the extra arguments needed by
4420  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4421  struct ActOnFDArgs {
4422    Scope *S;
4423    Declarator &D;
4424    MultiTemplateParamsArg TemplateParamLists;
4425    bool AddToScope;
4426  };
4427}
4428
4429/// \brief Generate diagnostics for an invalid function redeclaration.
4430///
4431/// This routine handles generating the diagnostic messages for an invalid
4432/// function redeclaration, including finding possible similar declarations
4433/// or performing typo correction if there are no previous declarations with
4434/// the same name.
4435///
4436/// Returns a NamedDecl iff typo correction was performed and substituting in
4437/// the new declaration name does not cause new errors.
4438static NamedDecl* DiagnoseInvalidRedeclaration(
4439    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4440    ActOnFDArgs &ExtraArgs) {
4441  NamedDecl *Result = NULL;
4442  DeclarationName Name = NewFD->getDeclName();
4443  DeclContext *NewDC = NewFD->getDeclContext();
4444  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4445                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4446  llvm::SmallVector<unsigned, 1> MismatchedParams;
4447  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4448  TypoCorrection Correction;
4449  bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
4450                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4451  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4452                                  : diag::err_member_def_does_not_match;
4453
4454  NewFD->setInvalidDecl();
4455  SemaRef.LookupQualifiedName(Prev, NewDC);
4456  assert(!Prev.isAmbiguous() &&
4457         "Cannot have an ambiguity in previous-declaration lookup");
4458  if (!Prev.empty()) {
4459    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4460         Func != FuncEnd; ++Func) {
4461      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4462      if (FD &&
4463          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4464        // Add 1 to the index so that 0 can mean the mismatch didn't
4465        // involve a parameter
4466        unsigned ParamNum =
4467            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4468        NearMatches.push_back(std::make_pair(FD, ParamNum));
4469      }
4470    }
4471  // If the qualified name lookup yielded nothing, try typo correction
4472  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4473                                         Prev.getLookupKind(), 0, 0, NewDC)) &&
4474             Correction.getCorrection() != Name) {
4475    // Trap errors.
4476    Sema::SFINAETrap Trap(SemaRef);
4477
4478    // Set up everything for the call to ActOnFunctionDeclarator
4479    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4480                              ExtraArgs.D.getIdentifierLoc());
4481    Previous.clear();
4482    Previous.setLookupName(Correction.getCorrection());
4483    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4484                                    CDeclEnd = Correction.end();
4485         CDecl != CDeclEnd; ++CDecl) {
4486      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4487      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4488                                     MismatchedParams)) {
4489        Previous.addDecl(FD);
4490      }
4491    }
4492    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4493    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4494    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4495    // eliminate the need for the parameter pack ExtraArgs.
4496    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4497                                             NewFD->getDeclContext(),
4498                                             NewFD->getTypeSourceInfo(),
4499                                             Previous,
4500                                             ExtraArgs.TemplateParamLists,
4501                                             ExtraArgs.AddToScope);
4502    if (Trap.hasErrorOccurred()) {
4503      // Pretend the typo correction never occurred
4504      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4505                                ExtraArgs.D.getIdentifierLoc());
4506      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4507      Previous.clear();
4508      Previous.setLookupName(Name);
4509      Result = NULL;
4510    } else {
4511      for (LookupResult::iterator Func = Previous.begin(),
4512                               FuncEnd = Previous.end();
4513           Func != FuncEnd; ++Func) {
4514        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4515          NearMatches.push_back(std::make_pair(FD, 0));
4516      }
4517    }
4518    if (NearMatches.empty()) {
4519      // Ignore the correction if it didn't yield any close FunctionDecl matches
4520      Correction = TypoCorrection();
4521    } else {
4522      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4523                             : diag::err_member_def_does_not_match_suggest;
4524    }
4525  }
4526
4527  if (Correction)
4528    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4529        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
4530        << FixItHint::CreateReplacement(
4531            NewFD->getLocation(),
4532            Correction.getAsString(SemaRef.getLangOptions()));
4533  else
4534    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4535        << Name << NewDC << NewFD->getLocation();
4536
4537  bool NewFDisConst = false;
4538  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4539    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4540
4541  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4542       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4543       NearMatch != NearMatchEnd; ++NearMatch) {
4544    FunctionDecl *FD = NearMatch->first;
4545    bool FDisConst = false;
4546    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4547      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4548
4549    if (unsigned Idx = NearMatch->second) {
4550      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4551      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4552             diag::note_member_def_close_param_match)
4553          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4554    } else if (Correction) {
4555      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4556          << Correction.getQuoted(SemaRef.getLangOptions());
4557    } else if (FDisConst != NewFDisConst) {
4558      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4559          << NewFDisConst << FD->getSourceRange().getEnd();
4560    } else
4561      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4562  }
4563  return Result;
4564}
4565
4566static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4567                                                          Declarator &D) {
4568  switch (D.getDeclSpec().getStorageClassSpec()) {
4569  default: llvm_unreachable("Unknown storage class!");
4570  case DeclSpec::SCS_auto:
4571  case DeclSpec::SCS_register:
4572  case DeclSpec::SCS_mutable:
4573    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4574                 diag::err_typecheck_sclass_func);
4575    D.setInvalidType();
4576    break;
4577  case DeclSpec::SCS_unspecified: break;
4578  case DeclSpec::SCS_extern: return SC_Extern;
4579  case DeclSpec::SCS_static: {
4580    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4581      // C99 6.7.1p5:
4582      //   The declaration of an identifier for a function that has
4583      //   block scope shall have no explicit storage-class specifier
4584      //   other than extern
4585      // See also (C++ [dcl.stc]p4).
4586      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4587                   diag::err_static_block_func);
4588      break;
4589    } else
4590      return SC_Static;
4591  }
4592  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4593  }
4594
4595  // No explicit storage class has already been returned
4596  return SC_None;
4597}
4598
4599static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4600                                           DeclContext *DC, QualType &R,
4601                                           TypeSourceInfo *TInfo,
4602                                           FunctionDecl::StorageClass SC,
4603                                           bool &IsVirtualOkay) {
4604  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4605  DeclarationName Name = NameInfo.getName();
4606
4607  FunctionDecl *NewFD = 0;
4608  bool isInline = D.getDeclSpec().isInlineSpecified();
4609  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4610  FunctionDecl::StorageClass SCAsWritten
4611    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4612
4613  if (!SemaRef.getLangOptions().CPlusPlus) {
4614    // Determine whether the function was written with a
4615    // prototype. This true when:
4616    //   - there is a prototype in the declarator, or
4617    //   - the type R of the function is some kind of typedef or other reference
4618    //     to a type name (which eventually refers to a function type).
4619    bool HasPrototype =
4620      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4621      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4622
4623    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4624                                 D.getSourceRange().getBegin(), NameInfo, R,
4625                                 TInfo, SC, SCAsWritten, isInline,
4626                                 HasPrototype);
4627    if (D.isInvalidType())
4628      NewFD->setInvalidDecl();
4629
4630    // Set the lexical context.
4631    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4632
4633    return NewFD;
4634  }
4635
4636  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4637  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4638
4639  // Check that the return type is not an abstract class type.
4640  // For record types, this is done by the AbstractClassUsageDiagnoser once
4641  // the class has been completely parsed.
4642  if (!DC->isRecord() &&
4643      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4644                                     R->getAs<FunctionType>()->getResultType(),
4645                                     diag::err_abstract_type_in_decl,
4646                                     SemaRef.AbstractReturnType))
4647    D.setInvalidType();
4648
4649  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4650    // This is a C++ constructor declaration.
4651    assert(DC->isRecord() &&
4652           "Constructors can only be declared in a member context");
4653
4654    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4655    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4656                                      D.getSourceRange().getBegin(), NameInfo,
4657                                      R, TInfo, isExplicit, isInline,
4658                                      /*isImplicitlyDeclared=*/false,
4659                                      isConstexpr);
4660
4661  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4662    // This is a C++ destructor declaration.
4663    if (DC->isRecord()) {
4664      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4665      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4666      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4667                                        SemaRef.Context, Record,
4668                                        D.getSourceRange().getBegin(),
4669                                        NameInfo, R, TInfo, isInline,
4670                                        /*isImplicitlyDeclared=*/false);
4671
4672      // If the class is complete, then we now create the implicit exception
4673      // specification. If the class is incomplete or dependent, we can't do
4674      // it yet.
4675      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4676          Record->getDefinition() && !Record->isBeingDefined() &&
4677          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4678        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4679      }
4680
4681      IsVirtualOkay = true;
4682      return NewDD;
4683
4684    } else {
4685      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4686      D.setInvalidType();
4687
4688      // Create a FunctionDecl to satisfy the function definition parsing
4689      // code path.
4690      return FunctionDecl::Create(SemaRef.Context, DC,
4691                                  D.getSourceRange().getBegin(),
4692                                  D.getIdentifierLoc(), Name, R, TInfo,
4693                                  SC, SCAsWritten, isInline,
4694                                  /*hasPrototype=*/true, isConstexpr);
4695    }
4696
4697  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4698    if (!DC->isRecord()) {
4699      SemaRef.Diag(D.getIdentifierLoc(),
4700           diag::err_conv_function_not_member);
4701      return 0;
4702    }
4703
4704    SemaRef.CheckConversionDeclarator(D, R, SC);
4705    IsVirtualOkay = true;
4706    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4707                                     D.getSourceRange().getBegin(), NameInfo,
4708                                     R, TInfo, isInline, isExplicit,
4709                                     isConstexpr, SourceLocation());
4710
4711  } else if (DC->isRecord()) {
4712    // If the name of the function is the same as the name of the record,
4713    // then this must be an invalid constructor that has a return type.
4714    // (The parser checks for a return type and makes the declarator a
4715    // constructor if it has no return type).
4716    if (Name.getAsIdentifierInfo() &&
4717        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4718      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4719        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4720        << SourceRange(D.getIdentifierLoc());
4721      return 0;
4722    }
4723
4724    bool isStatic = SC == SC_Static;
4725
4726    // [class.free]p1:
4727    // Any allocation function for a class T is a static member
4728    // (even if not explicitly declared static).
4729    if (Name.getCXXOverloadedOperator() == OO_New ||
4730        Name.getCXXOverloadedOperator() == OO_Array_New)
4731      isStatic = true;
4732
4733    // [class.free]p6 Any deallocation function for a class X is a static member
4734    // (even if not explicitly declared static).
4735    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4736        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4737      isStatic = true;
4738
4739    IsVirtualOkay = !isStatic;
4740
4741    // This is a C++ method declaration.
4742    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4743                                 D.getSourceRange().getBegin(), NameInfo, R,
4744                                 TInfo, isStatic, SCAsWritten, isInline,
4745                                 isConstexpr, SourceLocation());
4746
4747  } else {
4748    // Determine whether the function was written with a
4749    // prototype. This true when:
4750    //   - we're in C++ (where every function has a prototype),
4751    return FunctionDecl::Create(SemaRef.Context, DC,
4752                                D.getSourceRange().getBegin(),
4753                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4754                                true/*HasPrototype*/, isConstexpr);
4755  }
4756}
4757
4758NamedDecl*
4759Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4760                              TypeSourceInfo *TInfo, LookupResult &Previous,
4761                              MultiTemplateParamsArg TemplateParamLists,
4762                              bool &AddToScope) {
4763  QualType R = TInfo->getType();
4764
4765  assert(R.getTypePtr()->isFunctionType());
4766
4767  // TODO: consider using NameInfo for diagnostic.
4768  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4769  DeclarationName Name = NameInfo.getName();
4770  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4771
4772  if (D.getDeclSpec().isThreadSpecified())
4773    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4774
4775  // Do not allow returning a objc interface by-value.
4776  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4777    Diag(D.getIdentifierLoc(),
4778         diag::err_object_cannot_be_passed_returned_by_value) << 0
4779    << R->getAs<FunctionType>()->getResultType()
4780    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4781
4782    QualType T = R->getAs<FunctionType>()->getResultType();
4783    T = Context.getObjCObjectPointerType(T);
4784    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4785      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4786      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4787                                  FPT->getNumArgs(), EPI);
4788    }
4789    else if (isa<FunctionNoProtoType>(R))
4790      R = Context.getFunctionNoProtoType(T);
4791  }
4792
4793  bool isFriend = false;
4794  FunctionTemplateDecl *FunctionTemplate = 0;
4795  bool isExplicitSpecialization = false;
4796  bool isFunctionTemplateSpecialization = false;
4797  bool isDependentClassScopeExplicitSpecialization = false;
4798  bool isVirtualOkay = false;
4799
4800  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4801                                              isVirtualOkay);
4802  if (!NewFD) return 0;
4803
4804  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
4805    NewFD->setTopLevelDeclInObjCContainer();
4806
4807  if (getLangOptions().CPlusPlus) {
4808    bool isInline = D.getDeclSpec().isInlineSpecified();
4809    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4810    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4811    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4812    isFriend = D.getDeclSpec().isFriendSpecified();
4813    if (isFriend && !isInline && D.isFunctionDefinition()) {
4814      // C++ [class.friend]p5
4815      //   A function can be defined in a friend declaration of a
4816      //   class . . . . Such a function is implicitly inline.
4817      NewFD->setImplicitlyInline();
4818    }
4819
4820    SetNestedNameSpecifier(NewFD, D);
4821    isExplicitSpecialization = false;
4822    isFunctionTemplateSpecialization = false;
4823    if (D.isInvalidType())
4824      NewFD->setInvalidDecl();
4825
4826    // Set the lexical context. If the declarator has a C++
4827    // scope specifier, or is the object of a friend declaration, the
4828    // lexical context will be different from the semantic context.
4829    NewFD->setLexicalDeclContext(CurContext);
4830
4831    // Match up the template parameter lists with the scope specifier, then
4832    // determine whether we have a template or a template specialization.
4833    bool Invalid = false;
4834    if (TemplateParameterList *TemplateParams
4835          = MatchTemplateParametersToScopeSpecifier(
4836                                  D.getDeclSpec().getSourceRange().getBegin(),
4837                                  D.getIdentifierLoc(),
4838                                  D.getCXXScopeSpec(),
4839                                  TemplateParamLists.get(),
4840                                  TemplateParamLists.size(),
4841                                  isFriend,
4842                                  isExplicitSpecialization,
4843                                  Invalid)) {
4844      if (TemplateParams->size() > 0) {
4845        // This is a function template
4846
4847        // Check that we can declare a template here.
4848        if (CheckTemplateDeclScope(S, TemplateParams))
4849          return 0;
4850
4851        // A destructor cannot be a template.
4852        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4853          Diag(NewFD->getLocation(), diag::err_destructor_template);
4854          return 0;
4855        }
4856
4857        // If we're adding a template to a dependent context, we may need to
4858        // rebuilding some of the types used within the template parameter list,
4859        // now that we know what the current instantiation is.
4860        if (DC->isDependentContext()) {
4861          ContextRAII SavedContext(*this, DC);
4862          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4863            Invalid = true;
4864        }
4865
4866
4867        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4868                                                        NewFD->getLocation(),
4869                                                        Name, TemplateParams,
4870                                                        NewFD);
4871        FunctionTemplate->setLexicalDeclContext(CurContext);
4872        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4873
4874        // For source fidelity, store the other template param lists.
4875        if (TemplateParamLists.size() > 1) {
4876          NewFD->setTemplateParameterListsInfo(Context,
4877                                               TemplateParamLists.size() - 1,
4878                                               TemplateParamLists.release());
4879        }
4880      } else {
4881        // This is a function template specialization.
4882        isFunctionTemplateSpecialization = true;
4883        // For source fidelity, store all the template param lists.
4884        NewFD->setTemplateParameterListsInfo(Context,
4885                                             TemplateParamLists.size(),
4886                                             TemplateParamLists.release());
4887
4888        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4889        if (isFriend) {
4890          // We want to remove the "template<>", found here.
4891          SourceRange RemoveRange = TemplateParams->getSourceRange();
4892
4893          // If we remove the template<> and the name is not a
4894          // template-id, we're actually silently creating a problem:
4895          // the friend declaration will refer to an untemplated decl,
4896          // and clearly the user wants a template specialization.  So
4897          // we need to insert '<>' after the name.
4898          SourceLocation InsertLoc;
4899          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4900            InsertLoc = D.getName().getSourceRange().getEnd();
4901            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4902          }
4903
4904          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4905            << Name << RemoveRange
4906            << FixItHint::CreateRemoval(RemoveRange)
4907            << FixItHint::CreateInsertion(InsertLoc, "<>");
4908        }
4909      }
4910    }
4911    else {
4912      // All template param lists were matched against the scope specifier:
4913      // this is NOT (an explicit specialization of) a template.
4914      if (TemplateParamLists.size() > 0)
4915        // For source fidelity, store all the template param lists.
4916        NewFD->setTemplateParameterListsInfo(Context,
4917                                             TemplateParamLists.size(),
4918                                             TemplateParamLists.release());
4919    }
4920
4921    if (Invalid) {
4922      NewFD->setInvalidDecl();
4923      if (FunctionTemplate)
4924        FunctionTemplate->setInvalidDecl();
4925    }
4926
4927    // C++ [dcl.fct.spec]p5:
4928    //   The virtual specifier shall only be used in declarations of
4929    //   nonstatic class member functions that appear within a
4930    //   member-specification of a class declaration; see 10.3.
4931    //
4932    if (isVirtual && !NewFD->isInvalidDecl()) {
4933      if (!isVirtualOkay) {
4934        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4935             diag::err_virtual_non_function);
4936      } else if (!CurContext->isRecord()) {
4937        // 'virtual' was specified outside of the class.
4938        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4939             diag::err_virtual_out_of_class)
4940          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4941      } else if (NewFD->getDescribedFunctionTemplate()) {
4942        // C++ [temp.mem]p3:
4943        //  A member function template shall not be virtual.
4944        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4945             diag::err_virtual_member_function_template)
4946          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4947      } else {
4948        // Okay: Add virtual to the method.
4949        NewFD->setVirtualAsWritten(true);
4950      }
4951    }
4952
4953    // C++ [dcl.fct.spec]p3:
4954    //  The inline specifier shall not appear on a block scope function
4955    //  declaration.
4956    if (isInline && !NewFD->isInvalidDecl()) {
4957      if (CurContext->isFunctionOrMethod()) {
4958        // 'inline' is not allowed on block scope function declaration.
4959        Diag(D.getDeclSpec().getInlineSpecLoc(),
4960             diag::err_inline_declaration_block_scope) << Name
4961          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4962      }
4963    }
4964
4965    // C++ [dcl.fct.spec]p6:
4966    //  The explicit specifier shall be used only in the declaration of a
4967    //  constructor or conversion function within its class definition;
4968    //  see 12.3.1 and 12.3.2.
4969    if (isExplicit && !NewFD->isInvalidDecl()) {
4970      if (!CurContext->isRecord()) {
4971        // 'explicit' was specified outside of the class.
4972        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4973             diag::err_explicit_out_of_class)
4974          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4975      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4976                 !isa<CXXConversionDecl>(NewFD)) {
4977        // 'explicit' was specified on a function that wasn't a constructor
4978        // or conversion function.
4979        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4980             diag::err_explicit_non_ctor_or_conv_function)
4981          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4982      }
4983    }
4984
4985    if (isConstexpr) {
4986      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4987      // are implicitly inline.
4988      NewFD->setImplicitlyInline();
4989
4990      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4991      // be either constructors or to return a literal type. Therefore,
4992      // destructors cannot be declared constexpr.
4993      if (isa<CXXDestructorDecl>(NewFD))
4994        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
4995    }
4996
4997    // If __module_private__ was specified, mark the function accordingly.
4998    if (D.getDeclSpec().isModulePrivateSpecified()) {
4999      if (isFunctionTemplateSpecialization) {
5000        SourceLocation ModulePrivateLoc
5001          = D.getDeclSpec().getModulePrivateSpecLoc();
5002        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5003          << 0
5004          << FixItHint::CreateRemoval(ModulePrivateLoc);
5005      } else {
5006        NewFD->setModulePrivate();
5007        if (FunctionTemplate)
5008          FunctionTemplate->setModulePrivate();
5009      }
5010    }
5011
5012    if (isFriend) {
5013      // For now, claim that the objects have no previous declaration.
5014      if (FunctionTemplate) {
5015        FunctionTemplate->setObjectOfFriendDecl(false);
5016        FunctionTemplate->setAccess(AS_public);
5017      }
5018      NewFD->setObjectOfFriendDecl(false);
5019      NewFD->setAccess(AS_public);
5020    }
5021
5022    // If a function is defined as defaulted or deleted, mark it as such now.
5023    switch (D.getFunctionDefinitionKind()) {
5024      case FDK_Declaration:
5025      case FDK_Definition:
5026        break;
5027
5028      case FDK_Defaulted:
5029        NewFD->setDefaulted();
5030        break;
5031
5032      case FDK_Deleted:
5033        NewFD->setDeletedAsWritten();
5034        break;
5035    }
5036
5037    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5038        D.isFunctionDefinition()) {
5039      // C++ [class.mfct]p2:
5040      //   A member function may be defined (8.4) in its class definition, in
5041      //   which case it is an inline member function (7.1.2)
5042      NewFD->setImplicitlyInline();
5043    }
5044
5045    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5046        !CurContext->isRecord()) {
5047      // C++ [class.static]p1:
5048      //   A data or function member of a class may be declared static
5049      //   in a class definition, in which case it is a static member of
5050      //   the class.
5051
5052      // Complain about the 'static' specifier if it's on an out-of-line
5053      // member function definition.
5054      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5055           diag::err_static_out_of_line)
5056        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5057    }
5058  }
5059
5060  // Filter out previous declarations that don't match the scope.
5061  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5062                       isExplicitSpecialization ||
5063                       isFunctionTemplateSpecialization);
5064
5065  // Handle GNU asm-label extension (encoded as an attribute).
5066  if (Expr *E = (Expr*) D.getAsmLabel()) {
5067    // The parser guarantees this is a string.
5068    StringLiteral *SE = cast<StringLiteral>(E);
5069    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5070                                                SE->getString()));
5071  }
5072
5073  // Copy the parameter declarations from the declarator D to the function
5074  // declaration NewFD, if they are available.  First scavenge them into Params.
5075  SmallVector<ParmVarDecl*, 16> Params;
5076  if (D.isFunctionDeclarator()) {
5077    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5078
5079    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5080    // function that takes no arguments, not a function that takes a
5081    // single void argument.
5082    // We let through "const void" here because Sema::GetTypeForDeclarator
5083    // already checks for that case.
5084    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5085        FTI.ArgInfo[0].Param &&
5086        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5087      // Empty arg list, don't push any params.
5088      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5089
5090      // In C++, the empty parameter-type-list must be spelled "void"; a
5091      // typedef of void is not permitted.
5092      if (getLangOptions().CPlusPlus &&
5093          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5094        bool IsTypeAlias = false;
5095        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5096          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5097        else if (const TemplateSpecializationType *TST =
5098                   Param->getType()->getAs<TemplateSpecializationType>())
5099          IsTypeAlias = TST->isTypeAlias();
5100        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5101          << IsTypeAlias;
5102      }
5103    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5104      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5105        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5106        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5107        Param->setDeclContext(NewFD);
5108        Params.push_back(Param);
5109
5110        if (Param->isInvalidDecl())
5111          NewFD->setInvalidDecl();
5112      }
5113    }
5114
5115  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5116    // When we're declaring a function with a typedef, typeof, etc as in the
5117    // following example, we'll need to synthesize (unnamed)
5118    // parameters for use in the declaration.
