SemaDecl.cpp revision f59a56e180bf54528d7d1d5afa68fcc13300965a
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Basic/SourceManager.h"
26// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Lex/HeaderSearch.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/STLExtras.h"
31#include <algorithm>
32#include <functional>
33using namespace clang;
34
35/// getDeclName - Return a pretty name for the specified decl if possible, or
36/// an empty string if not.  This is used for pretty crash reporting.
37std::string Sema::getDeclName(DeclPtrTy d) {
38  Decl *D = d.getAs<Decl>();
39  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
40    return DN->getQualifiedNameAsString();
41  return "";
42}
43
44Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
45  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
46}
47
48/// \brief If the identifier refers to a type name within this scope,
49/// return the declaration of that type.
50///
51/// This routine performs ordinary name lookup of the identifier II
52/// within the given scope, with optional C++ scope specifier SS, to
53/// determine whether the name refers to a type. If so, returns an
54/// opaque pointer (actually a QualType) corresponding to that
55/// type. Otherwise, returns NULL.
56///
57/// If name lookup results in an ambiguity, this routine will complain
58/// and then return NULL.
59Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
60                                Scope *S, const CXXScopeSpec *SS) {
61  // C++ [temp.res]p3:
62  //   A qualified-id that refers to a type and in which the
63  //   nested-name-specifier depends on a template-parameter (14.6.2)
64  //   shall be prefixed by the keyword typename to indicate that the
65  //   qualified-id denotes a type, forming an
66  //   elaborated-type-specifier (7.1.5.3).
67  //
68  // We therefore do not perform any name lookup if the result would
69  // refer to a member of an unknown specialization.
70  if (SS && isUnknownSpecialization(*SS))
71    return 0;
72
73  LookupResult Result
74    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
75
76  NamedDecl *IIDecl = 0;
77  switch (Result.getKind()) {
78  case LookupResult::NotFound:
79  case LookupResult::FoundOverloaded:
80    return 0;
81
82  case LookupResult::AmbiguousBaseSubobjectTypes:
83  case LookupResult::AmbiguousBaseSubobjects:
84  case LookupResult::AmbiguousReference: {
85    // Look to see if we have a type anywhere in the list of results.
86    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
87         Res != ResEnd; ++Res) {
88      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
89        if (!IIDecl ||
90            (*Res)->getLocation().getRawEncoding() <
91              IIDecl->getLocation().getRawEncoding())
92          IIDecl = *Res;
93      }
94    }
95
96    if (!IIDecl) {
97      // None of the entities we found is a type, so there is no way
98      // to even assume that the result is a type. In this case, don't
99      // complain about the ambiguity. The parser will either try to
100      // perform this lookup again (e.g., as an object name), which
101      // will produce the ambiguity, or will complain that it expected
102      // a type name.
103      Result.Destroy();
104      return 0;
105    }
106
107    // We found a type within the ambiguous lookup; diagnose the
108    // ambiguity and then return that type. This might be the right
109    // answer, or it might not be, but it suppresses any attempt to
110    // perform the name lookup again.
111    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
112    break;
113  }
114
115  case LookupResult::Found:
116    IIDecl = Result.getAsDecl();
117    break;
118  }
119
120  if (IIDecl) {
121    QualType T;
122
123    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
124      // Check whether we can use this type
125      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
126
127      if (getLangOptions().CPlusPlus) {
128        // C++ [temp.local]p2:
129        //   Within the scope of a class template specialization or
130        //   partial specialization, when the injected-class-name is
131        //   not followed by a <, it is equivalent to the
132        //   injected-class-name followed by the template-argument s
133        //   of the class template specialization or partial
134        //   specialization enclosed in <>.
135        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
136          if (RD->isInjectedClassName())
137            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
138              T = Template->getInjectedClassNameType(Context);
139      }
140
141      if (T.isNull())
142        T = Context.getTypeDeclType(TD);
143    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
144      // Check whether we can use this interface.
145      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
146
147      T = Context.getObjCInterfaceType(IDecl);
148    } else
149      return 0;
150
151    if (SS)
152      T = getQualifiedNameType(*SS, T);
153
154    return T.getAsOpaquePtr();
155  }
156
157  return 0;
158}
159
160/// isTagName() - This method is called *for error recovery purposes only*
161/// to determine if the specified name is a valid tag name ("struct foo").  If
162/// so, this returns the TST for the tag corresponding to it (TST_enum,
163/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
164/// where the user forgot to specify the tag.
165DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
166  // Do a tag name lookup in this scope.
167  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
168  if (R.getKind() == LookupResult::Found)
169    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
170      switch (TD->getTagKind()) {
171      case TagDecl::TK_struct: return DeclSpec::TST_struct;
172      case TagDecl::TK_union:  return DeclSpec::TST_union;
173      case TagDecl::TK_class:  return DeclSpec::TST_class;
174      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
175      }
176    }
177
178  return DeclSpec::TST_unspecified;
179}
180
181
182
183DeclContext *Sema::getContainingDC(DeclContext *DC) {
184  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
185    // A C++ out-of-line method will return to the file declaration context.
186    if (MD->isOutOfLine())
187      return MD->getLexicalDeclContext();
188
189    // A C++ inline method is parsed *after* the topmost class it was declared
190    // in is fully parsed (it's "complete").
191    // The parsing of a C++ inline method happens at the declaration context of
192    // the topmost (non-nested) class it is lexically declared in.
193    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
194    DC = MD->getParent();
195    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
196      DC = RD;
197
198    // Return the declaration context of the topmost class the inline method is
199    // declared in.
200    return DC;
201  }
202
203  if (isa<ObjCMethodDecl>(DC))
204    return Context.getTranslationUnitDecl();
205
206  return DC->getLexicalParent();
207}
208
209void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
210  assert(getContainingDC(DC) == CurContext &&
211      "The next DeclContext should be lexically contained in the current one.");
212  CurContext = DC;
213  S->setEntity(DC);
214}
215
216void Sema::PopDeclContext() {
217  assert(CurContext && "DeclContext imbalance!");
218
219  CurContext = getContainingDC(CurContext);
220}
221
222/// EnterDeclaratorContext - Used when we must lookup names in the context
223/// of a declarator's nested name specifier.
224void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
225  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
226  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
227  CurContext = DC;
228  assert(CurContext && "No context?");
229  S->setEntity(CurContext);
230}
231
232void Sema::ExitDeclaratorContext(Scope *S) {
233  S->setEntity(PreDeclaratorDC);
234  PreDeclaratorDC = 0;
235
236  // Reset CurContext to the nearest enclosing context.
237  while (!S->getEntity() && S->getParent())
238    S = S->getParent();
239  CurContext = static_cast<DeclContext*>(S->getEntity());
240  assert(CurContext && "No context?");
241}
242
243/// \brief Determine whether we allow overloading of the function
244/// PrevDecl with another declaration.
245///
246/// This routine determines whether overloading is possible, not
247/// whether some new function is actually an overload. It will return
248/// true in C++ (where we can always provide overloads) or, as an
249/// extension, in C when the previous function is already an
250/// overloaded function declaration or has the "overloadable"
251/// attribute.
252static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
253  if (Context.getLangOptions().CPlusPlus)
254    return true;
255
256  if (isa<OverloadedFunctionDecl>(PrevDecl))
257    return true;
258
259  return PrevDecl->getAttr<OverloadableAttr>() != 0;
260}
261
262/// Add this decl to the scope shadowed decl chains.
263void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
264  // Move up the scope chain until we find the nearest enclosing
265  // non-transparent context. The declaration will be introduced into this
266  // scope.
267  while (S->getEntity() &&
268         ((DeclContext *)S->getEntity())->isTransparentContext())
269    S = S->getParent();
270
271  S->AddDecl(DeclPtrTy::make(D));
272
273  // Add scoped declarations into their context, so that they can be
274  // found later. Declarations without a context won't be inserted
275  // into any context.
276  CurContext->addDecl(D);
277
278  // C++ [basic.scope]p4:
279  //   -- exactly one declaration shall declare a class name or
280  //   enumeration name that is not a typedef name and the other
281  //   declarations shall all refer to the same object or
282  //   enumerator, or all refer to functions and function templates;
283  //   in this case the class name or enumeration name is hidden.
284  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
285    // We are pushing the name of a tag (enum or class).
286    if (CurContext->getLookupContext()
287          == TD->getDeclContext()->getLookupContext()) {
288      // We're pushing the tag into the current context, which might
289      // require some reshuffling in the identifier resolver.
290      IdentifierResolver::iterator
291        I = IdResolver.begin(TD->getDeclName()),
292        IEnd = IdResolver.end();
293      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
294        NamedDecl *PrevDecl = *I;
295        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
296             PrevDecl = *I, ++I) {
297          if (TD->declarationReplaces(*I)) {
298            // This is a redeclaration. Remove it from the chain and
299            // break out, so that we'll add in the shadowed
300            // declaration.
301            S->RemoveDecl(DeclPtrTy::make(*I));
302            if (PrevDecl == *I) {
303              IdResolver.RemoveDecl(*I);
304              IdResolver.AddDecl(TD);
305              return;
306            } else {
307              IdResolver.RemoveDecl(*I);
308              break;
309            }
310          }
311        }
312
313        // There is already a declaration with the same name in the same
314        // scope, which is not a tag declaration. It must be found
315        // before we find the new declaration, so insert the new
316        // declaration at the end of the chain.
317        IdResolver.AddShadowedDecl(TD, PrevDecl);
318
319        return;
320      }
321    }
322  } else if ((isa<FunctionDecl>(D) &&
323              AllowOverloadingOfFunction(D, Context)) ||
324             isa<FunctionTemplateDecl>(D)) {
325    // We are pushing the name of a function or function template,
326    // which might be an overloaded name.
327    IdentifierResolver::iterator Redecl
328      = std::find_if(IdResolver.begin(D->getDeclName()),
329                     IdResolver.end(),
330                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
331                                  D));
332    if (Redecl != IdResolver.end() &&
333        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
334      // There is already a declaration of a function on our
335      // IdResolver chain. Replace it with this declaration.
336      S->RemoveDecl(DeclPtrTy::make(*Redecl));
337      IdResolver.RemoveDecl(*Redecl);
338    }
339  } else if (isa<ObjCInterfaceDecl>(D)) {
340    // We're pushing an Objective-C interface into the current
341    // context. If there is already an alias declaration, remove it first.
342    for (IdentifierResolver::iterator
343           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
344         I != IEnd; ++I) {
345      if (isa<ObjCCompatibleAliasDecl>(*I)) {
346        S->RemoveDecl(DeclPtrTy::make(*I));
347        IdResolver.RemoveDecl(*I);
348        break;
349      }
350    }
351  }
352
353  IdResolver.AddDecl(D);
354}
355
356void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
357  if (S->decl_empty()) return;
358  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
359	 "Scope shouldn't contain decls!");
360
361  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
362       I != E; ++I) {
363    Decl *TmpD = (*I).getAs<Decl>();
364    assert(TmpD && "This decl didn't get pushed??");
365
366    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
367    NamedDecl *D = cast<NamedDecl>(TmpD);
368
369    if (!D->getDeclName()) continue;
370
371    // Remove this name from our lexical scope.
372    IdResolver.RemoveDecl(D);
373  }
374}
375
376/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
377/// return 0 if one not found.
378ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
379  // The third "scope" argument is 0 since we aren't enabling lazy built-in
380  // creation from this context.
381  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
382
383  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
384}
385
386/// getNonFieldDeclScope - Retrieves the innermost scope, starting
387/// from S, where a non-field would be declared. This routine copes
388/// with the difference between C and C++ scoping rules in structs and
389/// unions. For example, the following code is well-formed in C but
390/// ill-formed in C++:
391/// @code
392/// struct S6 {
393///   enum { BAR } e;
394/// };
395///
396/// void test_S6() {
397///   struct S6 a;
398///   a.e = BAR;
399/// }
400/// @endcode
401/// For the declaration of BAR, this routine will return a different
402/// scope. The scope S will be the scope of the unnamed enumeration
403/// within S6. In C++, this routine will return the scope associated
404/// with S6, because the enumeration's scope is a transparent
405/// context but structures can contain non-field names. In C, this
406/// routine will return the translation unit scope, since the
407/// enumeration's scope is a transparent context and structures cannot
408/// contain non-field names.
409Scope *Sema::getNonFieldDeclScope(Scope *S) {
410  while (((S->getFlags() & Scope::DeclScope) == 0) ||
411         (S->getEntity() &&
412          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
413         (S->isClassScope() && !getLangOptions().CPlusPlus))
414    S = S->getParent();
415  return S;
416}
417
418void Sema::InitBuiltinVaListType() {
419  if (!Context.getBuiltinVaListType().isNull())
420    return;
421
422  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
423  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
424  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
425  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
426}
427
428/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
429/// file scope.  lazily create a decl for it. ForRedeclaration is true
430/// if we're creating this built-in in anticipation of redeclaring the
431/// built-in.
432NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
433                                     Scope *S, bool ForRedeclaration,
434                                     SourceLocation Loc) {
435  Builtin::ID BID = (Builtin::ID)bid;
436
437  if (Context.BuiltinInfo.hasVAListUse(BID))
438    InitBuiltinVaListType();
439
440  ASTContext::GetBuiltinTypeError Error;
441  QualType R = Context.GetBuiltinType(BID, Error);
442  switch (Error) {
443  case ASTContext::GE_None:
444    // Okay
445    break;
446
447  case ASTContext::GE_Missing_FILE:
448    if (ForRedeclaration)
449      Diag(Loc, diag::err_implicit_decl_requires_stdio)
450        << Context.BuiltinInfo.GetName(BID);
451    return 0;
452  }
453
454  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
455    Diag(Loc, diag::ext_implicit_lib_function_decl)
456      << Context.BuiltinInfo.GetName(BID)
457      << R;
458    if (Context.BuiltinInfo.getHeaderName(BID) &&
459        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
460          != Diagnostic::Ignored)
461      Diag(Loc, diag::note_please_include_header)
462        << Context.BuiltinInfo.getHeaderName(BID)
463        << Context.BuiltinInfo.GetName(BID);
464  }
465
466  FunctionDecl *New = FunctionDecl::Create(Context,
467                                           Context.getTranslationUnitDecl(),
468                                           Loc, II, R,
469                                           FunctionDecl::Extern, false,
470                                           /*hasPrototype=*/true);
471  New->setImplicit();
472
473  // Create Decl objects for each parameter, adding them to the
474  // FunctionDecl.
475  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
476    llvm::SmallVector<ParmVarDecl*, 16> Params;
477    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
478      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
479                                           FT->getArgType(i), VarDecl::None, 0));
480    New->setParams(Context, Params.data(), Params.size());
481  }
482
483  AddKnownFunctionAttributes(New);
484
485  // TUScope is the translation-unit scope to insert this function into.
486  // FIXME: This is hideous. We need to teach PushOnScopeChains to
487  // relate Scopes to DeclContexts, and probably eliminate CurContext
488  // entirely, but we're not there yet.
489  DeclContext *SavedContext = CurContext;
490  CurContext = Context.getTranslationUnitDecl();
491  PushOnScopeChains(New, TUScope);
492  CurContext = SavedContext;
493  return New;
494}
495
496/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
497/// everything from the standard library is defined.
498NamespaceDecl *Sema::GetStdNamespace() {
499  if (!StdNamespace) {
500    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
501    DeclContext *Global = Context.getTranslationUnitDecl();
502    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
503    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
504  }
505  return StdNamespace;
506}
507
508/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
509/// same name and scope as a previous declaration 'Old'.  Figure out
510/// how to resolve this situation, merging decls or emitting
511/// diagnostics as appropriate. If there was an error, set New to be invalid.
512///
513void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
514  // If either decl is known invalid already, set the new one to be invalid and
515  // don't bother doing any merging checks.
516  if (New->isInvalidDecl() || OldD->isInvalidDecl())
517    return New->setInvalidDecl();
518
519  // Allow multiple definitions for ObjC built-in typedefs.
520  // FIXME: Verify the underlying types are equivalent!
521  if (getLangOptions().ObjC1) {
522    const IdentifierInfo *TypeID = New->getIdentifier();
523    switch (TypeID->getLength()) {
524    default: break;
525    case 2:
526      if (!TypeID->isStr("id"))
527        break;
528      // Install the built-in type for 'id', ignoring the current definition.
529      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
530      return;
531    case 5:
532      if (!TypeID->isStr("Class"))
533        break;
534      // Install the built-in type for 'Class', ignoring the current definition.
535      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
536      return;
537    case 3:
538      if (!TypeID->isStr("SEL"))
539        break;
540      Context.setObjCSelType(Context.getTypeDeclType(New));
541      return;
542    case 8:
543      if (!TypeID->isStr("Protocol"))
544        break;
545      Context.setObjCProtoType(New->getUnderlyingType());
546      return;
547    }
548    // Fall through - the typedef name was not a builtin type.
549  }
550  // Verify the old decl was also a type.
551  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
552  if (!Old) {
553    Diag(New->getLocation(), diag::err_redefinition_different_kind)
554      << New->getDeclName();
555    if (OldD->getLocation().isValid())
556      Diag(OldD->getLocation(), diag::note_previous_definition);
557    return New->setInvalidDecl();
558  }
559
560  // Determine the "old" type we'll use for checking and diagnostics.
561  QualType OldType;
562  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
563    OldType = OldTypedef->getUnderlyingType();
564  else
565    OldType = Context.getTypeDeclType(Old);
566
567  // If the typedef types are not identical, reject them in all languages and
568  // with any extensions enabled.
569
570  if (OldType != New->getUnderlyingType() &&
571      Context.getCanonicalType(OldType) !=
572      Context.getCanonicalType(New->getUnderlyingType())) {
573    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
574      << New->getUnderlyingType() << OldType;
575    if (Old->getLocation().isValid())
576      Diag(Old->getLocation(), diag::note_previous_definition);
577    return New->setInvalidDecl();
578  }
579
580  if (getLangOptions().Microsoft)
581    return;
582
583  // C++ [dcl.typedef]p2:
584  //   In a given non-class scope, a typedef specifier can be used to
585  //   redefine the name of any type declared in that scope to refer
586  //   to the type to which it already refers.
587  if (getLangOptions().CPlusPlus) {
588    if (!isa<CXXRecordDecl>(CurContext))
589      return;
590    Diag(New->getLocation(), diag::err_redefinition)
591      << New->getDeclName();
592    Diag(Old->getLocation(), diag::note_previous_definition);
593    return New->setInvalidDecl();
594  }
595
596  // If we have a redefinition of a typedef in C, emit a warning.  This warning
597  // is normally mapped to an error, but can be controlled with
598  // -Wtypedef-redefinition.  If either the original or the redefinition is
599  // in a system header, don't emit this for compatibility with GCC.
600  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
601      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
602       Context.getSourceManager().isInSystemHeader(New->getLocation())))
603    return;
604
605  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
606    << New->getDeclName();
607  Diag(Old->getLocation(), diag::note_previous_definition);
608  return;
609}
610
611/// DeclhasAttr - returns true if decl Declaration already has the target
612/// attribute.
613static bool
614DeclHasAttr(const Decl *decl, const Attr *target) {
615  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
616    if (attr->getKind() == target->getKind())
617      return true;
618
619  return false;
620}
621
622/// MergeAttributes - append attributes from the Old decl to the New one.
