SemaDecl.cpp revision e2d4f4ed44a32f179c6d48cd1dba8346ab2129d9
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Basic/SourceManager.h"
38#include "clang/Basic/TargetInfo.h"
39// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
40#include "clang/Lex/Preprocessor.h"
41#include "clang/Lex/HeaderSearch.h"
42#include "clang/Lex/ModuleLoader.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59/// \brief If the identifier refers to a type name within this scope,
60/// return the declaration of that type.
61///
62/// This routine performs ordinary name lookup of the identifier II
63/// within the given scope, with optional C++ scope specifier SS, to
64/// determine whether the name refers to a type. If so, returns an
65/// opaque pointer (actually a QualType) corresponding to that
66/// type. Otherwise, returns NULL.
67///
68/// If name lookup results in an ambiguity, this routine will complain
69/// and then return NULL.
70ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
71                             Scope *S, CXXScopeSpec *SS,
72                             bool isClassName, bool HasTrailingDot,
73                             ParsedType ObjectTypePtr,
74                             bool WantNontrivialTypeSourceInfo,
75                             IdentifierInfo **CorrectedII) {
76  // Determine where we will perform name lookup.
77  DeclContext *LookupCtx = 0;
78  if (ObjectTypePtr) {
79    QualType ObjectType = ObjectTypePtr.get();
80    if (ObjectType->isRecordType())
81      LookupCtx = computeDeclContext(ObjectType);
82  } else if (SS && SS->isNotEmpty()) {
83    LookupCtx = computeDeclContext(*SS, false);
84
85    if (!LookupCtx) {
86      if (isDependentScopeSpecifier(*SS)) {
87        // C++ [temp.res]p3:
88        //   A qualified-id that refers to a type and in which the
89        //   nested-name-specifier depends on a template-parameter (14.6.2)
90        //   shall be prefixed by the keyword typename to indicate that the
91        //   qualified-id denotes a type, forming an
92        //   elaborated-type-specifier (7.1.5.3).
93        //
94        // We therefore do not perform any name lookup if the result would
95        // refer to a member of an unknown specialization.
96        if (!isClassName)
97          return ParsedType();
98
99        // We know from the grammar that this name refers to a type,
100        // so build a dependent node to describe the type.
101        if (WantNontrivialTypeSourceInfo)
102          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
103
104        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
105        QualType T =
106          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
107                            II, NameLoc);
108
109          return ParsedType::make(T);
110      }
111
112      return ParsedType();
113    }
114
115    if (!LookupCtx->isDependentContext() &&
116        RequireCompleteDeclContext(*SS, LookupCtx))
117      return ParsedType();
118  }
119
120  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
121  // lookup for class-names.
122  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
123                                      LookupOrdinaryName;
124  LookupResult Result(*this, &II, NameLoc, Kind);
125  if (LookupCtx) {
126    // Perform "qualified" name lookup into the declaration context we
127    // computed, which is either the type of the base of a member access
128    // expression or the declaration context associated with a prior
129    // nested-name-specifier.
130    LookupQualifiedName(Result, LookupCtx);
131
132    if (ObjectTypePtr && Result.empty()) {
133      // C++ [basic.lookup.classref]p3:
134      //   If the unqualified-id is ~type-name, the type-name is looked up
135      //   in the context of the entire postfix-expression. If the type T of
136      //   the object expression is of a class type C, the type-name is also
137      //   looked up in the scope of class C. At least one of the lookups shall
138      //   find a name that refers to (possibly cv-qualified) T.
139      LookupName(Result, S);
140    }
141  } else {
142    // Perform unqualified name lookup.
143    LookupName(Result, S);
144  }
145
146  NamedDecl *IIDecl = 0;
147  switch (Result.getResultKind()) {
148  case LookupResult::NotFound:
149  case LookupResult::NotFoundInCurrentInstantiation:
150    if (CorrectedII) {
151      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
152                                              Kind, S, SS, 0, false,
153                                              Sema::CTC_Type);
154      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
155      TemplateTy Template;
156      bool MemberOfUnknownSpecialization;
157      UnqualifiedId TemplateName;
158      TemplateName.setIdentifier(NewII, NameLoc);
159      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
160      CXXScopeSpec NewSS, *NewSSPtr = SS;
161      if (SS && NNS) {
162        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
163        NewSSPtr = &NewSS;
164      }
165      if (Correction && (NNS || NewII != &II) &&
166          // Ignore a correction to a template type as the to-be-corrected
167          // identifier is not a template (typo correction for template names
168          // is handled elsewhere).
169          !(getLangOptions().CPlusPlus && NewSSPtr &&
170            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
171                           false, Template, MemberOfUnknownSpecialization))) {
172        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
173                                    isClassName, HasTrailingDot, ObjectTypePtr,
174                                    WantNontrivialTypeSourceInfo);
175        if (Ty) {
176          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
177          std::string CorrectedQuotedStr(
178              Correction.getQuoted(getLangOptions()));
179          Diag(NameLoc, diag::err_unknown_typename_suggest)
180              << Result.getLookupName() << CorrectedQuotedStr
181              << FixItHint::CreateReplacement(SourceRange(NameLoc),
182                                              CorrectedStr);
183          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
184            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
185              << CorrectedQuotedStr;
186
187          if (SS && NNS)
188            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
189          *CorrectedII = NewII;
190          return Ty;
191        }
192      }
193    }
194    // If typo correction failed or was not performed, fall through
195  case LookupResult::FoundOverloaded:
196  case LookupResult::FoundUnresolvedValue:
197    Result.suppressDiagnostics();
198    return ParsedType();
199
200  case LookupResult::Ambiguous:
201    // Recover from type-hiding ambiguities by hiding the type.  We'll
202    // do the lookup again when looking for an object, and we can
203    // diagnose the error then.  If we don't do this, then the error
204    // about hiding the type will be immediately followed by an error
205    // that only makes sense if the identifier was treated like a type.
206    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
207      Result.suppressDiagnostics();
208      return ParsedType();
209    }
210
211    // Look to see if we have a type anywhere in the list of results.
212    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
213         Res != ResEnd; ++Res) {
214      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
215        if (!IIDecl ||
216            (*Res)->getLocation().getRawEncoding() <
217              IIDecl->getLocation().getRawEncoding())
218          IIDecl = *Res;
219      }
220    }
221
222    if (!IIDecl) {
223      // None of the entities we found is a type, so there is no way
224      // to even assume that the result is a type. In this case, don't
225      // complain about the ambiguity. The parser will either try to
226      // perform this lookup again (e.g., as an object name), which
227      // will produce the ambiguity, or will complain that it expected
228      // a type name.
229      Result.suppressDiagnostics();
230      return ParsedType();
231    }
232
233    // We found a type within the ambiguous lookup; diagnose the
234    // ambiguity and then return that type. This might be the right
235    // answer, or it might not be, but it suppresses any attempt to
236    // perform the name lookup again.
237    break;
238
239  case LookupResult::Found:
240    IIDecl = Result.getFoundDecl();
241    break;
242  }
243
244  assert(IIDecl && "Didn't find decl");
245
246  QualType T;
247  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
248    DiagnoseUseOfDecl(IIDecl, NameLoc);
249
250    if (T.isNull())
251      T = Context.getTypeDeclType(TD);
252
253    if (SS && SS->isNotEmpty()) {
254      if (WantNontrivialTypeSourceInfo) {
255        // Construct a type with type-source information.
256        TypeLocBuilder Builder;
257        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
258
259        T = getElaboratedType(ETK_None, *SS, T);
260        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
261        ElabTL.setKeywordLoc(SourceLocation());
262        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
263        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
264      } else {
265        T = getElaboratedType(ETK_None, *SS, T);
266      }
267    }
268  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
269    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
270    if (!HasTrailingDot)
271      T = Context.getObjCInterfaceType(IDecl);
272  }
273
274  if (T.isNull()) {
275    // If it's not plausibly a type, suppress diagnostics.
276    Result.suppressDiagnostics();
277    return ParsedType();
278  }
279  return ParsedType::make(T);
280}
281
282/// isTagName() - This method is called *for error recovery purposes only*
283/// to determine if the specified name is a valid tag name ("struct foo").  If
284/// so, this returns the TST for the tag corresponding to it (TST_enum,
285/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
286/// where the user forgot to specify the tag.
287DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
288  // Do a tag name lookup in this scope.
289  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
290  LookupName(R, S, false);
291  R.suppressDiagnostics();
292  if (R.getResultKind() == LookupResult::Found)
293    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
294      switch (TD->getTagKind()) {
295      default:         return DeclSpec::TST_unspecified;
296      case TTK_Struct: return DeclSpec::TST_struct;
297      case TTK_Union:  return DeclSpec::TST_union;
298      case TTK_Class:  return DeclSpec::TST_class;
299      case TTK_Enum:   return DeclSpec::TST_enum;
300      }
301    }
302
303  return DeclSpec::TST_unspecified;
304}
305
306/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
307/// if a CXXScopeSpec's type is equal to the type of one of the base classes
308/// then downgrade the missing typename error to a warning.
309/// This is needed for MSVC compatibility; Example:
310/// @code
311/// template<class T> class A {
312/// public:
313///   typedef int TYPE;
314/// };
315/// template<class T> class B : public A<T> {
316/// public:
317///   A<T>::TYPE a; // no typename required because A<T> is a base class.
318/// };
319/// @endcode
320bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
321  if (CurContext->isRecord()) {
322    const Type *Ty = SS->getScopeRep()->getAsType();
323
324    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
325    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
326          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
327      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
328        return true;
329    return S->isFunctionPrototypeScope();
330  }
331  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
332}
333
334bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
335                                   SourceLocation IILoc,
336                                   Scope *S,
337                                   CXXScopeSpec *SS,
338                                   ParsedType &SuggestedType) {
339  // We don't have anything to suggest (yet).
340  SuggestedType = ParsedType();
341
342  // There may have been a typo in the name of the type. Look up typo
343  // results, in case we have something that we can suggest.
344  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
345                                             LookupOrdinaryName, S, SS, NULL,
346                                             false, CTC_Type)) {
347    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
348    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
349
350    if (Corrected.isKeyword()) {
351      // We corrected to a keyword.
352      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
353      Diag(IILoc, diag::err_unknown_typename_suggest)
354        << &II << CorrectedQuotedStr;
355      return true;
356    } else {
357      NamedDecl *Result = Corrected.getCorrectionDecl();
358      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
359          !Result->isInvalidDecl()) {
360        // We found a similarly-named type or interface; suggest that.
361        if (!SS || !SS->isSet())
362          Diag(IILoc, diag::err_unknown_typename_suggest)
363            << &II << CorrectedQuotedStr
364            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
365        else if (DeclContext *DC = computeDeclContext(*SS, false))
366          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
367            << &II << DC << CorrectedQuotedStr << SS->getRange()
368            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
369        else
370          llvm_unreachable("could not have corrected a typo here");
371
372        Diag(Result->getLocation(), diag::note_previous_decl)
373          << CorrectedQuotedStr;
374
375        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
376                                    false, false, ParsedType(),
377                                    /*NonTrivialTypeSourceInfo=*/true);
378        return true;
379      }
380    }
381  }
382
383  if (getLangOptions().CPlusPlus) {
384    // See if II is a class template that the user forgot to pass arguments to.
385    UnqualifiedId Name;
386    Name.setIdentifier(&II, IILoc);
387    CXXScopeSpec EmptySS;
388    TemplateTy TemplateResult;
389    bool MemberOfUnknownSpecialization;
390    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
391                       Name, ParsedType(), true, TemplateResult,
392                       MemberOfUnknownSpecialization) == TNK_Type_template) {
393      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
394      Diag(IILoc, diag::err_template_missing_args) << TplName;
395      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
396        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
397          << TplDecl->getTemplateParameters()->getSourceRange();
398      }
399      return true;
400    }
401  }
402
403  // FIXME: Should we move the logic that tries to recover from a missing tag
404  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
405
406  if (!SS || (!SS->isSet() && !SS->isInvalid()))
407    Diag(IILoc, diag::err_unknown_typename) << &II;
408  else if (DeclContext *DC = computeDeclContext(*SS, false))
409    Diag(IILoc, diag::err_typename_nested_not_found)
410      << &II << DC << SS->getRange();
411  else if (isDependentScopeSpecifier(*SS)) {
412    unsigned DiagID = diag::err_typename_missing;
413    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
414      DiagID = diag::warn_typename_missing;
415
416    Diag(SS->getRange().getBegin(), DiagID)
417      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
418      << SourceRange(SS->getRange().getBegin(), IILoc)
419      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
420    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
421                                                                         .get();
422  } else {
423    assert(SS && SS->isInvalid() &&
424           "Invalid scope specifier has already been diagnosed");
425  }
426
427  return true;
428}
429
430/// \brief Determine whether the given result set contains either a type name
431/// or
432static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
433  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
434                       NextToken.is(tok::less);
435
436  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
437    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
438      return true;
439
440    if (CheckTemplate && isa<TemplateDecl>(*I))
441      return true;
442  }
443
444  return false;
445}
446
447Sema::NameClassification Sema::ClassifyName(Scope *S,
448                                            CXXScopeSpec &SS,
449                                            IdentifierInfo *&Name,
450                                            SourceLocation NameLoc,
451                                            const Token &NextToken) {
452  DeclarationNameInfo NameInfo(Name, NameLoc);
453  ObjCMethodDecl *CurMethod = getCurMethodDecl();
454
455  if (NextToken.is(tok::coloncolon)) {
456    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
457                                QualType(), false, SS, 0, false);
458
459  }
460
461  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
462  LookupParsedName(Result, S, &SS, !CurMethod);
463
464  // Perform lookup for Objective-C instance variables (including automatically
465  // synthesized instance variables), if we're in an Objective-C method.
466  // FIXME: This lookup really, really needs to be folded in to the normal
467  // unqualified lookup mechanism.
468  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
469    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
470    if (E.get() || E.isInvalid())
471      return E;
472  }
473
474  bool SecondTry = false;
475  bool IsFilteredTemplateName = false;
476
477Corrected:
478  switch (Result.getResultKind()) {
479  case LookupResult::NotFound:
480    // If an unqualified-id is followed by a '(', then we have a function
481    // call.
482    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
483      // In C++, this is an ADL-only call.
484      // FIXME: Reference?
485      if (getLangOptions().CPlusPlus)
486        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
487
488      // C90 6.3.2.2:
489      //   If the expression that precedes the parenthesized argument list in a
490      //   function call consists solely of an identifier, and if no
491      //   declaration is visible for this identifier, the identifier is
492      //   implicitly declared exactly as if, in the innermost block containing
493      //   the function call, the declaration
494      //
495      //     extern int identifier ();
496      //
497      //   appeared.
498      //
499      // We also allow this in C99 as an extension.
500      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
501        Result.addDecl(D);
502        Result.resolveKind();
503        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
504      }
505    }
506
507    // In C, we first see whether there is a tag type by the same name, in
508    // which case it's likely that the user just forget to write "enum",
509    // "struct", or "union".
510    if (!getLangOptions().CPlusPlus && !SecondTry) {
511      Result.clear(LookupTagName);
512      LookupParsedName(Result, S, &SS);
513      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
514        const char *TagName = 0;
515        const char *FixItTagName = 0;
516        switch (Tag->getTagKind()) {
517          case TTK_Class:
518            TagName = "class";
519            FixItTagName = "class ";
520            break;
521
522          case TTK_Enum:
523            TagName = "enum";
524            FixItTagName = "enum ";
525            break;
526
527          case TTK_Struct:
528            TagName = "struct";
529            FixItTagName = "struct ";
530            break;
531
532          case TTK_Union:
533            TagName = "union";
534            FixItTagName = "union ";
535            break;
536        }
537
538        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
539          << Name << TagName << getLangOptions().CPlusPlus
540          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
541        break;
542      }
543
544      Result.clear(LookupOrdinaryName);
545    }
546
547    // Perform typo correction to determine if there is another name that is
548    // close to this name.
549    if (!SecondTry) {
550      SecondTry = true;
551      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
552                                                 Result.getLookupKind(), S,
553                                                 &SS)) {
554        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
555        unsigned QualifiedDiag = diag::err_no_member_suggest;
556        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
557        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
558
559        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
560        NamedDecl *UnderlyingFirstDecl
561          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
562        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
563            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
564          UnqualifiedDiag = diag::err_no_template_suggest;
565          QualifiedDiag = diag::err_no_member_template_suggest;
566        } else if (UnderlyingFirstDecl &&
567                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
568                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
569                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
570           UnqualifiedDiag = diag::err_unknown_typename_suggest;
571           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
572         }
573
574        if (SS.isEmpty())
575          Diag(NameLoc, UnqualifiedDiag)
576            << Name << CorrectedQuotedStr
577            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
578        else
579          Diag(NameLoc, QualifiedDiag)
580            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
581            << SS.getRange()
582            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
583
584        // Update the name, so that the caller has the new name.
585        Name = Corrected.getCorrectionAsIdentifierInfo();
586
587        // Also update the LookupResult...
588        // FIXME: This should probably go away at some point
589        Result.clear();
590        Result.setLookupName(Corrected.getCorrection());
591        if (FirstDecl) Result.addDecl(FirstDecl);
592
593        // Typo correction corrected to a keyword.
594        if (Corrected.isKeyword())
595          return Corrected.getCorrectionAsIdentifierInfo();
596
597        if (FirstDecl)
598          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
599            << CorrectedQuotedStr;
600
601        // If we found an Objective-C instance variable, let
602        // LookupInObjCMethod build the appropriate expression to
603        // reference the ivar.
604        // FIXME: This is a gross hack.
605        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
606          Result.clear();
607          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
608          return move(E);
609        }
610
611        goto Corrected;
612      }
613    }
614
615    // We failed to correct; just fall through and let the parser deal with it.
616    Result.suppressDiagnostics();
617    return NameClassification::Unknown();
618
619  case LookupResult::NotFoundInCurrentInstantiation:
620    // We performed name lookup into the current instantiation, and there were
621    // dependent bases, so we treat this result the same way as any other
622    // dependent nested-name-specifier.
623
624    // C++ [temp.res]p2:
625    //   A name used in a template declaration or definition and that is
626    //   dependent on a template-parameter is assumed not to name a type
627    //   unless the applicable name lookup finds a type name or the name is
628    //   qualified by the keyword typename.
629    //
630    // FIXME: If the next token is '<', we might want to ask the parser to
631    // perform some heroics to see if we actually have a
632    // template-argument-list, which would indicate a missing 'template'
633    // keyword here.
634    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
635
636  case LookupResult::Found:
637  case LookupResult::FoundOverloaded:
638  case LookupResult::FoundUnresolvedValue:
639    break;
640
641  case LookupResult::Ambiguous:
642    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
643        hasAnyAcceptableTemplateNames(Result)) {
644      // C++ [temp.local]p3:
645      //   A lookup that finds an injected-class-name (10.2) can result in an
646      //   ambiguity in certain cases (for example, if it is found in more than
647      //   one base class). If all of the injected-class-names that are found
648      //   refer to specializations of the same class template, and if the name
649      //   is followed by a template-argument-list, the reference refers to the
650      //   class template itself and not a specialization thereof, and is not
651      //   ambiguous.
652      //
653      // This filtering can make an ambiguous result into an unambiguous one,
654      // so try again after filtering out template names.
655      FilterAcceptableTemplateNames(Result);
656      if (!Result.isAmbiguous()) {
657        IsFilteredTemplateName = true;
658        break;
659      }
660    }
661
662    // Diagnose the ambiguity and return an error.
663    return NameClassification::Error();
664  }
665
666  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
667      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
668    // C++ [temp.names]p3:
669    //   After name lookup (3.4) finds that a name is a template-name or that
670    //   an operator-function-id or a literal- operator-id refers to a set of
671    //   overloaded functions any member of which is a function template if
672    //   this is followed by a <, the < is always taken as the delimiter of a
673    //   template-argument-list and never as the less-than operator.
674    if (!IsFilteredTemplateName)
675      FilterAcceptableTemplateNames(Result);
676
677    if (!Result.empty()) {
678      bool IsFunctionTemplate;
679      TemplateName Template;
680      if (Result.end() - Result.begin() > 1) {
681        IsFunctionTemplate = true;
682        Template = Context.getOverloadedTemplateName(Result.begin(),
683                                                     Result.end());
684      } else {
685        TemplateDecl *TD
686          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
687        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
688
689        if (SS.isSet() && !SS.isInvalid())
690          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
691                                                    /*TemplateKeyword=*/false,
692                                                      TD);
693        else
694          Template = TemplateName(TD);
695      }
696
697      if (IsFunctionTemplate) {
698        // Function templates always go through overload resolution, at which
699        // point we'll perform the various checks (e.g., accessibility) we need
700        // to based on which function we selected.
701        Result.suppressDiagnostics();
702
703        return NameClassification::FunctionTemplate(Template);
704      }
705
706      return NameClassification::TypeTemplate(Template);
707    }
708  }
709
710  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
711  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
712    DiagnoseUseOfDecl(Type, NameLoc);
713    QualType T = Context.getTypeDeclType(Type);
714    return ParsedType::make(T);
715  }
716
717  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
718  if (!Class) {
719    // FIXME: It's unfortunate that we don't have a Type node for handling this.
720    if (ObjCCompatibleAliasDecl *Alias
721                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
722      Class = Alias->getClassInterface();
723  }
724
725  if (Class) {
726    DiagnoseUseOfDecl(Class, NameLoc);
727
728    if (NextToken.is(tok::period)) {
729      // Interface. <something> is parsed as a property reference expression.
730      // Just return "unknown" as a fall-through for now.
731      Result.suppressDiagnostics();
732      return NameClassification::Unknown();
733    }
734
735    QualType T = Context.getObjCInterfaceType(Class);
736    return ParsedType::make(T);
737  }
738
739  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
740    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
741
742  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
743  return BuildDeclarationNameExpr(SS, Result, ADL);
744}
745
746// Determines the context to return to after temporarily entering a
747// context.  This depends in an unnecessarily complicated way on the
748// exact ordering of callbacks from the parser.
749DeclContext *Sema::getContainingDC(DeclContext *DC) {
750
751  // Functions defined inline within classes aren't parsed until we've
752  // finished parsing the top-level class, so the top-level class is
753  // the context we'll need to return to.
754  if (isa<FunctionDecl>(DC)) {
755    DC = DC->getLexicalParent();
756
757    // A function not defined within a class will always return to its
758    // lexical context.
759    if (!isa<CXXRecordDecl>(DC))
760      return DC;
761
762    // A C++ inline method/friend is parsed *after* the topmost class
763    // it was declared in is fully parsed ("complete");  the topmost
764    // class is the context we need to return to.
765    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
766      DC = RD;
767
768    // Return the declaration context of the topmost class the inline method is
769    // declared in.
770    return DC;
771  }
772
773  return DC->getLexicalParent();
774}
775
776void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
777  assert(getContainingDC(DC) == CurContext &&
778      "The next DeclContext should be lexically contained in the current one.");
779  CurContext = DC;
780  S->setEntity(DC);
781}
782
783void Sema::PopDeclContext() {
784  assert(CurContext && "DeclContext imbalance!");
785
786  CurContext = getContainingDC(CurContext);
787  assert(CurContext && "Popped translation unit!");
788}
789
790/// EnterDeclaratorContext - Used when we must lookup names in the context
791/// of a declarator's nested name specifier.
792///
793void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
794  // C++0x [basic.lookup.unqual]p13:
795  //   A name used in the definition of a static data member of class
796  //   X (after the qualified-id of the static member) is looked up as
797  //   if the name was used in a member function of X.
798  // C++0x [basic.lookup.unqual]p14:
799  //   If a variable member of a namespace is defined outside of the
800  //   scope of its namespace then any name used in the definition of
801  //   the variable member (after the declarator-id) is looked up as
802  //   if the definition of the variable member occurred in its
803  //   namespace.
804  // Both of these imply that we should push a scope whose context
805  // is the semantic context of the declaration.  We can't use
806  // PushDeclContext here because that context is not necessarily
807  // lexically contained in the current context.  Fortunately,
808  // the containing scope should have the appropriate information.
809
810  assert(!S->getEntity() && "scope already has entity");
811
812#ifndef NDEBUG
813  Scope *Ancestor = S->getParent();
814  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
815  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
816#endif
817
818  CurContext = DC;
819  S->setEntity(DC);
820}
821
822void Sema::ExitDeclaratorContext(Scope *S) {
823  assert(S->getEntity() == CurContext && "Context imbalance!");
824
825  // Switch back to the lexical context.  The safety of this is
826  // enforced by an assert in EnterDeclaratorContext.
827  Scope *Ancestor = S->getParent();
828  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
829  CurContext = (DeclContext*) Ancestor->getEntity();
830
831  // We don't need to do anything with the scope, which is going to
832  // disappear.
833}
834
835
836void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
837  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
838  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
839    // We assume that the caller has already called
840    // ActOnReenterTemplateScope
841    FD = TFD->getTemplatedDecl();
842  }
843  if (!FD)
844    return;
845
846  PushDeclContext(S, FD);
847  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
848    ParmVarDecl *Param = FD->getParamDecl(P);
849    // If the parameter has an identifier, then add it to the scope
850    if (Param->getIdentifier()) {
851      S->AddDecl(Param);
852      IdResolver.AddDecl(Param);
853    }
854  }
855}
856
857
858/// \brief Determine whether we allow overloading of the function
859/// PrevDecl with another declaration.
860///
861/// This routine determines whether overloading is possible, not
862/// whether some new function is actually an overload. It will return
863/// true in C++ (where we can always provide overloads) or, as an
864/// extension, in C when the previous function is already an
865/// overloaded function declaration or has the "overloadable"
866/// attribute.
867static bool AllowOverloadingOfFunction(LookupResult &Previous,
868                                       ASTContext &Context) {
869  if (Context.getLangOptions().CPlusPlus)
870    return true;
871
872  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
873    return true;
874
875  return (Previous.getResultKind() == LookupResult::Found
876          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
877}
878
879/// Add this decl to the scope shadowed decl chains.
880void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
881  // Move up the scope chain until we find the nearest enclosing
882  // non-transparent context. The declaration will be introduced into this
883  // scope.
884  while (S->getEntity() &&
885         ((DeclContext *)S->getEntity())->isTransparentContext())
886    S = S->getParent();
887
888  // Add scoped declarations into their context, so that they can be
889  // found later. Declarations without a context won't be inserted
890  // into any context.
891  if (AddToContext)
892    CurContext->addDecl(D);
893
894  // Out-of-line definitions shouldn't be pushed into scope in C++.
895  // Out-of-line variable and function definitions shouldn't even in C.
896  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
897      D->isOutOfLine() &&
898      !D->getDeclContext()->getRedeclContext()->Equals(
899        D->getLexicalDeclContext()->getRedeclContext()))
900    return;
901
902  // Template instantiations should also not be pushed into scope.
903  if (isa<FunctionDecl>(D) &&
904      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
905    return;
906
907  // If this replaces anything in the current scope,
908  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
909                               IEnd = IdResolver.end();
910  for (; I != IEnd; ++I) {
911    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
912      S->RemoveDecl(*I);
913      IdResolver.RemoveDecl(*I);
914
915      // Should only need to replace one decl.
916      break;
917    }
918  }
919
920  S->AddDecl(D);
921
922  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
923    // Implicitly-generated labels may end up getting generated in an order that
924    // isn't strictly lexical, which breaks name lookup. Be careful to insert
925    // the label at the appropriate place in the identifier chain.
926    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
927      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
928      if (IDC == CurContext) {
929        if (!S->isDeclScope(*I))
930          continue;
931      } else if (IDC->Encloses(CurContext))
932        break;
933    }
934
935    IdResolver.InsertDeclAfter(I, D);
936  } else {
937    IdResolver.AddDecl(D);
938  }
939}
940
941void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
942  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
943    TUScope->AddDecl(D);
944}
945
946bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
947                         bool ExplicitInstantiationOrSpecialization) {
948  return IdResolver.isDeclInScope(D, Ctx, Context, S,
949                                  ExplicitInstantiationOrSpecialization);
950}
951
952Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
953  DeclContext *TargetDC = DC->getPrimaryContext();
954  do {
955    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
956      if (ScopeDC->getPrimaryContext() == TargetDC)
957        return S;
958  } while ((S = S->getParent()));
959
960  return 0;
961}
962
963static bool isOutOfScopePreviousDeclaration(NamedDecl *,
964                                            DeclContext*,
965                                            ASTContext&);
966
967/// Filters out lookup results that don't fall within the given scope
968/// as determined by isDeclInScope.
969void Sema::FilterLookupForScope(LookupResult &R,
970                                DeclContext *Ctx, Scope *S,
971                                bool ConsiderLinkage,
972                                bool ExplicitInstantiationOrSpecialization) {
973  LookupResult::Filter F = R.makeFilter();
974  while (F.hasNext()) {
975    NamedDecl *D = F.next();
976
977    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
978      continue;
979
980    if (ConsiderLinkage &&
981        isOutOfScopePreviousDeclaration(D, Ctx, Context))
982      continue;
983
984    F.erase();
985  }
986
987  F.done();
988}
989
990static bool isUsingDecl(NamedDecl *D) {
991  return isa<UsingShadowDecl>(D) ||
992         isa<UnresolvedUsingTypenameDecl>(D) ||
993         isa<UnresolvedUsingValueDecl>(D);
994}
995
996/// Removes using shadow declarations from the lookup results.
997static void RemoveUsingDecls(LookupResult &R) {
998  LookupResult::Filter F = R.makeFilter();
999  while (F.hasNext())
1000    if (isUsingDecl(F.next()))
1001      F.erase();
1002
1003  F.done();
1004}
1005
1006/// \brief Check for this common pattern:
1007/// @code
1008/// class S {
1009///   S(const S&); // DO NOT IMPLEMENT
1010///   void operator=(const S&); // DO NOT IMPLEMENT
1011/// };
1012/// @endcode
1013static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1014  // FIXME: Should check for private access too but access is set after we get
1015  // the decl here.
1016  if (D->doesThisDeclarationHaveABody())
1017    return false;
1018
1019  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1020    return CD->isCopyConstructor();
1021  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1022    return Method->isCopyAssignmentOperator();
1023  return false;
1024}
1025
1026bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1027  assert(D);
1028
1029  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1030    return false;
1031
1032  // Ignore class templates.
1033  if (D->getDeclContext()->isDependentContext() ||
1034      D->getLexicalDeclContext()->isDependentContext())
1035    return false;
1036
1037  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1038    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1039      return false;
1040
1041    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1042      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1043        return false;
1044    } else {
1045      // 'static inline' functions are used in headers; don't warn.
1046      if (FD->getStorageClass() == SC_Static &&
1047          FD->isInlineSpecified())
1048        return false;
1049    }
1050
1051    if (FD->doesThisDeclarationHaveABody() &&
1052        Context.DeclMustBeEmitted(FD))
1053      return false;
1054  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1055    if (!VD->isFileVarDecl() ||
1056        VD->getType().isConstant(Context) ||
1057        Context.DeclMustBeEmitted(VD))
1058      return false;
1059
1060    if (VD->isStaticDataMember() &&
1061        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1062      return false;
1063
1064  } else {
1065    return false;
1066  }
1067
1068  // Only warn for unused decls internal to the translation unit.
1069  if (D->getLinkage() == ExternalLinkage)
1070    return false;
1071
1072  return true;
1073}
1074
1075void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1076  if (!D)
1077    return;
1078
1079  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1080    const FunctionDecl *First = FD->getFirstDeclaration();
1081    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1082      return; // First should already be in the vector.
1083  }
1084
1085  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1086    const VarDecl *First = VD->getFirstDeclaration();
1087    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1088      return; // First should already be in the vector.
1089  }
1090
1091   if (ShouldWarnIfUnusedFileScopedDecl(D))
1092     UnusedFileScopedDecls.push_back(D);
1093 }
1094
1095static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1096  if (D->isInvalidDecl())
1097    return false;
1098
1099  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1100    return false;
1101
1102  if (isa<LabelDecl>(D))
1103    return true;
1104
1105  // White-list anything that isn't a local variable.
1106  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1107      !D->getDeclContext()->isFunctionOrMethod())
1108    return false;
1109
1110  // Types of valid local variables should be complete, so this should succeed.
1111  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1112
1113    // White-list anything with an __attribute__((unused)) type.
1114    QualType Ty = VD->getType();
1115
1116    // Only look at the outermost level of typedef.
1117    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1118      if (TT->getDecl()->hasAttr<UnusedAttr>())
1119        return false;
1120    }
1121
1122    // If we failed to complete the type for some reason, or if the type is
1123    // dependent, don't diagnose the variable.
1124    if (Ty->isIncompleteType() || Ty->isDependentType())
1125      return false;
1126
1127    if (const TagType *TT = Ty->getAs<TagType>()) {
1128      const TagDecl *Tag = TT->getDecl();
1129      if (Tag->hasAttr<UnusedAttr>())
1130        return false;
1131
1132      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1133        // FIXME: Checking for the presence of a user-declared constructor
1134        // isn't completely accurate; we'd prefer to check that the initializer
1135        // has no side effects.
1136        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1137          return false;
1138      }
1139    }
1140
1141    // TODO: __attribute__((unused)) templates?
1142  }
1143
1144  return true;
1145}
1146
1147static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1148                                     FixItHint &Hint) {
1149  if (isa<LabelDecl>(D)) {
1150    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1151                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1152    if (AfterColon.isInvalid())
1153      return;
1154    Hint = FixItHint::CreateRemoval(CharSourceRange::
1155                                    getCharRange(D->getLocStart(), AfterColon));
1156  }
1157  return;
1158}
1159
1160/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1161/// unless they are marked attr(unused).
1162void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1163  FixItHint Hint;
1164  if (!ShouldDiagnoseUnusedDecl(D))
1165    return;
1166
1167  GenerateFixForUnusedDecl(D, Context, Hint);
1168
1169  unsigned DiagID;
1170  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1171    DiagID = diag::warn_unused_exception_param;
1172  else if (isa<LabelDecl>(D))
1173    DiagID = diag::warn_unused_label;
1174  else
1175    DiagID = diag::warn_unused_variable;
1176
1177  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1178}
1179
1180static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1181  // Verify that we have no forward references left.  If so, there was a goto
1182  // or address of a label taken, but no definition of it.  Label fwd
1183  // definitions are indicated with a null substmt.
1184  if (L->getStmt() == 0)
1185    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1186}
1187
1188void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1189  if (S->decl_empty()) return;
1190  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1191         "Scope shouldn't contain decls!");
1192
1193  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1194       I != E; ++I) {
1195    Decl *TmpD = (*I);
1196    assert(TmpD && "This decl didn't get pushed??");
1197
1198    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1199    NamedDecl *D = cast<NamedDecl>(TmpD);
1200
1201    if (!D->getDeclName()) continue;
1202
1203    // Diagnose unused variables in this scope.
1204    if (!S->hasErrorOccurred())
1205      DiagnoseUnusedDecl(D);
1206
1207    // If this was a forward reference to a label, verify it was defined.
1208    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1209      CheckPoppedLabel(LD, *this);
1210
1211    // Remove this name from our lexical scope.
1212    IdResolver.RemoveDecl(D);
1213  }
1214}
1215
1216/// \brief Look for an Objective-C class in the translation unit.
1217///
1218/// \param Id The name of the Objective-C class we're looking for. If
1219/// typo-correction fixes this name, the Id will be updated
1220/// to the fixed name.
1221///
1222/// \param IdLoc The location of the name in the translation unit.
1223///
1224/// \param TypoCorrection If true, this routine will attempt typo correction
1225/// if there is no class with the given name.
1226///
1227/// \returns The declaration of the named Objective-C class, or NULL if the
1228/// class could not be found.
1229ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1230                                              SourceLocation IdLoc,
1231                                              bool DoTypoCorrection) {
1232  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1233  // creation from this context.
1234  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1235
1236  if (!IDecl && DoTypoCorrection) {
1237    // Perform typo correction at the given location, but only if we
1238    // find an Objective-C class name.
1239    TypoCorrection C;
1240    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1241                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1242        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1243      Diag(IdLoc, diag::err_undef_interface_suggest)
1244        << Id << IDecl->getDeclName()
1245        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1246      Diag(IDecl->getLocation(), diag::note_previous_decl)
1247        << IDecl->getDeclName();
1248
1249      Id = IDecl->getIdentifier();
1250    }
1251  }
1252
1253  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1254}
1255
1256/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1257/// from S, where a non-field would be declared. This routine copes
1258/// with the difference between C and C++ scoping rules in structs and
1259/// unions. For example, the following code is well-formed in C but
1260/// ill-formed in C++:
1261/// @code
1262/// struct S6 {
1263///   enum { BAR } e;
1264/// };
1265///
1266/// void test_S6() {
1267///   struct S6 a;
1268///   a.e = BAR;
1269/// }
1270/// @endcode
1271/// For the declaration of BAR, this routine will return a different
1272/// scope. The scope S will be the scope of the unnamed enumeration
1273/// within S6. In C++, this routine will return the scope associated
1274/// with S6, because the enumeration's scope is a transparent
1275/// context but structures can contain non-field names. In C, this
1276/// routine will return the translation unit scope, since the
1277/// enumeration's scope is a transparent context and structures cannot
1278/// contain non-field names.
1279Scope *Sema::getNonFieldDeclScope(Scope *S) {
1280  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1281         (S->getEntity() &&
1282          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1283         (S->isClassScope() && !getLangOptions().CPlusPlus))
1284    S = S->getParent();
1285  return S;
1286}
1287
1288/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1289/// file scope.  lazily create a decl for it. ForRedeclaration is true
1290/// if we're creating this built-in in anticipation of redeclaring the
1291/// built-in.
1292NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1293                                     Scope *S, bool ForRedeclaration,
1294                                     SourceLocation Loc) {
1295  Builtin::ID BID = (Builtin::ID)bid;
1296
1297  ASTContext::GetBuiltinTypeError Error;
1298  QualType R = Context.GetBuiltinType(BID, Error);
1299  switch (Error) {
1300  case ASTContext::GE_None:
1301    // Okay
1302    break;
1303
1304  case ASTContext::GE_Missing_stdio:
1305    if (ForRedeclaration)
1306      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1307        << Context.BuiltinInfo.GetName(BID);
1308    return 0;
1309
1310  case ASTContext::GE_Missing_setjmp:
1311    if (ForRedeclaration)
1312      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1313        << Context.BuiltinInfo.GetName(BID);
1314    return 0;
1315
1316  case ASTContext::GE_Missing_ucontext:
1317    if (ForRedeclaration)
1318      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1319        << Context.BuiltinInfo.GetName(BID);
1320    return 0;
1321  }
1322
1323  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1324    Diag(Loc, diag::ext_implicit_lib_function_decl)
1325      << Context.BuiltinInfo.GetName(BID)
1326      << R;
1327    if (Context.BuiltinInfo.getHeaderName(BID) &&
1328        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1329          != DiagnosticsEngine::Ignored)
1330      Diag(Loc, diag::note_please_include_header)
1331        << Context.BuiltinInfo.getHeaderName(BID)
1332        << Context.BuiltinInfo.GetName(BID);
1333  }
1334
1335  FunctionDecl *New = FunctionDecl::Create(Context,
1336                                           Context.getTranslationUnitDecl(),
1337                                           Loc, Loc, II, R, /*TInfo=*/0,
1338                                           SC_Extern,
1339                                           SC_None, false,
1340                                           /*hasPrototype=*/true);
1341  New->setImplicit();
1342
1343  // Create Decl objects for each parameter, adding them to the
1344  // FunctionDecl.
1345  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1346    SmallVector<ParmVarDecl*, 16> Params;
1347    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1348      ParmVarDecl *parm =
1349        ParmVarDecl::Create(Context, New, SourceLocation(),
1350                            SourceLocation(), 0,
1351                            FT->getArgType(i), /*TInfo=*/0,
1352                            SC_None, SC_None, 0);
1353      parm->setScopeInfo(0, i);
1354      Params.push_back(parm);
1355    }
1356    New->setParams(Params);
1357  }
1358
1359  AddKnownFunctionAttributes(New);
1360
1361  // TUScope is the translation-unit scope to insert this function into.
1362  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1363  // relate Scopes to DeclContexts, and probably eliminate CurContext
1364  // entirely, but we're not there yet.
