SemaDecl.cpp revision f47511ab0575b8c4752e33cdc4b82a84dcc4d263
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Lex/HeaderSearch.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include <algorithm>
35#include <functional>
36#include <queue>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, const CXXScopeSpec *SS,
65                                bool isClassName) {
66  // C++ [temp.res]p3:
67  //   A qualified-id that refers to a type and in which the
68  //   nested-name-specifier depends on a template-parameter (14.6.2)
69  //   shall be prefixed by the keyword typename to indicate that the
70  //   qualified-id denotes a type, forming an
71  //   elaborated-type-specifier (7.1.5.3).
72  //
73  // We therefore do not perform any name lookup if the result would
74  // refer to a member of an unknown specialization.
75  if (SS && isUnknownSpecialization(*SS)) {
76    if (!isClassName)
77      return 0;
78
79    // We know from the grammar that this name refers to a type, so build a
80    // TypenameType node to describe the type.
81    // FIXME: Record somewhere that this TypenameType node has no "typename"
82    // keyword associated with it.
83    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
84                             II, SS->getRange()).getAsOpaquePtr();
85  }
86
87  LookupResult Result
88    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
89
90  NamedDecl *IIDecl = 0;
91  switch (Result.getKind()) {
92  case LookupResult::NotFound:
93  case LookupResult::FoundOverloaded:
94    return 0;
95
96  case LookupResult::AmbiguousBaseSubobjectTypes:
97  case LookupResult::AmbiguousBaseSubobjects:
98  case LookupResult::AmbiguousReference: {
99    // Look to see if we have a type anywhere in the list of results.
100    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
101         Res != ResEnd; ++Res) {
102      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
103        if (!IIDecl ||
104            (*Res)->getLocation().getRawEncoding() <
105              IIDecl->getLocation().getRawEncoding())
106          IIDecl = *Res;
107      }
108    }
109
110    if (!IIDecl) {
111      // None of the entities we found is a type, so there is no way
112      // to even assume that the result is a type. In this case, don't
113      // complain about the ambiguity. The parser will either try to
114      // perform this lookup again (e.g., as an object name), which
115      // will produce the ambiguity, or will complain that it expected
116      // a type name.
117      Result.Destroy();
118      return 0;
119    }
120
121    // We found a type within the ambiguous lookup; diagnose the
122    // ambiguity and then return that type. This might be the right
123    // answer, or it might not be, but it suppresses any attempt to
124    // perform the name lookup again.
125    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
126    break;
127  }
128
129  case LookupResult::Found:
130    IIDecl = Result.getAsDecl();
131    break;
132  }
133
134  if (IIDecl) {
135    QualType T;
136
137    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
138      // Check whether we can use this type
139      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
140
141      if (getLangOptions().CPlusPlus) {
142        // C++ [temp.local]p2:
143        //   Within the scope of a class template specialization or
144        //   partial specialization, when the injected-class-name is
145        //   not followed by a <, it is equivalent to the
146        //   injected-class-name followed by the template-argument s
147        //   of the class template specialization or partial
148        //   specialization enclosed in <>.
149        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
150          if (RD->isInjectedClassName())
151            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
152              T = Template->getInjectedClassNameType(Context);
153      }
154
155      if (T.isNull())
156        T = Context.getTypeDeclType(TD);
157    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
158      // Check whether we can use this interface.
159      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
160
161      T = Context.getObjCInterfaceType(IDecl);
162    } else
163      return 0;
164
165    if (SS)
166      T = getQualifiedNameType(*SS, T);
167
168    return T.getAsOpaquePtr();
169  }
170
171  return 0;
172}
173
174/// isTagName() - This method is called *for error recovery purposes only*
175/// to determine if the specified name is a valid tag name ("struct foo").  If
176/// so, this returns the TST for the tag corresponding to it (TST_enum,
177/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
178/// where the user forgot to specify the tag.
179DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
180  // Do a tag name lookup in this scope.
181  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
182  if (R.getKind() == LookupResult::Found)
183    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
184      switch (TD->getTagKind()) {
185      case TagDecl::TK_struct: return DeclSpec::TST_struct;
186      case TagDecl::TK_union:  return DeclSpec::TST_union;
187      case TagDecl::TK_class:  return DeclSpec::TST_class;
188      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
189      }
190    }
191
192  return DeclSpec::TST_unspecified;
193}
194
195
196// Determines the context to return to after temporarily entering a
197// context.  This depends in an unnecessarily complicated way on the
198// exact ordering of callbacks from the parser.
199DeclContext *Sema::getContainingDC(DeclContext *DC) {
200
201  // Functions defined inline within classes aren't parsed until we've
202  // finished parsing the top-level class, so the top-level class is
203  // the context we'll need to return to.
204  if (isa<FunctionDecl>(DC)) {
205    DC = DC->getLexicalParent();
206
207    // A function not defined within a class will always return to its
208    // lexical context.
209    if (!isa<CXXRecordDecl>(DC))
210      return DC;
211
212    // A C++ inline method/friend is parsed *after* the topmost class
213    // it was declared in is fully parsed ("complete");  the topmost
214    // class is the context we need to return to.
215    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
216      DC = RD;
217
218    // Return the declaration context of the topmost class the inline method is
219    // declared in.
220    return DC;
221  }
222
223  if (isa<ObjCMethodDecl>(DC))
224    return Context.getTranslationUnitDecl();
225
226  return DC->getLexicalParent();
227}
228
229void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
230  assert(getContainingDC(DC) == CurContext &&
231      "The next DeclContext should be lexically contained in the current one.");
232  CurContext = DC;
233  S->setEntity(DC);
234}
235
236void Sema::PopDeclContext() {
237  assert(CurContext && "DeclContext imbalance!");
238
239  CurContext = getContainingDC(CurContext);
240}
241
242/// EnterDeclaratorContext - Used when we must lookup names in the context
243/// of a declarator's nested name specifier.
244void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
245  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
246  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
247  CurContext = DC;
248  assert(CurContext && "No context?");
249  S->setEntity(CurContext);
250}
251
252void Sema::ExitDeclaratorContext(Scope *S) {
253  S->setEntity(PreDeclaratorDC);
254  PreDeclaratorDC = 0;
255
256  // Reset CurContext to the nearest enclosing context.
257  while (!S->getEntity() && S->getParent())
258    S = S->getParent();
259  CurContext = static_cast<DeclContext*>(S->getEntity());
260  assert(CurContext && "No context?");
261}
262
263/// \brief Determine whether we allow overloading of the function
264/// PrevDecl with another declaration.
265///
266/// This routine determines whether overloading is possible, not
267/// whether some new function is actually an overload. It will return
268/// true in C++ (where we can always provide overloads) or, as an
269/// extension, in C when the previous function is already an
270/// overloaded function declaration or has the "overloadable"
271/// attribute.
272static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
273  if (Context.getLangOptions().CPlusPlus)
274    return true;
275
276  if (isa<OverloadedFunctionDecl>(PrevDecl))
277    return true;
278
279  return PrevDecl->getAttr<OverloadableAttr>() != 0;
280}
281
282/// Add this decl to the scope shadowed decl chains.
283void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
284  // Move up the scope chain until we find the nearest enclosing
285  // non-transparent context. The declaration will be introduced into this
286  // scope.
287  while (S->getEntity() &&
288         ((DeclContext *)S->getEntity())->isTransparentContext())
289    S = S->getParent();
290
291  S->AddDecl(DeclPtrTy::make(D));
292
293  // Add scoped declarations into their context, so that they can be
294  // found later. Declarations without a context won't be inserted
295  // into any context.
296  if (AddToContext)
297    CurContext->addDecl(D);
298
299  // C++ [basic.scope]p4:
300  //   -- exactly one declaration shall declare a class name or
301  //   enumeration name that is not a typedef name and the other
302  //   declarations shall all refer to the same object or
303  //   enumerator, or all refer to functions and function templates;
304  //   in this case the class name or enumeration name is hidden.
305  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
306    // We are pushing the name of a tag (enum or class).
307    if (CurContext->getLookupContext()
308          == TD->getDeclContext()->getLookupContext()) {
309      // We're pushing the tag into the current context, which might
310      // require some reshuffling in the identifier resolver.
311      IdentifierResolver::iterator
312        I = IdResolver.begin(TD->getDeclName()),
313        IEnd = IdResolver.end();
314      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
315        NamedDecl *PrevDecl = *I;
316        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
317             PrevDecl = *I, ++I) {
318          if (TD->declarationReplaces(*I)) {
319            // This is a redeclaration. Remove it from the chain and
320            // break out, so that we'll add in the shadowed
321            // declaration.
322            S->RemoveDecl(DeclPtrTy::make(*I));
323            if (PrevDecl == *I) {
324              IdResolver.RemoveDecl(*I);
325              IdResolver.AddDecl(TD);
326              return;
327            } else {
328              IdResolver.RemoveDecl(*I);
329              break;
330            }
331          }
332        }
333
334        // There is already a declaration with the same name in the same
335        // scope, which is not a tag declaration. It must be found
336        // before we find the new declaration, so insert the new
337        // declaration at the end of the chain.
338        IdResolver.AddShadowedDecl(TD, PrevDecl);
339
340        return;
341      }
342    }
343  } else if ((isa<FunctionDecl>(D) &&
344              AllowOverloadingOfFunction(D, Context)) ||
345             isa<FunctionTemplateDecl>(D)) {
346    // We are pushing the name of a function or function template,
347    // which might be an overloaded name.
348    IdentifierResolver::iterator Redecl
349      = std::find_if(IdResolver.begin(D->getDeclName()),
350                     IdResolver.end(),
351                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
352                                  D));
353    if (Redecl != IdResolver.end() &&
354        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
355      // There is already a declaration of a function on our
356      // IdResolver chain. Replace it with this declaration.
357      S->RemoveDecl(DeclPtrTy::make(*Redecl));
358      IdResolver.RemoveDecl(*Redecl);
359    }
360  } else if (isa<ObjCInterfaceDecl>(D)) {
361    // We're pushing an Objective-C interface into the current
362    // context. If there is already an alias declaration, remove it first.
363    for (IdentifierResolver::iterator
364           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
365         I != IEnd; ++I) {
366      if (isa<ObjCCompatibleAliasDecl>(*I)) {
367        S->RemoveDecl(DeclPtrTy::make(*I));
368        IdResolver.RemoveDecl(*I);
369        break;
370      }
371    }
372  }
373
374  IdResolver.AddDecl(D);
375}
376
377void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
378  if (S->decl_empty()) return;
379  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
380	 "Scope shouldn't contain decls!");
381
382  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
383       I != E; ++I) {
384    Decl *TmpD = (*I).getAs<Decl>();
385    assert(TmpD && "This decl didn't get pushed??");
386
387    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
388    NamedDecl *D = cast<NamedDecl>(TmpD);
389
390    if (!D->getDeclName()) continue;
391
392    // Remove this name from our lexical scope.
393    IdResolver.RemoveDecl(D);
394  }
395}
396
397/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
398/// return 0 if one not found.
399ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
400  // The third "scope" argument is 0 since we aren't enabling lazy built-in
401  // creation from this context.
402  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
403
404  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
405}
406
407/// getNonFieldDeclScope - Retrieves the innermost scope, starting
408/// from S, where a non-field would be declared. This routine copes
409/// with the difference between C and C++ scoping rules in structs and
410/// unions. For example, the following code is well-formed in C but
411/// ill-formed in C++:
412/// @code
413/// struct S6 {
414///   enum { BAR } e;
415/// };
416///
417/// void test_S6() {
418///   struct S6 a;
419///   a.e = BAR;
420/// }
421/// @endcode
422/// For the declaration of BAR, this routine will return a different
423/// scope. The scope S will be the scope of the unnamed enumeration
424/// within S6. In C++, this routine will return the scope associated
425/// with S6, because the enumeration's scope is a transparent
426/// context but structures can contain non-field names. In C, this
427/// routine will return the translation unit scope, since the
428/// enumeration's scope is a transparent context and structures cannot
429/// contain non-field names.
430Scope *Sema::getNonFieldDeclScope(Scope *S) {
431  while (((S->getFlags() & Scope::DeclScope) == 0) ||
432         (S->getEntity() &&
433          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
434         (S->isClassScope() && !getLangOptions().CPlusPlus))
435    S = S->getParent();
436  return S;
437}
438
439void Sema::InitBuiltinVaListType() {
440  if (!Context.getBuiltinVaListType().isNull())
441    return;
442
443  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
444  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
445  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
446  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
447}
448
449/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
450/// file scope.  lazily create a decl for it. ForRedeclaration is true
451/// if we're creating this built-in in anticipation of redeclaring the
452/// built-in.
453NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
454                                     Scope *S, bool ForRedeclaration,
455                                     SourceLocation Loc) {
456  Builtin::ID BID = (Builtin::ID)bid;
457
458  if (Context.BuiltinInfo.hasVAListUse(BID))
459    InitBuiltinVaListType();
460
461  ASTContext::GetBuiltinTypeError Error;
462  QualType R = Context.GetBuiltinType(BID, Error);
463  switch (Error) {
464  case ASTContext::GE_None:
465    // Okay
466    break;
467
468  case ASTContext::GE_Missing_stdio:
469    if (ForRedeclaration)
470      Diag(Loc, diag::err_implicit_decl_requires_stdio)
471        << Context.BuiltinInfo.GetName(BID);
472    return 0;
473
474  case ASTContext::GE_Missing_setjmp:
475    if (ForRedeclaration)
476      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
477        << Context.BuiltinInfo.GetName(BID);
478    return 0;
479  }
480
481  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
482    Diag(Loc, diag::ext_implicit_lib_function_decl)
483      << Context.BuiltinInfo.GetName(BID)
484      << R;
485    if (Context.BuiltinInfo.getHeaderName(BID) &&
486        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
487          != Diagnostic::Ignored)
488      Diag(Loc, diag::note_please_include_header)
489        << Context.BuiltinInfo.getHeaderName(BID)
490        << Context.BuiltinInfo.GetName(BID);
491  }
492
493  FunctionDecl *New = FunctionDecl::Create(Context,
494                                           Context.getTranslationUnitDecl(),
495                                           Loc, II, R, /*DInfo=*/0,
496                                           FunctionDecl::Extern, false,
497                                           /*hasPrototype=*/true);
498  New->setImplicit();
499
500  // Create Decl objects for each parameter, adding them to the
501  // FunctionDecl.
502  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
503    llvm::SmallVector<ParmVarDecl*, 16> Params;
504    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
505      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
506                                           FT->getArgType(i), /*DInfo=*/0,
507                                           VarDecl::None, 0));
508    New->setParams(Context, Params.data(), Params.size());
509  }
510
511  AddKnownFunctionAttributes(New);
512
513  // TUScope is the translation-unit scope to insert this function into.
514  // FIXME: This is hideous. We need to teach PushOnScopeChains to
515  // relate Scopes to DeclContexts, and probably eliminate CurContext
516  // entirely, but we're not there yet.
517  DeclContext *SavedContext = CurContext;
518  CurContext = Context.getTranslationUnitDecl();
519  PushOnScopeChains(New, TUScope);
520  CurContext = SavedContext;
521  return New;
522}
523
524/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
525/// everything from the standard library is defined.
526NamespaceDecl *Sema::GetStdNamespace() {
527  if (!StdNamespace) {
528    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
529    DeclContext *Global = Context.getTranslationUnitDecl();
530    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
531    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
532  }
533  return StdNamespace;
534}
535
536/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
537/// same name and scope as a previous declaration 'Old'.  Figure out
538/// how to resolve this situation, merging decls or emitting
539/// diagnostics as appropriate. If there was an error, set New to be invalid.
540///
541void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
542  // If either decl is known invalid already, set the new one to be invalid and
543  // don't bother doing any merging checks.
544  if (New->isInvalidDecl() || OldD->isInvalidDecl())
545    return New->setInvalidDecl();
546
547  // Allow multiple definitions for ObjC built-in typedefs.
548  // FIXME: Verify the underlying types are equivalent!
549  if (getLangOptions().ObjC1) {
550    const IdentifierInfo *TypeID = New->getIdentifier();
551    switch (TypeID->getLength()) {
552    default: break;
553    case 2:
554      if (!TypeID->isStr("id"))
555        break;
556      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
557      // Install the built-in type for 'id', ignoring the current definition.
558      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
559      return;
560    case 5:
561      if (!TypeID->isStr("Class"))
562        break;
563      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
564      // Install the built-in type for 'Class', ignoring the current definition.
565      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
566      return;
567    case 3:
568      if (!TypeID->isStr("SEL"))
569        break;
570      Context.setObjCSelType(Context.getTypeDeclType(New));
571      return;
572    case 8:
573      if (!TypeID->isStr("Protocol"))
574        break;
575      Context.setObjCProtoType(New->getUnderlyingType());
576      return;
577    }
578    // Fall through - the typedef name was not a builtin type.
579  }
580  // Verify the old decl was also a type.
581  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
582  if (!Old) {
583    Diag(New->getLocation(), diag::err_redefinition_different_kind)
584      << New->getDeclName();
585    if (OldD->getLocation().isValid())
586      Diag(OldD->getLocation(), diag::note_previous_definition);
587    return New->setInvalidDecl();
588  }
589
590  // Determine the "old" type we'll use for checking and diagnostics.
591  QualType OldType;
592  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
593    OldType = OldTypedef->getUnderlyingType();
594  else
595    OldType = Context.getTypeDeclType(Old);
596
597  // If the typedef types are not identical, reject them in all languages and
598  // with any extensions enabled.
599
600  if (OldType != New->getUnderlyingType() &&
601      Context.getCanonicalType(OldType) !=
602      Context.getCanonicalType(New->getUnderlyingType())) {
603    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
604      << New->getUnderlyingType() << OldType;
605    if (Old->getLocation().isValid())
606      Diag(Old->getLocation(), diag::note_previous_definition);
607    return New->setInvalidDecl();
608  }
609
610  if (getLangOptions().Microsoft)
611    return;
612
613  // C++ [dcl.typedef]p2:
614  //   In a given non-class scope, a typedef specifier can be used to
615  //   redefine the name of any type declared in that scope to refer
616  //   to the type to which it already refers.
617  if (getLangOptions().CPlusPlus) {
618    if (!isa<CXXRecordDecl>(CurContext))
619      return;
620    Diag(New->getLocation(), diag::err_redefinition)
621      << New->getDeclName();
622    Diag(Old->getLocation(), diag::note_previous_definition);
623    return New->setInvalidDecl();
624  }
625
626  // If we have a redefinition of a typedef in C, emit a warning.  This warning
627  // is normally mapped to an error, but can be controlled with
628  // -Wtypedef-redefinition.  If either the original or the redefinition is
629  // in a system header, don't emit this for compatibility with GCC.
630  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
631      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
632       Context.getSourceManager().isInSystemHeader(New->getLocation())))
633    return;
634
635  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
636    << New->getDeclName();
637  Diag(Old->getLocation(), diag::note_previous_definition);
638  return;
639}
640
641/// DeclhasAttr - returns true if decl Declaration already has the target
642/// attribute.
643static bool
644DeclHasAttr(const Decl *decl, const Attr *target) {
645  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
646    if (attr->getKind() == target->getKind())
647      return true;
648
649  return false;
650}
651
652/// MergeAttributes - append attributes from the Old decl to the New one.
653static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
654  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
655    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
656      Attr *NewAttr = attr->clone(C);
657      NewAttr->setInherited(true);
658      New->addAttr(NewAttr);
659    }
660  }
661}
662
663/// Used in MergeFunctionDecl to keep track of function parameters in
664/// C.
665struct GNUCompatibleParamWarning {
666  ParmVarDecl *OldParm;
667  ParmVarDecl *NewParm;
668  QualType PromotedType;
669};
670
671/// MergeFunctionDecl - We just parsed a function 'New' from
672/// declarator D which has the same name and scope as a previous
673/// declaration 'Old'.  Figure out how to resolve this situation,
674/// merging decls or emitting diagnostics as appropriate.
675///
676/// In C++, New and Old must be declarations that are not
677/// overloaded. Use IsOverload to determine whether New and Old are
678/// overloaded, and to select the Old declaration that New should be
679/// merged with.
680///
681/// Returns true if there was an error, false otherwise.
682bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
683  assert(!isa<OverloadedFunctionDecl>(OldD) &&
684         "Cannot merge with an overloaded function declaration");
685
686  // Verify the old decl was also a function.
687  FunctionDecl *Old = 0;
688  if (FunctionTemplateDecl *OldFunctionTemplate
689        = dyn_cast<FunctionTemplateDecl>(OldD))
690    Old = OldFunctionTemplate->getTemplatedDecl();
691  else
692    Old = dyn_cast<FunctionDecl>(OldD);
693  if (!Old) {
694    Diag(New->getLocation(), diag::err_redefinition_different_kind)
695      << New->getDeclName();
696    Diag(OldD->getLocation(), diag::note_previous_definition);
697    return true;
698  }
699
700  // Determine whether the previous declaration was a definition,
701  // implicit declaration, or a declaration.
702  diag::kind PrevDiag;
703  if (Old->isThisDeclarationADefinition())
704    PrevDiag = diag::note_previous_definition;
705  else if (Old->isImplicit())
706    PrevDiag = diag::note_previous_implicit_declaration;
707  else
708    PrevDiag = diag::note_previous_declaration;
709
710  QualType OldQType = Context.getCanonicalType(Old->getType());
711  QualType NewQType = Context.getCanonicalType(New->getType());
712
713  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
714      New->getStorageClass() == FunctionDecl::Static &&
715      Old->getStorageClass() != FunctionDecl::Static) {
716    Diag(New->getLocation(), diag::err_static_non_static)
717      << New;
718    Diag(Old->getLocation(), PrevDiag);
719    return true;
720  }
721
722  if (getLangOptions().CPlusPlus) {
723    // (C++98 13.1p2):
724    //   Certain function declarations cannot be overloaded:
725    //     -- Function declarations that differ only in the return type
726    //        cannot be overloaded.
727    QualType OldReturnType
728      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
729    QualType NewReturnType
730      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
731    if (OldReturnType != NewReturnType) {
732      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
733      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
734      return true;
735    }
736
737    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
738    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
739    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
740        NewMethod->getLexicalDeclContext()->isRecord()) {
741      //    -- Member function declarations with the same name and the
742      //       same parameter types cannot be overloaded if any of them
743      //       is a static member function declaration.