5119    //
5120    // @code
5121    // typedef void fn(int);
5122    // fn f;
5123    // @endcode
5124
5125    // Synthesize a parameter for each argument type.
5126    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5127         AE = FT->arg_type_end(); AI != AE; ++AI) {
5128      ParmVarDecl *Param =
5129        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5130      Param->setScopeInfo(0, Params.size());
5131      Params.push_back(Param);
5132    }
5133  } else {
5134    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5135           "Should not need args for typedef of non-prototype fn");
5136  }
5137
5138  // Finally, we know we have the right number of parameters, install them.
5139  NewFD->setParams(Params);
5140
5141  // Process the non-inheritable attributes on this declaration.
5142  ProcessDeclAttributes(S, NewFD, D,
5143                        /*NonInheritable=*/true, /*Inheritable=*/false);
5144
5145  if (!getLangOptions().CPlusPlus) {
5146    // Perform semantic checking on the function declaration.
5147    bool isExplicitSpecialization=false;
5148    if (!NewFD->isInvalidDecl()) {
5149      if (NewFD->getResultType()->isVariablyModifiedType()) {
5150        // Functions returning a variably modified type violate C99 6.7.5.2p2
5151        // because all functions have linkage.
5152        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5153        NewFD->setInvalidDecl();
5154      } else {
5155        if (NewFD->isMain())
5156          CheckMain(NewFD, D.getDeclSpec());
5157        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5158                                                    isExplicitSpecialization));
5159      }
5160    }
5161    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5162            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5163           "previous declaration set still overloaded");
5164  } else {
5165    // If the declarator is a template-id, translate the parser's template
5166    // argument list into our AST format.
5167    bool HasExplicitTemplateArgs = false;
5168    TemplateArgumentListInfo TemplateArgs;
5169    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5170      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5171      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5172      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5173      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5174                                         TemplateId->getTemplateArgs(),
5175                                         TemplateId->NumArgs);
5176      translateTemplateArguments(TemplateArgsPtr,
5177                                 TemplateArgs);
5178      TemplateArgsPtr.release();
5179
5180      HasExplicitTemplateArgs = true;
5181
5182      if (NewFD->isInvalidDecl()) {
5183        HasExplicitTemplateArgs = false;
5184      } else if (FunctionTemplate) {
5185        // Function template with explicit template arguments.
5186        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5187          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5188
5189        HasExplicitTemplateArgs = false;
5190      } else if (!isFunctionTemplateSpecialization &&
5191                 !D.getDeclSpec().isFriendSpecified()) {
5192        // We have encountered something that the user meant to be a
5193        // specialization (because it has explicitly-specified template
5194        // arguments) but that was not introduced with a "template<>" (or had
5195        // too few of them).
5196        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5197          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5198          << FixItHint::CreateInsertion(
5199                                    D.getDeclSpec().getSourceRange().getBegin(),
5200                                        "template<> ");
5201        isFunctionTemplateSpecialization = true;
5202      } else {
5203        // "friend void foo<>(int);" is an implicit specialization decl.
5204        isFunctionTemplateSpecialization = true;
5205      }
5206    } else if (isFriend && isFunctionTemplateSpecialization) {
5207      // This combination is only possible in a recovery case;  the user
5208      // wrote something like:
5209      //   template <> friend void foo(int);
5210      // which we're recovering from as if the user had written:
5211      //   friend void foo<>(int);
5212      // Go ahead and fake up a template id.
5213      HasExplicitTemplateArgs = true;
5214        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5215      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5216    }
5217
5218    // If it's a friend (and only if it's a friend), it's possible
5219    // that either the specialized function type or the specialized
5220    // template is dependent, and therefore matching will fail.  In
5221    // this case, don't check the specialization yet.
5222    bool InstantiationDependent = false;
5223    if (isFunctionTemplateSpecialization && isFriend &&
5224        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5225         TemplateSpecializationType::anyDependentTemplateArguments(
5226            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5227            InstantiationDependent))) {
5228      assert(HasExplicitTemplateArgs &&
5229             "friend function specialization without template args");
5230      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5231                                                       Previous))
5232        NewFD->setInvalidDecl();
5233    } else if (isFunctionTemplateSpecialization) {
5234      if (CurContext->isDependentContext() && CurContext->isRecord()
5235          && !isFriend) {
5236        isDependentClassScopeExplicitSpecialization = true;
5237        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5238          diag::ext_function_specialization_in_class :
5239          diag::err_function_specialization_in_class)
5240          << NewFD->getDeclName();
5241      } else if (CheckFunctionTemplateSpecialization(NewFD,
5242                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5243                                                     Previous))
5244        NewFD->setInvalidDecl();
5245
5246      // C++ [dcl.stc]p1:
5247      //   A storage-class-specifier shall not be specified in an explicit
5248      //   specialization (14.7.3)
5249      if (SC != SC_None) {
5250        if (SC != NewFD->getStorageClass())
5251          Diag(NewFD->getLocation(),
5252               diag::err_explicit_specialization_inconsistent_storage_class)
5253            << SC
5254            << FixItHint::CreateRemoval(
5255                                      D.getDeclSpec().getStorageClassSpecLoc());
5256
5257        else
5258          Diag(NewFD->getLocation(),
5259               diag::ext_explicit_specialization_storage_class)
5260            << FixItHint::CreateRemoval(
5261                                      D.getDeclSpec().getStorageClassSpecLoc());
5262      }
5263
5264    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5265      if (CheckMemberSpecialization(NewFD, Previous))
5266          NewFD->setInvalidDecl();
5267    }
5268
5269    // Perform semantic checking on the function declaration.
5270    if (!isDependentClassScopeExplicitSpecialization) {
5271      if (NewFD->isInvalidDecl()) {
5272        // If this is a class member, mark the class invalid immediately.
5273        // This avoids some consistency errors later.
5274        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5275          methodDecl->getParent()->setInvalidDecl();
5276      } else {
5277        if (NewFD->isMain())
5278          CheckMain(NewFD, D.getDeclSpec());
5279        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5280                                                    isExplicitSpecialization));
5281      }
5282    }
5283
5284    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5285            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5286           "previous declaration set still overloaded");
5287
5288    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5289        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5290      NewFD->setInvalidDecl();
5291
5292    NamedDecl *PrincipalDecl = (FunctionTemplate
5293                                ? cast<NamedDecl>(FunctionTemplate)
5294                                : NewFD);
5295
5296    if (isFriend && D.isRedeclaration()) {
5297      AccessSpecifier Access = AS_public;
5298      if (!NewFD->isInvalidDecl())
5299        Access = NewFD->getPreviousDeclaration()->getAccess();
5300
5301      NewFD->setAccess(Access);
5302      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5303
5304      PrincipalDecl->setObjectOfFriendDecl(true);
5305    }
5306
5307    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5308        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5309      PrincipalDecl->setNonMemberOperator();
5310
5311    // If we have a function template, check the template parameter
5312    // list. This will check and merge default template arguments.
5313    if (FunctionTemplate) {
5314      FunctionTemplateDecl *PrevTemplate =
5315                                     FunctionTemplate->getPreviousDeclaration();
5316      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5317                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5318                            D.getDeclSpec().isFriendSpecified()
5319                              ? (D.isFunctionDefinition()
5320                                   ? TPC_FriendFunctionTemplateDefinition
5321                                   : TPC_FriendFunctionTemplate)
5322                              : (D.getCXXScopeSpec().isSet() &&
5323                                 DC && DC->isRecord() &&
5324                                 DC->isDependentContext())
5325                                  ? TPC_ClassTemplateMember
5326                                  : TPC_FunctionTemplate);
5327    }
5328
5329    if (NewFD->isInvalidDecl()) {
5330      // Ignore all the rest of this.
5331    } else if (!D.isRedeclaration()) {
5332      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5333                                       AddToScope };
5334      // Fake up an access specifier if it's supposed to be a class member.
5335      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5336        NewFD->setAccess(AS_public);
5337
5338      // Qualified decls generally require a previous declaration.
5339      if (D.getCXXScopeSpec().isSet()) {
5340        // ...with the major exception of templated-scope or
5341        // dependent-scope friend declarations.
5342
5343        // TODO: we currently also suppress this check in dependent
5344        // contexts because (1) the parameter depth will be off when
5345        // matching friend templates and (2) we might actually be
5346        // selecting a friend based on a dependent factor.  But there
5347        // are situations where these conditions don't apply and we
5348        // can actually do this check immediately.
5349        if (isFriend &&
5350            (TemplateParamLists.size() ||
5351             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5352             CurContext->isDependentContext())) {
5353          // ignore these
5354        } else {
5355          // The user tried to provide an out-of-line definition for a
5356          // function that is a member of a class or namespace, but there
5357          // was no such member function declared (C++ [class.mfct]p2,
5358          // C++ [namespace.memdef]p2). For example:
5359          //
5360          // class X {
5361          //   void f() const;
5362          // };
5363          //
5364          // void X::f() { } // ill-formed
5365          //
5366          // Complain about this problem, and attempt to suggest close
5367          // matches (e.g., those that differ only in cv-qualifiers and
5368          // whether the parameter types are references).
5369
5370          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5371                                                               NewFD,
5372                                                               ExtraArgs)) {
5373            AddToScope = ExtraArgs.AddToScope;
5374            return Result;
5375          }
5376        }
5377
5378        // Unqualified local friend declarations are required to resolve
5379        // to something.
5380      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5381        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5382                                                             NewFD,
5383                                                             ExtraArgs)) {
5384          AddToScope = ExtraArgs.AddToScope;
5385          return Result;
5386        }
5387      }
5388
5389    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5390               !isFriend && !isFunctionTemplateSpecialization &&
5391               !isExplicitSpecialization) {
5392      // An out-of-line member function declaration must also be a
5393      // definition (C++ [dcl.meaning]p1).
5394      // Note that this is not the case for explicit specializations of
5395      // function templates or member functions of class templates, per
5396      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5397      // extension for compatibility with old SWIG code which likes to
5398      // generate them.
5399      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5400        << D.getCXXScopeSpec().getRange();
5401    }
5402  }
5403
5404
5405  // Handle attributes. We need to have merged decls when handling attributes
5406  // (for example to check for conflicts, etc).
5407  // FIXME: This needs to happen before we merge declarations. Then,
5408  // let attribute merging cope with attribute conflicts.
5409  ProcessDeclAttributes(S, NewFD, D,
5410                        /*NonInheritable=*/false, /*Inheritable=*/true);
5411
5412  // attributes declared post-definition are currently ignored
5413  // FIXME: This should happen during attribute merging
5414  if (D.isRedeclaration() && Previous.isSingleResult()) {
5415    const FunctionDecl *Def;
5416    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5417    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5418      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5419      Diag(Def->getLocation(), diag::note_previous_definition);
5420    }
5421  }
5422
5423  AddKnownFunctionAttributes(NewFD);
5424
5425  if (NewFD->hasAttr<OverloadableAttr>() &&
5426      !NewFD->getType()->getAs<FunctionProtoType>()) {
5427    Diag(NewFD->getLocation(),
5428         diag::err_attribute_overloadable_no_prototype)
5429      << NewFD;
5430
5431    // Turn this into a variadic function with no parameters.
5432    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5433    FunctionProtoType::ExtProtoInfo EPI;
5434    EPI.Variadic = true;
5435    EPI.ExtInfo = FT->getExtInfo();
5436
5437    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5438    NewFD->setType(R);
5439  }
5440
5441  // If there's a #pragma GCC visibility in scope, and this isn't a class
5442  // member, set the visibility of this function.
5443  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5444    AddPushedVisibilityAttribute(NewFD);
5445
5446  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5447  // marking the function.
5448  AddCFAuditedAttribute(NewFD);
5449
5450  // If this is a locally-scoped extern C function, update the
5451  // map of such names.
5452  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5453      && !NewFD->isInvalidDecl())
5454    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5455
5456  // Set this FunctionDecl's range up to the right paren.
5457  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5458
5459  if (getLangOptions().CPlusPlus) {
5460    if (FunctionTemplate) {
5461      if (NewFD->isInvalidDecl())
5462        FunctionTemplate->setInvalidDecl();
5463      return FunctionTemplate;
5464    }
5465  }
5466
5467  MarkUnusedFileScopedDecl(NewFD);
5468
5469  if (getLangOptions().CUDA)
5470    if (IdentifierInfo *II = NewFD->getIdentifier())
5471      if (!NewFD->isInvalidDecl() &&
5472          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5473        if (II->isStr("cudaConfigureCall")) {
5474          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5475            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5476
5477          Context.setcudaConfigureCallDecl(NewFD);
5478        }
5479      }
5480
5481  // Here we have an function template explicit specialization at class scope.
5482  // The actually specialization will be postponed to template instatiation
5483  // time via the ClassScopeFunctionSpecializationDecl node.
5484  if (isDependentClassScopeExplicitSpecialization) {
5485    ClassScopeFunctionSpecializationDecl *NewSpec =
5486                         ClassScopeFunctionSpecializationDecl::Create(
5487                                Context, CurContext,  SourceLocation(),
5488                                cast<CXXMethodDecl>(NewFD));
5489    CurContext->addDecl(NewSpec);
5490    AddToScope = false;
5491  }
5492
5493  return NewFD;
5494}
5495
5496/// \brief Perform semantic checking of a new function declaration.
5497///
5498/// Performs semantic analysis of the new function declaration
5499/// NewFD. This routine performs all semantic checking that does not
5500/// require the actual declarator involved in the declaration, and is
5501/// used both for the declaration of functions as they are parsed
5502/// (called via ActOnDeclarator) and for the declaration of functions
5503/// that have been instantiated via C++ template instantiation (called
5504/// via InstantiateDecl).
5505///
5506/// \param IsExplicitSpecialiation whether this new function declaration is
5507/// an explicit specialization of the previous declaration.
5508///
5509/// This sets NewFD->isInvalidDecl() to true if there was an error.
5510///
5511/// Returns true if the function declaration is a redeclaration.
5512bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5513                                    LookupResult &Previous,
5514                                    bool IsExplicitSpecialization) {
5515  assert(!NewFD->getResultType()->isVariablyModifiedType()
5516         && "Variably modified return types are not handled here");
5517
5518  // Check for a previous declaration of this name.
5519  if (Previous.empty() && NewFD->isExternC()) {
5520    // Since we did not find anything by this name and we're declaring
5521    // an extern "C" function, look for a non-visible extern "C"
5522    // declaration with the same name.
5523    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5524      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5525    if (Pos != LocallyScopedExternalDecls.end())
5526      Previous.addDecl(Pos->second);
5527  }
5528
5529  bool Redeclaration = false;
5530
5531  // Merge or overload the declaration with an existing declaration of
5532  // the same name, if appropriate.
5533  if (!Previous.empty()) {
5534    // Determine whether NewFD is an overload of PrevDecl or
5535    // a declaration that requires merging. If it's an overload,
5536    // there's no more work to do here; we'll just add the new
5537    // function to the scope.
5538
5539    NamedDecl *OldDecl = 0;
5540    if (!AllowOverloadingOfFunction(Previous, Context)) {
5541      Redeclaration = true;
5542      OldDecl = Previous.getFoundDecl();
5543    } else {
5544      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5545                            /*NewIsUsingDecl*/ false)) {
5546      case Ovl_Match:
5547        Redeclaration = true;
5548        break;
5549
5550      case Ovl_NonFunction:
5551        Redeclaration = true;
5552        break;
5553
5554      case Ovl_Overload:
5555        Redeclaration = false;
5556        break;
5557      }
5558
5559      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5560        // If a function name is overloadable in C, then every function
5561        // with that name must be marked "overloadable".
5562        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5563          << Redeclaration << NewFD;
5564        NamedDecl *OverloadedDecl = 0;
5565        if (Redeclaration)
5566          OverloadedDecl = OldDecl;
5567        else if (!Previous.empty())
5568          OverloadedDecl = Previous.getRepresentativeDecl();
5569        if (OverloadedDecl)
5570          Diag(OverloadedDecl->getLocation(),
5571               diag::note_attribute_overloadable_prev_overload);
5572        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5573                                                        Context));
5574      }
5575    }
5576
5577    if (Redeclaration) {
5578      // NewFD and OldDecl represent declarations that need to be
5579      // merged.
5580      if (MergeFunctionDecl(NewFD, OldDecl)) {
5581        NewFD->setInvalidDecl();
5582        return Redeclaration;
5583      }
5584
5585      Previous.clear();
5586      Previous.addDecl(OldDecl);
5587
5588      if (FunctionTemplateDecl *OldTemplateDecl
5589                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5590        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5591        FunctionTemplateDecl *NewTemplateDecl
5592          = NewFD->getDescribedFunctionTemplate();
5593        assert(NewTemplateDecl && "Template/non-template mismatch");
5594        if (CXXMethodDecl *Method
5595              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5596          Method->setAccess(OldTemplateDecl->getAccess());
5597          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5598        }
5599
5600        // If this is an explicit specialization of a member that is a function
5601        // template, mark it as a member specialization.
5602        if (IsExplicitSpecialization &&
5603            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5604          NewTemplateDecl->setMemberSpecialization();
5605          assert(OldTemplateDecl->isMemberSpecialization());
5606        }
5607
5608        if (OldTemplateDecl->isModulePrivate())
5609          NewTemplateDecl->setModulePrivate();
5610
5611      } else {
5612        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5613          NewFD->setAccess(OldDecl->getAccess());
5614        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5615      }
5616    }
5617  }
5618
5619  // Semantic checking for this function declaration (in isolation).
5620  if (getLangOptions().CPlusPlus) {
5621    // C++-specific checks.
5622    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5623      CheckConstructor(Constructor);
5624    } else if (CXXDestructorDecl *Destructor =
5625                dyn_cast<CXXDestructorDecl>(NewFD)) {
5626      CXXRecordDecl *Record = Destructor->getParent();
5627      QualType ClassType = Context.getTypeDeclType(Record);
5628
5629      // FIXME: Shouldn't we be able to perform this check even when the class
5630      // type is dependent? Both gcc and edg can handle that.
5631      if (!ClassType->isDependentType()) {
5632        DeclarationName Name
5633          = Context.DeclarationNames.getCXXDestructorName(
5634                                        Context.getCanonicalType(ClassType));
5635        if (NewFD->getDeclName() != Name) {
5636          Diag(NewFD->getLocation(), diag::err_destructor_name);
5637          NewFD->setInvalidDecl();
5638          return Redeclaration;
5639        }
5640      }
5641    } else if (CXXConversionDecl *Conversion
5642               = dyn_cast<CXXConversionDecl>(NewFD)) {
5643      ActOnConversionDeclarator(Conversion);
5644    }
5645
5646    // Find any virtual functions that this function overrides.
5647    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5648      if (!Method->isFunctionTemplateSpecialization() &&
5649          !Method->getDescribedFunctionTemplate()) {
5650        if (AddOverriddenMethods(Method->getParent(), Method)) {
5651          // If the function was marked as "static", we have a problem.
5652          if (NewFD->getStorageClass() == SC_Static) {
5653            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5654              << NewFD->getDeclName();
5655            for (CXXMethodDecl::method_iterator
5656                      Overridden = Method->begin_overridden_methods(),
5657                   OverriddenEnd = Method->end_overridden_methods();
5658                 Overridden != OverriddenEnd;
5659                 ++Overridden) {
5660              Diag((*Overridden)->getLocation(),
5661                   diag::note_overridden_virtual_function);
5662            }
5663          }
5664        }
5665      }
5666    }
5667
5668    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5669    if (NewFD->isOverloadedOperator() &&
5670        CheckOverloadedOperatorDeclaration(NewFD)) {
5671      NewFD->setInvalidDecl();
5672      return Redeclaration;
5673    }
5674
5675    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5676    if (NewFD->getLiteralIdentifier() &&
5677        CheckLiteralOperatorDeclaration(NewFD)) {
5678      NewFD->setInvalidDecl();
5679      return Redeclaration;
5680    }
5681
5682    // In C++, check default arguments now that we have merged decls. Unless
5683    // the lexical context is the class, because in this case this is done
5684    // during delayed parsing anyway.
5685    if (!CurContext->isRecord())
5686      CheckCXXDefaultArguments(NewFD);
5687
5688    // If this function declares a builtin function, check the type of this
5689    // declaration against the expected type for the builtin.
5690    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5691      ASTContext::GetBuiltinTypeError Error;
5692      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5693      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5694        // The type of this function differs from the type of the builtin,
5695        // so forget about the builtin entirely.
5696        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5697      }
5698    }
5699  }
5700  return Redeclaration;
5701}
5702
5703void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5704  // C++ [basic.start.main]p3:  A program that declares main to be inline
5705  //   or static is ill-formed.
5706  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5707  //   shall not appear in a declaration of main.
5708  // static main is not an error under C99, but we should warn about it.
5709  if (FD->getStorageClass() == SC_Static)
5710    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5711         ? diag::err_static_main : diag::warn_static_main)
5712      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5713  if (FD->isInlineSpecified())
5714    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5715      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5716
5717  QualType T = FD->getType();
5718  assert(T->isFunctionType() && "function decl is not of function type");
5719  const FunctionType* FT = T->getAs<FunctionType>();
5720
5721  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5722    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5723    FD->setInvalidDecl(true);
5724  }
5725
5726  // Treat protoless main() as nullary.
5727  if (isa<FunctionNoProtoType>(FT)) return;
5728
5729  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5730  unsigned nparams = FTP->getNumArgs();
5731  assert(FD->getNumParams() == nparams);
5732
5733  bool HasExtraParameters = (nparams > 3);
5734
5735  // Darwin passes an undocumented fourth argument of type char**.  If
5736  // other platforms start sprouting these, the logic below will start
5737  // getting shifty.
5738  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5739    HasExtraParameters = false;
5740
5741  if (HasExtraParameters) {
5742    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5743    FD->setInvalidDecl(true);
5744    nparams = 3;
5745  }
5746
5747  // FIXME: a lot of the following diagnostics would be improved
5748  // if we had some location information about types.
5749
5750  QualType CharPP =
5751    Context.getPointerType(Context.getPointerType(Context.CharTy));
5752  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5753
5754  for (unsigned i = 0; i < nparams; ++i) {
5755    QualType AT = FTP->getArgType(i);
5756
5757    bool mismatch = true;
5758
5759    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5760      mismatch = false;
5761    else if (Expected[i] == CharPP) {
5762      // As an extension, the following forms are okay:
5763      //   char const **
5764      //   char const * const *
5765      //   char * const *
5766
5767      QualifierCollector qs;
5768      const PointerType* PT;
5769      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5770          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5771          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5772        qs.removeConst();
5773        mismatch = !qs.empty();
5774      }
5775    }
5776
5777    if (mismatch) {
5778      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5779      // TODO: suggest replacing given type with expected type
5780      FD->setInvalidDecl(true);
5781    }
5782  }
5783
5784  if (nparams == 1 && !FD->isInvalidDecl()) {
5785    Diag(FD->getLocation(), diag::warn_main_one_arg);
5786  }
5787
5788  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5789    Diag(FD->getLocation(), diag::err_main_template_decl);
5790    FD->setInvalidDecl();
5791  }
5792}
5793
5794bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5795  // FIXME: Need strict checking.  In C89, we need to check for
5796  // any assignment, increment, decrement, function-calls, or
5797  // commas outside of a sizeof.  In C99, it's the same list,
5798  // except that the aforementioned are allowed in unevaluated
5799  // expressions.  Everything else falls under the
5800  // "may accept other forms of constant expressions" exception.