1365  DeclContext *SavedContext = CurContext;
1366  CurContext = Context.getTranslationUnitDecl();
1367  PushOnScopeChains(New, TUScope);
1368  CurContext = SavedContext;
1369  return New;
1370}
1371
1372/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1373/// same name and scope as a previous declaration 'Old'.  Figure out
1374/// how to resolve this situation, merging decls or emitting
1375/// diagnostics as appropriate. If there was an error, set New to be invalid.
1376///
1377void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1378  // If the new decl is known invalid already, don't bother doing any
1379  // merging checks.
1380  if (New->isInvalidDecl()) return;
1381
1382  // Allow multiple definitions for ObjC built-in typedefs.
1383  // FIXME: Verify the underlying types are equivalent!
1384  if (getLangOptions().ObjC1) {
1385    const IdentifierInfo *TypeID = New->getIdentifier();
1386    switch (TypeID->getLength()) {
1387    default: break;
1388    case 2:
1389      if (!TypeID->isStr("id"))
1390        break;
1391      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1392      // Install the built-in type for 'id', ignoring the current definition.
1393      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1394      return;
1395    case 5:
1396      if (!TypeID->isStr("Class"))
1397        break;
1398      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1399      // Install the built-in type for 'Class', ignoring the current definition.
1400      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1401      return;
1402    case 3:
1403      if (!TypeID->isStr("SEL"))
1404        break;
1405      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1406      // Install the built-in type for 'SEL', ignoring the current definition.
1407      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1408      return;
1409    }
1410    // Fall through - the typedef name was not a builtin type.
1411  }
1412
1413  // Verify the old decl was also a type.
1414  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1415  if (!Old) {
1416    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1417      << New->getDeclName();
1418
1419    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1420    if (OldD->getLocation().isValid())
1421      Diag(OldD->getLocation(), diag::note_previous_definition);
1422
1423    return New->setInvalidDecl();
1424  }
1425
1426  // If the old declaration is invalid, just give up here.
1427  if (Old->isInvalidDecl())
1428    return New->setInvalidDecl();
1429
1430  // Determine the "old" type we'll use for checking and diagnostics.
1431  QualType OldType;
1432  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1433    OldType = OldTypedef->getUnderlyingType();
1434  else
1435    OldType = Context.getTypeDeclType(Old);
1436
1437  // If the typedef types are not identical, reject them in all languages and
1438  // with any extensions enabled.
1439
1440  if (OldType != New->getUnderlyingType() &&
1441      Context.getCanonicalType(OldType) !=
1442      Context.getCanonicalType(New->getUnderlyingType())) {
1443    int Kind = 0;
1444    if (isa<TypeAliasDecl>(Old))
1445      Kind = 1;
1446    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1447      << Kind << New->getUnderlyingType() << OldType;
1448    if (Old->getLocation().isValid())
1449      Diag(Old->getLocation(), diag::note_previous_definition);
1450    return New->setInvalidDecl();
1451  }
1452
1453  // The types match.  Link up the redeclaration chain if the old
1454  // declaration was a typedef.
1455  // FIXME: this is a potential source of weirdness if the type
1456  // spellings don't match exactly.
1457  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1458    New->setPreviousDeclaration(Typedef);
1459
1460  // __module_private__ is propagated to later declarations.
1461  if (Old->isModulePrivate())
1462    New->setModulePrivate();
1463  else if (New->isModulePrivate())
1464    diagnoseModulePrivateRedeclaration(New, Old);
1465
1466  if (getLangOptions().MicrosoftExt)
1467    return;
1468
1469  if (getLangOptions().CPlusPlus) {
1470    // C++ [dcl.typedef]p2:
1471    //   In a given non-class scope, a typedef specifier can be used to
1472    //   redefine the name of any type declared in that scope to refer
1473    //   to the type to which it already refers.
1474    if (!isa<CXXRecordDecl>(CurContext))
1475      return;
1476
1477    // C++0x [dcl.typedef]p4:
1478    //   In a given class scope, a typedef specifier can be used to redefine
1479    //   any class-name declared in that scope that is not also a typedef-name
1480    //   to refer to the type to which it already refers.
1481    //
1482    // This wording came in via DR424, which was a correction to the
1483    // wording in DR56, which accidentally banned code like:
1484    //
1485    //   struct S {
1486    //     typedef struct A { } A;
1487    //   };
1488    //
1489    // in the C++03 standard. We implement the C++0x semantics, which
1490    // allow the above but disallow
1491    //
1492    //   struct S {
1493    //     typedef int I;
1494    //     typedef int I;
1495    //   };
1496    //
1497    // since that was the intent of DR56.
1498    if (!isa<TypedefNameDecl>(Old))
1499      return;
1500
1501    Diag(New->getLocation(), diag::err_redefinition)
1502      << New->getDeclName();
1503    Diag(Old->getLocation(), diag::note_previous_definition);
1504    return New->setInvalidDecl();
1505  }
1506
1507  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1508  // is normally mapped to an error, but can be controlled with
1509  // -Wtypedef-redefinition.  If either the original or the redefinition is
1510  // in a system header, don't emit this for compatibility with GCC.
1511  if (getDiagnostics().getSuppressSystemWarnings() &&
1512      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1513       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1514    return;
1515
1516  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1517    << New->getDeclName();
1518  Diag(Old->getLocation(), diag::note_previous_definition);
1519  return;
1520}
1521
1522/// DeclhasAttr - returns true if decl Declaration already has the target
1523/// attribute.
1524static bool
1525DeclHasAttr(const Decl *D, const Attr *A) {
1526  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1527  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1528  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1529    if ((*i)->getKind() == A->getKind()) {
1530      if (Ann) {
1531        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1532          return true;
1533        continue;
1534      }
1535      // FIXME: Don't hardcode this check
1536      if (OA && isa<OwnershipAttr>(*i))
1537        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1538      return true;
1539    }
1540
1541  return false;
1542}
1543
1544/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1545static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1546                                ASTContext &C, bool mergeDeprecation = true) {
1547  if (!oldDecl->hasAttrs())
1548    return;
1549
1550  bool foundAny = newDecl->hasAttrs();
1551
1552  // Ensure that any moving of objects within the allocated map is done before
1553  // we process them.
1554  if (!foundAny) newDecl->setAttrs(AttrVec());
1555
1556  for (specific_attr_iterator<InheritableAttr>
1557       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1558       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1559    // Ignore deprecated/unavailable/availability attributes if requested.
1560    if (!mergeDeprecation &&
1561        (isa<DeprecatedAttr>(*i) ||
1562         isa<UnavailableAttr>(*i) ||
1563         isa<AvailabilityAttr>(*i)))
1564      continue;
1565
1566    if (!DeclHasAttr(newDecl, *i)) {
1567      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1568      newAttr->setInherited(true);
1569      newDecl->addAttr(newAttr);
1570      foundAny = true;
1571    }
1572  }
1573
1574  if (!foundAny) newDecl->dropAttrs();
1575}
1576
1577/// mergeParamDeclAttributes - Copy attributes from the old parameter
1578/// to the new one.
1579static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1580                                     const ParmVarDecl *oldDecl,
1581                                     ASTContext &C) {
1582  if (!oldDecl->hasAttrs())
1583    return;
1584
1585  bool foundAny = newDecl->hasAttrs();
1586
1587  // Ensure that any moving of objects within the allocated map is
1588  // done before we process them.
1589  if (!foundAny) newDecl->setAttrs(AttrVec());
1590
1591  for (specific_attr_iterator<InheritableParamAttr>
1592       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1593       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1594    if (!DeclHasAttr(newDecl, *i)) {
1595      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1596      newAttr->setInherited(true);
1597      newDecl->addAttr(newAttr);
1598      foundAny = true;
1599    }
1600  }
1601
1602  if (!foundAny) newDecl->dropAttrs();
1603}
1604
1605namespace {
1606
1607/// Used in MergeFunctionDecl to keep track of function parameters in
1608/// C.
1609struct GNUCompatibleParamWarning {
1610  ParmVarDecl *OldParm;
1611  ParmVarDecl *NewParm;
1612  QualType PromotedType;
1613};
1614
1615}
1616
1617/// getSpecialMember - get the special member enum for a method.
1618Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1619  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1620    if (Ctor->isDefaultConstructor())
1621      return Sema::CXXDefaultConstructor;
1622
1623    if (Ctor->isCopyConstructor())
1624      return Sema::CXXCopyConstructor;
1625
1626    if (Ctor->isMoveConstructor())
1627      return Sema::CXXMoveConstructor;
1628  } else if (isa<CXXDestructorDecl>(MD)) {
1629    return Sema::CXXDestructor;
1630  } else if (MD->isCopyAssignmentOperator()) {
1631    return Sema::CXXCopyAssignment;
1632  } else if (MD->isMoveAssignmentOperator()) {
1633    return Sema::CXXMoveAssignment;
1634  }
1635
1636  return Sema::CXXInvalid;
1637}
1638
1639/// canRedefineFunction - checks if a function can be redefined. Currently,
1640/// only extern inline functions can be redefined, and even then only in
1641/// GNU89 mode.
1642static bool canRedefineFunction(const FunctionDecl *FD,
1643                                const LangOptions& LangOpts) {
1644  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1645          !LangOpts.CPlusPlus &&
1646          FD->isInlineSpecified() &&
1647          FD->getStorageClass() == SC_Extern);
1648}
1649
1650/// MergeFunctionDecl - We just parsed a function 'New' from
1651/// declarator D which has the same name and scope as a previous
1652/// declaration 'Old'.  Figure out how to resolve this situation,
1653/// merging decls or emitting diagnostics as appropriate.
1654///
1655/// In C++, New and Old must be declarations that are not
1656/// overloaded. Use IsOverload to determine whether New and Old are
1657/// overloaded, and to select the Old declaration that New should be
1658/// merged with.
1659///
1660/// Returns true if there was an error, false otherwise.
1661bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1662  // Verify the old decl was also a function.
1663  FunctionDecl *Old = 0;
1664  if (FunctionTemplateDecl *OldFunctionTemplate
1665        = dyn_cast<FunctionTemplateDecl>(OldD))
1666    Old = OldFunctionTemplate->getTemplatedDecl();
1667  else
1668    Old = dyn_cast<FunctionDecl>(OldD);
1669  if (!Old) {
1670    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1671      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1672      Diag(Shadow->getTargetDecl()->getLocation(),
1673           diag::note_using_decl_target);
1674      Diag(Shadow->getUsingDecl()->getLocation(),
1675           diag::note_using_decl) << 0;
1676      return true;
1677    }
1678
1679    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1680      << New->getDeclName();
1681    Diag(OldD->getLocation(), diag::note_previous_definition);
1682    return true;
1683  }
1684
1685  // Determine whether the previous declaration was a definition,
1686  // implicit declaration, or a declaration.
1687  diag::kind PrevDiag;
1688  if (Old->isThisDeclarationADefinition())
1689    PrevDiag = diag::note_previous_definition;
1690  else if (Old->isImplicit())
1691    PrevDiag = diag::note_previous_implicit_declaration;
1692  else
1693    PrevDiag = diag::note_previous_declaration;
1694
1695  QualType OldQType = Context.getCanonicalType(Old->getType());
1696  QualType NewQType = Context.getCanonicalType(New->getType());
1697
1698  // Don't complain about this if we're in GNU89 mode and the old function
1699  // is an extern inline function.
1700  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1701      New->getStorageClass() == SC_Static &&
1702      Old->getStorageClass() != SC_Static &&
1703      !canRedefineFunction(Old, getLangOptions())) {
1704    if (getLangOptions().MicrosoftExt) {
1705      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1706      Diag(Old->getLocation(), PrevDiag);
1707    } else {
1708      Diag(New->getLocation(), diag::err_static_non_static) << New;
1709      Diag(Old->getLocation(), PrevDiag);
1710      return true;
1711    }
1712  }
1713
1714  // If a function is first declared with a calling convention, but is
1715  // later declared or defined without one, the second decl assumes the
1716  // calling convention of the first.
1717  //
1718  // For the new decl, we have to look at the NON-canonical type to tell the
1719  // difference between a function that really doesn't have a calling
1720  // convention and one that is declared cdecl. That's because in
1721  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1722  // because it is the default calling convention.
1723  //
1724  // Note also that we DO NOT return at this point, because we still have
1725  // other tests to run.
1726  const FunctionType *OldType = cast<FunctionType>(OldQType);
1727  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1728  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1729  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1730  bool RequiresAdjustment = false;
1731  if (OldTypeInfo.getCC() != CC_Default &&
1732      NewTypeInfo.getCC() == CC_Default) {
1733    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1734    RequiresAdjustment = true;
1735  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1736                                     NewTypeInfo.getCC())) {
1737    // Calling conventions really aren't compatible, so complain.
1738    Diag(New->getLocation(), diag::err_cconv_change)
1739      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1740      << (OldTypeInfo.getCC() == CC_Default)
1741      << (OldTypeInfo.getCC() == CC_Default ? "" :
1742          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1743    Diag(Old->getLocation(), diag::note_previous_declaration);
1744    return true;
1745  }
1746
1747  // FIXME: diagnose the other way around?
1748  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1749    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1750    RequiresAdjustment = true;
1751  }
1752
1753  // Merge regparm attribute.
1754  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1755      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1756    if (NewTypeInfo.getHasRegParm()) {
1757      Diag(New->getLocation(), diag::err_regparm_mismatch)
1758        << NewType->getRegParmType()
1759        << OldType->getRegParmType();
1760      Diag(Old->getLocation(), diag::note_previous_declaration);
1761      return true;
1762    }
1763
1764    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1765    RequiresAdjustment = true;
1766  }
1767
1768  // Merge ns_returns_retained attribute.
1769  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1770    if (NewTypeInfo.getProducesResult()) {
1771      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1772      Diag(Old->getLocation(), diag::note_previous_declaration);
1773      return true;
1774    }
1775
1776    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1777    RequiresAdjustment = true;
1778  }
1779
1780  if (RequiresAdjustment) {
1781    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1782    New->setType(QualType(NewType, 0));
1783    NewQType = Context.getCanonicalType(New->getType());
1784  }
1785
1786  if (getLangOptions().CPlusPlus) {
1787    // (C++98 13.1p2):
1788    //   Certain function declarations cannot be overloaded:
1789    //     -- Function declarations that differ only in the return type
1790    //        cannot be overloaded.
1791    QualType OldReturnType = OldType->getResultType();
1792    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1793    QualType ResQT;
1794    if (OldReturnType != NewReturnType) {
1795      if (NewReturnType->isObjCObjectPointerType()
1796          && OldReturnType->isObjCObjectPointerType())
1797        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1798      if (ResQT.isNull()) {
1799        if (New->isCXXClassMember() && New->isOutOfLine())
1800          Diag(New->getLocation(),
1801               diag::err_member_def_does_not_match_ret_type) << New;
1802        else
1803          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1804        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1805        return true;
1806      }
1807      else
1808        NewQType = ResQT;
1809    }
1810
1811    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1812    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1813    if (OldMethod && NewMethod) {
1814      // Preserve triviality.
1815      NewMethod->setTrivial(OldMethod->isTrivial());
1816
1817      // MSVC allows explicit template specialization at class scope:
1818      // 2 CXMethodDecls referring to the same function will be injected.
1819      // We don't want a redeclartion error.
1820      bool IsClassScopeExplicitSpecialization =
1821                              OldMethod->isFunctionTemplateSpecialization() &&
1822                              NewMethod->isFunctionTemplateSpecialization();
1823      bool isFriend = NewMethod->getFriendObjectKind();
1824
1825      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1826          !IsClassScopeExplicitSpecialization) {
1827        //    -- Member function declarations with the same name and the
1828        //       same parameter types cannot be overloaded if any of them
1829        //       is a static member function declaration.
1830        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1831          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1832          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1833          return true;
1834        }
1835
1836        // C++ [class.mem]p1:
1837        //   [...] A member shall not be declared twice in the
1838        //   member-specification, except that a nested class or member
1839        //   class template can be declared and then later defined.
1840        unsigned NewDiag;
1841        if (isa<CXXConstructorDecl>(OldMethod))
1842          NewDiag = diag::err_constructor_redeclared;
1843        else if (isa<CXXDestructorDecl>(NewMethod))
1844          NewDiag = diag::err_destructor_redeclared;
1845        else if (isa<CXXConversionDecl>(NewMethod))
1846          NewDiag = diag::err_conv_function_redeclared;
1847        else
1848          NewDiag = diag::err_member_redeclared;
1849
1850        Diag(New->getLocation(), NewDiag);
1851        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1852
1853      // Complain if this is an explicit declaration of a special
1854      // member that was initially declared implicitly.
1855      //
1856      // As an exception, it's okay to befriend such methods in order
1857      // to permit the implicit constructor/destructor/operator calls.
1858      } else if (OldMethod->isImplicit()) {
1859        if (isFriend) {
1860          NewMethod->setImplicit();
1861        } else {
1862          Diag(NewMethod->getLocation(),
1863               diag::err_definition_of_implicitly_declared_member)
1864            << New << getSpecialMember(OldMethod);
1865          return true;
1866        }
1867      } else if (OldMethod->isExplicitlyDefaulted()) {
1868        Diag(NewMethod->getLocation(),
1869             diag::err_definition_of_explicitly_defaulted_member)
1870          << getSpecialMember(OldMethod);
1871        return true;
1872      }
1873    }
1874
1875    // (C++98 8.3.5p3):
1876    //   All declarations for a function shall agree exactly in both the
1877    //   return type and the parameter-type-list.
1878    // We also want to respect all the extended bits except noreturn.
1879
1880    // noreturn should now match unless the old type info didn't have it.
1881    QualType OldQTypeForComparison = OldQType;
1882    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1883      assert(OldQType == QualType(OldType, 0));
1884      const FunctionType *OldTypeForComparison
1885        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1886      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1887      assert(OldQTypeForComparison.isCanonical());
1888    }
1889
1890    if (OldQTypeForComparison == NewQType)
1891      return MergeCompatibleFunctionDecls(New, Old);
1892
1893    // Fall through for conflicting redeclarations and redefinitions.
1894  }
1895
1896  // C: Function types need to be compatible, not identical. This handles
1897  // duplicate function decls like "void f(int); void f(enum X);" properly.
1898  if (!getLangOptions().CPlusPlus &&
1899      Context.typesAreCompatible(OldQType, NewQType)) {
1900    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1901    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1902    const FunctionProtoType *OldProto = 0;
1903    if (isa<FunctionNoProtoType>(NewFuncType) &&
1904        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1905      // The old declaration provided a function prototype, but the
1906      // new declaration does not. Merge in the prototype.
1907      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1908      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1909                                                 OldProto->arg_type_end());
1910      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1911                                         ParamTypes.data(), ParamTypes.size(),
1912                                         OldProto->getExtProtoInfo());
1913      New->setType(NewQType);
1914      New->setHasInheritedPrototype();
1915
1916      // Synthesize a parameter for each argument type.
1917      SmallVector<ParmVarDecl*, 16> Params;
1918      for (FunctionProtoType::arg_type_iterator
1919             ParamType = OldProto->arg_type_begin(),
1920             ParamEnd = OldProto->arg_type_end();
1921           ParamType != ParamEnd; ++ParamType) {
1922        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1923                                                 SourceLocation(),
1924                                                 SourceLocation(), 0,
1925                                                 *ParamType, /*TInfo=*/0,
1926                                                 SC_None, SC_None,
1927                                                 0);
1928        Param->setScopeInfo(0, Params.size());
1929        Param->setImplicit();
1930        Params.push_back(Param);
1931      }
1932
1933      New->setParams(Params);
1934    }
1935
1936    return MergeCompatibleFunctionDecls(New, Old);
1937  }
1938
1939  // GNU C permits a K&R definition to follow a prototype declaration
1940  // if the declared types of the parameters in the K&R definition
1941  // match the types in the prototype declaration, even when the
1942  // promoted types of the parameters from the K&R definition differ
1943  // from the types in the prototype. GCC then keeps the types from
1944  // the prototype.
1945  //
1946  // If a variadic prototype is followed by a non-variadic K&R definition,
1947  // the K&R definition becomes variadic.  This is sort of an edge case, but
1948  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1949  // C99 6.9.1p8.
1950  if (!getLangOptions().CPlusPlus &&
1951      Old->hasPrototype() && !New->hasPrototype() &&
1952      New->getType()->getAs<FunctionProtoType>() &&
1953      Old->getNumParams() == New->getNumParams()) {
1954    SmallVector<QualType, 16> ArgTypes;
1955    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1956    const FunctionProtoType *OldProto
1957      = Old->getType()->getAs<FunctionProtoType>();
1958    const FunctionProtoType *NewProto
1959      = New->getType()->getAs<FunctionProtoType>();
1960
1961    // Determine whether this is the GNU C extension.
1962    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1963                                               NewProto->getResultType());
1964    bool LooseCompatible = !MergedReturn.isNull();
1965    for (unsigned Idx = 0, End = Old->getNumParams();
1966         LooseCompatible && Idx != End; ++Idx) {
1967      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1968      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1969      if (Context.typesAreCompatible(OldParm->getType(),
1970                                     NewProto->getArgType(Idx))) {
1971        ArgTypes.push_back(NewParm->getType());
1972      } else if (Context.typesAreCompatible(OldParm->getType(),
1973                                            NewParm->getType(),
1974                                            /*CompareUnqualified=*/true)) {
1975        GNUCompatibleParamWarning Warn
1976          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1977        Warnings.push_back(Warn);
1978        ArgTypes.push_back(NewParm->getType());
1979      } else
1980        LooseCompatible = false;
1981    }
1982
1983    if (LooseCompatible) {
1984      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1985        Diag(Warnings[Warn].NewParm->getLocation(),
1986             diag::ext_param_promoted_not_compatible_with_prototype)
1987          << Warnings[Warn].PromotedType
1988          << Warnings[Warn].OldParm->getType();
1989        if (Warnings[Warn].OldParm->getLocation().isValid())
1990          Diag(Warnings[Warn].OldParm->getLocation(),
1991               diag::note_previous_declaration);
1992      }
1993
1994      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1995                                           ArgTypes.size(),
1996                                           OldProto->getExtProtoInfo()));
1997      return MergeCompatibleFunctionDecls(New, Old);
1998    }
1999
2000    // Fall through to diagnose conflicting types.
2001  }
2002
2003  // A function that has already been declared has been redeclared or defined
2004  // with a different type- show appropriate diagnostic
2005  if (unsigned BuiltinID = Old->getBuiltinID()) {
2006    // The user has declared a builtin function with an incompatible
2007    // signature.
2008    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2009      // The function the user is redeclaring is a library-defined
2010      // function like 'malloc' or 'printf'. Warn about the
2011      // redeclaration, then pretend that we don't know about this
2012      // library built-in.
2013      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2014      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2015        << Old << Old->getType();
2016      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2017      Old->setInvalidDecl();
2018      return false;
2019    }
2020
2021    PrevDiag = diag::note_previous_builtin_declaration;
2022  }
2023
2024  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2025  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2026  return true;
2027}
2028
2029/// \brief Completes the merge of two function declarations that are
2030/// known to be compatible.
2031///
2032/// This routine handles the merging of attributes and other
2033/// properties of function declarations form the old declaration to
2034/// the new declaration, once we know that New is in fact a
2035/// redeclaration of Old.
2036///
2037/// \returns false
2038bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2039  // Merge the attributes
2040  mergeDeclAttributes(New, Old, Context);
2041
2042  // Merge the storage class.
2043  if (Old->getStorageClass() != SC_Extern &&
2044      Old->getStorageClass() != SC_None)
2045    New->setStorageClass(Old->getStorageClass());
2046
2047  // Merge "pure" flag.
2048  if (Old->isPure())
2049    New->setPure();
2050
2051  // __module_private__ is propagated to later declarations.
2052  if (Old->isModulePrivate())
2053    New->setModulePrivate();
2054  else if (New->isModulePrivate())
2055    diagnoseModulePrivateRedeclaration(New, Old);
2056
2057  // Merge attributes from the parameters.  These can mismatch with K&R
2058  // declarations.
2059  if (New->getNumParams() == Old->getNumParams())
2060    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2061      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2062                               Context);
2063
2064  if (getLangOptions().CPlusPlus)
2065    return MergeCXXFunctionDecl(New, Old);
2066
2067  return false;
2068}
2069
2070
2071void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2072                                const ObjCMethodDecl *oldMethod) {
2073  // We don't want to merge unavailable and deprecated attributes
2074  // except from interface to implementation.
2075  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2076
2077  // Merge the attributes.
2078  mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation);
2079
2080  // Merge attributes from the parameters.
2081  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2082  for (ObjCMethodDecl::param_iterator
2083         ni = newMethod->param_begin(), ne = newMethod->param_end();
2084       ni != ne; ++ni, ++oi)
2085    mergeParamDeclAttributes(*ni, *oi, Context);
2086
2087  CheckObjCMethodOverride(newMethod, oldMethod, true);
2088}
2089
2090/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2091/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2092/// emitting diagnostics as appropriate.
2093///
2094/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2095/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2096/// check them before the initializer is attached.
2097///
2098void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2099  if (New->isInvalidDecl() || Old->isInvalidDecl())
2100    return;
2101
2102  QualType MergedT;
2103  if (getLangOptions().CPlusPlus) {
2104    AutoType *AT = New->getType()->getContainedAutoType();
2105    if (AT && !AT->isDeduced()) {
2106      // We don't know what the new type is until the initializer is attached.
2107      return;
2108    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2109      // These could still be something that needs exception specs checked.
2110      return MergeVarDeclExceptionSpecs(New, Old);
2111    }
2112    // C++ [basic.link]p10:
2113    //   [...] the types specified by all declarations referring to a given
2114    //   object or function shall be identical, except that declarations for an
2115    //   array object can specify array types that differ by the presence or
2116    //   absence of a major array bound (8.3.4).
2117    else if (Old->getType()->isIncompleteArrayType() &&
2118             New->getType()->isArrayType()) {
2119      CanQual<ArrayType> OldArray
2120        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2121      CanQual<ArrayType> NewArray
2122        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2123      if (OldArray->getElementType() == NewArray->getElementType())
2124        MergedT = New->getType();
2125    } else if (Old->getType()->isArrayType() &&
2126             New->getType()->isIncompleteArrayType()) {
2127      CanQual<ArrayType> OldArray
2128        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2129      CanQual<ArrayType> NewArray
2130        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2131      if (OldArray->getElementType() == NewArray->getElementType())
2132        MergedT = Old->getType();
2133    } else if (New->getType()->isObjCObjectPointerType()
2134               && Old->getType()->isObjCObjectPointerType()) {
2135        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2136                                                        Old->getType());
2137    }
2138  } else {
2139    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2140  }
2141  if (MergedT.isNull()) {
2142    Diag(New->getLocation(), diag::err_redefinition_different_type)
2143      << New->getDeclName();
2144    Diag(Old->getLocation(), diag::note_previous_definition);
2145    return New->setInvalidDecl();
2146  }
2147  New->setType(MergedT);
2148}
2149
2150/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2151/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2152/// situation, merging decls or emitting diagnostics as appropriate.
2153///
2154/// Tentative definition rules (C99 6.9.2p2) are checked by
2155/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2156/// definitions here, since the initializer hasn't been attached.
2157///
2158void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2159  // If the new decl is already invalid, don't do any other checking.
2160  if (New->isInvalidDecl())
2161    return;
2162
2163  // Verify the old decl was also a variable.
2164  VarDecl *Old = 0;
2165  if (!Previous.isSingleResult() ||
2166      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2167    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2168      << New->getDeclName();
2169    Diag(Previous.getRepresentativeDecl()->getLocation(),
2170         diag::note_previous_definition);
2171    return New->setInvalidDecl();
2172  }
2173
2174  // C++ [class.mem]p1:
2175  //   A member shall not be declared twice in the member-specification [...]
2176  //
2177  // Here, we need only consider static data members.
2178  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2179    Diag(New->getLocation(), diag::err_duplicate_member)
2180      << New->getIdentifier();
2181    Diag(Old->getLocation(), diag::note_previous_declaration);
2182    New->setInvalidDecl();
2183  }
2184
2185  mergeDeclAttributes(New, Old, Context);
2186  // Warn if an already-declared variable is made a weak_import in a subsequent
2187  // declaration
2188  if (New->getAttr<WeakImportAttr>() &&
2189      Old->getStorageClass() == SC_None &&
2190      !Old->getAttr<WeakImportAttr>()) {
2191    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2192    Diag(Old->getLocation(), diag::note_previous_definition);
2193    // Remove weak_import attribute on new declaration.
2194    New->dropAttr<WeakImportAttr>();
2195  }
2196
2197  // Merge the types.
2198  MergeVarDeclTypes(New, Old);
2199  if (New->isInvalidDecl())
2200    return;
2201
2202  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2203  if (New->getStorageClass() == SC_Static &&
2204      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2205    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2206    Diag(Old->getLocation(), diag::note_previous_definition);
2207    return New->setInvalidDecl();
2208  }
2209  // C99 6.2.2p4:
2210  //   For an identifier declared with the storage-class specifier
2211  //   extern in a scope in which a prior declaration of that
2212  //   identifier is visible,23) if the prior declaration specifies
2213  //   internal or external linkage, the linkage of the identifier at
2214  //   the later declaration is the same as the linkage specified at
2215  //   the prior declaration. If no prior declaration is visible, or
2216  //   if the prior declaration specifies no linkage, then the
2217  //   identifier has external linkage.
2218  if (New->hasExternalStorage() && Old->hasLinkage())
2219    /* Okay */;
2220  else if (New->getStorageClass() != SC_Static &&
2221           Old->getStorageClass() == SC_Static) {
2222    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2223    Diag(Old->getLocation(), diag::note_previous_definition);
2224    return New->setInvalidDecl();
2225  }
2226
2227  // Check if extern is followed by non-extern and vice-versa.
2228  if (New->hasExternalStorage() &&
2229      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2230    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2231    Diag(Old->getLocation(), diag::note_previous_definition);
2232    return New->setInvalidDecl();
2233  }
2234  if (Old->hasExternalStorage() &&
2235      !New->hasLinkage() && New->isLocalVarDecl()) {
2236    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2237    Diag(Old->getLocation(), diag::note_previous_definition);
2238    return New->setInvalidDecl();
2239  }
2240
2241  // __module_private__ is propagated to later declarations.
2242  if (Old->isModulePrivate())
2243    New->setModulePrivate();
2244  else if (New->isModulePrivate())
2245    diagnoseModulePrivateRedeclaration(New, Old);
2246
2247  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2248
2249  // FIXME: The test for external storage here seems wrong? We still
2250  // need to check for mismatches.
2251  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2252      // Don't complain about out-of-line definitions of static members.
2253      !(Old->getLexicalDeclContext()->isRecord() &&
2254        !New->getLexicalDeclContext()->isRecord())) {
2255    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2256    Diag(Old->getLocation(), diag::note_previous_definition);
2257    return New->setInvalidDecl();
2258  }
2259
2260  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2261    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2262    Diag(Old->getLocation(), diag::note_previous_definition);
2263  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2264    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2265    Diag(Old->getLocation(), diag::note_previous_definition);
2266  }
2267
2268  // C++ doesn't have tentative definitions, so go right ahead and check here.
2269  const VarDecl *Def;
2270  if (getLangOptions().CPlusPlus &&
2271      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2272      (Def = Old->getDefinition())) {
2273    Diag(New->getLocation(), diag::err_redefinition)
2274      << New->getDeclName();
2275    Diag(Def->getLocation(), diag::note_previous_definition);
2276    New->setInvalidDecl();
2277    return;
2278  }
2279  // c99 6.2.2 P4.
2280  // For an identifier declared with the storage-class specifier extern in a
2281  // scope in which a prior declaration of that identifier is visible, if
2282  // the prior declaration specifies internal or external linkage, the linkage
2283  // of the identifier at the later declaration is the same as the linkage
2284  // specified at the prior declaration.
2285  // FIXME. revisit this code.
2286  if (New->hasExternalStorage() &&
2287      Old->getLinkage() == InternalLinkage &&
2288      New->getDeclContext() == Old->getDeclContext())
2289    New->setStorageClass(Old->getStorageClass());
2290
2291  // Keep a chain of previous declarations.
2292  New->setPreviousDeclaration(Old);
2293
2294  // Inherit access appropriately.
2295  New->setAccess(Old->getAccess());
2296}
2297
2298/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2299/// no declarator (e.g. "struct foo;") is parsed.
2300Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2301                                       DeclSpec &DS) {
2302  return ParsedFreeStandingDeclSpec(S, AS, DS,
2303                                    MultiTemplateParamsArg(*this, 0, 0));
2304}
2305
2306/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2307/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2308/// parameters to cope with template friend declarations.
2309Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2310                                       DeclSpec &DS,
2311                                       MultiTemplateParamsArg TemplateParams) {
2312  Decl *TagD = 0;
2313  TagDecl *Tag = 0;
2314  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2315      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2316      DS.getTypeSpecType() == DeclSpec::TST_union ||
2317      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2318    TagD = DS.getRepAsDecl();
2319
2320    if (!TagD) // We probably had an error
2321      return 0;
2322
2323    // Note that the above type specs guarantee that the
2324    // type rep is a Decl, whereas in many of the others
2325    // it's a Type.
2326    if (isa<TagDecl>(TagD))
2327      Tag = cast<TagDecl>(TagD);
2328    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2329      Tag = CTD->getTemplatedDecl();
2330  }
2331
2332  if (Tag)
2333    Tag->setFreeStanding();
2334
2335  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2336    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2337    // or incomplete types shall not be restrict-qualified."
2338    if (TypeQuals & DeclSpec::TQ_restrict)
2339      Diag(DS.getRestrictSpecLoc(),
2340           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2341           << DS.getSourceRange();
2342  }
2343
2344  if (DS.isConstexprSpecified()) {
2345    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2346    // and definitions of functions and variables.
2347    if (Tag)
2348      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2349        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2350            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2351            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2352    else
2353      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2354    // Don't emit warnings after this error.
2355    return TagD;
2356  }
2357
2358  if (DS.isFriendSpecified()) {
2359    // If we're dealing with a decl but not a TagDecl, assume that
2360    // whatever routines created it handled the friendship aspect.
2361    if (TagD && !Tag)
2362      return 0;
2363    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2364  }
2365
2366  // Track whether we warned about the fact that there aren't any
2367  // declarators.
2368  bool emittedWarning = false;
2369
2370  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2371    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2372
2373    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2374        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2375      if (getLangOptions().CPlusPlus ||
2376          Record->getDeclContext()->isRecord())
2377        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2378
2379      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2380        << DS.getSourceRange();
2381      emittedWarning = true;
2382    }
2383  }
2384
2385  // Check for Microsoft C extension: anonymous struct.
2386  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2387      CurContext->isRecord() &&
2388      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2389    // Handle 2 kinds of anonymous struct:
2390    //   struct STRUCT;
2391    // and
2392    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2393    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2394    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2395        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2396         DS.getRepAsType().get()->isStructureType())) {
2397      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2398        << DS.getSourceRange();
2399      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2400    }
2401  }
2402
2403  if (getLangOptions().CPlusPlus &&
2404      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2405    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2406      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2407          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2408        Diag(Enum->getLocation(), diag::ext_no_declarators)
2409          << DS.getSourceRange();
2410        emittedWarning = true;
2411      }
2412
2413  // Skip all the checks below if we have a type error.
2414  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2415
2416  if (!DS.isMissingDeclaratorOk()) {
2417    // Warn about typedefs of enums without names, since this is an
2418    // extension in both Microsoft and GNU.
2419    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2420        Tag && isa<EnumDecl>(Tag)) {
2421      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2422        << DS.getSourceRange();
2423      return Tag;
2424    }
2425
2426    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2427      << DS.getSourceRange();
2428    emittedWarning = true;
2429  }
2430
2431  // We're going to complain about a bunch of spurious specifiers;
2432  // only do this if we're declaring a tag, because otherwise we
2433  // should be getting diag::ext_no_declarators.
2434  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2435    return TagD;
2436
2437  // Note that a linkage-specification sets a storage class, but
2438  // 'extern "C" struct foo;' is actually valid and not theoretically
2439  // useless.
2440  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2441    if (!DS.isExternInLinkageSpec())
2442      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2443        << DeclSpec::getSpecifierName(scs);
2444
2445  if (DS.isThreadSpecified())
2446    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2447  if (DS.getTypeQualifiers()) {
2448    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2449      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2450    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2451      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2452    // Restrict is covered above.
2453  }
2454  if (DS.isInlineSpecified())
2455    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2456  if (DS.isVirtualSpecified())
2457    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2458  if (DS.isExplicitSpecified())
2459    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2460
2461  if (DS.isModulePrivateSpecified() &&
2462      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2463    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2464      << Tag->getTagKind()
2465      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2466
2467  // FIXME: Warn on useless attributes
2468
2469  return TagD;
2470}
2471
2472/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2473/// builds a statement for it and returns it so it is evaluated.
2474StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2475  StmtResult R;
2476  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2477    Expr *Exp = DS.getRepAsExpr();
2478    QualType Ty = Exp->getType();
2479    if (Ty->isPointerType()) {
2480      do
2481        Ty = Ty->getAs<PointerType>()->getPointeeType();
2482      while (Ty->isPointerType());
2483    }
2484    if (Ty->isVariableArrayType()) {
2485      R = ActOnExprStmt(MakeFullExpr(Exp));
2486    }
2487  }
2488  return R;
2489}
2490
2491/// We are trying to inject an anonymous member into the given scope;
2492/// check if there's an existing declaration that can't be overloaded.
2493///
2494/// \return true if this is a forbidden redeclaration
2495static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2496                                         Scope *S,
2497                                         DeclContext *Owner,
2498                                         DeclarationName Name,
2499                                         SourceLocation NameLoc,
2500                                         unsigned diagnostic) {
2501  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2502                 Sema::ForRedeclaration);
2503  if (!SemaRef.LookupName(R, S)) return false;
2504
2505  if (R.getAsSingle<TagDecl>())
2506    return false;
2507
2508  // Pick a representative declaration.
2509  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2510  assert(PrevDecl && "Expected a non-null Decl");
2511
2512  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2513    return false;
2514
2515  SemaRef.Diag(NameLoc, diagnostic) << Name;
2516  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2517
2518  return true;
2519}
2520
2521/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2522/// anonymous struct or union AnonRecord into the owning context Owner
2523/// and scope S. This routine will be invoked just after we realize
2524/// that an unnamed union or struct is actually an anonymous union or
2525/// struct, e.g.,
2526///
2527/// @code
2528/// union {
2529///   int i;
2530///   float f;
2531/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2532///    // f into the surrounding scope.x
2533/// @endcode
2534///
2535/// This routine is recursive, injecting the names of nested anonymous
2536/// structs/unions into the owning context and scope as well.
2537static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2538                                                DeclContext *Owner,
2539                                                RecordDecl *AnonRecord,
2540                                                AccessSpecifier AS,
2541                              SmallVector<NamedDecl*, 2> &Chaining,
2542                                                      bool MSAnonStruct) {
2543  unsigned diagKind
2544    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2545                            : diag::err_anonymous_struct_member_redecl;
2546
2547  bool Invalid = false;
2548
2549  // Look every FieldDecl and IndirectFieldDecl with a name.
2550  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2551                               DEnd = AnonRecord->decls_end();
2552       D != DEnd; ++D) {
2553    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2554        cast<NamedDecl>(*D)->getDeclName()) {
2555      ValueDecl *VD = cast<ValueDecl>(*D);
2556      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2557                                       VD->getLocation(), diagKind)) {
2558        // C++ [class.union]p2:
2559        //   The names of the members of an anonymous union shall be
2560        //   distinct from the names of any other entity in the
2561        //   scope in which the anonymous union is declared.
2562        Invalid = true;
2563      } else {
2564        // C++ [class.union]p2:
2565        //   For the purpose of name lookup, after the anonymous union
2566        //   definition, the members of the anonymous union are
2567        //   considered to have been defined in the scope in which the
2568        //   anonymous union is declared.
2569        unsigned OldChainingSize = Chaining.size();
2570        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2571          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2572               PE = IF->chain_end(); PI != PE; ++PI)
2573            Chaining.push_back(*PI);
2574        else
2575          Chaining.push_back(VD);
2576
2577        assert(Chaining.size() >= 2);
2578        NamedDecl **NamedChain =
2579          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2580        for (unsigned i = 0; i < Chaining.size(); i++)
2581          NamedChain[i] = Chaining[i];
2582
2583        IndirectFieldDecl* IndirectField =
2584          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2585                                    VD->getIdentifier(), VD->getType(),
2586                                    NamedChain, Chaining.size());
2587
2588        IndirectField->setAccess(AS);
2589        IndirectField->setImplicit();
2590        SemaRef.PushOnScopeChains(IndirectField, S);
2591
2592        // That includes picking up the appropriate access specifier.