744      if (OldMethod->isStatic() || NewMethod->isStatic()) {
745        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
746        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
747        return true;
748      }
749
750      // C++ [class.mem]p1:
751      //   [...] A member shall not be declared twice in the
752      //   member-specification, except that a nested class or member
753      //   class template can be declared and then later defined.
754      unsigned NewDiag;
755      if (isa<CXXConstructorDecl>(OldMethod))
756        NewDiag = diag::err_constructor_redeclared;
757      else if (isa<CXXDestructorDecl>(NewMethod))
758        NewDiag = diag::err_destructor_redeclared;
759      else if (isa<CXXConversionDecl>(NewMethod))
760        NewDiag = diag::err_conv_function_redeclared;
761      else
762        NewDiag = diag::err_member_redeclared;
763
764      Diag(New->getLocation(), NewDiag);
765      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
766    }
767
768    // (C++98 8.3.5p3):
769    //   All declarations for a function shall agree exactly in both the
770    //   return type and the parameter-type-list.
771    if (OldQType == NewQType)
772      return MergeCompatibleFunctionDecls(New, Old);
773
774    // Fall through for conflicting redeclarations and redefinitions.
775  }
776
777  // C: Function types need to be compatible, not identical. This handles
778  // duplicate function decls like "void f(int); void f(enum X);" properly.
779  if (!getLangOptions().CPlusPlus &&
780      Context.typesAreCompatible(OldQType, NewQType)) {
781    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
782    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
783    const FunctionProtoType *OldProto = 0;
784    if (isa<FunctionNoProtoType>(NewFuncType) &&
785        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
786      // The old declaration provided a function prototype, but the
787      // new declaration does not. Merge in the prototype.
788      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
789      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
790                                                 OldProto->arg_type_end());
791      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
792                                         ParamTypes.data(), ParamTypes.size(),
793                                         OldProto->isVariadic(),
794                                         OldProto->getTypeQuals());
795      New->setType(NewQType);
796      New->setHasInheritedPrototype();
797
798      // Synthesize a parameter for each argument type.
799      llvm::SmallVector<ParmVarDecl*, 16> Params;
800      for (FunctionProtoType::arg_type_iterator
801             ParamType = OldProto->arg_type_begin(),
802             ParamEnd = OldProto->arg_type_end();
803           ParamType != ParamEnd; ++ParamType) {
804        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
805                                                 SourceLocation(), 0,
806                                                 *ParamType, /*DInfo=*/0,
807                                                 VarDecl::None, 0);
808        Param->setImplicit();
809        Params.push_back(Param);
810      }
811
812      New->setParams(Context, Params.data(), Params.size());
813    }
814
815    return MergeCompatibleFunctionDecls(New, Old);
816  }
817
818  // GNU C permits a K&R definition to follow a prototype declaration
819  // if the declared types of the parameters in the K&R definition
820  // match the types in the prototype declaration, even when the
821  // promoted types of the parameters from the K&R definition differ
822  // from the types in the prototype. GCC then keeps the types from
823  // the prototype.
824  //
825  // If a variadic prototype is followed by a non-variadic K&R definition,
826  // the K&R definition becomes variadic.  This is sort of an edge case, but
827  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
828  // C99 6.9.1p8.
829  if (!getLangOptions().CPlusPlus &&
830      Old->hasPrototype() && !New->hasPrototype() &&
831      New->getType()->getAsFunctionProtoType() &&
832      Old->getNumParams() == New->getNumParams()) {
833    llvm::SmallVector<QualType, 16> ArgTypes;
834    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
835    const FunctionProtoType *OldProto
836      = Old->getType()->getAsFunctionProtoType();
837    const FunctionProtoType *NewProto
838      = New->getType()->getAsFunctionProtoType();
839
840    // Determine whether this is the GNU C extension.
841    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
842                                               NewProto->getResultType());
843    bool LooseCompatible = !MergedReturn.isNull();
844    for (unsigned Idx = 0, End = Old->getNumParams();
845         LooseCompatible && Idx != End; ++Idx) {
846      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
847      ParmVarDecl *NewParm = New->getParamDecl(Idx);
848      if (Context.typesAreCompatible(OldParm->getType(),
849                                     NewProto->getArgType(Idx))) {
850        ArgTypes.push_back(NewParm->getType());
851      } else if (Context.typesAreCompatible(OldParm->getType(),
852                                            NewParm->getType())) {
853        GNUCompatibleParamWarning Warn
854          = { OldParm, NewParm, NewProto->getArgType(Idx) };
855        Warnings.push_back(Warn);
856        ArgTypes.push_back(NewParm->getType());
857      } else
858        LooseCompatible = false;
859    }
860
861    if (LooseCompatible) {
862      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
863        Diag(Warnings[Warn].NewParm->getLocation(),
864             diag::ext_param_promoted_not_compatible_with_prototype)
865          << Warnings[Warn].PromotedType
866          << Warnings[Warn].OldParm->getType();
867        Diag(Warnings[Warn].OldParm->getLocation(),
868             diag::note_previous_declaration);
869      }
870
871      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
872                                           ArgTypes.size(),
873                                           OldProto->isVariadic(), 0));
874      return MergeCompatibleFunctionDecls(New, Old);
875    }
876
877    // Fall through to diagnose conflicting types.
878  }
879
880  // A function that has already been declared has been redeclared or defined
881  // with a different type- show appropriate diagnostic
882  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
883    // The user has declared a builtin function with an incompatible
884    // signature.
885    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
886      // The function the user is redeclaring is a library-defined
887      // function like 'malloc' or 'printf'. Warn about the
888      // redeclaration, then pretend that we don't know about this
889      // library built-in.
890      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
891      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
892        << Old << Old->getType();
893      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
894      Old->setInvalidDecl();
895      return false;
896    }
897
898    PrevDiag = diag::note_previous_builtin_declaration;
899  }
900
901  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
902  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
903  return true;
904}
905
906/// \brief Completes the merge of two function declarations that are
907/// known to be compatible.
908///
909/// This routine handles the merging of attributes and other
910/// properties of function declarations form the old declaration to
911/// the new declaration, once we know that New is in fact a
912/// redeclaration of Old.
913///
914/// \returns false
915bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
916  // Merge the attributes
917  MergeAttributes(New, Old, Context);
918
919  // Merge the storage class.
920  if (Old->getStorageClass() != FunctionDecl::Extern)
921    New->setStorageClass(Old->getStorageClass());
922
923  // Merge "inline"
924  if (Old->isInline())
925    New->setInline(true);
926
927  // If this function declaration by itself qualifies as a C99 inline
928  // definition (C99 6.7.4p6), but the previous definition did not,
929  // then the function is not a C99 inline definition.
930  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
931    New->setC99InlineDefinition(false);
932  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
933    // Mark all preceding definitions as not being C99 inline definitions.
934    for (const FunctionDecl *Prev = Old; Prev;
935         Prev = Prev->getPreviousDeclaration())
936      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
937  }
938
939  // Merge "pure" flag.
940  if (Old->isPure())
941    New->setPure();
942
943  // Merge the "deleted" flag.
944  if (Old->isDeleted())
945    New->setDeleted();
946
947  if (getLangOptions().CPlusPlus)
948    return MergeCXXFunctionDecl(New, Old);
949
950  return false;
951}
952
953/// MergeVarDecl - We just parsed a variable 'New' which has the same name
954/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
955/// situation, merging decls or emitting diagnostics as appropriate.
956///
957/// Tentative definition rules (C99 6.9.2p2) are checked by
958/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
959/// definitions here, since the initializer hasn't been attached.
960///
961void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
962  // If either decl is invalid, make sure the new one is marked invalid and
963  // don't do any other checking.
964  if (New->isInvalidDecl() || OldD->isInvalidDecl())
965    return New->setInvalidDecl();
966
967  // Verify the old decl was also a variable.
968  VarDecl *Old = dyn_cast<VarDecl>(OldD);
969  if (!Old) {
970    Diag(New->getLocation(), diag::err_redefinition_different_kind)
971      << New->getDeclName();
972    Diag(OldD->getLocation(), diag::note_previous_definition);
973    return New->setInvalidDecl();
974  }
975
976  MergeAttributes(New, Old, Context);
977
978  // Merge the types
979  QualType MergedT;
980  if (getLangOptions().CPlusPlus) {
981    if (Context.hasSameType(New->getType(), Old->getType()))
982      MergedT = New->getType();
983  } else {
984    MergedT = Context.mergeTypes(New->getType(), Old->getType());
985  }
986  if (MergedT.isNull()) {
987    Diag(New->getLocation(), diag::err_redefinition_different_type)
988      << New->getDeclName();
989    Diag(Old->getLocation(), diag::note_previous_definition);
990    return New->setInvalidDecl();
991  }
992  New->setType(MergedT);
993
994  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
995  if (New->getStorageClass() == VarDecl::Static &&
996      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
997    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
998    Diag(Old->getLocation(), diag::note_previous_definition);
999    return New->setInvalidDecl();
1000  }
1001  // C99 6.2.2p4:
1002  //   For an identifier declared with the storage-class specifier
1003  //   extern in a scope in which a prior declaration of that
1004  //   identifier is visible,23) if the prior declaration specifies
1005  //   internal or external linkage, the linkage of the identifier at
1006  //   the later declaration is the same as the linkage specified at
1007  //   the prior declaration. If no prior declaration is visible, or
1008  //   if the prior declaration specifies no linkage, then the
1009  //   identifier has external linkage.
1010  if (New->hasExternalStorage() && Old->hasLinkage())
1011    /* Okay */;
1012  else if (New->getStorageClass() != VarDecl::Static &&
1013           Old->getStorageClass() == VarDecl::Static) {
1014    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1015    Diag(Old->getLocation(), diag::note_previous_definition);
1016    return New->setInvalidDecl();
1017  }
1018
1019  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1020
1021  // FIXME: The test for external storage here seems wrong? We still
1022  // need to check for mismatches.
1023  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1024      // Don't complain about out-of-line definitions of static members.
1025      !(Old->getLexicalDeclContext()->isRecord() &&
1026        !New->getLexicalDeclContext()->isRecord())) {
1027    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1028    Diag(Old->getLocation(), diag::note_previous_definition);
1029    return New->setInvalidDecl();
1030  }
1031
1032  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1033    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1034    Diag(Old->getLocation(), diag::note_previous_definition);
1035  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1036    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1037    Diag(Old->getLocation(), diag::note_previous_definition);
1038  }
1039
1040  // Keep a chain of previous declarations.
1041  New->setPreviousDeclaration(Old);
1042}
1043
1044/// CheckFallThrough - Check that we don't fall off the end of a
1045/// Statement that should return a value.
1046///
1047/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1048/// MaybeFallThrough iff we might or might not fall off the end and
1049/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1050/// that functions not marked noreturn will return.
1051Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1052  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1053
1054  // FIXME: They should never return 0, fix that, delete this code.
1055  if (cfg == 0)
1056    return NeverFallThrough;
1057  // The CFG leaves in dead things, and we don't want to dead code paths to
1058  // confuse us, so we mark all live things first.
1059  std::queue<CFGBlock*> workq;
1060  llvm::BitVector live(cfg->getNumBlockIDs());
1061  // Prep work queue
1062  workq.push(&cfg->getEntry());
1063  // Solve
1064  while (!workq.empty()) {
1065    CFGBlock *item = workq.front();
1066    workq.pop();
1067    live.set(item->getBlockID());
1068    for (CFGBlock::succ_iterator I=item->succ_begin(),
1069           E=item->succ_end();
1070         I != E;
1071         ++I) {
1072      if ((*I) && !live[(*I)->getBlockID()]) {
1073        live.set((*I)->getBlockID());
1074        workq.push(*I);
1075      }
1076    }
1077  }
1078
1079  // Now we know what is live, we check the live precessors of the exit block
1080  // and look for fall through paths, being careful to ignore normal returns,
1081  // and exceptional paths.
1082  bool HasLiveReturn = false;
1083  bool HasFakeEdge = false;
1084  bool HasPlainEdge = false;
1085  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1086         E = cfg->getExit().pred_end();
1087       I != E;
1088       ++I) {
1089    CFGBlock& B = **I;
1090    if (!live[B.getBlockID()])
1091      continue;
1092    if (B.size() == 0) {
1093      // A labeled empty statement, or the entry block...
1094      HasPlainEdge = true;
1095      continue;
1096    }
1097    Stmt *S = B[B.size()-1];
1098    if (isa<ReturnStmt>(S)) {
1099      HasLiveReturn = true;
1100      continue;
1101    }
1102    if (isa<ObjCAtThrowStmt>(S)) {
1103      HasFakeEdge = true;
1104      continue;
1105    }
1106    if (isa<CXXThrowExpr>(S)) {
1107      HasFakeEdge = true;
1108      continue;
1109    }
1110    bool NoReturnEdge = false;
1111    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1112      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1113      if (CEE->getType().getNoReturnAttr()) {
1114        NoReturnEdge = true;
1115        HasFakeEdge = true;
1116      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1117        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1118          if (FD->hasAttr<NoReturnAttr>()) {
1119            NoReturnEdge = true;
1120            HasFakeEdge = true;
1121          }
1122        }
1123      }
1124    }
1125    // FIXME: Add noreturn message sends.
1126    if (NoReturnEdge == false)
1127      HasPlainEdge = true;
1128  }
1129  if (!HasPlainEdge)
1130    return NeverFallThrough;
1131  if (HasFakeEdge || HasLiveReturn)
1132    return MaybeFallThrough;
1133  // This says AlwaysFallThrough for calls to functions that are not marked
1134  // noreturn, that don't return.  If people would like this warning to be more
1135  // accurate, such functions should be marked as noreturn.
1136  return AlwaysFallThrough;
1137}
1138
1139/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1140/// function that should return a value.  Check that we don't fall off the end
1141/// of a noreturn function.  We assume that functions and blocks not marked
1142/// noreturn will return.
1143void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1144  // FIXME: Would be nice if we had a better way to control cascading errors,
1145  // but for now, avoid them.  The problem is that when Parse sees:
1146  //   int foo() { return a; }
1147  // The return is eaten and the Sema code sees just:
1148  //   int foo() { }
1149  // which this code would then warn about.
1150  if (getDiagnostics().hasErrorOccurred())
1151    return;
1152  bool ReturnsVoid = false;
1153  bool HasNoReturn = false;
1154  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1155    if (FD->getResultType()->isVoidType())
1156      ReturnsVoid = true;
1157    if (FD->hasAttr<NoReturnAttr>())
1158      HasNoReturn = true;
1159  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1160    if (MD->getResultType()->isVoidType())
1161      ReturnsVoid = true;
1162    if (MD->hasAttr<NoReturnAttr>())
1163      HasNoReturn = true;
1164  }
1165
1166  // Short circuit for compilation speed.
1167  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1168       == Diagnostic::Ignored || ReturnsVoid)
1169      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1170          == Diagnostic::Ignored || !HasNoReturn)
1171      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1172          == Diagnostic::Ignored || !ReturnsVoid))
1173    return;
1174  // FIXME: Funtion try block
1175  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1176    switch (CheckFallThrough(Body)) {
1177    case MaybeFallThrough:
1178      if (HasNoReturn)
1179        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1180      else if (!ReturnsVoid)
1181        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1182      break;
1183    case AlwaysFallThrough:
1184      if (HasNoReturn)
1185        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1186      else if (!ReturnsVoid)
1187        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1188      break;
1189    case NeverFallThrough:
1190      if (ReturnsVoid)
1191        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1192      break;
1193    }
1194  }
1195}
1196
1197/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1198/// that should return a value.  Check that we don't fall off the end of a
1199/// noreturn block.  We assume that functions and blocks not marked noreturn
1200/// will return.
1201void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1202  // FIXME: Would be nice if we had a better way to control cascading errors,
1203  // but for now, avoid them.  The problem is that when Parse sees:
1204  //   int foo() { return a; }
1205  // The return is eaten and the Sema code sees just:
1206  //   int foo() { }
1207  // which this code would then warn about.
1208  if (getDiagnostics().hasErrorOccurred())
1209    return;
1210  bool ReturnsVoid = false;
1211  bool HasNoReturn = false;
1212  if (const FunctionType *FT = BlockTy->getPointeeType()->getAsFunctionType()) {
1213    if (FT->getResultType()->isVoidType())
1214      ReturnsVoid = true;
1215    if (FT->getNoReturnAttr())
1216      HasNoReturn = true;
1217  }
1218
1219  // Short circuit for compilation speed.
1220  if (ReturnsVoid
1221      && !HasNoReturn
1222      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1223          == Diagnostic::Ignored || !ReturnsVoid))
1224    return;
1225  // FIXME: Funtion try block
1226  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1227    switch (CheckFallThrough(Body)) {
1228    case MaybeFallThrough:
1229      if (HasNoReturn)
1230        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1231      else if (!ReturnsVoid)
1232        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1233      break;
1234    case AlwaysFallThrough:
1235      if (HasNoReturn)
1236        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1237      else if (!ReturnsVoid)
1238        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1239      break;
1240    case NeverFallThrough:
1241      if (ReturnsVoid)
1242        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1243      break;
1244    }
1245  }
1246}
1247
1248/// CheckParmsForFunctionDef - Check that the parameters of the given
1249/// function are appropriate for the definition of a function. This
1250/// takes care of any checks that cannot be performed on the
1251/// declaration itself, e.g., that the types of each of the function
1252/// parameters are complete.
1253bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1254  bool HasInvalidParm = false;
1255  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1256    ParmVarDecl *Param = FD->getParamDecl(p);
1257
1258    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1259    // function declarator that is part of a function definition of
1260    // that function shall not have incomplete type.
1261    //
1262    // This is also C++ [dcl.fct]p6.
1263    if (!Param->isInvalidDecl() &&
1264        RequireCompleteType(Param->getLocation(), Param->getType(),
1265                               diag::err_typecheck_decl_incomplete_type)) {
1266      Param->setInvalidDecl();
1267      HasInvalidParm = true;
1268    }
1269
1270    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1271    // declaration of each parameter shall include an identifier.
1272    if (Param->getIdentifier() == 0 &&
1273        !Param->isImplicit() &&
1274        !getLangOptions().CPlusPlus)
1275      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1276  }
1277
1278  return HasInvalidParm;
1279}
1280
1281/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1282/// no declarator (e.g. "struct foo;") is parsed.
1283Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1284  // FIXME: Error on auto/register at file scope
1285  // FIXME: Error on inline/virtual/explicit
1286  // FIXME: Error on invalid restrict
1287  // FIXME: Warn on useless __thread
1288  // FIXME: Warn on useless const/volatile
1289  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1290  // FIXME: Warn on useless attributes
1291  TagDecl *Tag = 0;
1292  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1293      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1294      DS.getTypeSpecType() == DeclSpec::TST_union ||
1295      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1296    if (!DS.getTypeRep()) // We probably had an error
1297      return DeclPtrTy();
1298
1299    // Note that the above type specs guarantee that the
1300    // type rep is a Decl, whereas in many of the others
1301    // it's a Type.
1302    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1303  }
1304
1305  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1306    if (!Record->getDeclName() && Record->isDefinition() &&
1307        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1308      if (getLangOptions().CPlusPlus ||
1309          Record->getDeclContext()->isRecord())
1310        return BuildAnonymousStructOrUnion(S, DS, Record);
1311
1312      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1313        << DS.getSourceRange();
1314    }
1315
1316    // Microsoft allows unnamed struct/union fields. Don't complain
1317    // about them.
1318    // FIXME: Should we support Microsoft's extensions in this area?
1319    if (Record->getDeclName() && getLangOptions().Microsoft)
1320      return DeclPtrTy::make(Tag);
1321  }
1322
1323  if (!DS.isMissingDeclaratorOk() &&
1324      DS.getTypeSpecType() != DeclSpec::TST_error) {
1325    // Warn about typedefs of enums without names, since this is an
1326    // extension in both Microsoft an GNU.
1327    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1328        Tag && isa<EnumDecl>(Tag)) {
1329      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1330        << DS.getSourceRange();
1331      return DeclPtrTy::make(Tag);
1332    }
1333
1334    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1335      << DS.getSourceRange();
1336    return DeclPtrTy();
1337  }
1338
1339  return DeclPtrTy::make(Tag);
1340}
1341
1342/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1343/// anonymous struct or union AnonRecord into the owning context Owner
1344/// and scope S. This routine will be invoked just after we realize
1345/// that an unnamed union or struct is actually an anonymous union or
1346/// struct, e.g.,
1347///
1348/// @code
1349/// union {
1350///   int i;
1351///   float f;
1352/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1353///    // f into the surrounding scope.x
1354/// @endcode
1355///
1356/// This routine is recursive, injecting the names of nested anonymous
1357/// structs/unions into the owning context and scope as well.
1358bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1359                                               RecordDecl *AnonRecord) {
1360  bool Invalid = false;
1361  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1362                               FEnd = AnonRecord->field_end();
1363       F != FEnd; ++F) {
1364    if ((*F)->getDeclName()) {
1365      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1366                                                LookupOrdinaryName, true);
1367      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1368        // C++ [class.union]p2:
1369        //   The names of the members of an anonymous union shall be
1370        //   distinct from the names of any other entity in the
1371        //   scope in which the anonymous union is declared.
1372        unsigned diagKind
1373          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1374                                 : diag::err_anonymous_struct_member_redecl;
1375        Diag((*F)->getLocation(), diagKind)
1376          << (*F)->getDeclName();
1377        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1378        Invalid = true;
1379      } else {
1380        // C++ [class.union]p2:
1381        //   For the purpose of name lookup, after the anonymous union
1382        //   definition, the members of the anonymous union are
1383        //   considered to have been defined in the scope in which the
1384        //   anonymous union is declared.