5801  // (We never end up here for C++, so the constant expression
5802  // rules there don't matter.)
5803  if (Init->isConstantInitializer(Context, false))
5804    return false;
5805  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5806    << Init->getSourceRange();
5807  return true;
5808}
5809
5810namespace {
5811  // Visits an initialization expression to see if OrigDecl is evaluated in
5812  // its own initialization and throws a warning if it does.
5813  class SelfReferenceChecker
5814      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5815    Sema &S;
5816    Decl *OrigDecl;
5817    bool isRecordType;
5818    bool isPODType;
5819
5820  public:
5821    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5822
5823    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5824                                                    S(S), OrigDecl(OrigDecl) {
5825      isPODType = false;
5826      isRecordType = false;
5827      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5828        isPODType = VD->getType().isPODType(S.Context);
5829        isRecordType = VD->getType()->isRecordType();
5830      }
5831    }
5832
5833    void VisitExpr(Expr *E) {
5834      if (isa<ObjCMessageExpr>(*E)) return;
5835      if (isRecordType) {
5836        Expr *expr = E;
5837        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5838          ValueDecl *VD = ME->getMemberDecl();
5839          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5840          expr = ME->getBase();
5841        }
5842        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5843          HandleDeclRefExpr(DRE);
5844          return;
5845        }
5846      }
5847      Inherited::VisitExpr(E);
5848    }
5849
5850    void VisitMemberExpr(MemberExpr *E) {
5851      if (E->getType()->canDecayToPointerType()) return;
5852      if (isa<FieldDecl>(E->getMemberDecl()))
5853        if (DeclRefExpr *DRE
5854              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5855          HandleDeclRefExpr(DRE);
5856          return;
5857        }
5858      Inherited::VisitMemberExpr(E);
5859    }
5860
5861    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5862      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5863          (isRecordType && E->getCastKind() == CK_NoOp)) {
5864        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5865        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5866          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5867        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5868          HandleDeclRefExpr(DRE);
5869          return;
5870        }
5871      }
5872      Inherited::VisitImplicitCastExpr(E);
5873    }
5874
5875    void VisitUnaryOperator(UnaryOperator *E) {
5876      // For POD record types, addresses of its own members are well-defined.
5877      if (isRecordType && isPODType) return;
5878      Inherited::VisitUnaryOperator(E);
5879    }
5880
5881    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5882      Decl* ReferenceDecl = DRE->getDecl();
5883      if (OrigDecl != ReferenceDecl) return;
5884      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5885                          Sema::NotForRedeclaration);
5886      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5887                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5888                              << Result.getLookupName()
5889                              << OrigDecl->getLocation()
5890                              << DRE->getSourceRange());
5891    }
5892  };
5893}
5894
5895/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5896void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5897  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5898}
5899
5900/// AddInitializerToDecl - Adds the initializer Init to the
5901/// declaration dcl. If DirectInit is true, this is C++ direct
5902/// initialization rather than copy initialization.
5903void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5904                                bool DirectInit, bool TypeMayContainAuto) {
5905  // If there is no declaration, there was an error parsing it.  Just ignore
5906  // the initializer.
5907  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5908    return;
5909
5910  // Check for self-references within variable initializers.
5911  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5912    // Variables declared within a function/method body are handled
5913    // by a dataflow analysis.
5914    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5915      CheckSelfReference(RealDecl, Init);
5916  }
5917  else {
5918    CheckSelfReference(RealDecl, Init);
5919  }
5920
5921  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5922    // With declarators parsed the way they are, the parser cannot
5923    // distinguish between a normal initializer and a pure-specifier.
5924    // Thus this grotesque test.
5925    IntegerLiteral *IL;
5926    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5927        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5928      CheckPureMethod(Method, Init->getSourceRange());
5929    else {
5930      Diag(Method->getLocation(), diag::err_member_function_initialization)
5931        << Method->getDeclName() << Init->getSourceRange();
5932      Method->setInvalidDecl();
5933    }
5934    return;
5935  }
5936
5937  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5938  if (!VDecl) {
5939    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5940    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5941    RealDecl->setInvalidDecl();
5942    return;
5943  }
5944
5945  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5946  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5947    TypeSourceInfo *DeducedType = 0;
5948    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5949      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5950        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5951        << Init->getSourceRange();
5952    if (!DeducedType) {
5953      RealDecl->setInvalidDecl();
5954      return;
5955    }
5956    VDecl->setTypeSourceInfo(DeducedType);
5957    VDecl->setType(DeducedType->getType());
5958
5959    // In ARC, infer lifetime.
5960    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5961      VDecl->setInvalidDecl();
5962
5963    // If this is a redeclaration, check that the type we just deduced matches
5964    // the previously declared type.
5965    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5966      MergeVarDeclTypes(VDecl, Old);
5967  }
5968
5969
5970  // A definition must end up with a complete type, which means it must be
5971  // complete with the restriction that an array type might be completed by the
5972  // initializer; note that later code assumes this restriction.
5973  QualType BaseDeclType = VDecl->getType();
5974  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5975    BaseDeclType = Array->getElementType();
5976  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5977                          diag::err_typecheck_decl_incomplete_type)) {
5978    RealDecl->setInvalidDecl();
5979    return;
5980  }
5981
5982  // The variable can not have an abstract class type.
5983  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5984                             diag::err_abstract_type_in_decl,
5985                             AbstractVariableType))
5986    VDecl->setInvalidDecl();
5987
5988  const VarDecl *Def;
5989  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5990    Diag(VDecl->getLocation(), diag::err_redefinition)
5991      << VDecl->getDeclName();
5992    Diag(Def->getLocation(), diag::note_previous_definition);
5993    VDecl->setInvalidDecl();
5994    return;
5995  }
5996
5997  const VarDecl* PrevInit = 0;
5998  if (getLangOptions().CPlusPlus) {
5999    // C++ [class.static.data]p4
6000    //   If a static data member is of const integral or const
6001    //   enumeration type, its declaration in the class definition can
6002    //   specify a constant-initializer which shall be an integral
6003    //   constant expression (5.19). In that case, the member can appear
6004    //   in integral constant expressions. The member shall still be
6005    //   defined in a namespace scope if it is used in the program and the
6006    //   namespace scope definition shall not contain an initializer.
6007    //
6008    // We already performed a redefinition check above, but for static
6009    // data members we also need to check whether there was an in-class
6010    // declaration with an initializer.
6011    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6012      Diag(VDecl->getLocation(), diag::err_redefinition)
6013        << VDecl->getDeclName();
6014      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6015      return;
6016    }
6017
6018    if (VDecl->hasLocalStorage())
6019      getCurFunction()->setHasBranchProtectedScope();
6020
6021    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6022      VDecl->setInvalidDecl();
6023      return;
6024    }
6025  }
6026
6027  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6028  // a kernel function cannot be initialized."
6029  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6030    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6031    VDecl->setInvalidDecl();
6032    return;
6033  }
6034
6035  // Capture the variable that is being initialized and the style of
6036  // initialization.
6037  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6038
6039  // FIXME: Poor source location information.
6040  InitializationKind Kind
6041    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
6042                                                   Init->getLocStart(),
6043                                                   Init->getLocEnd())
6044                : InitializationKind::CreateCopy(VDecl->getLocation(),
6045                                                 Init->getLocStart());
6046
6047  // Get the decls type and save a reference for later, since
6048  // CheckInitializerTypes may change it.
6049  QualType DclT = VDecl->getType(), SavT = DclT;
6050  if (VDecl->isLocalVarDecl()) {
6051    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
6052      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6053      VDecl->setInvalidDecl();
6054    } else if (!VDecl->isInvalidDecl()) {
6055      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6056      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6057                                                MultiExprArg(*this, &Init, 1),
6058                                                &DclT);
6059      if (Result.isInvalid()) {
6060        VDecl->setInvalidDecl();
6061        return;
6062      }
6063
6064      Init = Result.takeAs<Expr>();
6065
6066      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
6067      // Don't check invalid declarations to avoid emitting useless diagnostics.
6068      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
6069        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
6070          CheckForConstantInitializer(Init, DclT);
6071      }
6072    }
6073  } else if (VDecl->isStaticDataMember() &&
6074             VDecl->getLexicalDeclContext()->isRecord()) {
6075    // This is an in-class initialization for a static data member, e.g.,
6076    //
6077    // struct S {
6078    //   static const int value = 17;
6079    // };
6080
6081    // Try to perform the initialization regardless.
6082    if (!VDecl->isInvalidDecl()) {
6083      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6084      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6085                                          MultiExprArg(*this, &Init, 1),
6086                                          &DclT);
6087      if (Result.isInvalid()) {
6088        VDecl->setInvalidDecl();
6089        return;
6090      }
6091
6092      Init = Result.takeAs<Expr>();
6093    }
6094
6095    // C++ [class.mem]p4:
6096    //   A member-declarator can contain a constant-initializer only
6097    //   if it declares a static member (9.4) of const integral or
6098    //   const enumeration type, see 9.4.2.
6099    //
6100    // C++0x [class.static.data]p3:
6101    //   If a non-volatile const static data member is of integral or
6102    //   enumeration type, its declaration in the class definition can
6103    //   specify a brace-or-equal-initializer in which every initalizer-clause
6104    //   that is an assignment-expression is a constant expression. A static
6105    //   data member of literal type can be declared in the class definition
6106    //   with the constexpr specifier; if so, its declaration shall specify a
6107    //   brace-or-equal-initializer in which every initializer-clause that is
6108    //   an assignment-expression is a constant expression.
6109    QualType T = VDecl->getType();
6110
6111    // Do nothing on dependent types.
6112    if (T->isDependentType()) {
6113
6114    // Allow any 'static constexpr' members, whether or not they are of literal
6115    // type. We separately check that the initializer is a constant expression,
6116    // which implicitly requires the member to be of literal type.
6117    } else if (VDecl->isConstexpr()) {
6118
6119    // Require constness.
6120    } else if (!T.isConstQualified()) {
6121      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6122        << Init->getSourceRange();
6123      VDecl->setInvalidDecl();
6124
6125    // We allow integer constant expressions in all cases.
6126    } else if (T->isIntegralOrEnumerationType()) {
6127      // Check whether the expression is a constant expression.
6128      SourceLocation Loc;
6129      if (getLangOptions().CPlusPlus0x && T.isVolatileQualified())
6130        // In C++0x, a non-constexpr const static data member with an
6131        // in-class initializer cannot be volatile.
6132        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6133      else if (Init->isValueDependent())
6134        ; // Nothing to check.
6135      else if (Init->isIntegerConstantExpr(Context, &Loc))
6136        ; // Ok, it's an ICE!
6137      else if (Init->isEvaluatable(Context)) {
6138        // If we can constant fold the initializer through heroics, accept it,
6139        // but report this as a use of an extension for -pedantic.
6140        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6141          << Init->getSourceRange();
6142      } else {
6143        // Otherwise, this is some crazy unknown case.  Report the issue at the
6144        // location provided by the isIntegerConstantExpr failed check.
6145        Diag(Loc, diag::err_in_class_initializer_non_constant)
6146          << Init->getSourceRange();
6147        VDecl->setInvalidDecl();
6148      }
6149
6150    // We allow floating-point constants as an extension.
6151    } else if (T->isFloatingType()) { // also permits complex, which is ok
6152      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6153        << T << Init->getSourceRange();
6154      if (getLangOptions().CPlusPlus0x)
6155        Diag(VDecl->getLocation(),
6156             diag::note_in_class_initializer_float_type_constexpr)
6157          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6158
6159      if (!Init->isValueDependent() &&
6160          !Init->isConstantInitializer(Context, false)) {
6161        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6162          << Init->getSourceRange();
6163        VDecl->setInvalidDecl();
6164      }
6165
6166    // Suggest adding 'constexpr' in C++0x for literal types.
6167    } else if (getLangOptions().CPlusPlus0x && T->isLiteralType()) {
6168      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6169        << T << Init->getSourceRange()
6170        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6171      VDecl->setConstexpr(true);
6172
6173    } else {
6174      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6175        << T << Init->getSourceRange();
6176      VDecl->setInvalidDecl();
6177    }
6178  } else if (VDecl->isFileVarDecl()) {
6179    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6180        (!getLangOptions().CPlusPlus ||
6181         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6182      Diag(VDecl->getLocation(), diag::warn_extern_init);
6183    if (!VDecl->isInvalidDecl()) {
6184      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6185      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6186                                                MultiExprArg(*this, &Init, 1),
6187                                                &DclT);
6188      if (Result.isInvalid()) {
6189        VDecl->setInvalidDecl();
6190        return;
6191      }
6192
6193      Init = Result.takeAs<Expr>();
6194    }
6195
6196    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
6197    // Don't check invalid declarations to avoid emitting useless diagnostics.
6198    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
6199      // C99 6.7.8p4. All file scoped initializers need to be constant.
6200      CheckForConstantInitializer(Init, DclT);
6201    }
6202  }
6203  // If the type changed, it means we had an incomplete type that was
6204  // completed by the initializer. For example:
6205  //   int ary[] = { 1, 3, 5 };
6206  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
6207  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
6208    VDecl->setType(DclT);
6209    Init->setType(DclT.getNonReferenceType());
6210  }
6211
6212  // Check any implicit conversions within the expression.
6213  CheckImplicitConversions(Init, VDecl->getLocation());
6214
6215  if (!VDecl->isInvalidDecl())
6216    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6217
6218  Init = MaybeCreateExprWithCleanups(Init);
6219  // Attach the initializer to the decl.
6220  VDecl->setInit(Init);
6221
6222  CheckCompleteVariableDeclaration(VDecl);
6223}
6224
6225/// ActOnInitializerError - Given that there was an error parsing an
6226/// initializer for the given declaration, try to return to some form
6227/// of sanity.
6228void Sema::ActOnInitializerError(Decl *D) {
6229  // Our main concern here is re-establishing invariants like "a
6230  // variable's type is either dependent or complete".
6231  if (!D || D->isInvalidDecl()) return;
6232
6233  VarDecl *VD = dyn_cast<VarDecl>(D);
6234  if (!VD) return;
6235
6236  // Auto types are meaningless if we can't make sense of the initializer.
6237  if (ParsingInitForAutoVars.count(D)) {
6238    D->setInvalidDecl();
6239    return;
6240  }
6241
6242  QualType Ty = VD->getType();
6243  if (Ty->isDependentType()) return;
6244
6245  // Require a complete type.
6246  if (RequireCompleteType(VD->getLocation(),
6247                          Context.getBaseElementType(Ty),
6248                          diag::err_typecheck_decl_incomplete_type)) {
6249    VD->setInvalidDecl();
6250    return;
6251  }
6252
6253  // Require an abstract type.
6254  if (RequireNonAbstractType(VD->getLocation(), Ty,
6255                             diag::err_abstract_type_in_decl,
6256                             AbstractVariableType)) {
6257    VD->setInvalidDecl();
6258    return;
6259  }
6260
6261  // Don't bother complaining about constructors or destructors,
6262  // though.
6263}
6264
6265void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6266                                  bool TypeMayContainAuto) {
6267  // If there is no declaration, there was an error parsing it. Just ignore it.
6268  if (RealDecl == 0)
6269    return;
6270
6271  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6272    QualType Type = Var->getType();
6273
6274    // C++0x [dcl.spec.auto]p3
6275    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6276      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6277        << Var->getDeclName() << Type;
6278      Var->setInvalidDecl();
6279      return;
6280    }
6281
6282    // C++0x [class.static.data]p3: A static data member can be declared with
6283    // the constexpr specifier; if so, its declaration shall specify
6284    // a brace-or-equal-initializer.
6285    if (Var->isConstexpr() && Var->isStaticDataMember() &&
6286        !Var->isThisDeclarationADefinition()) {
6287      Diag(Var->getLocation(), diag::err_constexpr_static_mem_var_requires_init)
6288        << Var->getDeclName();
6289      Var->setInvalidDecl();
6290      return;
6291    }
6292
6293    switch (Var->isThisDeclarationADefinition()) {
6294    case VarDecl::Definition:
6295      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6296        break;
6297
6298      // We have an out-of-line definition of a static data member
6299      // that has an in-class initializer, so we type-check this like
6300      // a declaration.
6301      //
6302      // Fall through
6303
6304    case VarDecl::DeclarationOnly:
6305      // It's only a declaration.
6306
6307      // Block scope. C99 6.7p7: If an identifier for an object is
6308      // declared with no linkage (C99 6.2.2p6), the type for the
6309      // object shall be complete.
6310      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6311          !Var->getLinkage() && !Var->isInvalidDecl() &&
6312          RequireCompleteType(Var->getLocation(), Type,
6313                              diag::err_typecheck_decl_incomplete_type))
6314        Var->setInvalidDecl();
6315
6316      // Make sure that the type is not abstract.
6317      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6318          RequireNonAbstractType(Var->getLocation(), Type,
6319                                 diag::err_abstract_type_in_decl,
6320                                 AbstractVariableType))
6321        Var->setInvalidDecl();
6322      return;
6323
6324    case VarDecl::TentativeDefinition:
6325      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6326      // object that has file scope without an initializer, and without a
6327      // storage-class specifier or with the storage-class specifier "static",
6328      // constitutes a tentative definition. Note: A tentative definition with
6329      // external linkage is valid (C99 6.2.2p5).
6330      if (!Var->isInvalidDecl()) {
6331        if (const IncompleteArrayType *ArrayT
6332                                    = Context.getAsIncompleteArrayType(Type)) {
6333          if (RequireCompleteType(Var->getLocation(),
6334                                  ArrayT->getElementType(),
6335                                  diag::err_illegal_decl_array_incomplete_type))
6336            Var->setInvalidDecl();
6337        } else if (Var->getStorageClass() == SC_Static) {
6338          // C99 6.9.2p3: If the declaration of an identifier for an object is
6339          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6340          // declared type shall not be an incomplete type.
6341          // NOTE: code such as the following
6342          //     static struct s;
6343          //     struct s { int a; };
6344          // is accepted by gcc. Hence here we issue a warning instead of
6345          // an error and we do not invalidate the static declaration.
6346          // NOTE: to avoid multiple warnings, only check the first declaration.
6347          if (Var->getPreviousDeclaration() == 0)
6348            RequireCompleteType(Var->getLocation(), Type,
6349                                diag::ext_typecheck_decl_incomplete_type);
6350        }
6351      }
6352
6353      // Record the tentative definition; we're done.
6354      if (!Var->isInvalidDecl())
6355        TentativeDefinitions.push_back(Var);
6356      return;
6357    }
6358
6359    // Provide a specific diagnostic for uninitialized variable
6360    // definitions with incomplete array type.
6361    if (Type->isIncompleteArrayType()) {
6362      Diag(Var->getLocation(),
6363           diag::err_typecheck_incomplete_array_needs_initializer);
6364      Var->setInvalidDecl();
6365      return;
6366    }
6367
6368    // Provide a specific diagnostic for uninitialized variable
6369    // definitions with reference type.
6370    if (Type->isReferenceType()) {
6371      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6372        << Var->getDeclName()
6373        << SourceRange(Var->getLocation(), Var->getLocation());
6374      Var->setInvalidDecl();
6375      return;
6376    }
6377
6378    // Do not attempt to type-check the default initializer for a
6379    // variable with dependent type.
6380    if (Type->isDependentType())
6381      return;
6382
6383    if (Var->isInvalidDecl())
6384      return;
6385
6386    if (RequireCompleteType(Var->getLocation(),
6387                            Context.getBaseElementType(Type),
6388                            diag::err_typecheck_decl_incomplete_type)) {
6389      Var->setInvalidDecl();
6390      return;
6391    }
6392
6393    // The variable can not have an abstract class type.
6394    if (RequireNonAbstractType(Var->getLocation(), Type,
6395                               diag::err_abstract_type_in_decl,
6396                               AbstractVariableType)) {
6397      Var->setInvalidDecl();
6398      return;
6399    }
6400
6401    // Check for jumps past the implicit initializer.  C++0x
6402    // clarifies that this applies to a "variable with automatic
6403    // storage duration", not a "local variable".
6404    // C++11 [stmt.dcl]p3
6405    //   A program that jumps from a point where a variable with automatic
6406    //   storage duration is not in scope to a point where it is in scope is
6407    //   ill-formed unless the variable has scalar type, class type with a
6408    //   trivial default constructor and a trivial destructor, a cv-qualified
6409    //   version of one of these types, or an array of one of the preceding
6410    //   types and is declared without an initializer.
6411    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6412      if (const RecordType *Record
6413            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6414        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6415        // Mark the function for further checking even if the looser rules of
6416        // C++11 do not require such checks, so that we can diagnose
6417        // incompatibilities with C++98.
6418        if (!CXXRecord->isPOD())
6419          getCurFunction()->setHasBranchProtectedScope();
6420      }
6421    }
6422
6423    // C++03 [dcl.init]p9:
6424    //   If no initializer is specified for an object, and the
6425    //   object is of (possibly cv-qualified) non-POD class type (or
6426    //   array thereof), the object shall be default-initialized; if
6427    //   the object is of const-qualified type, the underlying class
6428    //   type shall have a user-declared default
6429    //   constructor. Otherwise, if no initializer is specified for
6430    //   a non- static object, the object and its subobjects, if
6431    //   any, have an indeterminate initial value); if the object
6432    //   or any of its subobjects are of const-qualified type, the
6433    //   program is ill-formed.
6434    // C++0x [dcl.init]p11:
6435    //   If no initializer is specified for an object, the object is
6436    //   default-initialized; [...].
6437    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6438    InitializationKind Kind
6439      = InitializationKind::CreateDefault(Var->getLocation());
6440
6441    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6442    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6443                                      MultiExprArg(*this, 0, 0));
6444    if (Init.isInvalid())
6445      Var->setInvalidDecl();
6446    else if (Init.get())
6447      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6448
6449    CheckCompleteVariableDeclaration(Var);
6450  }
6451}
6452
6453void Sema::ActOnCXXForRangeDecl(Decl *D) {
6454  VarDecl *VD = dyn_cast<VarDecl>(D);
6455  if (!VD) {
6456    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6457    D->setInvalidDecl();
6458    return;
6459  }
6460
6461  VD->setCXXForRangeDecl(true);
6462
6463  // for-range-declaration cannot be given a storage class specifier.
6464  int Error = -1;
6465  switch (VD->getStorageClassAsWritten()) {
6466  case SC_None:
6467    break;
6468  case SC_Extern:
6469    Error = 0;
6470    break;
6471  case SC_Static:
6472    Error = 1;
6473    break;
6474  case SC_PrivateExtern:
6475    Error = 2;
6476    break;
6477  case SC_Auto:
6478    Error = 3;
6479    break;
6480  case SC_Register:
6481    Error = 4;
6482    break;
6483  case SC_OpenCLWorkGroupLocal:
6484    llvm_unreachable("Unexpected storage class");
6485  }
6486  if (VD->isConstexpr())
6487    Error = 5;
6488  if (Error != -1) {
6489    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6490      << VD->getDeclName() << Error;
6491    D->setInvalidDecl();
6492  }
6493}
6494
6495void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6496  if (var->isInvalidDecl()) return;
6497
6498  // In ARC, don't allow jumps past the implicit initialization of a
6499  // local retaining variable.
