SemaDecl.cpp revision f6d6a228b0faafdfd1cdffe865f47616b6cab7a8
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Basic/SourceManager.h"
28// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Lex/HeaderSearch.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include <algorithm>
34#include <functional>
35#include <queue>
36using namespace clang;
37
38/// getDeclName - Return a pretty name for the specified decl if possible, or
39/// an empty string if not.  This is used for pretty crash reporting.
40std::string Sema::getDeclName(DeclPtrTy d) {
41  Decl *D = d.getAs<Decl>();
42  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
43    return DN->getQualifiedNameAsString();
44  return "";
45}
46
47Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
48  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
49}
50
51/// \brief If the identifier refers to a type name within this scope,
52/// return the declaration of that type.
53///
54/// This routine performs ordinary name lookup of the identifier II
55/// within the given scope, with optional C++ scope specifier SS, to
56/// determine whether the name refers to a type. If so, returns an
57/// opaque pointer (actually a QualType) corresponding to that
58/// type. Otherwise, returns NULL.
59///
60/// If name lookup results in an ambiguity, this routine will complain
61/// and then return NULL.
62Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
63                                Scope *S, const CXXScopeSpec *SS) {
64  // C++ [temp.res]p3:
65  //   A qualified-id that refers to a type and in which the
66  //   nested-name-specifier depends on a template-parameter (14.6.2)
67  //   shall be prefixed by the keyword typename to indicate that the
68  //   qualified-id denotes a type, forming an
69  //   elaborated-type-specifier (7.1.5.3).
70  //
71  // We therefore do not perform any name lookup if the result would
72  // refer to a member of an unknown specialization.
73  if (SS && isUnknownSpecialization(*SS))
74    return 0;
75
76  LookupResult Result
77    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
78
79  NamedDecl *IIDecl = 0;
80  switch (Result.getKind()) {
81  case LookupResult::NotFound:
82  case LookupResult::FoundOverloaded:
83    return 0;
84
85  case LookupResult::AmbiguousBaseSubobjectTypes:
86  case LookupResult::AmbiguousBaseSubobjects:
87  case LookupResult::AmbiguousReference: {
88    // Look to see if we have a type anywhere in the list of results.
89    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
90         Res != ResEnd; ++Res) {
91      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
92        if (!IIDecl ||
93            (*Res)->getLocation().getRawEncoding() <
94              IIDecl->getLocation().getRawEncoding())
95          IIDecl = *Res;
96      }
97    }
98
99    if (!IIDecl) {
100      // None of the entities we found is a type, so there is no way
101      // to even assume that the result is a type. In this case, don't
102      // complain about the ambiguity. The parser will either try to
103      // perform this lookup again (e.g., as an object name), which
104      // will produce the ambiguity, or will complain that it expected
105      // a type name.
106      Result.Destroy();
107      return 0;
108    }
109
110    // We found a type within the ambiguous lookup; diagnose the
111    // ambiguity and then return that type. This might be the right
112    // answer, or it might not be, but it suppresses any attempt to
113    // perform the name lookup again.
114    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
115    break;
116  }
117
118  case LookupResult::Found:
119    IIDecl = Result.getAsDecl();
120    break;
121  }
122
123  if (IIDecl) {
124    QualType T;
125
126    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
127      // Check whether we can use this type
128      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
129
130      if (getLangOptions().CPlusPlus) {
131        // C++ [temp.local]p2:
132        //   Within the scope of a class template specialization or
133        //   partial specialization, when the injected-class-name is
134        //   not followed by a <, it is equivalent to the
135        //   injected-class-name followed by the template-argument s
136        //   of the class template specialization or partial
137        //   specialization enclosed in <>.
138        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
139          if (RD->isInjectedClassName())
140            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
141              T = Template->getInjectedClassNameType(Context);
142      }
143
144      if (T.isNull())
145        T = Context.getTypeDeclType(TD);
146    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
147      // Check whether we can use this interface.
148      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
149
150      T = Context.getObjCInterfaceType(IDecl);
151    } else
152      return 0;
153
154    if (SS)
155      T = getQualifiedNameType(*SS, T);
156
157    return T.getAsOpaquePtr();
158  }
159
160  return 0;
161}
162
163/// isTagName() - This method is called *for error recovery purposes only*
164/// to determine if the specified name is a valid tag name ("struct foo").  If
165/// so, this returns the TST for the tag corresponding to it (TST_enum,
166/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
167/// where the user forgot to specify the tag.
168DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
169  // Do a tag name lookup in this scope.
170  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
171  if (R.getKind() == LookupResult::Found)
172    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
173      switch (TD->getTagKind()) {
174      case TagDecl::TK_struct: return DeclSpec::TST_struct;
175      case TagDecl::TK_union:  return DeclSpec::TST_union;
176      case TagDecl::TK_class:  return DeclSpec::TST_class;
177      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
178      }
179    }
180
181  return DeclSpec::TST_unspecified;
182}
183
184
185// Determines the context to return to after temporarily entering a
186// context.  This depends in an unnecessarily complicated way on the
187// exact ordering of callbacks from the parser.
188DeclContext *Sema::getContainingDC(DeclContext *DC) {
189
190  // Functions defined inline within classes aren't parsed until we've
191  // finished parsing the top-level class, so the top-level class is
192  // the context we'll need to return to.
193  if (isa<FunctionDecl>(DC)) {
194    DC = DC->getLexicalParent();
195
196    // A function not defined within a class will always return to its
197    // lexical context.
198    if (!isa<CXXRecordDecl>(DC))
199      return DC;
200
201    // A C++ inline method/friend is parsed *after* the topmost class
202    // it was declared in is fully parsed ("complete");  the topmost
203    // class is the context we need to return to.
204    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
205      DC = RD;
206
207    // Return the declaration context of the topmost class the inline method is
208    // declared in.
209    return DC;
210  }
211
212  if (isa<ObjCMethodDecl>(DC))
213    return Context.getTranslationUnitDecl();
214
215  return DC->getLexicalParent();
216}
217
218void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
219  assert(getContainingDC(DC) == CurContext &&
220      "The next DeclContext should be lexically contained in the current one.");
221  CurContext = DC;
222  S->setEntity(DC);
223}
224
225void Sema::PopDeclContext() {
226  assert(CurContext && "DeclContext imbalance!");
227
228  CurContext = getContainingDC(CurContext);
229}
230
231/// EnterDeclaratorContext - Used when we must lookup names in the context
232/// of a declarator's nested name specifier.
233void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
234  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
235  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
236  CurContext = DC;
237  assert(CurContext && "No context?");
238  S->setEntity(CurContext);
239}
240
241void Sema::ExitDeclaratorContext(Scope *S) {
242  S->setEntity(PreDeclaratorDC);
243  PreDeclaratorDC = 0;
244
245  // Reset CurContext to the nearest enclosing context.
246  while (!S->getEntity() && S->getParent())
247    S = S->getParent();
248  CurContext = static_cast<DeclContext*>(S->getEntity());
249  assert(CurContext && "No context?");
250}
251
252/// \brief Determine whether we allow overloading of the function
253/// PrevDecl with another declaration.
254///
255/// This routine determines whether overloading is possible, not
256/// whether some new function is actually an overload. It will return
257/// true in C++ (where we can always provide overloads) or, as an
258/// extension, in C when the previous function is already an
259/// overloaded function declaration or has the "overloadable"
260/// attribute.
261static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
262  if (Context.getLangOptions().CPlusPlus)
263    return true;
264
265  if (isa<OverloadedFunctionDecl>(PrevDecl))
266    return true;
267
268  return PrevDecl->getAttr<OverloadableAttr>() != 0;
269}
270
271/// Add this decl to the scope shadowed decl chains.
272void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
273  // Move up the scope chain until we find the nearest enclosing
274  // non-transparent context. The declaration will be introduced into this
275  // scope.
276  while (S->getEntity() &&
277         ((DeclContext *)S->getEntity())->isTransparentContext())
278    S = S->getParent();
279
280  S->AddDecl(DeclPtrTy::make(D));
281
282  // Add scoped declarations into their context, so that they can be
283  // found later. Declarations without a context won't be inserted
284  // into any context.
285  CurContext->addDecl(D);
286
287  // C++ [basic.scope]p4:
288  //   -- exactly one declaration shall declare a class name or
289  //   enumeration name that is not a typedef name and the other
290  //   declarations shall all refer to the same object or
291  //   enumerator, or all refer to functions and function templates;
292  //   in this case the class name or enumeration name is hidden.
293  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
294    // We are pushing the name of a tag (enum or class).
295    if (CurContext->getLookupContext()
296          == TD->getDeclContext()->getLookupContext()) {
297      // We're pushing the tag into the current context, which might
298      // require some reshuffling in the identifier resolver.
299      IdentifierResolver::iterator
300        I = IdResolver.begin(TD->getDeclName()),
301        IEnd = IdResolver.end();
302      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
303        NamedDecl *PrevDecl = *I;
304        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
305             PrevDecl = *I, ++I) {
306          if (TD->declarationReplaces(*I)) {
307            // This is a redeclaration. Remove it from the chain and
308            // break out, so that we'll add in the shadowed
309            // declaration.