1385        Owner->makeDeclVisibleInContext(*F);
1386        S->AddDecl(DeclPtrTy::make(*F));
1387        IdResolver.AddDecl(*F);
1388      }
1389    } else if (const RecordType *InnerRecordType
1390                 = (*F)->getType()->getAs<RecordType>()) {
1391      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1392      if (InnerRecord->isAnonymousStructOrUnion())
1393        Invalid = Invalid ||
1394          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1395    }
1396  }
1397
1398  return Invalid;
1399}
1400
1401/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1402/// anonymous structure or union. Anonymous unions are a C++ feature
1403/// (C++ [class.union]) and a GNU C extension; anonymous structures
1404/// are a GNU C and GNU C++ extension.
1405Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1406                                                  RecordDecl *Record) {
1407  DeclContext *Owner = Record->getDeclContext();
1408
1409  // Diagnose whether this anonymous struct/union is an extension.
1410  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1411    Diag(Record->getLocation(), diag::ext_anonymous_union);
1412  else if (!Record->isUnion())
1413    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1414
1415  // C and C++ require different kinds of checks for anonymous
1416  // structs/unions.
1417  bool Invalid = false;
1418  if (getLangOptions().CPlusPlus) {
1419    const char* PrevSpec = 0;
1420    unsigned DiagID;
1421    // C++ [class.union]p3:
1422    //   Anonymous unions declared in a named namespace or in the
1423    //   global namespace shall be declared static.
1424    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1425        (isa<TranslationUnitDecl>(Owner) ||
1426         (isa<NamespaceDecl>(Owner) &&
1427          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1428      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1429      Invalid = true;
1430
1431      // Recover by adding 'static'.
1432      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1433                             PrevSpec, DiagID);
1434    }
1435    // C++ [class.union]p3:
1436    //   A storage class is not allowed in a declaration of an
1437    //   anonymous union in a class scope.
1438    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1439             isa<RecordDecl>(Owner)) {
1440      Diag(DS.getStorageClassSpecLoc(),
1441           diag::err_anonymous_union_with_storage_spec);
1442      Invalid = true;
1443
1444      // Recover by removing the storage specifier.
1445      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1446                             PrevSpec, DiagID);
1447    }
1448
1449    // C++ [class.union]p2:
1450    //   The member-specification of an anonymous union shall only
1451    //   define non-static data members. [Note: nested types and
1452    //   functions cannot be declared within an anonymous union. ]
1453    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1454                                 MemEnd = Record->decls_end();
1455         Mem != MemEnd; ++Mem) {
1456      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1457        // C++ [class.union]p3:
1458        //   An anonymous union shall not have private or protected
1459        //   members (clause 11).
1460        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1461          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1462            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1463          Invalid = true;
1464        }
1465      } else if ((*Mem)->isImplicit()) {
1466        // Any implicit members are fine.
1467      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1468        // This is a type that showed up in an
1469        // elaborated-type-specifier inside the anonymous struct or
1470        // union, but which actually declares a type outside of the
1471        // anonymous struct or union. It's okay.
1472      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1473        if (!MemRecord->isAnonymousStructOrUnion() &&
1474            MemRecord->getDeclName()) {
1475          // This is a nested type declaration.
1476          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1477            << (int)Record->isUnion();
1478          Invalid = true;
1479        }
1480      } else {
1481        // We have something that isn't a non-static data
1482        // member. Complain about it.
1483        unsigned DK = diag::err_anonymous_record_bad_member;
1484        if (isa<TypeDecl>(*Mem))
1485          DK = diag::err_anonymous_record_with_type;
1486        else if (isa<FunctionDecl>(*Mem))
1487          DK = diag::err_anonymous_record_with_function;
1488        else if (isa<VarDecl>(*Mem))
1489          DK = diag::err_anonymous_record_with_static;
1490        Diag((*Mem)->getLocation(), DK)
1491            << (int)Record->isUnion();
1492          Invalid = true;
1493      }
1494    }
1495  }
1496
1497  if (!Record->isUnion() && !Owner->isRecord()) {
1498    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1499      << (int)getLangOptions().CPlusPlus;
1500    Invalid = true;
1501  }
1502
1503  // Create a declaration for this anonymous struct/union.
1504  NamedDecl *Anon = 0;
1505  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1506    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1507                             /*IdentifierInfo=*/0,
1508                             Context.getTypeDeclType(Record),
1509                             // FIXME: Type source info.
1510                             /*DInfo=*/0,
1511                             /*BitWidth=*/0, /*Mutable=*/false);
1512    Anon->setAccess(AS_public);
1513    if (getLangOptions().CPlusPlus)
1514      FieldCollector->Add(cast<FieldDecl>(Anon));
1515  } else {
1516    VarDecl::StorageClass SC;
1517    switch (DS.getStorageClassSpec()) {
1518    default: assert(0 && "Unknown storage class!");
1519    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1520    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1521    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1522    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1523    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1524    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1525    case DeclSpec::SCS_mutable:
1526      // mutable can only appear on non-static class members, so it's always
1527      // an error here
1528      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1529      Invalid = true;
1530      SC = VarDecl::None;
1531      break;
1532    }
1533
1534    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1535                           /*IdentifierInfo=*/0,
1536                           Context.getTypeDeclType(Record),
1537                           // FIXME: Type source info.
1538                           /*DInfo=*/0,
1539                           SC);
1540  }
1541  Anon->setImplicit();
1542
1543  // Add the anonymous struct/union object to the current
1544  // context. We'll be referencing this object when we refer to one of
1545  // its members.
1546  Owner->addDecl(Anon);
1547
1548  // Inject the members of the anonymous struct/union into the owning
1549  // context and into the identifier resolver chain for name lookup
1550  // purposes.
1551  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1552    Invalid = true;
1553
1554  // Mark this as an anonymous struct/union type. Note that we do not
1555  // do this until after we have already checked and injected the
1556  // members of this anonymous struct/union type, because otherwise
1557  // the members could be injected twice: once by DeclContext when it
1558  // builds its lookup table, and once by
1559  // InjectAnonymousStructOrUnionMembers.
1560  Record->setAnonymousStructOrUnion(true);
1561
1562  if (Invalid)
1563    Anon->setInvalidDecl();
1564
1565  return DeclPtrTy::make(Anon);
1566}
1567
1568
1569/// GetNameForDeclarator - Determine the full declaration name for the
1570/// given Declarator.
1571DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1572  switch (D.getKind()) {
1573  case Declarator::DK_Abstract:
1574    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1575    return DeclarationName();
1576
1577  case Declarator::DK_Normal:
1578    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1579    return DeclarationName(D.getIdentifier());
1580
1581  case Declarator::DK_Constructor: {
1582    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1583    return Context.DeclarationNames.getCXXConstructorName(
1584                                                Context.getCanonicalType(Ty));
1585  }
1586
1587  case Declarator::DK_Destructor: {
1588    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1589    return Context.DeclarationNames.getCXXDestructorName(
1590                                                Context.getCanonicalType(Ty));
1591  }
1592
1593  case Declarator::DK_Conversion: {
1594    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1595    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1596    return Context.DeclarationNames.getCXXConversionFunctionName(
1597                                                Context.getCanonicalType(Ty));
1598  }
1599
1600  case Declarator::DK_Operator:
1601    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1602    return Context.DeclarationNames.getCXXOperatorName(
1603                                                D.getOverloadedOperator());
1604  }
1605
1606  assert(false && "Unknown name kind");
1607  return DeclarationName();
1608}
1609
1610/// isNearlyMatchingFunction - Determine whether the C++ functions
1611/// Declaration and Definition are "nearly" matching. This heuristic
1612/// is used to improve diagnostics in the case where an out-of-line
1613/// function definition doesn't match any declaration within
1614/// the class or namespace.
1615static bool isNearlyMatchingFunction(ASTContext &Context,
1616                                     FunctionDecl *Declaration,
1617                                     FunctionDecl *Definition) {
1618  if (Declaration->param_size() != Definition->param_size())
1619    return false;
1620  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1621    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1622    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1623
1624    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1625    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1626    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1627      return false;
1628  }
1629
1630  return true;
1631}
1632
1633Sema::DeclPtrTy
1634Sema::HandleDeclarator(Scope *S, Declarator &D,
1635                       MultiTemplateParamsArg TemplateParamLists,
1636                       bool IsFunctionDefinition) {
1637  DeclarationName Name = GetNameForDeclarator(D);
1638
1639  // All of these full declarators require an identifier.  If it doesn't have
1640  // one, the ParsedFreeStandingDeclSpec action should be used.
1641  if (!Name) {
1642    if (!D.isInvalidType())  // Reject this if we think it is valid.
1643      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1644           diag::err_declarator_need_ident)
1645        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1646    return DeclPtrTy();
1647  }
1648
1649  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1650  // we find one that is.
1651  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1652         (S->getFlags() & Scope::TemplateParamScope) != 0)
1653    S = S->getParent();
1654
1655  // If this is an out-of-line definition of a member of a class template
1656  // or class template partial specialization, we may need to rebuild the
1657  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1658  // for more information.
1659  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1660  // handle expressions properly.
1661  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1662  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1663      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1664      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1665       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1666       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1667       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1668    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1669      // FIXME: Preserve type source info.
1670      QualType T = GetTypeFromParser(DS.getTypeRep());
1671      EnterDeclaratorContext(S, DC);
1672      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1673      ExitDeclaratorContext(S);
1674      if (T.isNull())
1675        return DeclPtrTy();
1676      DS.UpdateTypeRep(T.getAsOpaquePtr());
1677    }
1678  }
1679
1680  DeclContext *DC;
1681  NamedDecl *PrevDecl;
1682  NamedDecl *New;
1683
1684  DeclaratorInfo *DInfo = 0;
1685  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1686
1687  // See if this is a redefinition of a variable in the same scope.
1688  if (D.getCXXScopeSpec().isInvalid()) {
1689    DC = CurContext;
1690    PrevDecl = 0;
1691    D.setInvalidType();
1692  } else if (!D.getCXXScopeSpec().isSet()) {
1693    LookupNameKind NameKind = LookupOrdinaryName;
1694
1695    // If the declaration we're planning to build will be a function
1696    // or object with linkage, then look for another declaration with
1697    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1698    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1699      /* Do nothing*/;
1700    else if (R->isFunctionType()) {
1701      if (CurContext->isFunctionOrMethod() ||
1702          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1703        NameKind = LookupRedeclarationWithLinkage;
1704    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1705      NameKind = LookupRedeclarationWithLinkage;
1706    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1707             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1708      NameKind = LookupRedeclarationWithLinkage;
1709
1710    DC = CurContext;
1711    PrevDecl = LookupName(S, Name, NameKind, true,
1712                          NameKind == LookupRedeclarationWithLinkage,
1713                          D.getIdentifierLoc());
1714  } else { // Something like "int foo::x;"
1715    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1716
1717    if (!DC) {
1718      // If we could not compute the declaration context, it's because the
1719      // declaration context is dependent but does not refer to a class,
1720      // class template, or class template partial specialization. Complain
1721      // and return early, to avoid the coming semantic disaster.
1722      Diag(D.getIdentifierLoc(),
1723           diag::err_template_qualified_declarator_no_match)
1724        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1725        << D.getCXXScopeSpec().getRange();
1726      return DeclPtrTy();
1727    }
1728
1729    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1730
1731    // C++ 7.3.1.2p2:
1732    // Members (including explicit specializations of templates) of a named
1733    // namespace can also be defined outside that namespace by explicit
1734    // qualification of the name being defined, provided that the entity being
1735    // defined was already declared in the namespace and the definition appears
1736    // after the point of declaration in a namespace that encloses the
1737    // declarations namespace.
1738    //
1739    // Note that we only check the context at this point. We don't yet
1740    // have enough information to make sure that PrevDecl is actually
1741    // the declaration we want to match. For example, given:
1742    //
1743    //   class X {
1744    //     void f();
1745    //     void f(float);
1746    //   };
1747    //
1748    //   void X::f(int) { } // ill-formed
1749    //
1750    // In this case, PrevDecl will point to the overload set
1751    // containing the two f's declared in X, but neither of them
1752    // matches.
1753
1754    // First check whether we named the global scope.
1755    if (isa<TranslationUnitDecl>(DC)) {
1756      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1757        << Name << D.getCXXScopeSpec().getRange();
1758    } else if (!CurContext->Encloses(DC)) {
1759      // The qualifying scope doesn't enclose the original declaration.
1760      // Emit diagnostic based on current scope.
1761      SourceLocation L = D.getIdentifierLoc();
1762      SourceRange R = D.getCXXScopeSpec().getRange();
1763      if (isa<FunctionDecl>(CurContext))
1764        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1765      else
1766        Diag(L, diag::err_invalid_declarator_scope)
1767          << Name << cast<NamedDecl>(DC) << R;
1768      D.setInvalidType();
1769    }
1770  }
1771
1772  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1773    // Maybe we will complain about the shadowed template parameter.
1774    if (!D.isInvalidType())
1775      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1776        D.setInvalidType();
1777
1778    // Just pretend that we didn't see the previous declaration.
1779    PrevDecl = 0;
1780  }
1781
1782  // In C++, the previous declaration we find might be a tag type
1783  // (class or enum). In this case, the new declaration will hide the
1784  // tag type. Note that this does does not apply if we're declaring a
1785  // typedef (C++ [dcl.typedef]p4).
1786  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1787      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1788    PrevDecl = 0;
1789
1790  bool Redeclaration = false;
1791  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1792    if (TemplateParamLists.size()) {
1793      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1794      return DeclPtrTy();
1795    }
1796
1797    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1798  } else if (R->isFunctionType()) {
1799    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1800                                  move(TemplateParamLists),
1801                                  IsFunctionDefinition, Redeclaration);
1802  } else {
1803    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1804                                  move(TemplateParamLists),
1805                                  Redeclaration);
1806  }
1807
1808  if (New == 0)
1809    return DeclPtrTy();
1810
1811  // If this has an identifier and is not an invalid redeclaration,
1812  // add it to the scope stack.
1813  if (Name && !(Redeclaration && New->isInvalidDecl()))
1814    PushOnScopeChains(New, S);
1815
1816  return DeclPtrTy::make(New);
1817}
1818
1819/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1820/// types into constant array types in certain situations which would otherwise
1821/// be errors (for GCC compatibility).
1822static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1823                                                    ASTContext &Context,
1824                                                    bool &SizeIsNegative) {
1825  // This method tries to turn a variable array into a constant
1826  // array even when the size isn't an ICE.  This is necessary
1827  // for compatibility with code that depends on gcc's buggy
1828  // constant expression folding, like struct {char x[(int)(char*)2];}
1829  SizeIsNegative = false;
1830
1831  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1832    QualType Pointee = PTy->getPointeeType();
1833    QualType FixedType =
1834        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1835    if (FixedType.isNull()) return FixedType;
1836    FixedType = Context.getPointerType(FixedType);
1837    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1838    return FixedType;
1839  }
1840
1841  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1842  if (!VLATy)
1843    return QualType();
1844  // FIXME: We should probably handle this case
1845  if (VLATy->getElementType()->isVariablyModifiedType())
1846    return QualType();
1847
1848  Expr::EvalResult EvalResult;
1849  if (!VLATy->getSizeExpr() ||
1850      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1851      !EvalResult.Val.isInt())
1852    return QualType();
1853
1854  llvm::APSInt &Res = EvalResult.Val.getInt();
1855  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1856    Expr* ArySizeExpr = VLATy->getSizeExpr();
1857    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1858    // so as to transfer ownership to the ConstantArrayWithExpr.
1859    // Alternatively, we could "clone" it (how?).
1860    // Since we don't know how to do things above, we just use the
1861    // very same Expr*.
1862    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1863                                                Res, ArySizeExpr,
1864                                                ArrayType::Normal, 0,
1865                                                VLATy->getBracketsRange());
1866  }
1867
1868  SizeIsNegative = true;
1869  return QualType();
1870}
1871
1872/// \brief Register the given locally-scoped external C declaration so
1873/// that it can be found later for redeclarations
1874void
1875Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1876                                       Scope *S) {
1877  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1878         "Decl is not a locally-scoped decl!");
1879  // Note that we have a locally-scoped external with this name.
1880  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1881
1882  if (!PrevDecl)
1883    return;
1884
1885  // If there was a previous declaration of this variable, it may be
1886  // in our identifier chain. Update the identifier chain with the new
1887  // declaration.
1888  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1889    // The previous declaration was found on the identifer resolver
1890    // chain, so remove it from its scope.
1891    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1892      S = S->getParent();
1893
1894    if (S)
1895      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1896  }
1897}
1898
1899/// \brief Diagnose function specifiers on a declaration of an identifier that
1900/// does not identify a function.
1901void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1902  // FIXME: We should probably indicate the identifier in question to avoid
1903  // confusion for constructs like "inline int a(), b;"
1904  if (D.getDeclSpec().isInlineSpecified())
1905    Diag(D.getDeclSpec().getInlineSpecLoc(),
1906         diag::err_inline_non_function);
1907
1908  if (D.getDeclSpec().isVirtualSpecified())
1909    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1910         diag::err_virtual_non_function);
1911
1912  if (D.getDeclSpec().isExplicitSpecified())
1913    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1914         diag::err_explicit_non_function);
1915}
1916
1917NamedDecl*
1918Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1919                             QualType R,  DeclaratorInfo *DInfo,
1920                             Decl* PrevDecl, bool &Redeclaration) {
1921  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1922  if (D.getCXXScopeSpec().isSet()) {
1923    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1924      << D.getCXXScopeSpec().getRange();
1925    D.setInvalidType();
1926    // Pretend we didn't see the scope specifier.
1927    DC = 0;
1928  }
1929
1930  if (getLangOptions().CPlusPlus) {
1931    // Check that there are no default arguments (C++ only).
1932    CheckExtraCXXDefaultArguments(D);
1933  }
1934
1935  DiagnoseFunctionSpecifiers(D);
1936
1937  if (D.getDeclSpec().isThreadSpecified())
1938    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1939
1940  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1941  if (!NewTD) return 0;
1942
1943  if (D.isInvalidType())
1944    NewTD->setInvalidDecl();
1945
1946  // Handle attributes prior to checking for duplicates in MergeVarDecl
1947  ProcessDeclAttributes(S, NewTD, D);
1948  // Merge the decl with the existing one if appropriate. If the decl is
1949  // in an outer scope, it isn't the same thing.
1950  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1951    Redeclaration = true;
1952    MergeTypeDefDecl(NewTD, PrevDecl);
1953  }
1954
1955  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1956  // then it shall have block scope.
1957  QualType T = NewTD->getUnderlyingType();
1958  if (T->isVariablyModifiedType()) {
1959    CurFunctionNeedsScopeChecking = true;
1960
1961    if (S->getFnParent() == 0) {
1962      bool SizeIsNegative;
1963      QualType FixedTy =
1964          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1965      if (!FixedTy.isNull()) {
1966        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1967        NewTD->setUnderlyingType(FixedTy);
1968      } else {
1969        if (SizeIsNegative)
1970          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1971        else if (T->isVariableArrayType())
1972          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1973        else
1974          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1975        NewTD->setInvalidDecl();
1976      }
1977    }
1978  }
1979
1980  // If this is the C FILE type, notify the AST context.
1981  if (IdentifierInfo *II = NewTD->getIdentifier())
1982    if (!NewTD->isInvalidDecl() &&
1983        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
1984      if (II->isStr("FILE"))
1985        Context.setFILEDecl(NewTD);
1986      else if (II->isStr("jmp_buf"))
1987        Context.setjmp_bufDecl(NewTD);
1988      else if (II->isStr("sigjmp_buf"))
1989        Context.setsigjmp_bufDecl(NewTD);
1990    }
1991
1992  return NewTD;
1993}
1994
1995/// \brief Determines whether the given declaration is an out-of-scope
1996/// previous declaration.
1997///
1998/// This routine should be invoked when name lookup has found a
1999/// previous declaration (PrevDecl) that is not in the scope where a
2000/// new declaration by the same name is being introduced. If the new
2001/// declaration occurs in a local scope, previous declarations with
2002/// linkage may still be considered previous declarations (C99
2003/// 6.2.2p4-5, C++ [basic.link]p6).
2004///
2005/// \param PrevDecl the previous declaration found by name
2006/// lookup
2007///
2008/// \param DC the context in which the new declaration is being
2009/// declared.
2010///
2011/// \returns true if PrevDecl is an out-of-scope previous declaration
2012/// for a new delcaration with the same name.
2013static bool
2014isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2015                                ASTContext &Context) {
2016  if (!PrevDecl)
2017    return 0;
2018
2019  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2020  // case we need to check each of the overloaded functions.
2021  if (!PrevDecl->hasLinkage())
2022    return false;
2023
2024  if (Context.getLangOptions().CPlusPlus) {
2025    // C++ [basic.link]p6:
2026    //   If there is a visible declaration of an entity with linkage
2027    //   having the same name and type, ignoring entities declared
2028    //   outside the innermost enclosing namespace scope, the block
2029    //   scope declaration declares that same entity and receives the
2030    //   linkage of the previous declaration.
2031    DeclContext *OuterContext = DC->getLookupContext();
2032    if (!OuterContext->isFunctionOrMethod())
2033      // This rule only applies to block-scope declarations.
2034      return false;
2035    else {
2036      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2037      if (PrevOuterContext->isRecord())
2038        // We found a member function: ignore it.
2039        return false;
2040      else {
2041        // Find the innermost enclosing namespace for the new and
2042        // previous declarations.
2043        while (!OuterContext->isFileContext())
2044          OuterContext = OuterContext->getParent();
2045        while (!PrevOuterContext->isFileContext())
2046          PrevOuterContext = PrevOuterContext->getParent();
2047
2048        // The previous declaration is in a different namespace, so it
2049        // isn't the same function.
2050        if (OuterContext->getPrimaryContext() !=
2051            PrevOuterContext->getPrimaryContext())
2052          return false;
2053      }
2054    }
2055  }
2056
2057  return true;
2058}
2059
2060NamedDecl*
2061Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2062                              QualType R, DeclaratorInfo *DInfo,
2063                              NamedDecl* PrevDecl,
2064                              MultiTemplateParamsArg TemplateParamLists,
2065                              bool &Redeclaration) {
2066  DeclarationName Name = GetNameForDeclarator(D);
2067
2068  // Check that there are no default arguments (C++ only).