2593        if (AS != AS_none) IndirectField->setAccess(AS);
2594
2595        Chaining.resize(OldChainingSize);
2596      }
2597    }
2598  }
2599
2600  return Invalid;
2601}
2602
2603/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2604/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2605/// illegal input values are mapped to SC_None.
2606static StorageClass
2607StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2608  switch (StorageClassSpec) {
2609  case DeclSpec::SCS_unspecified:    return SC_None;
2610  case DeclSpec::SCS_extern:         return SC_Extern;
2611  case DeclSpec::SCS_static:         return SC_Static;
2612  case DeclSpec::SCS_auto:           return SC_Auto;
2613  case DeclSpec::SCS_register:       return SC_Register;
2614  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2615    // Illegal SCSs map to None: error reporting is up to the caller.
2616  case DeclSpec::SCS_mutable:        // Fall through.
2617  case DeclSpec::SCS_typedef:        return SC_None;
2618  }
2619  llvm_unreachable("unknown storage class specifier");
2620}
2621
2622/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2623/// a StorageClass. Any error reporting is up to the caller:
2624/// illegal input values are mapped to SC_None.
2625static StorageClass
2626StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2627  switch (StorageClassSpec) {
2628  case DeclSpec::SCS_unspecified:    return SC_None;
2629  case DeclSpec::SCS_extern:         return SC_Extern;
2630  case DeclSpec::SCS_static:         return SC_Static;
2631  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2632    // Illegal SCSs map to None: error reporting is up to the caller.
2633  case DeclSpec::SCS_auto:           // Fall through.
2634  case DeclSpec::SCS_mutable:        // Fall through.
2635  case DeclSpec::SCS_register:       // Fall through.
2636  case DeclSpec::SCS_typedef:        return SC_None;
2637  }
2638  llvm_unreachable("unknown storage class specifier");
2639}
2640
2641/// BuildAnonymousStructOrUnion - Handle the declaration of an
2642/// anonymous structure or union. Anonymous unions are a C++ feature
2643/// (C++ [class.union]) and a GNU C extension; anonymous structures
2644/// are a GNU C and GNU C++ extension.
2645Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2646                                             AccessSpecifier AS,
2647                                             RecordDecl *Record) {
2648  DeclContext *Owner = Record->getDeclContext();
2649
2650  // Diagnose whether this anonymous struct/union is an extension.
2651  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2652    Diag(Record->getLocation(), diag::ext_anonymous_union);
2653  else if (!Record->isUnion())
2654    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2655
2656  // C and C++ require different kinds of checks for anonymous
2657  // structs/unions.
2658  bool Invalid = false;
2659  if (getLangOptions().CPlusPlus) {
2660    const char* PrevSpec = 0;
2661    unsigned DiagID;
2662    if (Record->isUnion()) {
2663      // C++ [class.union]p6:
2664      //   Anonymous unions declared in a named namespace or in the
2665      //   global namespace shall be declared static.
2666      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2667          (isa<TranslationUnitDecl>(Owner) ||
2668           (isa<NamespaceDecl>(Owner) &&
2669            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2670        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2671          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2672
2673        // Recover by adding 'static'.
2674        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2675                               PrevSpec, DiagID);
2676      }
2677      // C++ [class.union]p6:
2678      //   A storage class is not allowed in a declaration of an
2679      //   anonymous union in a class scope.
2680      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2681               isa<RecordDecl>(Owner)) {
2682        Diag(DS.getStorageClassSpecLoc(),
2683             diag::err_anonymous_union_with_storage_spec)
2684          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2685
2686        // Recover by removing the storage specifier.
2687        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2688                               SourceLocation(),
2689                               PrevSpec, DiagID);
2690      }
2691    }
2692
2693    // Ignore const/volatile/restrict qualifiers.
2694    if (DS.getTypeQualifiers()) {
2695      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2696        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2697          << Record->isUnion() << 0
2698          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2699      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2700        Diag(DS.getVolatileSpecLoc(),
2701             diag::ext_anonymous_struct_union_qualified)
2702          << Record->isUnion() << 1
2703          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2704      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2705        Diag(DS.getRestrictSpecLoc(),
2706             diag::ext_anonymous_struct_union_qualified)
2707          << Record->isUnion() << 2
2708          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2709
2710      DS.ClearTypeQualifiers();
2711    }
2712
2713    // C++ [class.union]p2:
2714    //   The member-specification of an anonymous union shall only
2715    //   define non-static data members. [Note: nested types and
2716    //   functions cannot be declared within an anonymous union. ]
2717    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2718                                 MemEnd = Record->decls_end();
2719         Mem != MemEnd; ++Mem) {
2720      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2721        // C++ [class.union]p3:
2722        //   An anonymous union shall not have private or protected
2723        //   members (clause 11).
2724        assert(FD->getAccess() != AS_none);
2725        if (FD->getAccess() != AS_public) {
2726          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2727            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2728          Invalid = true;
2729        }
2730
2731        // C++ [class.union]p1
2732        //   An object of a class with a non-trivial constructor, a non-trivial
2733        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2734        //   assignment operator cannot be a member of a union, nor can an
2735        //   array of such objects.
2736        if (CheckNontrivialField(FD))
2737          Invalid = true;
2738      } else if ((*Mem)->isImplicit()) {
2739        // Any implicit members are fine.
2740      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2741        // This is a type that showed up in an
2742        // elaborated-type-specifier inside the anonymous struct or
2743        // union, but which actually declares a type outside of the
2744        // anonymous struct or union. It's okay.
2745      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2746        if (!MemRecord->isAnonymousStructOrUnion() &&
2747            MemRecord->getDeclName()) {
2748          // Visual C++ allows type definition in anonymous struct or union.
2749          if (getLangOptions().MicrosoftExt)
2750            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2751              << (int)Record->isUnion();
2752          else {
2753            // This is a nested type declaration.
2754            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2755              << (int)Record->isUnion();
2756            Invalid = true;
2757          }
2758        }
2759      } else if (isa<AccessSpecDecl>(*Mem)) {
2760        // Any access specifier is fine.
2761      } else {
2762        // We have something that isn't a non-static data
2763        // member. Complain about it.
2764        unsigned DK = diag::err_anonymous_record_bad_member;
2765        if (isa<TypeDecl>(*Mem))
2766          DK = diag::err_anonymous_record_with_type;
2767        else if (isa<FunctionDecl>(*Mem))
2768          DK = diag::err_anonymous_record_with_function;
2769        else if (isa<VarDecl>(*Mem))
2770          DK = diag::err_anonymous_record_with_static;
2771
2772        // Visual C++ allows type definition in anonymous struct or union.
2773        if (getLangOptions().MicrosoftExt &&
2774            DK == diag::err_anonymous_record_with_type)
2775          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2776            << (int)Record->isUnion();
2777        else {
2778          Diag((*Mem)->getLocation(), DK)
2779              << (int)Record->isUnion();
2780          Invalid = true;
2781        }
2782      }
2783    }
2784  }
2785
2786  if (!Record->isUnion() && !Owner->isRecord()) {
2787    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2788      << (int)getLangOptions().CPlusPlus;
2789    Invalid = true;
2790  }
2791
2792  // Mock up a declarator.
2793  Declarator Dc(DS, Declarator::MemberContext);
2794  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2795  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2796
2797  // Create a declaration for this anonymous struct/union.
2798  NamedDecl *Anon = 0;
2799  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2800    Anon = FieldDecl::Create(Context, OwningClass,
2801                             DS.getSourceRange().getBegin(),
2802                             Record->getLocation(),
2803                             /*IdentifierInfo=*/0,
2804                             Context.getTypeDeclType(Record),
2805                             TInfo,
2806                             /*BitWidth=*/0, /*Mutable=*/false,
2807                             /*HasInit=*/false);
2808    Anon->setAccess(AS);
2809    if (getLangOptions().CPlusPlus)
2810      FieldCollector->Add(cast<FieldDecl>(Anon));
2811  } else {
2812    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2813    assert(SCSpec != DeclSpec::SCS_typedef &&
2814           "Parser allowed 'typedef' as storage class VarDecl.");
2815    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2816    if (SCSpec == DeclSpec::SCS_mutable) {
2817      // mutable can only appear on non-static class members, so it's always
2818      // an error here
2819      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2820      Invalid = true;
2821      SC = SC_None;
2822    }
2823    SCSpec = DS.getStorageClassSpecAsWritten();
2824    VarDecl::StorageClass SCAsWritten
2825      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2826
2827    Anon = VarDecl::Create(Context, Owner,
2828                           DS.getSourceRange().getBegin(),
2829                           Record->getLocation(), /*IdentifierInfo=*/0,
2830                           Context.getTypeDeclType(Record),
2831                           TInfo, SC, SCAsWritten);
2832
2833    // Default-initialize the implicit variable. This initialization will be
2834    // trivial in almost all cases, except if a union member has an in-class
2835    // initializer:
2836    //   union { int n = 0; };
2837    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2838  }
2839  Anon->setImplicit();
2840
2841  // Add the anonymous struct/union object to the current
2842  // context. We'll be referencing this object when we refer to one of
2843  // its members.
2844  Owner->addDecl(Anon);
2845
2846  // Inject the members of the anonymous struct/union into the owning
2847  // context and into the identifier resolver chain for name lookup
2848  // purposes.
2849  SmallVector<NamedDecl*, 2> Chain;
2850  Chain.push_back(Anon);
2851
2852  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2853                                          Chain, false))
2854    Invalid = true;
2855
2856  // Mark this as an anonymous struct/union type. Note that we do not
2857  // do this until after we have already checked and injected the
2858  // members of this anonymous struct/union type, because otherwise
2859  // the members could be injected twice: once by DeclContext when it
2860  // builds its lookup table, and once by
2861  // InjectAnonymousStructOrUnionMembers.
2862  Record->setAnonymousStructOrUnion(true);
2863
2864  if (Invalid)
2865    Anon->setInvalidDecl();
2866
2867  return Anon;
2868}
2869
2870/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2871/// Microsoft C anonymous structure.
2872/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2873/// Example:
2874///
2875/// struct A { int a; };
2876/// struct B { struct A; int b; };
2877///
2878/// void foo() {
2879///   B var;
2880///   var.a = 3;
2881/// }
2882///
2883Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2884                                           RecordDecl *Record) {
2885
2886  // If there is no Record, get the record via the typedef.
2887  if (!Record)
2888    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2889
2890  // Mock up a declarator.
2891  Declarator Dc(DS, Declarator::TypeNameContext);
2892  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2893  assert(TInfo && "couldn't build declarator info for anonymous struct");
2894
2895  // Create a declaration for this anonymous struct.
2896  NamedDecl* Anon = FieldDecl::Create(Context,
2897                             cast<RecordDecl>(CurContext),
2898                             DS.getSourceRange().getBegin(),
2899                             DS.getSourceRange().getBegin(),
2900                             /*IdentifierInfo=*/0,
2901                             Context.getTypeDeclType(Record),
2902                             TInfo,
2903                             /*BitWidth=*/0, /*Mutable=*/false,
2904                             /*HasInit=*/false);
2905  Anon->setImplicit();
2906
2907  // Add the anonymous struct object to the current context.
2908  CurContext->addDecl(Anon);
2909
2910  // Inject the members of the anonymous struct into the current
2911  // context and into the identifier resolver chain for name lookup
2912  // purposes.
2913  SmallVector<NamedDecl*, 2> Chain;
2914  Chain.push_back(Anon);
2915
2916  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2917                                          Record->getDefinition(),
2918                                          AS_none, Chain, true))
2919    Anon->setInvalidDecl();
2920
2921  return Anon;
2922}
2923
2924/// GetNameForDeclarator - Determine the full declaration name for the
2925/// given Declarator.
2926DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2927  return GetNameFromUnqualifiedId(D.getName());
2928}
2929
2930/// \brief Retrieves the declaration name from a parsed unqualified-id.
2931DeclarationNameInfo
2932Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2933  DeclarationNameInfo NameInfo;
2934  NameInfo.setLoc(Name.StartLocation);
2935
2936  switch (Name.getKind()) {
2937
2938  case UnqualifiedId::IK_ImplicitSelfParam:
2939  case UnqualifiedId::IK_Identifier:
2940    NameInfo.setName(Name.Identifier);
2941    NameInfo.setLoc(Name.StartLocation);
2942    return NameInfo;
2943
2944  case UnqualifiedId::IK_OperatorFunctionId:
2945    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2946                                           Name.OperatorFunctionId.Operator));
2947    NameInfo.setLoc(Name.StartLocation);
2948    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2949      = Name.OperatorFunctionId.SymbolLocations[0];
2950    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2951      = Name.EndLocation.getRawEncoding();
2952    return NameInfo;
2953
2954  case UnqualifiedId::IK_LiteralOperatorId:
2955    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2956                                                           Name.Identifier));
2957    NameInfo.setLoc(Name.StartLocation);
2958    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2959    return NameInfo;
2960
2961  case UnqualifiedId::IK_ConversionFunctionId: {
2962    TypeSourceInfo *TInfo;
2963    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2964    if (Ty.isNull())
2965      return DeclarationNameInfo();
2966    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2967                                               Context.getCanonicalType(Ty)));
2968    NameInfo.setLoc(Name.StartLocation);
2969    NameInfo.setNamedTypeInfo(TInfo);
2970    return NameInfo;
2971  }
2972
2973  case UnqualifiedId::IK_ConstructorName: {
2974    TypeSourceInfo *TInfo;
2975    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2976    if (Ty.isNull())
2977      return DeclarationNameInfo();
2978    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2979                                              Context.getCanonicalType(Ty)));
2980    NameInfo.setLoc(Name.StartLocation);
2981    NameInfo.setNamedTypeInfo(TInfo);
2982    return NameInfo;
2983  }
2984
2985  case UnqualifiedId::IK_ConstructorTemplateId: {
2986    // In well-formed code, we can only have a constructor
2987    // template-id that refers to the current context, so go there
2988    // to find the actual type being constructed.
2989    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2990    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2991      return DeclarationNameInfo();
2992
2993    // Determine the type of the class being constructed.
2994    QualType CurClassType = Context.getTypeDeclType(CurClass);
2995
2996    // FIXME: Check two things: that the template-id names the same type as
2997    // CurClassType, and that the template-id does not occur when the name
2998    // was qualified.
2999
3000    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3001                                    Context.getCanonicalType(CurClassType)));
3002    NameInfo.setLoc(Name.StartLocation);
3003    // FIXME: should we retrieve TypeSourceInfo?
3004    NameInfo.setNamedTypeInfo(0);
3005    return NameInfo;
3006  }
3007
3008  case UnqualifiedId::IK_DestructorName: {
3009    TypeSourceInfo *TInfo;
3010    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3011    if (Ty.isNull())
3012      return DeclarationNameInfo();
3013    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3014                                              Context.getCanonicalType(Ty)));
3015    NameInfo.setLoc(Name.StartLocation);
3016    NameInfo.setNamedTypeInfo(TInfo);
3017    return NameInfo;
3018  }
3019
3020  case UnqualifiedId::IK_TemplateId: {
3021    TemplateName TName = Name.TemplateId->Template.get();
3022    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3023    return Context.getNameForTemplate(TName, TNameLoc);
3024  }
3025
3026  } // switch (Name.getKind())
3027
3028  llvm_unreachable("Unknown name kind");
3029}
3030
3031static QualType getCoreType(QualType Ty) {
3032  do {
3033    if (Ty->isPointerType() || Ty->isReferenceType())
3034      Ty = Ty->getPointeeType();
3035    else if (Ty->isArrayType())
3036      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3037    else
3038      return Ty.withoutLocalFastQualifiers();
3039  } while (true);
3040}
3041
3042/// hasSimilarParameters - Determine whether the C++ functions Declaration
3043/// and Definition have "nearly" matching parameters. This heuristic is
3044/// used to improve diagnostics in the case where an out-of-line function
3045/// definition doesn't match any declaration within the class or namespace.
3046/// Also sets Params to the list of indices to the parameters that differ
3047/// between the declaration and the definition. If hasSimilarParameters
3048/// returns true and Params is empty, then all of the parameters match.
3049static bool hasSimilarParameters(ASTContext &Context,
3050                                     FunctionDecl *Declaration,
3051                                     FunctionDecl *Definition,
3052                                     llvm::SmallVectorImpl<unsigned> &Params) {
3053  Params.clear();
3054  if (Declaration->param_size() != Definition->param_size())
3055    return false;
3056  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3057    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3058    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3059
3060    // The parameter types are identical
3061    if (Context.hasSameType(DefParamTy, DeclParamTy))
3062      continue;
3063
3064    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3065    QualType DefParamBaseTy = getCoreType(DefParamTy);
3066    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3067    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3068
3069    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3070        (DeclTyName && DeclTyName == DefTyName))
3071      Params.push_back(Idx);
3072    else  // The two parameters aren't even close
3073      return false;
3074  }
3075
3076  return true;
3077}
3078
3079/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3080/// declarator needs to be rebuilt in the current instantiation.
3081/// Any bits of declarator which appear before the name are valid for
3082/// consideration here.  That's specifically the type in the decl spec
3083/// and the base type in any member-pointer chunks.
3084static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3085                                                    DeclarationName Name) {
3086  // The types we specifically need to rebuild are:
3087  //   - typenames, typeofs, and decltypes
3088  //   - types which will become injected class names
3089  // Of course, we also need to rebuild any type referencing such a
3090  // type.  It's safest to just say "dependent", but we call out a
3091  // few cases here.
3092
3093  DeclSpec &DS = D.getMutableDeclSpec();
3094  switch (DS.getTypeSpecType()) {
3095  case DeclSpec::TST_typename:
3096  case DeclSpec::TST_typeofType:
3097  case DeclSpec::TST_decltype:
3098  case DeclSpec::TST_underlyingType:
3099  case DeclSpec::TST_atomic: {
3100    // Grab the type from the parser.
3101    TypeSourceInfo *TSI = 0;
3102    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3103    if (T.isNull() || !T->isDependentType()) break;
3104
3105    // Make sure there's a type source info.  This isn't really much
3106    // of a waste; most dependent types should have type source info
3107    // attached already.
3108    if (!TSI)
3109      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3110
3111    // Rebuild the type in the current instantiation.
3112    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3113    if (!TSI) return true;
3114
3115    // Store the new type back in the decl spec.
3116    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3117    DS.UpdateTypeRep(LocType);
3118    break;
3119  }
3120
3121  case DeclSpec::TST_typeofExpr: {
3122    Expr *E = DS.getRepAsExpr();
3123    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3124    if (Result.isInvalid()) return true;
3125    DS.UpdateExprRep(Result.get());
3126    break;
3127  }
3128
3129  default:
3130    // Nothing to do for these decl specs.
3131    break;
3132  }
3133
3134  // It doesn't matter what order we do this in.
3135  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3136    DeclaratorChunk &Chunk = D.getTypeObject(I);
3137
3138    // The only type information in the declarator which can come
3139    // before the declaration name is the base type of a member
3140    // pointer.
3141    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3142      continue;
3143
3144    // Rebuild the scope specifier in-place.
3145    CXXScopeSpec &SS = Chunk.Mem.Scope();
3146    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3147      return true;
3148  }
3149
3150  return false;
3151}
3152
3153Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3154  D.setFunctionDefinitionKind(FDK_Declaration);
3155  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3156}
3157
3158/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3159///   If T is the name of a class, then each of the following shall have a
3160///   name different from T:
3161///     - every static data member of class T;
3162///     - every member function of class T
3163///     - every member of class T that is itself a type;
3164/// \returns true if the declaration name violates these rules.
3165bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3166                                   DeclarationNameInfo NameInfo) {
3167  DeclarationName Name = NameInfo.getName();
3168
3169  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3170    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3171      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3172      return true;
3173    }
3174
3175  return false;
3176}
3177
3178Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3179                             MultiTemplateParamsArg TemplateParamLists) {
3180  // TODO: consider using NameInfo for diagnostic.
3181  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3182  DeclarationName Name = NameInfo.getName();
3183
3184  // All of these full declarators require an identifier.  If it doesn't have
3185  // one, the ParsedFreeStandingDeclSpec action should be used.
3186  if (!Name) {
3187    if (!D.isInvalidType())  // Reject this if we think it is valid.
3188      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3189           diag::err_declarator_need_ident)
3190        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3191    return 0;
3192  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3193    return 0;
3194
3195  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3196  // we find one that is.
3197  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3198         (S->getFlags() & Scope::TemplateParamScope) != 0)
3199    S = S->getParent();
3200
3201  DeclContext *DC = CurContext;
3202  if (D.getCXXScopeSpec().isInvalid())
3203    D.setInvalidType();
3204  else if (D.getCXXScopeSpec().isSet()) {
3205    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3206                                        UPPC_DeclarationQualifier))
3207      return 0;
3208
3209    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3210    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3211    if (!DC) {
3212      // If we could not compute the declaration context, it's because the
3213      // declaration context is dependent but does not refer to a class,
3214      // class template, or class template partial specialization. Complain
3215      // and return early, to avoid the coming semantic disaster.
3216      Diag(D.getIdentifierLoc(),
3217           diag::err_template_qualified_declarator_no_match)
3218        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3219        << D.getCXXScopeSpec().getRange();
3220      return 0;
3221    }
3222    bool IsDependentContext = DC->isDependentContext();
3223
3224    if (!IsDependentContext &&
3225        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3226      return 0;
3227
3228    if (isa<CXXRecordDecl>(DC)) {
3229      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3230        Diag(D.getIdentifierLoc(),
3231             diag::err_member_def_undefined_record)
3232          << Name << DC << D.getCXXScopeSpec().getRange();
3233        D.setInvalidType();
3234      } else if (isa<CXXRecordDecl>(CurContext) &&
3235                 !D.getDeclSpec().isFriendSpecified()) {
3236        // The user provided a superfluous scope specifier inside a class
3237        // definition:
3238        //
3239        // class X {
3240        //   void X::f();
3241        // };
3242        if (CurContext->Equals(DC)) {
3243          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3244            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3245        } else {
3246          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3247            << Name << D.getCXXScopeSpec().getRange();
3248
3249          // C++ constructors and destructors with incorrect scopes can break
3250          // our AST invariants by having the wrong underlying types. If
3251          // that's the case, then drop this declaration entirely.
3252          if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3253               Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3254              !Context.hasSameType(Name.getCXXNameType(),
3255                 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))))
3256            return 0;
3257        }
3258
3259        // Pretend that this qualifier was not here.
3260        D.getCXXScopeSpec().clear();
3261      }
3262    }
3263
3264    // Check whether we need to rebuild the type of the given
3265    // declaration in the current instantiation.
3266    if (EnteringContext && IsDependentContext &&
3267        TemplateParamLists.size() != 0) {
3268      ContextRAII SavedContext(*this, DC);
3269      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3270        D.setInvalidType();
3271    }
3272  }
3273
3274  if (DiagnoseClassNameShadow(DC, NameInfo))
3275    // If this is a typedef, we'll end up spewing multiple diagnostics.
3276    // Just return early; it's safer.
3277    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3278      return 0;
3279
3280  NamedDecl *New;
3281
3282  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3283  QualType R = TInfo->getType();
3284
3285  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3286                                      UPPC_DeclarationType))
3287    D.setInvalidType();
3288
3289  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3290                        ForRedeclaration);
3291
3292  // See if this is a redefinition of a variable in the same scope.
3293  if (!D.getCXXScopeSpec().isSet()) {
3294    bool IsLinkageLookup = false;
3295
3296    // If the declaration we're planning to build will be a function
3297    // or object with linkage, then look for another declaration with
3298    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3299    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3300      /* Do nothing*/;
3301    else if (R->isFunctionType()) {
3302      if (CurContext->isFunctionOrMethod() ||
3303          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3304        IsLinkageLookup = true;
3305    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3306      IsLinkageLookup = true;
3307    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3308             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3309      IsLinkageLookup = true;
3310
3311    if (IsLinkageLookup)
3312      Previous.clear(LookupRedeclarationWithLinkage);
3313
3314    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3315  } else { // Something like "int foo::x;"
3316    LookupQualifiedName(Previous, DC);
3317
3318    // Don't consider using declarations as previous declarations for
3319    // out-of-line members.
3320    RemoveUsingDecls(Previous);
3321
3322    // C++ 7.3.1.2p2:
3323    // Members (including explicit specializations of templates) of a named
3324    // namespace can also be defined outside that namespace by explicit
3325    // qualification of the name being defined, provided that the entity being
3326    // defined was already declared in the namespace and the definition appears
3327    // after the point of declaration in a namespace that encloses the
3328    // declarations namespace.
3329    //
3330    // Note that we only check the context at this point. We don't yet
3331    // have enough information to make sure that PrevDecl is actually
3332    // the declaration we want to match. For example, given:
3333    //
3334    //   class X {
3335    //     void f();
3336    //     void f(float);
3337    //   };
3338    //
3339    //   void X::f(int) { } // ill-formed
3340    //
3341    // In this case, PrevDecl will point to the overload set
3342    // containing the two f's declared in X, but neither of them
3343    // matches.
3344
3345    // First check whether we named the global scope.
3346    if (isa<TranslationUnitDecl>(DC)) {
3347      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3348        << Name << D.getCXXScopeSpec().getRange();
3349    } else {
3350      DeclContext *Cur = CurContext;
3351      while (isa<LinkageSpecDecl>(Cur))
3352        Cur = Cur->getParent();
3353      if (!Cur->Encloses(DC)) {
3354        // The qualifying scope doesn't enclose the original declaration.
3355        // Emit diagnostic based on current scope.
3356        SourceLocation L = D.getIdentifierLoc();
3357        SourceRange R = D.getCXXScopeSpec().getRange();
3358        if (isa<FunctionDecl>(Cur))
3359          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3360        else
3361          Diag(L, diag::err_invalid_declarator_scope)
3362            << Name << cast<NamedDecl>(DC) << R;
3363        D.setInvalidType();
3364      }
3365    }
3366  }
3367
3368  if (Previous.isSingleResult() &&
3369      Previous.getFoundDecl()->isTemplateParameter()) {
3370    // Maybe we will complain about the shadowed template parameter.
3371    if (!D.isInvalidType())
3372      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3373                                      Previous.getFoundDecl());
3374
3375    // Just pretend that we didn't see the previous declaration.
3376    Previous.clear();
3377  }
3378
3379  // In C++, the previous declaration we find might be a tag type
3380  // (class or enum). In this case, the new declaration will hide the
3381  // tag type. Note that this does does not apply if we're declaring a
3382  // typedef (C++ [dcl.typedef]p4).
3383  if (Previous.isSingleTagDecl() &&
3384      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3385    Previous.clear();
3386
3387  bool AddToScope = true;
3388  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3389    if (TemplateParamLists.size()) {
3390      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3391      return 0;
3392    }
3393
3394    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3395  } else if (R->isFunctionType()) {
3396    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3397                                  move(TemplateParamLists),
3398                                  AddToScope);
3399  } else {
3400    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3401                                  move(TemplateParamLists));
3402  }
3403
3404  if (New == 0)
3405    return 0;
3406
3407  // If this has an identifier and is not an invalid redeclaration or
3408  // function template specialization, add it to the scope stack.
3409  if (New->getDeclName() && AddToScope &&
3410       !(D.isRedeclaration() && New->isInvalidDecl()))
3411    PushOnScopeChains(New, S);
3412
3413  return New;
3414}
3415
3416/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3417/// types into constant array types in certain situations which would otherwise
3418/// be errors (for GCC compatibility).
3419static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3420                                                    ASTContext &Context,
3421                                                    bool &SizeIsNegative,
3422                                                    llvm::APSInt &Oversized) {
3423  // This method tries to turn a variable array into a constant
3424  // array even when the size isn't an ICE.  This is necessary
3425  // for compatibility with code that depends on gcc's buggy
3426  // constant expression folding, like struct {char x[(int)(char*)2];}
3427  SizeIsNegative = false;
3428  Oversized = 0;
3429
3430  if (T->isDependentType())
3431    return QualType();
3432
3433  QualifierCollector Qs;
3434  const Type *Ty = Qs.strip(T);
3435
3436  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3437    QualType Pointee = PTy->getPointeeType();
3438    QualType FixedType =
3439        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3440                                            Oversized);
3441    if (FixedType.isNull()) return FixedType;
3442    FixedType = Context.getPointerType(FixedType);
3443    return Qs.apply(Context, FixedType);
3444  }
3445  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3446    QualType Inner = PTy->getInnerType();
3447    QualType FixedType =
3448        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3449                                            Oversized);
3450    if (FixedType.isNull()) return FixedType;
3451    FixedType = Context.getParenType(FixedType);
3452    return Qs.apply(Context, FixedType);
3453  }
3454
3455  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3456  if (!VLATy)
3457    return QualType();
3458  // FIXME: We should probably handle this case
3459  if (VLATy->getElementType()->isVariablyModifiedType())
3460    return QualType();
3461
3462  Expr::EvalResult EvalResult;
3463  if (!VLATy->getSizeExpr() ||
3464      !VLATy->getSizeExpr()->EvaluateAsRValue(EvalResult, Context) ||
3465      !EvalResult.Val.isInt())
3466    return QualType();
3467
3468  // Check whether the array size is negative.
3469  llvm::APSInt &Res = EvalResult.Val.getInt();
3470  if (Res.isSigned() && Res.isNegative()) {
3471    SizeIsNegative = true;
3472    return QualType();
3473  }
3474
3475  // Check whether the array is too large to be addressed.
3476  unsigned ActiveSizeBits
3477    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3478                                              Res);
3479  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3480    Oversized = Res;
3481    return QualType();
3482  }
3483
3484  return Context.getConstantArrayType(VLATy->getElementType(),
3485                                      Res, ArrayType::Normal, 0);
3486}
3487
3488/// \brief Register the given locally-scoped external C declaration so
3489/// that it can be found later for redeclarations
3490void
3491Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3492                                       const LookupResult &Previous,
3493                                       Scope *S) {
3494  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3495         "Decl is not a locally-scoped decl!");
3496  // Note that we have a locally-scoped external with this name.
3497  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3498
3499  if (!Previous.isSingleResult())
3500    return;
3501
3502  NamedDecl *PrevDecl = Previous.getFoundDecl();
3503
3504  // If there was a previous declaration of this variable, it may be
3505  // in our identifier chain. Update the identifier chain with the new
3506  // declaration.
3507  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3508    // The previous declaration was found on the identifer resolver
3509    // chain, so remove it from its scope.
3510
3511    if (S->isDeclScope(PrevDecl)) {
3512      // Special case for redeclarations in the SAME scope.
3513      // Because this declaration is going to be added to the identifier chain
3514      // later, we should temporarily take it OFF the chain.
3515      IdResolver.RemoveDecl(ND);
3516
3517    } else {
3518      // Find the scope for the original declaration.
3519      while (S && !S->isDeclScope(PrevDecl))
3520        S = S->getParent();
3521    }
3522
3523    if (S)
3524      S->RemoveDecl(PrevDecl);
3525  }
3526}
3527
3528llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3529Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3530  if (ExternalSource) {
3531    // Load locally-scoped external decls from the external source.
3532    SmallVector<NamedDecl *, 4> Decls;
3533    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3534    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3535      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3536        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3537      if (Pos == LocallyScopedExternalDecls.end())
3538        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3539    }
3540  }
3541
3542  return LocallyScopedExternalDecls.find(Name);
3543}
3544
3545/// \brief Diagnose function specifiers on a declaration of an identifier that
3546/// does not identify a function.
3547void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3548  // FIXME: We should probably indicate the identifier in question to avoid
3549  // confusion for constructs like "inline int a(), b;"
3550  if (D.getDeclSpec().isInlineSpecified())
3551    Diag(D.getDeclSpec().getInlineSpecLoc(),
3552         diag::err_inline_non_function);
3553
3554  if (D.getDeclSpec().isVirtualSpecified())
3555    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3556         diag::err_virtual_non_function);
3557
3558  if (D.getDeclSpec().isExplicitSpecified())
3559    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3560         diag::err_explicit_non_function);
3561}
3562
3563NamedDecl*
3564Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3565                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3566  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3567  if (D.getCXXScopeSpec().isSet()) {
3568    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3569      << D.getCXXScopeSpec().getRange();
3570    D.setInvalidType();
3571    // Pretend we didn't see the scope specifier.
3572    DC = CurContext;
3573    Previous.clear();
3574  }
3575
3576  if (getLangOptions().CPlusPlus) {
3577    // Check that there are no default arguments (C++ only).
3578    CheckExtraCXXDefaultArguments(D);
3579  }
3580
3581  DiagnoseFunctionSpecifiers(D);
3582
3583  if (D.getDeclSpec().isThreadSpecified())
3584    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3585  if (D.getDeclSpec().isConstexprSpecified())
3586    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3587      << 1;
3588
3589  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3590    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3591      << D.getName().getSourceRange();
3592    return 0;
3593  }
3594
3595  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3596  if (!NewTD) return 0;
3597
3598  // Handle attributes prior to checking for duplicates in MergeVarDecl
3599  ProcessDeclAttributes(S, NewTD, D);
3600
3601  CheckTypedefForVariablyModifiedType(S, NewTD);
3602
3603  bool Redeclaration = D.isRedeclaration();
3604  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3605  D.setRedeclaration(Redeclaration);
3606  return ND;
3607}
3608
3609void
3610Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3611  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3612  // then it shall have block scope.
3613  // Note that variably modified types must be fixed before merging the decl so
3614  // that redeclarations will match.
3615  QualType T = NewTD->getUnderlyingType();
3616  if (T->isVariablyModifiedType()) {
3617    getCurFunction()->setHasBranchProtectedScope();
3618
3619    if (S->getFnParent() == 0) {
3620      bool SizeIsNegative;
3621      llvm::APSInt Oversized;
3622      QualType FixedTy =
3623          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3624                                              Oversized);
3625      if (!FixedTy.isNull()) {
3626        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3627        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3628      } else {
3629        if (SizeIsNegative)
3630          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3631        else if (T->isVariableArrayType())
3632          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3633        else if (Oversized.getBoolValue())
3634          Diag(NewTD->getLocation(), diag::err_array_too_large)
3635            << Oversized.toString(10);
3636        else
3637          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3638        NewTD->setInvalidDecl();
3639      }
3640    }
3641  }
3642}
3643
3644
3645/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3646/// declares a typedef-name, either using the 'typedef' type specifier or via
3647/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3648NamedDecl*
3649Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3650                           LookupResult &Previous, bool &Redeclaration) {
3651  // Merge the decl with the existing one if appropriate. If the decl is
3652  // in an outer scope, it isn't the same thing.
3653  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3654                       /*ExplicitInstantiationOrSpecialization=*/false);
3655  if (!Previous.empty()) {
3656    Redeclaration = true;
3657    MergeTypedefNameDecl(NewTD, Previous);
3658  }
3659
3660  // If this is the C FILE type, notify the AST context.
3661  if (IdentifierInfo *II = NewTD->getIdentifier())
3662    if (!NewTD->isInvalidDecl() &&
3663        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3664      if (II->isStr("FILE"))
3665        Context.setFILEDecl(NewTD);
3666      else if (II->isStr("jmp_buf"))
3667        Context.setjmp_bufDecl(NewTD);
3668      else if (II->isStr("sigjmp_buf"))
3669        Context.setsigjmp_bufDecl(NewTD);
3670      else if (II->isStr("ucontext_t"))
3671        Context.setucontext_tDecl(NewTD);
3672      else if (II->isStr("__builtin_va_list"))
3673        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3674    }
3675
3676  return NewTD;
3677}
3678
3679/// \brief Determines whether the given declaration is an out-of-scope
3680/// previous declaration.
3681///
3682/// This routine should be invoked when name lookup has found a
3683/// previous declaration (PrevDecl) that is not in the scope where a
3684/// new declaration by the same name is being introduced. If the new
3685/// declaration occurs in a local scope, previous declarations with
3686/// linkage may still be considered previous declarations (C99
3687/// 6.2.2p4-5, C++ [basic.link]p6).
3688///
3689/// \param PrevDecl the previous declaration found by name
3690/// lookup
3691///
3692/// \param DC the context in which the new declaration is being
3693/// declared.
3694///
3695/// \returns true if PrevDecl is an out-of-scope previous declaration
3696/// for a new delcaration with the same name.
3697static bool
3698isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3699                                ASTContext &Context) {
3700  if (!PrevDecl)
3701    return false;
3702
3703  if (!PrevDecl->hasLinkage())
3704    return false;
3705
3706  if (Context.getLangOptions().CPlusPlus) {
3707    // C++ [basic.link]p6:
3708    //   If there is a visible declaration of an entity with linkage
3709    //   having the same name and type, ignoring entities declared
3710    //   outside the innermost enclosing namespace scope, the block
3711    //   scope declaration declares that same entity and receives the
3712    //   linkage of the previous declaration.
3713    DeclContext *OuterContext = DC->getRedeclContext();
3714    if (!OuterContext->isFunctionOrMethod())
3715      // This rule only applies to block-scope declarations.
3716      return false;
3717
3718    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3719    if (PrevOuterContext->isRecord())
3720      // We found a member function: ignore it.
3721      return false;
3722
3723    // Find the innermost enclosing namespace for the new and
3724    // previous declarations.
3725    OuterContext = OuterContext->getEnclosingNamespaceContext();
3726    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3727
3728    // The previous declaration is in a different namespace, so it
3729    // isn't the same function.
3730    if (!OuterContext->Equals(PrevOuterContext))
3731      return false;
3732  }
3733
3734  return true;
3735}
3736
3737static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3738  CXXScopeSpec &SS = D.getCXXScopeSpec();
3739  if (!SS.isSet()) return;
3740  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3741}
3742
3743bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3744  QualType type = decl->getType();
3745  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3746  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3747    // Various kinds of declaration aren't allowed to be __autoreleasing.
3748    unsigned kind = -1U;
3749    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3750      if (var->hasAttr<BlocksAttr>())
3751        kind = 0; // __block
3752      else if (!var->hasLocalStorage())
3753        kind = 1; // global
3754    } else if (isa<ObjCIvarDecl>(decl)) {
3755      kind = 3; // ivar
3756    } else if (isa<FieldDecl>(decl)) {
3757      kind = 2; // field
3758    }
3759
3760    if (kind != -1U) {
3761      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3762        << kind;
3763    }
3764  } else if (lifetime == Qualifiers::OCL_None) {
3765    // Try to infer lifetime.
3766    if (!type->isObjCLifetimeType())
3767      return false;
3768
3769    lifetime = type->getObjCARCImplicitLifetime();
3770    type = Context.getLifetimeQualifiedType(type, lifetime);
3771    decl->setType(type);
3772  }
3773
3774  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3775    // Thread-local variables cannot have lifetime.
3776    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3777        var->isThreadSpecified()) {
3778      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3779        << var->getType();
3780      return true;
3781    }
3782  }
3783
3784  return false;
3785}
3786
3787NamedDecl*
3788Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3789                              TypeSourceInfo *TInfo, LookupResult &Previous,
3790                              MultiTemplateParamsArg TemplateParamLists) {
3791  QualType R = TInfo->getType();
3792  DeclarationName Name = GetNameForDeclarator(D).getName();
3793
3794  // Check that there are no default arguments (C++ only).
3795  if (getLangOptions().CPlusPlus)
3796    CheckExtraCXXDefaultArguments(D);
3797
3798  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3799  assert(SCSpec != DeclSpec::SCS_typedef &&
3800         "Parser allowed 'typedef' as storage class VarDecl.");
3801  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3802  if (SCSpec == DeclSpec::SCS_mutable) {
3803    // mutable can only appear on non-static class members, so it's always
3804    // an error here
3805    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3806    D.setInvalidType();
3807    SC = SC_None;
3808  }
3809  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3810  VarDecl::StorageClass SCAsWritten
3811    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3812
3813  IdentifierInfo *II = Name.getAsIdentifierInfo();
3814  if (!II) {
3815    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3816      << Name;
3817    return 0;
3818  }
3819
3820  DiagnoseFunctionSpecifiers(D);
3821
3822  if (!DC->isRecord() && S->getFnParent() == 0) {
3823    // C99 6.9p2: The storage-class specifiers auto and register shall not
3824    // appear in the declaration specifiers in an external declaration.
3825    if (SC == SC_Auto || SC == SC_Register) {
3826
3827      // If this is a register variable with an asm label specified, then this
3828      // is a GNU extension.