623static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
624  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
625    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
626      Attr *NewAttr = attr->clone(C);
627      NewAttr->setInherited(true);
628      New->addAttr(NewAttr);
629    }
630  }
631}
632
633/// Used in MergeFunctionDecl to keep track of function parameters in
634/// C.
635struct GNUCompatibleParamWarning {
636  ParmVarDecl *OldParm;
637  ParmVarDecl *NewParm;
638  QualType PromotedType;
639};
640
641/// MergeFunctionDecl - We just parsed a function 'New' from
642/// declarator D which has the same name and scope as a previous
643/// declaration 'Old'.  Figure out how to resolve this situation,
644/// merging decls or emitting diagnostics as appropriate.
645///
646/// In C++, New and Old must be declarations that are not
647/// overloaded. Use IsOverload to determine whether New and Old are
648/// overloaded, and to select the Old declaration that New should be
649/// merged with.
650///
651/// Returns true if there was an error, false otherwise.
652bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
653  assert(!isa<OverloadedFunctionDecl>(OldD) &&
654         "Cannot merge with an overloaded function declaration");
655
656  // Verify the old decl was also a function.
657  FunctionDecl *Old = 0;
658  if (FunctionTemplateDecl *OldFunctionTemplate
659        = dyn_cast<FunctionTemplateDecl>(OldD))
660    Old = OldFunctionTemplate->getTemplatedDecl();
661  else
662    Old = dyn_cast<FunctionDecl>(OldD);
663  if (!Old) {
664    Diag(New->getLocation(), diag::err_redefinition_different_kind)
665      << New->getDeclName();
666    Diag(OldD->getLocation(), diag::note_previous_definition);
667    return true;
668  }
669
670  // Determine whether the previous declaration was a definition,
671  // implicit declaration, or a declaration.
672  diag::kind PrevDiag;
673  if (Old->isThisDeclarationADefinition())
674    PrevDiag = diag::note_previous_definition;
675  else if (Old->isImplicit())
676    PrevDiag = diag::note_previous_implicit_declaration;
677  else
678    PrevDiag = diag::note_previous_declaration;
679
680  QualType OldQType = Context.getCanonicalType(Old->getType());
681  QualType NewQType = Context.getCanonicalType(New->getType());
682
683  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
684      New->getStorageClass() == FunctionDecl::Static &&
685      Old->getStorageClass() != FunctionDecl::Static) {
686    Diag(New->getLocation(), diag::err_static_non_static)
687      << New;
688    Diag(Old->getLocation(), PrevDiag);
689    return true;
690  }
691
692  if (getLangOptions().CPlusPlus) {
693    // (C++98 13.1p2):
694    //   Certain function declarations cannot be overloaded:
695    //     -- Function declarations that differ only in the return type
696    //        cannot be overloaded.
697    QualType OldReturnType
698      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
699    QualType NewReturnType
700      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
701    if (OldReturnType != NewReturnType) {
702      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
703      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
704      return true;
705    }
706
707    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
708    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
709    if (OldMethod && NewMethod &&
710        NewMethod->getLexicalDeclContext()->isRecord()) {
711      //    -- Member function declarations with the same name and the
712      //       same parameter types cannot be overloaded if any of them
713      //       is a static member function declaration.
714      if (OldMethod->isStatic() || NewMethod->isStatic()) {
715        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
716        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
717        return true;
718      }
719
720      // C++ [class.mem]p1:
721      //   [...] A member shall not be declared twice in the
722      //   member-specification, except that a nested class or member
723      //   class template can be declared and then later defined.
724      unsigned NewDiag;
725      if (isa<CXXConstructorDecl>(OldMethod))
726        NewDiag = diag::err_constructor_redeclared;
727      else if (isa<CXXDestructorDecl>(NewMethod))
728        NewDiag = diag::err_destructor_redeclared;
729      else if (isa<CXXConversionDecl>(NewMethod))
730        NewDiag = diag::err_conv_function_redeclared;
731      else
732        NewDiag = diag::err_member_redeclared;
733
734      Diag(New->getLocation(), NewDiag);
735      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
736    }
737
738    // (C++98 8.3.5p3):
739    //   All declarations for a function shall agree exactly in both the
740    //   return type and the parameter-type-list.
741    if (OldQType == NewQType)
742      return MergeCompatibleFunctionDecls(New, Old);
743
744    // Fall through for conflicting redeclarations and redefinitions.
745  }
746
747  // C: Function types need to be compatible, not identical. This handles
748  // duplicate function decls like "void f(int); void f(enum X);" properly.
749  if (!getLangOptions().CPlusPlus &&
750      Context.typesAreCompatible(OldQType, NewQType)) {
751    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
752    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
753    const FunctionProtoType *OldProto = 0;
754    if (isa<FunctionNoProtoType>(NewFuncType) &&
755        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
756      // The old declaration provided a function prototype, but the
757      // new declaration does not. Merge in the prototype.
758      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
759      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
760                                                 OldProto->arg_type_end());
761      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
762                                         ParamTypes.data(), ParamTypes.size(),
763                                         OldProto->isVariadic(),
764                                         OldProto->getTypeQuals());
765      New->setType(NewQType);
766      New->setHasInheritedPrototype();
767
768      // Synthesize a parameter for each argument type.
769      llvm::SmallVector<ParmVarDecl*, 16> Params;
770      for (FunctionProtoType::arg_type_iterator
771             ParamType = OldProto->arg_type_begin(),
772             ParamEnd = OldProto->arg_type_end();
773           ParamType != ParamEnd; ++ParamType) {
774        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
775                                                 SourceLocation(), 0,
776                                                 *ParamType, VarDecl::None,
777                                                 0);
778        Param->setImplicit();
779        Params.push_back(Param);
780      }
781
782      New->setParams(Context, Params.data(), Params.size());
783    }
784
785    return MergeCompatibleFunctionDecls(New, Old);
786  }
787
788  // GNU C permits a K&R definition to follow a prototype declaration
789  // if the declared types of the parameters in the K&R definition
790  // match the types in the prototype declaration, even when the
791  // promoted types of the parameters from the K&R definition differ
792  // from the types in the prototype. GCC then keeps the types from
793  // the prototype.
794  //
795  // If a variadic prototype is followed by a non-variadic K&R definition,
796  // the K&R definition becomes variadic.  This is sort of an edge case, but
797  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
798  // C99 6.9.1p8.
799  if (!getLangOptions().CPlusPlus &&
800      Old->hasPrototype() && !New->hasPrototype() &&
801      New->getType()->getAsFunctionProtoType() &&
802      Old->getNumParams() == New->getNumParams()) {
803    llvm::SmallVector<QualType, 16> ArgTypes;
804    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
805    const FunctionProtoType *OldProto
806      = Old->getType()->getAsFunctionProtoType();
807    const FunctionProtoType *NewProto
808      = New->getType()->getAsFunctionProtoType();
809
810    // Determine whether this is the GNU C extension.
811    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
812                                               NewProto->getResultType());
813    bool LooseCompatible = !MergedReturn.isNull();
814    for (unsigned Idx = 0, End = Old->getNumParams();
815         LooseCompatible && Idx != End; ++Idx) {
816      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
817      ParmVarDecl *NewParm = New->getParamDecl(Idx);
818      if (Context.typesAreCompatible(OldParm->getType(),
819                                     NewProto->getArgType(Idx))) {
820        ArgTypes.push_back(NewParm->getType());
821      } else if (Context.typesAreCompatible(OldParm->getType(),
822                                            NewParm->getType())) {
823        GNUCompatibleParamWarning Warn
824          = { OldParm, NewParm, NewProto->getArgType(Idx) };
825        Warnings.push_back(Warn);
826        ArgTypes.push_back(NewParm->getType());
827      } else
828        LooseCompatible = false;
829    }
830
831    if (LooseCompatible) {
832      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
833        Diag(Warnings[Warn].NewParm->getLocation(),
834             diag::ext_param_promoted_not_compatible_with_prototype)
835          << Warnings[Warn].PromotedType
836          << Warnings[Warn].OldParm->getType();
837        Diag(Warnings[Warn].OldParm->getLocation(),
838             diag::note_previous_declaration);
839      }
840
841      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
842                                           ArgTypes.size(),
843                                           OldProto->isVariadic(), 0));
844      return MergeCompatibleFunctionDecls(New, Old);
845    }
846
847    // Fall through to diagnose conflicting types.
848  }
849
850  // A function that has already been declared has been redeclared or defined
851  // with a different type- show appropriate diagnostic
852  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
853    // The user has declared a builtin function with an incompatible
854    // signature.
855    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
856      // The function the user is redeclaring is a library-defined
857      // function like 'malloc' or 'printf'. Warn about the
858      // redeclaration, then pretend that we don't know about this
859      // library built-in.
860      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
861      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
862        << Old << Old->getType();
863      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
864      Old->setInvalidDecl();
865      return false;
866    }
867
868    PrevDiag = diag::note_previous_builtin_declaration;
869  }
870
871  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
872  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
873  return true;
874}
875
876/// \brief Completes the merge of two function declarations that are
877/// known to be compatible.
878///
879/// This routine handles the merging of attributes and other
880/// properties of function declarations form the old declaration to
881/// the new declaration, once we know that New is in fact a
882/// redeclaration of Old.
883///
884/// \returns false
885bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
886  // Merge the attributes
887  MergeAttributes(New, Old, Context);
888
889  // Merge the storage class.
890  if (Old->getStorageClass() != FunctionDecl::Extern)
891    New->setStorageClass(Old->getStorageClass());
892
893  // Merge "inline"
894  if (Old->isInline())
895    New->setInline(true);
896
897  // If this function declaration by itself qualifies as a C99 inline
898  // definition (C99 6.7.4p6), but the previous definition did not,
899  // then the function is not a C99 inline definition.
900  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
901    New->setC99InlineDefinition(false);
902  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
903    // Mark all preceding definitions as not being C99 inline definitions.
904    for (const FunctionDecl *Prev = Old; Prev;
905         Prev = Prev->getPreviousDeclaration())
906      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
907  }
908
909  // Merge "pure" flag.
910  if (Old->isPure())
911    New->setPure();
912
913  // Merge the "deleted" flag.
914  if (Old->isDeleted())
915    New->setDeleted();
916
917  if (getLangOptions().CPlusPlus)
918    return MergeCXXFunctionDecl(New, Old);
919
920  return false;
921}
922
923/// MergeVarDecl - We just parsed a variable 'New' which has the same name
924/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
925/// situation, merging decls or emitting diagnostics as appropriate.
926///
927/// Tentative definition rules (C99 6.9.2p2) are checked by
928/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
929/// definitions here, since the initializer hasn't been attached.
930///
931void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
932  // If either decl is invalid, make sure the new one is marked invalid and
933  // don't do any other checking.
934  if (New->isInvalidDecl() || OldD->isInvalidDecl())
935    return New->setInvalidDecl();
936
937  // Verify the old decl was also a variable.
938  VarDecl *Old = dyn_cast<VarDecl>(OldD);
939  if (!Old) {
940    Diag(New->getLocation(), diag::err_redefinition_different_kind)
941      << New->getDeclName();
942    Diag(OldD->getLocation(), diag::note_previous_definition);
943    return New->setInvalidDecl();
944  }
945
946  MergeAttributes(New, Old, Context);
947
948  // Merge the types
949  QualType MergedT;
950  if (getLangOptions().CPlusPlus) {
951    if (Context.hasSameType(New->getType(), Old->getType()))
952      MergedT = New->getType();
953  } else {
954    MergedT = Context.mergeTypes(New->getType(), Old->getType());
955  }
956  if (MergedT.isNull()) {
957    Diag(New->getLocation(), diag::err_redefinition_different_type)
958      << New->getDeclName();
959    Diag(Old->getLocation(), diag::note_previous_definition);
960    return New->setInvalidDecl();
961  }
962  New->setType(MergedT);
963
964  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
965  if (New->getStorageClass() == VarDecl::Static &&
966      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
967    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
968    Diag(Old->getLocation(), diag::note_previous_definition);
969    return New->setInvalidDecl();
970  }
971  // C99 6.2.2p4:
972  //   For an identifier declared with the storage-class specifier
973  //   extern in a scope in which a prior declaration of that
974  //   identifier is visible,23) if the prior declaration specifies
975  //   internal or external linkage, the linkage of the identifier at
976  //   the later declaration is the same as the linkage specified at
977  //   the prior declaration. If no prior declaration is visible, or
978  //   if the prior declaration specifies no linkage, then the
979  //   identifier has external linkage.
980  if (New->hasExternalStorage() && Old->hasLinkage())
981    /* Okay */;
982  else if (New->getStorageClass() != VarDecl::Static &&
983           Old->getStorageClass() == VarDecl::Static) {
984    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
985    Diag(Old->getLocation(), diag::note_previous_definition);
986    return New->setInvalidDecl();
987  }
988
989  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
990
991  // FIXME: The test for external storage here seems wrong? We still
992  // need to check for mismatches.
993  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
994      // Don't complain about out-of-line definitions of static members.
995      !(Old->getLexicalDeclContext()->isRecord() &&
996        !New->getLexicalDeclContext()->isRecord())) {
997    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
998    Diag(Old->getLocation(), diag::note_previous_definition);
999    return New->setInvalidDecl();
1000  }
1001
1002  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1003    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1004    Diag(Old->getLocation(), diag::note_previous_definition);
1005  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1006    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1007    Diag(Old->getLocation(), diag::note_previous_definition);
1008  }
1009
1010  // Keep a chain of previous declarations.
1011  New->setPreviousDeclaration(Old);
1012}
1013
1014/// CheckParmsForFunctionDef - Check that the parameters of the given
1015/// function are appropriate for the definition of a function. This
1016/// takes care of any checks that cannot be performed on the
1017/// declaration itself, e.g., that the types of each of the function
1018/// parameters are complete.
1019bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1020  bool HasInvalidParm = false;
1021  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1022    ParmVarDecl *Param = FD->getParamDecl(p);
1023
1024    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1025    // function declarator that is part of a function definition of
1026    // that function shall not have incomplete type.
1027    //
1028    // This is also C++ [dcl.fct]p6.
1029    if (!Param->isInvalidDecl() &&
1030        RequireCompleteType(Param->getLocation(), Param->getType(),
1031                               diag::err_typecheck_decl_incomplete_type)) {
1032      Param->setInvalidDecl();
1033      HasInvalidParm = true;
1034    }
1035
1036    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1037    // declaration of each parameter shall include an identifier.
1038    if (Param->getIdentifier() == 0 &&
1039        !Param->isImplicit() &&
1040        !getLangOptions().CPlusPlus)
1041      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1042  }
1043
1044  return HasInvalidParm;
1045}
1046
1047/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1048/// no declarator (e.g. "struct foo;") is parsed.
1049Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1050  // FIXME: Error on auto/register at file scope
1051  // FIXME: Error on inline/virtual/explicit
1052  // FIXME: Error on invalid restrict
1053  // FIXME: Warn on useless __thread
1054  // FIXME: Warn on useless const/volatile
1055  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1056  // FIXME: Warn on useless attributes
1057  TagDecl *Tag = 0;
1058  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1059      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1060      DS.getTypeSpecType() == DeclSpec::TST_union ||
1061      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1062    if (!DS.getTypeRep()) // We probably had an error
1063      return DeclPtrTy();
1064
1065    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1066  }
1067
1068  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1069    if (!Record->getDeclName() && Record->isDefinition() &&
1070        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1071      if (getLangOptions().CPlusPlus ||
1072          Record->getDeclContext()->isRecord())
1073        return BuildAnonymousStructOrUnion(S, DS, Record);
1074
1075      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1076        << DS.getSourceRange();
1077    }
1078
1079    // Microsoft allows unnamed struct/union fields. Don't complain
1080    // about them.
1081    // FIXME: Should we support Microsoft's extensions in this area?
1082    if (Record->getDeclName() && getLangOptions().Microsoft)
1083      return DeclPtrTy::make(Tag);
1084  }
1085
1086  if (!DS.isMissingDeclaratorOk() &&
1087      DS.getTypeSpecType() != DeclSpec::TST_error) {
1088    // Warn about typedefs of enums without names, since this is an
1089    // extension in both Microsoft an GNU.
1090    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1091        Tag && isa<EnumDecl>(Tag)) {
1092      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1093        << DS.getSourceRange();
1094      return DeclPtrTy::make(Tag);
1095    }
1096
1097    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1098      << DS.getSourceRange();
1099    return DeclPtrTy();
1100  }
1101
1102  return DeclPtrTy::make(Tag);
1103}
1104
1105/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1106/// anonymous struct or union AnonRecord into the owning context Owner
1107/// and scope S. This routine will be invoked just after we realize
1108/// that an unnamed union or struct is actually an anonymous union or
1109/// struct, e.g.,
1110///
1111/// @code
1112/// union {
1113///   int i;
1114///   float f;
1115/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1116///    // f into the surrounding scope.x
1117/// @endcode
1118///
1119/// This routine is recursive, injecting the names of nested anonymous
1120/// structs/unions into the owning context and scope as well.
1121bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1122                                               RecordDecl *AnonRecord) {
1123  bool Invalid = false;
1124  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1125                               FEnd = AnonRecord->field_end();
1126       F != FEnd; ++F) {
1127    if ((*F)->getDeclName()) {
1128      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1129                                                LookupOrdinaryName, true);
1130      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1131        // C++ [class.union]p2:
1132        //   The names of the members of an anonymous union shall be
1133        //   distinct from the names of any other entity in the
1134        //   scope in which the anonymous union is declared.
1135        unsigned diagKind
1136          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1137                                 : diag::err_anonymous_struct_member_redecl;
1138        Diag((*F)->getLocation(), diagKind)
1139          << (*F)->getDeclName();
1140        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1141        Invalid = true;
1142      } else {
1143        // C++ [class.union]p2:
1144        //   For the purpose of name lookup, after the anonymous union
1145        //   definition, the members of the anonymous union are
1146        //   considered to have been defined in the scope in which the
1147        //   anonymous union is declared.
1148        Owner->makeDeclVisibleInContext(*F);
1149        S->AddDecl(DeclPtrTy::make(*F));
1150        IdResolver.AddDecl(*F);
1151      }
1152    } else if (const RecordType *InnerRecordType
1153                 = (*F)->getType()->getAsRecordType()) {
1154      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1155      if (InnerRecord->isAnonymousStructOrUnion())
1156        Invalid = Invalid ||
1157          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1158    }
1159  }
1160
1161  return Invalid;
1162}
1163
1164/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1165/// anonymous structure or union. Anonymous unions are a C++ feature
1166/// (C++ [class.union]) and a GNU C extension; anonymous structures
1167/// are a GNU C and GNU C++ extension.
1168Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1169                                                  RecordDecl *Record) {
1170  DeclContext *Owner = Record->getDeclContext();
1171
1172  // Diagnose whether this anonymous struct/union is an extension.
1173  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1174    Diag(Record->getLocation(), diag::ext_anonymous_union);
1175  else if (!Record->isUnion())
1176    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1177
1178  // C and C++ require different kinds of checks for anonymous
1179  // structs/unions.
1180  bool Invalid = false;
1181  if (getLangOptions().CPlusPlus) {
1182    const char* PrevSpec = 0;
1183    // C++ [class.union]p3:
1184    //   Anonymous unions declared in a named namespace or in the
1185    //   global namespace shall be declared static.