2069  if (getLangOptions().CPlusPlus)
2070    CheckExtraCXXDefaultArguments(D);
2071
2072  VarDecl *NewVD;
2073  VarDecl::StorageClass SC;
2074  switch (D.getDeclSpec().getStorageClassSpec()) {
2075  default: assert(0 && "Unknown storage class!");
2076  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2077  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2078  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2079  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2080  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2081  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2082  case DeclSpec::SCS_mutable:
2083    // mutable can only appear on non-static class members, so it's always
2084    // an error here
2085    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2086    D.setInvalidType();
2087    SC = VarDecl::None;
2088    break;
2089  }
2090
2091  IdentifierInfo *II = Name.getAsIdentifierInfo();
2092  if (!II) {
2093    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2094      << Name.getAsString();
2095    return 0;
2096  }
2097
2098  DiagnoseFunctionSpecifiers(D);
2099
2100  if (!DC->isRecord() && S->getFnParent() == 0) {
2101    // C99 6.9p2: The storage-class specifiers auto and register shall not
2102    // appear in the declaration specifiers in an external declaration.
2103    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2104
2105      // If this is a register variable with an asm label specified, then this
2106      // is a GNU extension.
2107      if (SC == VarDecl::Register && D.getAsmLabel())
2108        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2109      else
2110        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2111      D.setInvalidType();
2112    }
2113  }
2114  if (DC->isRecord() && !CurContext->isRecord()) {
2115    // This is an out-of-line definition of a static data member.
2116    if (SC == VarDecl::Static) {
2117      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2118           diag::err_static_out_of_line)
2119        << CodeModificationHint::CreateRemoval(
2120                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2121    } else if (SC == VarDecl::None)
2122      SC = VarDecl::Static;
2123  }
2124  if (SC == VarDecl::Static) {
2125    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2126      if (RD->isLocalClass())
2127        Diag(D.getIdentifierLoc(),
2128             diag::err_static_data_member_not_allowed_in_local_class)
2129          << Name << RD->getDeclName();
2130    }
2131  }
2132
2133  // Match up the template parameter lists with the scope specifier, then
2134  // determine whether we have a template or a template specialization.
2135  if (TemplateParameterList *TemplateParams
2136      = MatchTemplateParametersToScopeSpecifier(
2137                                  D.getDeclSpec().getSourceRange().getBegin(),
2138                                                D.getCXXScopeSpec(),
2139                        (TemplateParameterList**)TemplateParamLists.get(),
2140                                                 TemplateParamLists.size())) {
2141    if (TemplateParams->size() > 0) {
2142      // There is no such thing as a variable template.
2143      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2144        << II
2145        << SourceRange(TemplateParams->getTemplateLoc(),
2146                       TemplateParams->getRAngleLoc());
2147      return 0;
2148    } else {
2149      // There is an extraneous 'template<>' for this variable. Complain
2150      // about it, but allow the declaration of the variable.
2151      Diag(TemplateParams->getTemplateLoc(),
2152           diag::err_template_variable_noparams)
2153        << II
2154        << SourceRange(TemplateParams->getTemplateLoc(),
2155                       TemplateParams->getRAngleLoc());
2156    }
2157  }
2158
2159  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2160                          II, R, DInfo, SC);
2161
2162  if (D.isInvalidType())
2163    NewVD->setInvalidDecl();
2164
2165  if (D.getDeclSpec().isThreadSpecified()) {
2166    if (NewVD->hasLocalStorage())
2167      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2168    else if (!Context.Target.isTLSSupported())
2169      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2170    else
2171      NewVD->setThreadSpecified(true);
2172  }
2173
2174  // Set the lexical context. If the declarator has a C++ scope specifier, the
2175  // lexical context will be different from the semantic context.
2176  NewVD->setLexicalDeclContext(CurContext);
2177
2178  // Handle attributes prior to checking for duplicates in MergeVarDecl
2179  ProcessDeclAttributes(S, NewVD, D);
2180
2181  // Handle GNU asm-label extension (encoded as an attribute).
2182  if (Expr *E = (Expr*) D.getAsmLabel()) {
2183    // The parser guarantees this is a string.
2184    StringLiteral *SE = cast<StringLiteral>(E);
2185    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2186                                                        SE->getByteLength())));
2187  }
2188
2189  // If name lookup finds a previous declaration that is not in the
2190  // same scope as the new declaration, this may still be an
2191  // acceptable redeclaration.
2192  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2193      !(NewVD->hasLinkage() &&
2194        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2195    PrevDecl = 0;
2196
2197  // Merge the decl with the existing one if appropriate.
2198  if (PrevDecl) {
2199    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2200      // The user tried to define a non-static data member
2201      // out-of-line (C++ [dcl.meaning]p1).
2202      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2203        << D.getCXXScopeSpec().getRange();
2204      PrevDecl = 0;
2205      NewVD->setInvalidDecl();
2206    }
2207  } else if (D.getCXXScopeSpec().isSet()) {
2208    // No previous declaration in the qualifying scope.
2209    NestedNameSpecifier *NNS =
2210      (NestedNameSpecifier *)D.getCXXScopeSpec().getScopeRep();
2211    DiagnoseMissingMember(D.getIdentifierLoc(), Name, NNS,
2212                          D.getCXXScopeSpec().getRange());
2213    NewVD->setInvalidDecl();
2214  }
2215
2216  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2217
2218  // attributes declared post-definition are currently ignored
2219  if (PrevDecl) {
2220    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2221    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2222      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2223      Diag(Def->getLocation(), diag::note_previous_definition);
2224    }
2225  }
2226
2227  // If this is a locally-scoped extern C variable, update the map of
2228  // such variables.
2229  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
2230      !NewVD->isInvalidDecl())
2231    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2232
2233  return NewVD;
2234}
2235
2236/// \brief Perform semantic checking on a newly-created variable
2237/// declaration.
2238///
2239/// This routine performs all of the type-checking required for a
2240/// variable declaration once it has been built. It is used both to
2241/// check variables after they have been parsed and their declarators
2242/// have been translated into a declaration, and to check variables
2243/// that have been instantiated from a template.
2244///
2245/// Sets NewVD->isInvalidDecl() if an error was encountered.
2246void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2247                                    bool &Redeclaration) {
2248  // If the decl is already known invalid, don't check it.
2249  if (NewVD->isInvalidDecl())
2250    return;
2251
2252  QualType T = NewVD->getType();
2253
2254  if (T->isObjCInterfaceType()) {
2255    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2256    return NewVD->setInvalidDecl();
2257  }
2258
2259  // The variable can not have an abstract class type.
2260  if (RequireNonAbstractType(NewVD->getLocation(), T,
2261                             diag::err_abstract_type_in_decl,
2262                             AbstractVariableType))
2263    return NewVD->setInvalidDecl();
2264
2265  // Emit an error if an address space was applied to decl with local storage.
2266  // This includes arrays of objects with address space qualifiers, but not
2267  // automatic variables that point to other address spaces.
2268  // ISO/IEC TR 18037 S5.1.2
2269  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2270    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2271    return NewVD->setInvalidDecl();
2272  }
2273
2274  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2275      && !NewVD->hasAttr<BlocksAttr>())
2276    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2277
2278  bool isVM = T->isVariablyModifiedType();
2279  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2280      NewVD->hasAttr<BlocksAttr>())
2281    CurFunctionNeedsScopeChecking = true;
2282
2283  if ((isVM && NewVD->hasLinkage()) ||
2284      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2285    bool SizeIsNegative;
2286    QualType FixedTy =
2287        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2288
2289    if (FixedTy.isNull() && T->isVariableArrayType()) {
2290      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2291      // FIXME: This won't give the correct result for
2292      // int a[10][n];
2293      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2294
2295      if (NewVD->isFileVarDecl())
2296        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2297        << SizeRange;
2298      else if (NewVD->getStorageClass() == VarDecl::Static)
2299        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2300        << SizeRange;
2301      else
2302        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2303        << SizeRange;
2304      return NewVD->setInvalidDecl();
2305    }
2306
2307    if (FixedTy.isNull()) {
2308      if (NewVD->isFileVarDecl())
2309        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2310      else
2311        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2312      return NewVD->setInvalidDecl();
2313    }
2314
2315    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2316    NewVD->setType(FixedTy);
2317  }
2318
2319  if (!PrevDecl && NewVD->isExternC(Context)) {
2320    // Since we did not find anything by this name and we're declaring
2321    // an extern "C" variable, look for a non-visible extern "C"
2322    // declaration with the same name.
2323    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2324      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2325    if (Pos != LocallyScopedExternalDecls.end())
2326      PrevDecl = Pos->second;
2327  }
2328
2329  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2330    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2331      << T;
2332    return NewVD->setInvalidDecl();
2333  }
2334
2335  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2336    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2337    return NewVD->setInvalidDecl();
2338  }
2339
2340  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2341    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2342    return NewVD->setInvalidDecl();
2343  }
2344
2345  if (PrevDecl) {
2346    Redeclaration = true;
2347    MergeVarDecl(NewVD, PrevDecl);
2348  }
2349}
2350
2351static bool isUsingDecl(Decl *D) {
2352  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2353}
2354
2355NamedDecl*
2356Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2357                              QualType R, DeclaratorInfo *DInfo,
2358                              NamedDecl* PrevDecl,
2359                              MultiTemplateParamsArg TemplateParamLists,
2360                              bool IsFunctionDefinition, bool &Redeclaration) {
2361  assert(R.getTypePtr()->isFunctionType());
2362
2363  DeclarationName Name = GetNameForDeclarator(D);
2364  FunctionDecl::StorageClass SC = FunctionDecl::None;
2365  switch (D.getDeclSpec().getStorageClassSpec()) {
2366  default: assert(0 && "Unknown storage class!");
2367  case DeclSpec::SCS_auto:
2368  case DeclSpec::SCS_register:
2369  case DeclSpec::SCS_mutable:
2370    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2371         diag::err_typecheck_sclass_func);
2372    D.setInvalidType();
2373    break;
2374  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2375  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2376  case DeclSpec::SCS_static: {
2377    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2378      // C99 6.7.1p5:
2379      //   The declaration of an identifier for a function that has
2380      //   block scope shall have no explicit storage-class specifier
2381      //   other than extern
2382      // See also (C++ [dcl.stc]p4).
2383      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2384           diag::err_static_block_func);
2385      SC = FunctionDecl::None;
2386    } else
2387      SC = FunctionDecl::Static;
2388    break;
2389  }
2390  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2391  }
2392
2393  if (D.getDeclSpec().isThreadSpecified())
2394    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2395
2396  bool isFriend = D.getDeclSpec().isFriendSpecified();
2397  bool isInline = D.getDeclSpec().isInlineSpecified();
2398  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2399  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2400
2401  // Check that the return type is not an abstract class type.
2402  // For record types, this is done by the AbstractClassUsageDiagnoser once
2403  // the class has been completely parsed.
2404  if (!DC->isRecord() &&
2405      RequireNonAbstractType(D.getIdentifierLoc(),
2406                             R->getAsFunctionType()->getResultType(),
2407                             diag::err_abstract_type_in_decl,
2408                             AbstractReturnType))
2409    D.setInvalidType();
2410
2411  // Do not allow returning a objc interface by-value.
2412  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2413    Diag(D.getIdentifierLoc(),
2414         diag::err_object_cannot_be_passed_returned_by_value) << 0
2415      << R->getAsFunctionType()->getResultType();
2416    D.setInvalidType();
2417  }
2418
2419  bool isVirtualOkay = false;
2420  FunctionDecl *NewFD;
2421
2422  if (isFriend) {
2423    // DC is the namespace in which the function is being declared.
2424    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2425           "friend function being created in a non-namespace context");
2426
2427    // C++ [class.friend]p5
2428    //   A function can be defined in a friend declaration of a
2429    //   class . . . . Such a function is implicitly inline.
2430    isInline |= IsFunctionDefinition;
2431  }
2432
2433  if (D.getKind() == Declarator::DK_Constructor) {
2434    // This is a C++ constructor declaration.
2435    assert(DC->isRecord() &&
2436           "Constructors can only be declared in a member context");
2437
2438    R = CheckConstructorDeclarator(D, R, SC);
2439
2440    // Create the new declaration
2441    NewFD = CXXConstructorDecl::Create(Context,
2442                                       cast<CXXRecordDecl>(DC),
2443                                       D.getIdentifierLoc(), Name, R, DInfo,
2444                                       isExplicit, isInline,
2445                                       /*isImplicitlyDeclared=*/false);
2446  } else if (D.getKind() == Declarator::DK_Destructor) {
2447    // This is a C++ destructor declaration.
2448    if (DC->isRecord()) {
2449      R = CheckDestructorDeclarator(D, SC);
2450
2451      NewFD = CXXDestructorDecl::Create(Context,
2452                                        cast<CXXRecordDecl>(DC),
2453                                        D.getIdentifierLoc(), Name, R,
2454                                        isInline,
2455                                        /*isImplicitlyDeclared=*/false);
2456
2457      isVirtualOkay = true;
2458    } else {
2459      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2460
2461      // Create a FunctionDecl to satisfy the function definition parsing
2462      // code path.
2463      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2464                                   Name, R, DInfo, SC, isInline,
2465                                   /*hasPrototype=*/true);
2466      D.setInvalidType();
2467    }
2468  } else if (D.getKind() == Declarator::DK_Conversion) {
2469    if (!DC->isRecord()) {
2470      Diag(D.getIdentifierLoc(),
2471           diag::err_conv_function_not_member);
2472      return 0;
2473    }
2474
2475    CheckConversionDeclarator(D, R, SC);
2476    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2477                                      D.getIdentifierLoc(), Name, R, DInfo,
2478                                      isInline, isExplicit);
2479
2480    isVirtualOkay = true;
2481  } else if (DC->isRecord()) {
2482    // If the of the function is the same as the name of the record, then this
2483    // must be an invalid constructor that has a return type.
2484    // (The parser checks for a return type and makes the declarator a
2485    // constructor if it has no return type).
2486    // must have an invalid constructor that has a return type
2487    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2488      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2489        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2490        << SourceRange(D.getIdentifierLoc());
2491      return 0;
2492    }
2493
2494    // This is a C++ method declaration.
2495    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2496                                  D.getIdentifierLoc(), Name, R, DInfo,
2497                                  (SC == FunctionDecl::Static), isInline);
2498
2499    isVirtualOkay = (SC != FunctionDecl::Static);
2500  } else {
2501    // Determine whether the function was written with a
2502    // prototype. This true when:
2503    //   - we're in C++ (where every function has a prototype),
2504    //   - there is a prototype in the declarator, or
2505    //   - the type R of the function is some kind of typedef or other reference
2506    //     to a type name (which eventually refers to a function type).
2507    bool HasPrototype =
2508       getLangOptions().CPlusPlus ||
2509       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2510       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2511
2512    NewFD = FunctionDecl::Create(Context, DC,
2513                                 D.getIdentifierLoc(),
2514                                 Name, R, DInfo, SC, isInline, HasPrototype);
2515  }
2516
2517  if (D.isInvalidType())
2518    NewFD->setInvalidDecl();
2519
2520  // Set the lexical context. If the declarator has a C++
2521  // scope specifier, or is the object of a friend declaration, the
2522  // lexical context will be different from the semantic context.
2523  NewFD->setLexicalDeclContext(CurContext);
2524
2525  if (isFriend)
2526    NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2527
2528  // Match up the template parameter lists with the scope specifier, then
2529  // determine whether we have a template or a template specialization.
2530  FunctionTemplateDecl *FunctionTemplate = 0;
2531  if (TemplateParameterList *TemplateParams
2532        = MatchTemplateParametersToScopeSpecifier(
2533                                  D.getDeclSpec().getSourceRange().getBegin(),
2534                                  D.getCXXScopeSpec(),
2535                           (TemplateParameterList**)TemplateParamLists.get(),
2536                                                  TemplateParamLists.size())) {
2537    if (TemplateParams->size() > 0) {
2538      // This is a function template
2539
2540      // Check that we can declare a template here.
2541      if (CheckTemplateDeclScope(S, TemplateParams))
2542        return 0;
2543
2544      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2545                                                      NewFD->getLocation(),
2546                                                      Name, TemplateParams,
2547                                                      NewFD);
2548      FunctionTemplate->setLexicalDeclContext(CurContext);
2549      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2550    } else {
2551      // FIXME: Handle function template specializations
2552    }
2553
2554    // FIXME: Free this memory properly.
2555    TemplateParamLists.release();
2556  }
2557
2558  // C++ [dcl.fct.spec]p5:
2559  //   The virtual specifier shall only be used in declarations of
2560  //   nonstatic class member functions that appear within a
2561  //   member-specification of a class declaration; see 10.3.
2562  //
2563  if (isVirtual && !NewFD->isInvalidDecl()) {
2564    if (!isVirtualOkay) {
2565       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2566           diag::err_virtual_non_function);
2567    } else if (!CurContext->isRecord()) {
2568      // 'virtual' was specified outside of the class.
2569      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2570        << CodeModificationHint::CreateRemoval(
2571                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2572    } else {
2573      // Okay: Add virtual to the method.
2574      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2575      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2576      CurClass->setAggregate(false);
2577      CurClass->setPOD(false);
2578      CurClass->setEmpty(false);
2579      CurClass->setPolymorphic(true);
2580      CurClass->setHasTrivialConstructor(false);
2581      CurClass->setHasTrivialCopyConstructor(false);
2582      CurClass->setHasTrivialCopyAssignment(false);
2583    }
2584  }
2585
2586  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2587    // Look for virtual methods in base classes that this method might override.
2588
2589    BasePaths Paths;
2590    if (LookupInBases(cast<CXXRecordDecl>(DC),
2591                      MemberLookupCriteria(NewMD), Paths)) {
2592      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2593           E = Paths.found_decls_end(); I != E; ++I) {
2594        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2595          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2596              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2597            NewMD->addOverriddenMethod(OldMD);
2598        }
2599      }
2600    }
2601  }
2602
2603  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2604      !CurContext->isRecord()) {
2605    // C++ [class.static]p1:
2606    //   A data or function member of a class may be declared static
2607    //   in a class definition, in which case it is a static member of
2608    //   the class.
2609
2610    // Complain about the 'static' specifier if it's on an out-of-line
2611    // member function definition.
2612    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2613         diag::err_static_out_of_line)
2614      << CodeModificationHint::CreateRemoval(
2615                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2616  }
2617
2618  // Handle GNU asm-label extension (encoded as an attribute).
2619  if (Expr *E = (Expr*) D.getAsmLabel()) {
2620    // The parser guarantees this is a string.
2621    StringLiteral *SE = cast<StringLiteral>(E);
2622    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2623                                                        SE->getByteLength())));
2624  }
2625
2626  // Copy the parameter declarations from the declarator D to the function
2627  // declaration NewFD, if they are available.  First scavenge them into Params.
2628  llvm::SmallVector<ParmVarDecl*, 16> Params;
2629  if (D.getNumTypeObjects() > 0) {
2630    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2631
2632    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2633    // function that takes no arguments, not a function that takes a
2634    // single void argument.
2635    // We let through "const void" here because Sema::GetTypeForDeclarator
2636    // already checks for that case.
2637    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2638        FTI.ArgInfo[0].Param &&
2639        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2640      // Empty arg list, don't push any params.
2641      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2642
2643      // In C++, the empty parameter-type-list must be spelled "void"; a
2644      // typedef of void is not permitted.
2645      if (getLangOptions().CPlusPlus &&
2646          Param->getType().getUnqualifiedType() != Context.VoidTy)
2647        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2648      // FIXME: Leaks decl?
2649    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2650      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2651        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2652        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2653        Param->setDeclContext(NewFD);
2654        Params.push_back(Param);
2655      }
2656    }
2657
2658  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2659    // When we're declaring a function with a typedef, typeof, etc as in the
2660    // following example, we'll need to synthesize (unnamed)
2661    // parameters for use in the declaration.
2662    //
2663    // @code
2664    // typedef void fn(int);
2665    // fn f;
2666    // @endcode
2667
2668    // Synthesize a parameter for each argument type.
2669    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2670         AE = FT->arg_type_end(); AI != AE; ++AI) {
2671      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2672                                               SourceLocation(), 0,
2673                                               *AI, /*DInfo=*/0,
2674                                               VarDecl::None, 0);
2675      Param->setImplicit();
2676      Params.push_back(Param);
2677    }
2678  } else {
2679    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2680           "Should not need args for typedef of non-prototype fn");
2681  }
2682  // Finally, we know we have the right number of parameters, install them.
2683  NewFD->setParams(Context, Params.data(), Params.size());
2684
2685  // If name lookup finds a previous declaration that is not in the
2686  // same scope as the new declaration, this may still be an
2687  // acceptable redeclaration.
2688  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2689      !(NewFD->hasLinkage() &&
2690        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2691    PrevDecl = 0;
2692
2693  // Perform semantic checking on the function declaration.
2694  bool OverloadableAttrRequired = false; // FIXME: HACK!
2695  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2696                           /*FIXME:*/OverloadableAttrRequired);
2697
2698  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2699    // An out-of-line member function declaration must also be a
2700    // definition (C++ [dcl.meaning]p1).
2701    if (!IsFunctionDefinition && !isFriend) {
2702      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2703        << D.getCXXScopeSpec().getRange();
2704      NewFD->setInvalidDecl();
2705    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2706      // The user tried to provide an out-of-line definition for a
2707      // function that is a member of a class or namespace, but there
2708      // was no such member function declared (C++ [class.mfct]p2,
2709      // C++ [namespace.memdef]p2). For example:
2710      //
2711      // class X {
2712      //   void f() const;
2713      // };
2714      //
2715      // void X::f() { } // ill-formed
2716      //
2717      // Complain about this problem, and attempt to suggest close
2718      // matches (e.g., those that differ only in cv-qualifiers and
2719      // whether the parameter types are references).
2720      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2721        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2722      NewFD->setInvalidDecl();
2723
2724      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2725                                              true);
2726      assert(!Prev.isAmbiguous() &&
2727             "Cannot have an ambiguity in previous-declaration lookup");
2728      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2729           Func != FuncEnd; ++Func) {
2730        if (isa<FunctionDecl>(*Func) &&
2731            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2732          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2733      }
2734
2735      PrevDecl = 0;
2736    }
2737  }
2738
2739  // Handle attributes. We need to have merged decls when handling attributes
2740  // (for example to check for conflicts, etc).