6500  if (getLangOptions().ObjCAutoRefCount &&
6501      var->hasLocalStorage()) {
6502    switch (var->getType().getObjCLifetime()) {
6503    case Qualifiers::OCL_None:
6504    case Qualifiers::OCL_ExplicitNone:
6505    case Qualifiers::OCL_Autoreleasing:
6506      break;
6507
6508    case Qualifiers::OCL_Weak:
6509    case Qualifiers::OCL_Strong:
6510      getCurFunction()->setHasBranchProtectedScope();
6511      break;
6512    }
6513  }
6514
6515  // All the following checks are C++ only.
6516  if (!getLangOptions().CPlusPlus) return;
6517
6518  QualType baseType = Context.getBaseElementType(var->getType());
6519  if (baseType->isDependentType()) return;
6520
6521  // __block variables might require us to capture a copy-initializer.
6522  if (var->hasAttr<BlocksAttr>()) {
6523    // It's currently invalid to ever have a __block variable with an
6524    // array type; should we diagnose that here?
6525
6526    // Regardless, we don't want to ignore array nesting when
6527    // constructing this copy.
6528    QualType type = var->getType();
6529
6530    if (type->isStructureOrClassType()) {
6531      SourceLocation poi = var->getLocation();
6532      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6533      ExprResult result =
6534        PerformCopyInitialization(
6535                        InitializedEntity::InitializeBlock(poi, type, false),
6536                                  poi, Owned(varRef));
6537      if (!result.isInvalid()) {
6538        result = MaybeCreateExprWithCleanups(result);
6539        Expr *init = result.takeAs<Expr>();
6540        Context.setBlockVarCopyInits(var, init);
6541      }
6542    }
6543  }
6544
6545  Expr *Init = var->getInit();
6546  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6547
6548  if (!var->getDeclContext()->isDependentContext() &&
6549      (var->isConstexpr() || IsGlobal) && Init &&
6550      !Init->isConstantInitializer(Context, baseType->isReferenceType())) {
6551    // FIXME: Improve this diagnostic to explain why the initializer is not
6552    // a constant expression.
6553    if (var->isConstexpr())
6554      Diag(var->getLocation(), diag::err_constexpr_var_requires_const_init)
6555        << var << Init->getSourceRange();
6556    if (IsGlobal)
6557      Diag(var->getLocation(), diag::warn_global_constructor)
6558        << Init->getSourceRange();
6559  }
6560
6561  // Require the destructor.
6562  if (const RecordType *recordType = baseType->getAs<RecordType>())
6563    FinalizeVarWithDestructor(var, recordType);
6564}
6565
6566/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6567/// any semantic actions necessary after any initializer has been attached.
6568void
6569Sema::FinalizeDeclaration(Decl *ThisDecl) {
6570  // Note that we are no longer parsing the initializer for this declaration.
6571  ParsingInitForAutoVars.erase(ThisDecl);
6572}
6573
6574Sema::DeclGroupPtrTy
6575Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6576                              Decl **Group, unsigned NumDecls) {
6577  SmallVector<Decl*, 8> Decls;
6578
6579  if (DS.isTypeSpecOwned())
6580    Decls.push_back(DS.getRepAsDecl());
6581
6582  for (unsigned i = 0; i != NumDecls; ++i)
6583    if (Decl *D = Group[i])
6584      Decls.push_back(D);
6585
6586  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6587                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6588}
6589
6590/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6591/// group, performing any necessary semantic checking.
6592Sema::DeclGroupPtrTy
6593Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6594                           bool TypeMayContainAuto) {
6595  // C++0x [dcl.spec.auto]p7:
6596  //   If the type deduced for the template parameter U is not the same in each
6597  //   deduction, the program is ill-formed.
6598  // FIXME: When initializer-list support is added, a distinction is needed
6599  // between the deduced type U and the deduced type which 'auto' stands for.
6600  //   auto a = 0, b = { 1, 2, 3 };
6601  // is legal because the deduced type U is 'int' in both cases.
6602  if (TypeMayContainAuto && NumDecls > 1) {
6603    QualType Deduced;
6604    CanQualType DeducedCanon;
6605    VarDecl *DeducedDecl = 0;
6606    for (unsigned i = 0; i != NumDecls; ++i) {
6607      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6608        AutoType *AT = D->getType()->getContainedAutoType();
6609        // Don't reissue diagnostics when instantiating a template.
6610        if (AT && D->isInvalidDecl())
6611          break;
6612        if (AT && AT->isDeduced()) {
6613          QualType U = AT->getDeducedType();
6614          CanQualType UCanon = Context.getCanonicalType(U);
6615          if (Deduced.isNull()) {
6616            Deduced = U;
6617            DeducedCanon = UCanon;
6618            DeducedDecl = D;
6619          } else if (DeducedCanon != UCanon) {
6620            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6621                 diag::err_auto_different_deductions)
6622              << Deduced << DeducedDecl->getDeclName()
6623              << U << D->getDeclName()
6624              << DeducedDecl->getInit()->getSourceRange()
6625              << D->getInit()->getSourceRange();
6626            D->setInvalidDecl();
6627            break;
6628          }
6629        }
6630      }
6631    }
6632  }
6633
6634  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6635}
6636
6637
6638/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6639/// to introduce parameters into function prototype scope.
6640Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6641  const DeclSpec &DS = D.getDeclSpec();
6642
6643  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6644  // C++03 [dcl.stc]p2 also permits 'auto'.
6645  VarDecl::StorageClass StorageClass = SC_None;
6646  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6647  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6648    StorageClass = SC_Register;
6649    StorageClassAsWritten = SC_Register;
6650  } else if (getLangOptions().CPlusPlus &&
6651             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
6652    StorageClass = SC_Auto;
6653    StorageClassAsWritten = SC_Auto;
6654  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6655    Diag(DS.getStorageClassSpecLoc(),
6656         diag::err_invalid_storage_class_in_func_decl);
6657    D.getMutableDeclSpec().ClearStorageClassSpecs();
6658  }
6659
6660  if (D.getDeclSpec().isThreadSpecified())
6661    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6662  if (D.getDeclSpec().isConstexprSpecified())
6663    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6664      << 0;
6665
6666  DiagnoseFunctionSpecifiers(D);
6667
6668  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6669  QualType parmDeclType = TInfo->getType();
6670
6671  if (getLangOptions().CPlusPlus) {
6672    // Check that there are no default arguments inside the type of this
6673    // parameter.
6674    CheckExtraCXXDefaultArguments(D);
6675
6676    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6677    if (D.getCXXScopeSpec().isSet()) {
6678      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6679        << D.getCXXScopeSpec().getRange();
6680      D.getCXXScopeSpec().clear();
6681    }
6682  }
6683
6684  // Ensure we have a valid name
6685  IdentifierInfo *II = 0;
6686  if (D.hasName()) {
6687    II = D.getIdentifier();
6688    if (!II) {
6689      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6690        << GetNameForDeclarator(D).getName().getAsString();
6691      D.setInvalidType(true);
6692    }
6693  }
6694
6695  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6696  if (II) {
6697    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6698                   ForRedeclaration);
6699    LookupName(R, S);
6700    if (R.isSingleResult()) {
6701      NamedDecl *PrevDecl = R.getFoundDecl();
6702      if (PrevDecl->isTemplateParameter()) {
6703        // Maybe we will complain about the shadowed template parameter.
6704        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6705        // Just pretend that we didn't see the previous declaration.
6706        PrevDecl = 0;
6707      } else if (S->isDeclScope(PrevDecl)) {
6708        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6709        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6710
6711        // Recover by removing the name
6712        II = 0;
6713        D.SetIdentifier(0, D.getIdentifierLoc());
6714        D.setInvalidType(true);
6715      }
6716    }
6717  }
6718
6719  // Temporarily put parameter variables in the translation unit, not
6720  // the enclosing context.  This prevents them from accidentally
6721  // looking like class members in C++.
6722  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6723                                    D.getSourceRange().getBegin(),
6724                                    D.getIdentifierLoc(), II,
6725                                    parmDeclType, TInfo,
6726                                    StorageClass, StorageClassAsWritten);
6727
6728  if (D.isInvalidType())
6729    New->setInvalidDecl();
6730
6731  assert(S->isFunctionPrototypeScope());
6732  assert(S->getFunctionPrototypeDepth() >= 1);
6733  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6734                    S->getNextFunctionPrototypeIndex());
6735
6736  // Add the parameter declaration into this scope.
6737  S->AddDecl(New);
6738  if (II)
6739    IdResolver.AddDecl(New);
6740
6741  ProcessDeclAttributes(S, New, D);
6742
6743  if (D.getDeclSpec().isModulePrivateSpecified())
6744    Diag(New->getLocation(), diag::err_module_private_local)
6745      << 1 << New->getDeclName()
6746      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6747      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6748
6749  if (New->hasAttr<BlocksAttr>()) {
6750    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6751  }
6752  return New;
6753}
6754
6755/// \brief Synthesizes a variable for a parameter arising from a
6756/// typedef.
6757ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6758                                              SourceLocation Loc,
6759                                              QualType T) {
6760  /* FIXME: setting StartLoc == Loc.
6761     Would it be worth to modify callers so as to provide proper source
6762     location for the unnamed parameters, embedding the parameter's type? */
6763  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6764                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6765                                           SC_None, SC_None, 0);
6766  Param->setImplicit();
6767  return Param;
6768}
6769
6770void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6771                                    ParmVarDecl * const *ParamEnd) {
6772  // Don't diagnose unused-parameter errors in template instantiations; we
6773  // will already have done so in the template itself.
6774  if (!ActiveTemplateInstantiations.empty())
6775    return;
6776
6777  for (; Param != ParamEnd; ++Param) {
6778    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6779        !(*Param)->hasAttr<UnusedAttr>()) {
6780      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6781        << (*Param)->getDeclName();
6782    }
6783  }
6784}
6785
6786void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6787                                                  ParmVarDecl * const *ParamEnd,
6788                                                  QualType ReturnTy,
6789                                                  NamedDecl *D) {
6790  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6791    return;
6792
6793  // Warn if the return value is pass-by-value and larger than the specified
6794  // threshold.
6795  if (ReturnTy.isPODType(Context)) {
6796    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6797    if (Size > LangOpts.NumLargeByValueCopy)
6798      Diag(D->getLocation(), diag::warn_return_value_size)
6799          << D->getDeclName() << Size;
6800  }
6801
6802  // Warn if any parameter is pass-by-value and larger than the specified
6803  // threshold.
6804  for (; Param != ParamEnd; ++Param) {
6805    QualType T = (*Param)->getType();
6806    if (!T.isPODType(Context))
6807      continue;
6808    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6809    if (Size > LangOpts.NumLargeByValueCopy)
6810      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6811          << (*Param)->getDeclName() << Size;
6812  }
6813}
6814
6815ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6816                                  SourceLocation NameLoc, IdentifierInfo *Name,
6817                                  QualType T, TypeSourceInfo *TSInfo,
6818                                  VarDecl::StorageClass StorageClass,
6819                                  VarDecl::StorageClass StorageClassAsWritten) {
6820  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6821  if (getLangOptions().ObjCAutoRefCount &&
6822      T.getObjCLifetime() == Qualifiers::OCL_None &&
6823      T->isObjCLifetimeType()) {
6824
6825    Qualifiers::ObjCLifetime lifetime;
6826
6827    // Special cases for arrays:
6828    //   - if it's const, use __unsafe_unretained
6829    //   - otherwise, it's an error
6830    if (T->isArrayType()) {
6831      if (!T.isConstQualified()) {
6832        DelayedDiagnostics.add(
6833            sema::DelayedDiagnostic::makeForbiddenType(
6834            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6835      }
6836      lifetime = Qualifiers::OCL_ExplicitNone;
6837    } else {
6838      lifetime = T->getObjCARCImplicitLifetime();
6839    }
6840    T = Context.getLifetimeQualifiedType(T, lifetime);
6841  }
6842
6843  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6844                                         Context.getAdjustedParameterType(T),
6845                                         TSInfo,
6846                                         StorageClass, StorageClassAsWritten,
6847                                         0);
6848
6849  // Parameters can not be abstract class types.
6850  // For record types, this is done by the AbstractClassUsageDiagnoser once
6851  // the class has been completely parsed.
6852  if (!CurContext->isRecord() &&
6853      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6854                             AbstractParamType))
6855    New->setInvalidDecl();
6856
6857  // Parameter declarators cannot be interface types. All ObjC objects are
6858  // passed by reference.
6859  if (T->isObjCObjectType()) {
6860    Diag(NameLoc,
6861         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6862      << FixItHint::CreateInsertion(NameLoc, "*");
6863    T = Context.getObjCObjectPointerType(T);
6864    New->setType(T);
6865  }
6866
6867  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6868  // duration shall not be qualified by an address-space qualifier."
6869  // Since all parameters have automatic store duration, they can not have
6870  // an address space.
6871  if (T.getAddressSpace() != 0) {
6872    Diag(NameLoc, diag::err_arg_with_address_space);
6873    New->setInvalidDecl();
6874  }
6875
6876  return New;
6877}
6878
6879void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6880                                           SourceLocation LocAfterDecls) {
6881  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6882
6883  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6884  // for a K&R function.
6885  if (!FTI.hasPrototype) {
6886    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6887      --i;
6888      if (FTI.ArgInfo[i].Param == 0) {
6889        llvm::SmallString<256> Code;
6890        llvm::raw_svector_ostream(Code) << "  int "
6891                                        << FTI.ArgInfo[i].Ident->getName()
6892                                        << ";\n";
6893        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6894          << FTI.ArgInfo[i].Ident
6895          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6896
6897        // Implicitly declare the argument as type 'int' for lack of a better
6898        // type.
6899        AttributeFactory attrs;
6900        DeclSpec DS(attrs);
6901        const char* PrevSpec; // unused
6902        unsigned DiagID; // unused
6903        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6904                           PrevSpec, DiagID);
6905        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6906        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6907        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6908      }
6909    }
6910  }
6911}
6912
6913Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6914                                         Declarator &D) {
6915  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6916  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6917  Scope *ParentScope = FnBodyScope->getParent();
6918
6919  D.setFunctionDefinitionKind(FDK_Definition);
6920  Decl *DP = HandleDeclarator(ParentScope, D,
6921                              MultiTemplateParamsArg(*this));
6922  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6923}
6924
6925static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6926  // Don't warn about invalid declarations.
6927  if (FD->isInvalidDecl())
6928    return false;
6929
6930  // Or declarations that aren't global.
6931  if (!FD->isGlobal())
6932    return false;
6933
6934  // Don't warn about C++ member functions.
6935  if (isa<CXXMethodDecl>(FD))
6936    return false;
6937
6938  // Don't warn about 'main'.
6939  if (FD->isMain())
6940    return false;
6941
6942  // Don't warn about inline functions.
6943  if (FD->isInlined())
6944    return false;
6945
6946  // Don't warn about function templates.
6947  if (FD->getDescribedFunctionTemplate())
6948    return false;
6949
6950  // Don't warn about function template specializations.
6951  if (FD->isFunctionTemplateSpecialization())
6952    return false;
6953
6954  bool MissingPrototype = true;
6955  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6956       Prev; Prev = Prev->getPreviousDeclaration()) {
6957    // Ignore any declarations that occur in function or method
6958    // scope, because they aren't visible from the header.
6959    if (Prev->getDeclContext()->isFunctionOrMethod())
6960      continue;
6961
6962    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6963    break;
6964  }
6965
6966  return MissingPrototype;
6967}
6968
6969void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6970  // Don't complain if we're in GNU89 mode and the previous definition
6971  // was an extern inline function.
6972  const FunctionDecl *Definition;
6973  if (FD->isDefined(Definition) &&
6974      !canRedefineFunction(Definition, getLangOptions())) {
6975    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6976        Definition->getStorageClass() == SC_Extern)
6977      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6978        << FD->getDeclName() << getLangOptions().CPlusPlus;
6979    else
6980      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6981    Diag(Definition->getLocation(), diag::note_previous_definition);
6982  }
6983}
6984
6985Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6986  // Clear the last template instantiation error context.
6987  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6988
6989  if (!D)
6990    return D;
6991  FunctionDecl *FD = 0;
6992
6993  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6994    FD = FunTmpl->getTemplatedDecl();
6995  else
6996    FD = cast<FunctionDecl>(D);
6997
6998  // Enter a new function scope
6999  PushFunctionScope();
7000
7001  // See if this is a redefinition.
7002  if (!FD->isLateTemplateParsed())
7003    CheckForFunctionRedefinition(FD);
7004
7005  // Builtin functions cannot be defined.
7006  if (unsigned BuiltinID = FD->getBuiltinID()) {
7007    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7008      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7009      FD->setInvalidDecl();
7010    }
7011  }
7012
7013  // The return type of a function definition must be complete
7014  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7015  QualType ResultType = FD->getResultType();
7016  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7017      !FD->isInvalidDecl() &&
7018      RequireCompleteType(FD->getLocation(), ResultType,
7019                          diag::err_func_def_incomplete_result))
7020    FD->setInvalidDecl();
7021
7022  // GNU warning -Wmissing-prototypes:
7023  //   Warn if a global function is defined without a previous
7024  //   prototype declaration. This warning is issued even if the
7025  //   definition itself provides a prototype. The aim is to detect
7026  //   global functions that fail to be declared in header files.
7027  if (ShouldWarnAboutMissingPrototype(FD))
7028    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7029
7030  if (FnBodyScope)
7031    PushDeclContext(FnBodyScope, FD);
7032
7033  // Check the validity of our function parameters
7034  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7035                           /*CheckParameterNames=*/true);
7036
7037  // Introduce our parameters into the function scope
7038  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7039    ParmVarDecl *Param = FD->getParamDecl(p);
7040    Param->setOwningFunction(FD);
7041
7042    // If this has an identifier, add it to the scope stack.
7043    if (Param->getIdentifier() && FnBodyScope) {
7044      CheckShadow(FnBodyScope, Param);
7045
7046      PushOnScopeChains(Param, FnBodyScope);
7047    }
7048  }
7049
7050  // Checking attributes of current function definition
7051  // dllimport attribute.
7052  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7053  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7054    // dllimport attribute cannot be directly applied to definition.
7055    // Microsoft accepts dllimport for functions defined within class scope.
7056    if (!DA->isInherited() &&
7057        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7058      Diag(FD->getLocation(),
7059           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7060        << "dllimport";
7061      FD->setInvalidDecl();
7062      return FD;
7063    }
7064
7065    // Visual C++ appears to not think this is an issue, so only issue
7066    // a warning when Microsoft extensions are disabled.
7067    if (!LangOpts.MicrosoftExt) {
7068      // If a symbol previously declared dllimport is later defined, the
7069      // attribute is ignored in subsequent references, and a warning is
7070      // emitted.
7071      Diag(FD->getLocation(),
7072           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7073        << FD->getName() << "dllimport";
7074    }
7075  }
7076  return FD;
7077}
7078
7079/// \brief Given the set of return statements within a function body,
7080/// compute the variables that are subject to the named return value
7081/// optimization.
7082///
7083/// Each of the variables that is subject to the named return value
7084/// optimization will be marked as NRVO variables in the AST, and any
7085/// return statement that has a marked NRVO variable as its NRVO candidate can
7086/// use the named return value optimization.
7087///
7088/// This function applies a very simplistic algorithm for NRVO: if every return
7089/// statement in the function has the same NRVO candidate, that candidate is
7090/// the NRVO variable.
7091///
7092/// FIXME: Employ a smarter algorithm that accounts for multiple return
7093/// statements and the lifetimes of the NRVO candidates. We should be able to
7094/// find a maximal set of NRVO variables.
7095void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7096  ReturnStmt **Returns = Scope->Returns.data();
7097
7098  const VarDecl *NRVOCandidate = 0;
7099  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7100    if (!Returns[I]->getNRVOCandidate())
7101      return;
7102
7103    if (!NRVOCandidate)
7104      NRVOCandidate = Returns[I]->getNRVOCandidate();
7105    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7106      return;
7107  }
7108
7109  if (NRVOCandidate)
7110    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7111}
7112
7113Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7114  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7115}
7116
7117Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7118                                    bool IsInstantiation) {
7119  FunctionDecl *FD = 0;
7120  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7121  if (FunTmpl)
7122    FD = FunTmpl->getTemplatedDecl();
7123  else
7124    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7125
7126  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7127  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7128
7129  if (FD) {
7130    FD->setBody(Body);
7131    if (FD->isMain()) {
7132      // C and C++ allow for main to automagically return 0.
7133      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7134      FD->setHasImplicitReturnZero(true);
7135      WP.disableCheckFallThrough();
7136    } else if (FD->hasAttr<NakedAttr>()) {
7137      // If the function is marked 'naked', don't complain about missing return
7138      // statements.
7139      WP.disableCheckFallThrough();
7140    }
7141
7142    // MSVC permits the use of pure specifier (=0) on function definition,
7143    // defined at class scope, warn about this non standard construct.
7144    if (getLangOptions().MicrosoftExt && FD->isPure())
7145      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7146
7147    if (!FD->isInvalidDecl()) {
7148      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7149      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7150                                             FD->getResultType(), FD);
7151
7152      // If this is a constructor, we need a vtable.
7153      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7154        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7155
7156      computeNRVO(Body, getCurFunction());
7157    }
7158
7159    assert(FD == getCurFunctionDecl() && "Function parsing confused");
7160  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7161    assert(MD == getCurMethodDecl() && "Method parsing confused");
7162    MD->setBody(Body);
7163    if (Body)
7164      MD->setEndLoc(Body->getLocEnd());
7165    if (!MD->isInvalidDecl()) {
7166      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7167      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7168                                             MD->getResultType(), MD);
7169
7170      if (Body)
7171        computeNRVO(Body, getCurFunction());
7172    }
7173    if (ObjCShouldCallSuperDealloc) {
7174      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7175      ObjCShouldCallSuperDealloc = false;
7176    }
7177    if (ObjCShouldCallSuperFinalize) {
7178      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7179      ObjCShouldCallSuperFinalize = false;
7180    }
7181  } else {
7182    return 0;
7183  }
7184
7185  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7186         "ObjC methods, which should have been handled in the block above.");
7187  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7188         "ObjC methods, which should have been handled in the block above.");
7189
7190  // Verify and clean out per-function state.
7191  if (Body) {
7192    // C++ constructors that have function-try-blocks can't have return
7193    // statements in the handlers of that block. (C++ [except.handle]p14)
7194    // Verify this.
7195    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7196      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7197
7198    // Verify that gotos and switch cases don't jump into scopes illegally.
7199    if (getCurFunction()->NeedsScopeChecking() &&
7200        !dcl->isInvalidDecl() &&
7201        !hasAnyUnrecoverableErrorsInThisFunction())
7202      DiagnoseInvalidJumps(Body);
7203
7204    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7205      if (!Destructor->getParent()->isDependentType())
7206        CheckDestructor(Destructor);
7207
7208      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7209                                             Destructor->getParent());
7210    }
7211
7212    // If any errors have occurred, clear out any temporaries that may have
7213    // been leftover. This ensures that these temporaries won't be picked up for
7214    // deletion in some later function.