310            S->RemoveDecl(DeclPtrTy::make(*I));
311            if (PrevDecl == *I) {
312              IdResolver.RemoveDecl(*I);
313              IdResolver.AddDecl(TD);
314              return;
315            } else {
316              IdResolver.RemoveDecl(*I);
317              break;
318            }
319          }
320        }
321
322        // There is already a declaration with the same name in the same
323        // scope, which is not a tag declaration. It must be found
324        // before we find the new declaration, so insert the new
325        // declaration at the end of the chain.
326        IdResolver.AddShadowedDecl(TD, PrevDecl);
327
328        return;
329      }
330    }
331  } else if ((isa<FunctionDecl>(D) &&
332              AllowOverloadingOfFunction(D, Context)) ||
333             isa<FunctionTemplateDecl>(D)) {
334    // We are pushing the name of a function or function template,
335    // which might be an overloaded name.
336    IdentifierResolver::iterator Redecl
337      = std::find_if(IdResolver.begin(D->getDeclName()),
338                     IdResolver.end(),
339                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
340                                  D));
341    if (Redecl != IdResolver.end() &&
342        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
343      // There is already a declaration of a function on our
344      // IdResolver chain. Replace it with this declaration.
345      S->RemoveDecl(DeclPtrTy::make(*Redecl));
346      IdResolver.RemoveDecl(*Redecl);
347    }
348  } else if (isa<ObjCInterfaceDecl>(D)) {
349    // We're pushing an Objective-C interface into the current
350    // context. If there is already an alias declaration, remove it first.
351    for (IdentifierResolver::iterator
352           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
353         I != IEnd; ++I) {
354      if (isa<ObjCCompatibleAliasDecl>(*I)) {
355        S->RemoveDecl(DeclPtrTy::make(*I));
356        IdResolver.RemoveDecl(*I);
357        break;
358      }
359    }
360  }
361
362  IdResolver.AddDecl(D);
363}
364
365void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
366  if (S->decl_empty()) return;
367  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
368	 "Scope shouldn't contain decls!");
369
370  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
371       I != E; ++I) {
372    Decl *TmpD = (*I).getAs<Decl>();
373    assert(TmpD && "This decl didn't get pushed??");
374
375    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
376    NamedDecl *D = cast<NamedDecl>(TmpD);
377
378    if (!D->getDeclName()) continue;
379
380    // Remove this name from our lexical scope.
381    IdResolver.RemoveDecl(D);
382  }
383}
384
385/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
386/// return 0 if one not found.
387ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
388  // The third "scope" argument is 0 since we aren't enabling lazy built-in
389  // creation from this context.
390  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
391
392  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
393}
394
395/// getNonFieldDeclScope - Retrieves the innermost scope, starting
396/// from S, where a non-field would be declared. This routine copes
397/// with the difference between C and C++ scoping rules in structs and
398/// unions. For example, the following code is well-formed in C but
399/// ill-formed in C++:
400/// @code
401/// struct S6 {
402///   enum { BAR } e;
403/// };
404///
405/// void test_S6() {
406///   struct S6 a;
407///   a.e = BAR;
408/// }
409/// @endcode
410/// For the declaration of BAR, this routine will return a different
411/// scope. The scope S will be the scope of the unnamed enumeration
412/// within S6. In C++, this routine will return the scope associated
413/// with S6, because the enumeration's scope is a transparent
414/// context but structures can contain non-field names. In C, this
415/// routine will return the translation unit scope, since the
416/// enumeration's scope is a transparent context and structures cannot
417/// contain non-field names.
418Scope *Sema::getNonFieldDeclScope(Scope *S) {
419  while (((S->getFlags() & Scope::DeclScope) == 0) ||
420         (S->getEntity() &&
421          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
422         (S->isClassScope() && !getLangOptions().CPlusPlus))
423    S = S->getParent();
424  return S;
425}
426
427void Sema::InitBuiltinVaListType() {
428  if (!Context.getBuiltinVaListType().isNull())
429    return;
430
431  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
432  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
433  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
434  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
435}
436
437/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
438/// file scope.  lazily create a decl for it. ForRedeclaration is true
439/// if we're creating this built-in in anticipation of redeclaring the
440/// built-in.
441NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
442                                     Scope *S, bool ForRedeclaration,
443                                     SourceLocation Loc) {
444  Builtin::ID BID = (Builtin::ID)bid;
445
446  if (Context.BuiltinInfo.hasVAListUse(BID))
447    InitBuiltinVaListType();
448
449  ASTContext::GetBuiltinTypeError Error;
450  QualType R = Context.GetBuiltinType(BID, Error);
451  switch (Error) {
452  case ASTContext::GE_None:
453    // Okay
454    break;
455
456  case ASTContext::GE_Missing_stdio:
457    if (ForRedeclaration)
458      Diag(Loc, diag::err_implicit_decl_requires_stdio)
459        << Context.BuiltinInfo.GetName(BID);
460    return 0;
461
462  case ASTContext::GE_Missing_setjmp:
463    if (ForRedeclaration)
464      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
465        << Context.BuiltinInfo.GetName(BID);
466    return 0;
467  }
468
469  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
470    Diag(Loc, diag::ext_implicit_lib_function_decl)
471      << Context.BuiltinInfo.GetName(BID)
472      << R;
473    if (Context.BuiltinInfo.getHeaderName(BID) &&
474        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
475          != Diagnostic::Ignored)
476      Diag(Loc, diag::note_please_include_header)
477        << Context.BuiltinInfo.getHeaderName(BID)
478        << Context.BuiltinInfo.GetName(BID);
479  }
480
481  FunctionDecl *New = FunctionDecl::Create(Context,
482                                           Context.getTranslationUnitDecl(),
483                                           Loc, II, R, /*DInfo=*/0,
484                                           FunctionDecl::Extern, false,
485                                           /*hasPrototype=*/true);
486  New->setImplicit();
487
488  // Create Decl objects for each parameter, adding them to the
489  // FunctionDecl.
490  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
491    llvm::SmallVector<ParmVarDecl*, 16> Params;
492    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
493      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
494                                           FT->getArgType(i), /*DInfo=*/0,
495                                           VarDecl::None, 0));
496    New->setParams(Context, Params.data(), Params.size());
497  }
498
499  AddKnownFunctionAttributes(New);
500
501  // TUScope is the translation-unit scope to insert this function into.
502  // FIXME: This is hideous. We need to teach PushOnScopeChains to
503  // relate Scopes to DeclContexts, and probably eliminate CurContext
504  // entirely, but we're not there yet.
505  DeclContext *SavedContext = CurContext;
506  CurContext = Context.getTranslationUnitDecl();
507  PushOnScopeChains(New, TUScope);
508  CurContext = SavedContext;
509  return New;
510}
511
512/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
513/// everything from the standard library is defined.
514NamespaceDecl *Sema::GetStdNamespace() {
515  if (!StdNamespace) {
516    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
517    DeclContext *Global = Context.getTranslationUnitDecl();
518    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
519    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
520  }
521  return StdNamespace;
522}
523
524/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
525/// same name and scope as a previous declaration 'Old'.  Figure out
526/// how to resolve this situation, merging decls or emitting
527/// diagnostics as appropriate. If there was an error, set New to be invalid.
528///
529void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
530  // If either decl is known invalid already, set the new one to be invalid and
531  // don't bother doing any merging checks.
532  if (New->isInvalidDecl() || OldD->isInvalidDecl())
533    return New->setInvalidDecl();
534
535  // Allow multiple definitions for ObjC built-in typedefs.
536  // FIXME: Verify the underlying types are equivalent!
537  if (getLangOptions().ObjC1) {
538    const IdentifierInfo *TypeID = New->getIdentifier();
539    switch (TypeID->getLength()) {
540    default: break;
541    case 2:
542      if (!TypeID->isStr("id"))
543        break;
544      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
545      // Install the built-in type for 'id', ignoring the current definition.
546      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
547      return;
548    case 5:
549      if (!TypeID->isStr("Class"))
550        break;
551      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
552      // Install the built-in type for 'Class', ignoring the current definition.
553      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
554      return;
555    case 3:
556      if (!TypeID->isStr("SEL"))
557        break;
558      Context.setObjCSelType(Context.getTypeDeclType(New));
559      return;
560    case 8:
561      if (!TypeID->isStr("Protocol"))
562        break;
563      Context.setObjCProtoType(New->getUnderlyingType());
564      return;
565    }
566    // Fall through - the typedef name was not a builtin type.
567  }
568  // Verify the old decl was also a type.
569  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
570  if (!Old) {
571    Diag(New->getLocation(), diag::err_redefinition_different_kind)
572      << New->getDeclName();
573    if (OldD->getLocation().isValid())
574      Diag(OldD->getLocation(), diag::note_previous_definition);
575    return New->setInvalidDecl();
576  }
577
578  // Determine the "old" type we'll use for checking and diagnostics.
579  QualType OldType;
580  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
581    OldType = OldTypedef->getUnderlyingType();
582  else
583    OldType = Context.getTypeDeclType(Old);
584
585  // If the typedef types are not identical, reject them in all languages and
586  // with any extensions enabled.