3829      if (SC == SC_Register && D.getAsmLabel())
3830        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3831      else
3832        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3833      D.setInvalidType();
3834    }
3835  }
3836
3837  if (getLangOptions().OpenCL) {
3838    // Set up the special work-group-local storage class for variables in the
3839    // OpenCL __local address space.
3840    if (R.getAddressSpace() == LangAS::opencl_local)
3841      SC = SC_OpenCLWorkGroupLocal;
3842  }
3843
3844  bool isExplicitSpecialization = false;
3845  VarDecl *NewVD;
3846  if (!getLangOptions().CPlusPlus) {
3847    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3848                            D.getIdentifierLoc(), II,
3849                            R, TInfo, SC, SCAsWritten);
3850
3851    if (D.isInvalidType())
3852      NewVD->setInvalidDecl();
3853  } else {
3854    if (DC->isRecord() && !CurContext->isRecord()) {
3855      // This is an out-of-line definition of a static data member.
3856      if (SC == SC_Static) {
3857        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3858             diag::err_static_out_of_line)
3859          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3860      } else if (SC == SC_None)
3861        SC = SC_Static;
3862    }
3863    if (SC == SC_Static) {
3864      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3865        if (RD->isLocalClass())
3866          Diag(D.getIdentifierLoc(),
3867               diag::err_static_data_member_not_allowed_in_local_class)
3868            << Name << RD->getDeclName();
3869
3870        // C++ [class.union]p1: If a union contains a static data member,
3871        // the program is ill-formed.
3872        //
3873        // We also disallow static data members in anonymous structs.
3874        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3875          Diag(D.getIdentifierLoc(),
3876               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3877            << Name << RD->isUnion();
3878      }
3879    }
3880
3881    // Match up the template parameter lists with the scope specifier, then
3882    // determine whether we have a template or a template specialization.
3883    isExplicitSpecialization = false;
3884    bool Invalid = false;
3885    if (TemplateParameterList *TemplateParams
3886        = MatchTemplateParametersToScopeSpecifier(
3887                                  D.getDeclSpec().getSourceRange().getBegin(),
3888                                                  D.getIdentifierLoc(),
3889                                                  D.getCXXScopeSpec(),
3890                                                  TemplateParamLists.get(),
3891                                                  TemplateParamLists.size(),
3892                                                  /*never a friend*/ false,
3893                                                  isExplicitSpecialization,
3894                                                  Invalid)) {
3895      if (TemplateParams->size() > 0) {
3896        // There is no such thing as a variable template.
3897        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3898          << II
3899          << SourceRange(TemplateParams->getTemplateLoc(),
3900                         TemplateParams->getRAngleLoc());
3901        return 0;
3902      } else {
3903        // There is an extraneous 'template<>' for this variable. Complain
3904        // about it, but allow the declaration of the variable.
3905        Diag(TemplateParams->getTemplateLoc(),
3906             diag::err_template_variable_noparams)
3907          << II
3908          << SourceRange(TemplateParams->getTemplateLoc(),
3909                         TemplateParams->getRAngleLoc());
3910      }
3911    }
3912
3913    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3914                            D.getIdentifierLoc(), II,
3915                            R, TInfo, SC, SCAsWritten);
3916
3917    // If this decl has an auto type in need of deduction, make a note of the
3918    // Decl so we can diagnose uses of it in its own initializer.
3919    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3920        R->getContainedAutoType())
3921      ParsingInitForAutoVars.insert(NewVD);
3922
3923    if (D.isInvalidType() || Invalid)
3924      NewVD->setInvalidDecl();
3925
3926    SetNestedNameSpecifier(NewVD, D);
3927
3928    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3929      NewVD->setTemplateParameterListsInfo(Context,
3930                                           TemplateParamLists.size(),
3931                                           TemplateParamLists.release());
3932    }
3933
3934    if (D.getDeclSpec().isConstexprSpecified()) {
3935      // FIXME: once we know whether there's an initializer, apply this to
3936      // static data members too.
3937      if (!NewVD->isStaticDataMember() &&
3938          !NewVD->isThisDeclarationADefinition()) {
3939        // 'constexpr' is redundant and ill-formed on a non-defining declaration
3940        // of a variable. Suggest replacing it with 'const' if appropriate.
3941        SourceLocation ConstexprLoc = D.getDeclSpec().getConstexprSpecLoc();
3942        SourceRange ConstexprRange(ConstexprLoc, ConstexprLoc);
3943        // If the declarator is complex, we need to move the keyword to the
3944        // innermost chunk as we switch it from 'constexpr' to 'const'.
3945        int Kind = DeclaratorChunk::Paren;
3946        for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3947          Kind = D.getTypeObject(I).Kind;
3948          if (Kind != DeclaratorChunk::Paren)
3949            break;
3950        }
3951        if ((D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) ||
3952            Kind == DeclaratorChunk::Reference)
3953          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3954            << FixItHint::CreateRemoval(ConstexprRange);
3955        else if (Kind == DeclaratorChunk::Paren)
3956          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3957            << FixItHint::CreateReplacement(ConstexprRange, "const");
3958        else
3959          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3960            << FixItHint::CreateRemoval(ConstexprRange)
3961            << FixItHint::CreateInsertion(D.getIdentifierLoc(), "const ");
3962      } else {
3963        NewVD->setConstexpr(true);
3964      }
3965    }
3966  }
3967
3968  // Set the lexical context. If the declarator has a C++ scope specifier, the
3969  // lexical context will be different from the semantic context.
3970  NewVD->setLexicalDeclContext(CurContext);
3971
3972  if (D.getDeclSpec().isThreadSpecified()) {
3973    if (NewVD->hasLocalStorage())
3974      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3975    else if (!Context.getTargetInfo().isTLSSupported())
3976      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3977    else
3978      NewVD->setThreadSpecified(true);
3979  }
3980
3981  if (D.getDeclSpec().isModulePrivateSpecified()) {
3982    if (isExplicitSpecialization)
3983      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
3984        << 2
3985        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3986    else if (NewVD->hasLocalStorage())
3987      Diag(NewVD->getLocation(), diag::err_module_private_local)
3988        << 0 << NewVD->getDeclName()
3989        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
3990        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3991    else
3992      NewVD->setModulePrivate();
3993  }
3994
3995  // Handle attributes prior to checking for duplicates in MergeVarDecl
3996  ProcessDeclAttributes(S, NewVD, D);
3997
3998  // In auto-retain/release, infer strong retension for variables of
3999  // retainable type.
4000  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4001    NewVD->setInvalidDecl();
4002
4003  // Handle GNU asm-label extension (encoded as an attribute).
4004  if (Expr *E = (Expr*)D.getAsmLabel()) {
4005    // The parser guarantees this is a string.
4006    StringLiteral *SE = cast<StringLiteral>(E);
4007    StringRef Label = SE->getString();
4008    if (S->getFnParent() != 0) {
4009      switch (SC) {
4010      case SC_None:
4011      case SC_Auto:
4012        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4013        break;
4014      case SC_Register:
4015        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4016          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4017        break;
4018      case SC_Static:
4019      case SC_Extern:
4020      case SC_PrivateExtern:
4021      case SC_OpenCLWorkGroupLocal:
4022        break;
4023      }
4024    }
4025
4026    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4027                                                Context, Label));
4028  }
4029
4030  // Diagnose shadowed variables before filtering for scope.
4031  if (!D.getCXXScopeSpec().isSet())
4032    CheckShadow(S, NewVD, Previous);
4033
4034  // Don't consider existing declarations that are in a different
4035  // scope and are out-of-semantic-context declarations (if the new
4036  // declaration has linkage).
4037  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4038                       isExplicitSpecialization);
4039
4040  if (!getLangOptions().CPlusPlus) {
4041    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4042  } else {
4043    // Merge the decl with the existing one if appropriate.
4044    if (!Previous.empty()) {
4045      if (Previous.isSingleResult() &&
4046          isa<FieldDecl>(Previous.getFoundDecl()) &&
4047          D.getCXXScopeSpec().isSet()) {
4048        // The user tried to define a non-static data member
4049        // out-of-line (C++ [dcl.meaning]p1).
4050        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4051          << D.getCXXScopeSpec().getRange();
4052        Previous.clear();
4053        NewVD->setInvalidDecl();
4054      }
4055    } else if (D.getCXXScopeSpec().isSet()) {
4056      // No previous declaration in the qualifying scope.
4057      Diag(D.getIdentifierLoc(), diag::err_no_member)
4058        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4059        << D.getCXXScopeSpec().getRange();
4060      NewVD->setInvalidDecl();
4061    }
4062
4063    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4064
4065    // This is an explicit specialization of a static data member. Check it.
4066    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4067        CheckMemberSpecialization(NewVD, Previous))
4068      NewVD->setInvalidDecl();
4069  }
4070
4071  // attributes declared post-definition are currently ignored
4072  // FIXME: This should be handled in attribute merging, not
4073  // here.
4074  if (Previous.isSingleResult()) {
4075    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4076    if (Def && (Def = Def->getDefinition()) &&
4077        Def != NewVD && D.hasAttributes()) {
4078      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4079      Diag(Def->getLocation(), diag::note_previous_definition);
4080    }
4081  }
4082
4083  // If this is a locally-scoped extern C variable, update the map of
4084  // such variables.
4085  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4086      !NewVD->isInvalidDecl())
4087    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4088
4089  // If there's a #pragma GCC visibility in scope, and this isn't a class
4090  // member, set the visibility of this variable.
4091  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4092    AddPushedVisibilityAttribute(NewVD);
4093
4094  MarkUnusedFileScopedDecl(NewVD);
4095
4096  return NewVD;
4097}
4098
4099/// \brief Diagnose variable or built-in function shadowing.  Implements
4100/// -Wshadow.
4101///
4102/// This method is called whenever a VarDecl is added to a "useful"
4103/// scope.
4104///
4105/// \param S the scope in which the shadowing name is being declared
4106/// \param R the lookup of the name
4107///
4108void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4109  // Return if warning is ignored.
4110  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4111        DiagnosticsEngine::Ignored)
4112    return;
4113
4114  // Don't diagnose declarations at file scope.
4115  if (D->hasGlobalStorage())
4116    return;
4117
4118  DeclContext *NewDC = D->getDeclContext();
4119
4120  // Only diagnose if we're shadowing an unambiguous field or variable.
4121  if (R.getResultKind() != LookupResult::Found)
4122    return;
4123
4124  NamedDecl* ShadowedDecl = R.getFoundDecl();
4125  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4126    return;
4127
4128  // Fields are not shadowed by variables in C++ static methods.
4129  if (isa<FieldDecl>(ShadowedDecl))
4130    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4131      if (MD->isStatic())
4132        return;
4133
4134  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4135    if (shadowedVar->isExternC()) {
4136      // For shadowing external vars, make sure that we point to the global
4137      // declaration, not a locally scoped extern declaration.
4138      for (VarDecl::redecl_iterator
4139             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4140           I != E; ++I)
4141        if (I->isFileVarDecl()) {
4142          ShadowedDecl = *I;
4143          break;
4144        }
4145    }
4146
4147  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4148
4149  // Only warn about certain kinds of shadowing for class members.
4150  if (NewDC && NewDC->isRecord()) {
4151    // In particular, don't warn about shadowing non-class members.
4152    if (!OldDC->isRecord())
4153      return;
4154
4155    // TODO: should we warn about static data members shadowing
4156    // static data members from base classes?
4157
4158    // TODO: don't diagnose for inaccessible shadowed members.
4159    // This is hard to do perfectly because we might friend the
4160    // shadowing context, but that's just a false negative.
4161  }
4162
4163  // Determine what kind of declaration we're shadowing.
4164  unsigned Kind;
4165  if (isa<RecordDecl>(OldDC)) {
4166    if (isa<FieldDecl>(ShadowedDecl))
4167      Kind = 3; // field
4168    else
4169      Kind = 2; // static data member
4170  } else if (OldDC->isFileContext())
4171    Kind = 1; // global
4172  else
4173    Kind = 0; // local
4174
4175  DeclarationName Name = R.getLookupName();
4176
4177  // Emit warning and note.
4178  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4179  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4180}
4181
4182/// \brief Check -Wshadow without the advantage of a previous lookup.
4183void Sema::CheckShadow(Scope *S, VarDecl *D) {
4184  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4185        DiagnosticsEngine::Ignored)
4186    return;
4187
4188  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4189                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4190  LookupName(R, S);
4191  CheckShadow(S, D, R);
4192}
4193
4194/// \brief Perform semantic checking on a newly-created variable
4195/// declaration.
4196///
4197/// This routine performs all of the type-checking required for a
4198/// variable declaration once it has been built. It is used both to
4199/// check variables after they have been parsed and their declarators
4200/// have been translated into a declaration, and to check variables
4201/// that have been instantiated from a template.
4202///
4203/// Sets NewVD->isInvalidDecl() if an error was encountered.
4204///
4205/// Returns true if the variable declaration is a redeclaration.
4206bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4207                                    LookupResult &Previous) {
4208  // If the decl is already known invalid, don't check it.
4209  if (NewVD->isInvalidDecl())
4210    return false;
4211
4212  QualType T = NewVD->getType();
4213
4214  if (T->isObjCObjectType()) {
4215    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4216      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4217    T = Context.getObjCObjectPointerType(T);
4218    NewVD->setType(T);
4219  }
4220
4221  // Emit an error if an address space was applied to decl with local storage.
4222  // This includes arrays of objects with address space qualifiers, but not
4223  // automatic variables that point to other address spaces.
4224  // ISO/IEC TR 18037 S5.1.2
4225  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4226    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4227    NewVD->setInvalidDecl();
4228    return false;
4229  }
4230
4231  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4232      && !NewVD->hasAttr<BlocksAttr>()) {
4233    if (getLangOptions().getGC() != LangOptions::NonGC)
4234      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4235    else
4236      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4237  }
4238
4239  bool isVM = T->isVariablyModifiedType();
4240  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4241      NewVD->hasAttr<BlocksAttr>())
4242    getCurFunction()->setHasBranchProtectedScope();
4243
4244  if ((isVM && NewVD->hasLinkage()) ||
4245      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4246    bool SizeIsNegative;
4247    llvm::APSInt Oversized;
4248    QualType FixedTy =
4249        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4250                                            Oversized);
4251
4252    if (FixedTy.isNull() && T->isVariableArrayType()) {
4253      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4254      // FIXME: This won't give the correct result for
4255      // int a[10][n];
4256      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4257
4258      if (NewVD->isFileVarDecl())
4259        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4260        << SizeRange;
4261      else if (NewVD->getStorageClass() == SC_Static)
4262        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4263        << SizeRange;
4264      else
4265        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4266        << SizeRange;
4267      NewVD->setInvalidDecl();
4268      return false;
4269    }
4270
4271    if (FixedTy.isNull()) {
4272      if (NewVD->isFileVarDecl())
4273        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4274      else
4275        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4276      NewVD->setInvalidDecl();
4277      return false;
4278    }
4279
4280    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4281    NewVD->setType(FixedTy);
4282  }
4283
4284  if (Previous.empty() && NewVD->isExternC()) {
4285    // Since we did not find anything by this name and we're declaring
4286    // an extern "C" variable, look for a non-visible extern "C"
4287    // declaration with the same name.
4288    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4289      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4290    if (Pos != LocallyScopedExternalDecls.end())
4291      Previous.addDecl(Pos->second);
4292  }
4293
4294  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4295    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4296      << T;
4297    NewVD->setInvalidDecl();
4298    return false;
4299  }
4300
4301  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4302    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4303    NewVD->setInvalidDecl();
4304    return false;
4305  }
4306
4307  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4308    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4309    NewVD->setInvalidDecl();
4310    return false;
4311  }
4312
4313  // Function pointers and references cannot have qualified function type, only
4314  // function pointer-to-members can do that.
4315  QualType Pointee;
4316  unsigned PtrOrRef = 0;
4317  if (const PointerType *Ptr = T->getAs<PointerType>())
4318    Pointee = Ptr->getPointeeType();
4319  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4320    Pointee = Ref->getPointeeType();
4321    PtrOrRef = 1;
4322  }
4323  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4324      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4325    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4326        << PtrOrRef;
4327    NewVD->setInvalidDecl();
4328    return false;
4329  }
4330
4331  if (!Previous.empty()) {
4332    MergeVarDecl(NewVD, Previous);
4333    return true;
4334  }
4335  return false;
4336}
4337
4338/// \brief Data used with FindOverriddenMethod
4339struct FindOverriddenMethodData {
4340  Sema *S;
4341  CXXMethodDecl *Method;
4342};
4343
4344/// \brief Member lookup function that determines whether a given C++
4345/// method overrides a method in a base class, to be used with
4346/// CXXRecordDecl::lookupInBases().
4347static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4348                                 CXXBasePath &Path,
4349                                 void *UserData) {
4350  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4351
4352  FindOverriddenMethodData *Data
4353    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4354
4355  DeclarationName Name = Data->Method->getDeclName();
4356
4357  // FIXME: Do we care about other names here too?
4358  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4359    // We really want to find the base class destructor here.
4360    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4361    CanQualType CT = Data->S->Context.getCanonicalType(T);
4362
4363    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4364  }
4365
4366  for (Path.Decls = BaseRecord->lookup(Name);
4367       Path.Decls.first != Path.Decls.second;
4368       ++Path.Decls.first) {
4369    NamedDecl *D = *Path.Decls.first;
4370    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4371      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4372        return true;
4373    }
4374  }
4375
4376  return false;
4377}
4378
4379/// AddOverriddenMethods - See if a method overrides any in the base classes,
4380/// and if so, check that it's a valid override and remember it.
4381bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4382  // Look for virtual methods in base classes that this method might override.
4383  CXXBasePaths Paths;
4384  FindOverriddenMethodData Data;
4385  Data.Method = MD;
4386  Data.S = this;
4387  bool AddedAny = false;
4388  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4389    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4390         E = Paths.found_decls_end(); I != E; ++I) {
4391      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4392        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4393        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4394            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4395            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4396          AddedAny = true;
4397        }
4398      }
4399    }
4400  }
4401
4402  return AddedAny;
4403}
4404
4405namespace {
4406  // Struct for holding all of the extra arguments needed by
4407  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4408  struct ActOnFDArgs {
4409    Scope *S;
4410    Declarator &D;
4411    MultiTemplateParamsArg TemplateParamLists;
4412    bool AddToScope;
4413  };
4414}
4415
4416/// \brief Generate diagnostics for an invalid function redeclaration.
4417///
4418/// This routine handles generating the diagnostic messages for an invalid
4419/// function redeclaration, including finding possible similar declarations
4420/// or performing typo correction if there are no previous declarations with
4421/// the same name.
4422///
4423/// Returns a NamedDecl iff typo correction was performed and substituting in
4424/// the new declaration name does not cause new errors.
4425static NamedDecl* DiagnoseInvalidRedeclaration(
4426    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4427    ActOnFDArgs &ExtraArgs) {
4428  NamedDecl *Result = NULL;
4429  DeclarationName Name = NewFD->getDeclName();
4430  DeclContext *NewDC = NewFD->getDeclContext();
4431  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4432                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4433  llvm::SmallVector<unsigned, 1> MismatchedParams;
4434  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4435  TypoCorrection Correction;
4436  bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
4437                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4438  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4439                                  : diag::err_member_def_does_not_match;
4440
4441  NewFD->setInvalidDecl();
4442  SemaRef.LookupQualifiedName(Prev, NewDC);
4443  assert(!Prev.isAmbiguous() &&
4444         "Cannot have an ambiguity in previous-declaration lookup");
4445  if (!Prev.empty()) {
4446    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4447         Func != FuncEnd; ++Func) {
4448      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4449      if (FD &&
4450          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4451        // Add 1 to the index so that 0 can mean the mismatch didn't
4452        // involve a parameter
4453        unsigned ParamNum =
4454            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4455        NearMatches.push_back(std::make_pair(FD, ParamNum));
4456      }
4457    }
4458  // If the qualified name lookup yielded nothing, try typo correction
4459  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4460                                         Prev.getLookupKind(), 0, 0, NewDC)) &&
4461             Correction.getCorrection() != Name) {
4462    // Trap errors.
4463    Sema::SFINAETrap Trap(SemaRef);
4464
4465    // Set up everything for the call to ActOnFunctionDeclarator
4466    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4467                              ExtraArgs.D.getIdentifierLoc());
4468    Previous.clear();
4469    Previous.setLookupName(Correction.getCorrection());
4470    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4471                                    CDeclEnd = Correction.end();
4472         CDecl != CDeclEnd; ++CDecl) {
4473      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4474      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4475                                     MismatchedParams)) {
4476        Previous.addDecl(FD);
4477      }
4478    }
4479    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4480    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4481    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4482    // eliminate the need for the parameter pack ExtraArgs.
4483    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4484                                             NewFD->getDeclContext(),
4485                                             NewFD->getTypeSourceInfo(),
4486                                             Previous,
4487                                             ExtraArgs.TemplateParamLists,
4488                                             ExtraArgs.AddToScope);
4489    if (Trap.hasErrorOccurred()) {
4490      // Pretend the typo correction never occurred
4491      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4492                                ExtraArgs.D.getIdentifierLoc());
4493      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4494      Previous.clear();
4495      Previous.setLookupName(Name);
4496      Result = NULL;
4497    } else {
4498      for (LookupResult::iterator Func = Previous.begin(),
4499                               FuncEnd = Previous.end();
4500           Func != FuncEnd; ++Func) {
4501        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4502          NearMatches.push_back(std::make_pair(FD, 0));
4503      }
4504    }
4505    if (NearMatches.empty()) {
4506      // Ignore the correction if it didn't yield any close FunctionDecl matches
4507      Correction = TypoCorrection();
4508    } else {
4509      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4510                             : diag::err_member_def_does_not_match_suggest;
4511    }
4512  }
4513
4514  if (Correction)
4515    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4516        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
4517        << FixItHint::CreateReplacement(
4518            NewFD->getLocation(),
4519            Correction.getAsString(SemaRef.getLangOptions()));
4520  else
4521    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4522        << Name << NewDC << NewFD->getLocation();
4523
4524  bool NewFDisConst = false;
4525  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4526    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4527
4528  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4529       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4530       NearMatch != NearMatchEnd; ++NearMatch) {
4531    FunctionDecl *FD = NearMatch->first;
4532    bool FDisConst = false;
4533    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4534      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4535
4536    if (unsigned Idx = NearMatch->second) {
4537      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4538      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4539             diag::note_member_def_close_param_match)
4540          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4541    } else if (Correction) {
4542      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4543          << Correction.getQuoted(SemaRef.getLangOptions());
4544    } else if (FDisConst != NewFDisConst) {
4545      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4546          << NewFDisConst << FD->getSourceRange().getEnd();
4547    } else
4548      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4549  }
4550  return Result;
4551}
4552
4553static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4554                                                          Declarator &D) {
4555  switch (D.getDeclSpec().getStorageClassSpec()) {
4556  default: llvm_unreachable("Unknown storage class!");
4557  case DeclSpec::SCS_auto:
4558  case DeclSpec::SCS_register:
4559  case DeclSpec::SCS_mutable:
4560    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4561                 diag::err_typecheck_sclass_func);
4562    D.setInvalidType();
4563    break;
4564  case DeclSpec::SCS_unspecified: break;
4565  case DeclSpec::SCS_extern: return SC_Extern;
4566  case DeclSpec::SCS_static: {
4567    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4568      // C99 6.7.1p5:
4569      //   The declaration of an identifier for a function that has
4570      //   block scope shall have no explicit storage-class specifier
4571      //   other than extern
4572      // See also (C++ [dcl.stc]p4).
4573      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4574                   diag::err_static_block_func);
4575      break;
4576    } else
4577      return SC_Static;
4578  }
4579  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4580  }
4581
4582  // No explicit storage class has already been returned
4583  return SC_None;
4584}
4585
4586static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4587                                           DeclContext *DC, QualType &R,
4588                                           TypeSourceInfo *TInfo,
4589                                           FunctionDecl::StorageClass SC,
4590                                           bool &IsVirtualOkay) {
4591  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4592  DeclarationName Name = NameInfo.getName();
4593
4594  FunctionDecl *NewFD = 0;
4595  bool isInline = D.getDeclSpec().isInlineSpecified();
4596  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4597  FunctionDecl::StorageClass SCAsWritten
4598    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4599
4600  if (!SemaRef.getLangOptions().CPlusPlus) {
4601    // Determine whether the function was written with a
4602    // prototype. This true when:
4603    //   - there is a prototype in the declarator, or
4604    //   - the type R of the function is some kind of typedef or other reference
4605    //     to a type name (which eventually refers to a function type).
4606    bool HasPrototype =
4607      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4608      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4609
4610    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4611                                 D.getSourceRange().getBegin(), NameInfo, R,
4612                                 TInfo, SC, SCAsWritten, isInline,
4613                                 HasPrototype);
4614    if (D.isInvalidType())
4615      NewFD->setInvalidDecl();
4616
4617    // Set the lexical context.
4618    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4619
4620    return NewFD;
4621  }
4622
4623  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4624  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4625
4626  // Check that the return type is not an abstract class type.
4627  // For record types, this is done by the AbstractClassUsageDiagnoser once
4628  // the class has been completely parsed.
4629  if (!DC->isRecord() &&
4630      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4631                                     R->getAs<FunctionType>()->getResultType(),
4632                                     diag::err_abstract_type_in_decl,
4633                                     SemaRef.AbstractReturnType))
4634    D.setInvalidType();
4635
4636  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4637    // This is a C++ constructor declaration.
4638    assert(DC->isRecord() &&
4639           "Constructors can only be declared in a member context");
4640
4641    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4642    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4643                                      D.getSourceRange().getBegin(), NameInfo,
4644                                      R, TInfo, isExplicit, isInline,
4645                                      /*isImplicitlyDeclared=*/false,
4646                                      isConstexpr);
4647
4648  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4649    // This is a C++ destructor declaration.
4650    if (DC->isRecord()) {
4651      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4652      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4653      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4654                                        SemaRef.Context, Record,
4655                                        D.getSourceRange().getBegin(),
4656                                        NameInfo, R, TInfo, isInline,
4657                                        /*isImplicitlyDeclared=*/false);
4658
4659      // If the class is complete, then we now create the implicit exception
4660      // specification. If the class is incomplete or dependent, we can't do
4661      // it yet.
4662      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4663          Record->getDefinition() && !Record->isBeingDefined() &&
4664          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4665        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4666      }
4667
4668      IsVirtualOkay = true;
4669      return NewDD;
4670
4671    } else {
4672      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4673      D.setInvalidType();
4674
4675      // Create a FunctionDecl to satisfy the function definition parsing
4676      // code path.
4677      return FunctionDecl::Create(SemaRef.Context, DC,
4678                                  D.getSourceRange().getBegin(),
4679                                  D.getIdentifierLoc(), Name, R, TInfo,
4680                                  SC, SCAsWritten, isInline,
4681                                  /*hasPrototype=*/true, isConstexpr);
4682    }
4683
4684  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4685    if (!DC->isRecord()) {
4686      SemaRef.Diag(D.getIdentifierLoc(),
4687           diag::err_conv_function_not_member);
4688      return 0;
4689    }
4690
4691    SemaRef.CheckConversionDeclarator(D, R, SC);
4692    IsVirtualOkay = true;
4693    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4694                                     D.getSourceRange().getBegin(), NameInfo,
4695                                     R, TInfo, isInline, isExplicit,
4696                                     isConstexpr, SourceLocation());
4697
4698  } else if (DC->isRecord()) {
4699    // If the name of the function is the same as the name of the record,
4700    // then this must be an invalid constructor that has a return type.
4701    // (The parser checks for a return type and makes the declarator a
4702    // constructor if it has no return type).
4703    if (Name.getAsIdentifierInfo() &&
4704        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4705      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4706        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4707        << SourceRange(D.getIdentifierLoc());
4708      return 0;
4709    }
4710
4711    bool isStatic = SC == SC_Static;
4712
4713    // [class.free]p1:
4714    // Any allocation function for a class T is a static member
4715    // (even if not explicitly declared static).
4716    if (Name.getCXXOverloadedOperator() == OO_New ||
4717        Name.getCXXOverloadedOperator() == OO_Array_New)
4718      isStatic = true;
4719
4720    // [class.free]p6 Any deallocation function for a class X is a static member
4721    // (even if not explicitly declared static).
4722    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4723        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4724      isStatic = true;
4725
4726    IsVirtualOkay = !isStatic;
4727
4728    // This is a C++ method declaration.
4729    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4730                                 D.getSourceRange().getBegin(), NameInfo, R,
4731                                 TInfo, isStatic, SCAsWritten, isInline,
4732                                 isConstexpr, SourceLocation());
4733
4734  } else {
4735    // Determine whether the function was written with a
4736    // prototype. This true when:
4737    //   - we're in C++ (where every function has a prototype),
4738    return FunctionDecl::Create(SemaRef.Context, DC,
4739                                D.getSourceRange().getBegin(),
4740                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4741                                true/*HasPrototype*/, isConstexpr);
4742  }
4743}
4744
4745NamedDecl*
4746Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4747                              TypeSourceInfo *TInfo, LookupResult &Previous,
4748                              MultiTemplateParamsArg TemplateParamLists,
4749                              bool &AddToScope) {
4750  QualType R = TInfo->getType();
4751
4752  assert(R.getTypePtr()->isFunctionType());
4753
4754  // TODO: consider using NameInfo for diagnostic.
4755  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4756  DeclarationName Name = NameInfo.getName();
4757  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4758
4759  if (D.getDeclSpec().isThreadSpecified())
4760    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4761
4762  // Do not allow returning a objc interface by-value.
4763  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4764    Diag(D.getIdentifierLoc(),
4765         diag::err_object_cannot_be_passed_returned_by_value) << 0
4766    << R->getAs<FunctionType>()->getResultType()
4767    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4768
4769    QualType T = R->getAs<FunctionType>()->getResultType();
4770    T = Context.getObjCObjectPointerType(T);
4771    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4772      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4773      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4774                                  FPT->getNumArgs(), EPI);
4775    }
4776    else if (isa<FunctionNoProtoType>(R))
4777      R = Context.getFunctionNoProtoType(T);
4778  }
4779
4780  bool isFriend = false;
4781  FunctionTemplateDecl *FunctionTemplate = 0;
4782  bool isExplicitSpecialization = false;
4783  bool isFunctionTemplateSpecialization = false;
4784  bool isDependentClassScopeExplicitSpecialization = false;
4785  bool isVirtualOkay = false;
4786
4787  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4788                                              isVirtualOkay);
4789  if (!NewFD) return 0;
4790
4791  if (getLangOptions().CPlusPlus) {
4792    bool isInline = D.getDeclSpec().isInlineSpecified();
4793    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4794    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4795    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4796    isFriend = D.getDeclSpec().isFriendSpecified();
4797    if (isFriend && !isInline && D.isFunctionDefinition()) {
4798      // C++ [class.friend]p5
4799      //   A function can be defined in a friend declaration of a
4800      //   class . . . . Such a function is implicitly inline.
4801      NewFD->setImplicitlyInline();
4802    }
4803
4804    SetNestedNameSpecifier(NewFD, D);
4805    isExplicitSpecialization = false;
4806    isFunctionTemplateSpecialization = false;
4807    if (D.isInvalidType())
4808      NewFD->setInvalidDecl();
4809
4810    // Set the lexical context. If the declarator has a C++
4811    // scope specifier, or is the object of a friend declaration, the
4812    // lexical context will be different from the semantic context.
4813    NewFD->setLexicalDeclContext(CurContext);
4814
4815    // Match up the template parameter lists with the scope specifier, then
4816    // determine whether we have a template or a template specialization.
4817    bool Invalid = false;
4818    if (TemplateParameterList *TemplateParams
4819          = MatchTemplateParametersToScopeSpecifier(
4820                                  D.getDeclSpec().getSourceRange().getBegin(),
4821                                  D.getIdentifierLoc(),
4822                                  D.getCXXScopeSpec(),
4823                                  TemplateParamLists.get(),
4824                                  TemplateParamLists.size(),
4825                                  isFriend,
4826                                  isExplicitSpecialization,
4827                                  Invalid)) {
4828      if (TemplateParams->size() > 0) {
4829        // This is a function template
4830
4831        // Check that we can declare a template here.
4832        if (CheckTemplateDeclScope(S, TemplateParams))
4833          return 0;
4834
4835        // A destructor cannot be a template.
4836        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4837          Diag(NewFD->getLocation(), diag::err_destructor_template);
4838          return 0;
4839        }
4840
4841        // If we're adding a template to a dependent context, we may need to
4842        // rebuilding some of the types used within the template parameter list,
4843        // now that we know what the current instantiation is.
4844        if (DC->isDependentContext()) {
4845          ContextRAII SavedContext(*this, DC);
4846          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4847            Invalid = true;
4848        }
4849
4850
4851        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4852                                                        NewFD->getLocation(),
4853                                                        Name, TemplateParams,
4854                                                        NewFD);
4855        FunctionTemplate->setLexicalDeclContext(CurContext);
4856        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4857
4858        // For source fidelity, store the other template param lists.
4859        if (TemplateParamLists.size() > 1) {
4860          NewFD->setTemplateParameterListsInfo(Context,
4861                                               TemplateParamLists.size() - 1,
4862                                               TemplateParamLists.release());
4863        }
4864      } else {
4865        // This is a function template specialization.
4866        isFunctionTemplateSpecialization = true;
4867        // For source fidelity, store all the template param lists.
4868        NewFD->setTemplateParameterListsInfo(Context,
4869                                             TemplateParamLists.size(),
4870                                             TemplateParamLists.release());
4871
4872        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4873        if (isFriend) {
4874          // We want to remove the "template<>", found here.
4875          SourceRange RemoveRange = TemplateParams->getSourceRange();
4876
4877          // If we remove the template<> and the name is not a
4878          // template-id, we're actually silently creating a problem:
4879          // the friend declaration will refer to an untemplated decl,
4880          // and clearly the user wants a template specialization.  So
4881          // we need to insert '<>' after the name.
4882          SourceLocation InsertLoc;
4883          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4884            InsertLoc = D.getName().getSourceRange().getEnd();
4885            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4886          }
4887
4888          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4889            << Name << RemoveRange
4890            << FixItHint::CreateRemoval(RemoveRange)
4891            << FixItHint::CreateInsertion(InsertLoc, "<>");
4892        }
4893      }
4894    }
4895    else {
4896      // All template param lists were matched against the scope specifier:
4897      // this is NOT (an explicit specialization of) a template.
4898      if (TemplateParamLists.size() > 0)
4899        // For source fidelity, store all the template param lists.
4900        NewFD->setTemplateParameterListsInfo(Context,
4901                                             TemplateParamLists.size(),
4902                                             TemplateParamLists.release());
4903    }
4904
4905    if (Invalid) {
4906      NewFD->setInvalidDecl();
4907      if (FunctionTemplate)
4908        FunctionTemplate->setInvalidDecl();
4909    }
4910
4911    // C++ [dcl.fct.spec]p5:
4912    //   The virtual specifier shall only be used in declarations of
4913    //   nonstatic class member functions that appear within a
4914    //   member-specification of a class declaration; see 10.3.
4915    //
4916    if (isVirtual && !NewFD->isInvalidDecl()) {
4917      if (!isVirtualOkay) {
4918        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4919             diag::err_virtual_non_function);
4920      } else if (!CurContext->isRecord()) {
4921        // 'virtual' was specified outside of the class.
4922        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4923             diag::err_virtual_out_of_class)
4924          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4925      } else if (NewFD->getDescribedFunctionTemplate()) {
4926        // C++ [temp.mem]p3:
4927        //  A member function template shall not be virtual.
4928        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4929             diag::err_virtual_member_function_template)
4930          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4931      } else {
4932        // Okay: Add virtual to the method.
4933        NewFD->setVirtualAsWritten(true);
4934      }
4935    }
4936
4937    // C++ [dcl.fct.spec]p3:
4938    //  The inline specifier shall not appear on a block scope function
4939    //  declaration.
4940    if (isInline && !NewFD->isInvalidDecl()) {
4941      if (CurContext->isFunctionOrMethod()) {
4942        // 'inline' is not allowed on block scope function declaration.
4943        Diag(D.getDeclSpec().getInlineSpecLoc(),
4944             diag::err_inline_declaration_block_scope) << Name
4945          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4946      }
4947    }
4948
4949    // C++ [dcl.fct.spec]p6:
4950    //  The explicit specifier shall be used only in the declaration of a
4951    //  constructor or conversion function within its class definition;
4952    //  see 12.3.1 and 12.3.2.
4953    if (isExplicit && !NewFD->isInvalidDecl()) {
4954      if (!CurContext->isRecord()) {
4955        // 'explicit' was specified outside of the class.
4956        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4957             diag::err_explicit_out_of_class)
4958          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4959      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4960                 !isa<CXXConversionDecl>(NewFD)) {
4961        // 'explicit' was specified on a function that wasn't a constructor
4962        // or conversion function.
4963        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4964             diag::err_explicit_non_ctor_or_conv_function)
4965          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4966      }
4967    }
4968
4969    if (isConstexpr) {
4970      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4971      // are implicitly inline.
4972      NewFD->setImplicitlyInline();
4973
4974      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4975      // be either constructors or to return a literal type. Therefore,
4976      // destructors cannot be declared constexpr.
4977      if (isa<CXXDestructorDecl>(NewFD))
4978        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
4979    }
4980
4981    // If __module_private__ was specified, mark the function accordingly.
4982    if (D.getDeclSpec().isModulePrivateSpecified()) {
4983      if (isFunctionTemplateSpecialization) {
4984        SourceLocation ModulePrivateLoc
4985          = D.getDeclSpec().getModulePrivateSpecLoc();
4986        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
4987          << 0
4988          << FixItHint::CreateRemoval(ModulePrivateLoc);
4989      } else {
4990        NewFD->setModulePrivate();
4991        if (FunctionTemplate)
4992          FunctionTemplate->setModulePrivate();
4993      }
4994    }
4995
4996    if (isFriend) {
4997      // For now, claim that the objects have no previous declaration.
4998      if (FunctionTemplate) {
4999        FunctionTemplate->setObjectOfFriendDecl(false);
5000        FunctionTemplate->setAccess(AS_public);
5001      }
5002      NewFD->setObjectOfFriendDecl(false);
5003      NewFD->setAccess(AS_public);
5004    }
5005
5006    // If a function is defined as defaulted or deleted, mark it as such now.
5007    switch (D.getFunctionDefinitionKind()) {
5008      case FDK_Declaration:
5009      case FDK_Definition:
5010        break;
5011
5012      case FDK_Defaulted:
5013        NewFD->setDefaulted();
5014        break;
5015
5016      case FDK_Deleted:
5017        NewFD->setDeletedAsWritten();
5018        break;
5019    }
5020
5021    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5022        D.isFunctionDefinition()) {
5023      // C++ [class.mfct]p2:
5024      //   A member function may be defined (8.4) in its class definition, in
5025      //   which case it is an inline member function (7.1.2)
5026      NewFD->setImplicitlyInline();
5027    }
5028
5029    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5030        !CurContext->isRecord()) {
5031      // C++ [class.static]p1:
5032      //   A data or function member of a class may be declared static
5033      //   in a class definition, in which case it is a static member of
5034      //   the class.
5035
5036      // Complain about the 'static' specifier if it's on an out-of-line
5037      // member function definition.
5038      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5039           diag::err_static_out_of_line)
5040        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5041    }
5042  }
5043
5044  // Filter out previous declarations that don't match the scope.
5045  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5046                       isExplicitSpecialization ||
5047                       isFunctionTemplateSpecialization);
5048
5049  // Handle GNU asm-label extension (encoded as an attribute).
5050  if (Expr *E = (Expr*) D.getAsmLabel()) {
5051    // The parser guarantees this is a string.
5052    StringLiteral *SE = cast<StringLiteral>(E);
5053    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5054                                                SE->getString()));
5055  }
5056
5057  // Copy the parameter declarations from the declarator D to the function
5058  // declaration NewFD, if they are available.  First scavenge them into Params.
5059  SmallVector<ParmVarDecl*, 16> Params;
5060  if (D.isFunctionDeclarator()) {
5061    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5062
5063    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5064    // function that takes no arguments, not a function that takes a
5065    // single void argument.
5066    // We let through "const void" here because Sema::GetTypeForDeclarator
5067    // already checks for that case.