1186    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1187        (isa<TranslationUnitDecl>(Owner) ||
1188         (isa<NamespaceDecl>(Owner) &&
1189          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1190      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1191      Invalid = true;
1192
1193      // Recover by adding 'static'.
1194      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1195    }
1196    // C++ [class.union]p3:
1197    //   A storage class is not allowed in a declaration of an
1198    //   anonymous union in a class scope.
1199    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1200             isa<RecordDecl>(Owner)) {
1201      Diag(DS.getStorageClassSpecLoc(),
1202           diag::err_anonymous_union_with_storage_spec);
1203      Invalid = true;
1204
1205      // Recover by removing the storage specifier.
1206      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1207                             PrevSpec);
1208    }
1209
1210    // C++ [class.union]p2:
1211    //   The member-specification of an anonymous union shall only
1212    //   define non-static data members. [Note: nested types and
1213    //   functions cannot be declared within an anonymous union. ]
1214    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1215                                 MemEnd = Record->decls_end();
1216         Mem != MemEnd; ++Mem) {
1217      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1218        // C++ [class.union]p3:
1219        //   An anonymous union shall not have private or protected
1220        //   members (clause 11).
1221        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1222          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1223            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1224          Invalid = true;
1225        }
1226      } else if ((*Mem)->isImplicit()) {
1227        // Any implicit members are fine.
1228      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1229        // This is a type that showed up in an
1230        // elaborated-type-specifier inside the anonymous struct or
1231        // union, but which actually declares a type outside of the
1232        // anonymous struct or union. It's okay.
1233      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1234        if (!MemRecord->isAnonymousStructOrUnion() &&
1235            MemRecord->getDeclName()) {
1236          // This is a nested type declaration.
1237          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1238            << (int)Record->isUnion();
1239          Invalid = true;
1240        }
1241      } else {
1242        // We have something that isn't a non-static data
1243        // member. Complain about it.
1244        unsigned DK = diag::err_anonymous_record_bad_member;
1245        if (isa<TypeDecl>(*Mem))
1246          DK = diag::err_anonymous_record_with_type;
1247        else if (isa<FunctionDecl>(*Mem))
1248          DK = diag::err_anonymous_record_with_function;
1249        else if (isa<VarDecl>(*Mem))
1250          DK = diag::err_anonymous_record_with_static;
1251        Diag((*Mem)->getLocation(), DK)
1252            << (int)Record->isUnion();
1253          Invalid = true;
1254      }
1255    }
1256  }
1257
1258  if (!Record->isUnion() && !Owner->isRecord()) {
1259    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1260      << (int)getLangOptions().CPlusPlus;
1261    Invalid = true;
1262  }
1263
1264  // Create a declaration for this anonymous struct/union.
1265  NamedDecl *Anon = 0;
1266  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1267    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1268                             /*IdentifierInfo=*/0,
1269                             Context.getTypeDeclType(Record),
1270                             /*BitWidth=*/0, /*Mutable=*/false,
1271                             DS.getSourceRange().getBegin());
1272    Anon->setAccess(AS_public);
1273    if (getLangOptions().CPlusPlus)
1274      FieldCollector->Add(cast<FieldDecl>(Anon));
1275  } else {
1276    VarDecl::StorageClass SC;
1277    switch (DS.getStorageClassSpec()) {
1278    default: assert(0 && "Unknown storage class!");
1279    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1280    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1281    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1282    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1283    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1284    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1285    case DeclSpec::SCS_mutable:
1286      // mutable can only appear on non-static class members, so it's always
1287      // an error here
1288      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1289      Invalid = true;
1290      SC = VarDecl::None;
1291      break;
1292    }
1293
1294    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1295                           /*IdentifierInfo=*/0,
1296                           Context.getTypeDeclType(Record),
1297                           SC, DS.getSourceRange().getBegin());
1298  }
1299  Anon->setImplicit();
1300
1301  // Add the anonymous struct/union object to the current
1302  // context. We'll be referencing this object when we refer to one of
1303  // its members.
1304  Owner->addDecl(Anon);
1305
1306  // Inject the members of the anonymous struct/union into the owning
1307  // context and into the identifier resolver chain for name lookup
1308  // purposes.
1309  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1310    Invalid = true;
1311
1312  // Mark this as an anonymous struct/union type. Note that we do not
1313  // do this until after we have already checked and injected the
1314  // members of this anonymous struct/union type, because otherwise
1315  // the members could be injected twice: once by DeclContext when it
1316  // builds its lookup table, and once by
1317  // InjectAnonymousStructOrUnionMembers.
1318  Record->setAnonymousStructOrUnion(true);
1319
1320  if (Invalid)
1321    Anon->setInvalidDecl();
1322
1323  return DeclPtrTy::make(Anon);
1324}
1325
1326
1327/// GetNameForDeclarator - Determine the full declaration name for the
1328/// given Declarator.
1329DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1330  switch (D.getKind()) {
1331  case Declarator::DK_Abstract:
1332    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1333    return DeclarationName();
1334
1335  case Declarator::DK_Normal:
1336    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1337    return DeclarationName(D.getIdentifier());
1338
1339  case Declarator::DK_Constructor: {
1340    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1341    Ty = Context.getCanonicalType(Ty);
1342    return Context.DeclarationNames.getCXXConstructorName(Ty);
1343  }
1344
1345  case Declarator::DK_Destructor: {
1346    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1347    Ty = Context.getCanonicalType(Ty);
1348    return Context.DeclarationNames.getCXXDestructorName(Ty);
1349  }
1350
1351  case Declarator::DK_Conversion: {
1352    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1353    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1354    Ty = Context.getCanonicalType(Ty);
1355    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1356  }
1357
1358  case Declarator::DK_Operator:
1359    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1360    return Context.DeclarationNames.getCXXOperatorName(
1361                                                D.getOverloadedOperator());
1362  }
1363
1364  assert(false && "Unknown name kind");
1365  return DeclarationName();
1366}
1367
1368/// isNearlyMatchingFunction - Determine whether the C++ functions
1369/// Declaration and Definition are "nearly" matching. This heuristic
1370/// is used to improve diagnostics in the case where an out-of-line
1371/// function definition doesn't match any declaration within
1372/// the class or namespace.
1373static bool isNearlyMatchingFunction(ASTContext &Context,
1374                                     FunctionDecl *Declaration,
1375                                     FunctionDecl *Definition) {
1376  if (Declaration->param_size() != Definition->param_size())
1377    return false;
1378  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1379    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1380    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1381
1382    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1383    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1384    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1385      return false;
1386  }
1387
1388  return true;
1389}
1390
1391Sema::DeclPtrTy
1392Sema::HandleDeclarator(Scope *S, Declarator &D,
1393                       MultiTemplateParamsArg TemplateParamLists,
1394                       bool IsFunctionDefinition) {
1395  DeclarationName Name = GetNameForDeclarator(D);
1396
1397  // All of these full declarators require an identifier.  If it doesn't have
1398  // one, the ParsedFreeStandingDeclSpec action should be used.
1399  if (!Name) {
1400    if (!D.isInvalidType())  // Reject this if we think it is valid.
1401      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1402           diag::err_declarator_need_ident)
1403        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1404    return DeclPtrTy();
1405  }
1406
1407  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1408  // we find one that is.
1409  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1410         (S->getFlags() & Scope::TemplateParamScope) != 0)
1411    S = S->getParent();
1412
1413  DeclContext *DC;
1414  NamedDecl *PrevDecl;
1415  NamedDecl *New;
1416
1417  QualType R = GetTypeForDeclarator(D, S);
1418
1419  // See if this is a redefinition of a variable in the same scope.
1420  if (D.getCXXScopeSpec().isInvalid()) {
1421    DC = CurContext;
1422    PrevDecl = 0;
1423    D.setInvalidType();
1424  } else if (!D.getCXXScopeSpec().isSet()) {
1425    LookupNameKind NameKind = LookupOrdinaryName;
1426
1427    // If the declaration we're planning to build will be a function
1428    // or object with linkage, then look for another declaration with
1429    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1430    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1431      /* Do nothing*/;
1432    else if (R->isFunctionType()) {
1433      if (CurContext->isFunctionOrMethod() ||
1434          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1435        NameKind = LookupRedeclarationWithLinkage;
1436    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1437      NameKind = LookupRedeclarationWithLinkage;
1438    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1439             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1440      NameKind = LookupRedeclarationWithLinkage;
1441
1442    DC = CurContext;
1443    PrevDecl = LookupName(S, Name, NameKind, true,
1444                          NameKind == LookupRedeclarationWithLinkage,
1445                          D.getIdentifierLoc());
1446  } else { // Something like "int foo::x;"
1447    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1448    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1449    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1450
1451    // C++ 7.3.1.2p2:
1452    // Members (including explicit specializations of templates) of a named
1453    // namespace can also be defined outside that namespace by explicit
1454    // qualification of the name being defined, provided that the entity being
1455    // defined was already declared in the namespace and the definition appears
1456    // after the point of declaration in a namespace that encloses the
1457    // declarations namespace.
1458    //
1459    // Note that we only check the context at this point. We don't yet
1460    // have enough information to make sure that PrevDecl is actually
1461    // the declaration we want to match. For example, given:
1462    //
1463    //   class X {
1464    //     void f();
1465    //     void f(float);
1466    //   };
1467    //
1468    //   void X::f(int) { } // ill-formed
1469    //
1470    // In this case, PrevDecl will point to the overload set
1471    // containing the two f's declared in X, but neither of them
1472    // matches.
1473
1474    // First check whether we named the global scope.
1475    if (isa<TranslationUnitDecl>(DC)) {
1476      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1477        << Name << D.getCXXScopeSpec().getRange();
1478    } else if (!CurContext->Encloses(DC)) {
1479      // The qualifying scope doesn't enclose the original declaration.
1480      // Emit diagnostic based on current scope.
1481      SourceLocation L = D.getIdentifierLoc();
1482      SourceRange R = D.getCXXScopeSpec().getRange();
1483      if (isa<FunctionDecl>(CurContext))
1484        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1485      else
1486        Diag(L, diag::err_invalid_declarator_scope)
1487          << Name << cast<NamedDecl>(DC) << R;
1488      D.setInvalidType();
1489    }
1490  }
1491
1492  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1493    // Maybe we will complain about the shadowed template parameter.
1494    if (!D.isInvalidType())
1495      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1496        D.setInvalidType();
1497
1498    // Just pretend that we didn't see the previous declaration.
1499    PrevDecl = 0;
1500  }
1501
1502  // In C++, the previous declaration we find might be a tag type
1503  // (class or enum). In this case, the new declaration will hide the
1504  // tag type. Note that this does does not apply if we're declaring a
1505  // typedef (C++ [dcl.typedef]p4).
1506  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1507      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1508    PrevDecl = 0;
1509
1510  bool Redeclaration = false;
1511  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1512    if (TemplateParamLists.size()) {
1513      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1514      return DeclPtrTy();
1515    }
1516
1517    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1518  } else if (R->isFunctionType()) {
1519    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1520                                  move(TemplateParamLists),
1521                                  IsFunctionDefinition, Redeclaration);
1522  } else {
1523    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1524  }
1525
1526  if (New == 0)
1527    return DeclPtrTy();
1528
1529  // If this has an identifier and is not an invalid redeclaration,
1530  // add it to the scope stack.
1531  if (Name && !(Redeclaration && New->isInvalidDecl()))
1532    PushOnScopeChains(New, S);
1533
1534  return DeclPtrTy::make(New);
1535}
1536
1537/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1538/// types into constant array types in certain situations which would otherwise
1539/// be errors (for GCC compatibility).
1540static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1541                                                    ASTContext &Context,
1542                                                    bool &SizeIsNegative) {
1543  // This method tries to turn a variable array into a constant
1544  // array even when the size isn't an ICE.  This is necessary
1545  // for compatibility with code that depends on gcc's buggy
1546  // constant expression folding, like struct {char x[(int)(char*)2];}
1547  SizeIsNegative = false;
1548
1549  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1550    QualType Pointee = PTy->getPointeeType();
1551    QualType FixedType =
1552        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1553    if (FixedType.isNull()) return FixedType;
1554    FixedType = Context.getPointerType(FixedType);
1555    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1556    return FixedType;
1557  }
1558
1559  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1560  if (!VLATy)
1561    return QualType();
1562  // FIXME: We should probably handle this case
1563  if (VLATy->getElementType()->isVariablyModifiedType())
1564    return QualType();
1565
1566  Expr::EvalResult EvalResult;
1567  if (!VLATy->getSizeExpr() ||
1568      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1569      !EvalResult.Val.isInt())
1570    return QualType();
1571
1572  llvm::APSInt &Res = EvalResult.Val.getInt();
1573  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1574    Expr* ArySizeExpr = VLATy->getSizeExpr();
1575    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1576    // so as to transfer ownership to the ConstantArrayWithExpr.
1577    // Alternatively, we could "clone" it (how?).
1578    // Since we don't know how to do things above, we just use the
1579    // very same Expr*.
1580    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1581                                                Res, ArySizeExpr,
1582                                                ArrayType::Normal, 0,
1583                                                VLATy->getBracketsRange());
1584  }
1585
1586  SizeIsNegative = true;
1587  return QualType();
1588}
1589
1590/// \brief Register the given locally-scoped external C declaration so
1591/// that it can be found later for redeclarations
1592void
1593Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1594                                       Scope *S) {
1595  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1596         "Decl is not a locally-scoped decl!");
1597  // Note that we have a locally-scoped external with this name.
1598  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1599
1600  if (!PrevDecl)
1601    return;
1602
1603  // If there was a previous declaration of this variable, it may be
1604  // in our identifier chain. Update the identifier chain with the new
1605  // declaration.
1606  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1607    // The previous declaration was found on the identifer resolver
1608    // chain, so remove it from its scope.
1609    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1610      S = S->getParent();
1611
1612    if (S)
1613      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1614  }
1615}
1616
1617/// \brief Diagnose function specifiers on a declaration of an identifier that
1618/// does not identify a function.
1619void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1620  // FIXME: We should probably indicate the identifier in question to avoid
1621  // confusion for constructs like "inline int a(), b;"
1622  if (D.getDeclSpec().isInlineSpecified())
1623    Diag(D.getDeclSpec().getInlineSpecLoc(),
1624         diag::err_inline_non_function);
1625
1626  if (D.getDeclSpec().isVirtualSpecified())
1627    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1628         diag::err_virtual_non_function);
1629
1630  if (D.getDeclSpec().isExplicitSpecified())
1631    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1632         diag::err_explicit_non_function);
1633}
1634
1635NamedDecl*
1636Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1637                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1638  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1639  if (D.getCXXScopeSpec().isSet()) {
1640    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1641      << D.getCXXScopeSpec().getRange();
1642    D.setInvalidType();
1643    // Pretend we didn't see the scope specifier.
1644    DC = 0;
1645  }
1646
1647  if (getLangOptions().CPlusPlus) {
1648    // Check that there are no default arguments (C++ only).
1649    CheckExtraCXXDefaultArguments(D);
1650  }
1651
1652  DiagnoseFunctionSpecifiers(D);
1653
1654  if (D.getDeclSpec().isThreadSpecified())
1655    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1656
1657  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1658  if (!NewTD) return 0;
1659
1660  if (D.isInvalidType())
1661    NewTD->setInvalidDecl();
1662
1663  // Handle attributes prior to checking for duplicates in MergeVarDecl
1664  ProcessDeclAttributes(S, NewTD, D);
1665  // Merge the decl with the existing one if appropriate. If the decl is
1666  // in an outer scope, it isn't the same thing.
1667  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1668    Redeclaration = true;
1669    MergeTypeDefDecl(NewTD, PrevDecl);
1670  }
1671
1672  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1673  // then it shall have block scope.
1674  QualType T = NewTD->getUnderlyingType();
1675  if (T->isVariablyModifiedType()) {
1676    CurFunctionNeedsScopeChecking = true;
1677
1678    if (S->getFnParent() == 0) {
1679      bool SizeIsNegative;
1680      QualType FixedTy =
1681          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1682      if (!FixedTy.isNull()) {
1683        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1684        NewTD->setUnderlyingType(FixedTy);
1685      } else {
1686        if (SizeIsNegative)
1687          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1688        else if (T->isVariableArrayType())
1689          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1690        else
1691          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1692        NewTD->setInvalidDecl();
1693      }
1694    }
1695  }
1696
1697  // If this is the C FILE type, notify the AST context.
1698  if (IdentifierInfo *II = NewTD->getIdentifier())
1699    if (!NewTD->isInvalidDecl() &&
1700        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit() &&
1701        II->isStr("FILE"))
1702      Context.setFILEDecl(NewTD);
1703
1704  return NewTD;
1705}
1706
1707/// \brief Determines whether the given declaration is an out-of-scope
1708/// previous declaration.
1709///
1710/// This routine should be invoked when name lookup has found a
1711/// previous declaration (PrevDecl) that is not in the scope where a
1712/// new declaration by the same name is being introduced. If the new
1713/// declaration occurs in a local scope, previous declarations with
1714/// linkage may still be considered previous declarations (C99
1715/// 6.2.2p4-5, C++ [basic.link]p6).
1716///
1717/// \param PrevDecl the previous declaration found by name
1718/// lookup
1719///
1720/// \param DC the context in which the new declaration is being
1721/// declared.
1722///
1723/// \returns true if PrevDecl is an out-of-scope previous declaration
1724/// for a new delcaration with the same name.
1725static bool
1726isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1727                                ASTContext &Context) {
1728  if (!PrevDecl)
1729    return 0;
1730
1731  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1732  // case we need to check each of the overloaded functions.
1733  if (!PrevDecl->hasLinkage())
1734    return false;
1735
1736  if (Context.getLangOptions().CPlusPlus) {
1737    // C++ [basic.link]p6:
1738    //   If there is a visible declaration of an entity with linkage
1739    //   having the same name and type, ignoring entities declared
1740    //   outside the innermost enclosing namespace scope, the block
1741    //   scope declaration declares that same entity and receives the
1742    //   linkage of the previous declaration.
1743    DeclContext *OuterContext = DC->getLookupContext();
1744    if (!OuterContext->isFunctionOrMethod())
1745      // This rule only applies to block-scope declarations.
1746      return false;
1747    else {
1748      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1749      if (PrevOuterContext->isRecord())
1750        // We found a member function: ignore it.
1751        return false;
1752      else {
1753        // Find the innermost enclosing namespace for the new and
1754        // previous declarations.
1755        while (!OuterContext->isFileContext())
1756          OuterContext = OuterContext->getParent();
1757        while (!PrevOuterContext->isFileContext())
1758          PrevOuterContext = PrevOuterContext->getParent();
1759
1760        // The previous declaration is in a different namespace, so it
1761        // isn't the same function.
1762        if (OuterContext->getPrimaryContext() !=
1763            PrevOuterContext->getPrimaryContext())
1764          return false;
1765      }
1766    }
1767  }
1768
1769  return true;
1770}
1771
1772NamedDecl*
1773Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1774                              QualType R,NamedDecl* PrevDecl,
1775                              bool &Redeclaration) {
1776  DeclarationName Name = GetNameForDeclarator(D);
1777
1778  // Check that there are no default arguments (C++ only).