587
588  if (OldType != New->getUnderlyingType() &&
589      Context.getCanonicalType(OldType) !=
590      Context.getCanonicalType(New->getUnderlyingType())) {
591    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
592      << New->getUnderlyingType() << OldType;
593    if (Old->getLocation().isValid())
594      Diag(Old->getLocation(), diag::note_previous_definition);
595    return New->setInvalidDecl();
596  }
597
598  if (getLangOptions().Microsoft)
599    return;
600
601  // C++ [dcl.typedef]p2:
602  //   In a given non-class scope, a typedef specifier can be used to
603  //   redefine the name of any type declared in that scope to refer
604  //   to the type to which it already refers.
605  if (getLangOptions().CPlusPlus) {
606    if (!isa<CXXRecordDecl>(CurContext))
607      return;
608    Diag(New->getLocation(), diag::err_redefinition)
609      << New->getDeclName();
610    Diag(Old->getLocation(), diag::note_previous_definition);
611    return New->setInvalidDecl();
612  }
613
614  // If we have a redefinition of a typedef in C, emit a warning.  This warning
615  // is normally mapped to an error, but can be controlled with
616  // -Wtypedef-redefinition.  If either the original or the redefinition is
617  // in a system header, don't emit this for compatibility with GCC.
618  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
619      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
620       Context.getSourceManager().isInSystemHeader(New->getLocation())))
621    return;
622
623  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
624    << New->getDeclName();
625  Diag(Old->getLocation(), diag::note_previous_definition);
626  return;
627}
628
629/// DeclhasAttr - returns true if decl Declaration already has the target
630/// attribute.
631static bool
632DeclHasAttr(const Decl *decl, const Attr *target) {
633  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
634    if (attr->getKind() == target->getKind())
635      return true;
636
637  return false;
638}
639
640/// MergeAttributes - append attributes from the Old decl to the New one.
641static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
642  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
643    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
644      Attr *NewAttr = attr->clone(C);
645      NewAttr->setInherited(true);
646      New->addAttr(NewAttr);
647    }
648  }
649}
650
651/// Used in MergeFunctionDecl to keep track of function parameters in
652/// C.
653struct GNUCompatibleParamWarning {
654  ParmVarDecl *OldParm;
655  ParmVarDecl *NewParm;
656  QualType PromotedType;
657};
658
659/// MergeFunctionDecl - We just parsed a function 'New' from
660/// declarator D which has the same name and scope as a previous
661/// declaration 'Old'.  Figure out how to resolve this situation,
662/// merging decls or emitting diagnostics as appropriate.
663///
664/// In C++, New and Old must be declarations that are not
665/// overloaded. Use IsOverload to determine whether New and Old are
666/// overloaded, and to select the Old declaration that New should be
667/// merged with.
668///
669/// Returns true if there was an error, false otherwise.
670bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
671  assert(!isa<OverloadedFunctionDecl>(OldD) &&
672         "Cannot merge with an overloaded function declaration");
673
674  // Verify the old decl was also a function.
675  FunctionDecl *Old = 0;
676  if (FunctionTemplateDecl *OldFunctionTemplate
677        = dyn_cast<FunctionTemplateDecl>(OldD))
678    Old = OldFunctionTemplate->getTemplatedDecl();
679  else
680    Old = dyn_cast<FunctionDecl>(OldD);
681  if (!Old) {
682    Diag(New->getLocation(), diag::err_redefinition_different_kind)
683      << New->getDeclName();
684    Diag(OldD->getLocation(), diag::note_previous_definition);
685    return true;
686  }
687
688  // Determine whether the previous declaration was a definition,
689  // implicit declaration, or a declaration.
690  diag::kind PrevDiag;
691  if (Old->isThisDeclarationADefinition())
692    PrevDiag = diag::note_previous_definition;
693  else if (Old->isImplicit())
694    PrevDiag = diag::note_previous_implicit_declaration;
695  else
696    PrevDiag = diag::note_previous_declaration;
697
698  QualType OldQType = Context.getCanonicalType(Old->getType());
699  QualType NewQType = Context.getCanonicalType(New->getType());
700
701  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
702      New->getStorageClass() == FunctionDecl::Static &&
703      Old->getStorageClass() != FunctionDecl::Static) {
704    Diag(New->getLocation(), diag::err_static_non_static)
705      << New;
706    Diag(Old->getLocation(), PrevDiag);
707    return true;
708  }
709
710  if (getLangOptions().CPlusPlus) {
711    // (C++98 13.1p2):
712    //   Certain function declarations cannot be overloaded:
713    //     -- Function declarations that differ only in the return type
714    //        cannot be overloaded.
715    QualType OldReturnType
716      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
717    QualType NewReturnType
718      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
719    if (OldReturnType != NewReturnType) {
720      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
721      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
722      return true;
723    }
724
725    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
726    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
727    if (OldMethod && NewMethod &&
728        NewMethod->getLexicalDeclContext()->isRecord()) {
729      //    -- Member function declarations with the same name and the
730      //       same parameter types cannot be overloaded if any of them
731      //       is a static member function declaration.
732      if (OldMethod->isStatic() || NewMethod->isStatic()) {
733        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
734        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
735        return true;
736      }
737
738      // C++ [class.mem]p1:
739      //   [...] A member shall not be declared twice in the
740      //   member-specification, except that a nested class or member
741      //   class template can be declared and then later defined.
742      unsigned NewDiag;
743      if (isa<CXXConstructorDecl>(OldMethod))
744        NewDiag = diag::err_constructor_redeclared;
745      else if (isa<CXXDestructorDecl>(NewMethod))
746        NewDiag = diag::err_destructor_redeclared;
747      else if (isa<CXXConversionDecl>(NewMethod))
748        NewDiag = diag::err_conv_function_redeclared;
749      else
750        NewDiag = diag::err_member_redeclared;
751
752      Diag(New->getLocation(), NewDiag);
753      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
754    }
755
756    // (C++98 8.3.5p3):
757    //   All declarations for a function shall agree exactly in both the
758    //   return type and the parameter-type-list.
759    if (OldQType == NewQType)
760      return MergeCompatibleFunctionDecls(New, Old);
761
762    // Fall through for conflicting redeclarations and redefinitions.
763  }
764
765  // C: Function types need to be compatible, not identical. This handles
766  // duplicate function decls like "void f(int); void f(enum X);" properly.
767  if (!getLangOptions().CPlusPlus &&
768      Context.typesAreCompatible(OldQType, NewQType)) {
769    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
770    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
771    const FunctionProtoType *OldProto = 0;
772    if (isa<FunctionNoProtoType>(NewFuncType) &&
773        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
774      // The old declaration provided a function prototype, but the
775      // new declaration does not. Merge in the prototype.
776      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
777      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
778                                                 OldProto->arg_type_end());
779      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
780                                         ParamTypes.data(), ParamTypes.size(),
781                                         OldProto->isVariadic(),
782                                         OldProto->getTypeQuals());
783      New->setType(NewQType);
784      New->setHasInheritedPrototype();
785
786      // Synthesize a parameter for each argument type.
787      llvm::SmallVector<ParmVarDecl*, 16> Params;
788      for (FunctionProtoType::arg_type_iterator
789             ParamType = OldProto->arg_type_begin(),
790             ParamEnd = OldProto->arg_type_end();
791           ParamType != ParamEnd; ++ParamType) {
792        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
793                                                 SourceLocation(), 0,
794                                                 *ParamType, /*DInfo=*/0,
795                                                 VarDecl::None, 0);
796        Param->setImplicit();
797        Params.push_back(Param);
798      }
799
800      New->setParams(Context, Params.data(), Params.size());
801    }
802
803    return MergeCompatibleFunctionDecls(New, Old);
804  }
805
806  // GNU C permits a K&R definition to follow a prototype declaration
807  // if the declared types of the parameters in the K&R definition
808  // match the types in the prototype declaration, even when the
809  // promoted types of the parameters from the K&R definition differ
810  // from the types in the prototype. GCC then keeps the types from
811  // the prototype.
812  //
813  // If a variadic prototype is followed by a non-variadic K&R definition,
814  // the K&R definition becomes variadic.  This is sort of an edge case, but
815  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
816  // C99 6.9.1p8.
817  if (!getLangOptions().CPlusPlus &&
818      Old->hasPrototype() && !New->hasPrototype() &&
819      New->getType()->getAsFunctionProtoType() &&
820      Old->getNumParams() == New->getNumParams()) {
821    llvm::SmallVector<QualType, 16> ArgTypes;
822    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
823    const FunctionProtoType *OldProto
824      = Old->getType()->getAsFunctionProtoType();
825    const FunctionProtoType *NewProto
826      = New->getType()->getAsFunctionProtoType();
827
828    // Determine whether this is the GNU C extension.