7215    if (PP.getDiagnostics().hasErrorOccurred() ||
7216        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7217      DiscardCleanupsInEvaluationContext();
7218    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7219      // Since the body is valid, issue any analysis-based warnings that are
7220      // enabled.
7221      ActivePolicy = &WP;
7222    }
7223
7224    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7225        !CheckConstexprFunctionBody(FD, Body))
7226      FD->setInvalidDecl();
7227
7228    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7229    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7230  }
7231
7232  if (!IsInstantiation)
7233    PopDeclContext();
7234
7235  PopFunctionOrBlockScope(ActivePolicy, dcl);
7236
7237  // If any errors have occurred, clear out any temporaries that may have
7238  // been leftover. This ensures that these temporaries won't be picked up for
7239  // deletion in some later function.
7240  if (getDiagnostics().hasErrorOccurred()) {
7241    DiscardCleanupsInEvaluationContext();
7242  }
7243
7244  return dcl;
7245}
7246
7247
7248/// When we finish delayed parsing of an attribute, we must attach it to the
7249/// relevant Decl.
7250void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7251                                       ParsedAttributes &Attrs) {
7252  ProcessDeclAttributeList(S, D, Attrs.getList());
7253}
7254
7255
7256/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7257/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7258NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7259                                          IdentifierInfo &II, Scope *S) {
7260  // Before we produce a declaration for an implicitly defined
7261  // function, see whether there was a locally-scoped declaration of
7262  // this name as a function or variable. If so, use that
7263  // (non-visible) declaration, and complain about it.
7264  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7265    = findLocallyScopedExternalDecl(&II);
7266  if (Pos != LocallyScopedExternalDecls.end()) {
7267    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7268    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7269    return Pos->second;
7270  }
7271
7272  // Extension in C99.  Legal in C90, but warn about it.
7273  unsigned diag_id;
7274  if (II.getName().startswith("__builtin_"))
7275    diag_id = diag::err_builtin_unknown;
7276  else if (getLangOptions().C99)
7277    diag_id = diag::ext_implicit_function_decl;
7278  else
7279    diag_id = diag::warn_implicit_function_decl;
7280  Diag(Loc, diag_id) << &II;
7281
7282  // Because typo correction is expensive, only do it if the implicit
7283  // function declaration is going to be treated as an error.
7284  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7285    TypoCorrection Corrected;
7286    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7287                                      LookupOrdinaryName, S, 0))) {
7288      NamedDecl *Decl = Corrected.getCorrectionDecl();
7289      if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Decl)) {
7290        std::string CorrectedStr = Corrected.getAsString(getLangOptions());
7291        std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOptions());
7292
7293        Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7294            << FixItHint::CreateReplacement(Loc, CorrectedStr);
7295
7296        if (Func->getLocation().isValid()
7297            && !II.getName().startswith("__builtin_"))
7298          Diag(Func->getLocation(), diag::note_previous_decl)
7299              << CorrectedQuotedStr;
7300      }
7301    }
7302  }
7303
7304  // Set a Declarator for the implicit definition: int foo();
7305  const char *Dummy;
7306  AttributeFactory attrFactory;
7307  DeclSpec DS(attrFactory);
7308  unsigned DiagID;
7309  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7310  (void)Error; // Silence warning.
7311  assert(!Error && "Error setting up implicit decl!");
7312  Declarator D(DS, Declarator::BlockContext);
7313  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7314                                             0, 0, true, SourceLocation(),
7315                                             SourceLocation(), SourceLocation(),
7316                                             SourceLocation(),
7317                                             EST_None, SourceLocation(),
7318                                             0, 0, 0, 0, Loc, Loc, D),
7319                DS.getAttributes(),
7320                SourceLocation());
7321  D.SetIdentifier(&II, Loc);
7322
7323  // Insert this function into translation-unit scope.
7324
7325  DeclContext *PrevDC = CurContext;
7326  CurContext = Context.getTranslationUnitDecl();
7327
7328  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7329  FD->setImplicit();
7330
7331  CurContext = PrevDC;
7332
7333  AddKnownFunctionAttributes(FD);
7334
7335  return FD;
7336}
7337
7338/// \brief Adds any function attributes that we know a priori based on
7339/// the declaration of this function.
7340///
7341/// These attributes can apply both to implicitly-declared builtins
7342/// (like __builtin___printf_chk) or to library-declared functions
7343/// like NSLog or printf.
7344///
7345/// We need to check for duplicate attributes both here and where user-written
7346/// attributes are applied to declarations.
7347void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7348  if (FD->isInvalidDecl())
7349    return;
7350
7351  // If this is a built-in function, map its builtin attributes to
7352  // actual attributes.
7353  if (unsigned BuiltinID = FD->getBuiltinID()) {
7354    // Handle printf-formatting attributes.
7355    unsigned FormatIdx;
7356    bool HasVAListArg;
7357    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7358      if (!FD->getAttr<FormatAttr>())
7359        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7360                                                "printf", FormatIdx+1,
7361                                               HasVAListArg ? 0 : FormatIdx+2));
7362    }
7363    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7364                                             HasVAListArg)) {
7365     if (!FD->getAttr<FormatAttr>())
7366       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7367                                              "scanf", FormatIdx+1,
7368                                              HasVAListArg ? 0 : FormatIdx+2));
7369    }
7370
7371    // Mark const if we don't care about errno and that is the only
7372    // thing preventing the function from being const. This allows
7373    // IRgen to use LLVM intrinsics for such functions.
7374    if (!getLangOptions().MathErrno &&
7375        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7376      if (!FD->getAttr<ConstAttr>())
7377        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7378    }
7379
7380    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7381        !FD->getAttr<ReturnsTwiceAttr>())
7382      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7383    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7384      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7385    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7386      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7387  }
7388
7389  IdentifierInfo *Name = FD->getIdentifier();
7390  if (!Name)
7391    return;
7392  if ((!getLangOptions().CPlusPlus &&
7393       FD->getDeclContext()->isTranslationUnit()) ||
7394      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7395       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7396       LinkageSpecDecl::lang_c)) {
7397    // Okay: this could be a libc/libm/Objective-C function we know
7398    // about.
7399  } else
7400    return;
7401
7402  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
7403    // FIXME: NSLog and NSLogv should be target specific
7404    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
7405      // FIXME: We known better than our headers.
7406      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
7407    } else
7408      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7409                                             "printf", 1,
7410                                             Name->isStr("NSLogv") ? 0 : 2));
7411  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7412    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7413    // target-specific builtins, perhaps?
7414    if (!FD->getAttr<FormatAttr>())
7415      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7416                                             "printf", 2,
7417                                             Name->isStr("vasprintf") ? 0 : 3));
7418  }
7419}
7420
7421TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7422                                    TypeSourceInfo *TInfo) {
7423  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7424  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7425
7426  if (!TInfo) {
7427    assert(D.isInvalidType() && "no declarator info for valid type");
7428    TInfo = Context.getTrivialTypeSourceInfo(T);
7429  }
7430
7431  // Scope manipulation handled by caller.
7432  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7433                                           D.getSourceRange().getBegin(),
7434                                           D.getIdentifierLoc(),
7435                                           D.getIdentifier(),
7436                                           TInfo);
7437
7438  // Bail out immediately if we have an invalid declaration.
7439  if (D.isInvalidType()) {
7440    NewTD->setInvalidDecl();
7441    return NewTD;
7442  }
7443
7444  if (D.getDeclSpec().isModulePrivateSpecified()) {
7445    if (CurContext->isFunctionOrMethod())
7446      Diag(NewTD->getLocation(), diag::err_module_private_local)
7447        << 2 << NewTD->getDeclName()
7448        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7449        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7450    else
7451      NewTD->setModulePrivate();
7452  }
7453
7454  // C++ [dcl.typedef]p8:
7455  //   If the typedef declaration defines an unnamed class (or
7456  //   enum), the first typedef-name declared by the declaration
7457  //   to be that class type (or enum type) is used to denote the
7458  //   class type (or enum type) for linkage purposes only.
7459  // We need to check whether the type was declared in the declaration.
7460  switch (D.getDeclSpec().getTypeSpecType()) {
7461  case TST_enum:
7462  case TST_struct:
7463  case TST_union:
7464  case TST_class: {
7465    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7466
7467    // Do nothing if the tag is not anonymous or already has an
7468    // associated typedef (from an earlier typedef in this decl group).
7469    if (tagFromDeclSpec->getIdentifier()) break;
7470    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7471
7472    // A well-formed anonymous tag must always be a TUK_Definition.
7473    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7474
7475    // The type must match the tag exactly;  no qualifiers allowed.
7476    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7477      break;
7478
7479    // Otherwise, set this is the anon-decl typedef for the tag.
7480    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7481    break;
7482  }
7483
7484  default:
7485    break;
7486  }
7487
7488  return NewTD;
7489}
7490
7491
7492/// \brief Determine whether a tag with a given kind is acceptable
7493/// as a redeclaration of the given tag declaration.
7494///
7495/// \returns true if the new tag kind is acceptable, false otherwise.
7496bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7497                                        TagTypeKind NewTag, bool isDefinition,
7498                                        SourceLocation NewTagLoc,
7499                                        const IdentifierInfo &Name) {
7500  // C++ [dcl.type.elab]p3:
7501  //   The class-key or enum keyword present in the
7502  //   elaborated-type-specifier shall agree in kind with the
7503  //   declaration to which the name in the elaborated-type-specifier
7504  //   refers. This rule also applies to the form of
7505  //   elaborated-type-specifier that declares a class-name or
7506  //   friend class since it can be construed as referring to the
7507  //   definition of the class. Thus, in any
7508  //   elaborated-type-specifier, the enum keyword shall be used to
7509  //   refer to an enumeration (7.2), the union class-key shall be
7510  //   used to refer to a union (clause 9), and either the class or
7511  //   struct class-key shall be used to refer to a class (clause 9)
7512  //   declared using the class or struct class-key.
7513  TagTypeKind OldTag = Previous->getTagKind();
7514  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7515    if (OldTag == NewTag)
7516      return true;
7517
7518  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7519      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7520    // Warn about the struct/class tag mismatch.
7521    bool isTemplate = false;
7522    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7523      isTemplate = Record->getDescribedClassTemplate();
7524
7525    if (!ActiveTemplateInstantiations.empty()) {
7526      // In a template instantiation, do not offer fix-its for tag mismatches
7527      // since they usually mess up the template instead of fixing the problem.
7528      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7529        << (NewTag == TTK_Class) << isTemplate << &Name;
7530      return true;
7531    }
7532
7533    if (isDefinition) {
7534      // On definitions, check previous tags and issue a fix-it for each
7535      // one that doesn't match the current tag.
7536      if (Previous->getDefinition()) {
7537        // Don't suggest fix-its for redefinitions.
7538        return true;
7539      }
7540
7541      bool previousMismatch = false;
7542      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7543           E(Previous->redecls_end()); I != E; ++I) {
7544        if (I->getTagKind() != NewTag) {
7545          if (!previousMismatch) {
7546            previousMismatch = true;
7547            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7548              << (NewTag == TTK_Class) << isTemplate << &Name;
7549          }
7550          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7551            << (NewTag == TTK_Class)
7552            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7553                                            NewTag == TTK_Class?
7554                                            "class" : "struct");
7555        }
7556      }
7557      return true;
7558    }
7559
7560    // Check for a previous definition.  If current tag and definition
7561    // are same type, do nothing.  If no definition, but disagree with
7562    // with previous tag type, give a warning, but no fix-it.
7563    const TagDecl *Redecl = Previous->getDefinition() ?
7564                            Previous->getDefinition() : Previous;
7565    if (Redecl->getTagKind() == NewTag) {
7566      return true;
7567    }
7568
7569    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7570      << (NewTag == TTK_Class)
7571      << isTemplate << &Name;
7572    Diag(Redecl->getLocation(), diag::note_previous_use);
7573
7574    // If there is a previous defintion, suggest a fix-it.
7575    if (Previous->getDefinition()) {
7576        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7577          << (Redecl->getTagKind() == TTK_Class)
7578          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7579                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7580    }
7581
7582    return true;
7583  }
7584  return false;
7585}
7586
7587/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7588/// former case, Name will be non-null.  In the later case, Name will be null.
7589/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7590/// reference/declaration/definition of a tag.
7591Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7592                     SourceLocation KWLoc, CXXScopeSpec &SS,
7593                     IdentifierInfo *Name, SourceLocation NameLoc,
7594                     AttributeList *Attr, AccessSpecifier AS,
7595                     SourceLocation ModulePrivateLoc,
7596                     MultiTemplateParamsArg TemplateParameterLists,
7597                     bool &OwnedDecl, bool &IsDependent,
7598                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7599                     TypeResult UnderlyingType) {
7600  // If this is not a definition, it must have a name.
7601  assert((Name != 0 || TUK == TUK_Definition) &&
7602         "Nameless record must be a definition!");
7603  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7604
7605  OwnedDecl = false;
7606  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7607
7608  // FIXME: Check explicit specializations more carefully.
7609  bool isExplicitSpecialization = false;
7610  bool Invalid = false;
7611
7612  // We only need to do this matching if we have template parameters
7613  // or a scope specifier, which also conveniently avoids this work
7614  // for non-C++ cases.
7615  if (TemplateParameterLists.size() > 0 ||
7616      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7617    if (TemplateParameterList *TemplateParams
7618          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7619                                                TemplateParameterLists.get(),
7620                                                TemplateParameterLists.size(),
7621                                                    TUK == TUK_Friend,
7622                                                    isExplicitSpecialization,
7623                                                    Invalid)) {
7624      if (TemplateParams->size() > 0) {
7625        // This is a declaration or definition of a class template (which may
7626        // be a member of another template).
7627
7628        if (Invalid)
7629          return 0;
7630
7631        OwnedDecl = false;
7632        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7633                                               SS, Name, NameLoc, Attr,
7634                                               TemplateParams, AS,
7635                                               ModulePrivateLoc,
7636                                           TemplateParameterLists.size() - 1,
7637                 (TemplateParameterList**) TemplateParameterLists.release());
7638        return Result.get();
7639      } else {
7640        // The "template<>" header is extraneous.
7641        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7642          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7643        isExplicitSpecialization = true;
7644      }
7645    }
7646  }
7647
7648  // Figure out the underlying type if this a enum declaration. We need to do
7649  // this early, because it's needed to detect if this is an incompatible
7650  // redeclaration.
7651  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7652
7653  if (Kind == TTK_Enum) {
7654    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7655      // No underlying type explicitly specified, or we failed to parse the
7656      // type, default to int.
7657      EnumUnderlying = Context.IntTy.getTypePtr();
7658    else if (UnderlyingType.get()) {
7659      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7660      // integral type; any cv-qualification is ignored.
7661      TypeSourceInfo *TI = 0;
7662      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7663      EnumUnderlying = TI;
7664
7665      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7666
7667      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7668        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7669          << T;
7670        // Recover by falling back to int.
7671        EnumUnderlying = Context.IntTy.getTypePtr();
7672      }
7673
7674      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7675                                          UPPC_FixedUnderlyingType))
7676        EnumUnderlying = Context.IntTy.getTypePtr();
7677
7678    } else if (getLangOptions().MicrosoftExt)
7679      // Microsoft enums are always of int type.
7680      EnumUnderlying = Context.IntTy.getTypePtr();
7681  }
7682
7683  DeclContext *SearchDC = CurContext;
7684  DeclContext *DC = CurContext;
7685  bool isStdBadAlloc = false;
7686
7687  RedeclarationKind Redecl = ForRedeclaration;
7688  if (TUK == TUK_Friend || TUK == TUK_Reference)
7689    Redecl = NotForRedeclaration;
7690
7691  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7692
7693  if (Name && SS.isNotEmpty()) {
7694    // We have a nested-name tag ('struct foo::bar').
7695
7696    // Check for invalid 'foo::'.
7697    if (SS.isInvalid()) {
7698      Name = 0;
7699      goto CreateNewDecl;
7700    }
7701
7702    // If this is a friend or a reference to a class in a dependent
7703    // context, don't try to make a decl for it.
7704    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7705      DC = computeDeclContext(SS, false);
7706      if (!DC) {
7707        IsDependent = true;
7708        return 0;
7709      }
7710    } else {
7711      DC = computeDeclContext(SS, true);
7712      if (!DC) {
7713        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7714          << SS.getRange();
7715        return 0;
7716      }
7717    }
7718
7719    if (RequireCompleteDeclContext(SS, DC))
7720      return 0;
7721
7722    SearchDC = DC;
7723    // Look-up name inside 'foo::'.
7724    LookupQualifiedName(Previous, DC);
7725
7726    if (Previous.isAmbiguous())
7727      return 0;
7728
7729    if (Previous.empty()) {
7730      // Name lookup did not find anything. However, if the
7731      // nested-name-specifier refers to the current instantiation,
7732      // and that current instantiation has any dependent base
7733      // classes, we might find something at instantiation time: treat
7734      // this as a dependent elaborated-type-specifier.
7735      // But this only makes any sense for reference-like lookups.
7736      if (Previous.wasNotFoundInCurrentInstantiation() &&
7737          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7738        IsDependent = true;
7739        return 0;
7740      }
7741
7742      // A tag 'foo::bar' must already exist.
7743      Diag(NameLoc, diag::err_not_tag_in_scope)
7744        << Kind << Name << DC << SS.getRange();
7745      Name = 0;
7746      Invalid = true;
7747      goto CreateNewDecl;
7748    }
7749  } else if (Name) {
7750    // If this is a named struct, check to see if there was a previous forward
7751    // declaration or definition.
7752    // FIXME: We're looking into outer scopes here, even when we
7753    // shouldn't be. Doing so can result in ambiguities that we
7754    // shouldn't be diagnosing.
7755    LookupName(Previous, S);
7756
7757    if (Previous.isAmbiguous() &&
7758        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7759      LookupResult::Filter F = Previous.makeFilter();
7760      while (F.hasNext()) {
7761        NamedDecl *ND = F.next();
7762        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7763          F.erase();
7764      }
7765      F.done();
7766    }
7767
7768    // Note:  there used to be some attempt at recovery here.
7769    if (Previous.isAmbiguous())
7770      return 0;
7771
7772    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7773      // FIXME: This makes sure that we ignore the contexts associated
7774      // with C structs, unions, and enums when looking for a matching
7775      // tag declaration or definition. See the similar lookup tweak
7776      // in Sema::LookupName; is there a better way to deal with this?
7777      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7778        SearchDC = SearchDC->getParent();
7779    }
7780  } else if (S->isFunctionPrototypeScope()) {
7781    // If this is an enum declaration in function prototype scope, set its
7782    // initial context to the translation unit.
7783    SearchDC = Context.getTranslationUnitDecl();
7784  }
7785
7786  if (Previous.isSingleResult() &&
7787      Previous.getFoundDecl()->isTemplateParameter()) {
7788    // Maybe we will complain about the shadowed template parameter.
7789    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7790    // Just pretend that we didn't see the previous declaration.
7791    Previous.clear();
7792  }
7793
7794  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7795      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7796    // This is a declaration of or a reference to "std::bad_alloc".
7797    isStdBadAlloc = true;
7798
7799    if (Previous.empty() && StdBadAlloc) {
7800      // std::bad_alloc has been implicitly declared (but made invisible to
7801      // name lookup). Fill in this implicit declaration as the previous
7802      // declaration, so that the declarations get chained appropriately.
7803      Previous.addDecl(getStdBadAlloc());
7804    }
7805  }
7806
7807  // If we didn't find a previous declaration, and this is a reference
7808  // (or friend reference), move to the correct scope.  In C++, we
7809  // also need to do a redeclaration lookup there, just in case
7810  // there's a shadow friend decl.
7811  if (Name && Previous.empty() &&
7812      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7813    if (Invalid) goto CreateNewDecl;
7814    assert(SS.isEmpty());
7815
7816    if (TUK == TUK_Reference) {
7817      // C++ [basic.scope.pdecl]p5:
7818      //   -- for an elaborated-type-specifier of the form
7819      //
7820      //          class-key identifier
7821      //
7822      //      if the elaborated-type-specifier is used in the
7823      //      decl-specifier-seq or parameter-declaration-clause of a
7824      //      function defined in namespace scope, the identifier is
7825      //      declared as a class-name in the namespace that contains
7826      //      the declaration; otherwise, except as a friend
7827      //      declaration, the identifier is declared in the smallest
7828      //      non-class, non-function-prototype scope that contains the
7829      //      declaration.
7830      //
7831      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7832      // C structs and unions.
7833      //
7834      // It is an error in C++ to declare (rather than define) an enum
7835      // type, including via an elaborated type specifier.  We'll
7836      // diagnose that later; for now, declare the enum in the same
7837      // scope as we would have picked for any other tag type.
7838      //
7839      // GNU C also supports this behavior as part of its incomplete
7840      // enum types extension, while GNU C++ does not.
7841      //
7842      // Find the context where we'll be declaring the tag.
7843      // FIXME: We would like to maintain the current DeclContext as the
7844      // lexical context,
7845      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7846        SearchDC = SearchDC->getParent();
7847
7848      // Find the scope where we'll be declaring the tag.
7849      while (S->isClassScope() ||
7850             (getLangOptions().CPlusPlus &&
7851              S->isFunctionPrototypeScope()) ||
7852             ((S->getFlags() & Scope::DeclScope) == 0) ||
7853             (S->getEntity() &&
7854              ((DeclContext *)S->getEntity())->isTransparentContext()))
7855        S = S->getParent();
7856    } else {
7857      assert(TUK == TUK_Friend);
7858      // C++ [namespace.memdef]p3:
7859      //   If a friend declaration in a non-local class first declares a
7860      //   class or function, the friend class or function is a member of
7861      //   the innermost enclosing namespace.
7862      SearchDC = SearchDC->getEnclosingNamespaceContext();
7863    }
7864
7865    // In C++, we need to do a redeclaration lookup to properly
7866    // diagnose some problems.
7867    if (getLangOptions().CPlusPlus) {
7868      Previous.setRedeclarationKind(ForRedeclaration);
7869      LookupQualifiedName(Previous, SearchDC);
7870    }
7871  }
7872
7873  if (!Previous.empty()) {
7874    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7875
7876    // It's okay to have a tag decl in the same scope as a typedef
7877    // which hides a tag decl in the same scope.  Finding this
7878    // insanity with a redeclaration lookup can only actually happen
7879    // in C++.
7880    //
7881    // This is also okay for elaborated-type-specifiers, which is
7882    // technically forbidden by the current standard but which is
7883    // okay according to the likely resolution of an open issue;
7884    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7885    if (getLangOptions().CPlusPlus) {
7886      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7887        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7888          TagDecl *Tag = TT->getDecl();
7889          if (Tag->getDeclName() == Name &&
7890              Tag->getDeclContext()->getRedeclContext()
7891                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7892            PrevDecl = Tag;
7893            Previous.clear();
7894            Previous.addDecl(Tag);
7895            Previous.resolveKind();
7896          }
7897        }
7898      }
7899    }
7900
7901    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7902      // If this is a use of a previous tag, or if the tag is already declared
7903      // in the same scope (so that the definition/declaration completes or
7904      // rementions the tag), reuse the decl.