5068    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5069        FTI.ArgInfo[0].Param &&
5070        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5071      // Empty arg list, don't push any params.
5072      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5073
5074      // In C++, the empty parameter-type-list must be spelled "void"; a
5075      // typedef of void is not permitted.
5076      if (getLangOptions().CPlusPlus &&
5077          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5078        bool IsTypeAlias = false;
5079        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5080          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5081        else if (const TemplateSpecializationType *TST =
5082                   Param->getType()->getAs<TemplateSpecializationType>())
5083          IsTypeAlias = TST->isTypeAlias();
5084        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5085          << IsTypeAlias;
5086      }
5087    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5088      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5089        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5090        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5091        Param->setDeclContext(NewFD);
5092        Params.push_back(Param);
5093
5094        if (Param->isInvalidDecl())
5095          NewFD->setInvalidDecl();
5096      }
5097    }
5098
5099  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5100    // When we're declaring a function with a typedef, typeof, etc as in the
5101    // following example, we'll need to synthesize (unnamed)
5102    // parameters for use in the declaration.
5103    //
5104    // @code
5105    // typedef void fn(int);
5106    // fn f;
5107    // @endcode
5108
5109    // Synthesize a parameter for each argument type.
5110    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5111         AE = FT->arg_type_end(); AI != AE; ++AI) {
5112      ParmVarDecl *Param =
5113        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5114      Param->setScopeInfo(0, Params.size());
5115      Params.push_back(Param);
5116    }
5117  } else {
5118    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5119           "Should not need args for typedef of non-prototype fn");
5120  }
5121
5122  // Finally, we know we have the right number of parameters, install them.
5123  NewFD->setParams(Params);
5124
5125  // Process the non-inheritable attributes on this declaration.
5126  ProcessDeclAttributes(S, NewFD, D,
5127                        /*NonInheritable=*/true, /*Inheritable=*/false);
5128
5129  if (!getLangOptions().CPlusPlus) {
5130    // Perform semantic checking on the function declaration.
5131    bool isExplicitSpecialization=false;
5132    if (!NewFD->isInvalidDecl()) {
5133      if (NewFD->getResultType()->isVariablyModifiedType()) {
5134        // Functions returning a variably modified type violate C99 6.7.5.2p2
5135        // because all functions have linkage.
5136        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5137        NewFD->setInvalidDecl();
5138      } else {
5139        if (NewFD->isMain())
5140          CheckMain(NewFD, D.getDeclSpec());
5141        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5142                                                    isExplicitSpecialization));
5143      }
5144    }
5145    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5146            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5147           "previous declaration set still overloaded");
5148  } else {
5149    // If the declarator is a template-id, translate the parser's template
5150    // argument list into our AST format.
5151    bool HasExplicitTemplateArgs = false;
5152    TemplateArgumentListInfo TemplateArgs;
5153    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5154      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5155      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5156      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5157      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5158                                         TemplateId->getTemplateArgs(),
5159                                         TemplateId->NumArgs);
5160      translateTemplateArguments(TemplateArgsPtr,
5161                                 TemplateArgs);
5162      TemplateArgsPtr.release();
5163
5164      HasExplicitTemplateArgs = true;
5165
5166      if (NewFD->isInvalidDecl()) {
5167        HasExplicitTemplateArgs = false;
5168      } else if (FunctionTemplate) {
5169        // Function template with explicit template arguments.
5170        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5171          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5172
5173        HasExplicitTemplateArgs = false;
5174      } else if (!isFunctionTemplateSpecialization &&
5175                 !D.getDeclSpec().isFriendSpecified()) {
5176        // We have encountered something that the user meant to be a
5177        // specialization (because it has explicitly-specified template
5178        // arguments) but that was not introduced with a "template<>" (or had
5179        // too few of them).
5180        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5181          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5182          << FixItHint::CreateInsertion(
5183                                    D.getDeclSpec().getSourceRange().getBegin(),
5184                                        "template<> ");
5185        isFunctionTemplateSpecialization = true;
5186      } else {
5187        // "friend void foo<>(int);" is an implicit specialization decl.
5188        isFunctionTemplateSpecialization = true;
5189      }
5190    } else if (isFriend && isFunctionTemplateSpecialization) {
5191      // This combination is only possible in a recovery case;  the user
5192      // wrote something like:
5193      //   template <> friend void foo(int);
5194      // which we're recovering from as if the user had written:
5195      //   friend void foo<>(int);
5196      // Go ahead and fake up a template id.
5197      HasExplicitTemplateArgs = true;
5198        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5199      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5200    }
5201
5202    // If it's a friend (and only if it's a friend), it's possible
5203    // that either the specialized function type or the specialized
5204    // template is dependent, and therefore matching will fail.  In
5205    // this case, don't check the specialization yet.
5206    bool InstantiationDependent = false;
5207    if (isFunctionTemplateSpecialization && isFriend &&
5208        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5209         TemplateSpecializationType::anyDependentTemplateArguments(
5210            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5211            InstantiationDependent))) {
5212      assert(HasExplicitTemplateArgs &&
5213             "friend function specialization without template args");
5214      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5215                                                       Previous))
5216        NewFD->setInvalidDecl();
5217    } else if (isFunctionTemplateSpecialization) {
5218      if (CurContext->isDependentContext() && CurContext->isRecord()
5219          && !isFriend) {
5220        isDependentClassScopeExplicitSpecialization = true;
5221        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5222          diag::ext_function_specialization_in_class :
5223          diag::err_function_specialization_in_class)
5224          << NewFD->getDeclName();
5225      } else if (CheckFunctionTemplateSpecialization(NewFD,
5226                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5227                                                     Previous))
5228        NewFD->setInvalidDecl();
5229
5230      // C++ [dcl.stc]p1:
5231      //   A storage-class-specifier shall not be specified in an explicit
5232      //   specialization (14.7.3)
5233      if (SC != SC_None) {
5234        if (SC != NewFD->getStorageClass())
5235          Diag(NewFD->getLocation(),
5236               diag::err_explicit_specialization_inconsistent_storage_class)
5237            << SC
5238            << FixItHint::CreateRemoval(
5239                                      D.getDeclSpec().getStorageClassSpecLoc());
5240
5241        else
5242          Diag(NewFD->getLocation(),
5243               diag::ext_explicit_specialization_storage_class)
5244            << FixItHint::CreateRemoval(
5245                                      D.getDeclSpec().getStorageClassSpecLoc());
5246      }
5247
5248    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5249      if (CheckMemberSpecialization(NewFD, Previous))
5250          NewFD->setInvalidDecl();
5251    }
5252
5253    // Perform semantic checking on the function declaration.
5254    if (!isDependentClassScopeExplicitSpecialization) {
5255      if (NewFD->isInvalidDecl()) {
5256        // If this is a class member, mark the class invalid immediately.
5257        // This avoids some consistency errors later.
5258        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5259          methodDecl->getParent()->setInvalidDecl();
5260      } else {
5261        if (NewFD->isMain())
5262          CheckMain(NewFD, D.getDeclSpec());
5263        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5264                                                    isExplicitSpecialization));
5265      }
5266    }
5267
5268    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5269            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5270           "previous declaration set still overloaded");
5271
5272    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5273        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5274      NewFD->setInvalidDecl();
5275
5276    NamedDecl *PrincipalDecl = (FunctionTemplate
5277                                ? cast<NamedDecl>(FunctionTemplate)
5278                                : NewFD);
5279
5280    if (isFriend && D.isRedeclaration()) {
5281      AccessSpecifier Access = AS_public;
5282      if (!NewFD->isInvalidDecl())
5283        Access = NewFD->getPreviousDeclaration()->getAccess();
5284
5285      NewFD->setAccess(Access);
5286      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5287
5288      PrincipalDecl->setObjectOfFriendDecl(true);
5289    }
5290
5291    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5292        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5293      PrincipalDecl->setNonMemberOperator();
5294
5295    // If we have a function template, check the template parameter
5296    // list. This will check and merge default template arguments.
5297    if (FunctionTemplate) {
5298      FunctionTemplateDecl *PrevTemplate =
5299                                     FunctionTemplate->getPreviousDeclaration();
5300      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5301                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5302                            D.getDeclSpec().isFriendSpecified()
5303                              ? (D.isFunctionDefinition()
5304                                   ? TPC_FriendFunctionTemplateDefinition
5305                                   : TPC_FriendFunctionTemplate)
5306                              : (D.getCXXScopeSpec().isSet() &&
5307                                 DC && DC->isRecord() &&
5308                                 DC->isDependentContext())
5309                                  ? TPC_ClassTemplateMember
5310                                  : TPC_FunctionTemplate);
5311    }
5312
5313    if (NewFD->isInvalidDecl()) {
5314      // Ignore all the rest of this.
5315    } else if (!D.isRedeclaration()) {
5316      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5317                                       AddToScope };
5318      // Fake up an access specifier if it's supposed to be a class member.
5319      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5320        NewFD->setAccess(AS_public);
5321
5322      // Qualified decls generally require a previous declaration.
5323      if (D.getCXXScopeSpec().isSet()) {
5324        // ...with the major exception of templated-scope or
5325        // dependent-scope friend declarations.
5326
5327        // TODO: we currently also suppress this check in dependent
5328        // contexts because (1) the parameter depth will be off when
5329        // matching friend templates and (2) we might actually be
5330        // selecting a friend based on a dependent factor.  But there
5331        // are situations where these conditions don't apply and we
5332        // can actually do this check immediately.
5333        if (isFriend &&
5334            (TemplateParamLists.size() ||
5335             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5336             CurContext->isDependentContext())) {
5337          // ignore these
5338        } else {
5339          // The user tried to provide an out-of-line definition for a
5340          // function that is a member of a class or namespace, but there
5341          // was no such member function declared (C++ [class.mfct]p2,
5342          // C++ [namespace.memdef]p2). For example:
5343          //
5344          // class X {
5345          //   void f() const;
5346          // };
5347          //
5348          // void X::f() { } // ill-formed
5349          //
5350          // Complain about this problem, and attempt to suggest close
5351          // matches (e.g., those that differ only in cv-qualifiers and
5352          // whether the parameter types are references).
5353
5354          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5355                                                               NewFD,
5356                                                               ExtraArgs)) {
5357            AddToScope = ExtraArgs.AddToScope;
5358            return Result;
5359          }
5360        }
5361
5362        // Unqualified local friend declarations are required to resolve
5363        // to something.
5364      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5365        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5366                                                             NewFD,
5367                                                             ExtraArgs)) {
5368          AddToScope = ExtraArgs.AddToScope;
5369          return Result;
5370        }
5371      }
5372
5373    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5374               !isFriend && !isFunctionTemplateSpecialization &&
5375               !isExplicitSpecialization) {
5376      // An out-of-line member function declaration must also be a
5377      // definition (C++ [dcl.meaning]p1).
5378      // Note that this is not the case for explicit specializations of
5379      // function templates or member functions of class templates, per
5380      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5381      // extension for compatibility with old SWIG code which likes to
5382      // generate them.
5383      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5384        << D.getCXXScopeSpec().getRange();
5385    }
5386  }
5387
5388
5389  // Handle attributes. We need to have merged decls when handling attributes
5390  // (for example to check for conflicts, etc).
5391  // FIXME: This needs to happen before we merge declarations. Then,
5392  // let attribute merging cope with attribute conflicts.
5393  ProcessDeclAttributes(S, NewFD, D,
5394                        /*NonInheritable=*/false, /*Inheritable=*/true);
5395
5396  // attributes declared post-definition are currently ignored
5397  // FIXME: This should happen during attribute merging
5398  if (D.isRedeclaration() && Previous.isSingleResult()) {
5399    const FunctionDecl *Def;
5400    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5401    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5402      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5403      Diag(Def->getLocation(), diag::note_previous_definition);
5404    }
5405  }
5406
5407  AddKnownFunctionAttributes(NewFD);
5408
5409  if (NewFD->hasAttr<OverloadableAttr>() &&
5410      !NewFD->getType()->getAs<FunctionProtoType>()) {
5411    Diag(NewFD->getLocation(),
5412         diag::err_attribute_overloadable_no_prototype)
5413      << NewFD;
5414
5415    // Turn this into a variadic function with no parameters.
5416    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5417    FunctionProtoType::ExtProtoInfo EPI;
5418    EPI.Variadic = true;
5419    EPI.ExtInfo = FT->getExtInfo();
5420
5421    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5422    NewFD->setType(R);
5423  }
5424
5425  // If there's a #pragma GCC visibility in scope, and this isn't a class
5426  // member, set the visibility of this function.
5427  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5428    AddPushedVisibilityAttribute(NewFD);
5429
5430  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5431  // marking the function.
5432  AddCFAuditedAttribute(NewFD);
5433
5434  // If this is a locally-scoped extern C function, update the
5435  // map of such names.
5436  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5437      && !NewFD->isInvalidDecl())
5438    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5439
5440  // Set this FunctionDecl's range up to the right paren.
5441  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5442
5443  if (getLangOptions().CPlusPlus) {
5444    if (FunctionTemplate) {
5445      if (NewFD->isInvalidDecl())
5446        FunctionTemplate->setInvalidDecl();
5447      return FunctionTemplate;
5448    }
5449  }
5450
5451  MarkUnusedFileScopedDecl(NewFD);
5452
5453  if (getLangOptions().CUDA)
5454    if (IdentifierInfo *II = NewFD->getIdentifier())
5455      if (!NewFD->isInvalidDecl() &&
5456          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5457        if (II->isStr("cudaConfigureCall")) {
5458          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5459            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5460
5461          Context.setcudaConfigureCallDecl(NewFD);
5462        }
5463      }
5464
5465  // Here we have an function template explicit specialization at class scope.
5466  // The actually specialization will be postponed to template instatiation
5467  // time via the ClassScopeFunctionSpecializationDecl node.
5468  if (isDependentClassScopeExplicitSpecialization) {
5469    ClassScopeFunctionSpecializationDecl *NewSpec =
5470                         ClassScopeFunctionSpecializationDecl::Create(
5471                                Context, CurContext,  SourceLocation(),
5472                                cast<CXXMethodDecl>(NewFD));
5473    CurContext->addDecl(NewSpec);
5474    AddToScope = false;
5475  }
5476
5477  return NewFD;
5478}
5479
5480/// \brief Perform semantic checking of a new function declaration.
5481///
5482/// Performs semantic analysis of the new function declaration
5483/// NewFD. This routine performs all semantic checking that does not
5484/// require the actual declarator involved in the declaration, and is
5485/// used both for the declaration of functions as they are parsed
5486/// (called via ActOnDeclarator) and for the declaration of functions
5487/// that have been instantiated via C++ template instantiation (called
5488/// via InstantiateDecl).
5489///
5490/// \param IsExplicitSpecialiation whether this new function declaration is
5491/// an explicit specialization of the previous declaration.
5492///
5493/// This sets NewFD->isInvalidDecl() to true if there was an error.
5494///
5495/// Returns true if the function declaration is a redeclaration.
5496bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5497                                    LookupResult &Previous,
5498                                    bool IsExplicitSpecialization) {
5499  assert(!NewFD->getResultType()->isVariablyModifiedType()
5500         && "Variably modified return types are not handled here");
5501
5502  // Check for a previous declaration of this name.
5503  if (Previous.empty() && NewFD->isExternC()) {
5504    // Since we did not find anything by this name and we're declaring
5505    // an extern "C" function, look for a non-visible extern "C"
5506    // declaration with the same name.
5507    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5508      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5509    if (Pos != LocallyScopedExternalDecls.end())
5510      Previous.addDecl(Pos->second);
5511  }
5512
5513  bool Redeclaration = false;
5514
5515  // Merge or overload the declaration with an existing declaration of
5516  // the same name, if appropriate.
5517  if (!Previous.empty()) {
5518    // Determine whether NewFD is an overload of PrevDecl or
5519    // a declaration that requires merging. If it's an overload,
5520    // there's no more work to do here; we'll just add the new
5521    // function to the scope.
5522
5523    NamedDecl *OldDecl = 0;
5524    if (!AllowOverloadingOfFunction(Previous, Context)) {
5525      Redeclaration = true;
5526      OldDecl = Previous.getFoundDecl();
5527    } else {
5528      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5529                            /*NewIsUsingDecl*/ false)) {
5530      case Ovl_Match:
5531        Redeclaration = true;
5532        break;
5533
5534      case Ovl_NonFunction:
5535        Redeclaration = true;
5536        break;
5537
5538      case Ovl_Overload:
5539        Redeclaration = false;
5540        break;
5541      }
5542
5543      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5544        // If a function name is overloadable in C, then every function
5545        // with that name must be marked "overloadable".
5546        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5547          << Redeclaration << NewFD;
5548        NamedDecl *OverloadedDecl = 0;
5549        if (Redeclaration)
5550          OverloadedDecl = OldDecl;
5551        else if (!Previous.empty())
5552          OverloadedDecl = Previous.getRepresentativeDecl();
5553        if (OverloadedDecl)
5554          Diag(OverloadedDecl->getLocation(),
5555               diag::note_attribute_overloadable_prev_overload);
5556        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5557                                                        Context));
5558      }
5559    }
5560
5561    if (Redeclaration) {
5562      // NewFD and OldDecl represent declarations that need to be
5563      // merged.
5564      if (MergeFunctionDecl(NewFD, OldDecl)) {
5565        NewFD->setInvalidDecl();
5566        return Redeclaration;
5567      }
5568
5569      Previous.clear();
5570      Previous.addDecl(OldDecl);
5571
5572      if (FunctionTemplateDecl *OldTemplateDecl
5573                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5574        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5575        FunctionTemplateDecl *NewTemplateDecl
5576          = NewFD->getDescribedFunctionTemplate();
5577        assert(NewTemplateDecl && "Template/non-template mismatch");
5578        if (CXXMethodDecl *Method
5579              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5580          Method->setAccess(OldTemplateDecl->getAccess());
5581          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5582        }
5583
5584        // If this is an explicit specialization of a member that is a function
5585        // template, mark it as a member specialization.
5586        if (IsExplicitSpecialization &&
5587            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5588          NewTemplateDecl->setMemberSpecialization();
5589          assert(OldTemplateDecl->isMemberSpecialization());
5590        }
5591
5592        if (OldTemplateDecl->isModulePrivate())
5593          NewTemplateDecl->setModulePrivate();
5594
5595      } else {
5596        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5597          NewFD->setAccess(OldDecl->getAccess());
5598        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5599      }
5600    }
5601  }
5602
5603  // Semantic checking for this function declaration (in isolation).
5604  if (getLangOptions().CPlusPlus) {
5605    // C++-specific checks.
5606    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5607      CheckConstructor(Constructor);
5608    } else if (CXXDestructorDecl *Destructor =
5609                dyn_cast<CXXDestructorDecl>(NewFD)) {
5610      CXXRecordDecl *Record = Destructor->getParent();
5611      QualType ClassType = Context.getTypeDeclType(Record);
5612
5613      // FIXME: Shouldn't we be able to perform this check even when the class
5614      // type is dependent? Both gcc and edg can handle that.
5615      if (!ClassType->isDependentType()) {
5616        DeclarationName Name
5617          = Context.DeclarationNames.getCXXDestructorName(
5618                                        Context.getCanonicalType(ClassType));
5619        if (NewFD->getDeclName() != Name) {
5620          Diag(NewFD->getLocation(), diag::err_destructor_name);
5621          NewFD->setInvalidDecl();
5622          return Redeclaration;
5623        }
5624      }
5625    } else if (CXXConversionDecl *Conversion
5626               = dyn_cast<CXXConversionDecl>(NewFD)) {
5627      ActOnConversionDeclarator(Conversion);
5628    }
5629
5630    // Find any virtual functions that this function overrides.
5631    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5632      if (!Method->isFunctionTemplateSpecialization() &&
5633          !Method->getDescribedFunctionTemplate()) {
5634        if (AddOverriddenMethods(Method->getParent(), Method)) {
5635          // If the function was marked as "static", we have a problem.
5636          if (NewFD->getStorageClass() == SC_Static) {
5637            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5638              << NewFD->getDeclName();
5639            for (CXXMethodDecl::method_iterator
5640                      Overridden = Method->begin_overridden_methods(),
5641                   OverriddenEnd = Method->end_overridden_methods();
5642                 Overridden != OverriddenEnd;
5643                 ++Overridden) {
5644              Diag((*Overridden)->getLocation(),
5645                   diag::note_overridden_virtual_function);
5646            }
5647          }
5648        }
5649      }
5650    }
5651
5652    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5653    if (NewFD->isOverloadedOperator() &&
5654        CheckOverloadedOperatorDeclaration(NewFD)) {
5655      NewFD->setInvalidDecl();
5656      return Redeclaration;
5657    }
5658
5659    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5660    if (NewFD->getLiteralIdentifier() &&
5661        CheckLiteralOperatorDeclaration(NewFD)) {
5662      NewFD->setInvalidDecl();
5663      return Redeclaration;
5664    }
5665
5666    // In C++, check default arguments now that we have merged decls. Unless
5667    // the lexical context is the class, because in this case this is done
5668    // during delayed parsing anyway.
5669    if (!CurContext->isRecord())
5670      CheckCXXDefaultArguments(NewFD);
5671
5672    // If this function declares a builtin function, check the type of this
5673    // declaration against the expected type for the builtin.
5674    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5675      ASTContext::GetBuiltinTypeError Error;
5676      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5677      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5678        // The type of this function differs from the type of the builtin,
5679        // so forget about the builtin entirely.
5680        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5681      }
5682    }
5683  }
5684  return Redeclaration;
5685}
5686
5687void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5688  // C++ [basic.start.main]p3:  A program that declares main to be inline
5689  //   or static is ill-formed.
5690  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5691  //   shall not appear in a declaration of main.
5692  // static main is not an error under C99, but we should warn about it.
5693  if (FD->getStorageClass() == SC_Static)
5694    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5695         ? diag::err_static_main : diag::warn_static_main)
5696      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5697  if (FD->isInlineSpecified())
5698    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5699      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5700
5701  QualType T = FD->getType();
5702  assert(T->isFunctionType() && "function decl is not of function type");
5703  const FunctionType* FT = T->getAs<FunctionType>();
5704
5705  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5706    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5707    FD->setInvalidDecl(true);
5708  }
5709
5710  // Treat protoless main() as nullary.
5711  if (isa<FunctionNoProtoType>(FT)) return;
5712
5713  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5714  unsigned nparams = FTP->getNumArgs();
5715  assert(FD->getNumParams() == nparams);
5716
5717  bool HasExtraParameters = (nparams > 3);
5718
5719  // Darwin passes an undocumented fourth argument of type char**.  If
5720  // other platforms start sprouting these, the logic below will start
5721  // getting shifty.
5722  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5723    HasExtraParameters = false;
5724
5725  if (HasExtraParameters) {
5726    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5727    FD->setInvalidDecl(true);
5728    nparams = 3;
5729  }
5730
5731  // FIXME: a lot of the following diagnostics would be improved
5732  // if we had some location information about types.
5733
5734  QualType CharPP =
5735    Context.getPointerType(Context.getPointerType(Context.CharTy));
5736  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5737
5738  for (unsigned i = 0; i < nparams; ++i) {
5739    QualType AT = FTP->getArgType(i);
5740
5741    bool mismatch = true;
5742
5743    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5744      mismatch = false;
5745    else if (Expected[i] == CharPP) {
5746      // As an extension, the following forms are okay:
5747      //   char const **
5748      //   char const * const *
5749      //   char * const *
5750
5751      QualifierCollector qs;
5752      const PointerType* PT;
5753      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5754          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5755          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5756        qs.removeConst();
5757        mismatch = !qs.empty();
5758      }
5759    }
5760
5761    if (mismatch) {
5762      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5763      // TODO: suggest replacing given type with expected type
5764      FD->setInvalidDecl(true);
5765    }
5766  }
5767
5768  if (nparams == 1 && !FD->isInvalidDecl()) {
5769    Diag(FD->getLocation(), diag::warn_main_one_arg);
5770  }
5771
5772  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5773    Diag(FD->getLocation(), diag::err_main_template_decl);
5774    FD->setInvalidDecl();
5775  }
5776}
5777
5778bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5779  // FIXME: Need strict checking.  In C89, we need to check for
5780  // any assignment, increment, decrement, function-calls, or
5781  // commas outside of a sizeof.  In C99, it's the same list,
5782  // except that the aforementioned are allowed in unevaluated
5783  // expressions.  Everything else falls under the
5784  // "may accept other forms of constant expressions" exception.
5785  // (We never end up here for C++, so the constant expression
5786  // rules there don't matter.)
5787  if (Init->isConstantInitializer(Context, false))
5788    return false;
5789  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5790    << Init->getSourceRange();
5791  return true;
5792}
5793
5794namespace {
5795  // Visits an initialization expression to see if OrigDecl is evaluated in
5796  // its own initialization and throws a warning if it does.
5797  class SelfReferenceChecker
5798      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5799    Sema &S;
5800    Decl *OrigDecl;
5801    bool isRecordType;
5802    bool isPODType;
5803
5804  public:
5805    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5806
5807    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5808                                                    S(S), OrigDecl(OrigDecl) {
5809      isPODType = false;
5810      isRecordType = false;
5811      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5812        isPODType = VD->getType().isPODType(S.Context);
5813        isRecordType = VD->getType()->isRecordType();
5814      }
5815    }
5816
5817    void VisitExpr(Expr *E) {
5818      if (isa<ObjCMessageExpr>(*E)) return;
5819      if (isRecordType) {
5820        Expr *expr = E;
5821        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5822          ValueDecl *VD = ME->getMemberDecl();
5823          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5824          expr = ME->getBase();
5825        }
5826        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5827          HandleDeclRefExpr(DRE);
5828          return;
5829        }
5830      }
5831      Inherited::VisitExpr(E);
5832    }
5833
5834    void VisitMemberExpr(MemberExpr *E) {
5835      if (E->getType()->canDecayToPointerType()) return;
5836      if (isa<FieldDecl>(E->getMemberDecl()))
5837        if (DeclRefExpr *DRE
5838              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5839          HandleDeclRefExpr(DRE);
5840          return;
5841        }
5842      Inherited::VisitMemberExpr(E);
5843    }
5844
5845    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5846      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5847          (isRecordType && E->getCastKind() == CK_NoOp)) {
5848        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5849        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5850          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5851        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5852          HandleDeclRefExpr(DRE);
5853          return;
5854        }
5855      }
5856      Inherited::VisitImplicitCastExpr(E);
5857    }
5858
5859    void VisitUnaryOperator(UnaryOperator *E) {
5860      // For POD record types, addresses of its own members are well-defined.
5861      if (isRecordType && isPODType) return;
5862      Inherited::VisitUnaryOperator(E);
5863    }
5864
5865    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5866      Decl* ReferenceDecl = DRE->getDecl();
5867      if (OrigDecl != ReferenceDecl) return;
5868      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5869                          Sema::NotForRedeclaration);
5870      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5871                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5872                              << Result.getLookupName()
5873                              << OrigDecl->getLocation()
5874                              << DRE->getSourceRange());
5875    }
5876  };
5877}
5878
5879/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5880void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5881  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5882}
5883
5884/// AddInitializerToDecl - Adds the initializer Init to the
5885/// declaration dcl. If DirectInit is true, this is C++ direct
5886/// initialization rather than copy initialization.
5887void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5888                                bool DirectInit, bool TypeMayContainAuto) {
5889  // If there is no declaration, there was an error parsing it.  Just ignore
5890  // the initializer.
5891  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5892    return;
5893
5894  // Check for self-references within variable initializers.
5895  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5896    // Variables declared within a function/method body are handled
5897    // by a dataflow analysis.
5898    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5899      CheckSelfReference(RealDecl, Init);
5900  }
5901  else {
5902    CheckSelfReference(RealDecl, Init);
5903  }
5904
5905  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5906    // With declarators parsed the way they are, the parser cannot
5907    // distinguish between a normal initializer and a pure-specifier.
5908    // Thus this grotesque test.
5909    IntegerLiteral *IL;
5910    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5911        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5912      CheckPureMethod(Method, Init->getSourceRange());
5913    else {
5914      Diag(Method->getLocation(), diag::err_member_function_initialization)
5915        << Method->getDeclName() << Init->getSourceRange();
5916      Method->setInvalidDecl();
5917    }
5918    return;
5919  }
5920
5921  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5922  if (!VDecl) {
5923    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5924    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5925    RealDecl->setInvalidDecl();
5926    return;
5927  }
5928
5929  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5930  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5931    TypeSourceInfo *DeducedType = 0;
5932    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5933      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5934        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5935        << Init->getSourceRange();
5936    if (!DeducedType) {
5937      RealDecl->setInvalidDecl();
5938      return;
5939    }
5940    VDecl->setTypeSourceInfo(DeducedType);
5941    VDecl->setType(DeducedType->getType());
5942
5943    // In ARC, infer lifetime.
5944    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5945      VDecl->setInvalidDecl();
5946
5947    // If this is a redeclaration, check that the type we just deduced matches
5948    // the previously declared type.
5949    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5950      MergeVarDeclTypes(VDecl, Old);
5951  }
5952
5953
5954  // A definition must end up with a complete type, which means it must be
5955  // complete with the restriction that an array type might be completed by the
5956  // initializer; note that later code assumes this restriction.
5957  QualType BaseDeclType = VDecl->getType();
5958  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5959    BaseDeclType = Array->getElementType();
5960  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5961                          diag::err_typecheck_decl_incomplete_type)) {
5962    RealDecl->setInvalidDecl();
5963    return;
5964  }
5965
5966  // The variable can not have an abstract class type.
5967  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5968                             diag::err_abstract_type_in_decl,
5969                             AbstractVariableType))
5970    VDecl->setInvalidDecl();
5971
5972  const VarDecl *Def;
5973  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5974    Diag(VDecl->getLocation(), diag::err_redefinition)
5975      << VDecl->getDeclName();
5976    Diag(Def->getLocation(), diag::note_previous_definition);
5977    VDecl->setInvalidDecl();
5978    return;
5979  }
5980
5981  const VarDecl* PrevInit = 0;
5982  if (getLangOptions().CPlusPlus) {
5983    // C++ [class.static.data]p4
5984    //   If a static data member is of const integral or const
5985    //   enumeration type, its declaration in the class definition can
5986    //   specify a constant-initializer which shall be an integral
5987    //   constant expression (5.19). In that case, the member can appear
5988    //   in integral constant expressions. The member shall still be
5989    //   defined in a namespace scope if it is used in the program and the
5990    //   namespace scope definition shall not contain an initializer.
5991    //
5992    // We already performed a redefinition check above, but for static
5993    // data members we also need to check whether there was an in-class
5994    // declaration with an initializer.
5995    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5996      Diag(VDecl->getLocation(), diag::err_redefinition)
5997        << VDecl->getDeclName();
5998      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5999      return;
6000    }
6001
6002    if (VDecl->hasLocalStorage())
6003      getCurFunction()->setHasBranchProtectedScope();
6004
6005    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6006      VDecl->setInvalidDecl();
6007      return;
6008    }
6009  }
6010
6011  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6012  // a kernel function cannot be initialized."
6013  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6014    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6015    VDecl->setInvalidDecl();
6016    return;
6017  }
6018
6019  // Capture the variable that is being initialized and the style of
6020  // initialization.
6021  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6022
6023  // FIXME: Poor source location information.
6024  InitializationKind Kind
6025    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
6026                                                   Init->getLocStart(),
6027                                                   Init->getLocEnd())
6028                : InitializationKind::CreateCopy(VDecl->getLocation(),
6029                                                 Init->getLocStart());
6030
6031  // Get the decls type and save a reference for later, since
6032  // CheckInitializerTypes may change it.
6033  QualType DclT = VDecl->getType(), SavT = DclT;
6034  if (VDecl->isLocalVarDecl()) {
6035    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
6036      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6037      VDecl->setInvalidDecl();
6038    } else if (!VDecl->isInvalidDecl()) {
6039      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6040      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6041                                                MultiExprArg(*this, &Init, 1),
6042                                                &DclT);
6043      if (Result.isInvalid()) {
6044        VDecl->setInvalidDecl();
6045        return;
6046      }
6047
6048      Init = Result.takeAs<Expr>();
6049
6050      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
6051      // Don't check invalid declarations to avoid emitting useless diagnostics.
6052      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
6053        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
6054          CheckForConstantInitializer(Init, DclT);
6055      }
6056    }
6057  } else if (VDecl->isStaticDataMember() &&
6058             VDecl->getLexicalDeclContext()->isRecord()) {
6059    // This is an in-class initialization for a static data member, e.g.,
6060    //
6061    // struct S {
6062    //   static const int value = 17;
6063    // };
6064
6065    // Try to perform the initialization regardless.
6066    if (!VDecl->isInvalidDecl()) {
6067      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6068      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6069                                          MultiExprArg(*this, &Init, 1),
6070                                          &DclT);
6071      if (Result.isInvalid()) {
6072        VDecl->setInvalidDecl();
6073        return;
6074      }
6075
6076      Init = Result.takeAs<Expr>();
6077    }
6078
6079    // C++ [class.mem]p4:
6080    //   A member-declarator can contain a constant-initializer only
6081    //   if it declares a static member (9.4) of const integral or
6082    //   const enumeration type, see 9.4.2.
6083    //
6084    // C++0x [class.static.data]p3:
6085    //   If a non-volatile const static data member is of integral or
6086    //   enumeration type, its declaration in the class definition can
6087    //   specify a brace-or-equal-initializer in which every initalizer-clause
6088    //   that is an assignment-expression is a constant expression. A static
6089    //   data member of literal type can be declared in the class definition
6090    //   with the constexpr specifier; if so, its declaration shall specify a
6091    //   brace-or-equal-initializer in which every initializer-clause that is
6092    //   an assignment-expression is a constant expression.
6093    QualType T = VDecl->getType();
6094
6095    // Do nothing on dependent types.
6096    if (T->isDependentType()) {
6097
6098    // Allow any 'static constexpr' members, whether or not they are of literal
6099    // type. We separately check that the initializer is a constant expression,
6100    // which implicitly requires the member to be of literal type.
6101    } else if (VDecl->isConstexpr()) {
6102
6103    // Require constness.
6104    } else if (!T.isConstQualified()) {
6105      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6106        << Init->getSourceRange();
6107      VDecl->setInvalidDecl();
6108
6109    // We allow integer constant expressions in all cases.
6110    } else if (T->isIntegralOrEnumerationType()) {
6111      // Check whether the expression is a constant expression.
6112      SourceLocation Loc;
6113      if (getLangOptions().CPlusPlus0x && T.isVolatileQualified())
6114        // In C++0x, a non-constexpr const static data member with an
6115        // in-class initializer cannot be volatile.
6116        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6117      else if (Init->isValueDependent())
6118        ; // Nothing to check.
6119      else if (Init->isIntegerConstantExpr(Context, &Loc))
6120        ; // Ok, it's an ICE!
6121      else if (Init->isEvaluatable(Context)) {
6122        // If we can constant fold the initializer through heroics, accept it,
6123        // but report this as a use of an extension for -pedantic.
6124        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6125          << Init->getSourceRange();
6126      } else {
6127        // Otherwise, this is some crazy unknown case.  Report the issue at the
6128        // location provided by the isIntegerConstantExpr failed check.
6129        Diag(Loc, diag::err_in_class_initializer_non_constant)
6130          << Init->getSourceRange();
6131        VDecl->setInvalidDecl();
6132      }
6133
6134    // We allow floating-point constants as an extension.
6135    } else if (T->isFloatingType()) { // also permits complex, which is ok
6136      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6137        << T << Init->getSourceRange();
6138      if (getLangOptions().CPlusPlus0x)
6139        Diag(VDecl->getLocation(),
6140             diag::note_in_class_initializer_float_type_constexpr)
6141          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6142
6143      if (!Init->isValueDependent() &&
6144          !Init->isConstantInitializer(Context, false)) {
6145        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6146          << Init->getSourceRange();
6147        VDecl->setInvalidDecl();
6148      }
6149
6150    // Suggest adding 'constexpr' in C++0x for literal types.
6151    } else if (getLangOptions().CPlusPlus0x && T->isLiteralType()) {
6152      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6153        << T << Init->getSourceRange()
6154        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6155      VDecl->setConstexpr(true);
6156
6157    } else {
6158      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6159        << T << Init->getSourceRange();
6160      VDecl->setInvalidDecl();
6161    }
6162  } else if (VDecl->isFileVarDecl()) {
6163    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6164        (!getLangOptions().CPlusPlus ||
6165         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6166      Diag(VDecl->getLocation(), diag::warn_extern_init);
6167    if (!VDecl->isInvalidDecl()) {
6168      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6169      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6170                                                MultiExprArg(*this, &Init, 1),
6171                                                &DclT);
6172      if (Result.isInvalid()) {
6173        VDecl->setInvalidDecl();
6174        return;
6175      }
6176
6177      Init = Result.takeAs<Expr>();
6178    }
6179
6180    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
6181    // Don't check invalid declarations to avoid emitting useless diagnostics.
6182    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
6183      // C99 6.7.8p4. All file scoped initializers need to be constant.
6184      CheckForConstantInitializer(Init, DclT);
6185    }
6186  }
6187  // If the type changed, it means we had an incomplete type that was
6188  // completed by the initializer. For example:
6189  //   int ary[] = { 1, 3, 5 };
6190  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
6191  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
6192    VDecl->setType(DclT);
6193    Init->setType(DclT);
6194  }
6195
6196  // Check any implicit conversions within the expression.
6197  CheckImplicitConversions(Init, VDecl->getLocation());
6198
6199  if (!VDecl->isInvalidDecl())
6200    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6201
6202  Init = MaybeCreateExprWithCleanups(Init);
6203  // Attach the initializer to the decl.
6204  VDecl->setInit(Init);
6205
6206  CheckCompleteVariableDeclaration(VDecl);
6207}
6208
6209/// ActOnInitializerError - Given that there was an error parsing an
6210/// initializer for the given declaration, try to return to some form
6211/// of sanity.
6212void Sema::ActOnInitializerError(Decl *D) {
6213  // Our main concern here is re-establishing invariants like "a
6214  // variable's type is either dependent or complete".
6215  if (!D || D->isInvalidDecl()) return;
6216
6217  VarDecl *VD = dyn_cast<VarDecl>(D);
6218  if (!VD) return;
6219
6220  // Auto types are meaningless if we can't make sense of the initializer.
6221  if (ParsingInitForAutoVars.count(D)) {
6222    D->setInvalidDecl();
6223    return;
6224  }
6225
6226  QualType Ty = VD->getType();
6227  if (Ty->isDependentType()) return;
6228
6229  // Require a complete type.
6230  if (RequireCompleteType(VD->getLocation(),
6231                          Context.getBaseElementType(Ty),
6232                          diag::err_typecheck_decl_incomplete_type)) {
6233    VD->setInvalidDecl();
6234    return;
6235  }
6236
6237  // Require an abstract type.
6238  if (RequireNonAbstractType(VD->getLocation(), Ty,
6239                             diag::err_abstract_type_in_decl,
6240                             AbstractVariableType)) {
6241    VD->setInvalidDecl();
6242    return;
6243  }
6244
6245  // Don't bother complaining about constructors or destructors,
6246  // though.
6247}
6248
6249void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6250                                  bool TypeMayContainAuto) {
6251  // If there is no declaration, there was an error parsing it. Just ignore it.
6252  if (RealDecl == 0)
6253    return;
6254
6255  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6256    QualType Type = Var->getType();
6257
6258    // C++0x [dcl.spec.auto]p3
6259    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6260      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6261        << Var->getDeclName() << Type;
6262      Var->setInvalidDecl();
6263      return;
6264    }
6265
6266    // C++0x [class.static.data]p3: A static data member can be declared with
6267    // the constexpr specifier; if so, its declaration shall specify
6268    // a brace-or-equal-initializer.
6269    if (Var->isConstexpr() && Var->isStaticDataMember() &&
6270        !Var->isThisDeclarationADefinition()) {
6271      Diag(Var->getLocation(), diag::err_constexpr_static_mem_var_requires_init)
6272        << Var->getDeclName();
6273      Var->setInvalidDecl();
6274      return;
6275    }
6276
6277    switch (Var->isThisDeclarationADefinition()) {
6278    case VarDecl::Definition:
6279      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6280        break;
6281
6282      // We have an out-of-line definition of a static data member
6283      // that has an in-class initializer, so we type-check this like
6284      // a declaration.
6285      //
6286      // Fall through
6287
6288    case VarDecl::DeclarationOnly:
6289      // It's only a declaration.