1779  if (getLangOptions().CPlusPlus)
1780    CheckExtraCXXDefaultArguments(D);
1781
1782  VarDecl *NewVD;
1783  VarDecl::StorageClass SC;
1784  switch (D.getDeclSpec().getStorageClassSpec()) {
1785  default: assert(0 && "Unknown storage class!");
1786  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1787  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1788  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1789  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1790  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1791  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1792  case DeclSpec::SCS_mutable:
1793    // mutable can only appear on non-static class members, so it's always
1794    // an error here
1795    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1796    D.setInvalidType();
1797    SC = VarDecl::None;
1798    break;
1799  }
1800
1801  IdentifierInfo *II = Name.getAsIdentifierInfo();
1802  if (!II) {
1803    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1804      << Name.getAsString();
1805    return 0;
1806  }
1807
1808  DiagnoseFunctionSpecifiers(D);
1809
1810  if (!DC->isRecord() && S->getFnParent() == 0) {
1811    // C99 6.9p2: The storage-class specifiers auto and register shall not
1812    // appear in the declaration specifiers in an external declaration.
1813    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1814
1815      // If this is a register variable with an asm label specified, then this
1816      // is a GNU extension.
1817      if (SC == VarDecl::Register && D.getAsmLabel())
1818        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
1819      else
1820        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1821      D.setInvalidType();
1822    }
1823  }
1824  if (DC->isRecord() && !CurContext->isRecord()) {
1825    // This is an out-of-line definition of a static data member.
1826    if (SC == VarDecl::Static) {
1827      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1828           diag::err_static_out_of_line)
1829        << CodeModificationHint::CreateRemoval(
1830                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1831    } else if (SC == VarDecl::None)
1832      SC = VarDecl::Static;
1833  }
1834  if (SC == VarDecl::Static) {
1835    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
1836      if (RD->isLocalClass())
1837        Diag(D.getIdentifierLoc(),
1838             diag::err_static_data_member_not_allowed_in_local_class)
1839          << Name << RD->getDeclName();
1840    }
1841  }
1842
1843
1844  // The variable can not
1845  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1846                          II, R, SC,
1847                          // FIXME: Move to DeclGroup...
1848                          D.getDeclSpec().getSourceRange().getBegin());
1849
1850  if (D.isInvalidType())
1851    NewVD->setInvalidDecl();
1852
1853  if (D.getDeclSpec().isThreadSpecified()) {
1854    if (NewVD->hasLocalStorage())
1855      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1856    else if (!Context.Target.isTLSSupported())
1857      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1858    else
1859      NewVD->setThreadSpecified(true);
1860  }
1861
1862  // Set the lexical context. If the declarator has a C++ scope specifier, the
1863  // lexical context will be different from the semantic context.
1864  NewVD->setLexicalDeclContext(CurContext);
1865
1866  // Handle attributes prior to checking for duplicates in MergeVarDecl
1867  ProcessDeclAttributes(S, NewVD, D);
1868
1869  // Handle GNU asm-label extension (encoded as an attribute).
1870  if (Expr *E = (Expr*) D.getAsmLabel()) {
1871    // The parser guarantees this is a string.
1872    StringLiteral *SE = cast<StringLiteral>(E);
1873    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1874                                                        SE->getByteLength())));
1875  }
1876
1877  // If name lookup finds a previous declaration that is not in the
1878  // same scope as the new declaration, this may still be an
1879  // acceptable redeclaration.
1880  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1881      !(NewVD->hasLinkage() &&
1882        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1883    PrevDecl = 0;
1884
1885  // Merge the decl with the existing one if appropriate.
1886  if (PrevDecl) {
1887    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1888      // The user tried to define a non-static data member
1889      // out-of-line (C++ [dcl.meaning]p1).
1890      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1891        << D.getCXXScopeSpec().getRange();
1892      PrevDecl = 0;
1893      NewVD->setInvalidDecl();
1894    }
1895  } else if (D.getCXXScopeSpec().isSet()) {
1896    // No previous declaration in the qualifying scope.
1897    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1898      << Name << D.getCXXScopeSpec().getRange();
1899    NewVD->setInvalidDecl();
1900  }
1901
1902  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
1903
1904  // If this is a locally-scoped extern C variable, update the map of
1905  // such variables.
1906  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1907      !NewVD->isInvalidDecl())
1908    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1909
1910  return NewVD;
1911}
1912
1913/// \brief Perform semantic checking on a newly-created variable
1914/// declaration.
1915///
1916/// This routine performs all of the type-checking required for a
1917/// variable declaration once it has been built. It is used both to
1918/// check variables after they have been parsed and their declarators
1919/// have been translated into a declaration, and to check variables
1920/// that have been instantiated from a template.
1921///
1922/// Sets NewVD->isInvalidDecl() if an error was encountered.
1923void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1924                                    bool &Redeclaration) {
1925  // If the decl is already known invalid, don't check it.
1926  if (NewVD->isInvalidDecl())
1927    return;
1928
1929  QualType T = NewVD->getType();
1930
1931  if (T->isObjCInterfaceType()) {
1932    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1933    return NewVD->setInvalidDecl();
1934  }
1935
1936  // The variable can not have an abstract class type.
1937  if (RequireNonAbstractType(NewVD->getLocation(), T,
1938                             diag::err_abstract_type_in_decl,
1939                             AbstractVariableType))
1940    return NewVD->setInvalidDecl();
1941
1942  // Emit an error if an address space was applied to decl with local storage.
1943  // This includes arrays of objects with address space qualifiers, but not
1944  // automatic variables that point to other address spaces.
1945  // ISO/IEC TR 18037 S5.1.2
1946  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1947    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1948    return NewVD->setInvalidDecl();
1949  }
1950
1951  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1952      && !NewVD->hasAttr<BlocksAttr>())
1953    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1954
1955  bool isVM = T->isVariablyModifiedType();
1956  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
1957      NewVD->hasAttr<BlocksAttr>())
1958    CurFunctionNeedsScopeChecking = true;
1959
1960  if ((isVM && NewVD->hasLinkage()) ||
1961      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1962    bool SizeIsNegative;
1963    QualType FixedTy =
1964        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1965
1966    if (FixedTy.isNull() && T->isVariableArrayType()) {
1967      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1968      // FIXME: This won't give the correct result for
1969      // int a[10][n];
1970      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1971
1972      if (NewVD->isFileVarDecl())
1973        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1974        << SizeRange;
1975      else if (NewVD->getStorageClass() == VarDecl::Static)
1976        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1977        << SizeRange;
1978      else
1979        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1980        << SizeRange;
1981      return NewVD->setInvalidDecl();
1982    }
1983
1984    if (FixedTy.isNull()) {
1985      if (NewVD->isFileVarDecl())
1986        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1987      else
1988        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1989      return NewVD->setInvalidDecl();
1990    }
1991
1992    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1993    NewVD->setType(FixedTy);
1994  }
1995
1996  if (!PrevDecl && NewVD->isExternC(Context)) {
1997    // Since we did not find anything by this name and we're declaring
1998    // an extern "C" variable, look for a non-visible extern "C"
1999    // declaration with the same name.
2000    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2001      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2002    if (Pos != LocallyScopedExternalDecls.end())
2003      PrevDecl = Pos->second;
2004  }
2005
2006  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2007    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2008      << T;
2009    return NewVD->setInvalidDecl();
2010  }
2011
2012  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2013    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2014    return NewVD->setInvalidDecl();
2015  }
2016
2017  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2018    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2019    return NewVD->setInvalidDecl();
2020  }
2021
2022  if (PrevDecl) {
2023    Redeclaration = true;
2024    MergeVarDecl(NewVD, PrevDecl);
2025  }
2026}
2027
2028NamedDecl*
2029Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2030                              QualType R, NamedDecl* PrevDecl,
2031                              MultiTemplateParamsArg TemplateParamLists,
2032                              bool IsFunctionDefinition, bool &Redeclaration) {
2033  assert(R.getTypePtr()->isFunctionType());
2034
2035  DeclarationName Name = GetNameForDeclarator(D);
2036  FunctionDecl::StorageClass SC = FunctionDecl::None;
2037  switch (D.getDeclSpec().getStorageClassSpec()) {
2038  default: assert(0 && "Unknown storage class!");
2039  case DeclSpec::SCS_auto:
2040  case DeclSpec::SCS_register:
2041  case DeclSpec::SCS_mutable:
2042    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2043         diag::err_typecheck_sclass_func);
2044    D.setInvalidType();
2045    break;
2046  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2047  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2048  case DeclSpec::SCS_static: {
2049    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2050      // C99 6.7.1p5:
2051      //   The declaration of an identifier for a function that has
2052      //   block scope shall have no explicit storage-class specifier
2053      //   other than extern
2054      // See also (C++ [dcl.stc]p4).
2055      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2056           diag::err_static_block_func);
2057      SC = FunctionDecl::None;
2058    } else
2059      SC = FunctionDecl::Static;
2060    break;
2061  }
2062  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2063  }
2064
2065  if (D.getDeclSpec().isThreadSpecified())
2066    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2067
2068  bool isInline = D.getDeclSpec().isInlineSpecified();
2069  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2070  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2071
2072  // Check that the return type is not an abstract class type.
2073  // For record types, this is done by the AbstractClassUsageDiagnoser once
2074  // the class has been completely parsed.
2075  if (!DC->isRecord() &&
2076      RequireNonAbstractType(D.getIdentifierLoc(),
2077                             R->getAsFunctionType()->getResultType(),
2078                             diag::err_abstract_type_in_decl,
2079                             AbstractReturnType))
2080    D.setInvalidType();
2081
2082  // Do not allow returning a objc interface by-value.
2083  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2084    Diag(D.getIdentifierLoc(),
2085         diag::err_object_cannot_be_passed_returned_by_value) << 0
2086      << R->getAsFunctionType()->getResultType();
2087    D.setInvalidType();
2088  }
2089
2090  // Check that we can declare a template here.
2091  if (TemplateParamLists.size() &&
2092      CheckTemplateDeclScope(S, TemplateParamLists))
2093    return 0;
2094
2095  bool isVirtualOkay = false;
2096  FunctionDecl *NewFD;
2097  if (D.getKind() == Declarator::DK_Constructor) {
2098    // This is a C++ constructor declaration.
2099    assert(DC->isRecord() &&
2100           "Constructors can only be declared in a member context");
2101
2102    R = CheckConstructorDeclarator(D, R, SC);
2103
2104    // Create the new declaration
2105    NewFD = CXXConstructorDecl::Create(Context,
2106                                       cast<CXXRecordDecl>(DC),
2107                                       D.getIdentifierLoc(), Name, R,
2108                                       isExplicit, isInline,
2109                                       /*isImplicitlyDeclared=*/false);
2110  } else if (D.getKind() == Declarator::DK_Destructor) {
2111    // This is a C++ destructor declaration.
2112    if (DC->isRecord()) {
2113      R = CheckDestructorDeclarator(D, SC);
2114
2115      NewFD = CXXDestructorDecl::Create(Context,
2116                                        cast<CXXRecordDecl>(DC),
2117                                        D.getIdentifierLoc(), Name, R,
2118                                        isInline,
2119                                        /*isImplicitlyDeclared=*/false);
2120
2121      isVirtualOkay = true;
2122    } else {
2123      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2124
2125      // Create a FunctionDecl to satisfy the function definition parsing
2126      // code path.
2127      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2128                                   Name, R, SC, isInline,
2129                                   /*hasPrototype=*/true,
2130                                   // FIXME: Move to DeclGroup...
2131                                   D.getDeclSpec().getSourceRange().getBegin());
2132      D.setInvalidType();
2133    }
2134  } else if (D.getKind() == Declarator::DK_Conversion) {
2135    if (!DC->isRecord()) {
2136      Diag(D.getIdentifierLoc(),
2137           diag::err_conv_function_not_member);
2138      return 0;
2139    }
2140
2141    CheckConversionDeclarator(D, R, SC);
2142    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2143                                      D.getIdentifierLoc(), Name, R,
2144                                      isInline, isExplicit);
2145
2146    isVirtualOkay = true;
2147  } else if (DC->isRecord()) {
2148    // If the of the function is the same as the name of the record, then this
2149    // must be an invalid constructor that has a return type.
2150    // (The parser checks for a return type and makes the declarator a
2151    // constructor if it has no return type).
2152    // must have an invalid constructor that has a return type
2153    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2154      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2155        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2156        << SourceRange(D.getIdentifierLoc());
2157      return 0;
2158    }
2159
2160    // This is a C++ method declaration.
2161    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2162                                  D.getIdentifierLoc(), Name, R,
2163                                  (SC == FunctionDecl::Static), isInline);
2164
2165    isVirtualOkay = (SC != FunctionDecl::Static);
2166  } else {
2167    // Determine whether the function was written with a
2168    // prototype. This true when:
2169    //   - we're in C++ (where every function has a prototype),
2170    //   - there is a prototype in the declarator, or
2171    //   - the type R of the function is some kind of typedef or other reference
2172    //     to a type name (which eventually refers to a function type).
2173    bool HasPrototype =
2174       getLangOptions().CPlusPlus ||
2175       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2176       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2177
2178    NewFD = FunctionDecl::Create(Context, DC,
2179                                 D.getIdentifierLoc(),
2180                                 Name, R, SC, isInline, HasPrototype,
2181                                 // FIXME: Move to DeclGroup...
2182                                 D.getDeclSpec().getSourceRange().getBegin());
2183  }
2184
2185  if (D.isInvalidType())
2186    NewFD->setInvalidDecl();
2187
2188  // Set the lexical context. If the declarator has a C++
2189  // scope specifier, the lexical context will be different
2190  // from the semantic context.
2191  NewFD->setLexicalDeclContext(CurContext);
2192
2193  // Match up the template parameter lists with the scope specifier, then
2194  // determine whether we have a template or a template specialization.
2195  FunctionTemplateDecl *FunctionTemplate = 0;
2196  if (TemplateParameterList *TemplateParams
2197        = MatchTemplateParametersToScopeSpecifier(
2198                                  D.getDeclSpec().getSourceRange().getBegin(),
2199                                  D.getCXXScopeSpec(),
2200                        (TemplateParameterList**)TemplateParamLists.release(),
2201                                                  TemplateParamLists.size())) {
2202    if (TemplateParams->size() > 0) {
2203      // This is a function template
2204      FunctionTemplate = FunctionTemplateDecl::Create(Context, CurContext,
2205                                                      NewFD->getLocation(),
2206                                                      Name, TemplateParams,
2207                                                      NewFD);
2208      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2209    } else {
2210      // FIXME: Handle function template specializations
2211    }
2212  }
2213
2214
2215  // C++ [dcl.fct.spec]p5:
2216  //   The virtual specifier shall only be used in declarations of
2217  //   nonstatic class member functions that appear within a
2218  //   member-specification of a class declaration; see 10.3.
2219  //
2220  if (isVirtual && !NewFD->isInvalidDecl()) {
2221    if (!isVirtualOkay) {
2222       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2223           diag::err_virtual_non_function);
2224    } else if (!CurContext->isRecord()) {
2225      // 'virtual' was specified outside of the class.
2226      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2227        << CodeModificationHint::CreateRemoval(
2228                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2229    } else {
2230      // Okay: Add virtual to the method.
2231      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2232      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2233      CurClass->setAggregate(false);
2234      CurClass->setPOD(false);
2235      CurClass->setPolymorphic(true);
2236      CurClass->setHasTrivialConstructor(false);
2237    }
2238  }
2239
2240  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2241    // Look for virtual methods in base classes that this method might override.
2242
2243    BasePaths Paths;
2244    if (LookupInBases(cast<CXXRecordDecl>(DC),
2245                      MemberLookupCriteria(NewMD), Paths)) {
2246      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2247           E = Paths.found_decls_end(); I != E; ++I) {
2248        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2249          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2250              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2251            NewMD->addOverriddenMethod(OldMD);
2252        }
2253      }
2254    }
2255  }
2256
2257  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2258      !CurContext->isRecord()) {
2259    // C++ [class.static]p1:
2260    //   A data or function member of a class may be declared static
2261    //   in a class definition, in which case it is a static member of
2262    //   the class.
2263
2264    // Complain about the 'static' specifier if it's on an out-of-line
2265    // member function definition.
2266    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2267         diag::err_static_out_of_line)
2268      << CodeModificationHint::CreateRemoval(
2269                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2270  }
2271
2272  // Handle GNU asm-label extension (encoded as an attribute).
2273  if (Expr *E = (Expr*) D.getAsmLabel()) {
2274    // The parser guarantees this is a string.
2275    StringLiteral *SE = cast<StringLiteral>(E);
2276    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2277                                                        SE->getByteLength())));
2278  }
2279
2280  // Copy the parameter declarations from the declarator D to the function
2281  // declaration NewFD, if they are available.  First scavenge them into Params.
2282  llvm::SmallVector<ParmVarDecl*, 16> Params;
2283  if (D.getNumTypeObjects() > 0) {
2284    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2285
2286    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2287    // function that takes no arguments, not a function that takes a
2288    // single void argument.
2289    // We let through "const void" here because Sema::GetTypeForDeclarator
2290    // already checks for that case.
2291    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2292        FTI.ArgInfo[0].Param &&
2293        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2294      // Empty arg list, don't push any params.
2295      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2296
2297      // In C++, the empty parameter-type-list must be spelled "void"; a
2298      // typedef of void is not permitted.
2299      if (getLangOptions().CPlusPlus &&
2300          Param->getType().getUnqualifiedType() != Context.VoidTy)
2301        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2302      // FIXME: Leaks decl?
2303    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2304      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2305        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2306        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2307        Param->setDeclContext(NewFD);
2308        Params.push_back(Param);
2309      }
2310    }
2311
2312  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2313    // When we're declaring a function with a typedef, typeof, etc as in the
2314    // following example, we'll need to synthesize (unnamed)
2315    // parameters for use in the declaration.
2316    //
2317    // @code
2318    // typedef void fn(int);
2319    // fn f;
2320    // @endcode
2321
2322    // Synthesize a parameter for each argument type.
2323    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2324         AE = FT->arg_type_end(); AI != AE; ++AI) {
2325      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2326                                               SourceLocation(), 0,
2327                                               *AI, VarDecl::None, 0);
2328      Param->setImplicit();
2329      Params.push_back(Param);
2330    }
2331  } else {
2332    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2333           "Should not need args for typedef of non-prototype fn");
2334  }
2335  // Finally, we know we have the right number of parameters, install them.
2336  NewFD->setParams(Context, Params.data(), Params.size());
2337
2338  // If name lookup finds a previous declaration that is not in the
2339  // same scope as the new declaration, this may still be an
2340  // acceptable redeclaration.
2341  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2342      !(NewFD->hasLinkage() &&
2343        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2344    PrevDecl = 0;
2345
2346  // Perform semantic checking on the function declaration.
2347  bool OverloadableAttrRequired = false; // FIXME: HACK!
2348  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2349                           /*FIXME:*/OverloadableAttrRequired);
2350
2351  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2352    // An out-of-line member function declaration must also be a
2353    // definition (C++ [dcl.meaning]p1).