829    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
830                                               NewProto->getResultType());
831    bool LooseCompatible = !MergedReturn.isNull();
832    for (unsigned Idx = 0, End = Old->getNumParams();
833         LooseCompatible && Idx != End; ++Idx) {
834      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
835      ParmVarDecl *NewParm = New->getParamDecl(Idx);
836      if (Context.typesAreCompatible(OldParm->getType(),
837                                     NewProto->getArgType(Idx))) {
838        ArgTypes.push_back(NewParm->getType());
839      } else if (Context.typesAreCompatible(OldParm->getType(),
840                                            NewParm->getType())) {
841        GNUCompatibleParamWarning Warn
842          = { OldParm, NewParm, NewProto->getArgType(Idx) };
843        Warnings.push_back(Warn);
844        ArgTypes.push_back(NewParm->getType());
845      } else
846        LooseCompatible = false;
847    }
848
849    if (LooseCompatible) {
850      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
851        Diag(Warnings[Warn].NewParm->getLocation(),
852             diag::ext_param_promoted_not_compatible_with_prototype)
853          << Warnings[Warn].PromotedType
854          << Warnings[Warn].OldParm->getType();
855        Diag(Warnings[Warn].OldParm->getLocation(),
856             diag::note_previous_declaration);
857      }
858
859      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
860                                           ArgTypes.size(),
861                                           OldProto->isVariadic(), 0));
862      return MergeCompatibleFunctionDecls(New, Old);
863    }
864
865    // Fall through to diagnose conflicting types.
866  }
867
868  // A function that has already been declared has been redeclared or defined
869  // with a different type- show appropriate diagnostic
870  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
871    // The user has declared a builtin function with an incompatible
872    // signature.
873    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
874      // The function the user is redeclaring is a library-defined
875      // function like 'malloc' or 'printf'. Warn about the
876      // redeclaration, then pretend that we don't know about this
877      // library built-in.
878      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
879      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
880        << Old << Old->getType();
881      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
882      Old->setInvalidDecl();
883      return false;
884    }
885
886    PrevDiag = diag::note_previous_builtin_declaration;
887  }
888
889  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
890  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
891  return true;
892}
893
894/// \brief Completes the merge of two function declarations that are
895/// known to be compatible.
896///
897/// This routine handles the merging of attributes and other
898/// properties of function declarations form the old declaration to
899/// the new declaration, once we know that New is in fact a
900/// redeclaration of Old.
901///
902/// \returns false
903bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
904  // Merge the attributes
905  MergeAttributes(New, Old, Context);
906
907  // Merge the storage class.
908  if (Old->getStorageClass() != FunctionDecl::Extern)
909    New->setStorageClass(Old->getStorageClass());
910
911  // Merge "inline"
912  if (Old->isInline())
913    New->setInline(true);
914
915  // If this function declaration by itself qualifies as a C99 inline
916  // definition (C99 6.7.4p6), but the previous definition did not,
917  // then the function is not a C99 inline definition.
918  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
919    New->setC99InlineDefinition(false);
920  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
921    // Mark all preceding definitions as not being C99 inline definitions.
922    for (const FunctionDecl *Prev = Old; Prev;
923         Prev = Prev->getPreviousDeclaration())
924      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
925  }
926
927  // Merge "pure" flag.
928  if (Old->isPure())
929    New->setPure();
930
931  // Merge the "deleted" flag.
932  if (Old->isDeleted())
933    New->setDeleted();
934
935  if (getLangOptions().CPlusPlus)
936    return MergeCXXFunctionDecl(New, Old);
937
938  return false;
939}
940
941/// MergeVarDecl - We just parsed a variable 'New' which has the same name
942/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
943/// situation, merging decls or emitting diagnostics as appropriate.
944///
945/// Tentative definition rules (C99 6.9.2p2) are checked by
946/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
947/// definitions here, since the initializer hasn't been attached.
948///
949void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
950  // If either decl is invalid, make sure the new one is marked invalid and
951  // don't do any other checking.
952  if (New->isInvalidDecl() || OldD->isInvalidDecl())
953    return New->setInvalidDecl();
954
955  // Verify the old decl was also a variable.
956  VarDecl *Old = dyn_cast<VarDecl>(OldD);
957  if (!Old) {
958    Diag(New->getLocation(), diag::err_redefinition_different_kind)
959      << New->getDeclName();
960    Diag(OldD->getLocation(), diag::note_previous_definition);
961    return New->setInvalidDecl();
962  }
963
964  MergeAttributes(New, Old, Context);
965
966  // Merge the types
967  QualType MergedT;
968  if (getLangOptions().CPlusPlus) {
969    if (Context.hasSameType(New->getType(), Old->getType()))
970      MergedT = New->getType();
971  } else {
972    MergedT = Context.mergeTypes(New->getType(), Old->getType());
973  }
974  if (MergedT.isNull()) {
975    Diag(New->getLocation(), diag::err_redefinition_different_type)
976      << New->getDeclName();
977    Diag(Old->getLocation(), diag::note_previous_definition);
978    return New->setInvalidDecl();
979  }
980  New->setType(MergedT);
981
982  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
983  if (New->getStorageClass() == VarDecl::Static &&
984      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
985    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
986    Diag(Old->getLocation(), diag::note_previous_definition);
987    return New->setInvalidDecl();
988  }
989  // C99 6.2.2p4:
990  //   For an identifier declared with the storage-class specifier
991  //   extern in a scope in which a prior declaration of that
992  //   identifier is visible,23) if the prior declaration specifies
993  //   internal or external linkage, the linkage of the identifier at
994  //   the later declaration is the same as the linkage specified at
995  //   the prior declaration. If no prior declaration is visible, or
996  //   if the prior declaration specifies no linkage, then the
997  //   identifier has external linkage.
998  if (New->hasExternalStorage() && Old->hasLinkage())
999    /* Okay */;
1000  else if (New->getStorageClass() != VarDecl::Static &&
1001           Old->getStorageClass() == VarDecl::Static) {
1002    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1003    Diag(Old->getLocation(), diag::note_previous_definition);
1004    return New->setInvalidDecl();
1005  }
1006
1007  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1008
1009  // FIXME: The test for external storage here seems wrong? We still
1010  // need to check for mismatches.
1011  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1012      // Don't complain about out-of-line definitions of static members.
1013      !(Old->getLexicalDeclContext()->isRecord() &&
1014        !New->getLexicalDeclContext()->isRecord())) {
1015    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1016    Diag(Old->getLocation(), diag::note_previous_definition);
1017    return New->setInvalidDecl();
1018  }
1019
1020  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1021    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1022    Diag(Old->getLocation(), diag::note_previous_definition);
1023  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1024    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1025    Diag(Old->getLocation(), diag::note_previous_definition);
1026  }
1027
1028  // Keep a chain of previous declarations.
1029  New->setPreviousDeclaration(Old);
1030}
1031
1032/// CheckFallThrough - Check that we don't fall off the end of a
1033/// Statement that should return a value.
1034///
1035/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1036/// MaybeFallThrough iff we might or might not fall off the end and
1037/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1038/// that functions not marked noreturn will return.
1039Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1040  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1041
1042  // FIXME: They should never return 0, fix that, delete this code.
1043  if (cfg == 0)
1044    return NeverFallThrough;
1045  // The CFG leaves in dead things, and we don't want to dead code paths to
1046  // confuse us, so we mark all live things first.
1047  std::queue<CFGBlock*> workq;
1048  llvm::BitVector live(cfg->getNumBlockIDs());
1049  // Prep work queue
1050  workq.push(&cfg->getEntry());
1051  // Solve
1052  while (!workq.empty()) {
1053    CFGBlock *item = workq.front();
1054    workq.pop();
1055    live.set(item->getBlockID());
1056    for (CFGBlock::succ_iterator I=item->succ_begin(),
1057           E=item->succ_end();
1058         I != E;
1059         ++I) {
1060      if ((*I) && !live[(*I)->getBlockID()]) {
1061        live.set((*I)->getBlockID());
1062        workq.push(*I);
1063      }
1064    }
1065  }
1066
1067  // Now we know what is live, we check the live precessors of the exit block
1068  // and look for fall through paths, being careful to ignore normal returns,
1069  // and exceptional paths.
1070  bool HasLiveReturn = false;
1071  bool HasFakeEdge = false;
1072  bool HasPlainEdge = false;
1073  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1074         E = cfg->getExit().pred_end();
1075       I != E;
1076       ++I) {
1077    CFGBlock& B = **I;
1078    if (!live[B.getBlockID()])
1079      continue;
1080    if (B.size() == 0) {
1081      // A labeled empty statement, or the entry block...
1082      HasPlainEdge = true;
1083      continue;
1084    }
1085    Stmt *S = B[B.size()-1];
1086    if (isa<ReturnStmt>(S)) {
1087      HasLiveReturn = true;
1088      continue;
1089    }
1090    if (isa<ObjCAtThrowStmt>(S)) {
1091      HasFakeEdge = true;
1092      continue;
1093    }
1094    if (isa<CXXThrowExpr>(S)) {
1095      HasFakeEdge = true;
1096      continue;
1097    }
1098    bool NoReturnEdge = false;
1099    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1100      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1101      if (CEE->getType().getNoReturnAttr()) {
1102        NoReturnEdge = true;
1103        HasFakeEdge = true;
1104      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1105        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1106          if (FD->hasAttr<NoReturnAttr>()) {
1107            NoReturnEdge = true;
1108            HasFakeEdge = true;
1109          }
1110        }
1111      }
1112    }
1113    // FIXME: Add noreturn message sends.