2741  // FIXME: This needs to happen before we merge declarations. Then,
2742  // let attribute merging cope with attribute conflicts.
2743  ProcessDeclAttributes(S, NewFD, D);
2744
2745  // attributes declared post-definition are currently ignored
2746  if (Redeclaration && PrevDecl) {
2747    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2748    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2749      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2750      Diag(Def->getLocation(), diag::note_previous_definition);
2751    }
2752  }
2753
2754  AddKnownFunctionAttributes(NewFD);
2755
2756  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2757    // If a function name is overloadable in C, then every function
2758    // with that name must be marked "overloadable".
2759    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2760      << Redeclaration << NewFD;
2761    if (PrevDecl)
2762      Diag(PrevDecl->getLocation(),
2763           diag::note_attribute_overloadable_prev_overload);
2764    NewFD->addAttr(::new (Context) OverloadableAttr());
2765  }
2766
2767  // If this is a locally-scoped extern C function, update the
2768  // map of such names.
2769  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2770      && !NewFD->isInvalidDecl())
2771    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2772
2773  // Set this FunctionDecl's range up to the right paren.
2774  NewFD->setLocEnd(D.getSourceRange().getEnd());
2775
2776  if (FunctionTemplate && NewFD->isInvalidDecl())
2777    FunctionTemplate->setInvalidDecl();
2778
2779  if (FunctionTemplate)
2780    return FunctionTemplate;
2781
2782  return NewFD;
2783}
2784
2785/// \brief Perform semantic checking of a new function declaration.
2786///
2787/// Performs semantic analysis of the new function declaration
2788/// NewFD. This routine performs all semantic checking that does not
2789/// require the actual declarator involved in the declaration, and is
2790/// used both for the declaration of functions as they are parsed
2791/// (called via ActOnDeclarator) and for the declaration of functions
2792/// that have been instantiated via C++ template instantiation (called
2793/// via InstantiateDecl).
2794///
2795/// This sets NewFD->isInvalidDecl() to true if there was an error.
2796void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2797                                    bool &Redeclaration,
2798                                    bool &OverloadableAttrRequired) {
2799  // If NewFD is already known erroneous, don't do any of this checking.
2800  if (NewFD->isInvalidDecl())
2801    return;
2802
2803  if (NewFD->getResultType()->isVariablyModifiedType()) {
2804    // Functions returning a variably modified type violate C99 6.7.5.2p2
2805    // because all functions have linkage.
2806    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2807    return NewFD->setInvalidDecl();
2808  }
2809
2810  if (NewFD->isMain(Context)) CheckMain(NewFD);
2811
2812  // Semantic checking for this function declaration (in isolation).
2813  if (getLangOptions().CPlusPlus) {
2814    // C++-specific checks.
2815    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2816      CheckConstructor(Constructor);
2817    } else if (isa<CXXDestructorDecl>(NewFD)) {
2818      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2819      QualType ClassType = Context.getTypeDeclType(Record);
2820      if (!ClassType->isDependentType()) {
2821        DeclarationName Name
2822          = Context.DeclarationNames.getCXXDestructorName(
2823                                        Context.getCanonicalType(ClassType));
2824        if (NewFD->getDeclName() != Name) {
2825          Diag(NewFD->getLocation(), diag::err_destructor_name);
2826          return NewFD->setInvalidDecl();
2827        }
2828      }
2829      Record->setUserDeclaredDestructor(true);
2830      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2831      // user-defined destructor.
2832      Record->setPOD(false);
2833
2834      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2835      // declared destructor.
2836      // FIXME: C++0x: don't do this for "= default" destructors
2837      Record->setHasTrivialDestructor(false);
2838    } else if (CXXConversionDecl *Conversion
2839               = dyn_cast<CXXConversionDecl>(NewFD))
2840      ActOnConversionDeclarator(Conversion);
2841
2842    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2843    if (NewFD->isOverloadedOperator() &&
2844        CheckOverloadedOperatorDeclaration(NewFD))
2845      return NewFD->setInvalidDecl();
2846  }
2847
2848  // C99 6.7.4p6:
2849  //   [... ] For a function with external linkage, the following
2850  //   restrictions apply: [...] If all of the file scope declarations
2851  //   for a function in a translation unit include the inline
2852  //   function specifier without extern, then the definition in that
2853  //   translation unit is an inline definition. An inline definition
2854  //   does not provide an external definition for the function, and
2855  //   does not forbid an external definition in another translation
2856  //   unit.
2857  //
2858  // Here we determine whether this function, in isolation, would be a
2859  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2860  // previous declarations.
2861  if (NewFD->isInline() && getLangOptions().C99 &&
2862      NewFD->getStorageClass() == FunctionDecl::None &&
2863      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2864    NewFD->setC99InlineDefinition(true);
2865
2866  // Check for a previous declaration of this name.
2867  if (!PrevDecl && NewFD->isExternC(Context)) {
2868    // Since we did not find anything by this name and we're declaring
2869    // an extern "C" function, look for a non-visible extern "C"
2870    // declaration with the same name.
2871    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2872      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2873    if (Pos != LocallyScopedExternalDecls.end())
2874      PrevDecl = Pos->second;
2875  }
2876
2877  // Merge or overload the declaration with an existing declaration of
2878  // the same name, if appropriate.
2879  if (PrevDecl) {
2880    // Determine whether NewFD is an overload of PrevDecl or
2881    // a declaration that requires merging. If it's an overload,
2882    // there's no more work to do here; we'll just add the new
2883    // function to the scope.
2884    OverloadedFunctionDecl::function_iterator MatchedDecl;
2885
2886    if (!getLangOptions().CPlusPlus &&
2887        AllowOverloadingOfFunction(PrevDecl, Context)) {
2888      OverloadableAttrRequired = true;
2889
2890      // Functions marked "overloadable" must have a prototype (that
2891      // we can't get through declaration merging).
2892      if (!NewFD->getType()->getAsFunctionProtoType()) {
2893        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2894          << NewFD;
2895        Redeclaration = true;
2896
2897        // Turn this into a variadic function with no parameters.
2898        QualType R = Context.getFunctionType(
2899                       NewFD->getType()->getAsFunctionType()->getResultType(),
2900                       0, 0, true, 0);
2901        NewFD->setType(R);
2902        return NewFD->setInvalidDecl();
2903      }
2904    }
2905
2906    if (PrevDecl &&
2907        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2908         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
2909      Redeclaration = true;
2910      Decl *OldDecl = PrevDecl;
2911
2912      // If PrevDecl was an overloaded function, extract the
2913      // FunctionDecl that matched.
2914      if (isa<OverloadedFunctionDecl>(PrevDecl))
2915        OldDecl = *MatchedDecl;
2916
2917      // NewFD and OldDecl represent declarations that need to be
2918      // merged.
2919      if (MergeFunctionDecl(NewFD, OldDecl))
2920        return NewFD->setInvalidDecl();
2921
2922      if (FunctionTemplateDecl *OldTemplateDecl
2923            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2924        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2925      else {
2926        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2927          NewFD->setAccess(OldDecl->getAccess());
2928        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2929      }
2930    }
2931  }
2932
2933  // In C++, check default arguments now that we have merged decls. Unless
2934  // the lexical context is the class, because in this case this is done
2935  // during delayed parsing anyway.
2936  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2937    CheckCXXDefaultArguments(NewFD);
2938}
2939
2940void Sema::CheckMain(FunctionDecl* FD) {
2941  // C++ [basic.start.main]p3:  A program that declares main to be inline
2942  //   or static is ill-formed.
2943  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
2944  //   shall not appear in a declaration of main.
2945  // static main is not an error under C99, but we should warn about it.
2946  bool isInline = FD->isInline();
2947  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
2948  if (isInline || isStatic) {
2949    unsigned diagID = diag::warn_unusual_main_decl;
2950    if (isInline || getLangOptions().CPlusPlus)
2951      diagID = diag::err_unusual_main_decl;
2952
2953    int which = isStatic + (isInline << 1) - 1;
2954    Diag(FD->getLocation(), diagID) << which;
2955  }
2956
2957  QualType T = FD->getType();
2958  assert(T->isFunctionType() && "function decl is not of function type");
2959  const FunctionType* FT = T->getAsFunctionType();
2960
2961  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
2962    // TODO: add a replacement fixit to turn the return type into 'int'.
2963    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
2964    FD->setInvalidDecl(true);
2965  }
2966
2967  // Treat protoless main() as nullary.
2968  if (isa<FunctionNoProtoType>(FT)) return;
2969
2970  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
2971  unsigned nparams = FTP->getNumArgs();
2972  assert(FD->getNumParams() == nparams);
2973
2974  if (nparams > 3) {
2975    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
2976    FD->setInvalidDecl(true);
2977    nparams = 3;
2978  }
2979
2980  // FIXME: a lot of the following diagnostics would be improved
2981  // if we had some location information about types.
2982
2983  QualType CharPP =
2984    Context.getPointerType(Context.getPointerType(Context.CharTy));
2985  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
2986
2987  for (unsigned i = 0; i < nparams; ++i) {
2988    QualType AT = FTP->getArgType(i);
2989
2990    bool mismatch = true;
2991
2992    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
2993      mismatch = false;
2994    else if (Expected[i] == CharPP) {
2995      // As an extension, the following forms are okay:
2996      //   char const **
2997      //   char const * const *
2998      //   char * const *
2999
3000      QualifierSet qs;
3001      const PointerType* PT;
3002      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3003          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3004          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3005        qs.removeConst();
3006        mismatch = !qs.empty();
3007      }
3008    }
3009
3010    if (mismatch) {
3011      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3012      // TODO: suggest replacing given type with expected type
3013      FD->setInvalidDecl(true);
3014    }
3015  }
3016
3017  if (nparams == 1 && !FD->isInvalidDecl()) {
3018    Diag(FD->getLocation(), diag::warn_main_one_arg);
3019  }
3020}
3021
3022bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3023  // FIXME: Need strict checking.  In C89, we need to check for
3024  // any assignment, increment, decrement, function-calls, or
3025  // commas outside of a sizeof.  In C99, it's the same list,
3026  // except that the aforementioned are allowed in unevaluated
3027  // expressions.  Everything else falls under the
3028  // "may accept other forms of constant expressions" exception.
3029  // (We never end up here for C++, so the constant expression
3030  // rules there don't matter.)
3031  if (Init->isConstantInitializer(Context))
3032    return false;
3033  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3034    << Init->getSourceRange();
3035  return true;
3036}
3037
3038void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3039  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3040}
3041
3042/// AddInitializerToDecl - Adds the initializer Init to the
3043/// declaration dcl. If DirectInit is true, this is C++ direct
3044/// initialization rather than copy initialization.
3045void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3046  Decl *RealDecl = dcl.getAs<Decl>();
3047  // If there is no declaration, there was an error parsing it.  Just ignore
3048  // the initializer.
3049  if (RealDecl == 0)
3050    return;
3051
3052  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3053    // With declarators parsed the way they are, the parser cannot
3054    // distinguish between a normal initializer and a pure-specifier.
3055    // Thus this grotesque test.
3056    IntegerLiteral *IL;
3057    Expr *Init = static_cast<Expr *>(init.get());
3058    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3059        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3060      if (Method->isVirtualAsWritten()) {
3061        Method->setPure();
3062
3063        // A class is abstract if at least one function is pure virtual.
3064        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3065      } else if (!Method->isInvalidDecl()) {
3066        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3067          << Method->getDeclName() << Init->getSourceRange();
3068        Method->setInvalidDecl();
3069      }
3070    } else {
3071      Diag(Method->getLocation(), diag::err_member_function_initialization)
3072        << Method->getDeclName() << Init->getSourceRange();
3073      Method->setInvalidDecl();
3074    }
3075    return;
3076  }
3077
3078  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3079  if (!VDecl) {
3080    if (getLangOptions().CPlusPlus &&
3081        RealDecl->getLexicalDeclContext()->isRecord() &&
3082        isa<NamedDecl>(RealDecl))
3083      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3084        << cast<NamedDecl>(RealDecl)->getDeclName();
3085    else
3086      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3087    RealDecl->setInvalidDecl();
3088    return;
3089  }
3090
3091  if (!VDecl->getType()->isArrayType() &&
3092      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3093                          diag::err_typecheck_decl_incomplete_type)) {
3094    RealDecl->setInvalidDecl();
3095    return;
3096  }
3097
3098  const VarDecl *Def = 0;
3099  if (VDecl->getDefinition(Def)) {
3100    Diag(VDecl->getLocation(), diag::err_redefinition)
3101      << VDecl->getDeclName();
3102    Diag(Def->getLocation(), diag::note_previous_definition);
3103    VDecl->setInvalidDecl();
3104    return;
3105  }
3106
3107  // Take ownership of the expression, now that we're sure we have somewhere
3108  // to put it.
3109  Expr *Init = init.takeAs<Expr>();
3110  assert(Init && "missing initializer");
3111
3112  // Get the decls type and save a reference for later, since
3113  // CheckInitializerTypes may change it.
3114  QualType DclT = VDecl->getType(), SavT = DclT;
3115  if (VDecl->isBlockVarDecl()) {
3116    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3117      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3118      VDecl->setInvalidDecl();
3119    } else if (!VDecl->isInvalidDecl()) {
3120      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3121                                VDecl->getDeclName(), DirectInit))
3122        VDecl->setInvalidDecl();
3123
3124      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3125      // Don't check invalid declarations to avoid emitting useless diagnostics.
3126      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3127        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3128          CheckForConstantInitializer(Init, DclT);
3129      }
3130    }
3131  } else if (VDecl->isStaticDataMember() &&
3132             VDecl->getLexicalDeclContext()->isRecord()) {
3133    // This is an in-class initialization for a static data member, e.g.,
3134    //
3135    // struct S {
3136    //   static const int value = 17;
3137    // };
3138
3139    // Attach the initializer
3140    VDecl->setInit(Context, Init);
3141
3142    // C++ [class.mem]p4:
3143    //   A member-declarator can contain a constant-initializer only
3144    //   if it declares a static member (9.4) of const integral or
3145    //   const enumeration type, see 9.4.2.
3146    QualType T = VDecl->getType();
3147    if (!T->isDependentType() &&
3148        (!Context.getCanonicalType(T).isConstQualified() ||
3149         !T->isIntegralType())) {
3150      Diag(VDecl->getLocation(), diag::err_member_initialization)
3151        << VDecl->getDeclName() << Init->getSourceRange();
3152      VDecl->setInvalidDecl();
3153    } else {
3154      // C++ [class.static.data]p4:
3155      //   If a static data member is of const integral or const
3156      //   enumeration type, its declaration in the class definition
3157      //   can specify a constant-initializer which shall be an
3158      //   integral constant expression (5.19).
3159      if (!Init->isTypeDependent() &&
3160          !Init->getType()->isIntegralType()) {
3161        // We have a non-dependent, non-integral or enumeration type.
3162        Diag(Init->getSourceRange().getBegin(),
3163             diag::err_in_class_initializer_non_integral_type)
3164          << Init->getType() << Init->getSourceRange();
3165        VDecl->setInvalidDecl();
3166      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3167        // Check whether the expression is a constant expression.
3168        llvm::APSInt Value;
3169        SourceLocation Loc;
3170        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3171          Diag(Loc, diag::err_in_class_initializer_non_constant)
3172            << Init->getSourceRange();
3173          VDecl->setInvalidDecl();
3174        } else if (!VDecl->getType()->isDependentType())
3175          ImpCastExprToType(Init, VDecl->getType());
3176      }
3177    }
3178  } else if (VDecl->isFileVarDecl()) {
3179    if (VDecl->getStorageClass() == VarDecl::Extern)
3180      Diag(VDecl->getLocation(), diag::warn_extern_init);
3181    if (!VDecl->isInvalidDecl())
3182      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3183                                VDecl->getDeclName(), DirectInit))
3184        VDecl->setInvalidDecl();
3185
3186    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3187    // Don't check invalid declarations to avoid emitting useless diagnostics.
3188    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3189      // C99 6.7.8p4. All file scoped initializers need to be constant.
3190      CheckForConstantInitializer(Init, DclT);
3191    }
3192  }
3193  // If the type changed, it means we had an incomplete type that was
3194  // completed by the initializer. For example:
3195  //   int ary[] = { 1, 3, 5 };
3196  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3197  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3198    VDecl->setType(DclT);
3199    Init->setType(DclT);
3200  }
3201
3202  Init = MaybeCreateCXXExprWithTemporaries(Init,
3203                                           /*ShouldDestroyTemporaries=*/true);
3204  // Attach the initializer to the decl.
3205  VDecl->setInit(Context, Init);
3206
3207  // If the previous declaration of VDecl was a tentative definition,
3208  // remove it from the set of tentative definitions.
3209  if (VDecl->getPreviousDeclaration() &&
3210      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3211    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
3212      = TentativeDefinitions.find(VDecl->getDeclName());
3213    assert(Pos != TentativeDefinitions.end() &&
3214           "Unrecorded tentative definition?");
3215    TentativeDefinitions.erase(Pos);
3216  }
3217
3218  return;
3219}
3220
3221void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3222                                  bool TypeContainsUndeducedAuto) {
3223  Decl *RealDecl = dcl.getAs<Decl>();
3224
3225  // If there is no declaration, there was an error parsing it. Just ignore it.
3226  if (RealDecl == 0)
3227    return;
3228
3229  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3230    QualType Type = Var->getType();
3231
3232    // Record tentative definitions.
3233    if (Var->isTentativeDefinition(Context))
3234      TentativeDefinitions[Var->getDeclName()] = Var;
3235
3236    // C++ [dcl.init.ref]p3:
3237    //   The initializer can be omitted for a reference only in a
3238    //   parameter declaration (8.3.5), in the declaration of a
3239    //   function return type, in the declaration of a class member
3240    //   within its class declaration (9.2), and where the extern
3241    //   specifier is explicitly used.
3242    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3243      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3244        << Var->getDeclName()
3245        << SourceRange(Var->getLocation(), Var->getLocation());
3246      Var->setInvalidDecl();
3247      return;
3248    }
3249
3250    // C++0x [dcl.spec.auto]p3
3251    if (TypeContainsUndeducedAuto) {
3252      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3253        << Var->getDeclName() << Type;
3254      Var->setInvalidDecl();
3255      return;
3256    }
3257
3258    // C++ [dcl.init]p9:
3259    //
3260    //   If no initializer is specified for an object, and the object
3261    //   is of (possibly cv-qualified) non-POD class type (or array
3262    //   thereof), the object shall be default-initialized; if the
3263    //   object is of const-qualified type, the underlying class type
3264    //   shall have a user-declared default constructor.
3265    if (getLangOptions().CPlusPlus) {
3266      QualType InitType = Type;
3267      if (const ArrayType *Array = Context.getAsArrayType(Type))
3268        InitType = Array->getElementType();
3269      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
3270          InitType->isRecordType() && !InitType->isDependentType()) {
3271        CXXRecordDecl *RD =
3272          cast<CXXRecordDecl>(InitType->getAs<RecordType>()->getDecl());
3273        CXXConstructorDecl *Constructor = 0;
3274        if (!RequireCompleteType(Var->getLocation(), InitType,
3275                                    diag::err_invalid_incomplete_type_use))
3276          Constructor
3277            = PerformInitializationByConstructor(InitType, 0, 0,
3278                                                 Var->getLocation(),
3279                                               SourceRange(Var->getLocation(),
3280                                                           Var->getLocation()),
3281                                                 Var->getDeclName(),
3282                                                 IK_Default);
3283        if (!Constructor)
3284          Var->setInvalidDecl();
3285        else {
3286          if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) {
3287            if (InitializeVarWithConstructor(Var, Constructor, InitType,
3288                                             MultiExprArg(*this)))
3289              Var->setInvalidDecl();
3290          }
3291
3292          FinalizeVarWithDestructor(Var, InitType);
3293        }
3294      }
3295    }
3296
3297#if 0
3298    // FIXME: Temporarily disabled because we are not properly parsing
3299    // linkage specifications on declarations, e.g.,
3300    //
3301    //   extern "C" const CGPoint CGPointerZero;
3302    //
3303    // C++ [dcl.init]p9:
3304    //
3305    //     If no initializer is specified for an object, and the
3306    //     object is of (possibly cv-qualified) non-POD class type (or
3307    //     array thereof), the object shall be default-initialized; if
3308    //     the object is of const-qualified type, the underlying class
3309    //     type shall have a user-declared default
3310    //     constructor. Otherwise, if no initializer is specified for
3311    //     an object, the object and its subobjects, if any, have an
3312    //     indeterminate initial value; if the object or any of its
3313    //     subobjects are of const-qualified type, the program is
3314    //     ill-formed.
3315    //
3316    // This isn't technically an error in C, so we don't diagnose it.
3317    //
3318    // FIXME: Actually perform the POD/user-defined default
3319    // constructor check.
3320    if (getLangOptions().CPlusPlus &&
3321        Context.getCanonicalType(Type).isConstQualified() &&
3322        !Var->hasExternalStorage())
3323      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3324        << Var->getName()
3325        << SourceRange(Var->getLocation(), Var->getLocation());
3326#endif
3327  }
3328}
3329
3330Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3331                                                   DeclPtrTy *Group,
3332                                                   unsigned NumDecls) {
3333  llvm::SmallVector<Decl*, 8> Decls;
3334
3335  if (DS.isTypeSpecOwned())
3336    Decls.push_back((Decl*)DS.getTypeRep());
3337
3338  for (unsigned i = 0; i != NumDecls; ++i)
3339    if (Decl *D = Group[i].getAs<Decl>())
3340      Decls.push_back(D);
3341
3342  // Perform semantic analysis that depends on having fully processed both
3343  // the declarator and initializer.
3344  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3345    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3346    if (!IDecl)
3347      continue;
3348    QualType T = IDecl->getType();
3349
3350    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3351    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3352    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3353      if (!IDecl->isInvalidDecl() &&
3354          RequireCompleteType(IDecl->getLocation(), T,
3355                              diag::err_typecheck_decl_incomplete_type))
3356        IDecl->setInvalidDecl();
3357    }
3358    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3359    // object that has file scope without an initializer, and without a
3360    // storage-class specifier or with the storage-class specifier "static",
3361    // constitutes a tentative definition. Note: A tentative definition with
3362    // external linkage is valid (C99 6.2.2p5).