7905      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7906          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7907        // Make sure that this wasn't declared as an enum and now used as a
7908        // struct or something similar.
7909        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7910                                          TUK == TUK_Definition, KWLoc,
7911                                          *Name)) {
7912          bool SafeToContinue
7913            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7914               Kind != TTK_Enum);
7915          if (SafeToContinue)
7916            Diag(KWLoc, diag::err_use_with_wrong_tag)
7917              << Name
7918              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7919                                              PrevTagDecl->getKindName());
7920          else
7921            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7922          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7923
7924          if (SafeToContinue)
7925            Kind = PrevTagDecl->getTagKind();
7926          else {
7927            // Recover by making this an anonymous redefinition.
7928            Name = 0;
7929            Previous.clear();
7930            Invalid = true;
7931          }
7932        }
7933
7934        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7935          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7936
7937          // All conflicts with previous declarations are recovered by
7938          // returning the previous declaration.
7939          if (ScopedEnum != PrevEnum->isScoped()) {
7940            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7941              << PrevEnum->isScoped();
7942            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7943            return PrevTagDecl;
7944          }
7945          else if (EnumUnderlying && PrevEnum->isFixed()) {
7946            QualType T;
7947            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7948                T = TI->getType();
7949            else
7950                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7951
7952            if (!Context.hasSameUnqualifiedType(T,
7953                                                PrevEnum->getIntegerType())) {
7954              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7955                   diag::err_enum_redeclare_type_mismatch)
7956                << T
7957                << PrevEnum->getIntegerType();
7958              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7959              return PrevTagDecl;
7960            }
7961          }
7962          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7963            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7964              << PrevEnum->isFixed();
7965            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7966            return PrevTagDecl;
7967          }
7968        }
7969
7970        if (!Invalid) {
7971          // If this is a use, just return the declaration we found.
7972
7973          // FIXME: In the future, return a variant or some other clue
7974          // for the consumer of this Decl to know it doesn't own it.
7975          // For our current ASTs this shouldn't be a problem, but will
7976          // need to be changed with DeclGroups.
7977          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7978               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
7979            return PrevTagDecl;
7980
7981          // Diagnose attempts to redefine a tag.
7982          if (TUK == TUK_Definition) {
7983            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7984              // If we're defining a specialization and the previous definition
7985              // is from an implicit instantiation, don't emit an error
7986              // here; we'll catch this in the general case below.
7987              if (!isExplicitSpecialization ||
7988                  !isa<CXXRecordDecl>(Def) ||
7989                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7990                                               == TSK_ExplicitSpecialization) {
7991                Diag(NameLoc, diag::err_redefinition) << Name;
7992                Diag(Def->getLocation(), diag::note_previous_definition);
7993                // If this is a redefinition, recover by making this
7994                // struct be anonymous, which will make any later
7995                // references get the previous definition.
7996                Name = 0;
7997                Previous.clear();
7998                Invalid = true;
7999              }
8000            } else {
8001              // If the type is currently being defined, complain
8002              // about a nested redefinition.
8003              const TagType *Tag
8004                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8005              if (Tag->isBeingDefined()) {
8006                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8007                Diag(PrevTagDecl->getLocation(),
8008                     diag::note_previous_definition);
8009                Name = 0;
8010                Previous.clear();
8011                Invalid = true;
8012              }
8013            }
8014
8015            // Okay, this is definition of a previously declared or referenced
8016            // tag PrevDecl. We're going to create a new Decl for it.
8017          }
8018        }
8019        // If we get here we have (another) forward declaration or we
8020        // have a definition.  Just create a new decl.
8021
8022      } else {
8023        // If we get here, this is a definition of a new tag type in a nested
8024        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8025        // new decl/type.  We set PrevDecl to NULL so that the entities
8026        // have distinct types.
8027        Previous.clear();
8028      }
8029      // If we get here, we're going to create a new Decl. If PrevDecl
8030      // is non-NULL, it's a definition of the tag declared by
8031      // PrevDecl. If it's NULL, we have a new definition.
8032
8033
8034    // Otherwise, PrevDecl is not a tag, but was found with tag
8035    // lookup.  This is only actually possible in C++, where a few
8036    // things like templates still live in the tag namespace.
8037    } else {
8038      assert(getLangOptions().CPlusPlus);
8039
8040      // Use a better diagnostic if an elaborated-type-specifier
8041      // found the wrong kind of type on the first
8042      // (non-redeclaration) lookup.
8043      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8044          !Previous.isForRedeclaration()) {
8045        unsigned Kind = 0;
8046        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8047        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8048        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8049        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8050        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8051        Invalid = true;
8052
8053      // Otherwise, only diagnose if the declaration is in scope.
8054      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8055                                isExplicitSpecialization)) {
8056        // do nothing
8057
8058      // Diagnose implicit declarations introduced by elaborated types.
8059      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8060        unsigned Kind = 0;
8061        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8062        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8063        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8064        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8065        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8066        Invalid = true;
8067
8068      // Otherwise it's a declaration.  Call out a particularly common
8069      // case here.
8070      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8071        unsigned Kind = 0;
8072        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8073        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8074          << Name << Kind << TND->getUnderlyingType();
8075        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8076        Invalid = true;
8077
8078      // Otherwise, diagnose.
8079      } else {
8080        // The tag name clashes with something else in the target scope,
8081        // issue an error and recover by making this tag be anonymous.
8082        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8083        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8084        Name = 0;
8085        Invalid = true;
8086      }
8087
8088      // The existing declaration isn't relevant to us; we're in a
8089      // new scope, so clear out the previous declaration.
8090      Previous.clear();
8091    }
8092  }
8093
8094CreateNewDecl:
8095
8096  TagDecl *PrevDecl = 0;
8097  if (Previous.isSingleResult())
8098    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8099
8100  // If there is an identifier, use the location of the identifier as the
8101  // location of the decl, otherwise use the location of the struct/union
8102  // keyword.
8103  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8104
8105  // Otherwise, create a new declaration. If there is a previous
8106  // declaration of the same entity, the two will be linked via
8107  // PrevDecl.
8108  TagDecl *New;
8109
8110  bool IsForwardReference = false;
8111  if (Kind == TTK_Enum) {
8112    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8113    // enum X { A, B, C } D;    D should chain to X.
8114    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8115                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8116                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8117    // If this is an undefined enum, warn.
8118    if (TUK != TUK_Definition && !Invalid) {
8119      TagDecl *Def;
8120      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8121        // C++0x: 7.2p2: opaque-enum-declaration.
8122        // Conflicts are diagnosed above. Do nothing.
8123      }
8124      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8125        Diag(Loc, diag::ext_forward_ref_enum_def)
8126          << New;
8127        Diag(Def->getLocation(), diag::note_previous_definition);
8128      } else {
8129        unsigned DiagID = diag::ext_forward_ref_enum;
8130        if (getLangOptions().MicrosoftExt)
8131          DiagID = diag::ext_ms_forward_ref_enum;
8132        else if (getLangOptions().CPlusPlus)
8133          DiagID = diag::err_forward_ref_enum;
8134        Diag(Loc, DiagID);
8135
8136        // If this is a forward-declared reference to an enumeration, make a
8137        // note of it; we won't actually be introducing the declaration into
8138        // the declaration context.
8139        if (TUK == TUK_Reference)
8140          IsForwardReference = true;
8141      }
8142    }
8143
8144    if (EnumUnderlying) {
8145      EnumDecl *ED = cast<EnumDecl>(New);
8146      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8147        ED->setIntegerTypeSourceInfo(TI);
8148      else
8149        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8150      ED->setPromotionType(ED->getIntegerType());
8151    }
8152
8153  } else {
8154    // struct/union/class
8155
8156    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8157    // struct X { int A; } D;    D should chain to X.
8158    if (getLangOptions().CPlusPlus) {
8159      // FIXME: Look for a way to use RecordDecl for simple structs.
8160      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8161                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8162
8163      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8164        StdBadAlloc = cast<CXXRecordDecl>(New);
8165    } else
8166      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8167                               cast_or_null<RecordDecl>(PrevDecl));
8168  }
8169
8170  // Maybe add qualifier info.
8171  if (SS.isNotEmpty()) {
8172    if (SS.isSet()) {
8173      New->setQualifierInfo(SS.getWithLocInContext(Context));
8174      if (TemplateParameterLists.size() > 0) {
8175        New->setTemplateParameterListsInfo(Context,
8176                                           TemplateParameterLists.size(),
8177                    (TemplateParameterList**) TemplateParameterLists.release());
8178      }
8179    }
8180    else
8181      Invalid = true;
8182  }
8183
8184  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8185    // Add alignment attributes if necessary; these attributes are checked when
8186    // the ASTContext lays out the structure.
8187    //
8188    // It is important for implementing the correct semantics that this
8189    // happen here (in act on tag decl). The #pragma pack stack is
8190    // maintained as a result of parser callbacks which can occur at
8191    // many points during the parsing of a struct declaration (because
8192    // the #pragma tokens are effectively skipped over during the
8193    // parsing of the struct).
8194    AddAlignmentAttributesForRecord(RD);
8195
8196    AddMsStructLayoutForRecord(RD);
8197  }
8198
8199  if (PrevDecl && PrevDecl->isModulePrivate())
8200    New->setModulePrivate();
8201  else if (ModulePrivateLoc.isValid()) {
8202    if (isExplicitSpecialization)
8203      Diag(New->getLocation(), diag::err_module_private_specialization)
8204        << 2
8205        << FixItHint::CreateRemoval(ModulePrivateLoc);
8206    else if (PrevDecl && !PrevDecl->isModulePrivate())
8207      diagnoseModulePrivateRedeclaration(New, PrevDecl, ModulePrivateLoc);
8208    // __module_private__ does not apply to local classes. However, we only
8209    // diagnose this as an error when the declaration specifiers are
8210    // freestanding. Here, we just ignore the __module_private__.
8211    // foobar
8212    else if (!SearchDC->isFunctionOrMethod())
8213      New->setModulePrivate();
8214  }
8215
8216  // If this is a specialization of a member class (of a class template),
8217  // check the specialization.
8218  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8219    Invalid = true;
8220
8221  if (Invalid)
8222    New->setInvalidDecl();
8223
8224  if (Attr)
8225    ProcessDeclAttributeList(S, New, Attr);
8226
8227  // If we're declaring or defining a tag in function prototype scope
8228  // in C, note that this type can only be used within the function.
8229  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8230    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8231
8232  // Set the lexical context. If the tag has a C++ scope specifier, the
8233  // lexical context will be different from the semantic context.
8234  New->setLexicalDeclContext(CurContext);
8235
8236  // Mark this as a friend decl if applicable.
8237  // In Microsoft mode, a friend declaration also acts as a forward
8238  // declaration so we always pass true to setObjectOfFriendDecl to make
8239  // the tag name visible.
8240  if (TUK == TUK_Friend)
8241    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8242                               getLangOptions().MicrosoftExt);
8243
8244  // Set the access specifier.
8245  if (!Invalid && SearchDC->isRecord())
8246    SetMemberAccessSpecifier(New, PrevDecl, AS);
8247
8248  if (TUK == TUK_Definition)
8249    New->startDefinition();
8250
8251  // If this has an identifier, add it to the scope stack.
8252  if (TUK == TUK_Friend) {
8253    // We might be replacing an existing declaration in the lookup tables;
8254    // if so, borrow its access specifier.
8255    if (PrevDecl)
8256      New->setAccess(PrevDecl->getAccess());
8257
8258    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8259    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8260    if (Name) // can be null along some error paths
8261      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8262        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8263  } else if (Name) {
8264    S = getNonFieldDeclScope(S);
8265    PushOnScopeChains(New, S, !IsForwardReference);
8266    if (IsForwardReference)
8267      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8268
8269  } else {
8270    CurContext->addDecl(New);
8271  }
8272
8273  // If this is the C FILE type, notify the AST context.
8274  if (IdentifierInfo *II = New->getIdentifier())
8275    if (!New->isInvalidDecl() &&
8276        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8277        II->isStr("FILE"))
8278      Context.setFILEDecl(New);
8279
8280  OwnedDecl = true;
8281  return New;
8282}
8283
8284void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8285  AdjustDeclIfTemplate(TagD);
8286  TagDecl *Tag = cast<TagDecl>(TagD);
8287
8288  // Enter the tag context.
8289  PushDeclContext(S, Tag);
8290}
8291
8292Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8293  assert(isa<ObjCContainerDecl>(IDecl) &&
8294         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8295  DeclContext *OCD = cast<DeclContext>(IDecl);
8296  assert(getContainingDC(OCD) == CurContext &&
8297      "The next DeclContext should be lexically contained in the current one.");
8298  CurContext = OCD;
8299  return IDecl;
8300}
8301
8302void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8303                                           SourceLocation FinalLoc,
8304                                           SourceLocation LBraceLoc) {
8305  AdjustDeclIfTemplate(TagD);
8306  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8307
8308  FieldCollector->StartClass();
8309
8310  if (!Record->getIdentifier())
8311    return;
8312
8313  if (FinalLoc.isValid())
8314    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8315
8316  // C++ [class]p2:
8317  //   [...] The class-name is also inserted into the scope of the
8318  //   class itself; this is known as the injected-class-name. For
8319  //   purposes of access checking, the injected-class-name is treated
8320  //   as if it were a public member name.
8321  CXXRecordDecl *InjectedClassName
8322    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8323                            Record->getLocStart(), Record->getLocation(),
8324                            Record->getIdentifier(),
8325                            /*PrevDecl=*/0,
8326                            /*DelayTypeCreation=*/true);
8327  Context.getTypeDeclType(InjectedClassName, Record);
8328  InjectedClassName->setImplicit();
8329  InjectedClassName->setAccess(AS_public);
8330  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8331      InjectedClassName->setDescribedClassTemplate(Template);
8332  PushOnScopeChains(InjectedClassName, S);
8333  assert(InjectedClassName->isInjectedClassName() &&
8334         "Broken injected-class-name");
8335}
8336
8337void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8338                                    SourceLocation RBraceLoc) {
8339  AdjustDeclIfTemplate(TagD);
8340  TagDecl *Tag = cast<TagDecl>(TagD);
8341  Tag->setRBraceLoc(RBraceLoc);
8342
8343  if (isa<CXXRecordDecl>(Tag))
8344    FieldCollector->FinishClass();
8345
8346  // Exit this scope of this tag's definition.
8347  PopDeclContext();
8348
8349  // Notify the consumer that we've defined a tag.
8350  Consumer.HandleTagDeclDefinition(Tag);
8351}
8352
8353void Sema::ActOnObjCContainerFinishDefinition() {
8354  // Exit this scope of this interface definition.
8355  PopDeclContext();
8356}
8357
8358void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8359  assert(DC == CurContext && "Mismatch of container contexts");
8360  OriginalLexicalContext = DC;
8361  ActOnObjCContainerFinishDefinition();
8362}
8363
8364void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8365  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8366  OriginalLexicalContext = 0;
8367}
8368
8369void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8370  AdjustDeclIfTemplate(TagD);
8371  TagDecl *Tag = cast<TagDecl>(TagD);
8372  Tag->setInvalidDecl();
8373
8374  // We're undoing ActOnTagStartDefinition here, not
8375  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8376  // the FieldCollector.
8377
8378  PopDeclContext();
8379}
8380
8381// Note that FieldName may be null for anonymous bitfields.
8382bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
8383                          QualType FieldTy, const Expr *BitWidth,
8384                          bool *ZeroWidth) {
8385  // Default to true; that shouldn't confuse checks for emptiness
8386  if (ZeroWidth)
8387    *ZeroWidth = true;
8388
8389  // C99 6.7.2.1p4 - verify the field type.
8390  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8391  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8392    // Handle incomplete types with specific error.
8393    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8394      return true;
8395    if (FieldName)
8396      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8397        << FieldName << FieldTy << BitWidth->getSourceRange();
8398    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8399      << FieldTy << BitWidth->getSourceRange();
8400  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8401                                             UPPC_BitFieldWidth))
8402    return true;
8403
8404  // If the bit-width is type- or value-dependent, don't try to check
8405  // it now.
8406  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8407    return false;
8408
8409  llvm::APSInt Value;
8410  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8411    return true;
8412
8413  if (Value != 0 && ZeroWidth)
8414    *ZeroWidth = false;
8415
8416  // Zero-width bitfield is ok for anonymous field.
8417  if (Value == 0 && FieldName)
8418    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8419
8420  if (Value.isSigned() && Value.isNegative()) {
8421    if (FieldName)
8422      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8423               << FieldName << Value.toString(10);
8424    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8425      << Value.toString(10);
8426  }
8427
8428  if (!FieldTy->isDependentType()) {
8429    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8430    if (Value.getZExtValue() > TypeSize) {
8431      if (!getLangOptions().CPlusPlus) {
8432        if (FieldName)
8433          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8434            << FieldName << (unsigned)Value.getZExtValue()
8435            << (unsigned)TypeSize;
8436
8437        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8438          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8439      }
8440
8441      if (FieldName)
8442        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8443          << FieldName << (unsigned)Value.getZExtValue()
8444          << (unsigned)TypeSize;
8445      else
8446        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8447          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8448    }
8449  }
8450
8451  return false;
8452}
8453
8454/// ActOnField - Each field of a C struct/union is passed into this in order
8455/// to create a FieldDecl object for it.
8456Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8457                       Declarator &D, Expr *BitfieldWidth) {
8458  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8459                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8460                               /*HasInit=*/false, AS_public);
8461  return Res;
8462}
8463
8464/// HandleField - Analyze a field of a C struct or a C++ data member.
8465///
8466FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8467                             SourceLocation DeclStart,
8468                             Declarator &D, Expr *BitWidth, bool HasInit,
8469                             AccessSpecifier AS) {
8470  IdentifierInfo *II = D.getIdentifier();
8471  SourceLocation Loc = DeclStart;
8472  if (II) Loc = D.getIdentifierLoc();
8473
8474  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8475  QualType T = TInfo->getType();
8476  if (getLangOptions().CPlusPlus) {
8477    CheckExtraCXXDefaultArguments(D);
8478
8479    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8480                                        UPPC_DataMemberType)) {
8481      D.setInvalidType();
8482      T = Context.IntTy;
8483      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8484    }
8485  }
8486
8487  DiagnoseFunctionSpecifiers(D);
8488
8489  if (D.getDeclSpec().isThreadSpecified())
8490    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8491  if (D.getDeclSpec().isConstexprSpecified())
8492    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8493      << 2;
8494
8495  // Check to see if this name was declared as a member previously
8496  NamedDecl *PrevDecl = 0;
8497  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8498  LookupName(Previous, S);
8499  switch (Previous.getResultKind()) {
8500    case LookupResult::Found:
8501    case LookupResult::FoundUnresolvedValue:
8502      PrevDecl = Previous.getAsSingle<NamedDecl>();
8503      break;
8504
8505    case LookupResult::FoundOverloaded:
8506      PrevDecl = Previous.getRepresentativeDecl();
8507      break;
8508
8509    case LookupResult::NotFound:
8510    case LookupResult::NotFoundInCurrentInstantiation:
8511    case LookupResult::Ambiguous:
8512      break;
8513  }
8514  Previous.suppressDiagnostics();
8515
8516  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8517    // Maybe we will complain about the shadowed template parameter.
8518    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8519    // Just pretend that we didn't see the previous declaration.
8520    PrevDecl = 0;
8521  }
8522
8523  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8524    PrevDecl = 0;
8525
8526  bool Mutable
8527    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8528  SourceLocation TSSL = D.getSourceRange().getBegin();
8529  FieldDecl *NewFD
8530    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8531                     TSSL, AS, PrevDecl, &D);
8532
8533  if (NewFD->isInvalidDecl())
8534    Record->setInvalidDecl();
8535
8536  if (D.getDeclSpec().isModulePrivateSpecified())
8537    NewFD->setModulePrivate();
8538
8539  if (NewFD->isInvalidDecl() && PrevDecl) {
8540    // Don't introduce NewFD into scope; there's already something
8541    // with the same name in the same scope.
8542  } else if (II) {
8543    PushOnScopeChains(NewFD, S);
8544  } else
8545    Record->addDecl(NewFD);
8546
8547  return NewFD;
8548}
8549
8550/// \brief Build a new FieldDecl and check its well-formedness.
8551///
8552/// This routine builds a new FieldDecl given the fields name, type,
8553/// record, etc. \p PrevDecl should refer to any previous declaration
8554/// with the same name and in the same scope as the field to be
8555/// created.
8556///
8557/// \returns a new FieldDecl.
8558///
8559/// \todo The Declarator argument is a hack. It will be removed once
8560FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8561                                TypeSourceInfo *TInfo,
8562                                RecordDecl *Record, SourceLocation Loc,
8563                                bool Mutable, Expr *BitWidth, bool HasInit,
8564                                SourceLocation TSSL,
8565                                AccessSpecifier AS, NamedDecl *PrevDecl,
8566                                Declarator *D) {
8567  IdentifierInfo *II = Name.getAsIdentifierInfo();
8568  bool InvalidDecl = false;
8569  if (D) InvalidDecl = D->isInvalidType();
8570
8571  // If we receive a broken type, recover by assuming 'int' and
8572  // marking this declaration as invalid.
8573  if (T.isNull()) {
8574    InvalidDecl = true;
8575    T = Context.IntTy;
8576  }
8577
8578  QualType EltTy = Context.getBaseElementType(T);
8579  if (!EltTy->isDependentType() &&
8580      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8581    // Fields of incomplete type force their record to be invalid.
8582    Record->setInvalidDecl();
8583    InvalidDecl = true;
8584  }
8585
8586  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8587  // than a variably modified type.
8588  if (!InvalidDecl && T->isVariablyModifiedType()) {
8589    bool SizeIsNegative;
8590    llvm::APSInt Oversized;
8591    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8592                                                           SizeIsNegative,
8593                                                           Oversized);
8594    if (!FixedTy.isNull()) {
8595      Diag(Loc, diag::warn_illegal_constant_array_size);
8596      T = FixedTy;
8597    } else {
8598      if (SizeIsNegative)
8599        Diag(Loc, diag::err_typecheck_negative_array_size);
8600      else if (Oversized.getBoolValue())
8601        Diag(Loc, diag::err_array_too_large)
8602          << Oversized.toString(10);
8603      else
8604        Diag(Loc, diag::err_typecheck_field_variable_size);
8605      InvalidDecl = true;
8606    }
8607  }
8608
8609  // Fields can not have abstract class types
8610  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8611                                             diag::err_abstract_type_in_decl,
8612                                             AbstractFieldType))
8613    InvalidDecl = true;
8614
8615  bool ZeroWidth = false;
8616  // If this is declared as a bit-field, check the bit-field.
8617  if (!InvalidDecl && BitWidth &&
8618      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8619    InvalidDecl = true;
8620    BitWidth = 0;
8621    ZeroWidth = false;
8622  }
8623
8624  // Check that 'mutable' is consistent with the type of the declaration.