6290
6291      // Block scope. C99 6.7p7: If an identifier for an object is
6292      // declared with no linkage (C99 6.2.2p6), the type for the
6293      // object shall be complete.
6294      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6295          !Var->getLinkage() && !Var->isInvalidDecl() &&
6296          RequireCompleteType(Var->getLocation(), Type,
6297                              diag::err_typecheck_decl_incomplete_type))
6298        Var->setInvalidDecl();
6299
6300      // Make sure that the type is not abstract.
6301      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6302          RequireNonAbstractType(Var->getLocation(), Type,
6303                                 diag::err_abstract_type_in_decl,
6304                                 AbstractVariableType))
6305        Var->setInvalidDecl();
6306      return;
6307
6308    case VarDecl::TentativeDefinition:
6309      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6310      // object that has file scope without an initializer, and without a
6311      // storage-class specifier or with the storage-class specifier "static",
6312      // constitutes a tentative definition. Note: A tentative definition with
6313      // external linkage is valid (C99 6.2.2p5).
6314      if (!Var->isInvalidDecl()) {
6315        if (const IncompleteArrayType *ArrayT
6316                                    = Context.getAsIncompleteArrayType(Type)) {
6317          if (RequireCompleteType(Var->getLocation(),
6318                                  ArrayT->getElementType(),
6319                                  diag::err_illegal_decl_array_incomplete_type))
6320            Var->setInvalidDecl();
6321        } else if (Var->getStorageClass() == SC_Static) {
6322          // C99 6.9.2p3: If the declaration of an identifier for an object is
6323          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6324          // declared type shall not be an incomplete type.
6325          // NOTE: code such as the following
6326          //     static struct s;
6327          //     struct s { int a; };
6328          // is accepted by gcc. Hence here we issue a warning instead of
6329          // an error and we do not invalidate the static declaration.
6330          // NOTE: to avoid multiple warnings, only check the first declaration.
6331          if (Var->getPreviousDeclaration() == 0)
6332            RequireCompleteType(Var->getLocation(), Type,
6333                                diag::ext_typecheck_decl_incomplete_type);
6334        }
6335      }
6336
6337      // Record the tentative definition; we're done.
6338      if (!Var->isInvalidDecl())
6339        TentativeDefinitions.push_back(Var);
6340      return;
6341    }
6342
6343    // Provide a specific diagnostic for uninitialized variable
6344    // definitions with incomplete array type.
6345    if (Type->isIncompleteArrayType()) {
6346      Diag(Var->getLocation(),
6347           diag::err_typecheck_incomplete_array_needs_initializer);
6348      Var->setInvalidDecl();
6349      return;
6350    }
6351
6352    // Provide a specific diagnostic for uninitialized variable
6353    // definitions with reference type.
6354    if (Type->isReferenceType()) {
6355      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6356        << Var->getDeclName()
6357        << SourceRange(Var->getLocation(), Var->getLocation());
6358      Var->setInvalidDecl();
6359      return;
6360    }
6361
6362    // Do not attempt to type-check the default initializer for a
6363    // variable with dependent type.
6364    if (Type->isDependentType())
6365      return;
6366
6367    if (Var->isInvalidDecl())
6368      return;
6369
6370    if (RequireCompleteType(Var->getLocation(),
6371                            Context.getBaseElementType(Type),
6372                            diag::err_typecheck_decl_incomplete_type)) {
6373      Var->setInvalidDecl();
6374      return;
6375    }
6376
6377    // The variable can not have an abstract class type.
6378    if (RequireNonAbstractType(Var->getLocation(), Type,
6379                               diag::err_abstract_type_in_decl,
6380                               AbstractVariableType)) {
6381      Var->setInvalidDecl();
6382      return;
6383    }
6384
6385    // Check for jumps past the implicit initializer.  C++0x
6386    // clarifies that this applies to a "variable with automatic
6387    // storage duration", not a "local variable".
6388    // C++11 [stmt.dcl]p3
6389    //   A program that jumps from a point where a variable with automatic
6390    //   storage duration is not in scope to a point where it is in scope is
6391    //   ill-formed unless the variable has scalar type, class type with a
6392    //   trivial default constructor and a trivial destructor, a cv-qualified
6393    //   version of one of these types, or an array of one of the preceding
6394    //   types and is declared without an initializer.
6395    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6396      if (const RecordType *Record
6397            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6398        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6399        // Mark the function for further checking even if the looser rules of
6400        // C++11 do not require such checks, so that we can diagnose
6401        // incompatibilities with C++98.
6402        if (!CXXRecord->isPOD())
6403          getCurFunction()->setHasBranchProtectedScope();
6404      }
6405    }
6406
6407    // C++03 [dcl.init]p9:
6408    //   If no initializer is specified for an object, and the
6409    //   object is of (possibly cv-qualified) non-POD class type (or
6410    //   array thereof), the object shall be default-initialized; if
6411    //   the object is of const-qualified type, the underlying class
6412    //   type shall have a user-declared default
6413    //   constructor. Otherwise, if no initializer is specified for
6414    //   a non- static object, the object and its subobjects, if
6415    //   any, have an indeterminate initial value); if the object
6416    //   or any of its subobjects are of const-qualified type, the
6417    //   program is ill-formed.
6418    // C++0x [dcl.init]p11:
6419    //   If no initializer is specified for an object, the object is
6420    //   default-initialized; [...].
6421    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6422    InitializationKind Kind
6423      = InitializationKind::CreateDefault(Var->getLocation());
6424
6425    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6426    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6427                                      MultiExprArg(*this, 0, 0));
6428    if (Init.isInvalid())
6429      Var->setInvalidDecl();
6430    else if (Init.get())
6431      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6432
6433    CheckCompleteVariableDeclaration(Var);
6434  }
6435}
6436
6437void Sema::ActOnCXXForRangeDecl(Decl *D) {
6438  VarDecl *VD = dyn_cast<VarDecl>(D);
6439  if (!VD) {
6440    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6441    D->setInvalidDecl();
6442    return;
6443  }
6444
6445  VD->setCXXForRangeDecl(true);
6446
6447  // for-range-declaration cannot be given a storage class specifier.
6448  int Error = -1;
6449  switch (VD->getStorageClassAsWritten()) {
6450  case SC_None:
6451    break;
6452  case SC_Extern:
6453    Error = 0;
6454    break;
6455  case SC_Static:
6456    Error = 1;
6457    break;
6458  case SC_PrivateExtern:
6459    Error = 2;
6460    break;
6461  case SC_Auto:
6462    Error = 3;
6463    break;
6464  case SC_Register:
6465    Error = 4;
6466    break;
6467  case SC_OpenCLWorkGroupLocal:
6468    llvm_unreachable("Unexpected storage class");
6469  }
6470  if (VD->isConstexpr())
6471    Error = 5;
6472  if (Error != -1) {
6473    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6474      << VD->getDeclName() << Error;
6475    D->setInvalidDecl();
6476  }
6477}
6478
6479void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6480  if (var->isInvalidDecl()) return;
6481
6482  // In ARC, don't allow jumps past the implicit initialization of a
6483  // local retaining variable.
6484  if (getLangOptions().ObjCAutoRefCount &&
6485      var->hasLocalStorage()) {
6486    switch (var->getType().getObjCLifetime()) {
6487    case Qualifiers::OCL_None:
6488    case Qualifiers::OCL_ExplicitNone:
6489    case Qualifiers::OCL_Autoreleasing:
6490      break;
6491
6492    case Qualifiers::OCL_Weak:
6493    case Qualifiers::OCL_Strong:
6494      getCurFunction()->setHasBranchProtectedScope();
6495      break;
6496    }
6497  }
6498
6499  // All the following checks are C++ only.
6500  if (!getLangOptions().CPlusPlus) return;
6501
6502  QualType baseType = Context.getBaseElementType(var->getType());
6503  if (baseType->isDependentType()) return;
6504
6505  // __block variables might require us to capture a copy-initializer.
6506  if (var->hasAttr<BlocksAttr>()) {
6507    // It's currently invalid to ever have a __block variable with an
6508    // array type; should we diagnose that here?
6509
6510    // Regardless, we don't want to ignore array nesting when
6511    // constructing this copy.
6512    QualType type = var->getType();
6513
6514    if (type->isStructureOrClassType()) {
6515      SourceLocation poi = var->getLocation();
6516      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6517      ExprResult result =
6518        PerformCopyInitialization(
6519                        InitializedEntity::InitializeBlock(poi, type, false),
6520                                  poi, Owned(varRef));
6521      if (!result.isInvalid()) {
6522        result = MaybeCreateExprWithCleanups(result);
6523        Expr *init = result.takeAs<Expr>();
6524        Context.setBlockVarCopyInits(var, init);
6525      }
6526    }
6527  }
6528
6529  Expr *Init = var->getInit();
6530  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6531
6532  if (!var->getDeclContext()->isDependentContext() &&
6533      (var->isConstexpr() || IsGlobal) && Init &&
6534      !Init->isConstantInitializer(Context, baseType->isReferenceType())) {
6535    // FIXME: Improve this diagnostic to explain why the initializer is not
6536    // a constant expression.
6537    if (var->isConstexpr())
6538      Diag(var->getLocation(), diag::err_constexpr_var_requires_const_init)
6539        << var << Init->getSourceRange();
6540    if (IsGlobal)
6541      Diag(var->getLocation(), diag::warn_global_constructor)
6542        << Init->getSourceRange();
6543  }
6544
6545  // Require the destructor.
6546  if (const RecordType *recordType = baseType->getAs<RecordType>())
6547    FinalizeVarWithDestructor(var, recordType);
6548}
6549
6550/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6551/// any semantic actions necessary after any initializer has been attached.
6552void
6553Sema::FinalizeDeclaration(Decl *ThisDecl) {
6554  // Note that we are no longer parsing the initializer for this declaration.
6555  ParsingInitForAutoVars.erase(ThisDecl);
6556}
6557
6558Sema::DeclGroupPtrTy
6559Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6560                              Decl **Group, unsigned NumDecls) {
6561  SmallVector<Decl*, 8> Decls;
6562
6563  if (DS.isTypeSpecOwned())
6564    Decls.push_back(DS.getRepAsDecl());
6565
6566  for (unsigned i = 0; i != NumDecls; ++i)
6567    if (Decl *D = Group[i])
6568      Decls.push_back(D);
6569
6570  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6571                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6572}
6573
6574/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6575/// group, performing any necessary semantic checking.
6576Sema::DeclGroupPtrTy
6577Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6578                           bool TypeMayContainAuto) {
6579  // C++0x [dcl.spec.auto]p7:
6580  //   If the type deduced for the template parameter U is not the same in each
6581  //   deduction, the program is ill-formed.
6582  // FIXME: When initializer-list support is added, a distinction is needed
6583  // between the deduced type U and the deduced type which 'auto' stands for.
6584  //   auto a = 0, b = { 1, 2, 3 };
6585  // is legal because the deduced type U is 'int' in both cases.
6586  if (TypeMayContainAuto && NumDecls > 1) {
6587    QualType Deduced;
6588    CanQualType DeducedCanon;
6589    VarDecl *DeducedDecl = 0;
6590    for (unsigned i = 0; i != NumDecls; ++i) {
6591      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6592        AutoType *AT = D->getType()->getContainedAutoType();
6593        // Don't reissue diagnostics when instantiating a template.
6594        if (AT && D->isInvalidDecl())
6595          break;
6596        if (AT && AT->isDeduced()) {
6597          QualType U = AT->getDeducedType();
6598          CanQualType UCanon = Context.getCanonicalType(U);
6599          if (Deduced.isNull()) {
6600            Deduced = U;
6601            DeducedCanon = UCanon;
6602            DeducedDecl = D;
6603          } else if (DeducedCanon != UCanon) {
6604            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6605                 diag::err_auto_different_deductions)
6606              << Deduced << DeducedDecl->getDeclName()
6607              << U << D->getDeclName()
6608              << DeducedDecl->getInit()->getSourceRange()
6609              << D->getInit()->getSourceRange();
6610            D->setInvalidDecl();
6611            break;
6612          }
6613        }
6614      }
6615    }
6616  }
6617
6618  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6619}
6620
6621
6622/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6623/// to introduce parameters into function prototype scope.
6624Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6625  const DeclSpec &DS = D.getDeclSpec();
6626
6627  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6628  // C++03 [dcl.stc]p2 also permits 'auto'.
6629  VarDecl::StorageClass StorageClass = SC_None;
6630  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6631  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6632    StorageClass = SC_Register;
6633    StorageClassAsWritten = SC_Register;
6634  } else if (getLangOptions().CPlusPlus &&
6635             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
6636    StorageClass = SC_Auto;
6637    StorageClassAsWritten = SC_Auto;
6638  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6639    Diag(DS.getStorageClassSpecLoc(),
6640         diag::err_invalid_storage_class_in_func_decl);
6641    D.getMutableDeclSpec().ClearStorageClassSpecs();
6642  }
6643
6644  if (D.getDeclSpec().isThreadSpecified())
6645    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6646  if (D.getDeclSpec().isConstexprSpecified())
6647    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6648      << 0;
6649
6650  DiagnoseFunctionSpecifiers(D);
6651
6652  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6653  QualType parmDeclType = TInfo->getType();
6654
6655  if (getLangOptions().CPlusPlus) {
6656    // Check that there are no default arguments inside the type of this
6657    // parameter.
6658    CheckExtraCXXDefaultArguments(D);
6659
6660    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6661    if (D.getCXXScopeSpec().isSet()) {
6662      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6663        << D.getCXXScopeSpec().getRange();
6664      D.getCXXScopeSpec().clear();
6665    }
6666  }
6667
6668  // Ensure we have a valid name
6669  IdentifierInfo *II = 0;
6670  if (D.hasName()) {
6671    II = D.getIdentifier();
6672    if (!II) {
6673      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6674        << GetNameForDeclarator(D).getName().getAsString();
6675      D.setInvalidType(true);
6676    }
6677  }
6678
6679  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6680  if (II) {
6681    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6682                   ForRedeclaration);
6683    LookupName(R, S);
6684    if (R.isSingleResult()) {
6685      NamedDecl *PrevDecl = R.getFoundDecl();
6686      if (PrevDecl->isTemplateParameter()) {
6687        // Maybe we will complain about the shadowed template parameter.
6688        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6689        // Just pretend that we didn't see the previous declaration.
6690        PrevDecl = 0;
6691      } else if (S->isDeclScope(PrevDecl)) {
6692        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6693        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6694
6695        // Recover by removing the name
6696        II = 0;
6697        D.SetIdentifier(0, D.getIdentifierLoc());
6698        D.setInvalidType(true);
6699      }
6700    }
6701  }
6702
6703  // Temporarily put parameter variables in the translation unit, not
6704  // the enclosing context.  This prevents them from accidentally
6705  // looking like class members in C++.
6706  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6707                                    D.getSourceRange().getBegin(),
6708                                    D.getIdentifierLoc(), II,
6709                                    parmDeclType, TInfo,
6710                                    StorageClass, StorageClassAsWritten);
6711
6712  if (D.isInvalidType())
6713    New->setInvalidDecl();
6714
6715  assert(S->isFunctionPrototypeScope());
6716  assert(S->getFunctionPrototypeDepth() >= 1);
6717  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6718                    S->getNextFunctionPrototypeIndex());
6719
6720  // Add the parameter declaration into this scope.
6721  S->AddDecl(New);
6722  if (II)
6723    IdResolver.AddDecl(New);
6724
6725  ProcessDeclAttributes(S, New, D);
6726
6727  if (D.getDeclSpec().isModulePrivateSpecified())
6728    Diag(New->getLocation(), diag::err_module_private_local)
6729      << 1 << New->getDeclName()
6730      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6731      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6732
6733  if (New->hasAttr<BlocksAttr>()) {
6734    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6735  }
6736  return New;
6737}
6738
6739/// \brief Synthesizes a variable for a parameter arising from a
6740/// typedef.
6741ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6742                                              SourceLocation Loc,
6743                                              QualType T) {
6744  /* FIXME: setting StartLoc == Loc.
6745     Would it be worth to modify callers so as to provide proper source
6746     location for the unnamed parameters, embedding the parameter's type? */
6747  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6748                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6749                                           SC_None, SC_None, 0);
6750  Param->setImplicit();
6751  return Param;
6752}
6753
6754void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6755                                    ParmVarDecl * const *ParamEnd) {
6756  // Don't diagnose unused-parameter errors in template instantiations; we
6757  // will already have done so in the template itself.
6758  if (!ActiveTemplateInstantiations.empty())
6759    return;
6760
6761  for (; Param != ParamEnd; ++Param) {
6762    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6763        !(*Param)->hasAttr<UnusedAttr>()) {
6764      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6765        << (*Param)->getDeclName();
6766    }
6767  }
6768}
6769
6770void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6771                                                  ParmVarDecl * const *ParamEnd,
6772                                                  QualType ReturnTy,
6773                                                  NamedDecl *D) {
6774  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6775    return;
6776
6777  // Warn if the return value is pass-by-value and larger than the specified
6778  // threshold.
6779  if (ReturnTy.isPODType(Context)) {
6780    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6781    if (Size > LangOpts.NumLargeByValueCopy)
6782      Diag(D->getLocation(), diag::warn_return_value_size)
6783          << D->getDeclName() << Size;
6784  }
6785
6786  // Warn if any parameter is pass-by-value and larger than the specified
6787  // threshold.
6788  for (; Param != ParamEnd; ++Param) {
6789    QualType T = (*Param)->getType();
6790    if (!T.isPODType(Context))
6791      continue;
6792    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6793    if (Size > LangOpts.NumLargeByValueCopy)
6794      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6795          << (*Param)->getDeclName() << Size;
6796  }
6797}
6798
6799ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6800                                  SourceLocation NameLoc, IdentifierInfo *Name,
6801                                  QualType T, TypeSourceInfo *TSInfo,
6802                                  VarDecl::StorageClass StorageClass,
6803                                  VarDecl::StorageClass StorageClassAsWritten) {
6804  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6805  if (getLangOptions().ObjCAutoRefCount &&
6806      T.getObjCLifetime() == Qualifiers::OCL_None &&
6807      T->isObjCLifetimeType()) {
6808
6809    Qualifiers::ObjCLifetime lifetime;
6810
6811    // Special cases for arrays:
6812    //   - if it's const, use __unsafe_unretained
6813    //   - otherwise, it's an error
6814    if (T->isArrayType()) {
6815      if (!T.isConstQualified()) {
6816        DelayedDiagnostics.add(
6817            sema::DelayedDiagnostic::makeForbiddenType(
6818            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6819      }
6820      lifetime = Qualifiers::OCL_ExplicitNone;
6821    } else {
6822      lifetime = T->getObjCARCImplicitLifetime();
6823    }
6824    T = Context.getLifetimeQualifiedType(T, lifetime);
6825  }
6826
6827  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6828                                         Context.getAdjustedParameterType(T),
6829                                         TSInfo,
6830                                         StorageClass, StorageClassAsWritten,
6831                                         0);
6832
6833  // Parameters can not be abstract class types.
6834  // For record types, this is done by the AbstractClassUsageDiagnoser once
6835  // the class has been completely parsed.
6836  if (!CurContext->isRecord() &&
6837      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6838                             AbstractParamType))
6839    New->setInvalidDecl();
6840
6841  // Parameter declarators cannot be interface types. All ObjC objects are
6842  // passed by reference.
6843  if (T->isObjCObjectType()) {
6844    Diag(NameLoc,
6845         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6846      << FixItHint::CreateInsertion(NameLoc, "*");
6847    T = Context.getObjCObjectPointerType(T);
6848    New->setType(T);
6849  }
6850
6851  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6852  // duration shall not be qualified by an address-space qualifier."
6853  // Since all parameters have automatic store duration, they can not have
6854  // an address space.
6855  if (T.getAddressSpace() != 0) {
6856    Diag(NameLoc, diag::err_arg_with_address_space);
6857    New->setInvalidDecl();
6858  }
6859
6860  return New;
6861}
6862
6863void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6864                                           SourceLocation LocAfterDecls) {
6865  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6866
6867  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6868  // for a K&R function.
6869  if (!FTI.hasPrototype) {
6870    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6871      --i;
6872      if (FTI.ArgInfo[i].Param == 0) {
6873        llvm::SmallString<256> Code;
6874        llvm::raw_svector_ostream(Code) << "  int "
6875                                        << FTI.ArgInfo[i].Ident->getName()
6876                                        << ";\n";
6877        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6878          << FTI.ArgInfo[i].Ident
6879          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6880
6881        // Implicitly declare the argument as type 'int' for lack of a better
6882        // type.
6883        AttributeFactory attrs;
6884        DeclSpec DS(attrs);
6885        const char* PrevSpec; // unused
6886        unsigned DiagID; // unused
6887        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6888                           PrevSpec, DiagID);
6889        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6890        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6891        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6892      }
6893    }
6894  }
6895}
6896
6897Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6898                                         Declarator &D) {
6899  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6900  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6901  Scope *ParentScope = FnBodyScope->getParent();
6902
6903  D.setFunctionDefinitionKind(FDK_Definition);
6904  Decl *DP = HandleDeclarator(ParentScope, D,
6905                              MultiTemplateParamsArg(*this));
6906  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6907}
6908
6909static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6910  // Don't warn about invalid declarations.
6911  if (FD->isInvalidDecl())
6912    return false;
6913
6914  // Or declarations that aren't global.
6915  if (!FD->isGlobal())
6916    return false;
6917
6918  // Don't warn about C++ member functions.
6919  if (isa<CXXMethodDecl>(FD))
6920    return false;
6921
6922  // Don't warn about 'main'.
6923  if (FD->isMain())
6924    return false;
6925
6926  // Don't warn about inline functions.
6927  if (FD->isInlined())
6928    return false;
6929
6930  // Don't warn about function templates.
6931  if (FD->getDescribedFunctionTemplate())
6932    return false;
6933
6934  // Don't warn about function template specializations.
6935  if (FD->isFunctionTemplateSpecialization())
6936    return false;
6937
6938  bool MissingPrototype = true;
6939  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6940       Prev; Prev = Prev->getPreviousDeclaration()) {
6941    // Ignore any declarations that occur in function or method
6942    // scope, because they aren't visible from the header.
6943    if (Prev->getDeclContext()->isFunctionOrMethod())
6944      continue;
6945
6946    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6947    break;
6948  }
6949
6950  return MissingPrototype;
6951}
6952
6953void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6954  // Don't complain if we're in GNU89 mode and the previous definition
6955  // was an extern inline function.
6956  const FunctionDecl *Definition;
6957  if (FD->isDefined(Definition) &&
6958      !canRedefineFunction(Definition, getLangOptions())) {
6959    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6960        Definition->getStorageClass() == SC_Extern)
6961      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6962        << FD->getDeclName() << getLangOptions().CPlusPlus;
6963    else
6964      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6965    Diag(Definition->getLocation(), diag::note_previous_definition);
6966  }
6967}
6968
6969Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6970  // Clear the last template instantiation error context.
6971  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6972
6973  if (!D)
6974    return D;
6975  FunctionDecl *FD = 0;
6976
6977  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6978    FD = FunTmpl->getTemplatedDecl();
6979  else
6980    FD = cast<FunctionDecl>(D);
6981
6982  // Enter a new function scope
6983  PushFunctionScope();
6984
6985  // See if this is a redefinition.
6986  if (!FD->isLateTemplateParsed())
6987    CheckForFunctionRedefinition(FD);
6988
6989  // Builtin functions cannot be defined.
6990  if (unsigned BuiltinID = FD->getBuiltinID()) {
6991    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6992      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6993      FD->setInvalidDecl();
6994    }
6995  }
6996
6997  // The return type of a function definition must be complete
6998  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6999  QualType ResultType = FD->getResultType();
7000  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7001      !FD->isInvalidDecl() &&
7002      RequireCompleteType(FD->getLocation(), ResultType,
7003                          diag::err_func_def_incomplete_result))
7004    FD->setInvalidDecl();
7005
7006  // GNU warning -Wmissing-prototypes:
7007  //   Warn if a global function is defined without a previous
7008  //   prototype declaration. This warning is issued even if the
7009  //   definition itself provides a prototype. The aim is to detect
7010  //   global functions that fail to be declared in header files.
7011  if (ShouldWarnAboutMissingPrototype(FD))
7012    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7013
7014  if (FnBodyScope)
7015    PushDeclContext(FnBodyScope, FD);
7016
7017  // Check the validity of our function parameters
7018  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7019                           /*CheckParameterNames=*/true);
7020
7021  // Introduce our parameters into the function scope
7022  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7023    ParmVarDecl *Param = FD->getParamDecl(p);
7024    Param->setOwningFunction(FD);
7025
7026    // If this has an identifier, add it to the scope stack.
7027    if (Param->getIdentifier() && FnBodyScope) {
7028      CheckShadow(FnBodyScope, Param);
7029
7030      PushOnScopeChains(Param, FnBodyScope);
7031    }
7032  }
7033
7034  // Checking attributes of current function definition
7035  // dllimport attribute.
7036  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7037  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7038    // dllimport attribute cannot be directly applied to definition.
7039    // Microsoft accepts dllimport for functions defined within class scope.
7040    if (!DA->isInherited() &&
7041        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7042      Diag(FD->getLocation(),
7043           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7044        << "dllimport";
7045      FD->setInvalidDecl();
7046      return FD;
7047    }
7048
7049    // Visual C++ appears to not think this is an issue, so only issue
7050    // a warning when Microsoft extensions are disabled.
7051    if (!LangOpts.MicrosoftExt) {
7052      // If a symbol previously declared dllimport is later defined, the
7053      // attribute is ignored in subsequent references, and a warning is
7054      // emitted.
7055      Diag(FD->getLocation(),
7056           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7057        << FD->getName() << "dllimport";
7058    }
7059  }
7060  return FD;
7061}
7062
7063/// \brief Given the set of return statements within a function body,
7064/// compute the variables that are subject to the named return value
7065/// optimization.
7066///
7067/// Each of the variables that is subject to the named return value
7068/// optimization will be marked as NRVO variables in the AST, and any
7069/// return statement that has a marked NRVO variable as its NRVO candidate can
7070/// use the named return value optimization.
7071///
7072/// This function applies a very simplistic algorithm for NRVO: if every return
7073/// statement in the function has the same NRVO candidate, that candidate is
7074/// the NRVO variable.
7075///
7076/// FIXME: Employ a smarter algorithm that accounts for multiple return
7077/// statements and the lifetimes of the NRVO candidates. We should be able to
7078/// find a maximal set of NRVO variables.
7079void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7080  ReturnStmt **Returns = Scope->Returns.data();
7081
7082  const VarDecl *NRVOCandidate = 0;
7083  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7084    if (!Returns[I]->getNRVOCandidate())
7085      return;
7086
7087    if (!NRVOCandidate)
7088      NRVOCandidate = Returns[I]->getNRVOCandidate();
7089    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7090      return;
7091  }
7092
7093  if (NRVOCandidate)
7094    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7095}
7096
7097Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7098  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7099}
7100
7101Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7102                                    bool IsInstantiation) {
7103  FunctionDecl *FD = 0;
7104  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7105  if (FunTmpl)
7106    FD = FunTmpl->getTemplatedDecl();
7107  else
7108    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7109
7110  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7111  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7112
7113  if (FD) {
7114    FD->setBody(Body);
7115    if (FD->isMain()) {
7116      // C and C++ allow for main to automagically return 0.
7117      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7118      FD->setHasImplicitReturnZero(true);
7119      WP.disableCheckFallThrough();
7120    } else if (FD->hasAttr<NakedAttr>()) {
7121      // If the function is marked 'naked', don't complain about missing return
7122      // statements.
7123      WP.disableCheckFallThrough();
7124    }
7125
7126    // MSVC permits the use of pure specifier (=0) on function definition,
7127    // defined at class scope, warn about this non standard construct.
7128    if (getLangOptions().MicrosoftExt && FD->isPure())
7129      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7130
7131    if (!FD->isInvalidDecl()) {
7132      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7133      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7134                                             FD->getResultType(), FD);
7135
7136      // If this is a constructor, we need a vtable.
7137      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7138        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7139
7140      computeNRVO(Body, getCurFunction());
7141    }
7142
7143    assert(FD == getCurFunctionDecl() && "Function parsing confused");
7144  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7145    assert(MD == getCurMethodDecl() && "Method parsing confused");
7146    MD->setBody(Body);
7147    if (Body)
7148      MD->setEndLoc(Body->getLocEnd());
7149    if (!MD->isInvalidDecl()) {
7150      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7151      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7152                                             MD->getResultType(), MD);
7153
7154      if (Body)
7155        computeNRVO(Body, getCurFunction());
7156    }
7157    if (ObjCShouldCallSuperDealloc) {
7158      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7159      ObjCShouldCallSuperDealloc = false;
7160    }
7161    if (ObjCShouldCallSuperFinalize) {
7162      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7163      ObjCShouldCallSuperFinalize = false;
7164    }
7165  } else {
7166    return 0;
7167  }
7168
7169  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7170         "ObjC methods, which should have been handled in the block above.");
7171  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7172         "ObjC methods, which should have been handled in the block above.");
7173
7174  // Verify and clean out per-function state.
7175  if (Body) {
7176    // C++ constructors that have function-try-blocks can't have return
7177    // statements in the handlers of that block. (C++ [except.handle]p14)
7178    // Verify this.
7179    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7180      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7181
7182    // Verify that gotos and switch cases don't jump into scopes illegally.
7183    if (getCurFunction()->NeedsScopeChecking() &&
7184        !dcl->isInvalidDecl() &&
7185        !hasAnyUnrecoverableErrorsInThisFunction())
7186      DiagnoseInvalidJumps(Body);
7187
7188    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7189      if (!Destructor->getParent()->isDependentType())
7190        CheckDestructor(Destructor);
7191
7192      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7193                                             Destructor->getParent());
7194    }
7195
7196    // If any errors have occurred, clear out any temporaries that may have
7197    // been leftover. This ensures that these temporaries won't be picked up for
7198    // deletion in some later function.
7199    if (PP.getDiagnostics().hasErrorOccurred() ||
7200        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7201      DiscardCleanupsInEvaluationContext();
7202    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7203      // Since the body is valid, issue any analysis-based warnings that are
7204      // enabled.
7205      ActivePolicy = &WP;
7206    }
7207
7208    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7209        !CheckConstexprFunctionBody(FD, Body))
7210      FD->setInvalidDecl();
7211
7212    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7213    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7214  }
7215
7216  if (!IsInstantiation)
7217    PopDeclContext();
7218
7219  PopFunctionOrBlockScope(ActivePolicy, dcl);
7220
7221  // If any errors have occurred, clear out any temporaries that may have
7222  // been leftover. This ensures that these temporaries won't be picked up for
7223  // deletion in some later function.
7224  if (getDiagnostics().hasErrorOccurred()) {
7225    DiscardCleanupsInEvaluationContext();
7226  }
7227
7228  return dcl;
7229}
7230
7231
7232/// When we finish delayed parsing of an attribute, we must attach it to the
7233/// relevant Decl.
7234void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7235                                       ParsedAttributes &Attrs) {
7236  ProcessDeclAttributeList(S, D, Attrs.getList());
7237}
7238
7239
7240/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7241/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7242NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7243                                          IdentifierInfo &II, Scope *S) {
7244  // Before we produce a declaration for an implicitly defined
7245  // function, see whether there was a locally-scoped declaration of
7246  // this name as a function or variable. If so, use that
7247  // (non-visible) declaration, and complain about it.
7248  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7249    = findLocallyScopedExternalDecl(&II);
7250  if (Pos != LocallyScopedExternalDecls.end()) {
7251    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7252    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7253    return Pos->second;
7254  }
7255
7256  // Extension in C99.  Legal in C90, but warn about it.
7257  if (II.getName().startswith("__builtin_"))
7258    Diag(Loc, diag::warn_builtin_unknown) << &II;
7259  else if (getLangOptions().C99)
7260    Diag(Loc, diag::ext_implicit_function_decl) << &II;
7261  else
7262    Diag(Loc, diag::warn_implicit_function_decl) << &II;
7263
7264  // Set a Declarator for the implicit definition: int foo();
7265  const char *Dummy;
7266  AttributeFactory attrFactory;
7267  DeclSpec DS(attrFactory);
7268  unsigned DiagID;
7269  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7270  (void)Error; // Silence warning.
7271  assert(!Error && "Error setting up implicit decl!");
7272  Declarator D(DS, Declarator::BlockContext);
7273  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7274                                             0, 0, true, SourceLocation(),
7275                                             SourceLocation(), SourceLocation(),
7276                                             SourceLocation(),
7277                                             EST_None, SourceLocation(),
7278                                             0, 0, 0, 0, Loc, Loc, D),
7279                DS.getAttributes(),
7280                SourceLocation());
7281  D.SetIdentifier(&II, Loc);
7282
7283  // Insert this function into translation-unit scope.
7284
7285  DeclContext *PrevDC = CurContext;
7286  CurContext = Context.getTranslationUnitDecl();
7287
7288  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7289  FD->setImplicit();
7290
7291  CurContext = PrevDC;
7292
7293  AddKnownFunctionAttributes(FD);
7294
7295  return FD;
7296}
7297
7298/// \brief Adds any function attributes that we know a priori based on
7299/// the declaration of this function.
7300///
7301/// These attributes can apply both to implicitly-declared builtins
7302/// (like __builtin___printf_chk) or to library-declared functions
7303/// like NSLog or printf.
7304///
7305/// We need to check for duplicate attributes both here and where user-written
7306/// attributes are applied to declarations.
7307void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7308  if (FD->isInvalidDecl())
7309    return;
7310
7311  // If this is a built-in function, map its builtin attributes to
7312  // actual attributes.
7313  if (unsigned BuiltinID = FD->getBuiltinID()) {
7314    // Handle printf-formatting attributes.
7315    unsigned FormatIdx;
7316    bool HasVAListArg;
7317    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7318      if (!FD->getAttr<FormatAttr>())
7319        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7320                                                "printf", FormatIdx+1,
7321                                               HasVAListArg ? 0 : FormatIdx+2));
7322    }
7323    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7324                                             HasVAListArg)) {
7325     if (!FD->getAttr<FormatAttr>())
7326       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7327                                              "scanf", FormatIdx+1,
7328                                              HasVAListArg ? 0 : FormatIdx+2));
7329    }
7330
7331    // Mark const if we don't care about errno and that is the only
7332    // thing preventing the function from being const. This allows
7333    // IRgen to use LLVM intrinsics for such functions.
7334    if (!getLangOptions().MathErrno &&
7335        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7336      if (!FD->getAttr<ConstAttr>())
7337        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7338    }
7339
7340    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7341        !FD->getAttr<ReturnsTwiceAttr>())
7342      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7343    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7344      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7345    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7346      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7347  }
7348
7349  IdentifierInfo *Name = FD->getIdentifier();
7350  if (!Name)
7351    return;
7352  if ((!getLangOptions().CPlusPlus &&
7353       FD->getDeclContext()->isTranslationUnit()) ||
7354      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7355       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7356       LinkageSpecDecl::lang_c)) {
7357    // Okay: this could be a libc/libm/Objective-C function we know
7358    // about.
7359  } else
7360    return;
7361
7362  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
7363    // FIXME: NSLog and NSLogv should be target specific
7364    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
7365      // FIXME: We known better than our headers.
7366      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
7367    } else
7368      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7369                                             "printf", 1,
7370                                             Name->isStr("NSLogv") ? 0 : 2));
7371  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7372    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7373    // target-specific builtins, perhaps?
7374    if (!FD->getAttr<FormatAttr>())
7375      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7376                                             "printf", 2,
7377                                             Name->isStr("vasprintf") ? 0 : 3));
7378  }
7379}
7380
7381TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7382                                    TypeSourceInfo *TInfo) {
7383  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7384  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7385
7386  if (!TInfo) {
7387    assert(D.isInvalidType() && "no declarator info for valid type");
7388    TInfo = Context.getTrivialTypeSourceInfo(T);
7389  }
7390
7391  // Scope manipulation handled by caller.
7392  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7393                                           D.getSourceRange().getBegin(),
7394                                           D.getIdentifierLoc(),
7395                                           D.getIdentifier(),
7396                                           TInfo);
7397
7398  // Bail out immediately if we have an invalid declaration.
7399  if (D.isInvalidType()) {
7400    NewTD->setInvalidDecl();
7401    return NewTD;
7402  }
7403
7404  if (D.getDeclSpec().isModulePrivateSpecified()) {
7405    if (CurContext->isFunctionOrMethod())
7406      Diag(NewTD->getLocation(), diag::err_module_private_local)
7407        << 2 << NewTD->getDeclName()
7408        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7409        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7410    else
7411      NewTD->setModulePrivate();
7412  }
7413
7414  // C++ [dcl.typedef]p8:
7415  //   If the typedef declaration defines an unnamed class (or
7416  //   enum), the first typedef-name declared by the declaration
7417  //   to be that class type (or enum type) is used to denote the
7418  //   class type (or enum type) for linkage purposes only.
7419  // We need to check whether the type was declared in the declaration.
7420  switch (D.getDeclSpec().getTypeSpecType()) {
7421  case TST_enum:
7422  case TST_struct:
7423  case TST_union:
7424  case TST_class: {
7425    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7426
7427    // Do nothing if the tag is not anonymous or already has an
7428    // associated typedef (from an earlier typedef in this decl group).
7429    if (tagFromDeclSpec->getIdentifier()) break;
7430    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7431
7432    // A well-formed anonymous tag must always be a TUK_Definition.
7433    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7434
7435    // The type must match the tag exactly;  no qualifiers allowed.
7436    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7437      break;
7438
7439    // Otherwise, set this is the anon-decl typedef for the tag.
7440    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7441    break;
7442  }
7443
7444  default:
7445    break;
7446  }
7447
7448  return NewTD;
7449}
7450
7451
7452/// \brief Determine whether a tag with a given kind is acceptable
7453/// as a redeclaration of the given tag declaration.
7454///
7455/// \returns true if the new tag kind is acceptable, false otherwise.
7456bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7457                                        TagTypeKind NewTag, bool isDefinition,
7458                                        SourceLocation NewTagLoc,
7459                                        const IdentifierInfo &Name) {
7460  // C++ [dcl.type.elab]p3:
7461  //   The class-key or enum keyword present in the
7462  //   elaborated-type-specifier shall agree in kind with the
7463  //   declaration to which the name in the elaborated-type-specifier
7464  //   refers. This rule also applies to the form of
7465  //   elaborated-type-specifier that declares a class-name or
7466  //   friend class since it can be construed as referring to the
7467  //   definition of the class. Thus, in any
7468  //   elaborated-type-specifier, the enum keyword shall be used to
7469  //   refer to an enumeration (7.2), the union class-key shall be
7470  //   used to refer to a union (clause 9), and either the class or
7471  //   struct class-key shall be used to refer to a class (clause 9)
7472  //   declared using the class or struct class-key.
7473  TagTypeKind OldTag = Previous->getTagKind();
7474  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7475    if (OldTag == NewTag)
7476      return true;
7477
7478  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7479      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7480    // Warn about the struct/class tag mismatch.
7481    bool isTemplate = false;
7482    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7483      isTemplate = Record->getDescribedClassTemplate();
7484
7485    if (!ActiveTemplateInstantiations.empty()) {
7486      // In a template instantiation, do not offer fix-its for tag mismatches
7487      // since they usually mess up the template instead of fixing the problem.
7488      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7489        << (NewTag == TTK_Class) << isTemplate << &Name;
7490      return true;
7491    }
7492
7493    if (isDefinition) {
7494      // On definitions, check previous tags and issue a fix-it for each
7495      // one that doesn't match the current tag.
7496      if (Previous->getDefinition()) {
7497        // Don't suggest fix-its for redefinitions.
7498        return true;
7499      }
7500
7501      bool previousMismatch = false;
7502      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7503           E(Previous->redecls_end()); I != E; ++I) {
7504        if (I->getTagKind() != NewTag) {
7505          if (!previousMismatch) {
7506            previousMismatch = true;
7507            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7508              << (NewTag == TTK_Class) << isTemplate << &Name;
7509          }
7510          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7511            << (NewTag == TTK_Class)
7512            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7513                                            NewTag == TTK_Class?
7514                                            "class" : "struct");
7515        }
7516      }
7517      return true;
7518    }
7519
7520    // Check for a previous definition.  If current tag and definition
7521    // are same type, do nothing.  If no definition, but disagree with
7522    // with previous tag type, give a warning, but no fix-it.