3363    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3364      if (const IncompleteArrayType *ArrayT
3365          = Context.getAsIncompleteArrayType(T)) {
3366        if (RequireCompleteType(IDecl->getLocation(),
3367                                ArrayT->getElementType(),
3368                                diag::err_illegal_decl_array_incomplete_type))
3369          IDecl->setInvalidDecl();
3370      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3371        // C99 6.9.2p3: If the declaration of an identifier for an object is
3372        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3373        // declared type shall not be an incomplete type.
3374        // NOTE: code such as the following
3375        //     static struct s;
3376        //     struct s { int a; };
3377        // is accepted by gcc. Hence here we issue a warning instead of
3378        // an error and we do not invalidate the static declaration.
3379        // NOTE: to avoid multiple warnings, only check the first declaration.
3380        if (IDecl->getPreviousDeclaration() == 0)
3381          RequireCompleteType(IDecl->getLocation(), T,
3382                              diag::ext_typecheck_decl_incomplete_type);
3383      }
3384    }
3385  }
3386  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3387                                                   Decls.data(), Decls.size()));
3388}
3389
3390
3391/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3392/// to introduce parameters into function prototype scope.
3393Sema::DeclPtrTy
3394Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3395  const DeclSpec &DS = D.getDeclSpec();
3396
3397  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3398  VarDecl::StorageClass StorageClass = VarDecl::None;
3399  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3400    StorageClass = VarDecl::Register;
3401  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3402    Diag(DS.getStorageClassSpecLoc(),
3403         diag::err_invalid_storage_class_in_func_decl);
3404    D.getMutableDeclSpec().ClearStorageClassSpecs();
3405  }
3406
3407  if (D.getDeclSpec().isThreadSpecified())
3408    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3409
3410  DiagnoseFunctionSpecifiers(D);
3411
3412  // Check that there are no default arguments inside the type of this
3413  // parameter (C++ only).
3414  if (getLangOptions().CPlusPlus)
3415    CheckExtraCXXDefaultArguments(D);
3416
3417  DeclaratorInfo *DInfo = 0;
3418  TagDecl *OwnedDecl = 0;
3419  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0,
3420                                               &OwnedDecl);
3421
3422  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3423    // C++ [dcl.fct]p6:
3424    //   Types shall not be defined in return or parameter types.
3425    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3426      << Context.getTypeDeclType(OwnedDecl);
3427  }
3428
3429  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3430  // Can this happen for params?  We already checked that they don't conflict
3431  // among each other.  Here they can only shadow globals, which is ok.
3432  IdentifierInfo *II = D.getIdentifier();
3433  if (II) {
3434    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3435      if (PrevDecl->isTemplateParameter()) {
3436        // Maybe we will complain about the shadowed template parameter.
3437        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3438        // Just pretend that we didn't see the previous declaration.
3439        PrevDecl = 0;
3440      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3441        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3442
3443        // Recover by removing the name
3444        II = 0;
3445        D.SetIdentifier(0, D.getIdentifierLoc());
3446      }
3447    }
3448  }
3449
3450  // Parameters can not be abstract class types.
3451  // For record types, this is done by the AbstractClassUsageDiagnoser once
3452  // the class has been completely parsed.
3453  if (!CurContext->isRecord() &&
3454      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3455                             diag::err_abstract_type_in_decl,
3456                             AbstractParamType))
3457    D.setInvalidType(true);
3458
3459  QualType T = adjustParameterType(parmDeclType);
3460
3461  ParmVarDecl *New;
3462  if (T == parmDeclType) // parameter type did not need adjustment
3463    New = ParmVarDecl::Create(Context, CurContext,
3464                              D.getIdentifierLoc(), II,
3465                              parmDeclType, DInfo, StorageClass,
3466                              0);
3467  else // keep track of both the adjusted and unadjusted types
3468    New = OriginalParmVarDecl::Create(Context, CurContext,
3469                                      D.getIdentifierLoc(), II, T, DInfo,
3470                                      parmDeclType, StorageClass, 0);
3471
3472  if (D.isInvalidType())
3473    New->setInvalidDecl();
3474
3475  // Parameter declarators cannot be interface types. All ObjC objects are
3476  // passed by reference.
3477  if (T->isObjCInterfaceType()) {
3478    Diag(D.getIdentifierLoc(),
3479         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3480    New->setInvalidDecl();
3481  }
3482
3483  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3484  if (D.getCXXScopeSpec().isSet()) {
3485    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3486      << D.getCXXScopeSpec().getRange();
3487    New->setInvalidDecl();
3488  }
3489
3490  // Add the parameter declaration into this scope.
3491  S->AddDecl(DeclPtrTy::make(New));
3492  if (II)
3493    IdResolver.AddDecl(New);
3494
3495  ProcessDeclAttributes(S, New, D);
3496
3497  if (New->hasAttr<BlocksAttr>()) {
3498    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3499  }
3500  return DeclPtrTy::make(New);
3501}
3502
3503void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3504                                           SourceLocation LocAfterDecls) {
3505  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3506         "Not a function declarator!");
3507  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3508
3509  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3510  // for a K&R function.
3511  if (!FTI.hasPrototype) {
3512    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3513      --i;
3514      if (FTI.ArgInfo[i].Param == 0) {
3515        std::string Code = "  int ";
3516        Code += FTI.ArgInfo[i].Ident->getName();
3517        Code += ";\n";
3518        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3519          << FTI.ArgInfo[i].Ident
3520          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3521
3522        // Implicitly declare the argument as type 'int' for lack of a better
3523        // type.
3524        DeclSpec DS;
3525        const char* PrevSpec; // unused
3526        unsigned DiagID; // unused
3527        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3528                           PrevSpec, DiagID);
3529        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3530        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3531        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3532      }
3533    }
3534  }
3535}
3536
3537Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3538                                              Declarator &D) {
3539  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3540  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3541         "Not a function declarator!");
3542  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3543
3544  if (FTI.hasPrototype) {
3545    // FIXME: Diagnose arguments without names in C.
3546  }
3547
3548  Scope *ParentScope = FnBodyScope->getParent();
3549
3550  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3551                                  MultiTemplateParamsArg(*this),
3552                                  /*IsFunctionDefinition=*/true);
3553  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3554}
3555
3556Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3557  if (!D)
3558    return D;
3559  FunctionDecl *FD = 0;
3560
3561  if (FunctionTemplateDecl *FunTmpl
3562        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3563    FD = FunTmpl->getTemplatedDecl();
3564  else
3565    FD = cast<FunctionDecl>(D.getAs<Decl>());
3566
3567  CurFunctionNeedsScopeChecking = false;
3568
3569  // See if this is a redefinition.
3570  const FunctionDecl *Definition;
3571  if (FD->getBody(Definition)) {
3572    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3573    Diag(Definition->getLocation(), diag::note_previous_definition);
3574  }
3575
3576  // Builtin functions cannot be defined.
3577  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3578    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3579      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3580      FD->setInvalidDecl();
3581    }
3582  }
3583
3584  // The return type of a function definition must be complete
3585  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3586  QualType ResultType = FD->getResultType();
3587  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3588      !FD->isInvalidDecl() &&
3589      RequireCompleteType(FD->getLocation(), ResultType,
3590                          diag::err_func_def_incomplete_result))
3591    FD->setInvalidDecl();
3592
3593  // GNU warning -Wmissing-prototypes:
3594  //   Warn if a global function is defined without a previous
3595  //   prototype declaration. This warning is issued even if the
3596  //   definition itself provides a prototype. The aim is to detect
3597  //   global functions that fail to be declared in header files.
3598  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3599      !FD->isMain(Context)) {
3600    bool MissingPrototype = true;
3601    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3602         Prev; Prev = Prev->getPreviousDeclaration()) {
3603      // Ignore any declarations that occur in function or method
3604      // scope, because they aren't visible from the header.
3605      if (Prev->getDeclContext()->isFunctionOrMethod())
3606        continue;
3607
3608      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3609      break;
3610    }
3611
3612    if (MissingPrototype)
3613      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3614  }
3615
3616  if (FnBodyScope)
3617    PushDeclContext(FnBodyScope, FD);
3618
3619  // Check the validity of our function parameters
3620  CheckParmsForFunctionDef(FD);
3621
3622  // Introduce our parameters into the function scope
3623  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3624    ParmVarDecl *Param = FD->getParamDecl(p);
3625    Param->setOwningFunction(FD);
3626
3627    // If this has an identifier, add it to the scope stack.
3628    if (Param->getIdentifier() && FnBodyScope)
3629      PushOnScopeChains(Param, FnBodyScope);
3630  }
3631
3632  // Checking attributes of current function definition
3633  // dllimport attribute.
3634  if (FD->getAttr<DLLImportAttr>() &&
3635      (!FD->getAttr<DLLExportAttr>())) {
3636    // dllimport attribute cannot be applied to definition.
3637    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3638      Diag(FD->getLocation(),
3639           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3640        << "dllimport";
3641      FD->setInvalidDecl();
3642      return DeclPtrTy::make(FD);
3643    } else {
3644      // If a symbol previously declared dllimport is later defined, the
3645      // attribute is ignored in subsequent references, and a warning is
3646      // emitted.
3647      Diag(FD->getLocation(),
3648           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3649        << FD->getNameAsCString() << "dllimport";
3650    }
3651  }
3652  return DeclPtrTy::make(FD);
3653}
3654
3655Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3656  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3657}
3658
3659Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3660                                              bool IsInstantiation) {
3661  Decl *dcl = D.getAs<Decl>();
3662  Stmt *Body = BodyArg.takeAs<Stmt>();
3663
3664  FunctionDecl *FD = 0;
3665  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3666  if (FunTmpl)
3667    FD = FunTmpl->getTemplatedDecl();
3668  else
3669    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3670
3671  if (FD) {
3672    FD->setBody(Body);
3673    if (FD->isMain(Context))
3674      // C and C++ allow for main to automagically return 0.
3675      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3676      FD->setHasImplicitReturnZero(true);
3677    else
3678      CheckFallThroughForFunctionDef(FD, Body);
3679
3680    if (!FD->isInvalidDecl())
3681      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3682
3683    // C++ [basic.def.odr]p2:
3684    //   [...] A virtual member function is used if it is not pure. [...]
3685    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3686      if (Method->isVirtual() && !Method->isPure())
3687        MarkDeclarationReferenced(Method->getLocation(), Method);
3688
3689    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3690  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3691    assert(MD == getCurMethodDecl() && "Method parsing confused");
3692    MD->setBody(Body);
3693    CheckFallThroughForFunctionDef(MD, Body);
3694    MD->setEndLoc(Body->getLocEnd());
3695
3696    if (!MD->isInvalidDecl())
3697      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3698  } else {
3699    Body->Destroy(Context);
3700    return DeclPtrTy();
3701  }
3702  if (!IsInstantiation)
3703    PopDeclContext();
3704
3705  // Verify and clean out per-function state.
3706
3707  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3708
3709  // Check goto/label use.
3710  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3711       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3712    LabelStmt *L = I->second;
3713
3714    // Verify that we have no forward references left.  If so, there was a goto
3715    // or address of a label taken, but no definition of it.  Label fwd
3716    // definitions are indicated with a null substmt.
3717    if (L->getSubStmt() != 0)
3718      continue;
3719
3720    // Emit error.
3721    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3722
3723    // At this point, we have gotos that use the bogus label.  Stitch it into
3724    // the function body so that they aren't leaked and that the AST is well
3725    // formed.
3726    if (Body == 0) {
3727      // The whole function wasn't parsed correctly, just delete this.
3728      L->Destroy(Context);
3729      continue;
3730    }
3731
3732    // Otherwise, the body is valid: we want to stitch the label decl into the
3733    // function somewhere so that it is properly owned and so that the goto
3734    // has a valid target.  Do this by creating a new compound stmt with the
3735    // label in it.
3736
3737    // Give the label a sub-statement.
3738    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3739
3740    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3741                               cast<CXXTryStmt>(Body)->getTryBlock() :
3742                               cast<CompoundStmt>(Body);
3743    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3744    Elements.push_back(L);
3745    Compound->setStmts(Context, &Elements[0], Elements.size());
3746  }
3747  FunctionLabelMap.clear();
3748
3749  if (!Body) return D;
3750
3751  // Verify that that gotos and switch cases don't jump into scopes illegally.
3752  if (CurFunctionNeedsScopeChecking)
3753    DiagnoseInvalidJumps(Body);
3754
3755  // C++ constructors that have function-try-blocks can't have return
3756  // statements in the handlers of that block. (C++ [except.handle]p14)
3757  // Verify this.
3758  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
3759    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3760
3761  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3762    computeBaseOrMembersToDestroy(Destructor);
3763  return D;
3764}
3765
3766/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3767/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3768NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3769                                          IdentifierInfo &II, Scope *S) {
3770  // Before we produce a declaration for an implicitly defined
3771  // function, see whether there was a locally-scoped declaration of
3772  // this name as a function or variable. If so, use that
3773  // (non-visible) declaration, and complain about it.
3774  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3775    = LocallyScopedExternalDecls.find(&II);
3776  if (Pos != LocallyScopedExternalDecls.end()) {
3777    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3778    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3779    return Pos->second;
3780  }
3781
3782  // Extension in C99.  Legal in C90, but warn about it.
3783  if (getLangOptions().C99)
3784    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3785  else
3786    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3787
3788  // FIXME: handle stuff like:
3789  // void foo() { extern float X(); }
3790  // void bar() { X(); }  <-- implicit decl for X in another scope.
3791
3792  // Set a Declarator for the implicit definition: int foo();
3793  const char *Dummy;
3794  DeclSpec DS;
3795  unsigned DiagID;
3796  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
3797  Error = Error; // Silence warning.
3798  assert(!Error && "Error setting up implicit decl!");
3799  Declarator D(DS, Declarator::BlockContext);
3800  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3801                                             0, 0, false, SourceLocation(),
3802                                             false, 0,0,0, Loc, Loc, D),
3803                SourceLocation());
3804  D.SetIdentifier(&II, Loc);
3805
3806  // Insert this function into translation-unit scope.
3807
3808  DeclContext *PrevDC = CurContext;
3809  CurContext = Context.getTranslationUnitDecl();
3810
3811  FunctionDecl *FD =
3812 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3813  FD->setImplicit();
3814
3815  CurContext = PrevDC;
3816
3817  AddKnownFunctionAttributes(FD);
3818
3819  return FD;
3820}
3821
3822/// \brief Adds any function attributes that we know a priori based on
3823/// the declaration of this function.
3824///
3825/// These attributes can apply both to implicitly-declared builtins
3826/// (like __builtin___printf_chk) or to library-declared functions
3827/// like NSLog or printf.
3828void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3829  if (FD->isInvalidDecl())
3830    return;
3831
3832  // If this is a built-in function, map its builtin attributes to
3833  // actual attributes.
3834  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3835    // Handle printf-formatting attributes.
3836    unsigned FormatIdx;
3837    bool HasVAListArg;
3838    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3839      if (!FD->getAttr<FormatAttr>())
3840        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3841                                             HasVAListArg ? 0 : FormatIdx + 2));
3842    }
3843
3844    // Mark const if we don't care about errno and that is the only
3845    // thing preventing the function from being const. This allows
3846    // IRgen to use LLVM intrinsics for such functions.
3847    if (!getLangOptions().MathErrno &&
3848        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3849      if (!FD->getAttr<ConstAttr>())
3850        FD->addAttr(::new (Context) ConstAttr());
3851    }
3852
3853    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
3854      FD->addAttr(::new (Context) NoReturnAttr());
3855  }
3856
3857  IdentifierInfo *Name = FD->getIdentifier();
3858  if (!Name)
3859    return;
3860  if ((!getLangOptions().CPlusPlus &&
3861       FD->getDeclContext()->isTranslationUnit()) ||
3862      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3863       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3864       LinkageSpecDecl::lang_c)) {
3865    // Okay: this could be a libc/libm/Objective-C function we know
3866    // about.
3867  } else
3868    return;
3869
3870  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3871    // FIXME: NSLog and NSLogv should be target specific
3872    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3873      // FIXME: We known better than our headers.
3874      const_cast<FormatAttr *>(Format)->setType("printf");
3875    } else
3876      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3877                                             Name->isStr("NSLogv") ? 0 : 2));
3878  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3879    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
3880    // target-specific builtins, perhaps?
3881    if (!FD->getAttr<FormatAttr>())
3882      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3883                                             Name->isStr("vasprintf") ? 0 : 3));
3884  }
3885}
3886
3887TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3888  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3889  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3890
3891  // Scope manipulation handled by caller.
3892  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3893                                           D.getIdentifierLoc(),
3894                                           D.getIdentifier(),
3895                                           T);
3896
3897  if (const TagType *TT = T->getAs<TagType>()) {
3898    TagDecl *TD = TT->getDecl();
3899
3900    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3901    // keep track of the TypedefDecl.
3902    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3903      TD->setTypedefForAnonDecl(NewTD);
3904  }
3905
3906  if (D.isInvalidType())
3907    NewTD->setInvalidDecl();
3908  return NewTD;
3909}
3910
3911
3912/// \brief Determine whether a tag with a given kind is acceptable
3913/// as a redeclaration of the given tag declaration.
3914///
3915/// \returns true if the new tag kind is acceptable, false otherwise.
3916bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3917                                        TagDecl::TagKind NewTag,
3918                                        SourceLocation NewTagLoc,
3919                                        const IdentifierInfo &Name) {
3920  // C++ [dcl.type.elab]p3:
3921  //   The class-key or enum keyword present in the
3922  //   elaborated-type-specifier shall agree in kind with the
3923  //   declaration to which the name in theelaborated-type-specifier
3924  //   refers. This rule also applies to the form of
3925  //   elaborated-type-specifier that declares a class-name or
3926  //   friend class since it can be construed as referring to the
3927  //   definition of the class. Thus, in any
3928  //   elaborated-type-specifier, the enum keyword shall be used to
3929  //   refer to an enumeration (7.2), the union class-keyshall be
3930  //   used to refer to a union (clause 9), and either the class or
3931  //   struct class-key shall be used to refer to a class (clause 9)
3932  //   declared using the class or struct class-key.
3933  TagDecl::TagKind OldTag = Previous->getTagKind();
3934  if (OldTag == NewTag)
3935    return true;
3936
3937  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3938      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3939    // Warn about the struct/class tag mismatch.
3940    bool isTemplate = false;
3941    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3942      isTemplate = Record->getDescribedClassTemplate();
3943
3944    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3945      << (NewTag == TagDecl::TK_class)
3946      << isTemplate << &Name
3947      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3948                              OldTag == TagDecl::TK_class? "class" : "struct");
3949    Diag(Previous->getLocation(), diag::note_previous_use);
3950    return true;
3951  }
3952  return false;
3953}
3954
3955/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3956/// former case, Name will be non-null.  In the later case, Name will be null.
3957/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
3958/// reference/declaration/definition of a tag.
3959Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3960                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3961                               IdentifierInfo *Name, SourceLocation NameLoc,
3962                               AttributeList *Attr, AccessSpecifier AS,
3963                               MultiTemplateParamsArg TemplateParameterLists,
3964                               bool &OwnedDecl) {
3965  // If this is not a definition, it must have a name.
3966  assert((Name != 0 || TUK == TUK_Definition) &&
3967         "Nameless record must be a definition!");
3968
3969  OwnedDecl = false;
3970  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
3971
3972  if (TUK != TUK_Reference) {
3973    if (TemplateParameterList *TemplateParams
3974          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
3975                        (TemplateParameterList**)TemplateParameterLists.get(),
3976                                              TemplateParameterLists.size())) {
3977      if (TemplateParams->size() > 0) {
3978        // This is a declaration or definition of a class template (which may
3979        // be a member of another template).
3980        OwnedDecl = false;
3981        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
3982                                               SS, Name, NameLoc, Attr,
3983                                               TemplateParams,
3984                                               AS);
3985        TemplateParameterLists.release();
3986        return Result.get();
3987      } else {
3988        // FIXME: diagnose the extraneous 'template<>', once we recover
3989        // slightly better in ParseTemplate.cpp from bogus template
3990        // parameters.
3991      }
3992    }
3993  }
3994
3995  DeclContext *SearchDC = CurContext;
3996  DeclContext *DC = CurContext;
3997  NamedDecl *PrevDecl = 0;
3998
3999  bool Invalid = false;
4000
4001  if (Name && SS.isNotEmpty()) {
4002    // We have a nested-name tag ('struct foo::bar').
4003
4004    // Check for invalid 'foo::'.
4005    if (SS.isInvalid()) {
4006      Name = 0;
4007      goto CreateNewDecl;
4008    }
4009
4010    if (RequireCompleteDeclContext(SS))
4011      return DeclPtrTy::make((Decl *)0);
4012
4013    DC = computeDeclContext(SS, true);
4014    SearchDC = DC;
4015    // Look-up name inside 'foo::'.
4016    PrevDecl
4017      = dyn_cast_or_null<TagDecl>(
4018               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
4019
4020    // A tag 'foo::bar' must already exist.
4021    if (PrevDecl == 0) {
4022      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4023      Name = 0;
4024      Invalid = true;
4025      goto CreateNewDecl;
4026    }
4027  } else if (Name) {
4028    // If this is a named struct, check to see if there was a previous forward
4029    // declaration or definition.
4030    // FIXME: We're looking into outer scopes here, even when we
4031    // shouldn't be. Doing so can result in ambiguities that we
4032    // shouldn't be diagnosing.
4033    LookupResult R = LookupName(S, Name, LookupTagName,
4034                                /*RedeclarationOnly=*/(TUK != TUK_Reference));
4035    if (R.isAmbiguous()) {
4036      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4037      // FIXME: This is not best way to recover from case like:
4038      //
4039      // struct S s;
4040      //
4041      // causes needless "incomplete type" error later.
4042      Name = 0;
4043      PrevDecl = 0;
4044      Invalid = true;
4045    } else
4046      PrevDecl = R;
4047
4048    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4049      // FIXME: This makes sure that we ignore the contexts associated
4050      // with C structs, unions, and enums when looking for a matching
4051      // tag declaration or definition. See the similar lookup tweak
4052      // in Sema::LookupName; is there a better way to deal with this?