1114    if (NoReturnEdge == false)
1115      HasPlainEdge = true;
1116  }
1117  if (!HasPlainEdge)
1118    return NeverFallThrough;
1119  if (HasFakeEdge || HasLiveReturn)
1120    return MaybeFallThrough;
1121  // This says AlwaysFallThrough for calls to functions that are not marked
1122  // noreturn, that don't return.  If people would like this warning to be more
1123  // accurate, such functions should be marked as noreturn.
1124  return AlwaysFallThrough;
1125}
1126
1127/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1128/// function that should return a value.  Check that we don't fall off the end
1129/// of a noreturn function.  We assume that functions and blocks not marked
1130/// noreturn will return.
1131void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1132  // FIXME: Would be nice if we had a better way to control cascading errors,
1133  // but for now, avoid them.  The problem is that when Parse sees:
1134  //   int foo() { return a; }
1135  // The return is eaten and the Sema code sees just:
1136  //   int foo() { }
1137  // which this code would then warn about.
1138  if (getDiagnostics().hasErrorOccurred())
1139    return;
1140  bool ReturnsVoid = false;
1141  bool HasNoReturn = false;
1142  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1143    if (FD->getResultType()->isVoidType())
1144      ReturnsVoid = true;
1145    if (FD->hasAttr<NoReturnAttr>())
1146      HasNoReturn = true;
1147  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1148    if (MD->getResultType()->isVoidType())
1149      ReturnsVoid = true;
1150    if (MD->hasAttr<NoReturnAttr>())
1151      HasNoReturn = true;
1152  }
1153
1154  // Short circuit for compilation speed.
1155  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1156       == Diagnostic::Ignored || ReturnsVoid)
1157      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1158          == Diagnostic::Ignored || !HasNoReturn)
1159      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1160          == Diagnostic::Ignored || !ReturnsVoid))
1161    return;
1162  // FIXME: Funtion try block
1163  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1164    switch (CheckFallThrough(Body)) {
1165    case MaybeFallThrough:
1166      if (HasNoReturn)
1167        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1168      else if (!ReturnsVoid)
1169        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1170      break;
1171    case AlwaysFallThrough:
1172      if (HasNoReturn)
1173        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1174      else if (!ReturnsVoid)
1175        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1176      break;
1177    case NeverFallThrough:
1178      if (ReturnsVoid)
1179        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1180      break;
1181    }
1182  }
1183}
1184
1185/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1186/// that should return a value.  Check that we don't fall off the end of a
1187/// noreturn block.  We assume that functions and blocks not marked noreturn
1188/// will return.
1189void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1190  // FIXME: Would be nice if we had a better way to control cascading errors,
1191  // but for now, avoid them.  The problem is that when Parse sees:
1192  //   int foo() { return a; }
1193  // The return is eaten and the Sema code sees just:
1194  //   int foo() { }
1195  // which this code would then warn about.
1196  if (getDiagnostics().hasErrorOccurred())
1197    return;
1198  bool ReturnsVoid = false;
1199  bool HasNoReturn = false;
1200  if (const FunctionType *FT = BlockTy->getPointeeType()->getAsFunctionType()) {
1201    if (FT->getResultType()->isVoidType())
1202      ReturnsVoid = true;
1203    if (FT->getNoReturnAttr())
1204      HasNoReturn = true;
1205  }
1206
1207  // Short circuit for compilation speed.
1208  if (ReturnsVoid
1209      && !HasNoReturn
1210      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1211          == Diagnostic::Ignored || !ReturnsVoid))
1212    return;
1213  // FIXME: Funtion try block
1214  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1215    switch (CheckFallThrough(Body)) {
1216    case MaybeFallThrough:
1217      if (HasNoReturn)
1218        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1219      else if (!ReturnsVoid)
1220        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1221      break;
1222    case AlwaysFallThrough:
1223      if (HasNoReturn)
1224        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1225      else if (!ReturnsVoid)
1226        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1227      break;
1228    case NeverFallThrough:
1229      if (ReturnsVoid)
1230        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1231      break;
1232    }
1233  }
1234}
1235
1236/// CheckParmsForFunctionDef - Check that the parameters of the given
1237/// function are appropriate for the definition of a function. This
1238/// takes care of any checks that cannot be performed on the
1239/// declaration itself, e.g., that the types of each of the function
1240/// parameters are complete.
1241bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1242  bool HasInvalidParm = false;
1243  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1244    ParmVarDecl *Param = FD->getParamDecl(p);
1245
1246    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1247    // function declarator that is part of a function definition of
1248    // that function shall not have incomplete type.
1249    //
1250    // This is also C++ [dcl.fct]p6.
1251    if (!Param->isInvalidDecl() &&
1252        RequireCompleteType(Param->getLocation(), Param->getType(),
1253                               diag::err_typecheck_decl_incomplete_type)) {
1254      Param->setInvalidDecl();
1255      HasInvalidParm = true;
1256    }
1257
1258    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1259    // declaration of each parameter shall include an identifier.
1260    if (Param->getIdentifier() == 0 &&
1261        !Param->isImplicit() &&
1262        !getLangOptions().CPlusPlus)
1263      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1264  }
1265
1266  return HasInvalidParm;
1267}
1268
1269/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1270/// no declarator (e.g. "struct foo;") is parsed.
1271Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1272  // FIXME: Error on auto/register at file scope
1273  // FIXME: Error on inline/virtual/explicit
1274  // FIXME: Error on invalid restrict
1275  // FIXME: Warn on useless __thread
1276  // FIXME: Warn on useless const/volatile
1277  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1278  // FIXME: Warn on useless attributes
1279  TagDecl *Tag = 0;
1280  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1281      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1282      DS.getTypeSpecType() == DeclSpec::TST_union ||
1283      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1284    if (!DS.getTypeRep()) // We probably had an error
1285      return DeclPtrTy();
1286
1287    // Note that the above type specs guarantee that the
1288    // type rep is a Decl, whereas in many of the others
1289    // it's a Type.
1290    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1291  }
1292
1293  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1294    if (!Record->getDeclName() && Record->isDefinition() &&
1295        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1296      if (getLangOptions().CPlusPlus ||
1297          Record->getDeclContext()->isRecord())
1298        return BuildAnonymousStructOrUnion(S, DS, Record);
1299
1300      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1301        << DS.getSourceRange();
1302    }
1303
1304    // Microsoft allows unnamed struct/union fields. Don't complain
1305    // about them.
1306    // FIXME: Should we support Microsoft's extensions in this area?
1307    if (Record->getDeclName() && getLangOptions().Microsoft)
1308      return DeclPtrTy::make(Tag);
1309  }
1310
1311  if (!DS.isMissingDeclaratorOk() &&
1312      DS.getTypeSpecType() != DeclSpec::TST_error) {
1313    // Warn about typedefs of enums without names, since this is an
1314    // extension in both Microsoft an GNU.
1315    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1316        Tag && isa<EnumDecl>(Tag)) {
1317      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1318        << DS.getSourceRange();
1319      return DeclPtrTy::make(Tag);
1320    }
1321
1322    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1323      << DS.getSourceRange();
1324    return DeclPtrTy();
1325  }
1326
1327  return DeclPtrTy::make(Tag);
1328}
1329
1330/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1331/// anonymous struct or union AnonRecord into the owning context Owner
1332/// and scope S. This routine will be invoked just after we realize
1333/// that an unnamed union or struct is actually an anonymous union or
1334/// struct, e.g.,
1335///
1336/// @code
1337/// union {
1338///   int i;
1339///   float f;
1340/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1341///    // f into the surrounding scope.x
1342/// @endcode
1343///
1344/// This routine is recursive, injecting the names of nested anonymous
1345/// structs/unions into the owning context and scope as well.
1346bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1347                                               RecordDecl *AnonRecord) {
1348  bool Invalid = false;
1349  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1350                               FEnd = AnonRecord->field_end();
1351       F != FEnd; ++F) {
1352    if ((*F)->getDeclName()) {
1353      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1354                                                LookupOrdinaryName, true);
1355      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1356        // C++ [class.union]p2:
1357        //   The names of the members of an anonymous union shall be
1358        //   distinct from the names of any other entity in the
1359        //   scope in which the anonymous union is declared.
1360        unsigned diagKind
1361          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1362                                 : diag::err_anonymous_struct_member_redecl;
1363        Diag((*F)->getLocation(), diagKind)
1364          << (*F)->getDeclName();
1365        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1366        Invalid = true;
1367      } else {
1368        // C++ [class.union]p2:
1369        //   For the purpose of name lookup, after the anonymous union
1370        //   definition, the members of the anonymous union are
1371        //   considered to have been defined in the scope in which the
1372        //   anonymous union is declared.