2354    if (!IsFunctionDefinition) {
2355      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2356        << D.getCXXScopeSpec().getRange();
2357      NewFD->setInvalidDecl();
2358    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
2359      // The user tried to provide an out-of-line definition for a
2360      // function that is a member of a class or namespace, but there
2361      // was no such member function declared (C++ [class.mfct]p2,
2362      // C++ [namespace.memdef]p2). For example:
2363      //
2364      // class X {
2365      //   void f() const;
2366      // };
2367      //
2368      // void X::f() { } // ill-formed
2369      //
2370      // Complain about this problem, and attempt to suggest close
2371      // matches (e.g., those that differ only in cv-qualifiers and
2372      // whether the parameter types are references).
2373      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2374        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2375      NewFD->setInvalidDecl();
2376
2377      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2378                                              true);
2379      assert(!Prev.isAmbiguous() &&
2380             "Cannot have an ambiguity in previous-declaration lookup");
2381      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2382           Func != FuncEnd; ++Func) {
2383        if (isa<FunctionDecl>(*Func) &&
2384            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2385          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2386      }
2387
2388      PrevDecl = 0;
2389    }
2390  }
2391
2392  // Handle attributes. We need to have merged decls when handling attributes
2393  // (for example to check for conflicts, etc).
2394  // FIXME: This needs to happen before we merge declarations. Then,
2395  // let attribute merging cope with attribute conflicts.
2396  ProcessDeclAttributes(S, NewFD, D);
2397  AddKnownFunctionAttributes(NewFD);
2398
2399  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2400    // If a function name is overloadable in C, then every function
2401    // with that name must be marked "overloadable".
2402    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2403      << Redeclaration << NewFD;
2404    if (PrevDecl)
2405      Diag(PrevDecl->getLocation(),
2406           diag::note_attribute_overloadable_prev_overload);
2407    NewFD->addAttr(::new (Context) OverloadableAttr());
2408  }
2409
2410  // If this is a locally-scoped extern C function, update the
2411  // map of such names.
2412  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2413      && !NewFD->isInvalidDecl())
2414    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2415
2416  // Set this FunctionDecl's range up to the right paren.
2417  NewFD->setLocEnd(D.getSourceRange().getEnd());
2418
2419  if (FunctionTemplate && NewFD->isInvalidDecl())
2420    FunctionTemplate->setInvalidDecl();
2421
2422  if (FunctionTemplate)
2423    return FunctionTemplate;
2424
2425  return NewFD;
2426}
2427
2428/// \brief Perform semantic checking of a new function declaration.
2429///
2430/// Performs semantic analysis of the new function declaration
2431/// NewFD. This routine performs all semantic checking that does not
2432/// require the actual declarator involved in the declaration, and is
2433/// used both for the declaration of functions as they are parsed
2434/// (called via ActOnDeclarator) and for the declaration of functions
2435/// that have been instantiated via C++ template instantiation (called
2436/// via InstantiateDecl).
2437///
2438/// This sets NewFD->isInvalidDecl() to true if there was an error.
2439void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2440                                    bool &Redeclaration,
2441                                    bool &OverloadableAttrRequired) {
2442  // If NewFD is already known erroneous, don't do any of this checking.
2443  if (NewFD->isInvalidDecl())
2444    return;
2445
2446  if (NewFD->getResultType()->isVariablyModifiedType()) {
2447    // Functions returning a variably modified type violate C99 6.7.5.2p2
2448    // because all functions have linkage.
2449    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2450    return NewFD->setInvalidDecl();
2451  }
2452
2453  // Semantic checking for this function declaration (in isolation).
2454  if (getLangOptions().CPlusPlus) {
2455    // C++-specific checks.
2456    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2457      CheckConstructor(Constructor);
2458    } else if (isa<CXXDestructorDecl>(NewFD)) {
2459      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2460      QualType ClassType = Context.getTypeDeclType(Record);
2461      if (!ClassType->isDependentType()) {
2462        ClassType = Context.getCanonicalType(ClassType);
2463        DeclarationName Name
2464          = Context.DeclarationNames.getCXXDestructorName(ClassType);
2465        if (NewFD->getDeclName() != Name) {
2466          Diag(NewFD->getLocation(), diag::err_destructor_name);
2467          return NewFD->setInvalidDecl();
2468        }
2469      }
2470      Record->setUserDeclaredDestructor(true);
2471      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2472      // user-defined destructor.
2473      Record->setPOD(false);
2474
2475      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2476      // declared destructor.
2477      Record->setHasTrivialDestructor(false);
2478    } else if (CXXConversionDecl *Conversion
2479               = dyn_cast<CXXConversionDecl>(NewFD))
2480      ActOnConversionDeclarator(Conversion);
2481
2482    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2483    if (NewFD->isOverloadedOperator() &&
2484        CheckOverloadedOperatorDeclaration(NewFD))
2485      return NewFD->setInvalidDecl();
2486  }
2487
2488  // C99 6.7.4p6:
2489  //   [... ] For a function with external linkage, the following
2490  //   restrictions apply: [...] If all of the file scope declarations
2491  //   for a function in a translation unit include the inline
2492  //   function specifier without extern, then the definition in that
2493  //   translation unit is an inline definition. An inline definition
2494  //   does not provide an external definition for the function, and
2495  //   does not forbid an external definition in another translation
2496  //   unit.
2497  //
2498  // Here we determine whether this function, in isolation, would be a
2499  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2500  // previous declarations.
2501  if (NewFD->isInline() && getLangOptions().C99 &&
2502      NewFD->getStorageClass() == FunctionDecl::None &&
2503      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2504    NewFD->setC99InlineDefinition(true);
2505
2506  // Check for a previous declaration of this name.
2507  if (!PrevDecl && NewFD->isExternC(Context)) {
2508    // Since we did not find anything by this name and we're declaring
2509    // an extern "C" function, look for a non-visible extern "C"
2510    // declaration with the same name.
2511    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2512      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2513    if (Pos != LocallyScopedExternalDecls.end())
2514      PrevDecl = Pos->second;
2515  }
2516
2517  // Merge or overload the declaration with an existing declaration of
2518  // the same name, if appropriate.
2519  if (PrevDecl) {
2520    // Determine whether NewFD is an overload of PrevDecl or
2521    // a declaration that requires merging. If it's an overload,
2522    // there's no more work to do here; we'll just add the new
2523    // function to the scope.
2524    OverloadedFunctionDecl::function_iterator MatchedDecl;
2525
2526    if (!getLangOptions().CPlusPlus &&
2527        AllowOverloadingOfFunction(PrevDecl, Context)) {
2528      OverloadableAttrRequired = true;
2529
2530      // Functions marked "overloadable" must have a prototype (that
2531      // we can't get through declaration merging).
2532      if (!NewFD->getType()->getAsFunctionProtoType()) {
2533        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2534          << NewFD;
2535        Redeclaration = true;
2536
2537        // Turn this into a variadic function with no parameters.
2538        QualType R = Context.getFunctionType(
2539                       NewFD->getType()->getAsFunctionType()->getResultType(),
2540                       0, 0, true, 0);
2541        NewFD->setType(R);
2542        return NewFD->setInvalidDecl();
2543      }
2544    }
2545
2546    if (PrevDecl &&
2547        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2548         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
2549        !isa<UsingDecl>(PrevDecl)) {
2550      Redeclaration = true;
2551      Decl *OldDecl = PrevDecl;
2552
2553      // If PrevDecl was an overloaded function, extract the
2554      // FunctionDecl that matched.
2555      if (isa<OverloadedFunctionDecl>(PrevDecl))
2556        OldDecl = *MatchedDecl;
2557
2558      // NewFD and OldDecl represent declarations that need to be
2559      // merged.
2560      if (MergeFunctionDecl(NewFD, OldDecl))
2561        return NewFD->setInvalidDecl();
2562
2563      if (FunctionTemplateDecl *OldTemplateDecl
2564            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2565        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2566      else {
2567        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2568          NewFD->setAccess(OldDecl->getAccess());
2569        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2570      }
2571    }
2572  }
2573
2574  // In C++, check default arguments now that we have merged decls. Unless
2575  // the lexical context is the class, because in this case this is done
2576  // during delayed parsing anyway.
2577  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2578    CheckCXXDefaultArguments(NewFD);
2579}
2580
2581bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2582  // FIXME: Need strict checking.  In C89, we need to check for
2583  // any assignment, increment, decrement, function-calls, or
2584  // commas outside of a sizeof.  In C99, it's the same list,
2585  // except that the aforementioned are allowed in unevaluated
2586  // expressions.  Everything else falls under the
2587  // "may accept other forms of constant expressions" exception.
2588  // (We never end up here for C++, so the constant expression
2589  // rules there don't matter.)
2590  if (Init->isConstantInitializer(Context))
2591    return false;
2592  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2593    << Init->getSourceRange();
2594  return true;
2595}
2596
2597void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
2598  AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
2599}
2600
2601/// AddInitializerToDecl - Adds the initializer Init to the
2602/// declaration dcl. If DirectInit is true, this is C++ direct
2603/// initialization rather than copy initialization.
2604void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2605  Decl *RealDecl = dcl.getAs<Decl>();
2606  // If there is no declaration, there was an error parsing it.  Just ignore
2607  // the initializer.
2608  if (RealDecl == 0)
2609    return;
2610
2611  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2612    // With declarators parsed the way they are, the parser cannot
2613    // distinguish between a normal initializer and a pure-specifier.
2614    // Thus this grotesque test.
2615    IntegerLiteral *IL;
2616    Expr *Init = static_cast<Expr *>(init.get());
2617    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2618        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2619      if (Method->isVirtualAsWritten()) {
2620        Method->setPure();
2621
2622        // A class is abstract if at least one function is pure virtual.
2623        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2624      } else if (!Method->isInvalidDecl()) {
2625        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2626          << Method->getDeclName() << Init->getSourceRange();
2627        Method->setInvalidDecl();
2628      }
2629    } else {
2630      Diag(Method->getLocation(), diag::err_member_function_initialization)
2631        << Method->getDeclName() << Init->getSourceRange();
2632      Method->setInvalidDecl();
2633    }
2634    return;
2635  }
2636
2637  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2638  if (!VDecl) {
2639    if (getLangOptions().CPlusPlus &&
2640        RealDecl->getLexicalDeclContext()->isRecord() &&
2641        isa<NamedDecl>(RealDecl))
2642      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2643        << cast<NamedDecl>(RealDecl)->getDeclName();
2644    else
2645      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2646    RealDecl->setInvalidDecl();
2647    return;
2648  }
2649
2650  if (!VDecl->getType()->isArrayType() &&
2651      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2652                          diag::err_typecheck_decl_incomplete_type)) {
2653    RealDecl->setInvalidDecl();
2654    return;
2655  }
2656
2657  const VarDecl *Def = 0;
2658  if (VDecl->getDefinition(Def)) {
2659    Diag(VDecl->getLocation(), diag::err_redefinition)
2660      << VDecl->getDeclName();
2661    Diag(Def->getLocation(), diag::note_previous_definition);
2662    VDecl->setInvalidDecl();
2663    return;
2664  }
2665
2666  // Take ownership of the expression, now that we're sure we have somewhere
2667  // to put it.
2668  Expr *Init = init.takeAs<Expr>();
2669  assert(Init && "missing initializer");
2670
2671  // Get the decls type and save a reference for later, since
2672  // CheckInitializerTypes may change it.
2673  QualType DclT = VDecl->getType(), SavT = DclT;
2674  if (VDecl->isBlockVarDecl()) {
2675    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2676      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2677      VDecl->setInvalidDecl();
2678    } else if (!VDecl->isInvalidDecl()) {
2679      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2680                                VDecl->getDeclName(), DirectInit))
2681        VDecl->setInvalidDecl();
2682
2683      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2684      // Don't check invalid declarations to avoid emitting useless diagnostics.
2685      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2686        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2687          CheckForConstantInitializer(Init, DclT);
2688      }
2689    }
2690  } else if (VDecl->isStaticDataMember() &&
2691             VDecl->getLexicalDeclContext()->isRecord()) {
2692    // This is an in-class initialization for a static data member, e.g.,
2693    //
2694    // struct S {
2695    //   static const int value = 17;
2696    // };
2697
2698    // Attach the initializer
2699    VDecl->setInit(Context, Init);
2700
2701    // C++ [class.mem]p4:
2702    //   A member-declarator can contain a constant-initializer only
2703    //   if it declares a static member (9.4) of const integral or
2704    //   const enumeration type, see 9.4.2.
2705    QualType T = VDecl->getType();
2706    if (!T->isDependentType() &&
2707        (!Context.getCanonicalType(T).isConstQualified() ||
2708         !T->isIntegralType())) {
2709      Diag(VDecl->getLocation(), diag::err_member_initialization)
2710        << VDecl->getDeclName() << Init->getSourceRange();
2711      VDecl->setInvalidDecl();
2712    } else {
2713      // C++ [class.static.data]p4:
2714      //   If a static data member is of const integral or const
2715      //   enumeration type, its declaration in the class definition
2716      //   can specify a constant-initializer which shall be an
2717      //   integral constant expression (5.19).
2718      if (!Init->isTypeDependent() &&
2719          !Init->getType()->isIntegralType()) {
2720        // We have a non-dependent, non-integral or enumeration type.
2721        Diag(Init->getSourceRange().getBegin(),
2722             diag::err_in_class_initializer_non_integral_type)
2723          << Init->getType() << Init->getSourceRange();
2724        VDecl->setInvalidDecl();
2725      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2726        // Check whether the expression is a constant expression.
2727        llvm::APSInt Value;
2728        SourceLocation Loc;
2729        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2730          Diag(Loc, diag::err_in_class_initializer_non_constant)
2731            << Init->getSourceRange();
2732          VDecl->setInvalidDecl();
2733        } else if (!VDecl->getType()->isDependentType())
2734          ImpCastExprToType(Init, VDecl->getType());
2735      }
2736    }
2737  } else if (VDecl->isFileVarDecl()) {
2738    if (VDecl->getStorageClass() == VarDecl::Extern)
2739      Diag(VDecl->getLocation(), diag::warn_extern_init);
2740    if (!VDecl->isInvalidDecl())
2741      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2742                                VDecl->getDeclName(), DirectInit))
2743        VDecl->setInvalidDecl();
2744
2745    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2746    // Don't check invalid declarations to avoid emitting useless diagnostics.
2747    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2748      // C99 6.7.8p4. All file scoped initializers need to be constant.
2749      CheckForConstantInitializer(Init, DclT);
2750    }
2751  }
2752  // If the type changed, it means we had an incomplete type that was
2753  // completed by the initializer. For example:
2754  //   int ary[] = { 1, 3, 5 };
2755  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2756  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2757    VDecl->setType(DclT);
2758    Init->setType(DclT);
2759  }
2760
2761  // Attach the initializer to the decl.
2762  VDecl->setInit(Context, Init);
2763
2764  // If the previous declaration of VDecl was a tentative definition,
2765  // remove it from the set of tentative definitions.
2766  if (VDecl->getPreviousDeclaration() &&
2767      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2768    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2769      = TentativeDefinitions.find(VDecl->getDeclName());
2770    assert(Pos != TentativeDefinitions.end() &&
2771           "Unrecorded tentative definition?");
2772    TentativeDefinitions.erase(Pos);
2773  }
2774
2775  return;
2776}
2777
2778void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
2779                                  bool TypeContainsUndeducedAuto) {
2780  Decl *RealDecl = dcl.getAs<Decl>();
2781
2782  // If there is no declaration, there was an error parsing it. Just ignore it.
2783  if (RealDecl == 0)
2784    return;
2785
2786  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2787    QualType Type = Var->getType();
2788
2789    // Record tentative definitions.
2790    if (Var->isTentativeDefinition(Context))
2791      TentativeDefinitions[Var->getDeclName()] = Var;
2792
2793    // C++ [dcl.init.ref]p3:
2794    //   The initializer can be omitted for a reference only in a
2795    //   parameter declaration (8.3.5), in the declaration of a
2796    //   function return type, in the declaration of a class member
2797    //   within its class declaration (9.2), and where the extern
2798    //   specifier is explicitly used.
2799    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2800      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2801        << Var->getDeclName()
2802        << SourceRange(Var->getLocation(), Var->getLocation());
2803      Var->setInvalidDecl();
2804      return;
2805    }
2806
2807    // C++0x [dcl.spec.auto]p3
2808    if (TypeContainsUndeducedAuto) {
2809      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
2810        << Var->getDeclName() << Type;
2811      Var->setInvalidDecl();
2812      return;
2813    }
2814
2815    // C++ [dcl.init]p9:
2816    //
2817    //   If no initializer is specified for an object, and the object
2818    //   is of (possibly cv-qualified) non-POD class type (or array
2819    //   thereof), the object shall be default-initialized; if the
2820    //   object is of const-qualified type, the underlying class type
2821    //   shall have a user-declared default constructor.
2822    if (getLangOptions().CPlusPlus) {
2823      QualType InitType = Type;
2824      if (const ArrayType *Array = Context.getAsArrayType(Type))
2825        InitType = Array->getElementType();
2826      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
2827          InitType->isRecordType() && !InitType->isDependentType()) {
2828        CXXRecordDecl *RD =
2829          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2830        CXXConstructorDecl *Constructor = 0;
2831        if (!RequireCompleteType(Var->getLocation(), InitType,
2832                                    diag::err_invalid_incomplete_type_use))
2833          Constructor
2834            = PerformInitializationByConstructor(InitType, 0, 0,
2835                                                 Var->getLocation(),
2836                                               SourceRange(Var->getLocation(),
2837                                                           Var->getLocation()),
2838                                                 Var->getDeclName(),
2839                                                 IK_Default);
2840        if (!Constructor)
2841          Var->setInvalidDecl();
2842        else {
2843          if (!RD->hasTrivialConstructor())
2844            InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2845          // FIXME. Must do all that is needed to destroy the object
2846          // on scope exit. For now, just mark the destructor as used.
2847          MarkDestructorReferenced(Var->getLocation(), InitType);
2848        }
2849      }
2850    }
2851
2852#if 0
2853    // FIXME: Temporarily disabled because we are not properly parsing
2854    // linkage specifications on declarations, e.g.,
2855    //
2856    //   extern "C" const CGPoint CGPointerZero;
2857    //
2858    // C++ [dcl.init]p9:
2859    //
2860    //     If no initializer is specified for an object, and the
2861    //     object is of (possibly cv-qualified) non-POD class type (or
2862    //     array thereof), the object shall be default-initialized; if
2863    //     the object is of const-qualified type, the underlying class
2864    //     type shall have a user-declared default
2865    //     constructor. Otherwise, if no initializer is specified for
2866    //     an object, the object and its subobjects, if any, have an
2867    //     indeterminate initial value; if the object or any of its
2868    //     subobjects are of const-qualified type, the program is
2869    //     ill-formed.
2870    //
2871    // This isn't technically an error in C, so we don't diagnose it.
2872    //
2873    // FIXME: Actually perform the POD/user-defined default
2874    // constructor check.