4053      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4054        SearchDC = SearchDC->getParent();
4055    }
4056  }
4057
4058  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4059    // Maybe we will complain about the shadowed template parameter.
4060    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4061    // Just pretend that we didn't see the previous declaration.
4062    PrevDecl = 0;
4063  }
4064
4065  if (PrevDecl) {
4066    // Check whether the previous declaration is usable.
4067    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4068
4069    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4070      // If this is a use of a previous tag, or if the tag is already declared
4071      // in the same scope (so that the definition/declaration completes or
4072      // rementions the tag), reuse the decl.
4073      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4074          isDeclInScope(PrevDecl, SearchDC, S)) {
4075        // Make sure that this wasn't declared as an enum and now used as a
4076        // struct or something similar.
4077        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4078          bool SafeToContinue
4079            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4080               Kind != TagDecl::TK_enum);
4081          if (SafeToContinue)
4082            Diag(KWLoc, diag::err_use_with_wrong_tag)
4083              << Name
4084              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4085                                                  PrevTagDecl->getKindName());
4086          else
4087            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4088          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4089
4090          if (SafeToContinue)
4091            Kind = PrevTagDecl->getTagKind();
4092          else {
4093            // Recover by making this an anonymous redefinition.
4094            Name = 0;
4095            PrevDecl = 0;
4096            Invalid = true;
4097          }
4098        }
4099
4100        if (!Invalid) {
4101          // If this is a use, just return the declaration we found.
4102
4103          // FIXME: In the future, return a variant or some other clue
4104          // for the consumer of this Decl to know it doesn't own it.
4105          // For our current ASTs this shouldn't be a problem, but will
4106          // need to be changed with DeclGroups.
4107          if (TUK == TUK_Reference)
4108            return DeclPtrTy::make(PrevDecl);
4109
4110          // If this is a friend, make sure we create the new
4111          // declaration in the appropriate semantic context.
4112          if (TUK == TUK_Friend)
4113            SearchDC = PrevDecl->getDeclContext();
4114
4115          // Diagnose attempts to redefine a tag.
4116          if (TUK == TUK_Definition) {
4117            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4118              Diag(NameLoc, diag::err_redefinition) << Name;
4119              Diag(Def->getLocation(), diag::note_previous_definition);
4120              // If this is a redefinition, recover by making this
4121              // struct be anonymous, which will make any later
4122              // references get the previous definition.
4123              Name = 0;
4124              PrevDecl = 0;
4125              Invalid = true;
4126            } else {
4127              // If the type is currently being defined, complain
4128              // about a nested redefinition.
4129              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4130              if (Tag->isBeingDefined()) {
4131                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4132                Diag(PrevTagDecl->getLocation(),
4133                     diag::note_previous_definition);
4134                Name = 0;
4135                PrevDecl = 0;
4136                Invalid = true;
4137              }
4138            }
4139
4140            // Okay, this is definition of a previously declared or referenced
4141            // tag PrevDecl. We're going to create a new Decl for it.
4142          }
4143        }
4144        // If we get here we have (another) forward declaration or we
4145        // have a definition.  Just create a new decl.
4146
4147      } else {
4148        // If we get here, this is a definition of a new tag type in a nested
4149        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4150        // new decl/type.  We set PrevDecl to NULL so that the entities
4151        // have distinct types.
4152        PrevDecl = 0;
4153      }
4154      // If we get here, we're going to create a new Decl. If PrevDecl
4155      // is non-NULL, it's a definition of the tag declared by
4156      // PrevDecl. If it's NULL, we have a new definition.
4157    } else {
4158      // PrevDecl is a namespace, template, or anything else
4159      // that lives in the IDNS_Tag identifier namespace.
4160      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4161        // The tag name clashes with a namespace name, issue an error and
4162        // recover by making this tag be anonymous.
4163        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4164        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4165        Name = 0;
4166        PrevDecl = 0;
4167        Invalid = true;
4168      } else {
4169        // The existing declaration isn't relevant to us; we're in a
4170        // new scope, so clear out the previous declaration.
4171        PrevDecl = 0;
4172      }
4173    }
4174  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4175             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4176    // C++ [basic.scope.pdecl]p5:
4177    //   -- for an elaborated-type-specifier of the form
4178    //
4179    //          class-key identifier
4180    //
4181    //      if the elaborated-type-specifier is used in the
4182    //      decl-specifier-seq or parameter-declaration-clause of a
4183    //      function defined in namespace scope, the identifier is
4184    //      declared as a class-name in the namespace that contains
4185    //      the declaration; otherwise, except as a friend
4186    //      declaration, the identifier is declared in the smallest
4187    //      non-class, non-function-prototype scope that contains the
4188    //      declaration.
4189    //
4190    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4191    // C structs and unions.
4192    //
4193    // GNU C also supports this behavior as part of its incomplete
4194    // enum types extension, while GNU C++ does not.
4195    //
4196    // Find the context where we'll be declaring the tag.
4197    // FIXME: We would like to maintain the current DeclContext as the
4198    // lexical context,
4199    while (SearchDC->isRecord())
4200      SearchDC = SearchDC->getParent();
4201
4202    // Find the scope where we'll be declaring the tag.
4203    while (S->isClassScope() ||
4204           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4205           ((S->getFlags() & Scope::DeclScope) == 0) ||
4206           (S->getEntity() &&
4207            ((DeclContext *)S->getEntity())->isTransparentContext()))
4208      S = S->getParent();
4209
4210  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4211    // C++ [namespace.memdef]p3:
4212    //   If a friend declaration in a non-local class first declares a
4213    //   class or function, the friend class or function is a member of
4214    //   the innermost enclosing namespace.
4215    while (!SearchDC->isFileContext())
4216      SearchDC = SearchDC->getParent();
4217
4218    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4219    while (S->getEntity() != SearchDC)
4220      S = S->getParent();
4221  }
4222
4223CreateNewDecl:
4224
4225  // If there is an identifier, use the location of the identifier as the
4226  // location of the decl, otherwise use the location of the struct/union
4227  // keyword.
4228  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4229
4230  // Otherwise, create a new declaration. If there is a previous
4231  // declaration of the same entity, the two will be linked via
4232  // PrevDecl.
4233  TagDecl *New;
4234
4235  if (Kind == TagDecl::TK_enum) {
4236    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4237    // enum X { A, B, C } D;    D should chain to X.
4238    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4239                           cast_or_null<EnumDecl>(PrevDecl));
4240    // If this is an undefined enum, warn.
4241    if (TUK != TUK_Definition && !Invalid)  {
4242      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4243                                              : diag::ext_forward_ref_enum;
4244      Diag(Loc, DK);
4245    }
4246  } else {
4247    // struct/union/class
4248
4249    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4250    // struct X { int A; } D;    D should chain to X.
4251    if (getLangOptions().CPlusPlus)
4252      // FIXME: Look for a way to use RecordDecl for simple structs.
4253      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4254                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4255    else
4256      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4257                               cast_or_null<RecordDecl>(PrevDecl));
4258  }
4259
4260  if (Kind != TagDecl::TK_enum) {
4261    // Handle #pragma pack: if the #pragma pack stack has non-default
4262    // alignment, make up a packed attribute for this decl. These
4263    // attributes are checked when the ASTContext lays out the
4264    // structure.
4265    //
4266    // It is important for implementing the correct semantics that this
4267    // happen here (in act on tag decl). The #pragma pack stack is
4268    // maintained as a result of parser callbacks which can occur at
4269    // many points during the parsing of a struct declaration (because
4270    // the #pragma tokens are effectively skipped over during the
4271    // parsing of the struct).
4272    if (unsigned Alignment = getPragmaPackAlignment())
4273      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4274  }
4275
4276  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4277    // C++ [dcl.typedef]p3:
4278    //   [...] Similarly, in a given scope, a class or enumeration
4279    //   shall not be declared with the same name as a typedef-name
4280    //   that is declared in that scope and refers to a type other
4281    //   than the class or enumeration itself.
4282    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
4283    TypedefDecl *PrevTypedef = 0;
4284    if (Lookup.getKind() == LookupResult::Found)
4285      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
4286
4287    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
4288        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4289          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4290      Diag(Loc, diag::err_tag_definition_of_typedef)
4291        << Context.getTypeDeclType(New)
4292        << PrevTypedef->getUnderlyingType();
4293      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4294      Invalid = true;
4295    }
4296  }
4297
4298  if (Invalid)
4299    New->setInvalidDecl();
4300
4301  if (Attr)
4302    ProcessDeclAttributeList(S, New, Attr);
4303
4304  // If we're declaring or defining a tag in function prototype scope
4305  // in C, note that this type can only be used within the function.
4306  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4307    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4308
4309  // Set the lexical context. If the tag has a C++ scope specifier, the
4310  // lexical context will be different from the semantic context.
4311  New->setLexicalDeclContext(CurContext);
4312
4313  // Mark this as a friend decl if applicable.
4314  if (TUK == TUK_Friend)
4315    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4316
4317  // Set the access specifier.
4318  if (!Invalid && TUK != TUK_Friend)
4319    SetMemberAccessSpecifier(New, PrevDecl, AS);
4320
4321  if (TUK == TUK_Definition)
4322    New->startDefinition();
4323
4324  // If this has an identifier, add it to the scope stack.
4325  if (TUK == TUK_Friend) {
4326    // We might be replacing an existing declaration in the lookup tables;
4327    // if so, borrow its access specifier.
4328    if (PrevDecl)
4329      New->setAccess(PrevDecl->getAccess());
4330
4331    // Friend tag decls are visible in fairly strange ways.
4332    if (!CurContext->isDependentContext()) {
4333      DeclContext *DC = New->getDeclContext()->getLookupContext();
4334      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4335      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4336        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4337    }
4338  } else if (Name) {
4339    S = getNonFieldDeclScope(S);
4340    PushOnScopeChains(New, S);
4341  } else {
4342    CurContext->addDecl(New);
4343  }
4344
4345  // If this is the C FILE type, notify the AST context.
4346  if (IdentifierInfo *II = New->getIdentifier())
4347    if (!New->isInvalidDecl() &&
4348        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4349        II->isStr("FILE"))
4350      Context.setFILEDecl(New);
4351
4352  OwnedDecl = true;
4353  return DeclPtrTy::make(New);
4354}
4355
4356void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4357  AdjustDeclIfTemplate(TagD);
4358  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4359
4360  // Enter the tag context.
4361  PushDeclContext(S, Tag);
4362
4363  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4364    FieldCollector->StartClass();
4365
4366    if (Record->getIdentifier()) {
4367      // C++ [class]p2:
4368      //   [...] The class-name is also inserted into the scope of the
4369      //   class itself; this is known as the injected-class-name. For
4370      //   purposes of access checking, the injected-class-name is treated
4371      //   as if it were a public member name.
4372      CXXRecordDecl *InjectedClassName
4373        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4374                                CurContext, Record->getLocation(),
4375                                Record->getIdentifier(),
4376                                Record->getTagKeywordLoc(),
4377                                Record);
4378      InjectedClassName->setImplicit();
4379      InjectedClassName->setAccess(AS_public);
4380      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4381        InjectedClassName->setDescribedClassTemplate(Template);
4382      PushOnScopeChains(InjectedClassName, S);
4383      assert(InjectedClassName->isInjectedClassName() &&
4384             "Broken injected-class-name");
4385    }
4386  }
4387}
4388
4389void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4390                                    SourceLocation RBraceLoc) {
4391  AdjustDeclIfTemplate(TagD);
4392  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4393  Tag->setRBraceLoc(RBraceLoc);
4394
4395  if (isa<CXXRecordDecl>(Tag))
4396    FieldCollector->FinishClass();
4397
4398  // Exit this scope of this tag's definition.
4399  PopDeclContext();
4400
4401  // Notify the consumer that we've defined a tag.
4402  Consumer.HandleTagDeclDefinition(Tag);
4403}
4404
4405// Note that FieldName may be null for anonymous bitfields.
4406bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4407                          QualType FieldTy, const Expr *BitWidth,
4408                          bool *ZeroWidth) {
4409  // Default to true; that shouldn't confuse checks for emptiness
4410  if (ZeroWidth)
4411    *ZeroWidth = true;
4412
4413  // C99 6.7.2.1p4 - verify the field type.
4414  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4415  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4416    // Handle incomplete types with specific error.
4417    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4418      return true;
4419    if (FieldName)
4420      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4421        << FieldName << FieldTy << BitWidth->getSourceRange();
4422    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4423      << FieldTy << BitWidth->getSourceRange();
4424  }
4425
4426  // If the bit-width is type- or value-dependent, don't try to check
4427  // it now.
4428  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4429    return false;
4430
4431  llvm::APSInt Value;
4432  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4433    return true;
4434
4435  if (Value != 0 && ZeroWidth)
4436    *ZeroWidth = false;
4437
4438  // Zero-width bitfield is ok for anonymous field.
4439  if (Value == 0 && FieldName)
4440    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4441
4442  if (Value.isSigned() && Value.isNegative()) {
4443    if (FieldName)
4444      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4445               << FieldName << Value.toString(10);
4446    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4447      << Value.toString(10);
4448  }
4449
4450  if (!FieldTy->isDependentType()) {
4451    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4452    if (Value.getZExtValue() > TypeSize) {
4453      if (FieldName)
4454        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4455          << FieldName << (unsigned)TypeSize;
4456      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4457        << (unsigned)TypeSize;
4458    }
4459  }
4460
4461  return false;
4462}
4463
4464/// ActOnField - Each field of a struct/union/class is passed into this in order
4465/// to create a FieldDecl object for it.
4466Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4467                                 SourceLocation DeclStart,
4468                                 Declarator &D, ExprTy *BitfieldWidth) {
4469  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4470                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4471                               AS_public);
4472  return DeclPtrTy::make(Res);
4473}
4474
4475/// HandleField - Analyze a field of a C struct or a C++ data member.
4476///
4477FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4478                             SourceLocation DeclStart,
4479                             Declarator &D, Expr *BitWidth,
4480                             AccessSpecifier AS) {
4481  IdentifierInfo *II = D.getIdentifier();
4482  SourceLocation Loc = DeclStart;
4483  if (II) Loc = D.getIdentifierLoc();
4484
4485  DeclaratorInfo *DInfo = 0;
4486  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4487  if (getLangOptions().CPlusPlus)
4488    CheckExtraCXXDefaultArguments(D);
4489
4490  DiagnoseFunctionSpecifiers(D);
4491
4492  if (D.getDeclSpec().isThreadSpecified())
4493    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4494
4495  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4496
4497  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4498    // Maybe we will complain about the shadowed template parameter.
4499    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4500    // Just pretend that we didn't see the previous declaration.
4501    PrevDecl = 0;
4502  }
4503
4504  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4505    PrevDecl = 0;
4506
4507  bool Mutable
4508    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4509  SourceLocation TSSL = D.getSourceRange().getBegin();
4510  FieldDecl *NewFD
4511    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4512                     AS, PrevDecl, &D);
4513  if (NewFD->isInvalidDecl() && PrevDecl) {
4514    // Don't introduce NewFD into scope; there's already something
4515    // with the same name in the same scope.
4516  } else if (II) {
4517    PushOnScopeChains(NewFD, S);
4518  } else
4519    Record->addDecl(NewFD);
4520
4521  return NewFD;
4522}
4523
4524/// \brief Build a new FieldDecl and check its well-formedness.
4525///
4526/// This routine builds a new FieldDecl given the fields name, type,
4527/// record, etc. \p PrevDecl should refer to any previous declaration
4528/// with the same name and in the same scope as the field to be
4529/// created.
4530///
4531/// \returns a new FieldDecl.
4532///
4533/// \todo The Declarator argument is a hack. It will be removed once
4534FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4535                                DeclaratorInfo *DInfo,
4536                                RecordDecl *Record, SourceLocation Loc,
4537                                bool Mutable, Expr *BitWidth,
4538                                SourceLocation TSSL,
4539                                AccessSpecifier AS, NamedDecl *PrevDecl,
4540                                Declarator *D) {
4541  IdentifierInfo *II = Name.getAsIdentifierInfo();
4542  bool InvalidDecl = false;
4543  if (D) InvalidDecl = D->isInvalidType();
4544
4545  // If we receive a broken type, recover by assuming 'int' and
4546  // marking this declaration as invalid.
4547  if (T.isNull()) {
4548    InvalidDecl = true;
4549    T = Context.IntTy;
4550  }
4551
4552  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4553  // than a variably modified type.
4554  if (T->isVariablyModifiedType()) {
4555    bool SizeIsNegative;
4556    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4557                                                           SizeIsNegative);
4558    if (!FixedTy.isNull()) {
4559      Diag(Loc, diag::warn_illegal_constant_array_size);
4560      T = FixedTy;
4561    } else {
4562      if (SizeIsNegative)
4563        Diag(Loc, diag::err_typecheck_negative_array_size);
4564      else
4565        Diag(Loc, diag::err_typecheck_field_variable_size);
4566      InvalidDecl = true;
4567    }
4568  }
4569
4570  // Fields can not have abstract class types
4571  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4572                             AbstractFieldType))
4573    InvalidDecl = true;
4574
4575  bool ZeroWidth = false;
4576  // If this is declared as a bit-field, check the bit-field.
4577  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4578    InvalidDecl = true;
4579    DeleteExpr(BitWidth);
4580    BitWidth = 0;
4581    ZeroWidth = false;
4582  }
4583
4584  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4585                                       BitWidth, Mutable);
4586  if (InvalidDecl)
4587    NewFD->setInvalidDecl();
4588
4589  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4590    Diag(Loc, diag::err_duplicate_member) << II;
4591    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4592    NewFD->setInvalidDecl();
4593  }
4594
4595  if (getLangOptions().CPlusPlus) {
4596    QualType EltTy = Context.getBaseElementType(T);
4597
4598    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4599
4600    if (!T->isPODType())
4601      CXXRecord->setPOD(false);
4602    if (!ZeroWidth)
4603      CXXRecord->setEmpty(false);
4604
4605    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4606      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4607
4608      if (!RDecl->hasTrivialConstructor())
4609        CXXRecord->setHasTrivialConstructor(false);
4610      if (!RDecl->hasTrivialCopyConstructor())
4611        CXXRecord->setHasTrivialCopyConstructor(false);
4612      if (!RDecl->hasTrivialCopyAssignment())
4613        CXXRecord->setHasTrivialCopyAssignment(false);
4614      if (!RDecl->hasTrivialDestructor())
4615        CXXRecord->setHasTrivialDestructor(false);
4616
4617      // C++ 9.5p1: An object of a class with a non-trivial
4618      // constructor, a non-trivial copy constructor, a non-trivial
4619      // destructor, or a non-trivial copy assignment operator
4620      // cannot be a member of a union, nor can an array of such
4621      // objects.
4622      // TODO: C++0x alters this restriction significantly.
4623      if (Record->isUnion()) {
4624        // We check for copy constructors before constructors
4625        // because otherwise we'll never get complaints about
4626        // copy constructors.
4627
4628        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4629
4630        CXXSpecialMember member;
4631        if (!RDecl->hasTrivialCopyConstructor())
4632          member = CXXCopyConstructor;
4633        else if (!RDecl->hasTrivialConstructor())
4634          member = CXXDefaultConstructor;
4635        else if (!RDecl->hasTrivialCopyAssignment())
4636          member = CXXCopyAssignment;
4637        else if (!RDecl->hasTrivialDestructor())
4638          member = CXXDestructor;
4639        else
4640          member = invalid;
4641
4642        if (member != invalid) {
4643          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4644          DiagnoseNontrivial(RT, member);
4645          NewFD->setInvalidDecl();
4646        }
4647      }
4648    }
4649  }
4650
4651  // FIXME: We need to pass in the attributes given an AST
4652  // representation, not a parser representation.
4653  if (D)
4654    // FIXME: What to pass instead of TUScope?
4655    ProcessDeclAttributes(TUScope, NewFD, *D);
4656
4657  if (T.isObjCGCWeak())
4658    Diag(Loc, diag::warn_attribute_weak_on_field);
4659
4660  NewFD->setAccess(AS);
4661
4662  // C++ [dcl.init.aggr]p1:
4663  //   An aggregate is an array or a class (clause 9) with [...] no
4664  //   private or protected non-static data members (clause 11).
4665  // A POD must be an aggregate.
4666  if (getLangOptions().CPlusPlus &&
4667      (AS == AS_private || AS == AS_protected)) {
4668    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4669    CXXRecord->setAggregate(false);
4670    CXXRecord->setPOD(false);
4671  }
4672
4673  return NewFD;
4674}
4675
4676/// DiagnoseNontrivial - Given that a class has a non-trivial
4677/// special member, figure out why.
4678void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4679  QualType QT(T, 0U);
4680  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4681
4682  // Check whether the member was user-declared.
4683  switch (member) {
4684  case CXXDefaultConstructor:
4685    if (RD->hasUserDeclaredConstructor()) {
4686      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4687      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4688        if (!ci->isImplicitlyDefined(Context)) {
4689          SourceLocation CtorLoc = ci->getLocation();
4690          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4691          return;
4692        }
4693
4694      assert(0 && "found no user-declared constructors");
4695      return;
4696    }
4697    break;
4698
4699  case CXXCopyConstructor:
4700    if (RD->hasUserDeclaredCopyConstructor()) {
4701      SourceLocation CtorLoc =
4702        RD->getCopyConstructor(Context, 0)->getLocation();
4703      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4704      return;
4705    }
4706    break;
4707
4708  case CXXCopyAssignment:
4709    if (RD->hasUserDeclaredCopyAssignment()) {
4710      // FIXME: this should use the location of the copy
4711      // assignment, not the type.
4712      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4713      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4714      return;
4715    }
4716    break;
4717
4718  case CXXDestructor:
4719    if (RD->hasUserDeclaredDestructor()) {
4720      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4721      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4722      return;
4723    }
4724    break;
4725  }
4726
4727  typedef CXXRecordDecl::base_class_iterator base_iter;
4728
4729  // Virtual bases and members inhibit trivial copying/construction,
4730  // but not trivial destruction.