1373        Owner->makeDeclVisibleInContext(*F);
1374        S->AddDecl(DeclPtrTy::make(*F));
1375        IdResolver.AddDecl(*F);
1376      }
1377    } else if (const RecordType *InnerRecordType
1378                 = (*F)->getType()->getAs<RecordType>()) {
1379      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1380      if (InnerRecord->isAnonymousStructOrUnion())
1381        Invalid = Invalid ||
1382          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1383    }
1384  }
1385
1386  return Invalid;
1387}
1388
1389/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1390/// anonymous structure or union. Anonymous unions are a C++ feature
1391/// (C++ [class.union]) and a GNU C extension; anonymous structures
1392/// are a GNU C and GNU C++ extension.
1393Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1394                                                  RecordDecl *Record) {
1395  DeclContext *Owner = Record->getDeclContext();
1396
1397  // Diagnose whether this anonymous struct/union is an extension.
1398  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1399    Diag(Record->getLocation(), diag::ext_anonymous_union);
1400  else if (!Record->isUnion())
1401    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1402
1403  // C and C++ require different kinds of checks for anonymous
1404  // structs/unions.
1405  bool Invalid = false;
1406  if (getLangOptions().CPlusPlus) {
1407    const char* PrevSpec = 0;
1408    unsigned DiagID;
1409    // C++ [class.union]p3:
1410    //   Anonymous unions declared in a named namespace or in the
1411    //   global namespace shall be declared static.
1412    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1413        (isa<TranslationUnitDecl>(Owner) ||
1414         (isa<NamespaceDecl>(Owner) &&
1415          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1416      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1417      Invalid = true;
1418
1419      // Recover by adding 'static'.
1420      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1421                             PrevSpec, DiagID);
1422    }
1423    // C++ [class.union]p3:
1424    //   A storage class is not allowed in a declaration of an
1425    //   anonymous union in a class scope.
1426    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1427             isa<RecordDecl>(Owner)) {
1428      Diag(DS.getStorageClassSpecLoc(),
1429           diag::err_anonymous_union_with_storage_spec);
1430      Invalid = true;
1431
1432      // Recover by removing the storage specifier.
1433      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1434                             PrevSpec, DiagID);
1435    }
1436
1437    // C++ [class.union]p2:
1438    //   The member-specification of an anonymous union shall only
1439    //   define non-static data members. [Note: nested types and
1440    //   functions cannot be declared within an anonymous union. ]
1441    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1442                                 MemEnd = Record->decls_end();
1443         Mem != MemEnd; ++Mem) {
1444      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1445        // C++ [class.union]p3:
1446        //   An anonymous union shall not have private or protected
1447        //   members (clause 11).
1448        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1449          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1450            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1451          Invalid = true;
1452        }
1453      } else if ((*Mem)->isImplicit()) {
1454        // Any implicit members are fine.
1455      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1456        // This is a type that showed up in an
1457        // elaborated-type-specifier inside the anonymous struct or
1458        // union, but which actually declares a type outside of the
1459        // anonymous struct or union. It's okay.
1460      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1461        if (!MemRecord->isAnonymousStructOrUnion() &&
1462            MemRecord->getDeclName()) {
1463          // This is a nested type declaration.
1464          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1465            << (int)Record->isUnion();
1466          Invalid = true;
1467        }
1468      } else {
1469        // We have something that isn't a non-static data
1470        // member. Complain about it.
1471        unsigned DK = diag::err_anonymous_record_bad_member;
1472        if (isa<TypeDecl>(*Mem))
1473          DK = diag::err_anonymous_record_with_type;
1474        else if (isa<FunctionDecl>(*Mem))
1475          DK = diag::err_anonymous_record_with_function;
1476        else if (isa<VarDecl>(*Mem))
1477          DK = diag::err_anonymous_record_with_static;
1478        Diag((*Mem)->getLocation(), DK)
1479            << (int)Record->isUnion();
1480          Invalid = true;
1481      }
1482    }
1483  }
1484
1485  if (!Record->isUnion() && !Owner->isRecord()) {
1486    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1487      << (int)getLangOptions().CPlusPlus;
1488    Invalid = true;
1489  }
1490
1491  // Create a declaration for this anonymous struct/union.
1492  NamedDecl *Anon = 0;
1493  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1494    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1495                             /*IdentifierInfo=*/0,
1496                             Context.getTypeDeclType(Record),
1497                             // FIXME: Type source info.
1498                             /*DInfo=*/0,
1499                             /*BitWidth=*/0, /*Mutable=*/false);
1500    Anon->setAccess(AS_public);
1501    if (getLangOptions().CPlusPlus)
1502      FieldCollector->Add(cast<FieldDecl>(Anon));
1503  } else {
1504    VarDecl::StorageClass SC;
1505    switch (DS.getStorageClassSpec()) {
1506    default: assert(0 && "Unknown storage class!");
1507    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1508    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1509    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1510    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1511    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1512    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1513    case DeclSpec::SCS_mutable:
1514      // mutable can only appear on non-static class members, so it's always
1515      // an error here
1516      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1517      Invalid = true;
1518      SC = VarDecl::None;
1519      break;
1520    }
1521
1522    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1523                           /*IdentifierInfo=*/0,
1524                           Context.getTypeDeclType(Record),
1525                           // FIXME: Type source info.
1526                           /*DInfo=*/0,
1527                           SC);
1528  }
1529  Anon->setImplicit();
1530
1531  // Add the anonymous struct/union object to the current
1532  // context. We'll be referencing this object when we refer to one of
1533  // its members.
1534  Owner->addDecl(Anon);
1535
1536  // Inject the members of the anonymous struct/union into the owning
1537  // context and into the identifier resolver chain for name lookup
1538  // purposes.
1539  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1540    Invalid = true;
1541
1542  // Mark this as an anonymous struct/union type. Note that we do not
1543  // do this until after we have already checked and injected the
1544  // members of this anonymous struct/union type, because otherwise
1545  // the members could be injected twice: once by DeclContext when it
1546  // builds its lookup table, and once by
1547  // InjectAnonymousStructOrUnionMembers.
1548  Record->setAnonymousStructOrUnion(true);
1549
1550  if (Invalid)
1551    Anon->setInvalidDecl();
1552
1553  return DeclPtrTy::make(Anon);
1554}
1555
1556
1557/// GetNameForDeclarator - Determine the full declaration name for the
1558/// given Declarator.
1559DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1560  switch (D.getKind()) {
1561  case Declarator::DK_Abstract:
1562    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1563    return DeclarationName();
1564
1565  case Declarator::DK_Normal:
1566    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1567    return DeclarationName(D.getIdentifier());
1568
1569  case Declarator::DK_Constructor: {
1570    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1571    return Context.DeclarationNames.getCXXConstructorName(
1572                                                Context.getCanonicalType(Ty));
1573  }
1574
1575  case Declarator::DK_Destructor: {
1576    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1577    return Context.DeclarationNames.getCXXDestructorName(
1578                                                Context.getCanonicalType(Ty));
1579  }
1580
1581  case Declarator::DK_Conversion: {
1582    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1583    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1584    return Context.DeclarationNames.getCXXConversionFunctionName(
1585                                                Context.getCanonicalType(Ty));
1586  }
1587
1588  case Declarator::DK_Operator:
1589    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1590    return Context.DeclarationNames.getCXXOperatorName(
1591                                                D.getOverloadedOperator());
1592  }
1593
1594  assert(false && "Unknown name kind");
1595  return DeclarationName();
1596}
1597
1598/// isNearlyMatchingFunction - Determine whether the C++ functions
1599/// Declaration and Definition are "nearly" matching. This heuristic
1600/// is used to improve diagnostics in the case where an out-of-line
1601/// function definition doesn't match any declaration within
1602/// the class or namespace.
1603static bool isNearlyMatchingFunction(ASTContext &Context,
1604                                     FunctionDecl *Declaration,
1605                                     FunctionDecl *Definition) {
1606  if (Declaration->param_size() != Definition->param_size())
1607    return false;
1608  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1609    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1610    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1611
1612    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1613    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1614    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1615      return false;
1616  }
1617
1618  return true;
1619}
1620
1621Sema::DeclPtrTy
1622Sema::HandleDeclarator(Scope *S, Declarator &D,
1623                       MultiTemplateParamsArg TemplateParamLists,
1624                       bool IsFunctionDefinition) {
1625  DeclarationName Name = GetNameForDeclarator(D);
1626
1627  // All of these full declarators require an identifier.  If it doesn't have
1628  // one, the ParsedFreeStandingDeclSpec action should be used.
1629  if (!Name) {
1630    if (!D.isInvalidType())  // Reject this if we think it is valid.
1631      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1632           diag::err_declarator_need_ident)
1633        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1634    return DeclPtrTy();
1635  }
1636
1637  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1638  // we find one that is.
1639  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1640         (S->getFlags() & Scope::TemplateParamScope) != 0)
1641    S = S->getParent();
1642
1643  // If this is an out-of-line definition of a member of a class template
1644  // or class template partial specialization, we may need to rebuild the
1645  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1646  // for more information.
1647  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1648  // handle expressions properly.
1649  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1650  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1651      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1652      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1653       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1654       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1655       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1656    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1657      // FIXME: Preserve type source info.