2875    if (getLangOptions().CPlusPlus &&
2876        Context.getCanonicalType(Type).isConstQualified() &&
2877        !Var->hasExternalStorage())
2878      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2879        << Var->getName()
2880        << SourceRange(Var->getLocation(), Var->getLocation());
2881#endif
2882  }
2883}
2884
2885Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
2886                                                   DeclPtrTy *Group,
2887                                                   unsigned NumDecls) {
2888  llvm::SmallVector<Decl*, 8> Decls;
2889
2890  if (DS.isTypeSpecOwned())
2891    Decls.push_back((Decl*)DS.getTypeRep());
2892
2893  for (unsigned i = 0; i != NumDecls; ++i)
2894    if (Decl *D = Group[i].getAs<Decl>())
2895      Decls.push_back(D);
2896
2897  // Perform semantic analysis that depends on having fully processed both
2898  // the declarator and initializer.
2899  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2900    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2901    if (!IDecl)
2902      continue;
2903    QualType T = IDecl->getType();
2904
2905    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2906    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2907    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2908      if (!IDecl->isInvalidDecl() &&
2909          RequireCompleteType(IDecl->getLocation(), T,
2910                              diag::err_typecheck_decl_incomplete_type))
2911        IDecl->setInvalidDecl();
2912    }
2913    // File scope. C99 6.9.2p2: A declaration of an identifier for an
2914    // object that has file scope without an initializer, and without a
2915    // storage-class specifier or with the storage-class specifier "static",
2916    // constitutes a tentative definition. Note: A tentative definition with
2917    // external linkage is valid (C99 6.2.2p5).
2918    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
2919      if (const IncompleteArrayType *ArrayT
2920          = Context.getAsIncompleteArrayType(T)) {
2921        if (RequireCompleteType(IDecl->getLocation(),
2922                                ArrayT->getElementType(),
2923                                diag::err_illegal_decl_array_incomplete_type))
2924          IDecl->setInvalidDecl();
2925      }
2926      else if (IDecl->getStorageClass() == VarDecl::Static) {
2927        // C99 6.9.2p3: If the declaration of an identifier for an object is
2928        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2929        // declared type shall not be an incomplete type.
2930        // NOTE: code such as the following
2931        //     static struct s;
2932        //     struct s { int a; };
2933        // is accepted by gcc. Hence here we issue a warning instead of
2934        // an error and we do not invalidate the static declaration.
2935        // NOTE: to avoid multiple warnings, only check the first declaration.
2936        if (IDecl->getPreviousDeclaration() == 0)
2937          RequireCompleteType(IDecl->getLocation(), T,
2938                              diag::ext_typecheck_decl_incomplete_type);
2939      }
2940    }
2941  }
2942  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2943                                                   Decls.data(), Decls.size()));
2944}
2945
2946
2947/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2948/// to introduce parameters into function prototype scope.
2949Sema::DeclPtrTy
2950Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2951  const DeclSpec &DS = D.getDeclSpec();
2952
2953  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2954  VarDecl::StorageClass StorageClass = VarDecl::None;
2955  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2956    StorageClass = VarDecl::Register;
2957  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2958    Diag(DS.getStorageClassSpecLoc(),
2959         diag::err_invalid_storage_class_in_func_decl);
2960    D.getMutableDeclSpec().ClearStorageClassSpecs();
2961  }
2962
2963  if (D.getDeclSpec().isThreadSpecified())
2964    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2965
2966  DiagnoseFunctionSpecifiers(D);
2967
2968  // Check that there are no default arguments inside the type of this
2969  // parameter (C++ only).
2970  if (getLangOptions().CPlusPlus)
2971    CheckExtraCXXDefaultArguments(D);
2972
2973  TagDecl *OwnedDecl = 0;
2974  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
2975
2976  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
2977    // C++ [dcl.fct]p6:
2978    //   Types shall not be defined in return or parameter types.
2979    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
2980      << Context.getTypeDeclType(OwnedDecl);
2981  }
2982
2983  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2984  // Can this happen for params?  We already checked that they don't conflict
2985  // among each other.  Here they can only shadow globals, which is ok.
2986  IdentifierInfo *II = D.getIdentifier();
2987  if (II) {
2988    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2989      if (PrevDecl->isTemplateParameter()) {
2990        // Maybe we will complain about the shadowed template parameter.
2991        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2992        // Just pretend that we didn't see the previous declaration.
2993        PrevDecl = 0;
2994      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2995        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2996
2997        // Recover by removing the name
2998        II = 0;
2999        D.SetIdentifier(0, D.getIdentifierLoc());
3000      }
3001    }
3002  }
3003
3004  // Parameters can not be abstract class types.
3005  // For record types, this is done by the AbstractClassUsageDiagnoser once
3006  // the class has been completely parsed.
3007  if (!CurContext->isRecord() &&
3008      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3009                             diag::err_abstract_type_in_decl,
3010                             AbstractParamType))
3011    D.setInvalidType(true);
3012
3013  QualType T = adjustParameterType(parmDeclType);
3014
3015  ParmVarDecl *New;
3016  if (T == parmDeclType) // parameter type did not need adjustment
3017    New = ParmVarDecl::Create(Context, CurContext,
3018                              D.getIdentifierLoc(), II,
3019                              parmDeclType, StorageClass,
3020                              0);
3021  else // keep track of both the adjusted and unadjusted types
3022    New = OriginalParmVarDecl::Create(Context, CurContext,
3023                                      D.getIdentifierLoc(), II, T,
3024                                      parmDeclType, StorageClass, 0);
3025
3026  if (D.isInvalidType())
3027    New->setInvalidDecl();
3028
3029  // Parameter declarators cannot be interface types. All ObjC objects are
3030  // passed by reference.
3031  if (T->isObjCInterfaceType()) {
3032    Diag(D.getIdentifierLoc(),
3033         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3034    New->setInvalidDecl();
3035  }
3036
3037  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3038  if (D.getCXXScopeSpec().isSet()) {
3039    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3040      << D.getCXXScopeSpec().getRange();
3041    New->setInvalidDecl();
3042  }
3043
3044  // Add the parameter declaration into this scope.
3045  S->AddDecl(DeclPtrTy::make(New));
3046  if (II)
3047    IdResolver.AddDecl(New);
3048
3049  ProcessDeclAttributes(S, New, D);
3050
3051  if (New->hasAttr<BlocksAttr>()) {
3052    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3053  }
3054  return DeclPtrTy::make(New);
3055}
3056
3057void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3058                                           SourceLocation LocAfterDecls) {
3059  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3060         "Not a function declarator!");
3061  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3062
3063  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3064  // for a K&R function.
3065  if (!FTI.hasPrototype) {
3066    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3067      --i;
3068      if (FTI.ArgInfo[i].Param == 0) {
3069        std::string Code = "  int ";
3070        Code += FTI.ArgInfo[i].Ident->getName();
3071        Code += ";\n";
3072        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3073          << FTI.ArgInfo[i].Ident
3074          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3075
3076        // Implicitly declare the argument as type 'int' for lack of a better
3077        // type.
3078        DeclSpec DS;
3079        const char* PrevSpec; // unused
3080        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3081                           PrevSpec);
3082        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3083        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3084        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3085      }
3086    }
3087  }
3088}
3089
3090Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3091                                              Declarator &D) {
3092  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3093  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3094         "Not a function declarator!");
3095  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3096
3097  if (FTI.hasPrototype) {
3098    // FIXME: Diagnose arguments without names in C.
3099  }
3100
3101  Scope *ParentScope = FnBodyScope->getParent();
3102
3103  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3104                                  MultiTemplateParamsArg(*this),
3105                                  /*IsFunctionDefinition=*/true);
3106  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3107}
3108
3109Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3110  if (!D)
3111    return D;
3112  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
3113
3114  CurFunctionNeedsScopeChecking = false;
3115
3116  // See if this is a redefinition.
3117  const FunctionDecl *Definition;
3118  if (FD->getBody(Definition)) {
3119    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3120    Diag(Definition->getLocation(), diag::note_previous_definition);
3121  }
3122
3123  // Builtin functions cannot be defined.
3124  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3125    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3126      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3127      FD->setInvalidDecl();
3128    }
3129  }
3130
3131  // The return type of a function definition must be complete
3132  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3133  QualType ResultType = FD->getResultType();
3134  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3135      !FD->isInvalidDecl() &&
3136      RequireCompleteType(FD->getLocation(), ResultType,
3137                          diag::err_func_def_incomplete_result))
3138    FD->setInvalidDecl();
3139
3140  // GNU warning -Wmissing-prototypes:
3141  //   Warn if a global function is defined without a previous
3142  //   prototype declaration. This warning is issued even if the
3143  //   definition itself provides a prototype. The aim is to detect
3144  //   global functions that fail to be declared in header files.
3145  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3146      !FD->isMain()) {
3147    bool MissingPrototype = true;
3148    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3149         Prev; Prev = Prev->getPreviousDeclaration()) {
3150      // Ignore any declarations that occur in function or method
3151      // scope, because they aren't visible from the header.
3152      if (Prev->getDeclContext()->isFunctionOrMethod())
3153        continue;
3154
3155      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3156      break;
3157    }
3158
3159    if (MissingPrototype)
3160      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3161  }
3162
3163  if (FnBodyScope)
3164    PushDeclContext(FnBodyScope, FD);
3165
3166  // Check the validity of our function parameters
3167  CheckParmsForFunctionDef(FD);
3168
3169  // Introduce our parameters into the function scope
3170  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3171    ParmVarDecl *Param = FD->getParamDecl(p);
3172    Param->setOwningFunction(FD);
3173
3174    // If this has an identifier, add it to the scope stack.
3175    if (Param->getIdentifier() && FnBodyScope)
3176      PushOnScopeChains(Param, FnBodyScope);
3177  }
3178
3179  // Checking attributes of current function definition
3180  // dllimport attribute.
3181  if (FD->getAttr<DLLImportAttr>() &&
3182      (!FD->getAttr<DLLExportAttr>())) {
3183    // dllimport attribute cannot be applied to definition.
3184    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3185      Diag(FD->getLocation(),
3186           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3187        << "dllimport";
3188      FD->setInvalidDecl();
3189      return DeclPtrTy::make(FD);
3190    } else {
3191      // If a symbol previously declared dllimport is later defined, the
3192      // attribute is ignored in subsequent references, and a warning is
3193      // emitted.
3194      Diag(FD->getLocation(),
3195           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3196        << FD->getNameAsCString() << "dllimport";
3197    }
3198  }
3199  return DeclPtrTy::make(FD);
3200}
3201
3202Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3203  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3204}
3205
3206Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3207                                              bool IsInstantiation) {
3208  Decl *dcl = D.getAs<Decl>();
3209  Stmt *Body = BodyArg.takeAs<Stmt>();
3210  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3211    FD->setBody(Body);
3212
3213    if (!FD->isInvalidDecl())
3214      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3215
3216    // C++ [basic.def.odr]p2:
3217    //   [...] A virtual member function is used if it is not pure. [...]
3218    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3219      if (Method->isVirtual() && !Method->isPure())
3220        MarkDeclarationReferenced(Method->getLocation(), Method);
3221
3222    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3223  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3224    assert(MD == getCurMethodDecl() && "Method parsing confused");
3225    MD->setBody(Body);
3226    MD->setEndLoc(Body->getLocEnd());
3227
3228    if (!MD->isInvalidDecl())
3229      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3230  } else {
3231    Body->Destroy(Context);
3232    return DeclPtrTy();
3233  }
3234  if (!IsInstantiation)
3235    PopDeclContext();
3236
3237  // Verify and clean out per-function state.
3238
3239  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3240
3241  // Check goto/label use.
3242  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3243       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3244    LabelStmt *L = I->second;
3245
3246    // Verify that we have no forward references left.  If so, there was a goto
3247    // or address of a label taken, but no definition of it.  Label fwd
3248    // definitions are indicated with a null substmt.
3249    if (L->getSubStmt() != 0)
3250      continue;
3251
3252    // Emit error.
3253    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3254
3255    // At this point, we have gotos that use the bogus label.  Stitch it into
3256    // the function body so that they aren't leaked and that the AST is well
3257    // formed.
3258    if (Body == 0) {
3259      // The whole function wasn't parsed correctly, just delete this.
3260      L->Destroy(Context);
3261      continue;
3262    }
3263
3264    // Otherwise, the body is valid: we want to stitch the label decl into the
3265    // function somewhere so that it is properly owned and so that the goto
3266    // has a valid target.  Do this by creating a new compound stmt with the
3267    // label in it.
3268
3269    // Give the label a sub-statement.
3270    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3271
3272    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3273                               cast<CXXTryStmt>(Body)->getTryBlock() :
3274                               cast<CompoundStmt>(Body);
3275    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3276    Elements.push_back(L);
3277    Compound->setStmts(Context, &Elements[0], Elements.size());
3278  }
3279  FunctionLabelMap.clear();
3280
3281  if (!Body) return D;
3282
3283  // Verify that that gotos and switch cases don't jump into scopes illegally.
3284  if (CurFunctionNeedsScopeChecking)
3285    DiagnoseInvalidJumps(Body);
3286
3287  // C++ constructors that have function-try-blocks can't have return
3288  // statements in the handlers of that block. (C++ [except.handle]p14)
3289  // Verify this.
3290  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3291    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3292
3293  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3294    Destructor->computeBaseOrMembersToDestroy(Context);
3295  return D;
3296}
3297
3298/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3299/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3300NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3301                                          IdentifierInfo &II, Scope *S) {
3302  // Before we produce a declaration for an implicitly defined
3303  // function, see whether there was a locally-scoped declaration of
3304  // this name as a function or variable. If so, use that
3305  // (non-visible) declaration, and complain about it.
3306  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3307    = LocallyScopedExternalDecls.find(&II);
3308  if (Pos != LocallyScopedExternalDecls.end()) {
3309    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3310    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3311    return Pos->second;
3312  }
3313
3314  // Extension in C99.  Legal in C90, but warn about it.
3315  if (getLangOptions().C99)
3316    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3317  else
3318    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3319
3320  // FIXME: handle stuff like:
3321  // void foo() { extern float X(); }
3322  // void bar() { X(); }  <-- implicit decl for X in another scope.
3323
3324  // Set a Declarator for the implicit definition: int foo();
3325  const char *Dummy;
3326  DeclSpec DS;
3327  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3328  Error = Error; // Silence warning.
3329  assert(!Error && "Error setting up implicit decl!");
3330  Declarator D(DS, Declarator::BlockContext);
3331  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3332                                             0, 0, false, SourceLocation(),
3333                                             false, 0,0,0, Loc, D),
3334                SourceLocation());
3335  D.SetIdentifier(&II, Loc);
3336
3337  // Insert this function into translation-unit scope.
3338
3339  DeclContext *PrevDC = CurContext;
3340  CurContext = Context.getTranslationUnitDecl();
3341
3342  FunctionDecl *FD =
3343 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3344  FD->setImplicit();
3345
3346  CurContext = PrevDC;
3347
3348  AddKnownFunctionAttributes(FD);
3349
3350  return FD;
3351}
3352
3353/// \brief Adds any function attributes that we know a priori based on
3354/// the declaration of this function.
3355///
3356/// These attributes can apply both to implicitly-declared builtins
3357/// (like __builtin___printf_chk) or to library-declared functions
3358/// like NSLog or printf.
3359void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3360  if (FD->isInvalidDecl())
3361    return;
3362
3363  // If this is a built-in function, map its builtin attributes to
3364  // actual attributes.
3365  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3366    // Handle printf-formatting attributes.
3367    unsigned FormatIdx;
3368    bool HasVAListArg;
3369    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3370      if (!FD->getAttr<FormatAttr>())
3371        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3372                                             HasVAListArg ? 0 : FormatIdx + 2));
3373    }
3374
3375    // Mark const if we don't care about errno and that is the only
3376    // thing preventing the function from being const. This allows
3377    // IRgen to use LLVM intrinsics for such functions.
3378    if (!getLangOptions().MathErrno &&
3379        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3380      if (!FD->getAttr<ConstAttr>())
3381        FD->addAttr(::new (Context) ConstAttr());
3382    }
3383  }
3384
3385  IdentifierInfo *Name = FD->getIdentifier();
3386  if (!Name)
3387    return;
3388  if ((!getLangOptions().CPlusPlus &&
3389       FD->getDeclContext()->isTranslationUnit()) ||
3390      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3391       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3392       LinkageSpecDecl::lang_c)) {
3393    // Okay: this could be a libc/libm/Objective-C function we know
3394    // about.
3395  } else
3396    return;
3397
3398  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3399    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3400      // FIXME: We known better than our headers.
3401      const_cast<FormatAttr *>(Format)->setType("printf");
3402    } else
3403      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3404                                             Name->isStr("NSLogv") ? 0 : 2));
3405  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3406    if (!FD->getAttr<FormatAttr>())
3407      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3408                                             Name->isStr("vasprintf") ? 0 : 3));
3409  }
3410}
3411
3412TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3413  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3414  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3415
3416  // Scope manipulation handled by caller.
3417  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3418                                           D.getIdentifierLoc(),
3419                                           D.getIdentifier(),
3420                                           T);
3421
3422  if (TagType *TT = dyn_cast<TagType>(T)) {
3423    TagDecl *TD = TT->getDecl();
3424
3425    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3426    // keep track of the TypedefDecl.
3427    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3428      TD->setTypedefForAnonDecl(NewTD);
3429  }
3430
3431  if (D.isInvalidType())
3432    NewTD->setInvalidDecl();
3433  return NewTD;
3434}
3435
3436
3437/// \brief Determine whether a tag with a given kind is acceptable
3438/// as a redeclaration of the given tag declaration.
3439///
3440/// \returns true if the new tag kind is acceptable, false otherwise.
3441bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3442                                        TagDecl::TagKind NewTag,
3443                                        SourceLocation NewTagLoc,
3444                                        const IdentifierInfo &Name) {
3445  // C++ [dcl.type.elab]p3:
3446  //   The class-key or enum keyword present in the
3447  //   elaborated-type-specifier shall agree in kind with the
3448  //   declaration to which the name in theelaborated-type-specifier
3449  //   refers. This rule also applies to the form of
3450  //   elaborated-type-specifier that declares a class-name or
3451  //   friend class since it can be construed as referring to the
3452  //   definition of the class. Thus, in any
3453  //   elaborated-type-specifier, the enum keyword shall be used to
3454  //   refer to an enumeration (7.2), the union class-keyshall be
3455  //   used to refer to a union (clause 9), and either the class or
3456  //   struct class-key shall be used to refer to a class (clause 9)
3457  //   declared using the class or struct class-key.
3458  TagDecl::TagKind OldTag = Previous->getTagKind();
3459  if (OldTag == NewTag)
3460    return true;
3461
3462  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3463      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3464    // Warn about the struct/class tag mismatch.
3465    bool isTemplate = false;
3466    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3467      isTemplate = Record->getDescribedClassTemplate();
3468
3469    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3470      << (NewTag == TagDecl::TK_class)
3471      << isTemplate << &Name
3472      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3473                              OldTag == TagDecl::TK_class? "class" : "struct");
3474    Diag(Previous->getLocation(), diag::note_previous_use);
3475    return true;
3476  }
3477  return false;
3478}
3479
3480/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3481/// former case, Name will be non-null.  In the later case, Name will be null.
3482/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3483/// reference/declaration/definition of a tag.
3484Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3485                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3486                               IdentifierInfo *Name, SourceLocation NameLoc,
3487                               AttributeList *Attr, AccessSpecifier AS,
3488                               bool &OwnedDecl) {
3489  // If this is not a definition, it must have a name.