4731  if (member != CXXDestructor) {
4732    // Check for virtual bases.  vbases includes indirect virtual bases,
4733    // so we just iterate through the direct bases.
4734    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4735      if (bi->isVirtual()) {
4736        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4737        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4738        return;
4739      }
4740
4741    // Check for virtual methods.
4742    typedef CXXRecordDecl::method_iterator meth_iter;
4743    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4744         ++mi) {
4745      if (mi->isVirtual()) {
4746        SourceLocation MLoc = mi->getSourceRange().getBegin();
4747        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4748        return;
4749      }
4750    }
4751  }
4752
4753  bool (CXXRecordDecl::*hasTrivial)() const;
4754  switch (member) {
4755  case CXXDefaultConstructor:
4756    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4757  case CXXCopyConstructor:
4758    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4759  case CXXCopyAssignment:
4760    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4761  case CXXDestructor:
4762    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4763  default:
4764    assert(0 && "unexpected special member"); return;
4765  }
4766
4767  // Check for nontrivial bases (and recurse).
4768  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4769    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
4770    assert(BaseRT);
4771    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4772    if (!(BaseRecTy->*hasTrivial)()) {
4773      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4774      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4775      DiagnoseNontrivial(BaseRT, member);
4776      return;
4777    }
4778  }
4779
4780  // Check for nontrivial members (and recurse).
4781  typedef RecordDecl::field_iterator field_iter;
4782  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4783       ++fi) {
4784    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4785    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
4786      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4787
4788      if (!(EltRD->*hasTrivial)()) {
4789        SourceLocation FLoc = (*fi)->getLocation();
4790        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4791        DiagnoseNontrivial(EltRT, member);
4792        return;
4793      }
4794    }
4795  }
4796
4797  assert(0 && "found no explanation for non-trivial member");
4798}
4799
4800/// TranslateIvarVisibility - Translate visibility from a token ID to an
4801///  AST enum value.
4802static ObjCIvarDecl::AccessControl
4803TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4804  switch (ivarVisibility) {
4805  default: assert(0 && "Unknown visitibility kind");
4806  case tok::objc_private: return ObjCIvarDecl::Private;
4807  case tok::objc_public: return ObjCIvarDecl::Public;
4808  case tok::objc_protected: return ObjCIvarDecl::Protected;
4809  case tok::objc_package: return ObjCIvarDecl::Package;
4810  }
4811}
4812
4813/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4814/// in order to create an IvarDecl object for it.
4815Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4816                                SourceLocation DeclStart,
4817                                DeclPtrTy IntfDecl,
4818                                Declarator &D, ExprTy *BitfieldWidth,
4819                                tok::ObjCKeywordKind Visibility) {
4820
4821  IdentifierInfo *II = D.getIdentifier();
4822  Expr *BitWidth = (Expr*)BitfieldWidth;
4823  SourceLocation Loc = DeclStart;
4824  if (II) Loc = D.getIdentifierLoc();
4825
4826  // FIXME: Unnamed fields can be handled in various different ways, for
4827  // example, unnamed unions inject all members into the struct namespace!
4828
4829  DeclaratorInfo *DInfo = 0;
4830  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4831
4832  if (BitWidth) {
4833    // 6.7.2.1p3, 6.7.2.1p4
4834    if (VerifyBitField(Loc, II, T, BitWidth)) {
4835      D.setInvalidType();
4836      DeleteExpr(BitWidth);
4837      BitWidth = 0;
4838    }
4839  } else {
4840    // Not a bitfield.
4841
4842    // validate II.
4843
4844  }
4845
4846  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4847  // than a variably modified type.
4848  if (T->isVariablyModifiedType()) {
4849    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4850    D.setInvalidType();
4851  }
4852
4853  // Get the visibility (access control) for this ivar.
4854  ObjCIvarDecl::AccessControl ac =
4855    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4856                                        : ObjCIvarDecl::None;
4857  // Must set ivar's DeclContext to its enclosing interface.
4858  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4859  DeclContext *EnclosingContext;
4860  if (ObjCImplementationDecl *IMPDecl =
4861      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4862    // Case of ivar declared in an implementation. Context is that of its class.
4863    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4864    assert(IDecl && "No class- ActOnIvar");
4865    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4866  } else
4867    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4868  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4869
4870  // Construct the decl.
4871  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4872                                             EnclosingContext, Loc, II, T,
4873                                             DInfo, ac, (Expr *)BitfieldWidth);
4874
4875  if (II) {
4876    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4877    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4878        && !isa<TagDecl>(PrevDecl)) {
4879      Diag(Loc, diag::err_duplicate_member) << II;
4880      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4881      NewID->setInvalidDecl();
4882    }
4883  }
4884
4885  // Process attributes attached to the ivar.
4886  ProcessDeclAttributes(S, NewID, D);
4887
4888  if (D.isInvalidType())
4889    NewID->setInvalidDecl();
4890
4891  if (II) {
4892    // FIXME: When interfaces are DeclContexts, we'll need to add
4893    // these to the interface.
4894    S->AddDecl(DeclPtrTy::make(NewID));
4895    IdResolver.AddDecl(NewID);
4896  }
4897
4898  return DeclPtrTy::make(NewID);
4899}
4900
4901void Sema::ActOnFields(Scope* S,
4902                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4903                       DeclPtrTy *Fields, unsigned NumFields,
4904                       SourceLocation LBrac, SourceLocation RBrac,
4905                       AttributeList *Attr) {
4906  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4907  assert(EnclosingDecl && "missing record or interface decl");
4908
4909  // If the decl this is being inserted into is invalid, then it may be a
4910  // redeclaration or some other bogus case.  Don't try to add fields to it.
4911  if (EnclosingDecl->isInvalidDecl()) {
4912    // FIXME: Deallocate fields?
4913    return;
4914  }
4915
4916
4917  // Verify that all the fields are okay.
4918  unsigned NumNamedMembers = 0;
4919  llvm::SmallVector<FieldDecl*, 32> RecFields;
4920
4921  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4922  for (unsigned i = 0; i != NumFields; ++i) {
4923    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4924
4925    // Get the type for the field.
4926    Type *FDTy = FD->getType().getTypePtr();
4927
4928    if (!FD->isAnonymousStructOrUnion()) {
4929      // Remember all fields written by the user.
4930      RecFields.push_back(FD);
4931    }
4932
4933    // If the field is already invalid for some reason, don't emit more
4934    // diagnostics about it.
4935    if (FD->isInvalidDecl())
4936      continue;
4937
4938    // C99 6.7.2.1p2:
4939    //   A structure or union shall not contain a member with
4940    //   incomplete or function type (hence, a structure shall not
4941    //   contain an instance of itself, but may contain a pointer to
4942    //   an instance of itself), except that the last member of a
4943    //   structure with more than one named member may have incomplete
4944    //   array type; such a structure (and any union containing,
4945    //   possibly recursively, a member that is such a structure)
4946    //   shall not be a member of a structure or an element of an
4947    //   array.
4948    if (FDTy->isFunctionType()) {
4949      // Field declared as a function.
4950      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4951        << FD->getDeclName();
4952      FD->setInvalidDecl();
4953      EnclosingDecl->setInvalidDecl();
4954      continue;
4955    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4956               Record && Record->isStruct()) {
4957      // Flexible array member.
4958      if (NumNamedMembers < 1) {
4959        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4960          << FD->getDeclName();
4961        FD->setInvalidDecl();
4962        EnclosingDecl->setInvalidDecl();
4963        continue;
4964      }
4965      // Okay, we have a legal flexible array member at the end of the struct.
4966      if (Record)
4967        Record->setHasFlexibleArrayMember(true);
4968    } else if (!FDTy->isDependentType() &&
4969               RequireCompleteType(FD->getLocation(), FD->getType(),
4970                                   diag::err_field_incomplete)) {
4971      // Incomplete type
4972      FD->setInvalidDecl();
4973      EnclosingDecl->setInvalidDecl();
4974      continue;
4975    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
4976      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4977        // If this is a member of a union, then entire union becomes "flexible".
4978        if (Record && Record->isUnion()) {
4979          Record->setHasFlexibleArrayMember(true);
4980        } else {
4981          // If this is a struct/class and this is not the last element, reject
4982          // it.  Note that GCC supports variable sized arrays in the middle of
4983          // structures.
4984          if (i != NumFields-1)
4985            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4986              << FD->getDeclName() << FD->getType();
4987          else {
4988            // We support flexible arrays at the end of structs in
4989            // other structs as an extension.
4990            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4991              << FD->getDeclName();
4992            if (Record)
4993              Record->setHasFlexibleArrayMember(true);
4994          }
4995        }
4996      }
4997      if (Record && FDTTy->getDecl()->hasObjectMember())
4998        Record->setHasObjectMember(true);
4999    } else if (FDTy->isObjCInterfaceType()) {
5000      /// A field cannot be an Objective-c object
5001      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5002      FD->setInvalidDecl();
5003      EnclosingDecl->setInvalidDecl();
5004      continue;
5005    } else if (getLangOptions().ObjC1 &&
5006               getLangOptions().getGCMode() != LangOptions::NonGC &&
5007               Record &&
5008               (FD->getType()->isObjCObjectPointerType() ||
5009                FD->getType().isObjCGCStrong()))
5010      Record->setHasObjectMember(true);
5011    // Keep track of the number of named members.
5012    if (FD->getIdentifier())
5013      ++NumNamedMembers;
5014  }
5015
5016  // Okay, we successfully defined 'Record'.
5017  if (Record) {
5018    Record->completeDefinition(Context);
5019  } else {
5020    ObjCIvarDecl **ClsFields =
5021      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5022    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5023      ID->setIVarList(ClsFields, RecFields.size(), Context);
5024      ID->setLocEnd(RBrac);
5025      // Add ivar's to class's DeclContext.
5026      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5027        ClsFields[i]->setLexicalDeclContext(ID);
5028        ID->addDecl(ClsFields[i]);
5029      }
5030      // Must enforce the rule that ivars in the base classes may not be
5031      // duplicates.
5032      if (ID->getSuperClass()) {
5033        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5034             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5035          ObjCIvarDecl* Ivar = (*IVI);
5036
5037          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5038            ObjCIvarDecl* prevIvar =
5039              ID->getSuperClass()->lookupInstanceVariable(II);
5040            if (prevIvar) {
5041              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5042              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5043            }
5044          }
5045        }
5046      }
5047    } else if (ObjCImplementationDecl *IMPDecl =
5048                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5049      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5050      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5051        // Ivar declared in @implementation never belongs to the implementation.
5052        // Only it is in implementation's lexical context.
5053        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5054      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5055    }
5056  }
5057
5058  if (Attr)
5059    ProcessDeclAttributeList(S, Record, Attr);
5060}
5061
5062EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5063                                          EnumConstantDecl *LastEnumConst,
5064                                          SourceLocation IdLoc,
5065                                          IdentifierInfo *Id,
5066                                          ExprArg val) {
5067  Expr *Val = (Expr *)val.get();
5068
5069  llvm::APSInt EnumVal(32);
5070  QualType EltTy;
5071  if (Val && !Val->isTypeDependent()) {
5072    // Make sure to promote the operand type to int.
5073    UsualUnaryConversions(Val);
5074    if (Val != val.get()) {
5075      val.release();
5076      val = Val;
5077    }
5078
5079    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5080    SourceLocation ExpLoc;
5081    if (!Val->isValueDependent() &&
5082        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5083      Val = 0;
5084    } else {
5085      EltTy = Val->getType();
5086    }
5087  }
5088
5089  if (!Val) {
5090    if (LastEnumConst) {
5091      // Assign the last value + 1.
5092      EnumVal = LastEnumConst->getInitVal();
5093      ++EnumVal;
5094
5095      // Check for overflow on increment.
5096      if (EnumVal < LastEnumConst->getInitVal())
5097        Diag(IdLoc, diag::warn_enum_value_overflow);
5098
5099      EltTy = LastEnumConst->getType();
5100    } else {
5101      // First value, set to zero.
5102      EltTy = Context.IntTy;
5103      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5104    }
5105  }
5106
5107  val.release();
5108  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5109                                  Val, EnumVal);
5110}
5111
5112
5113Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5114                                        DeclPtrTy lastEnumConst,
5115                                        SourceLocation IdLoc,
5116                                        IdentifierInfo *Id,
5117                                        SourceLocation EqualLoc, ExprTy *val) {
5118  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5119  EnumConstantDecl *LastEnumConst =
5120    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5121  Expr *Val = static_cast<Expr*>(val);
5122
5123  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5124  // we find one that is.
5125  S = getNonFieldDeclScope(S);
5126
5127  // Verify that there isn't already something declared with this name in this
5128  // scope.
5129  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
5130  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5131    // Maybe we will complain about the shadowed template parameter.
5132    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5133    // Just pretend that we didn't see the previous declaration.
5134    PrevDecl = 0;
5135  }
5136
5137  if (PrevDecl) {
5138    // When in C++, we may get a TagDecl with the same name; in this case the
5139    // enum constant will 'hide' the tag.
5140    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5141           "Received TagDecl when not in C++!");
5142    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5143      if (isa<EnumConstantDecl>(PrevDecl))
5144        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5145      else
5146        Diag(IdLoc, diag::err_redefinition) << Id;
5147      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5148      if (Val) Val->Destroy(Context);
5149      return DeclPtrTy();
5150    }
5151  }
5152
5153  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5154                                            IdLoc, Id, Owned(Val));
5155
5156  // Register this decl in the current scope stack.
5157  if (New)
5158    PushOnScopeChains(New, S);
5159
5160  return DeclPtrTy::make(New);
5161}
5162
5163void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5164                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5165                         DeclPtrTy *Elements, unsigned NumElements,
5166                         Scope *S, AttributeList *Attr) {
5167  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5168  QualType EnumType = Context.getTypeDeclType(Enum);
5169
5170  if (Attr)
5171    ProcessDeclAttributeList(S, Enum, Attr);
5172
5173  // TODO: If the result value doesn't fit in an int, it must be a long or long
5174  // long value.  ISO C does not support this, but GCC does as an extension,
5175  // emit a warning.
5176  unsigned IntWidth = Context.Target.getIntWidth();
5177  unsigned CharWidth = Context.Target.getCharWidth();
5178  unsigned ShortWidth = Context.Target.getShortWidth();
5179
5180  // Verify that all the values are okay, compute the size of the values, and
5181  // reverse the list.
5182  unsigned NumNegativeBits = 0;
5183  unsigned NumPositiveBits = 0;
5184
5185  // Keep track of whether all elements have type int.
5186  bool AllElementsInt = true;
5187
5188  for (unsigned i = 0; i != NumElements; ++i) {
5189    EnumConstantDecl *ECD =
5190      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5191    if (!ECD) continue;  // Already issued a diagnostic.
5192
5193    // If the enum value doesn't fit in an int, emit an extension warning.
5194    const llvm::APSInt &InitVal = ECD->getInitVal();
5195    assert(InitVal.getBitWidth() >= IntWidth &&
5196           "Should have promoted value to int");
5197    if (InitVal.getBitWidth() > IntWidth) {
5198      llvm::APSInt V(InitVal);
5199      V.trunc(IntWidth);
5200      V.extend(InitVal.getBitWidth());
5201      if (V != InitVal)
5202        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5203          << InitVal.toString(10);
5204    }
5205
5206    // Keep track of the size of positive and negative values.
5207    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5208      NumPositiveBits = std::max(NumPositiveBits,
5209                                 (unsigned)InitVal.getActiveBits());
5210    else
5211      NumNegativeBits = std::max(NumNegativeBits,
5212                                 (unsigned)InitVal.getMinSignedBits());
5213
5214    // Keep track of whether every enum element has type int (very commmon).
5215    if (AllElementsInt)
5216      AllElementsInt = ECD->getType() == Context.IntTy;
5217  }
5218
5219  // Figure out the type that should be used for this enum.
5220  // FIXME: Support -fshort-enums.
5221  QualType BestType;
5222  unsigned BestWidth;
5223
5224  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5225
5226  if (NumNegativeBits) {
5227    // If there is a negative value, figure out the smallest integer type (of
5228    // int/long/longlong) that fits.
5229    // If it's packed, check also if it fits a char or a short.
5230    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5231        BestType = Context.SignedCharTy;
5232        BestWidth = CharWidth;
5233    } else if (Packed && NumNegativeBits <= ShortWidth &&
5234               NumPositiveBits < ShortWidth) {
5235        BestType = Context.ShortTy;
5236        BestWidth = ShortWidth;
5237    }
5238    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5239      BestType = Context.IntTy;
5240      BestWidth = IntWidth;
5241    } else {
5242      BestWidth = Context.Target.getLongWidth();
5243
5244      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5245        BestType = Context.LongTy;
5246      else {
5247        BestWidth = Context.Target.getLongLongWidth();
5248
5249        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5250          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5251        BestType = Context.LongLongTy;
5252      }
5253    }
5254  } else {
5255    // If there is no negative value, figure out which of uint, ulong, ulonglong
5256    // fits.
5257    // If it's packed, check also if it fits a char or a short.
5258    if (Packed && NumPositiveBits <= CharWidth) {
5259        BestType = Context.UnsignedCharTy;
5260        BestWidth = CharWidth;
5261    } else if (Packed && NumPositiveBits <= ShortWidth) {
5262        BestType = Context.UnsignedShortTy;
5263        BestWidth = ShortWidth;
5264    }
5265    else if (NumPositiveBits <= IntWidth) {
5266      BestType = Context.UnsignedIntTy;
5267      BestWidth = IntWidth;
5268    } else if (NumPositiveBits <=
5269               (BestWidth = Context.Target.getLongWidth())) {
5270      BestType = Context.UnsignedLongTy;
5271    } else {
5272      BestWidth = Context.Target.getLongLongWidth();
5273      assert(NumPositiveBits <= BestWidth &&
5274             "How could an initializer get larger than ULL?");
5275      BestType = Context.UnsignedLongLongTy;
5276    }
5277  }
5278
5279  // Loop over all of the enumerator constants, changing their types to match
5280  // the type of the enum if needed.
5281  for (unsigned i = 0; i != NumElements; ++i) {
5282    EnumConstantDecl *ECD =
5283      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5284    if (!ECD) continue;  // Already issued a diagnostic.
5285
5286    // Standard C says the enumerators have int type, but we allow, as an
5287    // extension, the enumerators to be larger than int size.  If each
5288    // enumerator value fits in an int, type it as an int, otherwise type it the
5289    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5290    // that X has type 'int', not 'unsigned'.
5291    if (ECD->getType() == Context.IntTy) {
5292      // Make sure the init value is signed.
5293      llvm::APSInt IV = ECD->getInitVal();
5294      IV.setIsSigned(true);
5295      ECD->setInitVal(IV);
5296
5297      if (getLangOptions().CPlusPlus)
5298        // C++ [dcl.enum]p4: Following the closing brace of an
5299        // enum-specifier, each enumerator has the type of its
5300        // enumeration.
5301        ECD->setType(EnumType);
5302      continue;  // Already int type.
5303    }
5304
5305    // Determine whether the value fits into an int.
5306    llvm::APSInt InitVal = ECD->getInitVal();
5307    bool FitsInInt;
5308    if (InitVal.isUnsigned() || !InitVal.isNegative())
5309      FitsInInt = InitVal.getActiveBits() < IntWidth;
5310    else
5311      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5312
5313    // If it fits into an integer type, force it.  Otherwise force it to match
5314    // the enum decl type.
5315    QualType NewTy;
5316    unsigned NewWidth;
5317    bool NewSign;
5318    if (FitsInInt) {
5319      NewTy = Context.IntTy;
5320      NewWidth = IntWidth;
5321      NewSign = true;
5322    } else if (ECD->getType() == BestType) {
5323      // Already the right type!
5324      if (getLangOptions().CPlusPlus)
5325        // C++ [dcl.enum]p4: Following the closing brace of an
5326        // enum-specifier, each enumerator has the type of its
5327        // enumeration.
5328        ECD->setType(EnumType);
5329      continue;
5330    } else {
5331      NewTy = BestType;
5332      NewWidth = BestWidth;
5333      NewSign = BestType->isSignedIntegerType();
5334    }
5335
5336    // Adjust the APSInt value.
5337    InitVal.extOrTrunc(NewWidth);
5338    InitVal.setIsSigned(NewSign);
5339    ECD->setInitVal(InitVal);
5340
5341    // Adjust the Expr initializer and type.
5342    if (ECD->getInitExpr())
5343      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5344                                                      CastExpr::CK_Unknown,
5345                                                      ECD->getInitExpr(),
5346                                                      /*isLvalue=*/false));
5347    if (getLangOptions().CPlusPlus)
5348      // C++ [dcl.enum]p4: Following the closing brace of an
5349      // enum-specifier, each enumerator has the type of its
5350      // enumeration.
5351      ECD->setType(EnumType);
5352    else
5353      ECD->setType(NewTy);
5354  }
5355
5356  Enum->completeDefinition(Context, BestType);
5357}
5358
5359Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5360                                            ExprArg expr) {
5361  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5362
5363  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5364                                                   Loc, AsmString);
5365  CurContext->addDecl(New);
5366  return DeclPtrTy::make(New);
5367}
5368
5369void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5370                             SourceLocation PragmaLoc,
5371                             SourceLocation NameLoc) {
5372  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5373
5374  if (PrevDecl) {
5375    PrevDecl->addAttr(::new (Context) WeakAttr());
5376  } else {
5377    (void)WeakUndeclaredIdentifiers.insert(
5378      std::pair<IdentifierInfo*,WeakInfo>
5379        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5380  }
5381}
5382
5383void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5384                                IdentifierInfo* AliasName,
5385                                SourceLocation PragmaLoc,
5386                                SourceLocation NameLoc,
5387                                SourceLocation AliasNameLoc) {
5388  Decl *PrevDecl = LookupName(TUScope, AliasName, LookupOrdinaryName);
5389  WeakInfo W = WeakInfo(Name, NameLoc);
5390
5391  if (PrevDecl) {
5392    if (!PrevDecl->hasAttr<AliasAttr>())
5393      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5394        DeclApplyPragmaWeak(TUScope, ND, W);
5395  } else {
5396    (void)WeakUndeclaredIdentifiers.insert(
5397      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5398  }
5399}
5400