1658      QualType T = GetTypeFromParser(DS.getTypeRep());
1659      EnterDeclaratorContext(S, DC);
1660      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1661      ExitDeclaratorContext(S);
1662      if (T.isNull())
1663        return DeclPtrTy();
1664      DS.UpdateTypeRep(T.getAsOpaquePtr());
1665    }
1666  }
1667
1668  DeclContext *DC;
1669  NamedDecl *PrevDecl;
1670  NamedDecl *New;
1671
1672  DeclaratorInfo *DInfo = 0;
1673  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1674
1675  // See if this is a redefinition of a variable in the same scope.
1676  if (D.getCXXScopeSpec().isInvalid()) {
1677    DC = CurContext;
1678    PrevDecl = 0;
1679    D.setInvalidType();
1680  } else if (!D.getCXXScopeSpec().isSet()) {
1681    LookupNameKind NameKind = LookupOrdinaryName;
1682
1683    // If the declaration we're planning to build will be a function
1684    // or object with linkage, then look for another declaration with
1685    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1686    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1687      /* Do nothing*/;
1688    else if (R->isFunctionType()) {
1689      if (CurContext->isFunctionOrMethod() ||
1690          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1691        NameKind = LookupRedeclarationWithLinkage;
1692    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1693      NameKind = LookupRedeclarationWithLinkage;
1694    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1695             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1696      NameKind = LookupRedeclarationWithLinkage;
1697
1698    DC = CurContext;
1699    PrevDecl = LookupName(S, Name, NameKind, true,
1700                          NameKind == LookupRedeclarationWithLinkage,
1701                          D.getIdentifierLoc());
1702  } else { // Something like "int foo::x;"
1703    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1704    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1705    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1706
1707    // C++ 7.3.1.2p2:
1708    // Members (including explicit specializations of templates) of a named
1709    // namespace can also be defined outside that namespace by explicit
1710    // qualification of the name being defined, provided that the entity being
1711    // defined was already declared in the namespace and the definition appears
1712    // after the point of declaration in a namespace that encloses the
1713    // declarations namespace.
1714    //
1715    // Note that we only check the context at this point. We don't yet
1716    // have enough information to make sure that PrevDecl is actually
1717    // the declaration we want to match. For example, given:
1718    //
1719    //   class X {
1720    //     void f();
1721    //     void f(float);
1722    //   };
1723    //
1724    //   void X::f(int) { } // ill-formed
1725    //
1726    // In this case, PrevDecl will point to the overload set
1727    // containing the two f's declared in X, but neither of them
1728    // matches.
1729
1730    // First check whether we named the global scope.
1731    if (isa<TranslationUnitDecl>(DC)) {
1732      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1733        << Name << D.getCXXScopeSpec().getRange();
1734    } else if (!CurContext->Encloses(DC)) {
1735      // The qualifying scope doesn't enclose the original declaration.
1736      // Emit diagnostic based on current scope.
1737      SourceLocation L = D.getIdentifierLoc();
1738      SourceRange R = D.getCXXScopeSpec().getRange();
1739      if (isa<FunctionDecl>(CurContext))
1740        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1741      else
1742        Diag(L, diag::err_invalid_declarator_scope)
1743          << Name << cast<NamedDecl>(DC) << R;
1744      D.setInvalidType();
1745    }
1746  }
1747
1748  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1749    // Maybe we will complain about the shadowed template parameter.
1750    if (!D.isInvalidType())
1751      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1752        D.setInvalidType();
1753
1754    // Just pretend that we didn't see the previous declaration.
1755    PrevDecl = 0;
1756  }
1757
1758  // In C++, the previous declaration we find might be a tag type
1759  // (class or enum). In this case, the new declaration will hide the
1760  // tag type. Note that this does does not apply if we're declaring a
1761  // typedef (C++ [dcl.typedef]p4).
1762  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1763      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1764    PrevDecl = 0;
1765
1766  bool Redeclaration = false;
1767  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1768    if (TemplateParamLists.size()) {
1769      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1770      return DeclPtrTy();
1771    }
1772
1773    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1774  } else if (R->isFunctionType()) {
1775    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1776                                  move(TemplateParamLists),
1777                                  IsFunctionDefinition, Redeclaration);
1778  } else {
1779    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1780                                  move(TemplateParamLists),
1781                                  Redeclaration);
1782  }
1783
1784  if (New == 0)
1785    return DeclPtrTy();
1786
1787  // If this has an identifier and is not an invalid redeclaration,
1788  // add it to the scope stack.
1789  if (Name && !(Redeclaration && New->isInvalidDecl()))
1790    PushOnScopeChains(New, S);
1791
1792  return DeclPtrTy::make(New);
1793}
1794
1795/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1796/// types into constant array types in certain situations which would otherwise
1797/// be errors (for GCC compatibility).
1798static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1799                                                    ASTContext &Context,
1800                                                    bool &SizeIsNegative) {
1801  // This method tries to turn a variable array into a constant
1802  // array even when the size isn't an ICE.  This is necessary
1803  // for compatibility with code that depends on gcc's buggy
1804  // constant expression folding, like struct {char x[(int)(char*)2];}
1805  SizeIsNegative = false;
1806
1807  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1808    QualType Pointee = PTy->getPointeeType();
1809    QualType FixedType =
1810        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1811    if (FixedType.isNull()) return FixedType;
1812    FixedType = Context.getPointerType(FixedType);
1813    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1814    return FixedType;
1815  }
1816
1817  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1818  if (!VLATy)
1819    return QualType();
1820  // FIXME: We should probably handle this case
1821  if (VLATy->getElementType()->isVariablyModifiedType())
1822    return QualType();
1823
1824  Expr::EvalResult EvalResult;
1825  if (!VLATy->getSizeExpr() ||
1826      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1827      !EvalResult.Val.isInt())
1828    return QualType();
1829
1830  llvm::APSInt &Res = EvalResult.Val.getInt();
1831  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1832    Expr* ArySizeExpr = VLATy->getSizeExpr();
1833    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1834    // so as to transfer ownership to the ConstantArrayWithExpr.
1835    // Alternatively, we could "clone" it (how?).
1836    // Since we don't know how to do things above, we just use the
1837    // very same Expr*.
1838    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1839                                                Res, ArySizeExpr,
1840                                                ArrayType::Normal, 0,
1841                                                VLATy->getBracketsRange());
1842  }
1843
1844  SizeIsNegative = true;
1845  return QualType();
1846}
1847
1848/// \brief Register the given locally-scoped external C declaration so
1849/// that it can be found later for redeclarations
1850void
1851Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1852                                       Scope *S) {
1853  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1854         "Decl is not a locally-scoped decl!");
1855  // Note that we have a locally-scoped external with this name.
1856  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1857
1858  if (!PrevDecl)
1859    return;
1860
1861  // If there was a previous declaration of this variable, it may be
1862  // in our identifier chain. Update the identifier chain with the new
1863  // declaration.
1864  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1865    // The previous declaration was found on the identifer resolver
1866    // chain, so remove it from its scope.
1867    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1868      S = S->getParent();
1869
1870    if (S)
1871      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1872  }
1873}
1874
1875/// \brief Diagnose function specifiers on a declaration of an identifier that
1876/// does not identify a function.
1877void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1878  // FIXME: We should probably indicate the identifier in question to avoid
1879  // confusion for constructs like "inline int a(), b;"
1880  if (D.getDeclSpec().isInlineSpecified())
1881    Diag(D.getDeclSpec().getInlineSpecLoc(),
1882         diag::err_inline_non_function);
1883
1884  if (D.getDeclSpec().isVirtualSpecified())
1885    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1886         diag::err_virtual_non_function);
1887
1888  if (D.getDeclSpec().isExplicitSpecified())
1889    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1890         diag::err_explicit_non_function);
1891}
1892
1893NamedDecl*
1894Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1895                             QualType R,  DeclaratorInfo *DInfo,
1896                             Decl* PrevDecl, bool &Redeclaration) {
1897  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1898  if (D.getCXXScopeSpec().isSet()) {
1899    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1900      << D.getCXXScopeSpec().getRange();
1901    D.setInvalidType();
1902    // Pretend we didn't see the scope specifier.
1903    DC = 0;
1904  }
1905
1906  if (getLangOptions().CPlusPlus) {
1907    // Check that there are no default arguments (C++ only).
1908    CheckExtraCXXDefaultArguments(D);
1909  }
1910
1911  DiagnoseFunctionSpecifiers(D);
1912
1913  if (D.getDeclSpec().isThreadSpecified())
1914    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1915
1916  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1917  if (!NewTD) return 0;
1918
1919  if (D.isInvalidType())
1920    NewTD->setInvalidDecl();
1921
1922  // Handle attributes prior to checking for duplicates in MergeVarDecl
1923  ProcessDeclAttributes(S, NewTD, D);
1924  // Merge the decl with the existing one if appropriate. If the decl is
1925  // in an outer scope, it isn't the same thing.
1926  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1927    Redeclaration = true;
1928    MergeTypeDefDecl(NewTD, PrevDecl);
1929  }
1930
1931  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1932  // then it shall have block scope.