8625  if (!InvalidDecl && Mutable) {
8626    unsigned DiagID = 0;
8627    if (T->isReferenceType())
8628      DiagID = diag::err_mutable_reference;
8629    else if (T.isConstQualified())
8630      DiagID = diag::err_mutable_const;
8631
8632    if (DiagID) {
8633      SourceLocation ErrLoc = Loc;
8634      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8635        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8636      Diag(ErrLoc, DiagID);
8637      Mutable = false;
8638      InvalidDecl = true;
8639    }
8640  }
8641
8642  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8643                                       BitWidth, Mutable, HasInit);
8644  if (InvalidDecl)
8645    NewFD->setInvalidDecl();
8646
8647  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8648    Diag(Loc, diag::err_duplicate_member) << II;
8649    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8650    NewFD->setInvalidDecl();
8651  }
8652
8653  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8654    if (Record->isUnion()) {
8655      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8656        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8657        if (RDecl->getDefinition()) {
8658          // C++ [class.union]p1: An object of a class with a non-trivial
8659          // constructor, a non-trivial copy constructor, a non-trivial
8660          // destructor, or a non-trivial copy assignment operator
8661          // cannot be a member of a union, nor can an array of such
8662          // objects.
8663          if (CheckNontrivialField(NewFD))
8664            NewFD->setInvalidDecl();
8665        }
8666      }
8667
8668      // C++ [class.union]p1: If a union contains a member of reference type,
8669      // the program is ill-formed.
8670      if (EltTy->isReferenceType()) {
8671        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8672          << NewFD->getDeclName() << EltTy;
8673        NewFD->setInvalidDecl();
8674      }
8675    }
8676  }
8677
8678  // FIXME: We need to pass in the attributes given an AST
8679  // representation, not a parser representation.
8680  if (D)
8681    // FIXME: What to pass instead of TUScope?
8682    ProcessDeclAttributes(TUScope, NewFD, *D);
8683
8684  // In auto-retain/release, infer strong retension for fields of
8685  // retainable type.
8686  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8687    NewFD->setInvalidDecl();
8688
8689  if (T.isObjCGCWeak())
8690    Diag(Loc, diag::warn_attribute_weak_on_field);
8691
8692  NewFD->setAccess(AS);
8693  return NewFD;
8694}
8695
8696bool Sema::CheckNontrivialField(FieldDecl *FD) {
8697  assert(FD);
8698  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8699
8700  if (FD->isInvalidDecl())
8701    return true;
8702
8703  QualType EltTy = Context.getBaseElementType(FD->getType());
8704  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8705    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8706    if (RDecl->getDefinition()) {
8707      // We check for copy constructors before constructors
8708      // because otherwise we'll never get complaints about
8709      // copy constructors.
8710
8711      CXXSpecialMember member = CXXInvalid;
8712      if (!RDecl->hasTrivialCopyConstructor())
8713        member = CXXCopyConstructor;
8714      else if (!RDecl->hasTrivialDefaultConstructor())
8715        member = CXXDefaultConstructor;
8716      else if (!RDecl->hasTrivialCopyAssignment())
8717        member = CXXCopyAssignment;
8718      else if (!RDecl->hasTrivialDestructor())
8719        member = CXXDestructor;
8720
8721      if (member != CXXInvalid) {
8722        if (!getLangOptions().CPlusPlus0x &&
8723            getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8724          // Objective-C++ ARC: it is an error to have a non-trivial field of
8725          // a union. However, system headers in Objective-C programs
8726          // occasionally have Objective-C lifetime objects within unions,
8727          // and rather than cause the program to fail, we make those
8728          // members unavailable.
8729          SourceLocation Loc = FD->getLocation();
8730          if (getSourceManager().isInSystemHeader(Loc)) {
8731            if (!FD->hasAttr<UnavailableAttr>())
8732              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8733                                  "this system field has retaining ownership"));
8734            return false;
8735          }
8736        }
8737
8738        Diag(FD->getLocation(), getLangOptions().CPlusPlus0x ?
8739               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
8740               diag::err_illegal_union_or_anon_struct_member)
8741          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8742        DiagnoseNontrivial(RT, member);
8743        return !getLangOptions().CPlusPlus0x;
8744      }
8745    }
8746  }
8747
8748  return false;
8749}
8750
8751/// DiagnoseNontrivial - Given that a class has a non-trivial
8752/// special member, figure out why.
8753void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8754  QualType QT(T, 0U);
8755  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8756
8757  // Check whether the member was user-declared.
8758  switch (member) {
8759  case CXXInvalid:
8760    break;
8761
8762  case CXXDefaultConstructor:
8763    if (RD->hasUserDeclaredConstructor()) {
8764      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8765      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8766        const FunctionDecl *body = 0;
8767        ci->hasBody(body);
8768        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8769          SourceLocation CtorLoc = ci->getLocation();
8770          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8771          return;
8772        }
8773      }
8774
8775      llvm_unreachable("found no user-declared constructors");
8776    }
8777    break;
8778
8779  case CXXCopyConstructor:
8780    if (RD->hasUserDeclaredCopyConstructor()) {
8781      SourceLocation CtorLoc =
8782        RD->getCopyConstructor(0)->getLocation();
8783      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8784      return;
8785    }
8786    break;
8787
8788  case CXXMoveConstructor:
8789    if (RD->hasUserDeclaredMoveConstructor()) {
8790      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8791      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8792      return;
8793    }
8794    break;
8795
8796  case CXXCopyAssignment:
8797    if (RD->hasUserDeclaredCopyAssignment()) {
8798      // FIXME: this should use the location of the copy
8799      // assignment, not the type.
8800      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8801      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8802      return;
8803    }
8804    break;
8805
8806  case CXXMoveAssignment:
8807    if (RD->hasUserDeclaredMoveAssignment()) {
8808      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8809      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8810      return;
8811    }
8812    break;
8813
8814  case CXXDestructor:
8815    if (RD->hasUserDeclaredDestructor()) {
8816      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8817      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8818      return;
8819    }
8820    break;
8821  }
8822
8823  typedef CXXRecordDecl::base_class_iterator base_iter;
8824
8825  // Virtual bases and members inhibit trivial copying/construction,
8826  // but not trivial destruction.
8827  if (member != CXXDestructor) {
8828    // Check for virtual bases.  vbases includes indirect virtual bases,
8829    // so we just iterate through the direct bases.
8830    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8831      if (bi->isVirtual()) {
8832        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8833        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8834        return;
8835      }
8836
8837    // Check for virtual methods.
8838    typedef CXXRecordDecl::method_iterator meth_iter;
8839    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8840         ++mi) {
8841      if (mi->isVirtual()) {
8842        SourceLocation MLoc = mi->getSourceRange().getBegin();
8843        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8844        return;
8845      }
8846    }
8847  }
8848
8849  bool (CXXRecordDecl::*hasTrivial)() const;
8850  switch (member) {
8851  case CXXDefaultConstructor:
8852    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8853  case CXXCopyConstructor:
8854    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8855  case CXXCopyAssignment:
8856    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8857  case CXXDestructor:
8858    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8859  default:
8860    llvm_unreachable("unexpected special member");
8861  }
8862
8863  // Check for nontrivial bases (and recurse).
8864  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8865    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8866    assert(BaseRT && "Don't know how to handle dependent bases");
8867    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8868    if (!(BaseRecTy->*hasTrivial)()) {
8869      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8870      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8871      DiagnoseNontrivial(BaseRT, member);
8872      return;
8873    }
8874  }
8875
8876  // Check for nontrivial members (and recurse).
8877  typedef RecordDecl::field_iterator field_iter;
8878  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8879       ++fi) {
8880    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8881    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8882      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8883
8884      if (!(EltRD->*hasTrivial)()) {
8885        SourceLocation FLoc = (*fi)->getLocation();
8886        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8887        DiagnoseNontrivial(EltRT, member);
8888        return;
8889      }
8890    }
8891
8892    if (EltTy->isObjCLifetimeType()) {
8893      switch (EltTy.getObjCLifetime()) {
8894      case Qualifiers::OCL_None:
8895      case Qualifiers::OCL_ExplicitNone:
8896        break;
8897
8898      case Qualifiers::OCL_Autoreleasing:
8899      case Qualifiers::OCL_Weak:
8900      case Qualifiers::OCL_Strong:
8901        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8902          << QT << EltTy.getObjCLifetime();
8903        return;
8904      }
8905    }
8906  }
8907
8908  llvm_unreachable("found no explanation for non-trivial member");
8909}
8910
8911/// TranslateIvarVisibility - Translate visibility from a token ID to an
8912///  AST enum value.
8913static ObjCIvarDecl::AccessControl
8914TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8915  switch (ivarVisibility) {
8916  default: llvm_unreachable("Unknown visitibility kind");
8917  case tok::objc_private: return ObjCIvarDecl::Private;
8918  case tok::objc_public: return ObjCIvarDecl::Public;
8919  case tok::objc_protected: return ObjCIvarDecl::Protected;
8920  case tok::objc_package: return ObjCIvarDecl::Package;
8921  }
8922}
8923
8924/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8925/// in order to create an IvarDecl object for it.
8926Decl *Sema::ActOnIvar(Scope *S,
8927                                SourceLocation DeclStart,
8928                                Declarator &D, Expr *BitfieldWidth,
8929                                tok::ObjCKeywordKind Visibility) {
8930
8931  IdentifierInfo *II = D.getIdentifier();
8932  Expr *BitWidth = (Expr*)BitfieldWidth;
8933  SourceLocation Loc = DeclStart;
8934  if (II) Loc = D.getIdentifierLoc();
8935
8936  // FIXME: Unnamed fields can be handled in various different ways, for
8937  // example, unnamed unions inject all members into the struct namespace!
8938
8939  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8940  QualType T = TInfo->getType();
8941
8942  if (BitWidth) {
8943    // 6.7.2.1p3, 6.7.2.1p4
8944    if (VerifyBitField(Loc, II, T, BitWidth)) {
8945      D.setInvalidType();
8946      BitWidth = 0;
8947    }
8948  } else {
8949    // Not a bitfield.
8950
8951    // validate II.
8952
8953  }
8954  if (T->isReferenceType()) {
8955    Diag(Loc, diag::err_ivar_reference_type);
8956    D.setInvalidType();
8957  }
8958  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8959  // than a variably modified type.
8960  else if (T->isVariablyModifiedType()) {
8961    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8962    D.setInvalidType();
8963  }
8964
8965  // Get the visibility (access control) for this ivar.
8966  ObjCIvarDecl::AccessControl ac =
8967    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8968                                        : ObjCIvarDecl::None;
8969  // Must set ivar's DeclContext to its enclosing interface.
8970  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8971  ObjCContainerDecl *EnclosingContext;
8972  if (ObjCImplementationDecl *IMPDecl =
8973      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8974    if (!LangOpts.ObjCNonFragileABI2) {
8975    // Case of ivar declared in an implementation. Context is that of its class.
8976      EnclosingContext = IMPDecl->getClassInterface();
8977      assert(EnclosingContext && "Implementation has no class interface!");
8978    }
8979    else
8980      EnclosingContext = EnclosingDecl;
8981  } else {
8982    if (ObjCCategoryDecl *CDecl =
8983        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8984      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8985        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8986        return 0;
8987      }
8988    }
8989    EnclosingContext = EnclosingDecl;
8990  }
8991
8992  // Construct the decl.
8993  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8994                                             DeclStart, Loc, II, T,
8995                                             TInfo, ac, (Expr *)BitfieldWidth);
8996
8997  if (II) {
8998    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8999                                           ForRedeclaration);
9000    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9001        && !isa<TagDecl>(PrevDecl)) {
9002      Diag(Loc, diag::err_duplicate_member) << II;
9003      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9004      NewID->setInvalidDecl();
9005    }
9006  }
9007
9008  // Process attributes attached to the ivar.
9009  ProcessDeclAttributes(S, NewID, D);
9010
9011  if (D.isInvalidType())
9012    NewID->setInvalidDecl();
9013
9014  // In ARC, infer 'retaining' for ivars of retainable type.
9015  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9016    NewID->setInvalidDecl();
9017
9018  if (D.getDeclSpec().isModulePrivateSpecified())
9019    NewID->setModulePrivate();
9020
9021  if (II) {
9022    // FIXME: When interfaces are DeclContexts, we'll need to add
9023    // these to the interface.
9024    S->AddDecl(NewID);
9025    IdResolver.AddDecl(NewID);
9026  }
9027
9028  return NewID;
9029}
9030
9031/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9032/// class and class extensions. For every class @interface and class
9033/// extension @interface, if the last ivar is a bitfield of any type,
9034/// then add an implicit `char :0` ivar to the end of that interface.
9035void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9036                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9037  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
9038    return;
9039
9040  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9041  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9042
9043  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9044    return;
9045  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9046  if (!ID) {
9047    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9048      if (!CD->IsClassExtension())
9049        return;
9050    }
9051    // No need to add this to end of @implementation.
9052    else
9053      return;
9054  }
9055  // All conditions are met. Add a new bitfield to the tail end of ivars.
9056  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9057  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9058
9059  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9060                              DeclLoc, DeclLoc, 0,
9061                              Context.CharTy,
9062                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9063                                                               DeclLoc),
9064                              ObjCIvarDecl::Private, BW,
9065                              true);
9066  AllIvarDecls.push_back(Ivar);
9067}
9068
9069void Sema::ActOnFields(Scope* S,
9070                       SourceLocation RecLoc, Decl *EnclosingDecl,
9071                       llvm::ArrayRef<Decl *> Fields,
9072                       SourceLocation LBrac, SourceLocation RBrac,
9073                       AttributeList *Attr) {
9074  assert(EnclosingDecl && "missing record or interface decl");
9075
9076  // If the decl this is being inserted into is invalid, then it may be a
9077  // redeclaration or some other bogus case.  Don't try to add fields to it.
9078  if (EnclosingDecl->isInvalidDecl())
9079    return;
9080
9081  // Verify that all the fields are okay.
9082  unsigned NumNamedMembers = 0;
9083  SmallVector<FieldDecl*, 32> RecFields;
9084
9085  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9086  bool ARCErrReported = false;
9087  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9088       i != end; ++i) {
9089    FieldDecl *FD = cast<FieldDecl>(*i);
9090
9091    // Get the type for the field.
9092    const Type *FDTy = FD->getType().getTypePtr();
9093
9094    if (!FD->isAnonymousStructOrUnion()) {
9095      // Remember all fields written by the user.
9096      RecFields.push_back(FD);
9097    }
9098
9099    // If the field is already invalid for some reason, don't emit more
9100    // diagnostics about it.
9101    if (FD->isInvalidDecl()) {
9102      EnclosingDecl->setInvalidDecl();
9103      continue;
9104    }
9105
9106    // C99 6.7.2.1p2:
9107    //   A structure or union shall not contain a member with
9108    //   incomplete or function type (hence, a structure shall not
9109    //   contain an instance of itself, but may contain a pointer to
9110    //   an instance of itself), except that the last member of a
9111    //   structure with more than one named member may have incomplete
9112    //   array type; such a structure (and any union containing,
9113    //   possibly recursively, a member that is such a structure)
9114    //   shall not be a member of a structure or an element of an
9115    //   array.
9116    if (FDTy->isFunctionType()) {
9117      // Field declared as a function.
9118      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9119        << FD->getDeclName();
9120      FD->setInvalidDecl();
9121      EnclosingDecl->setInvalidDecl();
9122      continue;
9123    } else if (FDTy->isIncompleteArrayType() && Record &&
9124               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9125                ((getLangOptions().MicrosoftExt ||
9126                  getLangOptions().CPlusPlus) &&
9127                 (i + 1 == Fields.end() || Record->isUnion())))) {
9128      // Flexible array member.
9129      // Microsoft and g++ is more permissive regarding flexible array.
9130      // It will accept flexible array in union and also
9131      // as the sole element of a struct/class.
9132      if (getLangOptions().MicrosoftExt) {
9133        if (Record->isUnion())
9134          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9135            << FD->getDeclName();
9136        else if (Fields.size() == 1)
9137          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9138            << FD->getDeclName() << Record->getTagKind();
9139      } else if (getLangOptions().CPlusPlus) {
9140        if (Record->isUnion())
9141          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9142            << FD->getDeclName();
9143        else if (Fields.size() == 1)
9144          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9145            << FD->getDeclName() << Record->getTagKind();
9146      } else if (NumNamedMembers < 1) {
9147        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9148          << FD->getDeclName();
9149        FD->setInvalidDecl();
9150        EnclosingDecl->setInvalidDecl();
9151        continue;
9152      }
9153      if (!FD->getType()->isDependentType() &&
9154          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9155        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9156          << FD->getDeclName() << FD->getType();
9157        FD->setInvalidDecl();
9158        EnclosingDecl->setInvalidDecl();
9159        continue;
9160      }
9161      // Okay, we have a legal flexible array member at the end of the struct.
9162      if (Record)
9163        Record->setHasFlexibleArrayMember(true);
9164    } else if (!FDTy->isDependentType() &&
9165               RequireCompleteType(FD->getLocation(), FD->getType(),
9166                                   diag::err_field_incomplete)) {
9167      // Incomplete type
9168      FD->setInvalidDecl();
9169      EnclosingDecl->setInvalidDecl();
9170      continue;
9171    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9172      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9173        // If this is a member of a union, then entire union becomes "flexible".
9174        if (Record && Record->isUnion()) {
9175          Record->setHasFlexibleArrayMember(true);
9176        } else {
9177          // If this is a struct/class and this is not the last element, reject
9178          // it.  Note that GCC supports variable sized arrays in the middle of
9179          // structures.
9180          if (i + 1 != Fields.end())
9181            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9182              << FD->getDeclName() << FD->getType();
9183          else {
9184            // We support flexible arrays at the end of structs in
9185            // other structs as an extension.
9186            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9187              << FD->getDeclName();
9188            if (Record)
9189              Record->setHasFlexibleArrayMember(true);
9190          }
9191        }
9192      }
9193      if (Record && FDTTy->getDecl()->hasObjectMember())
9194        Record->setHasObjectMember(true);
9195    } else if (FDTy->isObjCObjectType()) {
9196      /// A field cannot be an Objective-c object
9197      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9198        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9199      QualType T = Context.getObjCObjectPointerType(FD->getType());
9200      FD->setType(T);
9201    }
9202    else if (!getLangOptions().CPlusPlus) {
9203      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9204        // It's an error in ARC if a field has lifetime.
9205        // We don't want to report this in a system header, though,
9206        // so we just make the field unavailable.
9207        // FIXME: that's really not sufficient; we need to make the type
9208        // itself invalid to, say, initialize or copy.
9209        QualType T = FD->getType();
9210        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9211        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9212          SourceLocation loc = FD->getLocation();
9213          if (getSourceManager().isInSystemHeader(loc)) {
9214            if (!FD->hasAttr<UnavailableAttr>()) {
9215              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9216                                "this system field has retaining ownership"));
9217            }
9218          } else {
9219            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9220              << T->isBlockPointerType();
9221          }
9222          ARCErrReported = true;
9223        }
9224      }
9225      else if (getLangOptions().ObjC1 &&
9226               getLangOptions().getGC() != LangOptions::NonGC &&
9227               Record && !Record->hasObjectMember()) {
9228        if (FD->getType()->isObjCObjectPointerType() ||
9229            FD->getType().isObjCGCStrong())
9230          Record->setHasObjectMember(true);
9231        else if (Context.getAsArrayType(FD->getType())) {
9232          QualType BaseType = Context.getBaseElementType(FD->getType());
9233          if (BaseType->isRecordType() &&
9234              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9235            Record->setHasObjectMember(true);
9236          else if (BaseType->isObjCObjectPointerType() ||
9237                   BaseType.isObjCGCStrong())
9238                 Record->setHasObjectMember(true);
9239        }
9240      }
9241    }
9242    // Keep track of the number of named members.
9243    if (FD->getIdentifier())
9244      ++NumNamedMembers;
9245  }
9246
9247  // Okay, we successfully defined 'Record'.
9248  if (Record) {
9249    bool Completed = false;
9250    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9251      if (!CXXRecord->isInvalidDecl()) {
9252        // Set access bits correctly on the directly-declared conversions.
9253        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9254        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9255             I != E; ++I)
9256          Convs->setAccess(I, (*I)->getAccess());
9257
9258        if (!CXXRecord->isDependentType()) {
9259          // Objective-C Automatic Reference Counting:
9260          //   If a class has a non-static data member of Objective-C pointer
9261          //   type (or array thereof), it is a non-POD type and its
9262          //   default constructor (if any), copy constructor, copy assignment
9263          //   operator, and destructor are non-trivial.
9264          //
9265          // This rule is also handled by CXXRecordDecl::completeDefinition().
9266          // However, here we check whether this particular class is only
9267          // non-POD because of the presence of an Objective-C pointer member.
9268          // If so, objects of this type cannot be shared between code compiled
9269          // with instant objects and code compiled with manual retain/release.
9270          if (getLangOptions().ObjCAutoRefCount &&
9271              CXXRecord->hasObjectMember() &&
9272              CXXRecord->getLinkage() == ExternalLinkage) {
9273            if (CXXRecord->isPOD()) {
9274              Diag(CXXRecord->getLocation(),
9275                   diag::warn_arc_non_pod_class_with_object_member)
9276               << CXXRecord;
9277            } else {
9278              // FIXME: Fix-Its would be nice here, but finding a good location
9279              // for them is going to be tricky.
9280              if (CXXRecord->hasTrivialCopyConstructor())
9281                Diag(CXXRecord->getLocation(),
9282                     diag::warn_arc_trivial_member_function_with_object_member)
9283                  << CXXRecord << 0;
9284              if (CXXRecord->hasTrivialCopyAssignment())
9285                Diag(CXXRecord->getLocation(),
9286                     diag::warn_arc_trivial_member_function_with_object_member)
9287                << CXXRecord << 1;
9288              if (CXXRecord->hasTrivialDestructor())
9289                Diag(CXXRecord->getLocation(),
9290                     diag::warn_arc_trivial_member_function_with_object_member)
9291                << CXXRecord << 2;
9292            }
9293          }
9294
9295          // Adjust user-defined destructor exception spec.
9296          if (getLangOptions().CPlusPlus0x &&
9297              CXXRecord->hasUserDeclaredDestructor())
9298            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9299
9300          // Add any implicitly-declared members to this class.
9301          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9302
9303          // If we have virtual base classes, we may end up finding multiple
9304          // final overriders for a given virtual function. Check for this
9305          // problem now.
9306          if (CXXRecord->getNumVBases()) {
9307            CXXFinalOverriderMap FinalOverriders;
9308            CXXRecord->getFinalOverriders(FinalOverriders);
9309
9310            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9311                                             MEnd = FinalOverriders.end();
9312                 M != MEnd; ++M) {
9313              for (OverridingMethods::iterator SO = M->second.begin(),
9314                                            SOEnd = M->second.end();
9315                   SO != SOEnd; ++SO) {
9316                assert(SO->second.size() > 0 &&
9317                       "Virtual function without overridding functions?");
9318                if (SO->second.size() == 1)
9319                  continue;
9320
9321                // C++ [class.virtual]p2:
9322                //   In a derived class, if a virtual member function of a base
9323                //   class subobject has more than one final overrider the
9324                //   program is ill-formed.