3490  assert((Name != 0 || TK == TK_Definition) &&
3491         "Nameless record must be a definition!");
3492
3493  OwnedDecl = false;
3494  TagDecl::TagKind Kind;
3495  switch (TagSpec) {
3496  default: assert(0 && "Unknown tag type!");
3497  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3498  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3499  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3500  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3501  }
3502
3503  DeclContext *SearchDC = CurContext;
3504  DeclContext *DC = CurContext;
3505  NamedDecl *PrevDecl = 0;
3506
3507  bool Invalid = false;
3508
3509  if (Name && SS.isNotEmpty()) {
3510    // We have a nested-name tag ('struct foo::bar').
3511
3512    // Check for invalid 'foo::'.
3513    if (SS.isInvalid()) {
3514      Name = 0;
3515      goto CreateNewDecl;
3516    }
3517
3518    if (RequireCompleteDeclContext(SS))
3519      return DeclPtrTy::make((Decl *)0);
3520
3521    DC = computeDeclContext(SS, true);
3522    SearchDC = DC;
3523    // Look-up name inside 'foo::'.
3524    PrevDecl
3525      = dyn_cast_or_null<TagDecl>(
3526               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3527
3528    // A tag 'foo::bar' must already exist.
3529    if (PrevDecl == 0) {
3530      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3531      Name = 0;
3532      Invalid = true;
3533      goto CreateNewDecl;
3534    }
3535  } else if (Name) {
3536    // If this is a named struct, check to see if there was a previous forward
3537    // declaration or definition.
3538    // FIXME: We're looking into outer scopes here, even when we
3539    // shouldn't be. Doing so can result in ambiguities that we
3540    // shouldn't be diagnosing.
3541    LookupResult R = LookupName(S, Name, LookupTagName,
3542                                /*RedeclarationOnly=*/(TK != TK_Reference));
3543    if (R.isAmbiguous()) {
3544      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3545      // FIXME: This is not best way to recover from case like:
3546      //
3547      // struct S s;
3548      //
3549      // causes needless "incomplete type" error later.
3550      Name = 0;
3551      PrevDecl = 0;
3552      Invalid = true;
3553    }
3554    else
3555      PrevDecl = R;
3556
3557    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3558      // FIXME: This makes sure that we ignore the contexts associated
3559      // with C structs, unions, and enums when looking for a matching
3560      // tag declaration or definition. See the similar lookup tweak
3561      // in Sema::LookupName; is there a better way to deal with this?
3562      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3563        SearchDC = SearchDC->getParent();
3564    }
3565  }
3566
3567  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3568    // Maybe we will complain about the shadowed template parameter.
3569    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3570    // Just pretend that we didn't see the previous declaration.
3571    PrevDecl = 0;
3572  }
3573
3574  if (PrevDecl) {
3575    // Check whether the previous declaration is usable.
3576    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3577
3578    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3579      // If this is a use of a previous tag, or if the tag is already declared
3580      // in the same scope (so that the definition/declaration completes or
3581      // rementions the tag), reuse the decl.
3582      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3583        // Make sure that this wasn't declared as an enum and now used as a
3584        // struct or something similar.
3585        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
3586          bool SafeToContinue
3587            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3588               Kind != TagDecl::TK_enum);
3589          if (SafeToContinue)
3590            Diag(KWLoc, diag::err_use_with_wrong_tag)
3591              << Name
3592              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3593                                                  PrevTagDecl->getKindName());
3594          else
3595            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3596          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3597
3598          if (SafeToContinue)
3599            Kind = PrevTagDecl->getTagKind();
3600          else {
3601            // Recover by making this an anonymous redefinition.
3602            Name = 0;
3603            PrevDecl = 0;
3604            Invalid = true;
3605          }
3606        }
3607
3608        if (!Invalid) {
3609          // If this is a use, just return the declaration we found.
3610
3611          // FIXME: In the future, return a variant or some other clue
3612          // for the consumer of this Decl to know it doesn't own it.
3613          // For our current ASTs this shouldn't be a problem, but will
3614          // need to be changed with DeclGroups.
3615          if (TK == TK_Reference)
3616            return DeclPtrTy::make(PrevDecl);
3617
3618          // Diagnose attempts to redefine a tag.
3619          if (TK == TK_Definition) {
3620            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3621              Diag(NameLoc, diag::err_redefinition) << Name;
3622              Diag(Def->getLocation(), diag::note_previous_definition);
3623              // If this is a redefinition, recover by making this
3624              // struct be anonymous, which will make any later
3625              // references get the previous definition.
3626              Name = 0;
3627              PrevDecl = 0;
3628              Invalid = true;
3629            } else {
3630              // If the type is currently being defined, complain
3631              // about a nested redefinition.
3632              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3633              if (Tag->isBeingDefined()) {
3634                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3635                Diag(PrevTagDecl->getLocation(),
3636                     diag::note_previous_definition);
3637                Name = 0;
3638                PrevDecl = 0;
3639                Invalid = true;
3640              }
3641            }
3642
3643            // Okay, this is definition of a previously declared or referenced
3644            // tag PrevDecl. We're going to create a new Decl for it.
3645          }
3646        }
3647        // If we get here we have (another) forward declaration or we
3648        // have a definition.  Just create a new decl.
3649      } else {
3650        // If we get here, this is a definition of a new tag type in a nested
3651        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3652        // new decl/type.  We set PrevDecl to NULL so that the entities
3653        // have distinct types.
3654        PrevDecl = 0;
3655      }
3656      // If we get here, we're going to create a new Decl. If PrevDecl
3657      // is non-NULL, it's a definition of the tag declared by
3658      // PrevDecl. If it's NULL, we have a new definition.
3659    } else {
3660      // PrevDecl is a namespace, template, or anything else
3661      // that lives in the IDNS_Tag identifier namespace.
3662      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3663        // The tag name clashes with a namespace name, issue an error and
3664        // recover by making this tag be anonymous.
3665        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3666        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3667        Name = 0;
3668        PrevDecl = 0;
3669        Invalid = true;
3670      } else {
3671        // The existing declaration isn't relevant to us; we're in a
3672        // new scope, so clear out the previous declaration.
3673        PrevDecl = 0;
3674      }
3675    }
3676  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3677             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3678    // C++ [basic.scope.pdecl]p5:
3679    //   -- for an elaborated-type-specifier of the form
3680    //
3681    //          class-key identifier
3682    //
3683    //      if the elaborated-type-specifier is used in the
3684    //      decl-specifier-seq or parameter-declaration-clause of a
3685    //      function defined in namespace scope, the identifier is
3686    //      declared as a class-name in the namespace that contains
3687    //      the declaration; otherwise, except as a friend
3688    //      declaration, the identifier is declared in the smallest
3689    //      non-class, non-function-prototype scope that contains the
3690    //      declaration.
3691    //
3692    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3693    // C structs and unions.
3694    //
3695    // GNU C also supports this behavior as part of its incomplete
3696    // enum types extension, while GNU C++ does not.
3697    //
3698    // Find the context where we'll be declaring the tag.
3699    // FIXME: We would like to maintain the current DeclContext as the
3700    // lexical context,
3701    while (SearchDC->isRecord())
3702      SearchDC = SearchDC->getParent();
3703
3704    // Find the scope where we'll be declaring the tag.
3705    while (S->isClassScope() ||
3706           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3707           ((S->getFlags() & Scope::DeclScope) == 0) ||
3708           (S->getEntity() &&
3709            ((DeclContext *)S->getEntity())->isTransparentContext()))
3710      S = S->getParent();
3711  }
3712
3713CreateNewDecl:
3714
3715  // If there is an identifier, use the location of the identifier as the
3716  // location of the decl, otherwise use the location of the struct/union
3717  // keyword.
3718  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3719
3720  // Otherwise, create a new declaration. If there is a previous
3721  // declaration of the same entity, the two will be linked via
3722  // PrevDecl.
3723  TagDecl *New;
3724
3725  if (Kind == TagDecl::TK_enum) {
3726    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3727    // enum X { A, B, C } D;    D should chain to X.
3728    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
3729                           cast_or_null<EnumDecl>(PrevDecl));
3730    // If this is an undefined enum, warn.
3731    if (TK != TK_Definition && !Invalid)  {
3732      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3733                                              : diag::ext_forward_ref_enum;
3734      Diag(Loc, DK);
3735    }
3736  } else {
3737    // struct/union/class
3738
3739    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3740    // struct X { int A; } D;    D should chain to X.
3741    if (getLangOptions().CPlusPlus)
3742      // FIXME: Look for a way to use RecordDecl for simple structs.
3743      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
3744                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3745    else
3746      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
3747                               cast_or_null<RecordDecl>(PrevDecl));
3748  }
3749
3750  if (Kind != TagDecl::TK_enum) {
3751    // Handle #pragma pack: if the #pragma pack stack has non-default
3752    // alignment, make up a packed attribute for this decl. These
3753    // attributes are checked when the ASTContext lays out the
3754    // structure.
3755    //
3756    // It is important for implementing the correct semantics that this
3757    // happen here (in act on tag decl). The #pragma pack stack is
3758    // maintained as a result of parser callbacks which can occur at
3759    // many points during the parsing of a struct declaration (because
3760    // the #pragma tokens are effectively skipped over during the
3761    // parsing of the struct).
3762    if (unsigned Alignment = getPragmaPackAlignment())
3763      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3764  }
3765
3766  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3767    // C++ [dcl.typedef]p3:
3768    //   [...] Similarly, in a given scope, a class or enumeration
3769    //   shall not be declared with the same name as a typedef-name
3770    //   that is declared in that scope and refers to a type other
3771    //   than the class or enumeration itself.
3772    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3773    TypedefDecl *PrevTypedef = 0;
3774    if (Lookup.getKind() == LookupResult::Found)
3775      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3776
3777    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3778        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3779          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3780      Diag(Loc, diag::err_tag_definition_of_typedef)
3781        << Context.getTypeDeclType(New)
3782        << PrevTypedef->getUnderlyingType();
3783      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3784      Invalid = true;
3785    }
3786  }
3787
3788  if (Invalid)
3789    New->setInvalidDecl();
3790
3791  if (Attr)
3792    ProcessDeclAttributeList(S, New, Attr);
3793
3794  // If we're declaring or defining a tag in function prototype scope
3795  // in C, note that this type can only be used within the function.
3796  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3797    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3798
3799  // Set the lexical context. If the tag has a C++ scope specifier, the
3800  // lexical context will be different from the semantic context.
3801  New->setLexicalDeclContext(CurContext);
3802
3803  // Set the access specifier.
3804  if (!Invalid)
3805    SetMemberAccessSpecifier(New, PrevDecl, AS);
3806
3807  if (TK == TK_Definition)
3808    New->startDefinition();
3809
3810  // If this has an identifier, add it to the scope stack.
3811  if (Name) {
3812    S = getNonFieldDeclScope(S);
3813    PushOnScopeChains(New, S);
3814  } else {
3815    CurContext->addDecl(New);
3816  }
3817
3818  // If this is the C FILE type, notify the AST context.
3819  if (IdentifierInfo *II = New->getIdentifier())
3820    if (!New->isInvalidDecl() &&
3821        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
3822        II->isStr("FILE"))
3823      Context.setFILEDecl(New);
3824
3825  OwnedDecl = true;
3826  return DeclPtrTy::make(New);
3827}
3828
3829void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3830  AdjustDeclIfTemplate(TagD);
3831  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3832
3833  // Enter the tag context.
3834  PushDeclContext(S, Tag);
3835
3836  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3837    FieldCollector->StartClass();
3838
3839    if (Record->getIdentifier()) {
3840      // C++ [class]p2:
3841      //   [...] The class-name is also inserted into the scope of the
3842      //   class itself; this is known as the injected-class-name. For
3843      //   purposes of access checking, the injected-class-name is treated
3844      //   as if it were a public member name.
3845      CXXRecordDecl *InjectedClassName
3846        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3847                                CurContext, Record->getLocation(),
3848                                Record->getIdentifier(),
3849                                Record->getTagKeywordLoc(),
3850                                Record);
3851      InjectedClassName->setImplicit();
3852      InjectedClassName->setAccess(AS_public);
3853      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3854        InjectedClassName->setDescribedClassTemplate(Template);
3855      PushOnScopeChains(InjectedClassName, S);
3856      assert(InjectedClassName->isInjectedClassName() &&
3857             "Broken injected-class-name");
3858    }
3859  }
3860}
3861
3862void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
3863                                    SourceLocation RBraceLoc) {
3864  AdjustDeclIfTemplate(TagD);
3865  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3866  Tag->setRBraceLoc(RBraceLoc);
3867
3868  if (isa<CXXRecordDecl>(Tag))
3869    FieldCollector->FinishClass();
3870
3871  // Exit this scope of this tag's definition.
3872  PopDeclContext();
3873
3874  // Notify the consumer that we've defined a tag.
3875  Consumer.HandleTagDeclDefinition(Tag);
3876}
3877
3878// Note that FieldName may be null for anonymous bitfields.
3879bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3880                          QualType FieldTy, const Expr *BitWidth) {
3881
3882  // C99 6.7.2.1p4 - verify the field type.
3883  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3884  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3885    // Handle incomplete types with specific error.
3886    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3887      return true;
3888    if (FieldName)
3889      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3890        << FieldName << FieldTy << BitWidth->getSourceRange();
3891    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3892      << FieldTy << BitWidth->getSourceRange();
3893  }
3894
3895  // If the bit-width is type- or value-dependent, don't try to check
3896  // it now.
3897  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3898    return false;
3899
3900  llvm::APSInt Value;
3901  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3902    return true;
3903
3904  // Zero-width bitfield is ok for anonymous field.
3905  if (Value == 0 && FieldName)
3906    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3907
3908  if (Value.isSigned() && Value.isNegative()) {
3909    if (FieldName)
3910      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3911               << FieldName << Value.toString(10);
3912    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3913      << Value.toString(10);
3914  }
3915
3916  if (!FieldTy->isDependentType()) {
3917    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3918    if (Value.getZExtValue() > TypeSize) {
3919      if (FieldName)
3920        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3921          << FieldName << (unsigned)TypeSize;
3922      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3923        << (unsigned)TypeSize;
3924    }
3925  }
3926
3927  return false;
3928}
3929
3930/// ActOnField - Each field of a struct/union/class is passed into this in order
3931/// to create a FieldDecl object for it.
3932Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3933                                 SourceLocation DeclStart,
3934                                 Declarator &D, ExprTy *BitfieldWidth) {
3935  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3936                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3937                               AS_public);
3938  return DeclPtrTy::make(Res);
3939}
3940
3941/// HandleField - Analyze a field of a C struct or a C++ data member.
3942///
3943FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3944                             SourceLocation DeclStart,
3945                             Declarator &D, Expr *BitWidth,
3946                             AccessSpecifier AS) {
3947  IdentifierInfo *II = D.getIdentifier();
3948  SourceLocation Loc = DeclStart;
3949  if (II) Loc = D.getIdentifierLoc();
3950
3951  QualType T = GetTypeForDeclarator(D, S);
3952  if (getLangOptions().CPlusPlus)
3953    CheckExtraCXXDefaultArguments(D);
3954
3955  DiagnoseFunctionSpecifiers(D);
3956
3957  if (D.getDeclSpec().isThreadSpecified())
3958    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3959
3960  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3961
3962  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3963    // Maybe we will complain about the shadowed template parameter.
3964    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3965    // Just pretend that we didn't see the previous declaration.
3966    PrevDecl = 0;
3967  }
3968
3969  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3970    PrevDecl = 0;
3971
3972  bool Mutable
3973    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
3974  SourceLocation TSSL = D.getSourceRange().getBegin();
3975  FieldDecl *NewFD
3976    = CheckFieldDecl(II, T, Record, Loc, Mutable, BitWidth, TSSL,
3977                     AS, PrevDecl, &D);
3978  if (NewFD->isInvalidDecl() && PrevDecl) {
3979    // Don't introduce NewFD into scope; there's already something
3980    // with the same name in the same scope.
3981  } else if (II) {
3982    PushOnScopeChains(NewFD, S);
3983  } else
3984    Record->addDecl(NewFD);
3985
3986  return NewFD;
3987}
3988
3989/// \brief Build a new FieldDecl and check its well-formedness.
3990///
3991/// This routine builds a new FieldDecl given the fields name, type,
3992/// record, etc. \p PrevDecl should refer to any previous declaration
3993/// with the same name and in the same scope as the field to be
3994/// created.
3995///
3996/// \returns a new FieldDecl.
3997///
3998/// \todo The Declarator argument is a hack. It will be removed once
3999FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4000                                RecordDecl *Record, SourceLocation Loc,
4001                                bool Mutable, Expr *BitWidth,
4002                                SourceLocation TSSL,
4003                                AccessSpecifier AS, NamedDecl *PrevDecl,
4004                                Declarator *D) {
4005  IdentifierInfo *II = Name.getAsIdentifierInfo();
4006  bool InvalidDecl = false;
4007  if (D) InvalidDecl = D->isInvalidType();
4008
4009  // If we receive a broken type, recover by assuming 'int' and
4010  // marking this declaration as invalid.
4011  if (T.isNull()) {
4012    InvalidDecl = true;
4013    T = Context.IntTy;
4014  }
4015
4016  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4017  // than a variably modified type.
4018  if (T->isVariablyModifiedType()) {
4019    bool SizeIsNegative;
4020    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4021                                                           SizeIsNegative);
4022    if (!FixedTy.isNull()) {
4023      Diag(Loc, diag::warn_illegal_constant_array_size);
4024      T = FixedTy;
4025    } else {
4026      if (SizeIsNegative)
4027        Diag(Loc, diag::err_typecheck_negative_array_size);
4028      else
4029        Diag(Loc, diag::err_typecheck_field_variable_size);
4030      InvalidDecl = true;
4031    }
4032  }
4033
4034  // Fields can not have abstract class types
4035  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4036                             AbstractFieldType))
4037    InvalidDecl = true;
4038
4039  // If this is declared as a bit-field, check the bit-field.
4040  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
4041    InvalidDecl = true;
4042    DeleteExpr(BitWidth);
4043    BitWidth = 0;
4044  }
4045
4046  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
4047                                       Mutable, TSSL);
4048  if (InvalidDecl)
4049    NewFD->setInvalidDecl();
4050
4051  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4052    Diag(Loc, diag::err_duplicate_member) << II;
4053    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4054    NewFD->setInvalidDecl();
4055  }
4056
4057  if (getLangOptions().CPlusPlus && !T->isPODType())
4058    cast<CXXRecordDecl>(Record)->setPOD(false);
4059
4060  // FIXME: We need to pass in the attributes given an AST
4061  // representation, not a parser representation.
4062  if (D)
4063    // FIXME: What to pass instead of TUScope?
4064    ProcessDeclAttributes(TUScope, NewFD, *D);
4065
4066  if (T.isObjCGCWeak())
4067    Diag(Loc, diag::warn_attribute_weak_on_field);
4068
4069  NewFD->setAccess(AS);
4070
4071  // C++ [dcl.init.aggr]p1:
4072  //   An aggregate is an array or a class (clause 9) with [...] no
4073  //   private or protected non-static data members (clause 11).
4074  // A POD must be an aggregate.