7523    const TagDecl *Redecl = Previous->getDefinition() ?
7524                            Previous->getDefinition() : Previous;
7525    if (Redecl->getTagKind() == NewTag) {
7526      return true;
7527    }
7528
7529    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7530      << (NewTag == TTK_Class)
7531      << isTemplate << &Name;
7532    Diag(Redecl->getLocation(), diag::note_previous_use);
7533
7534    // If there is a previous defintion, suggest a fix-it.
7535    if (Previous->getDefinition()) {
7536        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7537          << (Redecl->getTagKind() == TTK_Class)
7538          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7539                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7540    }
7541
7542    return true;
7543  }
7544  return false;
7545}
7546
7547/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7548/// former case, Name will be non-null.  In the later case, Name will be null.
7549/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7550/// reference/declaration/definition of a tag.
7551Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7552                     SourceLocation KWLoc, CXXScopeSpec &SS,
7553                     IdentifierInfo *Name, SourceLocation NameLoc,
7554                     AttributeList *Attr, AccessSpecifier AS,
7555                     SourceLocation ModulePrivateLoc,
7556                     MultiTemplateParamsArg TemplateParameterLists,
7557                     bool &OwnedDecl, bool &IsDependent,
7558                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7559                     TypeResult UnderlyingType) {
7560  // If this is not a definition, it must have a name.
7561  assert((Name != 0 || TUK == TUK_Definition) &&
7562         "Nameless record must be a definition!");
7563  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7564
7565  OwnedDecl = false;
7566  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7567
7568  // FIXME: Check explicit specializations more carefully.
7569  bool isExplicitSpecialization = false;
7570  bool Invalid = false;
7571
7572  // We only need to do this matching if we have template parameters
7573  // or a scope specifier, which also conveniently avoids this work
7574  // for non-C++ cases.
7575  if (TemplateParameterLists.size() > 0 ||
7576      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7577    if (TemplateParameterList *TemplateParams
7578          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7579                                                TemplateParameterLists.get(),
7580                                                TemplateParameterLists.size(),
7581                                                    TUK == TUK_Friend,
7582                                                    isExplicitSpecialization,
7583                                                    Invalid)) {
7584      if (TemplateParams->size() > 0) {
7585        // This is a declaration or definition of a class template (which may
7586        // be a member of another template).
7587
7588        if (Invalid)
7589          return 0;
7590
7591        OwnedDecl = false;
7592        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7593                                               SS, Name, NameLoc, Attr,
7594                                               TemplateParams, AS,
7595                                               ModulePrivateLoc,
7596                                           TemplateParameterLists.size() - 1,
7597                 (TemplateParameterList**) TemplateParameterLists.release());
7598        return Result.get();
7599      } else {
7600        // The "template<>" header is extraneous.
7601        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7602          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7603        isExplicitSpecialization = true;
7604      }
7605    }
7606  }
7607
7608  // Figure out the underlying type if this a enum declaration. We need to do
7609  // this early, because it's needed to detect if this is an incompatible
7610  // redeclaration.
7611  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7612
7613  if (Kind == TTK_Enum) {
7614    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7615      // No underlying type explicitly specified, or we failed to parse the
7616      // type, default to int.
7617      EnumUnderlying = Context.IntTy.getTypePtr();
7618    else if (UnderlyingType.get()) {
7619      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7620      // integral type; any cv-qualification is ignored.
7621      TypeSourceInfo *TI = 0;
7622      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7623      EnumUnderlying = TI;
7624
7625      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7626
7627      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7628        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7629          << T;
7630        // Recover by falling back to int.
7631        EnumUnderlying = Context.IntTy.getTypePtr();
7632      }
7633
7634      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7635                                          UPPC_FixedUnderlyingType))
7636        EnumUnderlying = Context.IntTy.getTypePtr();
7637
7638    } else if (getLangOptions().MicrosoftExt)
7639      // Microsoft enums are always of int type.
7640      EnumUnderlying = Context.IntTy.getTypePtr();
7641  }
7642
7643  DeclContext *SearchDC = CurContext;
7644  DeclContext *DC = CurContext;
7645  bool isStdBadAlloc = false;
7646
7647  RedeclarationKind Redecl = ForRedeclaration;
7648  if (TUK == TUK_Friend || TUK == TUK_Reference)
7649    Redecl = NotForRedeclaration;
7650
7651  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7652
7653  if (Name && SS.isNotEmpty()) {
7654    // We have a nested-name tag ('struct foo::bar').
7655
7656    // Check for invalid 'foo::'.
7657    if (SS.isInvalid()) {
7658      Name = 0;
7659      goto CreateNewDecl;
7660    }
7661
7662    // If this is a friend or a reference to a class in a dependent
7663    // context, don't try to make a decl for it.
7664    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7665      DC = computeDeclContext(SS, false);
7666      if (!DC) {
7667        IsDependent = true;
7668        return 0;
7669      }
7670    } else {
7671      DC = computeDeclContext(SS, true);
7672      if (!DC) {
7673        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7674          << SS.getRange();
7675        return 0;
7676      }
7677    }
7678
7679    if (RequireCompleteDeclContext(SS, DC))
7680      return 0;
7681
7682    SearchDC = DC;
7683    // Look-up name inside 'foo::'.
7684    LookupQualifiedName(Previous, DC);
7685
7686    if (Previous.isAmbiguous())
7687      return 0;
7688
7689    if (Previous.empty()) {
7690      // Name lookup did not find anything. However, if the
7691      // nested-name-specifier refers to the current instantiation,
7692      // and that current instantiation has any dependent base
7693      // classes, we might find something at instantiation time: treat
7694      // this as a dependent elaborated-type-specifier.
7695      // But this only makes any sense for reference-like lookups.
7696      if (Previous.wasNotFoundInCurrentInstantiation() &&
7697          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7698        IsDependent = true;
7699        return 0;
7700      }
7701
7702      // A tag 'foo::bar' must already exist.
7703      Diag(NameLoc, diag::err_not_tag_in_scope)
7704        << Kind << Name << DC << SS.getRange();
7705      Name = 0;
7706      Invalid = true;
7707      goto CreateNewDecl;
7708    }
7709  } else if (Name) {
7710    // If this is a named struct, check to see if there was a previous forward
7711    // declaration or definition.
7712    // FIXME: We're looking into outer scopes here, even when we
7713    // shouldn't be. Doing so can result in ambiguities that we
7714    // shouldn't be diagnosing.
7715    LookupName(Previous, S);
7716
7717    if (Previous.isAmbiguous() &&
7718        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7719      LookupResult::Filter F = Previous.makeFilter();
7720      while (F.hasNext()) {
7721        NamedDecl *ND = F.next();
7722        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7723          F.erase();
7724      }
7725      F.done();
7726    }
7727
7728    // Note:  there used to be some attempt at recovery here.
7729    if (Previous.isAmbiguous())
7730      return 0;
7731
7732    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7733      // FIXME: This makes sure that we ignore the contexts associated
7734      // with C structs, unions, and enums when looking for a matching
7735      // tag declaration or definition. See the similar lookup tweak
7736      // in Sema::LookupName; is there a better way to deal with this?
7737      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7738        SearchDC = SearchDC->getParent();
7739    }
7740  } else if (S->isFunctionPrototypeScope()) {
7741    // If this is an enum declaration in function prototype scope, set its
7742    // initial context to the translation unit.
7743    SearchDC = Context.getTranslationUnitDecl();
7744  }
7745
7746  if (Previous.isSingleResult() &&
7747      Previous.getFoundDecl()->isTemplateParameter()) {
7748    // Maybe we will complain about the shadowed template parameter.
7749    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7750    // Just pretend that we didn't see the previous declaration.
7751    Previous.clear();
7752  }
7753
7754  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7755      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7756    // This is a declaration of or a reference to "std::bad_alloc".
7757    isStdBadAlloc = true;
7758
7759    if (Previous.empty() && StdBadAlloc) {
7760      // std::bad_alloc has been implicitly declared (but made invisible to
7761      // name lookup). Fill in this implicit declaration as the previous
7762      // declaration, so that the declarations get chained appropriately.
7763      Previous.addDecl(getStdBadAlloc());
7764    }
7765  }
7766
7767  // If we didn't find a previous declaration, and this is a reference
7768  // (or friend reference), move to the correct scope.  In C++, we
7769  // also need to do a redeclaration lookup there, just in case
7770  // there's a shadow friend decl.
7771  if (Name && Previous.empty() &&
7772      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7773    if (Invalid) goto CreateNewDecl;
7774    assert(SS.isEmpty());
7775
7776    if (TUK == TUK_Reference) {
7777      // C++ [basic.scope.pdecl]p5:
7778      //   -- for an elaborated-type-specifier of the form
7779      //
7780      //          class-key identifier
7781      //
7782      //      if the elaborated-type-specifier is used in the
7783      //      decl-specifier-seq or parameter-declaration-clause of a
7784      //      function defined in namespace scope, the identifier is
7785      //      declared as a class-name in the namespace that contains
7786      //      the declaration; otherwise, except as a friend
7787      //      declaration, the identifier is declared in the smallest
7788      //      non-class, non-function-prototype scope that contains the
7789      //      declaration.
7790      //
7791      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7792      // C structs and unions.
7793      //
7794      // It is an error in C++ to declare (rather than define) an enum
7795      // type, including via an elaborated type specifier.  We'll
7796      // diagnose that later; for now, declare the enum in the same
7797      // scope as we would have picked for any other tag type.
7798      //
7799      // GNU C also supports this behavior as part of its incomplete
7800      // enum types extension, while GNU C++ does not.
7801      //
7802      // Find the context where we'll be declaring the tag.
7803      // FIXME: We would like to maintain the current DeclContext as the
7804      // lexical context,
7805      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7806        SearchDC = SearchDC->getParent();
7807
7808      // Find the scope where we'll be declaring the tag.
7809      while (S->isClassScope() ||
7810             (getLangOptions().CPlusPlus &&
7811              S->isFunctionPrototypeScope()) ||
7812             ((S->getFlags() & Scope::DeclScope) == 0) ||
7813             (S->getEntity() &&
7814              ((DeclContext *)S->getEntity())->isTransparentContext()))
7815        S = S->getParent();
7816    } else {
7817      assert(TUK == TUK_Friend);
7818      // C++ [namespace.memdef]p3:
7819      //   If a friend declaration in a non-local class first declares a
7820      //   class or function, the friend class or function is a member of
7821      //   the innermost enclosing namespace.
7822      SearchDC = SearchDC->getEnclosingNamespaceContext();
7823    }
7824
7825    // In C++, we need to do a redeclaration lookup to properly
7826    // diagnose some problems.
7827    if (getLangOptions().CPlusPlus) {
7828      Previous.setRedeclarationKind(ForRedeclaration);
7829      LookupQualifiedName(Previous, SearchDC);
7830    }
7831  }
7832
7833  if (!Previous.empty()) {
7834    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7835
7836    // It's okay to have a tag decl in the same scope as a typedef
7837    // which hides a tag decl in the same scope.  Finding this
7838    // insanity with a redeclaration lookup can only actually happen
7839    // in C++.
7840    //
7841    // This is also okay for elaborated-type-specifiers, which is
7842    // technically forbidden by the current standard but which is
7843    // okay according to the likely resolution of an open issue;
7844    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7845    if (getLangOptions().CPlusPlus) {
7846      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7847        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7848          TagDecl *Tag = TT->getDecl();
7849          if (Tag->getDeclName() == Name &&
7850              Tag->getDeclContext()->getRedeclContext()
7851                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7852            PrevDecl = Tag;
7853            Previous.clear();
7854            Previous.addDecl(Tag);
7855            Previous.resolveKind();
7856          }
7857        }
7858      }
7859    }
7860
7861    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7862      // If this is a use of a previous tag, or if the tag is already declared
7863      // in the same scope (so that the definition/declaration completes or
7864      // rementions the tag), reuse the decl.
7865      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7866          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7867        // Make sure that this wasn't declared as an enum and now used as a
7868        // struct or something similar.
7869        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7870                                          TUK == TUK_Definition, KWLoc,
7871                                          *Name)) {
7872          bool SafeToContinue
7873            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7874               Kind != TTK_Enum);
7875          if (SafeToContinue)
7876            Diag(KWLoc, diag::err_use_with_wrong_tag)
7877              << Name
7878              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7879                                              PrevTagDecl->getKindName());
7880          else
7881            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7882          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7883
7884          if (SafeToContinue)
7885            Kind = PrevTagDecl->getTagKind();
7886          else {
7887            // Recover by making this an anonymous redefinition.
7888            Name = 0;
7889            Previous.clear();
7890            Invalid = true;
7891          }
7892        }
7893
7894        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7895          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7896
7897          // All conflicts with previous declarations are recovered by
7898          // returning the previous declaration.
7899          if (ScopedEnum != PrevEnum->isScoped()) {
7900            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7901              << PrevEnum->isScoped();
7902            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7903            return PrevTagDecl;
7904          }
7905          else if (EnumUnderlying && PrevEnum->isFixed()) {
7906            QualType T;
7907            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7908                T = TI->getType();
7909            else
7910                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7911
7912            if (!Context.hasSameUnqualifiedType(T,
7913                                                PrevEnum->getIntegerType())) {
7914              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7915                   diag::err_enum_redeclare_type_mismatch)
7916                << T
7917                << PrevEnum->getIntegerType();
7918              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7919              return PrevTagDecl;
7920            }
7921          }
7922          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7923            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7924              << PrevEnum->isFixed();
7925            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7926            return PrevTagDecl;
7927          }
7928        }
7929
7930        if (!Invalid) {
7931          // If this is a use, just return the declaration we found.
7932
7933          // FIXME: In the future, return a variant or some other clue
7934          // for the consumer of this Decl to know it doesn't own it.
7935          // For our current ASTs this shouldn't be a problem, but will
7936          // need to be changed with DeclGroups.
7937          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7938               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
7939            return PrevTagDecl;
7940
7941          // Diagnose attempts to redefine a tag.
7942          if (TUK == TUK_Definition) {
7943            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7944              // If we're defining a specialization and the previous definition
7945              // is from an implicit instantiation, don't emit an error
7946              // here; we'll catch this in the general case below.
7947              if (!isExplicitSpecialization ||
7948                  !isa<CXXRecordDecl>(Def) ||
7949                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7950                                               == TSK_ExplicitSpecialization) {
7951                Diag(NameLoc, diag::err_redefinition) << Name;
7952                Diag(Def->getLocation(), diag::note_previous_definition);
7953                // If this is a redefinition, recover by making this
7954                // struct be anonymous, which will make any later
7955                // references get the previous definition.
7956                Name = 0;
7957                Previous.clear();
7958                Invalid = true;
7959              }
7960            } else {
7961              // If the type is currently being defined, complain
7962              // about a nested redefinition.
7963              const TagType *Tag
7964                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7965              if (Tag->isBeingDefined()) {
7966                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7967                Diag(PrevTagDecl->getLocation(),
7968                     diag::note_previous_definition);
7969                Name = 0;
7970                Previous.clear();
7971                Invalid = true;
7972              }
7973            }
7974
7975            // Okay, this is definition of a previously declared or referenced
7976            // tag PrevDecl. We're going to create a new Decl for it.
7977          }
7978        }
7979        // If we get here we have (another) forward declaration or we
7980        // have a definition.  Just create a new decl.
7981
7982      } else {
7983        // If we get here, this is a definition of a new tag type in a nested
7984        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7985        // new decl/type.  We set PrevDecl to NULL so that the entities
7986        // have distinct types.
7987        Previous.clear();
7988      }
7989      // If we get here, we're going to create a new Decl. If PrevDecl
7990      // is non-NULL, it's a definition of the tag declared by
7991      // PrevDecl. If it's NULL, we have a new definition.
7992
7993
7994    // Otherwise, PrevDecl is not a tag, but was found with tag
7995    // lookup.  This is only actually possible in C++, where a few
7996    // things like templates still live in the tag namespace.
7997    } else {
7998      assert(getLangOptions().CPlusPlus);
7999
8000      // Use a better diagnostic if an elaborated-type-specifier
8001      // found the wrong kind of type on the first
8002      // (non-redeclaration) lookup.
8003      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8004          !Previous.isForRedeclaration()) {
8005        unsigned Kind = 0;
8006        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8007        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8008        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8009        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8010        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8011        Invalid = true;
8012
8013      // Otherwise, only diagnose if the declaration is in scope.
8014      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8015                                isExplicitSpecialization)) {
8016        // do nothing
8017
8018      // Diagnose implicit declarations introduced by elaborated types.
8019      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8020        unsigned Kind = 0;
8021        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8022        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8023        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8024        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8025        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8026        Invalid = true;
8027
8028      // Otherwise it's a declaration.  Call out a particularly common
8029      // case here.
8030      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8031        unsigned Kind = 0;
8032        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8033        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8034          << Name << Kind << TND->getUnderlyingType();
8035        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8036        Invalid = true;
8037
8038      // Otherwise, diagnose.
8039      } else {
8040        // The tag name clashes with something else in the target scope,
8041        // issue an error and recover by making this tag be anonymous.
8042        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8043        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8044        Name = 0;
8045        Invalid = true;
8046      }
8047
8048      // The existing declaration isn't relevant to us; we're in a
8049      // new scope, so clear out the previous declaration.
8050      Previous.clear();
8051    }
8052  }
8053
8054CreateNewDecl:
8055
8056  TagDecl *PrevDecl = 0;
8057  if (Previous.isSingleResult())
8058    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8059
8060  // If there is an identifier, use the location of the identifier as the
8061  // location of the decl, otherwise use the location of the struct/union
8062  // keyword.
8063  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8064
8065  // Otherwise, create a new declaration. If there is a previous
8066  // declaration of the same entity, the two will be linked via
8067  // PrevDecl.
8068  TagDecl *New;
8069
8070  bool IsForwardReference = false;
8071  if (Kind == TTK_Enum) {
8072    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8073    // enum X { A, B, C } D;    D should chain to X.
8074    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8075                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8076                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8077    // If this is an undefined enum, warn.
8078    if (TUK != TUK_Definition && !Invalid) {
8079      TagDecl *Def;
8080      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8081        // C++0x: 7.2p2: opaque-enum-declaration.
8082        // Conflicts are diagnosed above. Do nothing.
8083      }
8084      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8085        Diag(Loc, diag::ext_forward_ref_enum_def)
8086          << New;
8087        Diag(Def->getLocation(), diag::note_previous_definition);
8088      } else {
8089        unsigned DiagID = diag::ext_forward_ref_enum;
8090        if (getLangOptions().MicrosoftExt)
8091          DiagID = diag::ext_ms_forward_ref_enum;
8092        else if (getLangOptions().CPlusPlus)
8093          DiagID = diag::err_forward_ref_enum;
8094        Diag(Loc, DiagID);
8095
8096        // If this is a forward-declared reference to an enumeration, make a
8097        // note of it; we won't actually be introducing the declaration into
8098        // the declaration context.
8099        if (TUK == TUK_Reference)
8100          IsForwardReference = true;
8101      }
8102    }
8103
8104    if (EnumUnderlying) {
8105      EnumDecl *ED = cast<EnumDecl>(New);
8106      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8107        ED->setIntegerTypeSourceInfo(TI);
8108      else
8109        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8110      ED->setPromotionType(ED->getIntegerType());
8111    }
8112
8113  } else {
8114    // struct/union/class
8115
8116    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8117    // struct X { int A; } D;    D should chain to X.
8118    if (getLangOptions().CPlusPlus) {
8119      // FIXME: Look for a way to use RecordDecl for simple structs.
8120      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8121                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8122
8123      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8124        StdBadAlloc = cast<CXXRecordDecl>(New);
8125    } else
8126      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8127                               cast_or_null<RecordDecl>(PrevDecl));
8128  }
8129
8130  // Maybe add qualifier info.
8131  if (SS.isNotEmpty()) {
8132    if (SS.isSet()) {
8133      New->setQualifierInfo(SS.getWithLocInContext(Context));
8134      if (TemplateParameterLists.size() > 0) {
8135        New->setTemplateParameterListsInfo(Context,
8136                                           TemplateParameterLists.size(),
8137                    (TemplateParameterList**) TemplateParameterLists.release());
8138      }
8139    }
8140    else
8141      Invalid = true;
8142  }
8143
8144  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8145    // Add alignment attributes if necessary; these attributes are checked when
8146    // the ASTContext lays out the structure.
8147    //
8148    // It is important for implementing the correct semantics that this
8149    // happen here (in act on tag decl). The #pragma pack stack is
8150    // maintained as a result of parser callbacks which can occur at
8151    // many points during the parsing of a struct declaration (because
8152    // the #pragma tokens are effectively skipped over during the
8153    // parsing of the struct).
8154    AddAlignmentAttributesForRecord(RD);
8155
8156    AddMsStructLayoutForRecord(RD);
8157  }
8158
8159  if (PrevDecl && PrevDecl->isModulePrivate())
8160    New->setModulePrivate();
8161  else if (ModulePrivateLoc.isValid()) {
8162    if (isExplicitSpecialization)
8163      Diag(New->getLocation(), diag::err_module_private_specialization)
8164        << 2
8165        << FixItHint::CreateRemoval(ModulePrivateLoc);
8166    else if (PrevDecl && !PrevDecl->isModulePrivate())
8167      diagnoseModulePrivateRedeclaration(New, PrevDecl, ModulePrivateLoc);
8168    // __module_private__ does not apply to local classes. However, we only
8169    // diagnose this as an error when the declaration specifiers are
8170    // freestanding. Here, we just ignore the __module_private__.
8171    // foobar
8172    else if (!SearchDC->isFunctionOrMethod())
8173      New->setModulePrivate();
8174  }
8175
8176  // If this is a specialization of a member class (of a class template),
8177  // check the specialization.
8178  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8179    Invalid = true;
8180
8181  if (Invalid)
8182    New->setInvalidDecl();
8183
8184  if (Attr)
8185    ProcessDeclAttributeList(S, New, Attr);
8186
8187  // If we're declaring or defining a tag in function prototype scope
8188  // in C, note that this type can only be used within the function.
8189  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8190    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8191
8192  // Set the lexical context. If the tag has a C++ scope specifier, the
8193  // lexical context will be different from the semantic context.
8194  New->setLexicalDeclContext(CurContext);
8195
8196  // Mark this as a friend decl if applicable.
8197  // In Microsoft mode, a friend declaration also acts as a forward
8198  // declaration so we always pass true to setObjectOfFriendDecl to make
8199  // the tag name visible.
8200  if (TUK == TUK_Friend)
8201    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8202                               getLangOptions().MicrosoftExt);
8203
8204  // Set the access specifier.
8205  if (!Invalid && SearchDC->isRecord())
8206    SetMemberAccessSpecifier(New, PrevDecl, AS);
8207
8208  if (TUK == TUK_Definition)
8209    New->startDefinition();
8210
8211  // If this has an identifier, add it to the scope stack.
8212  if (TUK == TUK_Friend) {
8213    // We might be replacing an existing declaration in the lookup tables;
8214    // if so, borrow its access specifier.
8215    if (PrevDecl)
8216      New->setAccess(PrevDecl->getAccess());
8217
8218    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8219    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8220    if (Name) // can be null along some error paths
8221      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8222        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8223  } else if (Name) {
8224    S = getNonFieldDeclScope(S);
8225    PushOnScopeChains(New, S, !IsForwardReference);
8226    if (IsForwardReference)
8227      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8228
8229  } else {
8230    CurContext->addDecl(New);
8231  }
8232
8233  // If this is the C FILE type, notify the AST context.
8234  if (IdentifierInfo *II = New->getIdentifier())
8235    if (!New->isInvalidDecl() &&
8236        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8237        II->isStr("FILE"))
8238      Context.setFILEDecl(New);
8239
8240  OwnedDecl = true;
8241  return New;
8242}
8243
8244void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8245  AdjustDeclIfTemplate(TagD);
8246  TagDecl *Tag = cast<TagDecl>(TagD);
8247
8248  // Enter the tag context.
8249  PushDeclContext(S, Tag);
8250}
8251
8252Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8253  assert(isa<ObjCContainerDecl>(IDecl) &&
8254         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8255  DeclContext *OCD = cast<DeclContext>(IDecl);
8256  assert(getContainingDC(OCD) == CurContext &&
8257      "The next DeclContext should be lexically contained in the current one.");
8258  CurContext = OCD;
8259  return IDecl;
8260}
8261
8262void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8263                                           SourceLocation FinalLoc,
8264                                           SourceLocation LBraceLoc) {
8265  AdjustDeclIfTemplate(TagD);
8266  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8267
8268  FieldCollector->StartClass();
8269
8270  if (!Record->getIdentifier())
8271    return;
8272
8273  if (FinalLoc.isValid())
8274    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8275
8276  // C++ [class]p2:
8277  //   [...] The class-name is also inserted into the scope of the
8278  //   class itself; this is known as the injected-class-name. For
8279  //   purposes of access checking, the injected-class-name is treated
8280  //   as if it were a public member name.
8281  CXXRecordDecl *InjectedClassName
8282    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8283                            Record->getLocStart(), Record->getLocation(),
8284                            Record->getIdentifier(),
8285                            /*PrevDecl=*/0,
8286                            /*DelayTypeCreation=*/true);
8287  Context.getTypeDeclType(InjectedClassName, Record);
8288  InjectedClassName->setImplicit();
8289  InjectedClassName->setAccess(AS_public);
8290  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8291      InjectedClassName->setDescribedClassTemplate(Template);
8292  PushOnScopeChains(InjectedClassName, S);
8293  assert(InjectedClassName->isInjectedClassName() &&
8294         "Broken injected-class-name");
8295}
8296
8297void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8298                                    SourceLocation RBraceLoc) {
8299  AdjustDeclIfTemplate(TagD);
8300  TagDecl *Tag = cast<TagDecl>(TagD);
8301  Tag->setRBraceLoc(RBraceLoc);
8302
8303  if (isa<CXXRecordDecl>(Tag))
8304    FieldCollector->FinishClass();
8305
8306  // Exit this scope of this tag's definition.
8307  PopDeclContext();
8308
8309  // Notify the consumer that we've defined a tag.
8310  Consumer.HandleTagDeclDefinition(Tag);
8311}
8312
8313void Sema::ActOnObjCContainerFinishDefinition() {
8314  // Exit this scope of this interface definition.
8315  PopDeclContext();
8316}
8317
8318void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8319  assert(DC == CurContext && "Mismatch of container contexts");
8320  OriginalLexicalContext = DC;
8321  ActOnObjCContainerFinishDefinition();
8322}
8323
8324void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8325  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8326  OriginalLexicalContext = 0;
8327}
8328
8329void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8330  AdjustDeclIfTemplate(TagD);
8331  TagDecl *Tag = cast<TagDecl>(TagD);
8332  Tag->setInvalidDecl();
8333
8334  // We're undoing ActOnTagStartDefinition here, not
8335  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8336  // the FieldCollector.
8337
8338  PopDeclContext();
8339}
8340
8341// Note that FieldName may be null for anonymous bitfields.
8342bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
8343                          QualType FieldTy, const Expr *BitWidth,
8344                          bool *ZeroWidth) {
8345  // Default to true; that shouldn't confuse checks for emptiness
8346  if (ZeroWidth)
8347    *ZeroWidth = true;
8348
8349  // C99 6.7.2.1p4 - verify the field type.
8350  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8351  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8352    // Handle incomplete types with specific error.
8353    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8354      return true;
8355    if (FieldName)
8356      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8357        << FieldName << FieldTy << BitWidth->getSourceRange();
8358    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8359      << FieldTy << BitWidth->getSourceRange();
8360  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8361                                             UPPC_BitFieldWidth))
8362    return true;
8363
8364  // If the bit-width is type- or value-dependent, don't try to check
8365  // it now.
8366  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8367    return false;
8368
8369  llvm::APSInt Value;
8370  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8371    return true;
8372
8373  if (Value != 0 && ZeroWidth)
8374    *ZeroWidth = false;
8375
8376  // Zero-width bitfield is ok for anonymous field.
8377  if (Value == 0 && FieldName)
8378    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8379
8380  if (Value.isSigned() && Value.isNegative()) {
8381    if (FieldName)
8382      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8383               << FieldName << Value.toString(10);
8384    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8385      << Value.toString(10);
8386  }
8387
8388  if (!FieldTy->isDependentType()) {
8389    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8390    if (Value.getZExtValue() > TypeSize) {
8391      if (!getLangOptions().CPlusPlus) {
8392        if (FieldName)
8393          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8394            << FieldName << (unsigned)Value.getZExtValue()
8395            << (unsigned)TypeSize;
8396
8397        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8398          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8399      }
8400
8401      if (FieldName)
8402        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8403          << FieldName << (unsigned)Value.getZExtValue()
8404          << (unsigned)TypeSize;
8405      else
8406        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8407          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8408    }
8409  }
8410
8411  return false;
8412}
8413
8414/// ActOnField - Each field of a C struct/union is passed into this in order
8415/// to create a FieldDecl object for it.
8416Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8417                       Declarator &D, Expr *BitfieldWidth) {
8418  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8419                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8420                               /*HasInit=*/false, AS_public);
8421  return Res;
8422}
8423
8424/// HandleField - Analyze a field of a C struct or a C++ data member.
8425///
8426FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8427                             SourceLocation DeclStart,
8428                             Declarator &D, Expr *BitWidth, bool HasInit,
8429                             AccessSpecifier AS) {
8430  IdentifierInfo *II = D.getIdentifier();
8431  SourceLocation Loc = DeclStart;
8432  if (II) Loc = D.getIdentifierLoc();
8433
8434  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8435  QualType T = TInfo->getType();
8436  if (getLangOptions().CPlusPlus) {
8437    CheckExtraCXXDefaultArguments(D);
8438
8439    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8440                                        UPPC_DataMemberType)) {
8441      D.setInvalidType();
8442      T = Context.IntTy;
8443      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8444    }
8445  }
8446
8447  DiagnoseFunctionSpecifiers(D);
8448
8449  if (D.getDeclSpec().isThreadSpecified())
8450    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8451  if (D.getDeclSpec().isConstexprSpecified())
8452    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8453      << 2;
8454
8455  // Check to see if this name was declared as a member previously
8456  NamedDecl *PrevDecl = 0;
8457  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8458  LookupName(Previous, S);
8459  switch (Previous.getResultKind()) {
8460    case LookupResult::Found:
8461    case LookupResult::FoundUnresolvedValue:
8462      PrevDecl = Previous.getAsSingle<NamedDecl>();
8463      break;
8464
8465    case LookupResult::FoundOverloaded:
8466      PrevDecl = Previous.getRepresentativeDecl();
8467      break;
8468
8469    case LookupResult::NotFound:
8470    case LookupResult::NotFoundInCurrentInstantiation:
8471    case LookupResult::Ambiguous:
8472      break;
8473  }
8474  Previous.suppressDiagnostics();
8475
8476  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8477    // Maybe we will complain about the shadowed template parameter.
8478    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8479    // Just pretend that we didn't see the previous declaration.
8480    PrevDecl = 0;
8481  }
8482
8483  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8484    PrevDecl = 0;
8485
8486  bool Mutable
8487    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8488  SourceLocation TSSL = D.getSourceRange().getBegin();
8489  FieldDecl *NewFD
8490    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8491                     TSSL, AS, PrevDecl, &D);
8492
8493  if (NewFD->isInvalidDecl())
8494    Record->setInvalidDecl();
8495
8496  if (D.getDeclSpec().isModulePrivateSpecified())
8497    NewFD->setModulePrivate();
8498
8499  if (NewFD->isInvalidDecl() && PrevDecl) {
8500    // Don't introduce NewFD into scope; there's already something
8501    // with the same name in the same scope.
8502  } else if (II) {
8503    PushOnScopeChains(NewFD, S);
8504  } else
8505    Record->addDecl(NewFD);
8506
8507  return NewFD;
8508}
8509
8510/// \brief Build a new FieldDecl and check its well-formedness.
8511///
8512/// This routine builds a new FieldDecl given the fields name, type,
8513/// record, etc. \p PrevDecl should refer to any previous declaration
8514/// with the same name and in the same scope as the field to be
8515/// created.
8516///
8517/// \returns a new FieldDecl.
8518///
8519/// \todo The Declarator argument is a hack. It will be removed once
8520FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8521                                TypeSourceInfo *TInfo,
8522                                RecordDecl *Record, SourceLocation Loc,
8523                                bool Mutable, Expr *BitWidth, bool HasInit,
8524                                SourceLocation TSSL,
8525                                AccessSpecifier AS, NamedDecl *PrevDecl,
8526                                Declarator *D) {
8527  IdentifierInfo *II = Name.getAsIdentifierInfo();
8528  bool InvalidDecl = false;
8529  if (D) InvalidDecl = D->isInvalidType();
8530
8531  // If we receive a broken type, recover by assuming 'int' and
8532  // marking this declaration as invalid.
8533  if (T.isNull()) {
8534    InvalidDecl = true;
8535    T = Context.IntTy;
8536  }
8537
8538  QualType EltTy = Context.getBaseElementType(T);
8539  if (!EltTy->isDependentType() &&
8540      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8541    // Fields of incomplete type force their record to be invalid.
8542    Record->setInvalidDecl();
8543    InvalidDecl = true;
8544  }
8545
8546  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8547  // than a variably modified type.
8548  if (!InvalidDecl && T->isVariablyModifiedType()) {
8549    bool SizeIsNegative;
8550    llvm::APSInt Oversized;
8551    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8552                                                           SizeIsNegative,
8553                                                           Oversized);
8554    if (!FixedTy.isNull()) {
8555      Diag(Loc, diag::warn_illegal_constant_array_size);
8556      T = FixedTy;
8557    } else {
8558      if (SizeIsNegative)
8559        Diag(Loc, diag::err_typecheck_negative_array_size);
8560      else if (Oversized.getBoolValue())
8561        Diag(Loc, diag::err_array_too_large)
8562          << Oversized.toString(10);
8563      else
8564        Diag(Loc, diag::err_typecheck_field_variable_size);
8565      InvalidDecl = true;
8566    }
8567  }
8568
8569  // Fields can not have abstract class types
8570  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8571                                             diag::err_abstract_type_in_decl,
8572                                             AbstractFieldType))
8573    InvalidDecl = true;
8574
8575  bool ZeroWidth = false;
8576  // If this is declared as a bit-field, check the bit-field.
8577  if (!InvalidDecl && BitWidth &&
8578      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8579    InvalidDecl = true;
8580    BitWidth = 0;
8581    ZeroWidth = false;
8582  }
8583
8584  // Check that 'mutable' is consistent with the type of the declaration.
8585  if (!InvalidDecl && Mutable) {
8586    unsigned DiagID = 0;
8587    if (T->isReferenceType())
8588      DiagID = diag::err_mutable_reference;
8589    else if (T.isConstQualified())
8590      DiagID = diag::err_mutable_const;
8591
8592    if (DiagID) {
8593      SourceLocation ErrLoc = Loc;
8594      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8595        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8596      Diag(ErrLoc, DiagID);
8597      Mutable = false;
8598      InvalidDecl = true;
8599    }
8600  }
8601
8602  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8603                                       BitWidth, Mutable, HasInit);
8604  if (InvalidDecl)
8605    NewFD->setInvalidDecl();
8606
8607  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8608    Diag(Loc, diag::err_duplicate_member) << II;
8609    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8610    NewFD->setInvalidDecl();
8611  }
8612
8613  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8614    if (Record->isUnion()) {
8615      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8616        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8617        if (RDecl->getDefinition()) {
8618          // C++ [class.union]p1: An object of a class with a non-trivial
8619          // constructor, a non-trivial copy constructor, a non-trivial
8620          // destructor, or a non-trivial copy assignment operator
8621          // cannot be a member of a union, nor can an array of such
8622          // objects.
8623          if (CheckNontrivialField(NewFD))
8624            NewFD->setInvalidDecl();
8625        }
8626      }
8627
8628      // C++ [class.union]p1: If a union contains a member of reference type,
8629      // the program is ill-formed.
8630      if (EltTy->isReferenceType()) {
8631        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8632          << NewFD->getDeclName() << EltTy;
8633        NewFD->setInvalidDecl();
8634      }
8635    }
8636  }
8637
8638  // FIXME: We need to pass in the attributes given an AST
8639  // representation, not a parser representation.
8640  if (D)
8641    // FIXME: What to pass instead of TUScope?
8642    ProcessDeclAttributes(TUScope, NewFD, *D);
8643
8644  // In auto-retain/release, infer strong retension for fields of
8645  // retainable type.
8646  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8647    NewFD->setInvalidDecl();
8648
8649  if (T.isObjCGCWeak())
8650    Diag(Loc, diag::warn_attribute_weak_on_field);
8651
8652  NewFD->setAccess(AS);
8653  return NewFD;
8654}
8655
8656bool Sema::CheckNontrivialField(FieldDecl *FD) {
8657  assert(FD);
8658  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8659
8660  if (FD->isInvalidDecl())
8661    return true;
8662
8663  QualType EltTy = Context.getBaseElementType(FD->getType());
8664  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8665    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8666    if (RDecl->getDefinition()) {
8667      // We check for copy constructors before constructors
8668      // because otherwise we'll never get complaints about
8669      // copy constructors.
8670
8671      CXXSpecialMember member = CXXInvalid;
8672      if (!RDecl->hasTrivialCopyConstructor())
8673        member = CXXCopyConstructor;
8674      else if (!RDecl->hasTrivialDefaultConstructor())
8675        member = CXXDefaultConstructor;
8676      else if (!RDecl->hasTrivialCopyAssignment())
8677        member = CXXCopyAssignment;
8678      else if (!RDecl->hasTrivialDestructor())
8679        member = CXXDestructor;
8680
8681      if (member != CXXInvalid) {
8682        if (!getLangOptions().CPlusPlus0x &&
8683            getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8684          // Objective-C++ ARC: it is an error to have a non-trivial field of
8685          // a union. However, system headers in Objective-C programs
8686          // occasionally have Objective-C lifetime objects within unions,
8687          // and rather than cause the program to fail, we make those
8688          // members unavailable.
8689          SourceLocation Loc = FD->getLocation();
8690          if (getSourceManager().isInSystemHeader(Loc)) {
8691            if (!FD->hasAttr<UnavailableAttr>())
8692              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8693                                  "this system field has retaining ownership"));
8694            return false;
8695          }
8696        }
8697
8698        Diag(FD->getLocation(), getLangOptions().CPlusPlus0x ?
8699               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
8700               diag::err_illegal_union_or_anon_struct_member)
8701          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8702        DiagnoseNontrivial(RT, member);
8703        return !getLangOptions().CPlusPlus0x;
8704      }
8705    }
8706  }
8707
8708  return false;
8709}
8710
8711/// DiagnoseNontrivial - Given that a class has a non-trivial
8712/// special member, figure out why.
8713void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8714  QualType QT(T, 0U);
8715  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8716
8717  // Check whether the member was user-declared.
8718  switch (member) {
8719  case CXXInvalid:
8720    break;
8721
8722  case CXXDefaultConstructor:
8723    if (RD->hasUserDeclaredConstructor()) {
8724      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8725      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8726        const FunctionDecl *body = 0;
8727        ci->hasBody(body);
8728        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8729          SourceLocation CtorLoc = ci->getLocation();
8730          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8731          return;
8732        }
8733      }
8734
8735      llvm_unreachable("found no user-declared constructors");
8736    }
8737    break;
8738
8739  case CXXCopyConstructor:
8740    if (RD->hasUserDeclaredCopyConstructor()) {
8741      SourceLocation CtorLoc =
8742        RD->getCopyConstructor(0)->getLocation();
8743      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8744      return;
8745    }
8746    break;
8747
8748  case CXXMoveConstructor:
8749    if (RD->hasUserDeclaredMoveConstructor()) {
8750      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8751      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8752      return;
8753    }
8754    break;
8755
8756  case CXXCopyAssignment:
8757    if (RD->hasUserDeclaredCopyAssignment()) {
8758      // FIXME: this should use the location of the copy
8759      // assignment, not the type.
8760      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8761      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8762      return;
8763    }
8764    break;
8765
8766  case CXXMoveAssignment:
8767    if (RD->hasUserDeclaredMoveAssignment()) {
8768      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8769      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8770      return;
8771    }
8772    break;
8773
8774  case CXXDestructor:
8775    if (RD->hasUserDeclaredDestructor()) {
8776      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8777      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8778      return;
8779    }
8780    break;
8781  }
8782
8783  typedef CXXRecordDecl::base_class_iterator base_iter;
8784
8785  // Virtual bases and members inhibit trivial copying/construction,
8786  // but not trivial destruction.