9325                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9326                  << (NamedDecl *)M->first << Record;
9327                Diag(M->first->getLocation(),
9328                     diag::note_overridden_virtual_function);
9329                for (OverridingMethods::overriding_iterator
9330                          OM = SO->second.begin(),
9331                       OMEnd = SO->second.end();
9332                     OM != OMEnd; ++OM)
9333                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9334                    << (NamedDecl *)M->first << OM->Method->getParent();
9335
9336                Record->setInvalidDecl();
9337              }
9338            }
9339            CXXRecord->completeDefinition(&FinalOverriders);
9340            Completed = true;
9341          }
9342        }
9343      }
9344    }
9345
9346    if (!Completed)
9347      Record->completeDefinition();
9348
9349    // Now that the record is complete, do any delayed exception spec checks
9350    // we were missing.
9351    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9352      const CXXDestructorDecl *Dtor =
9353              DelayedDestructorExceptionSpecChecks.back().first;
9354      if (Dtor->getParent() != Record)
9355        break;
9356
9357      assert(!Dtor->getParent()->isDependentType() &&
9358          "Should not ever add destructors of templates into the list.");
9359      CheckOverridingFunctionExceptionSpec(Dtor,
9360          DelayedDestructorExceptionSpecChecks.back().second);
9361      DelayedDestructorExceptionSpecChecks.pop_back();
9362    }
9363
9364  } else {
9365    ObjCIvarDecl **ClsFields =
9366      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9367    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9368      ID->setLocEnd(RBrac);
9369      // Add ivar's to class's DeclContext.
9370      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9371        ClsFields[i]->setLexicalDeclContext(ID);
9372        ID->addDecl(ClsFields[i]);
9373      }
9374      // Must enforce the rule that ivars in the base classes may not be
9375      // duplicates.
9376      if (ID->getSuperClass())
9377        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9378    } else if (ObjCImplementationDecl *IMPDecl =
9379                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9380      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9381      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9382        // Ivar declared in @implementation never belongs to the implementation.
9383        // Only it is in implementation's lexical context.
9384        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9385      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9386    } else if (ObjCCategoryDecl *CDecl =
9387                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9388      // case of ivars in class extension; all other cases have been
9389      // reported as errors elsewhere.
9390      // FIXME. Class extension does not have a LocEnd field.
9391      // CDecl->setLocEnd(RBrac);
9392      // Add ivar's to class extension's DeclContext.
9393      // Diagnose redeclaration of private ivars.
9394      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
9395      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9396        if (IDecl) {
9397          if (const ObjCIvarDecl *ClsIvar =
9398              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9399            Diag(ClsFields[i]->getLocation(),
9400                 diag::err_duplicate_ivar_declaration);
9401            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
9402            continue;
9403          }
9404          for (const ObjCCategoryDecl *ClsExtDecl =
9405                IDecl->getFirstClassExtension();
9406               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
9407            if (const ObjCIvarDecl *ClsExtIvar =
9408                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9409              Diag(ClsFields[i]->getLocation(),
9410                   diag::err_duplicate_ivar_declaration);
9411              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
9412              continue;
9413            }
9414          }
9415        }
9416        ClsFields[i]->setLexicalDeclContext(CDecl);
9417        CDecl->addDecl(ClsFields[i]);
9418      }
9419    }
9420  }
9421
9422  if (Attr)
9423    ProcessDeclAttributeList(S, Record, Attr);
9424
9425  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9426  // set the visibility of this record.
9427  if (Record && !Record->getDeclContext()->isRecord())
9428    AddPushedVisibilityAttribute(Record);
9429}
9430
9431/// \brief Determine whether the given integral value is representable within
9432/// the given type T.
9433static bool isRepresentableIntegerValue(ASTContext &Context,
9434                                        llvm::APSInt &Value,
9435                                        QualType T) {
9436  assert(T->isIntegralType(Context) && "Integral type required!");
9437  unsigned BitWidth = Context.getIntWidth(T);
9438
9439  if (Value.isUnsigned() || Value.isNonNegative()) {
9440    if (T->isSignedIntegerOrEnumerationType())
9441      --BitWidth;
9442    return Value.getActiveBits() <= BitWidth;
9443  }
9444  return Value.getMinSignedBits() <= BitWidth;
9445}
9446
9447// \brief Given an integral type, return the next larger integral type
9448// (or a NULL type of no such type exists).
9449static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9450  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9451  // enum checking below.
9452  assert(T->isIntegralType(Context) && "Integral type required!");
9453  const unsigned NumTypes = 4;
9454  QualType SignedIntegralTypes[NumTypes] = {
9455    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9456  };
9457  QualType UnsignedIntegralTypes[NumTypes] = {
9458    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9459    Context.UnsignedLongLongTy
9460  };
9461
9462  unsigned BitWidth = Context.getTypeSize(T);
9463  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9464                                                        : UnsignedIntegralTypes;
9465  for (unsigned I = 0; I != NumTypes; ++I)
9466    if (Context.getTypeSize(Types[I]) > BitWidth)
9467      return Types[I];
9468
9469  return QualType();
9470}
9471
9472EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9473                                          EnumConstantDecl *LastEnumConst,
9474                                          SourceLocation IdLoc,
9475                                          IdentifierInfo *Id,
9476                                          Expr *Val) {
9477  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9478  llvm::APSInt EnumVal(IntWidth);
9479  QualType EltTy;
9480
9481  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9482    Val = 0;
9483
9484  if (Val)
9485    Val = DefaultLvalueConversion(Val).take();
9486
9487  if (Val) {
9488    if (Enum->isDependentType() || Val->isTypeDependent())
9489      EltTy = Context.DependentTy;
9490    else {
9491      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9492      SourceLocation ExpLoc;
9493      if (!Val->isValueDependent() &&
9494          VerifyIntegerConstantExpression(Val, &EnumVal)) {
9495        Val = 0;
9496      } else {
9497        if (!getLangOptions().CPlusPlus) {
9498          // C99 6.7.2.2p2:
9499          //   The expression that defines the value of an enumeration constant
9500          //   shall be an integer constant expression that has a value
9501          //   representable as an int.
9502
9503          // Complain if the value is not representable in an int.
9504          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9505            Diag(IdLoc, diag::ext_enum_value_not_int)
9506              << EnumVal.toString(10) << Val->getSourceRange()
9507              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9508          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9509            // Force the type of the expression to 'int'.
9510            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9511          }
9512        }
9513
9514        if (Enum->isFixed()) {
9515          EltTy = Enum->getIntegerType();
9516
9517          // C++0x [dcl.enum]p5:
9518          //   ... if the initializing value of an enumerator cannot be
9519          //   represented by the underlying type, the program is ill-formed.
9520          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9521            if (getLangOptions().MicrosoftExt) {
9522              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9523              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9524            } else
9525              Diag(IdLoc, diag::err_enumerator_too_large)
9526                << EltTy;
9527          } else
9528            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9529        }
9530        else {
9531          // C++0x [dcl.enum]p5:
9532          //   If the underlying type is not fixed, the type of each enumerator
9533          //   is the type of its initializing value:
9534          //     - If an initializer is specified for an enumerator, the
9535          //       initializing value has the same type as the expression.
9536          EltTy = Val->getType();
9537        }
9538      }
9539    }
9540  }
9541
9542  if (!Val) {
9543    if (Enum->isDependentType())
9544      EltTy = Context.DependentTy;
9545    else if (!LastEnumConst) {
9546      // C++0x [dcl.enum]p5:
9547      //   If the underlying type is not fixed, the type of each enumerator
9548      //   is the type of its initializing value:
9549      //     - If no initializer is specified for the first enumerator, the
9550      //       initializing value has an unspecified integral type.
9551      //
9552      // GCC uses 'int' for its unspecified integral type, as does
9553      // C99 6.7.2.2p3.
9554      if (Enum->isFixed()) {
9555        EltTy = Enum->getIntegerType();
9556      }
9557      else {
9558        EltTy = Context.IntTy;
9559      }
9560    } else {
9561      // Assign the last value + 1.
9562      EnumVal = LastEnumConst->getInitVal();
9563      ++EnumVal;
9564      EltTy = LastEnumConst->getType();
9565
9566      // Check for overflow on increment.
9567      if (EnumVal < LastEnumConst->getInitVal()) {
9568        // C++0x [dcl.enum]p5:
9569        //   If the underlying type is not fixed, the type of each enumerator
9570        //   is the type of its initializing value:
9571        //
9572        //     - Otherwise the type of the initializing value is the same as
9573        //       the type of the initializing value of the preceding enumerator
9574        //       unless the incremented value is not representable in that type,
9575        //       in which case the type is an unspecified integral type
9576        //       sufficient to contain the incremented value. If no such type
9577        //       exists, the program is ill-formed.
9578        QualType T = getNextLargerIntegralType(Context, EltTy);
9579        if (T.isNull() || Enum->isFixed()) {
9580          // There is no integral type larger enough to represent this
9581          // value. Complain, then allow the value to wrap around.
9582          EnumVal = LastEnumConst->getInitVal();
9583          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9584          ++EnumVal;
9585          if (Enum->isFixed())
9586            // When the underlying type is fixed, this is ill-formed.
9587            Diag(IdLoc, diag::err_enumerator_wrapped)
9588              << EnumVal.toString(10)
9589              << EltTy;
9590          else
9591            Diag(IdLoc, diag::warn_enumerator_too_large)
9592              << EnumVal.toString(10);
9593        } else {
9594          EltTy = T;
9595        }
9596
9597        // Retrieve the last enumerator's value, extent that type to the
9598        // type that is supposed to be large enough to represent the incremented
9599        // value, then increment.
9600        EnumVal = LastEnumConst->getInitVal();
9601        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9602        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9603        ++EnumVal;
9604
9605        // If we're not in C++, diagnose the overflow of enumerator values,
9606        // which in C99 means that the enumerator value is not representable in
9607        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9608        // permits enumerator values that are representable in some larger
9609        // integral type.
9610        if (!getLangOptions().CPlusPlus && !T.isNull())
9611          Diag(IdLoc, diag::warn_enum_value_overflow);
9612      } else if (!getLangOptions().CPlusPlus &&
9613                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9614        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9615        Diag(IdLoc, diag::ext_enum_value_not_int)
9616          << EnumVal.toString(10) << 1;
9617      }
9618    }
9619  }
9620
9621  if (!EltTy->isDependentType()) {
9622    // Make the enumerator value match the signedness and size of the
9623    // enumerator's type.
9624    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9625    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9626  }
9627
9628  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9629                                  Val, EnumVal);
9630}
9631
9632
9633Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9634                              SourceLocation IdLoc, IdentifierInfo *Id,
9635                              AttributeList *Attr,
9636                              SourceLocation EqualLoc, Expr *val) {
9637  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9638  EnumConstantDecl *LastEnumConst =
9639    cast_or_null<EnumConstantDecl>(lastEnumConst);
9640  Expr *Val = static_cast<Expr*>(val);
9641
9642  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9643  // we find one that is.
9644  S = getNonFieldDeclScope(S);
9645
9646  // Verify that there isn't already something declared with this name in this
9647  // scope.
9648  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9649                                         ForRedeclaration);
9650  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9651    // Maybe we will complain about the shadowed template parameter.
9652    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9653    // Just pretend that we didn't see the previous declaration.
9654    PrevDecl = 0;
9655  }
9656
9657  if (PrevDecl) {
9658    // When in C++, we may get a TagDecl with the same name; in this case the
9659    // enum constant will 'hide' the tag.
9660    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9661           "Received TagDecl when not in C++!");
9662    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9663      if (isa<EnumConstantDecl>(PrevDecl))
9664        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9665      else
9666        Diag(IdLoc, diag::err_redefinition) << Id;
9667      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9668      return 0;
9669    }
9670  }
9671
9672  // C++ [class.mem]p13:
9673  //   If T is the name of a class, then each of the following shall have a
9674  //   name different from T:
9675  //     - every enumerator of every member of class T that is an enumerated
9676  //       type
9677  if (CXXRecordDecl *Record
9678                      = dyn_cast<CXXRecordDecl>(
9679                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9680    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9681      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9682
9683  EnumConstantDecl *New =
9684    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9685
9686  if (New) {
9687    // Process attributes.
9688    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9689
9690    // Register this decl in the current scope stack.
9691    New->setAccess(TheEnumDecl->getAccess());
9692    PushOnScopeChains(New, S);
9693  }
9694
9695  return New;
9696}
9697
9698void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9699                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9700                         Decl **Elements, unsigned NumElements,
9701                         Scope *S, AttributeList *Attr) {
9702  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9703  QualType EnumType = Context.getTypeDeclType(Enum);
9704
9705  if (Attr)
9706    ProcessDeclAttributeList(S, Enum, Attr);
9707
9708  if (Enum->isDependentType()) {
9709    for (unsigned i = 0; i != NumElements; ++i) {
9710      EnumConstantDecl *ECD =
9711        cast_or_null<EnumConstantDecl>(Elements[i]);
9712      if (!ECD) continue;
9713
9714      ECD->setType(EnumType);
9715    }
9716
9717    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9718    return;
9719  }
9720
9721  // TODO: If the result value doesn't fit in an int, it must be a long or long
9722  // long value.  ISO C does not support this, but GCC does as an extension,
9723  // emit a warning.
9724  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9725  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9726  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9727
9728  // Verify that all the values are okay, compute the size of the values, and
9729  // reverse the list.
9730  unsigned NumNegativeBits = 0;
9731  unsigned NumPositiveBits = 0;
9732
9733  // Keep track of whether all elements have type int.
9734  bool AllElementsInt = true;
9735
9736  for (unsigned i = 0; i != NumElements; ++i) {
9737    EnumConstantDecl *ECD =
9738      cast_or_null<EnumConstantDecl>(Elements[i]);
9739    if (!ECD) continue;  // Already issued a diagnostic.
9740
9741    const llvm::APSInt &InitVal = ECD->getInitVal();
9742
9743    // Keep track of the size of positive and negative values.
9744    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9745      NumPositiveBits = std::max(NumPositiveBits,
9746                                 (unsigned)InitVal.getActiveBits());
9747    else
9748      NumNegativeBits = std::max(NumNegativeBits,
9749                                 (unsigned)InitVal.getMinSignedBits());
9750
9751    // Keep track of whether every enum element has type int (very commmon).
9752    if (AllElementsInt)
9753      AllElementsInt = ECD->getType() == Context.IntTy;
9754  }
9755
9756  // Figure out the type that should be used for this enum.
9757  QualType BestType;
9758  unsigned BestWidth;
9759
9760  // C++0x N3000 [conv.prom]p3:
9761  //   An rvalue of an unscoped enumeration type whose underlying
9762  //   type is not fixed can be converted to an rvalue of the first
9763  //   of the following types that can represent all the values of
9764  //   the enumeration: int, unsigned int, long int, unsigned long
9765  //   int, long long int, or unsigned long long int.
9766  // C99 6.4.4.3p2:
9767  //   An identifier declared as an enumeration constant has type int.
9768  // The C99 rule is modified by a gcc extension
9769  QualType BestPromotionType;
9770
9771  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9772  // -fshort-enums is the equivalent to specifying the packed attribute on all
9773  // enum definitions.
9774  if (LangOpts.ShortEnums)
9775    Packed = true;
9776
9777  if (Enum->isFixed()) {
9778    BestType = Enum->getIntegerType();
9779    if (BestType->isPromotableIntegerType())
9780      BestPromotionType = Context.getPromotedIntegerType(BestType);
9781    else
9782      BestPromotionType = BestType;
9783    // We don't need to set BestWidth, because BestType is going to be the type
9784    // of the enumerators, but we do anyway because otherwise some compilers
9785    // warn that it might be used uninitialized.
9786    BestWidth = CharWidth;
9787  }
9788  else if (NumNegativeBits) {
9789    // If there is a negative value, figure out the smallest integer type (of
9790    // int/long/longlong) that fits.
9791    // If it's packed, check also if it fits a char or a short.
9792    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9793      BestType = Context.SignedCharTy;
9794      BestWidth = CharWidth;
9795    } else if (Packed && NumNegativeBits <= ShortWidth &&
9796               NumPositiveBits < ShortWidth) {
9797      BestType = Context.ShortTy;
9798      BestWidth = ShortWidth;
9799    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9800      BestType = Context.IntTy;
9801      BestWidth = IntWidth;
9802    } else {
9803      BestWidth = Context.getTargetInfo().getLongWidth();
9804
9805      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9806        BestType = Context.LongTy;
9807      } else {
9808        BestWidth = Context.getTargetInfo().getLongLongWidth();
9809
9810        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9811          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9812        BestType = Context.LongLongTy;
9813      }
9814    }
9815    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9816  } else {
9817    // If there is no negative value, figure out the smallest type that fits
9818    // all of the enumerator values.
9819    // If it's packed, check also if it fits a char or a short.
9820    if (Packed && NumPositiveBits <= CharWidth) {
9821      BestType = Context.UnsignedCharTy;
9822      BestPromotionType = Context.IntTy;
9823      BestWidth = CharWidth;
9824    } else if (Packed && NumPositiveBits <= ShortWidth) {
9825      BestType = Context.UnsignedShortTy;
9826      BestPromotionType = Context.IntTy;
9827      BestWidth = ShortWidth;
9828    } else if (NumPositiveBits <= IntWidth) {
9829      BestType = Context.UnsignedIntTy;
9830      BestWidth = IntWidth;
9831      BestPromotionType
9832        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9833                           ? Context.UnsignedIntTy : Context.IntTy;
9834    } else if (NumPositiveBits <=
9835               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9836      BestType = Context.UnsignedLongTy;
9837      BestPromotionType
9838        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9839                           ? Context.UnsignedLongTy : Context.LongTy;
9840    } else {
9841      BestWidth = Context.getTargetInfo().getLongLongWidth();
9842      assert(NumPositiveBits <= BestWidth &&
9843             "How could an initializer get larger than ULL?");
9844      BestType = Context.UnsignedLongLongTy;
9845      BestPromotionType
9846        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9847                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9848    }
9849  }
9850
9851  // Loop over all of the enumerator constants, changing their types to match
9852  // the type of the enum if needed.
9853  for (unsigned i = 0; i != NumElements; ++i) {
9854    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9855    if (!ECD) continue;  // Already issued a diagnostic.
9856
9857    // Standard C says the enumerators have int type, but we allow, as an
9858    // extension, the enumerators to be larger than int size.  If each
9859    // enumerator value fits in an int, type it as an int, otherwise type it the
9860    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9861    // that X has type 'int', not 'unsigned'.
9862
9863    // Determine whether the value fits into an int.
9864    llvm::APSInt InitVal = ECD->getInitVal();
9865
9866    // If it fits into an integer type, force it.  Otherwise force it to match
9867    // the enum decl type.
9868    QualType NewTy;
9869    unsigned NewWidth;
9870    bool NewSign;
9871    if (!getLangOptions().CPlusPlus &&
9872        !Enum->isFixed() &&
9873        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9874      NewTy = Context.IntTy;
9875      NewWidth = IntWidth;
9876      NewSign = true;
9877    } else if (ECD->getType() == BestType) {
9878      // Already the right type!
9879      if (getLangOptions().CPlusPlus)
9880        // C++ [dcl.enum]p4: Following the closing brace of an
9881        // enum-specifier, each enumerator has the type of its
9882        // enumeration.
9883        ECD->setType(EnumType);
9884      continue;
9885    } else {
9886      NewTy = BestType;
9887      NewWidth = BestWidth;
9888      NewSign = BestType->isSignedIntegerOrEnumerationType();
9889    }
9890
9891    // Adjust the APSInt value.
9892    InitVal = InitVal.extOrTrunc(NewWidth);
9893    InitVal.setIsSigned(NewSign);
9894    ECD->setInitVal(InitVal);
9895
9896    // Adjust the Expr initializer and type.
9897    if (ECD->getInitExpr() &&
9898        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9899      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9900                                                CK_IntegralCast,
9901                                                ECD->getInitExpr(),
9902                                                /*base paths*/ 0,
9903                                                VK_RValue));
9904    if (getLangOptions().CPlusPlus)
9905      // C++ [dcl.enum]p4: Following the closing brace of an
9906      // enum-specifier, each enumerator has the type of its
9907      // enumeration.
9908      ECD->setType(EnumType);
9909    else
9910      ECD->setType(NewTy);
9911  }
9912
9913  Enum->completeDefinition(BestType, BestPromotionType,
9914                           NumPositiveBits, NumNegativeBits);
9915}
9916
9917Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9918                                  SourceLocation StartLoc,
9919                                  SourceLocation EndLoc) {
9920  StringLiteral *AsmString = cast<StringLiteral>(expr);
9921
9922  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9923                                                   AsmString, StartLoc,
9924                                                   EndLoc);
9925  CurContext->addDecl(New);
9926  return New;
9927}
9928
9929DeclResult Sema::ActOnModuleImport(SourceLocation ImportLoc, ModuleIdPath Path) {
9930  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
9931                                                Module::AllVisible,
9932                                                /*IsIncludeDirective=*/false);
9933  if (!Mod)
9934    return true;
9935
9936  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
9937  Module *ModCheck = Mod;
9938  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
9939    // If we've run out of module parents, just drop the remaining identifiers.
9940    // We need the length to be consistent.
9941    if (!ModCheck)
9942      break;
9943    ModCheck = ModCheck->Parent;
9944
9945    IdentifierLocs.push_back(Path[I].second);
9946  }
9947
9948  ImportDecl *Import = ImportDecl::Create(Context,
9949                                          Context.getTranslationUnitDecl(),
9950                                          ImportLoc, Mod,
9951                                          IdentifierLocs);
9952  Context.getTranslationUnitDecl()->addDecl(Import);
9953  return Import;
9954}
9955
9956void
9957Sema::diagnoseModulePrivateRedeclaration(NamedDecl *New, NamedDecl *Old,
9958                                         SourceLocation ModulePrivateKeyword) {
9959  assert(!Old->isModulePrivate() && "Old is module-private!");
9960
9961  Diag(New->getLocation(), diag::err_module_private_follows_public)
9962    << New->getDeclName() << SourceRange(ModulePrivateKeyword);
9963  Diag(Old->getLocation(), diag::note_previous_declaration)
9964    << Old->getDeclName();
9965
9966  // Drop the __module_private__ from the new declaration, since it's invalid.
9967  New->setModulePrivate(false);
9968}
9969
9970void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9971                             SourceLocation PragmaLoc,
9972                             SourceLocation NameLoc) {
9973  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9974
9975  if (PrevDecl) {
9976    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9977  } else {
9978    (void)WeakUndeclaredIdentifiers.insert(
9979      std::pair<IdentifierInfo*,WeakInfo>
9980        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9981  }
9982}
9983
9984void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9985                                IdentifierInfo* AliasName,
9986                                SourceLocation PragmaLoc,
9987                                SourceLocation NameLoc,
9988                                SourceLocation AliasNameLoc) {
9989  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9990                                    LookupOrdinaryName);
9991  WeakInfo W = WeakInfo(Name, NameLoc);
9992
9993  if (PrevDecl) {
9994    if (!PrevDecl->hasAttr<AliasAttr>())
9995      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9996        DeclApplyPragmaWeak(TUScope, ND, W);
9997  } else {
9998    (void)WeakUndeclaredIdentifiers.insert(
9999      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10000  }
10001}
10002
10003Decl *Sema::getObjCDeclContext() const {
10004  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10005}
10006
10007AvailabilityResult Sema::getCurContextAvailability() const {
10008  const Decl *D = cast<Decl>(getCurLexicalContext());
10009  // A category implicitly has the availability of the interface.
10010  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10011    D = CatD->getClassInterface();
10012
10013  return D->getAvailability();
10014}
10015