4075  if (getLangOptions().CPlusPlus &&
4076      (AS == AS_private || AS == AS_protected)) {
4077    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4078    CXXRecord->setAggregate(false);
4079    CXXRecord->setPOD(false);
4080  }
4081
4082  return NewFD;
4083}
4084
4085/// TranslateIvarVisibility - Translate visibility from a token ID to an
4086///  AST enum value.
4087static ObjCIvarDecl::AccessControl
4088TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4089  switch (ivarVisibility) {
4090  default: assert(0 && "Unknown visitibility kind");
4091  case tok::objc_private: return ObjCIvarDecl::Private;
4092  case tok::objc_public: return ObjCIvarDecl::Public;
4093  case tok::objc_protected: return ObjCIvarDecl::Protected;
4094  case tok::objc_package: return ObjCIvarDecl::Package;
4095  }
4096}
4097
4098/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4099/// in order to create an IvarDecl object for it.
4100Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4101                                SourceLocation DeclStart,
4102                                DeclPtrTy IntfDecl,
4103                                Declarator &D, ExprTy *BitfieldWidth,
4104                                tok::ObjCKeywordKind Visibility) {
4105
4106  IdentifierInfo *II = D.getIdentifier();
4107  Expr *BitWidth = (Expr*)BitfieldWidth;
4108  SourceLocation Loc = DeclStart;
4109  if (II) Loc = D.getIdentifierLoc();
4110
4111  // FIXME: Unnamed fields can be handled in various different ways, for
4112  // example, unnamed unions inject all members into the struct namespace!
4113
4114  QualType T = GetTypeForDeclarator(D, S);
4115
4116  if (BitWidth) {
4117    // 6.7.2.1p3, 6.7.2.1p4
4118    if (VerifyBitField(Loc, II, T, BitWidth)) {
4119      D.setInvalidType();
4120      DeleteExpr(BitWidth);
4121      BitWidth = 0;
4122    }
4123  } else {
4124    // Not a bitfield.
4125
4126    // validate II.
4127
4128  }
4129
4130  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4131  // than a variably modified type.
4132  if (T->isVariablyModifiedType()) {
4133    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4134    D.setInvalidType();
4135  }
4136
4137  // Get the visibility (access control) for this ivar.
4138  ObjCIvarDecl::AccessControl ac =
4139    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4140                                        : ObjCIvarDecl::None;
4141  // Must set ivar's DeclContext to its enclosing interface.
4142  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4143  DeclContext *EnclosingContext;
4144  if (ObjCImplementationDecl *IMPDecl =
4145      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4146    // Case of ivar declared in an implementation. Context is that of its class.
4147    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4148    assert(IDecl && "No class- ActOnIvar");
4149    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4150  }
4151  else
4152    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4153  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4154
4155  // Construct the decl.
4156  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4157                                             EnclosingContext, Loc, II, T,ac,
4158                                             (Expr *)BitfieldWidth);
4159
4160  if (II) {
4161    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4162    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4163        && !isa<TagDecl>(PrevDecl)) {
4164      Diag(Loc, diag::err_duplicate_member) << II;
4165      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4166      NewID->setInvalidDecl();
4167    }
4168  }
4169
4170  // Process attributes attached to the ivar.
4171  ProcessDeclAttributes(S, NewID, D);
4172
4173  if (D.isInvalidType())
4174    NewID->setInvalidDecl();
4175
4176  if (II) {
4177    // FIXME: When interfaces are DeclContexts, we'll need to add
4178    // these to the interface.
4179    S->AddDecl(DeclPtrTy::make(NewID));
4180    IdResolver.AddDecl(NewID);
4181  }
4182
4183  return DeclPtrTy::make(NewID);
4184}
4185
4186void Sema::ActOnFields(Scope* S,
4187                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4188                       DeclPtrTy *Fields, unsigned NumFields,
4189                       SourceLocation LBrac, SourceLocation RBrac,
4190                       AttributeList *Attr) {
4191  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4192  assert(EnclosingDecl && "missing record or interface decl");
4193
4194  // If the decl this is being inserted into is invalid, then it may be a
4195  // redeclaration or some other bogus case.  Don't try to add fields to it.
4196  if (EnclosingDecl->isInvalidDecl()) {
4197    // FIXME: Deallocate fields?
4198    return;
4199  }
4200
4201
4202  // Verify that all the fields are okay.
4203  unsigned NumNamedMembers = 0;
4204  llvm::SmallVector<FieldDecl*, 32> RecFields;
4205
4206  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4207  for (unsigned i = 0; i != NumFields; ++i) {
4208    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4209
4210    // Get the type for the field.
4211    Type *FDTy = FD->getType().getTypePtr();
4212
4213    if (!FD->isAnonymousStructOrUnion()) {
4214      // Remember all fields written by the user.
4215      RecFields.push_back(FD);
4216    }
4217
4218    // If the field is already invalid for some reason, don't emit more
4219    // diagnostics about it.
4220    if (FD->isInvalidDecl())
4221      continue;
4222
4223    // C99 6.7.2.1p2:
4224    //   A structure or union shall not contain a member with
4225    //   incomplete or function type (hence, a structure shall not
4226    //   contain an instance of itself, but may contain a pointer to
4227    //   an instance of itself), except that the last member of a
4228    //   structure with more than one named member may have incomplete
4229    //   array type; such a structure (and any union containing,
4230    //   possibly recursively, a member that is such a structure)
4231    //   shall not be a member of a structure or an element of an
4232    //   array.
4233    if (FDTy->isFunctionType()) {
4234      // Field declared as a function.
4235      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4236        << FD->getDeclName();
4237      FD->setInvalidDecl();
4238      EnclosingDecl->setInvalidDecl();
4239      continue;
4240    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4241               Record && Record->isStruct()) {
4242      // Flexible array member.
4243      if (NumNamedMembers < 1) {
4244        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4245          << FD->getDeclName();
4246        FD->setInvalidDecl();
4247        EnclosingDecl->setInvalidDecl();
4248        continue;
4249      }
4250      // Okay, we have a legal flexible array member at the end of the struct.
4251      if (Record)
4252        Record->setHasFlexibleArrayMember(true);
4253    } else if (!FDTy->isDependentType() &&
4254               RequireCompleteType(FD->getLocation(), FD->getType(),
4255                                   diag::err_field_incomplete)) {
4256      // Incomplete type
4257      FD->setInvalidDecl();
4258      EnclosingDecl->setInvalidDecl();
4259      continue;
4260    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
4261      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4262        // If this is a member of a union, then entire union becomes "flexible".
4263        if (Record && Record->isUnion()) {
4264          Record->setHasFlexibleArrayMember(true);
4265        } else {
4266          // If this is a struct/class and this is not the last element, reject
4267          // it.  Note that GCC supports variable sized arrays in the middle of
4268          // structures.
4269          if (i != NumFields-1)
4270            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4271              << FD->getDeclName() << FD->getType();
4272          else {
4273            // We support flexible arrays at the end of structs in
4274            // other structs as an extension.
4275            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4276              << FD->getDeclName();
4277            if (Record)
4278              Record->setHasFlexibleArrayMember(true);
4279          }
4280        }
4281      }
4282      if (Record && FDTTy->getDecl()->hasObjectMember())
4283        Record->setHasObjectMember(true);
4284    } else if (FDTy->isObjCInterfaceType()) {
4285      /// A field cannot be an Objective-c object
4286      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4287      FD->setInvalidDecl();
4288      EnclosingDecl->setInvalidDecl();
4289      continue;
4290    }
4291    else if (getLangOptions().ObjC1 &&
4292             getLangOptions().getGCMode() != LangOptions::NonGC &&
4293             Record &&
4294             (FD->getType()->isObjCObjectPointerType() ||
4295              FD->getType().isObjCGCStrong()))
4296      Record->setHasObjectMember(true);
4297    // Keep track of the number of named members.
4298    if (FD->getIdentifier())
4299      ++NumNamedMembers;
4300  }
4301
4302  // Okay, we successfully defined 'Record'.
4303  if (Record) {
4304    Record->completeDefinition(Context);
4305  } else {
4306    ObjCIvarDecl **ClsFields =
4307      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4308    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4309      ID->setIVarList(ClsFields, RecFields.size(), Context);
4310      ID->setLocEnd(RBrac);
4311      // Add ivar's to class's DeclContext.
4312      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4313        ClsFields[i]->setLexicalDeclContext(ID);
4314        ID->addDecl(ClsFields[i]);
4315      }
4316      // Must enforce the rule that ivars in the base classes may not be
4317      // duplicates.
4318      if (ID->getSuperClass()) {
4319        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4320             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4321          ObjCIvarDecl* Ivar = (*IVI);
4322
4323          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4324            ObjCIvarDecl* prevIvar =
4325              ID->getSuperClass()->lookupInstanceVariable(II);
4326            if (prevIvar) {
4327              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4328              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4329            }
4330          }
4331        }
4332      }
4333    } else if (ObjCImplementationDecl *IMPDecl =
4334                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4335      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4336      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
4337        // Ivar declared in @implementation never belongs to the implementation.
4338        // Only it is in implementation's lexical context.
4339        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4340      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4341    }
4342  }
4343
4344  if (Attr)
4345    ProcessDeclAttributeList(S, Record, Attr);
4346}
4347
4348EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4349                                          EnumConstantDecl *LastEnumConst,
4350                                          SourceLocation IdLoc,
4351                                          IdentifierInfo *Id,
4352                                          ExprArg val) {
4353  Expr *Val = (Expr *)val.get();
4354
4355  llvm::APSInt EnumVal(32);
4356  QualType EltTy;
4357  if (Val && !Val->isTypeDependent()) {
4358    // Make sure to promote the operand type to int.
4359    UsualUnaryConversions(Val);
4360    if (Val != val.get()) {
4361      val.release();
4362      val = Val;
4363    }
4364
4365    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4366    SourceLocation ExpLoc;
4367    if (!Val->isValueDependent() &&
4368        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4369      Val = 0;
4370    } else {
4371      EltTy = Val->getType();
4372    }
4373  }
4374
4375  if (!Val) {
4376    if (LastEnumConst) {
4377      // Assign the last value + 1.
4378      EnumVal = LastEnumConst->getInitVal();
4379      ++EnumVal;
4380
4381      // Check for overflow on increment.
4382      if (EnumVal < LastEnumConst->getInitVal())
4383        Diag(IdLoc, diag::warn_enum_value_overflow);
4384
4385      EltTy = LastEnumConst->getType();
4386    } else {
4387      // First value, set to zero.
4388      EltTy = Context.IntTy;
4389      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4390    }
4391  }
4392
4393  val.release();
4394  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4395                                  Val, EnumVal);
4396}
4397
4398
4399Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4400                                        DeclPtrTy lastEnumConst,
4401                                        SourceLocation IdLoc,
4402                                        IdentifierInfo *Id,
4403                                        SourceLocation EqualLoc, ExprTy *val) {
4404  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4405  EnumConstantDecl *LastEnumConst =
4406    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4407  Expr *Val = static_cast<Expr*>(val);
4408
4409  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4410  // we find one that is.
4411  S = getNonFieldDeclScope(S);
4412
4413  // Verify that there isn't already something declared with this name in this
4414  // scope.
4415  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4416  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4417    // Maybe we will complain about the shadowed template parameter.
4418    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4419    // Just pretend that we didn't see the previous declaration.
4420    PrevDecl = 0;
4421  }
4422
4423  if (PrevDecl) {
4424    // When in C++, we may get a TagDecl with the same name; in this case the
4425    // enum constant will 'hide' the tag.
4426    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4427           "Received TagDecl when not in C++!");
4428    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4429      if (isa<EnumConstantDecl>(PrevDecl))
4430        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4431      else
4432        Diag(IdLoc, diag::err_redefinition) << Id;
4433      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4434      if (Val) Val->Destroy(Context);
4435      return DeclPtrTy();
4436    }
4437  }
4438
4439  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4440                                            IdLoc, Id, Owned(Val));
4441
4442  // Register this decl in the current scope stack.
4443  if (New)
4444    PushOnScopeChains(New, S);
4445
4446  return DeclPtrTy::make(New);
4447}
4448
4449void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
4450                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
4451                         DeclPtrTy *Elements, unsigned NumElements) {
4452  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4453  QualType EnumType = Context.getTypeDeclType(Enum);
4454
4455  // TODO: If the result value doesn't fit in an int, it must be a long or long
4456  // long value.  ISO C does not support this, but GCC does as an extension,
4457  // emit a warning.
4458  unsigned IntWidth = Context.Target.getIntWidth();
4459
4460  // Verify that all the values are okay, compute the size of the values, and
4461  // reverse the list.
4462  unsigned NumNegativeBits = 0;
4463  unsigned NumPositiveBits = 0;
4464
4465  // Keep track of whether all elements have type int.
4466  bool AllElementsInt = true;
4467
4468  for (unsigned i = 0; i != NumElements; ++i) {
4469    EnumConstantDecl *ECD =
4470      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4471    if (!ECD) continue;  // Already issued a diagnostic.
4472
4473    // If the enum value doesn't fit in an int, emit an extension warning.
4474    const llvm::APSInt &InitVal = ECD->getInitVal();
4475    assert(InitVal.getBitWidth() >= IntWidth &&
4476           "Should have promoted value to int");
4477    if (InitVal.getBitWidth() > IntWidth) {
4478      llvm::APSInt V(InitVal);
4479      V.trunc(IntWidth);
4480      V.extend(InitVal.getBitWidth());
4481      if (V != InitVal)
4482        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4483          << InitVal.toString(10);
4484    }
4485
4486    // Keep track of the size of positive and negative values.
4487    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4488      NumPositiveBits = std::max(NumPositiveBits,
4489                                 (unsigned)InitVal.getActiveBits());
4490    else
4491      NumNegativeBits = std::max(NumNegativeBits,
4492                                 (unsigned)InitVal.getMinSignedBits());
4493
4494    // Keep track of whether every enum element has type int (very commmon).
4495    if (AllElementsInt)
4496      AllElementsInt = ECD->getType() == Context.IntTy;
4497  }
4498
4499  // Figure out the type that should be used for this enum.
4500  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4501  QualType BestType;
4502  unsigned BestWidth;
4503
4504  if (NumNegativeBits) {
4505    // If there is a negative value, figure out the smallest integer type (of
4506    // int/long/longlong) that fits.
4507    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4508      BestType = Context.IntTy;
4509      BestWidth = IntWidth;
4510    } else {
4511      BestWidth = Context.Target.getLongWidth();
4512
4513      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4514        BestType = Context.LongTy;
4515      else {
4516        BestWidth = Context.Target.getLongLongWidth();
4517
4518        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4519          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4520        BestType = Context.LongLongTy;
4521      }
4522    }
4523  } else {
4524    // If there is no negative value, figure out which of uint, ulong, ulonglong
4525    // fits.
4526    if (NumPositiveBits <= IntWidth) {
4527      BestType = Context.UnsignedIntTy;
4528      BestWidth = IntWidth;
4529    } else if (NumPositiveBits <=
4530               (BestWidth = Context.Target.getLongWidth())) {
4531      BestType = Context.UnsignedLongTy;
4532    } else {
4533      BestWidth = Context.Target.getLongLongWidth();
4534      assert(NumPositiveBits <= BestWidth &&
4535             "How could an initializer get larger than ULL?");
4536      BestType = Context.UnsignedLongLongTy;
4537    }
4538  }
4539
4540  // Loop over all of the enumerator constants, changing their types to match
4541  // the type of the enum if needed.
4542  for (unsigned i = 0; i != NumElements; ++i) {
4543    EnumConstantDecl *ECD =
4544      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4545    if (!ECD) continue;  // Already issued a diagnostic.
4546
4547    // Standard C says the enumerators have int type, but we allow, as an
4548    // extension, the enumerators to be larger than int size.  If each
4549    // enumerator value fits in an int, type it as an int, otherwise type it the
4550    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4551    // that X has type 'int', not 'unsigned'.
4552    if (ECD->getType() == Context.IntTy) {
4553      // Make sure the init value is signed.
4554      llvm::APSInt IV = ECD->getInitVal();
4555      IV.setIsSigned(true);
4556      ECD->setInitVal(IV);
4557
4558      if (getLangOptions().CPlusPlus)
4559        // C++ [dcl.enum]p4: Following the closing brace of an
4560        // enum-specifier, each enumerator has the type of its
4561        // enumeration.
4562        ECD->setType(EnumType);
4563      continue;  // Already int type.
4564    }
4565
4566    // Determine whether the value fits into an int.
4567    llvm::APSInt InitVal = ECD->getInitVal();
4568    bool FitsInInt;
4569    if (InitVal.isUnsigned() || !InitVal.isNegative())
4570      FitsInInt = InitVal.getActiveBits() < IntWidth;
4571    else
4572      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4573
4574    // If it fits into an integer type, force it.  Otherwise force it to match
4575    // the enum decl type.
4576    QualType NewTy;
4577    unsigned NewWidth;
4578    bool NewSign;
4579    if (FitsInInt) {
4580      NewTy = Context.IntTy;
4581      NewWidth = IntWidth;
4582      NewSign = true;
4583    } else if (ECD->getType() == BestType) {
4584      // Already the right type!
4585      if (getLangOptions().CPlusPlus)
4586        // C++ [dcl.enum]p4: Following the closing brace of an
4587        // enum-specifier, each enumerator has the type of its
4588        // enumeration.
4589        ECD->setType(EnumType);
4590      continue;
4591    } else {
4592      NewTy = BestType;
4593      NewWidth = BestWidth;
4594      NewSign = BestType->isSignedIntegerType();
4595    }
4596
4597    // Adjust the APSInt value.
4598    InitVal.extOrTrunc(NewWidth);
4599    InitVal.setIsSigned(NewSign);
4600    ECD->setInitVal(InitVal);
4601
4602    // Adjust the Expr initializer and type.
4603    if (ECD->getInitExpr())
4604      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4605                                                      /*isLvalue=*/false));
4606    if (getLangOptions().CPlusPlus)
4607      // C++ [dcl.enum]p4: Following the closing brace of an
4608      // enum-specifier, each enumerator has the type of its
4609      // enumeration.
4610      ECD->setType(EnumType);
4611    else
4612      ECD->setType(NewTy);
4613  }
4614
4615  Enum->completeDefinition(Context, BestType);
4616}
4617
4618Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4619                                            ExprArg expr) {
4620  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
4621
4622  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
4623                                                   Loc, AsmString);
4624  CurContext->addDecl(New);
4625  return DeclPtrTy::make(New);
4626}
4627
4628void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
4629                             SourceLocation PragmaLoc,
4630                             SourceLocation NameLoc) {
4631  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4632
4633  // FIXME: This implementation is an ugly hack!
4634  if (PrevDecl) {
4635    PrevDecl->addAttr(::new (Context) WeakAttr());
4636    return;
4637  }
4638  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4639  return;
4640}
4641
4642void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
4643                                IdentifierInfo* AliasName,
4644                                SourceLocation PragmaLoc,
4645                                SourceLocation NameLoc,
4646                                SourceLocation AliasNameLoc) {
4647  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4648
4649  // FIXME: This implementation is an ugly hack!
4650  if (PrevDecl) {
4651    PrevDecl->addAttr(::new (Context) AliasAttr(AliasName->getName()));
4652    PrevDecl->addAttr(::new (Context) WeakAttr());
4653    return;
4654  }
4655  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4656  return;
4657}
4658