8787  if (member != CXXDestructor) {
8788    // Check for virtual bases.  vbases includes indirect virtual bases,
8789    // so we just iterate through the direct bases.
8790    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8791      if (bi->isVirtual()) {
8792        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8793        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8794        return;
8795      }
8796
8797    // Check for virtual methods.
8798    typedef CXXRecordDecl::method_iterator meth_iter;
8799    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8800         ++mi) {
8801      if (mi->isVirtual()) {
8802        SourceLocation MLoc = mi->getSourceRange().getBegin();
8803        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8804        return;
8805      }
8806    }
8807  }
8808
8809  bool (CXXRecordDecl::*hasTrivial)() const;
8810  switch (member) {
8811  case CXXDefaultConstructor:
8812    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8813  case CXXCopyConstructor:
8814    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8815  case CXXCopyAssignment:
8816    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8817  case CXXDestructor:
8818    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8819  default:
8820    llvm_unreachable("unexpected special member");
8821  }
8822
8823  // Check for nontrivial bases (and recurse).
8824  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8825    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8826    assert(BaseRT && "Don't know how to handle dependent bases");
8827    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8828    if (!(BaseRecTy->*hasTrivial)()) {
8829      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8830      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8831      DiagnoseNontrivial(BaseRT, member);
8832      return;
8833    }
8834  }
8835
8836  // Check for nontrivial members (and recurse).
8837  typedef RecordDecl::field_iterator field_iter;
8838  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8839       ++fi) {
8840    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8841    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8842      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8843
8844      if (!(EltRD->*hasTrivial)()) {
8845        SourceLocation FLoc = (*fi)->getLocation();
8846        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8847        DiagnoseNontrivial(EltRT, member);
8848        return;
8849      }
8850    }
8851
8852    if (EltTy->isObjCLifetimeType()) {
8853      switch (EltTy.getObjCLifetime()) {
8854      case Qualifiers::OCL_None:
8855      case Qualifiers::OCL_ExplicitNone:
8856        break;
8857
8858      case Qualifiers::OCL_Autoreleasing:
8859      case Qualifiers::OCL_Weak:
8860      case Qualifiers::OCL_Strong:
8861        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8862          << QT << EltTy.getObjCLifetime();
8863        return;
8864      }
8865    }
8866  }
8867
8868  llvm_unreachable("found no explanation for non-trivial member");
8869}
8870
8871/// TranslateIvarVisibility - Translate visibility from a token ID to an
8872///  AST enum value.
8873static ObjCIvarDecl::AccessControl
8874TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8875  switch (ivarVisibility) {
8876  default: llvm_unreachable("Unknown visitibility kind");
8877  case tok::objc_private: return ObjCIvarDecl::Private;
8878  case tok::objc_public: return ObjCIvarDecl::Public;
8879  case tok::objc_protected: return ObjCIvarDecl::Protected;
8880  case tok::objc_package: return ObjCIvarDecl::Package;
8881  }
8882}
8883
8884/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8885/// in order to create an IvarDecl object for it.
8886Decl *Sema::ActOnIvar(Scope *S,
8887                                SourceLocation DeclStart,
8888                                Declarator &D, Expr *BitfieldWidth,
8889                                tok::ObjCKeywordKind Visibility) {
8890
8891  IdentifierInfo *II = D.getIdentifier();
8892  Expr *BitWidth = (Expr*)BitfieldWidth;
8893  SourceLocation Loc = DeclStart;
8894  if (II) Loc = D.getIdentifierLoc();
8895
8896  // FIXME: Unnamed fields can be handled in various different ways, for
8897  // example, unnamed unions inject all members into the struct namespace!
8898
8899  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8900  QualType T = TInfo->getType();
8901
8902  if (BitWidth) {
8903    // 6.7.2.1p3, 6.7.2.1p4
8904    if (VerifyBitField(Loc, II, T, BitWidth)) {
8905      D.setInvalidType();
8906      BitWidth = 0;
8907    }
8908  } else {
8909    // Not a bitfield.
8910
8911    // validate II.
8912
8913  }
8914  if (T->isReferenceType()) {
8915    Diag(Loc, diag::err_ivar_reference_type);
8916    D.setInvalidType();
8917  }
8918  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8919  // than a variably modified type.
8920  else if (T->isVariablyModifiedType()) {
8921    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8922    D.setInvalidType();
8923  }
8924
8925  // Get the visibility (access control) for this ivar.
8926  ObjCIvarDecl::AccessControl ac =
8927    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8928                                        : ObjCIvarDecl::None;
8929  // Must set ivar's DeclContext to its enclosing interface.
8930  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8931  ObjCContainerDecl *EnclosingContext;
8932  if (ObjCImplementationDecl *IMPDecl =
8933      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8934    if (!LangOpts.ObjCNonFragileABI2) {
8935    // Case of ivar declared in an implementation. Context is that of its class.
8936      EnclosingContext = IMPDecl->getClassInterface();
8937      assert(EnclosingContext && "Implementation has no class interface!");
8938    }
8939    else
8940      EnclosingContext = EnclosingDecl;
8941  } else {
8942    if (ObjCCategoryDecl *CDecl =
8943        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8944      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8945        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8946        return 0;
8947      }
8948    }
8949    EnclosingContext = EnclosingDecl;
8950  }
8951
8952  // Construct the decl.
8953  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8954                                             DeclStart, Loc, II, T,
8955                                             TInfo, ac, (Expr *)BitfieldWidth);
8956
8957  if (II) {
8958    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8959                                           ForRedeclaration);
8960    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8961        && !isa<TagDecl>(PrevDecl)) {
8962      Diag(Loc, diag::err_duplicate_member) << II;
8963      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8964      NewID->setInvalidDecl();
8965    }
8966  }
8967
8968  // Process attributes attached to the ivar.
8969  ProcessDeclAttributes(S, NewID, D);
8970
8971  if (D.isInvalidType())
8972    NewID->setInvalidDecl();
8973
8974  // In ARC, infer 'retaining' for ivars of retainable type.
8975  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8976    NewID->setInvalidDecl();
8977
8978  if (D.getDeclSpec().isModulePrivateSpecified())
8979    NewID->setModulePrivate();
8980
8981  if (II) {
8982    // FIXME: When interfaces are DeclContexts, we'll need to add
8983    // these to the interface.
8984    S->AddDecl(NewID);
8985    IdResolver.AddDecl(NewID);
8986  }
8987
8988  return NewID;
8989}
8990
8991/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8992/// class and class extensions. For every class @interface and class
8993/// extension @interface, if the last ivar is a bitfield of any type,
8994/// then add an implicit `char :0` ivar to the end of that interface.
8995void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
8996                             SmallVectorImpl<Decl *> &AllIvarDecls) {
8997  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8998    return;
8999
9000  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9001  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9002
9003  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9004    return;
9005  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9006  if (!ID) {
9007    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9008      if (!CD->IsClassExtension())
9009        return;
9010    }
9011    // No need to add this to end of @implementation.
9012    else
9013      return;
9014  }
9015  // All conditions are met. Add a new bitfield to the tail end of ivars.
9016  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9017  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9018
9019  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9020                              DeclLoc, DeclLoc, 0,
9021                              Context.CharTy,
9022                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9023                                                               DeclLoc),
9024                              ObjCIvarDecl::Private, BW,
9025                              true);
9026  AllIvarDecls.push_back(Ivar);
9027}
9028
9029void Sema::ActOnFields(Scope* S,
9030                       SourceLocation RecLoc, Decl *EnclosingDecl,
9031                       llvm::ArrayRef<Decl *> Fields,
9032                       SourceLocation LBrac, SourceLocation RBrac,
9033                       AttributeList *Attr) {
9034  assert(EnclosingDecl && "missing record or interface decl");
9035
9036  // If the decl this is being inserted into is invalid, then it may be a
9037  // redeclaration or some other bogus case.  Don't try to add fields to it.
9038  if (EnclosingDecl->isInvalidDecl())
9039    return;
9040
9041  // Verify that all the fields are okay.
9042  unsigned NumNamedMembers = 0;
9043  SmallVector<FieldDecl*, 32> RecFields;
9044
9045  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9046  bool ARCErrReported = false;
9047  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9048       i != end; ++i) {
9049    FieldDecl *FD = cast<FieldDecl>(*i);
9050
9051    // Get the type for the field.
9052    const Type *FDTy = FD->getType().getTypePtr();
9053
9054    if (!FD->isAnonymousStructOrUnion()) {
9055      // Remember all fields written by the user.
9056      RecFields.push_back(FD);
9057    }
9058
9059    // If the field is already invalid for some reason, don't emit more
9060    // diagnostics about it.
9061    if (FD->isInvalidDecl()) {
9062      EnclosingDecl->setInvalidDecl();
9063      continue;
9064    }
9065
9066    // C99 6.7.2.1p2:
9067    //   A structure or union shall not contain a member with
9068    //   incomplete or function type (hence, a structure shall not
9069    //   contain an instance of itself, but may contain a pointer to
9070    //   an instance of itself), except that the last member of a
9071    //   structure with more than one named member may have incomplete
9072    //   array type; such a structure (and any union containing,
9073    //   possibly recursively, a member that is such a structure)
9074    //   shall not be a member of a structure or an element of an
9075    //   array.
9076    if (FDTy->isFunctionType()) {
9077      // Field declared as a function.
9078      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9079        << FD->getDeclName();
9080      FD->setInvalidDecl();
9081      EnclosingDecl->setInvalidDecl();
9082      continue;
9083    } else if (FDTy->isIncompleteArrayType() && Record &&
9084               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9085                ((getLangOptions().MicrosoftExt ||
9086                  getLangOptions().CPlusPlus) &&
9087                 (i + 1 == Fields.end() || Record->isUnion())))) {
9088      // Flexible array member.
9089      // Microsoft and g++ is more permissive regarding flexible array.
9090      // It will accept flexible array in union and also
9091      // as the sole element of a struct/class.
9092      if (getLangOptions().MicrosoftExt) {
9093        if (Record->isUnion())
9094          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9095            << FD->getDeclName();
9096        else if (Fields.size() == 1)
9097          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9098            << FD->getDeclName() << Record->getTagKind();
9099      } else if (getLangOptions().CPlusPlus) {
9100        if (Record->isUnion())
9101          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9102            << FD->getDeclName();
9103        else if (Fields.size() == 1)
9104          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9105            << FD->getDeclName() << Record->getTagKind();
9106      } else if (NumNamedMembers < 1) {
9107        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9108          << FD->getDeclName();
9109        FD->setInvalidDecl();
9110        EnclosingDecl->setInvalidDecl();
9111        continue;
9112      }
9113      if (!FD->getType()->isDependentType() &&
9114          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9115        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9116          << FD->getDeclName() << FD->getType();
9117        FD->setInvalidDecl();
9118        EnclosingDecl->setInvalidDecl();
9119        continue;
9120      }
9121      // Okay, we have a legal flexible array member at the end of the struct.
9122      if (Record)
9123        Record->setHasFlexibleArrayMember(true);
9124    } else if (!FDTy->isDependentType() &&
9125               RequireCompleteType(FD->getLocation(), FD->getType(),
9126                                   diag::err_field_incomplete)) {
9127      // Incomplete type
9128      FD->setInvalidDecl();
9129      EnclosingDecl->setInvalidDecl();
9130      continue;
9131    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9132      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9133        // If this is a member of a union, then entire union becomes "flexible".
9134        if (Record && Record->isUnion()) {
9135          Record->setHasFlexibleArrayMember(true);
9136        } else {
9137          // If this is a struct/class and this is not the last element, reject
9138          // it.  Note that GCC supports variable sized arrays in the middle of
9139          // structures.
9140          if (i + 1 != Fields.end())
9141            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9142              << FD->getDeclName() << FD->getType();
9143          else {
9144            // We support flexible arrays at the end of structs in
9145            // other structs as an extension.
9146            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9147              << FD->getDeclName();
9148            if (Record)
9149              Record->setHasFlexibleArrayMember(true);
9150          }
9151        }
9152      }
9153      if (Record && FDTTy->getDecl()->hasObjectMember())
9154        Record->setHasObjectMember(true);
9155    } else if (FDTy->isObjCObjectType()) {
9156      /// A field cannot be an Objective-c object
9157      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9158        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9159      QualType T = Context.getObjCObjectPointerType(FD->getType());
9160      FD->setType(T);
9161    }
9162    else if (!getLangOptions().CPlusPlus) {
9163      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9164        // It's an error in ARC if a field has lifetime.
9165        // We don't want to report this in a system header, though,
9166        // so we just make the field unavailable.
9167        // FIXME: that's really not sufficient; we need to make the type
9168        // itself invalid to, say, initialize or copy.
9169        QualType T = FD->getType();
9170        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9171        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9172          SourceLocation loc = FD->getLocation();
9173          if (getSourceManager().isInSystemHeader(loc)) {
9174            if (!FD->hasAttr<UnavailableAttr>()) {
9175              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9176                                "this system field has retaining ownership"));
9177            }
9178          } else {
9179            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
9180          }
9181          ARCErrReported = true;
9182        }
9183      }
9184      else if (getLangOptions().ObjC1 &&
9185               getLangOptions().getGC() != LangOptions::NonGC &&
9186               Record && !Record->hasObjectMember()) {
9187        if (FD->getType()->isObjCObjectPointerType() ||
9188            FD->getType().isObjCGCStrong())
9189          Record->setHasObjectMember(true);
9190        else if (Context.getAsArrayType(FD->getType())) {
9191          QualType BaseType = Context.getBaseElementType(FD->getType());
9192          if (BaseType->isRecordType() &&
9193              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9194            Record->setHasObjectMember(true);
9195          else if (BaseType->isObjCObjectPointerType() ||
9196                   BaseType.isObjCGCStrong())
9197                 Record->setHasObjectMember(true);
9198        }
9199      }
9200    }
9201    // Keep track of the number of named members.
9202    if (FD->getIdentifier())
9203      ++NumNamedMembers;
9204  }
9205
9206  // Okay, we successfully defined 'Record'.
9207  if (Record) {
9208    bool Completed = false;
9209    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9210      if (!CXXRecord->isInvalidDecl()) {
9211        // Set access bits correctly on the directly-declared conversions.
9212        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9213        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9214             I != E; ++I)
9215          Convs->setAccess(I, (*I)->getAccess());
9216
9217        if (!CXXRecord->isDependentType()) {
9218          // Objective-C Automatic Reference Counting:
9219          //   If a class has a non-static data member of Objective-C pointer
9220          //   type (or array thereof), it is a non-POD type and its
9221          //   default constructor (if any), copy constructor, copy assignment
9222          //   operator, and destructor are non-trivial.
9223          //
9224          // This rule is also handled by CXXRecordDecl::completeDefinition().
9225          // However, here we check whether this particular class is only
9226          // non-POD because of the presence of an Objective-C pointer member.
9227          // If so, objects of this type cannot be shared between code compiled
9228          // with instant objects and code compiled with manual retain/release.
9229          if (getLangOptions().ObjCAutoRefCount &&
9230              CXXRecord->hasObjectMember() &&
9231              CXXRecord->getLinkage() == ExternalLinkage) {
9232            if (CXXRecord->isPOD()) {
9233              Diag(CXXRecord->getLocation(),
9234                   diag::warn_arc_non_pod_class_with_object_member)
9235               << CXXRecord;
9236            } else {
9237              // FIXME: Fix-Its would be nice here, but finding a good location
9238              // for them is going to be tricky.
9239              if (CXXRecord->hasTrivialCopyConstructor())
9240                Diag(CXXRecord->getLocation(),
9241                     diag::warn_arc_trivial_member_function_with_object_member)
9242                  << CXXRecord << 0;
9243              if (CXXRecord->hasTrivialCopyAssignment())
9244                Diag(CXXRecord->getLocation(),
9245                     diag::warn_arc_trivial_member_function_with_object_member)
9246                << CXXRecord << 1;
9247              if (CXXRecord->hasTrivialDestructor())
9248                Diag(CXXRecord->getLocation(),
9249                     diag::warn_arc_trivial_member_function_with_object_member)
9250                << CXXRecord << 2;
9251            }
9252          }
9253
9254          // Adjust user-defined destructor exception spec.
9255          if (getLangOptions().CPlusPlus0x &&
9256              CXXRecord->hasUserDeclaredDestructor())
9257            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9258
9259          // Add any implicitly-declared members to this class.
9260          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9261
9262          // If we have virtual base classes, we may end up finding multiple
9263          // final overriders for a given virtual function. Check for this
9264          // problem now.
9265          if (CXXRecord->getNumVBases()) {
9266            CXXFinalOverriderMap FinalOverriders;
9267            CXXRecord->getFinalOverriders(FinalOverriders);
9268
9269            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9270                                             MEnd = FinalOverriders.end();
9271                 M != MEnd; ++M) {
9272              for (OverridingMethods::iterator SO = M->second.begin(),
9273                                            SOEnd = M->second.end();
9274                   SO != SOEnd; ++SO) {
9275                assert(SO->second.size() > 0 &&
9276                       "Virtual function without overridding functions?");
9277                if (SO->second.size() == 1)
9278                  continue;
9279
9280                // C++ [class.virtual]p2:
9281                //   In a derived class, if a virtual member function of a base
9282                //   class subobject has more than one final overrider the
9283                //   program is ill-formed.
9284                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9285                  << (NamedDecl *)M->first << Record;
9286                Diag(M->first->getLocation(),
9287                     diag::note_overridden_virtual_function);
9288                for (OverridingMethods::overriding_iterator
9289                          OM = SO->second.begin(),
9290                       OMEnd = SO->second.end();
9291                     OM != OMEnd; ++OM)
9292                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9293                    << (NamedDecl *)M->first << OM->Method->getParent();
9294
9295                Record->setInvalidDecl();
9296              }
9297            }
9298            CXXRecord->completeDefinition(&FinalOverriders);
9299            Completed = true;
9300          }
9301        }
9302      }
9303    }
9304
9305    if (!Completed)
9306      Record->completeDefinition();
9307
9308    // Now that the record is complete, do any delayed exception spec checks
9309    // we were missing.
9310    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9311      const CXXDestructorDecl *Dtor =
9312              DelayedDestructorExceptionSpecChecks.back().first;
9313      if (Dtor->getParent() != Record)
9314        break;
9315
9316      assert(!Dtor->getParent()->isDependentType() &&
9317          "Should not ever add destructors of templates into the list.");
9318      CheckOverridingFunctionExceptionSpec(Dtor,
9319          DelayedDestructorExceptionSpecChecks.back().second);
9320      DelayedDestructorExceptionSpecChecks.pop_back();
9321    }
9322
9323  } else {
9324    ObjCIvarDecl **ClsFields =
9325      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9326    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9327      ID->setLocEnd(RBrac);
9328      // Add ivar's to class's DeclContext.
9329      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9330        ClsFields[i]->setLexicalDeclContext(ID);
9331        ID->addDecl(ClsFields[i]);
9332      }
9333      // Must enforce the rule that ivars in the base classes may not be
9334      // duplicates.
9335      if (ID->getSuperClass())
9336        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9337    } else if (ObjCImplementationDecl *IMPDecl =
9338                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9339      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9340      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9341        // Ivar declared in @implementation never belongs to the implementation.
9342        // Only it is in implementation's lexical context.
9343        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9344      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9345    } else if (ObjCCategoryDecl *CDecl =
9346                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9347      // case of ivars in class extension; all other cases have been
9348      // reported as errors elsewhere.
9349      // FIXME. Class extension does not have a LocEnd field.
9350      // CDecl->setLocEnd(RBrac);
9351      // Add ivar's to class extension's DeclContext.
9352      // Diagnose redeclaration of private ivars.
9353      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
9354      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9355        if (IDecl) {
9356          if (const ObjCIvarDecl *ClsIvar =
9357              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9358            Diag(ClsFields[i]->getLocation(),
9359                 diag::err_duplicate_ivar_declaration);
9360            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
9361            continue;
9362          }
9363          for (const ObjCCategoryDecl *ClsExtDecl =
9364                IDecl->getFirstClassExtension();
9365               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
9366            if (const ObjCIvarDecl *ClsExtIvar =
9367                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9368              Diag(ClsFields[i]->getLocation(),
9369                   diag::err_duplicate_ivar_declaration);
9370              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
9371              continue;
9372            }
9373          }
9374        }
9375        ClsFields[i]->setLexicalDeclContext(CDecl);
9376        CDecl->addDecl(ClsFields[i]);
9377      }
9378    }
9379  }
9380
9381  if (Attr)
9382    ProcessDeclAttributeList(S, Record, Attr);
9383
9384  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9385  // set the visibility of this record.
9386  if (Record && !Record->getDeclContext()->isRecord())
9387    AddPushedVisibilityAttribute(Record);
9388}
9389
9390/// \brief Determine whether the given integral value is representable within
9391/// the given type T.
9392static bool isRepresentableIntegerValue(ASTContext &Context,
9393                                        llvm::APSInt &Value,
9394                                        QualType T) {
9395  assert(T->isIntegralType(Context) && "Integral type required!");
9396  unsigned BitWidth = Context.getIntWidth(T);
9397
9398  if (Value.isUnsigned() || Value.isNonNegative()) {
9399    if (T->isSignedIntegerOrEnumerationType())
9400      --BitWidth;
9401    return Value.getActiveBits() <= BitWidth;
9402  }
9403  return Value.getMinSignedBits() <= BitWidth;
9404}
9405
9406// \brief Given an integral type, return the next larger integral type
9407// (or a NULL type of no such type exists).
9408static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9409  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9410  // enum checking below.
9411  assert(T->isIntegralType(Context) && "Integral type required!");
9412  const unsigned NumTypes = 4;
9413  QualType SignedIntegralTypes[NumTypes] = {
9414    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9415  };
9416  QualType UnsignedIntegralTypes[NumTypes] = {
9417    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9418    Context.UnsignedLongLongTy
9419  };
9420
9421  unsigned BitWidth = Context.getTypeSize(T);
9422  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9423                                                        : UnsignedIntegralTypes;
9424  for (unsigned I = 0; I != NumTypes; ++I)
9425    if (Context.getTypeSize(Types[I]) > BitWidth)
9426      return Types[I];
9427
9428  return QualType();
9429}
9430
9431EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9432                                          EnumConstantDecl *LastEnumConst,
9433                                          SourceLocation IdLoc,
9434                                          IdentifierInfo *Id,
9435                                          Expr *Val) {
9436  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9437  llvm::APSInt EnumVal(IntWidth);
9438  QualType EltTy;
9439
9440  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9441    Val = 0;
9442
9443  if (Val) {
9444    if (Enum->isDependentType() || Val->isTypeDependent())
9445      EltTy = Context.DependentTy;
9446    else {
9447      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9448      SourceLocation ExpLoc;
9449      if (!Val->isValueDependent() &&
9450          VerifyIntegerConstantExpression(Val, &EnumVal)) {
9451        Val = 0;
9452      } else {
9453        if (!getLangOptions().CPlusPlus) {
9454          // C99 6.7.2.2p2:
9455          //   The expression that defines the value of an enumeration constant
9456          //   shall be an integer constant expression that has a value
9457          //   representable as an int.
9458
9459          // Complain if the value is not representable in an int.
9460          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9461            Diag(IdLoc, diag::ext_enum_value_not_int)
9462              << EnumVal.toString(10) << Val->getSourceRange()
9463              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9464          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9465            // Force the type of the expression to 'int'.
9466            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9467          }
9468        }
9469
9470        if (Enum->isFixed()) {
9471          EltTy = Enum->getIntegerType();
9472
9473          // C++0x [dcl.enum]p5:
9474          //   ... if the initializing value of an enumerator cannot be
9475          //   represented by the underlying type, the program is ill-formed.
9476          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9477            if (getLangOptions().MicrosoftExt) {
9478              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9479              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9480            } else
9481              Diag(IdLoc, diag::err_enumerator_too_large)
9482                << EltTy;
9483          } else
9484            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9485        }
9486        else {
9487          // C++0x [dcl.enum]p5:
9488          //   If the underlying type is not fixed, the type of each enumerator
9489          //   is the type of its initializing value:
9490          //     - If an initializer is specified for an enumerator, the
9491          //       initializing value has the same type as the expression.
9492          EltTy = Val->getType();
9493        }
9494      }
9495    }
9496  }
9497
9498  if (!Val) {
9499    if (Enum->isDependentType())
9500      EltTy = Context.DependentTy;
9501    else if (!LastEnumConst) {
9502      // C++0x [dcl.enum]p5:
9503      //   If the underlying type is not fixed, the type of each enumerator
9504      //   is the type of its initializing value:
9505      //     - If no initializer is specified for the first enumerator, the
9506      //       initializing value has an unspecified integral type.
9507      //
9508      // GCC uses 'int' for its unspecified integral type, as does
9509      // C99 6.7.2.2p3.
9510      if (Enum->isFixed()) {
9511        EltTy = Enum->getIntegerType();
9512      }
9513      else {
9514        EltTy = Context.IntTy;
9515      }
9516    } else {
9517      // Assign the last value + 1.
9518      EnumVal = LastEnumConst->getInitVal();
9519      ++EnumVal;
9520      EltTy = LastEnumConst->getType();
9521
9522      // Check for overflow on increment.
9523      if (EnumVal < LastEnumConst->getInitVal()) {
9524        // C++0x [dcl.enum]p5:
9525        //   If the underlying type is not fixed, the type of each enumerator
9526        //   is the type of its initializing value:
9527        //
9528        //     - Otherwise the type of the initializing value is the same as
9529        //       the type of the initializing value of the preceding enumerator
9530        //       unless the incremented value is not representable in that type,
9531        //       in which case the type is an unspecified integral type
9532        //       sufficient to contain the incremented value. If no such type
9533        //       exists, the program is ill-formed.
9534        QualType T = getNextLargerIntegralType(Context, EltTy);
9535        if (T.isNull() || Enum->isFixed()) {
9536          // There is no integral type larger enough to represent this
9537          // value. Complain, then allow the value to wrap around.
9538          EnumVal = LastEnumConst->getInitVal();
9539          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9540          ++EnumVal;
9541          if (Enum->isFixed())
9542            // When the underlying type is fixed, this is ill-formed.
9543            Diag(IdLoc, diag::err_enumerator_wrapped)
9544              << EnumVal.toString(10)
9545              << EltTy;
9546          else
9547            Diag(IdLoc, diag::warn_enumerator_too_large)
9548              << EnumVal.toString(10);
9549        } else {
9550          EltTy = T;
9551        }
9552
9553        // Retrieve the last enumerator's value, extent that type to the
9554        // type that is supposed to be large enough to represent the incremented
9555        // value, then increment.
9556        EnumVal = LastEnumConst->getInitVal();
9557        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9558        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9559        ++EnumVal;
9560
9561        // If we're not in C++, diagnose the overflow of enumerator values,
9562        // which in C99 means that the enumerator value is not representable in
9563        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9564        // permits enumerator values that are representable in some larger
9565        // integral type.
9566        if (!getLangOptions().CPlusPlus && !T.isNull())
9567          Diag(IdLoc, diag::warn_enum_value_overflow);
9568      } else if (!getLangOptions().CPlusPlus &&
9569                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9570        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9571        Diag(IdLoc, diag::ext_enum_value_not_int)
9572          << EnumVal.toString(10) << 1;
9573      }
9574    }
9575  }
9576
9577  if (!EltTy->isDependentType()) {
9578    // Make the enumerator value match the signedness and size of the
9579    // enumerator's type.
9580    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9581    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9582  }
9583
9584  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9585                                  Val, EnumVal);
9586}
9587
9588
9589Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9590                              SourceLocation IdLoc, IdentifierInfo *Id,
9591                              AttributeList *Attr,
9592                              SourceLocation EqualLoc, Expr *val) {
9593  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9594  EnumConstantDecl *LastEnumConst =
9595    cast_or_null<EnumConstantDecl>(lastEnumConst);
9596  Expr *Val = static_cast<Expr*>(val);
9597
9598  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9599  // we find one that is.
9600  S = getNonFieldDeclScope(S);
9601
9602  // Verify that there isn't already something declared with this name in this
9603  // scope.
9604  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9605                                         ForRedeclaration);
9606  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9607    // Maybe we will complain about the shadowed template parameter.
9608    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9609    // Just pretend that we didn't see the previous declaration.
9610    PrevDecl = 0;
9611  }
9612
9613  if (PrevDecl) {
9614    // When in C++, we may get a TagDecl with the same name; in this case the
9615    // enum constant will 'hide' the tag.
9616    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9617           "Received TagDecl when not in C++!");
9618    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9619      if (isa<EnumConstantDecl>(PrevDecl))
9620        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9621      else
9622        Diag(IdLoc, diag::err_redefinition) << Id;
9623      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9624      return 0;
9625    }
9626  }
9627
9628  // C++ [class.mem]p13:
9629  //   If T is the name of a class, then each of the following shall have a
9630  //   name different from T:
9631  //     - every enumerator of every member of class T that is an enumerated
9632  //       type
9633  if (CXXRecordDecl *Record
9634                      = dyn_cast<CXXRecordDecl>(
9635                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9636    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9637      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9638
9639  EnumConstantDecl *New =
9640    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9641
9642  if (New) {
9643    // Process attributes.
9644    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9645
9646    // Register this decl in the current scope stack.
9647    New->setAccess(TheEnumDecl->getAccess());
9648    PushOnScopeChains(New, S);
9649  }
9650
9651  return New;
9652}
9653
9654void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9655                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9656                         Decl **Elements, unsigned NumElements,
9657                         Scope *S, AttributeList *Attr) {
9658  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9659  QualType EnumType = Context.getTypeDeclType(Enum);
9660
9661  if (Attr)
9662    ProcessDeclAttributeList(S, Enum, Attr);
9663
9664  if (Enum->isDependentType()) {
9665    for (unsigned i = 0; i != NumElements; ++i) {
9666      EnumConstantDecl *ECD =
9667        cast_or_null<EnumConstantDecl>(Elements[i]);
9668      if (!ECD) continue;
9669
9670      ECD->setType(EnumType);
9671    }
9672
9673    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9674    return;
9675  }
9676
9677  // TODO: If the result value doesn't fit in an int, it must be a long or long
9678  // long value.  ISO C does not support this, but GCC does as an extension,
9679  // emit a warning.
9680  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9681  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9682  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9683
9684  // Verify that all the values are okay, compute the size of the values, and
9685  // reverse the list.
9686  unsigned NumNegativeBits = 0;
9687  unsigned NumPositiveBits = 0;
9688
9689  // Keep track of whether all elements have type int.
9690  bool AllElementsInt = true;
9691
9692  for (unsigned i = 0; i != NumElements; ++i) {
9693    EnumConstantDecl *ECD =
9694      cast_or_null<EnumConstantDecl>(Elements[i]);
9695    if (!ECD) continue;  // Already issued a diagnostic.
9696
9697    const llvm::APSInt &InitVal = ECD->getInitVal();
9698
9699    // Keep track of the size of positive and negative values.
9700    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9701      NumPositiveBits = std::max(NumPositiveBits,
9702                                 (unsigned)InitVal.getActiveBits());
9703    else
9704      NumNegativeBits = std::max(NumNegativeBits,
9705                                 (unsigned)InitVal.getMinSignedBits());
9706
9707    // Keep track of whether every enum element has type int (very commmon).
9708    if (AllElementsInt)
9709      AllElementsInt = ECD->getType() == Context.IntTy;
9710  }
9711
9712  // Figure out the type that should be used for this enum.
9713  QualType BestType;
9714  unsigned BestWidth;
9715
9716  // C++0x N3000 [conv.prom]p3:
9717  //   An rvalue of an unscoped enumeration type whose underlying
9718  //   type is not fixed can be converted to an rvalue of the first
9719  //   of the following types that can represent all the values of
9720  //   the enumeration: int, unsigned int, long int, unsigned long
9721  //   int, long long int, or unsigned long long int.
9722  // C99 6.4.4.3p2:
9723  //   An identifier declared as an enumeration constant has type int.
9724  // The C99 rule is modified by a gcc extension
9725  QualType BestPromotionType;
9726
9727  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9728  // -fshort-enums is the equivalent to specifying the packed attribute on all
9729  // enum definitions.
9730  if (LangOpts.ShortEnums)
9731    Packed = true;
9732
9733  if (Enum->isFixed()) {
9734    BestType = Enum->getIntegerType();
9735    if (BestType->isPromotableIntegerType())
9736      BestPromotionType = Context.getPromotedIntegerType(BestType);
9737    else
9738      BestPromotionType = BestType;
9739    // We don't need to set BestWidth, because BestType is going to be the type
9740    // of the enumerators, but we do anyway because otherwise some compilers
9741    // warn that it might be used uninitialized.
9742    BestWidth = CharWidth;
9743  }
9744  else if (NumNegativeBits) {
9745    // If there is a negative value, figure out the smallest integer type (of
9746    // int/long/longlong) that fits.
9747    // If it's packed, check also if it fits a char or a short.
9748    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9749      BestType = Context.SignedCharTy;
9750      BestWidth = CharWidth;
9751    } else if (Packed && NumNegativeBits <= ShortWidth &&
9752               NumPositiveBits < ShortWidth) {
9753      BestType = Context.ShortTy;
9754      BestWidth = ShortWidth;
9755    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9756      BestType = Context.IntTy;
9757      BestWidth = IntWidth;
9758    } else {
9759      BestWidth = Context.getTargetInfo().getLongWidth();
9760
9761      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9762        BestType = Context.LongTy;
9763      } else {
9764        BestWidth = Context.getTargetInfo().getLongLongWidth();
9765
9766        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9767          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9768        BestType = Context.LongLongTy;
9769      }
9770    }
9771    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9772  } else {
9773    // If there is no negative value, figure out the smallest type that fits
9774    // all of the enumerator values.
9775    // If it's packed, check also if it fits a char or a short.
9776    if (Packed && NumPositiveBits <= CharWidth) {
9777      BestType = Context.UnsignedCharTy;
9778      BestPromotionType = Context.IntTy;
9779      BestWidth = CharWidth;
9780    } else if (Packed && NumPositiveBits <= ShortWidth) {
9781      BestType = Context.UnsignedShortTy;
9782      BestPromotionType = Context.IntTy;
9783      BestWidth = ShortWidth;
9784    } else if (NumPositiveBits <= IntWidth) {
9785      BestType = Context.UnsignedIntTy;
9786      BestWidth = IntWidth;
9787      BestPromotionType
9788        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9789                           ? Context.UnsignedIntTy : Context.IntTy;
9790    } else if (NumPositiveBits <=
9791               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9792      BestType = Context.UnsignedLongTy;
9793      BestPromotionType
9794        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9795                           ? Context.UnsignedLongTy : Context.LongTy;
9796    } else {
9797      BestWidth = Context.getTargetInfo().getLongLongWidth();
9798      assert(NumPositiveBits <= BestWidth &&
9799             "How could an initializer get larger than ULL?");
9800      BestType = Context.UnsignedLongLongTy;
9801      BestPromotionType
9802        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9803                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9804    }
9805  }
9806
9807  // Loop over all of the enumerator constants, changing their types to match
9808  // the type of the enum if needed.
9809  for (unsigned i = 0; i != NumElements; ++i) {
9810    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9811    if (!ECD) continue;  // Already issued a diagnostic.
9812
9813    // Standard C says the enumerators have int type, but we allow, as an
9814    // extension, the enumerators to be larger than int size.  If each
9815    // enumerator value fits in an int, type it as an int, otherwise type it the
9816    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9817    // that X has type 'int', not 'unsigned'.
9818
9819    // Determine whether the value fits into an int.
9820    llvm::APSInt InitVal = ECD->getInitVal();
9821
9822    // If it fits into an integer type, force it.  Otherwise force it to match
9823    // the enum decl type.
9824    QualType NewTy;
9825    unsigned NewWidth;
9826    bool NewSign;
9827    if (!getLangOptions().CPlusPlus &&
9828        !Enum->isFixed() &&
9829        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9830      NewTy = Context.IntTy;
9831      NewWidth = IntWidth;
9832      NewSign = true;
9833    } else if (ECD->getType() == BestType) {
9834      // Already the right type!
9835      if (getLangOptions().CPlusPlus)
9836        // C++ [dcl.enum]p4: Following the closing brace of an
9837        // enum-specifier, each enumerator has the type of its
9838        // enumeration.
9839        ECD->setType(EnumType);
9840      continue;
9841    } else {
9842      NewTy = BestType;
9843      NewWidth = BestWidth;
9844      NewSign = BestType->isSignedIntegerOrEnumerationType();
9845    }
9846
9847    // Adjust the APSInt value.
9848    InitVal = InitVal.extOrTrunc(NewWidth);
9849    InitVal.setIsSigned(NewSign);
9850    ECD->setInitVal(InitVal);
9851
9852    // Adjust the Expr initializer and type.
9853    if (ECD->getInitExpr() &&
9854        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9855      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9856                                                CK_IntegralCast,
9857                                                ECD->getInitExpr(),
9858                                                /*base paths*/ 0,
9859                                                VK_RValue));
9860    if (getLangOptions().CPlusPlus)
9861      // C++ [dcl.enum]p4: Following the closing brace of an
9862      // enum-specifier, each enumerator has the type of its
9863      // enumeration.
9864      ECD->setType(EnumType);
9865    else
9866      ECD->setType(NewTy);
9867  }
9868
9869  Enum->completeDefinition(BestType, BestPromotionType,
9870                           NumPositiveBits, NumNegativeBits);
9871}
9872
9873Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9874                                  SourceLocation StartLoc,
9875                                  SourceLocation EndLoc) {
9876  StringLiteral *AsmString = cast<StringLiteral>(expr);
9877
9878  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9879                                                   AsmString, StartLoc,
9880                                                   EndLoc);
9881  CurContext->addDecl(New);
9882  return New;
9883}
9884
9885DeclResult Sema::ActOnModuleImport(SourceLocation ImportLoc,
9886                                   IdentifierInfo &ModuleName,
9887                                   SourceLocation ModuleNameLoc) {
9888  ModuleKey Module = PP.getModuleLoader().loadModule(ImportLoc,
9889                                                     ModuleName, ModuleNameLoc);
9890  if (!Module)
9891    return true;
9892
9893  // FIXME: Actually create a declaration to describe the module import.
9894  (void)Module;
9895  return DeclResult((Decl *)0);
9896}
9897
9898void
9899Sema::diagnoseModulePrivateRedeclaration(NamedDecl *New, NamedDecl *Old,
9900                                         SourceLocation ModulePrivateKeyword) {
9901  assert(!Old->isModulePrivate() && "Old is module-private!");
9902
9903  Diag(New->getLocation(), diag::err_module_private_follows_public)
9904    << New->getDeclName() << SourceRange(ModulePrivateKeyword);
9905  Diag(Old->getLocation(), diag::note_previous_declaration)
9906    << Old->getDeclName();
9907
9908  // Drop the __module_private__ from the new declaration, since it's invalid.
9909  New->setModulePrivate(false);
9910}
9911
9912void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9913                             SourceLocation PragmaLoc,
9914                             SourceLocation NameLoc) {
9915  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9916
9917  if (PrevDecl) {
9918    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9919  } else {
9920    (void)WeakUndeclaredIdentifiers.insert(
9921      std::pair<IdentifierInfo*,WeakInfo>
9922        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9923  }
9924}
9925
9926void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9927                                IdentifierInfo* AliasName,
9928                                SourceLocation PragmaLoc,
9929                                SourceLocation NameLoc,
9930                                SourceLocation AliasNameLoc) {
9931  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9932                                    LookupOrdinaryName);
9933  WeakInfo W = WeakInfo(Name, NameLoc);
9934
9935  if (PrevDecl) {
9936    if (!PrevDecl->hasAttr<AliasAttr>())
9937      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9938        DeclApplyPragmaWeak(TUScope, ND, W);
9939  } else {
9940    (void)WeakUndeclaredIdentifiers.insert(
9941      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9942  }
9943}
9944
9945Decl *Sema::getObjCDeclContext() const {
9946  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
9947}
9948
9949AvailabilityResult Sema::getCurContextAvailability() const {
9950  const Decl *D = cast<Decl>(getCurLexicalContext());
9951  // A category implicitly has the availability of the interface.
9952  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
9953    D = CatD->getClassInterface();
9954
9955  return D->getAvailability();
9956}
9957