1933  QualType T = NewTD->getUnderlyingType();
1934  if (T->isVariablyModifiedType()) {
1935    CurFunctionNeedsScopeChecking = true;
1936
1937    if (S->getFnParent() == 0) {
1938      bool SizeIsNegative;
1939      QualType FixedTy =
1940          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1941      if (!FixedTy.isNull()) {
1942        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1943        NewTD->setUnderlyingType(FixedTy);
1944      } else {
1945        if (SizeIsNegative)
1946          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1947        else if (T->isVariableArrayType())
1948          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1949        else
1950          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1951        NewTD->setInvalidDecl();
1952      }
1953    }
1954  }
1955
1956  // If this is the C FILE type, notify the AST context.
1957  if (IdentifierInfo *II = NewTD->getIdentifier())
1958    if (!NewTD->isInvalidDecl() &&
1959        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
1960      if (II->isStr("FILE"))
1961        Context.setFILEDecl(NewTD);
1962      else if (II->isStr("jmp_buf"))
1963        Context.setjmp_bufDecl(NewTD);
1964      else if (II->isStr("sigjmp_buf"))
1965        Context.setsigjmp_bufDecl(NewTD);
1966    }
1967
1968  return NewTD;
1969}
1970
1971/// \brief Determines whether the given declaration is an out-of-scope
1972/// previous declaration.
1973///
1974/// This routine should be invoked when name lookup has found a
1975/// previous declaration (PrevDecl) that is not in the scope where a
1976/// new declaration by the same name is being introduced. If the new
1977/// declaration occurs in a local scope, previous declarations with
1978/// linkage may still be considered previous declarations (C99
1979/// 6.2.2p4-5, C++ [basic.link]p6).
1980///
1981/// \param PrevDecl the previous declaration found by name
1982/// lookup
1983///
1984/// \param DC the context in which the new declaration is being
1985/// declared.
1986///
1987/// \returns true if PrevDecl is an out-of-scope previous declaration
1988/// for a new delcaration with the same name.
1989static bool
1990isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1991                                ASTContext &Context) {
1992  if (!PrevDecl)
1993    return 0;
1994
1995  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1996  // case we need to check each of the overloaded functions.
1997  if (!PrevDecl->hasLinkage())
1998    return false;
1999
2000  if (Context.getLangOptions().CPlusPlus) {
2001    // C++ [basic.link]p6:
2002    //   If there is a visible declaration of an entity with linkage
2003    //   having the same name and type, ignoring entities declared
2004    //   outside the innermost enclosing namespace scope, the block
2005    //   scope declaration declares that same entity and receives the
2006    //   linkage of the previous declaration.
2007    DeclContext *OuterContext = DC->getLookupContext();
2008    if (!OuterContext->isFunctionOrMethod())
2009      // This rule only applies to block-scope declarations.
2010      return false;
2011    else {
2012      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2013      if (PrevOuterContext->isRecord())
2014        // We found a member function: ignore it.
2015        return false;
2016      else {
2017        // Find the innermost enclosing namespace for the new and
2018        // previous declarations.
2019        while (!OuterContext->isFileContext())
2020          OuterContext = OuterContext->getParent();
2021        while (!PrevOuterContext->isFileContext())
2022          PrevOuterContext = PrevOuterContext->getParent();
2023
2024        // The previous declaration is in a different namespace, so it
2025        // isn't the same function.
2026        if (OuterContext->getPrimaryContext() !=
2027            PrevOuterContext->getPrimaryContext())
2028          return false;
2029      }
2030    }
2031  }
2032
2033  return true;
2034}
2035
2036NamedDecl*
2037Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2038                              QualType R, DeclaratorInfo *DInfo,
2039                              NamedDecl* PrevDecl,
2040                              MultiTemplateParamsArg TemplateParamLists,
2041                              bool &Redeclaration) {
2042  DeclarationName Name = GetNameForDeclarator(D);
2043
2044  // Check that there are no default arguments (C++ only).
2045  if (getLangOptions().CPlusPlus)
2046    CheckExtraCXXDefaultArguments(D);
2047
2048  VarDecl *NewVD;
2049  VarDecl::StorageClass SC;
2050  switch (D.getDeclSpec().getStorageClassSpec()) {
2051  default: assert(0 && "Unknown storage class!");
2052  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2053  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2054  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2055  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2056  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2057  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2058  case DeclSpec::SCS_mutable:
2059    // mutable can only appear on non-static class members, so it's always
2060    // an error here
2061    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2062    D.setInvalidType();
2063    SC = VarDecl::None;
2064    break;
2065  }
2066
2067  IdentifierInfo *II = Name.getAsIdentifierInfo();
2068  if (!II) {
2069    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2070      << Name.getAsString();
2071    return 0;
2072  }
2073
2074  DiagnoseFunctionSpecifiers(D);
2075
2076  if (!DC->isRecord() && S->getFnParent() == 0) {
2077    // C99 6.9p2: The storage-class specifiers auto and register shall not
2078    // appear in the declaration specifiers in an external declaration.
2079    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2080
2081      // If this is a register variable with an asm label specified, then this
2082      // is a GNU extension.
2083      if (SC == VarDecl::Register && D.getAsmLabel())
2084        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2085      else
2086        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2087      D.setInvalidType();
2088    }
2089  }
2090  if (DC->isRecord() && !CurContext->isRecord()) {
2091    // This is an out-of-line definition of a static data member.
2092    if (SC == VarDecl::Static) {
2093      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2094           diag::err_static_out_of_line)
2095        << CodeModificationHint::CreateRemoval(
2096                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2097    } else if (SC == VarDecl::None)
2098      SC = VarDecl::Static;
2099  }
2100  if (SC == VarDecl::Static) {
2101    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2102      if (RD->isLocalClass())
2103        Diag(D.getIdentifierLoc(),
2104             diag::err_static_data_member_not_allowed_in_local_class)
2105          << Name << RD->getDeclName();
2106    }
2107  }
2108
2109  // Check that we can declare a template here.
2110  if (TemplateParamLists.size() &&
2111      CheckTemplateDeclScope(S, TemplateParamLists))
2112    return 0;
2113
2114  // Match up the template parameter lists with the scope specifier, then
2115  // determine whether we have a template or a template specialization.
2116  if (TemplateParameterList *TemplateParams
2117      = MatchTemplateParametersToScopeSpecifier(
2118                                  D.getDeclSpec().getSourceRange().getBegin(),
2119                                                D.getCXXScopeSpec(),
2120                        (TemplateParameterList**)TemplateParamLists.get(),
2121                                                 TemplateParamLists.size())) {
2122    if (TemplateParams->size() > 0) {
2123      // There is no such thing as a variable template.
2124      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2125        << II
2126        << SourceRange(TemplateParams->getTemplateLoc(),
2127                       TemplateParams->getRAngleLoc());
2128      return 0;
2129    } else {
2130      // There is an extraneous 'template<>' for this variable. Complain
2131      // about it, but allow the declaration of the variable.
2132      Diag(TemplateParams->getTemplateLoc(),
2133           diag::err_template_variable_noparams)
2134        << II
2135        << SourceRange(TemplateParams->getTemplateLoc(),
2136                       TemplateParams->getRAngleLoc());
2137    }
2138  }
2139
2140  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2141                          II, R, DInfo, SC);
2142
2143  if (D.isInvalidType())
2144    NewVD->setInvalidDecl();
2145
2146  if (D.getDeclSpec().isThreadSpecified()) {
2147    if (NewVD->hasLocalStorage())
2148      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2149    else if (!Context.Target.isTLSSupported())
2150      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2151    else
2152      NewVD->setThreadSpecified(true);
2153  }
2154
2155  // Set the lexical context. If the declarator has a C++ scope specifier, the
2156  // lexical context will be different from the semantic context.
2157  NewVD->setLexicalDeclContext(CurContext);
2158
2159  // Handle attributes prior to checking for duplicates in MergeVarDecl
2160  ProcessDeclAttributes(S, NewVD, D);
2161
2162  // Handle GNU asm-label extension (encoded as an attribute).
2163  if (Expr *E = (Expr*) D.getAsmLabel()) {
2164    // The parser guarantees this is a string.
2165    StringLiteral *SE = cast<StringLiteral>(E);
2166    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2167                                                        SE->getByteLength())));
2168  }
2169
2170  // If name lookup finds a previous declaration that is not in the
2171  // same scope as the new declaration, this may still be an
2172  // acceptable redeclaration.
2173  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2174      !(NewVD->hasLinkage() &&
2175        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2176    PrevDecl = 0;
2177
2178  // Merge the decl with the existing one if appropriate.
2179  if (PrevDecl) {
2180    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2181      // The user tried to define a non-static data member
2182      // out-of-line (C++ [dcl.meaning]p1).
2183      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2184        << D.getCXXScopeSpec().getRange();
2185      PrevDecl = 0;
2186      NewVD->setInvalidDecl();
2187    }
2188  } else if (D.getCXXScopeSpec().isSet()) {
2189    // No previous declaration in the qualifying scope.
2190    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
2191      << Name << D.getCXXScopeSpec().getRange();
2192    NewVD->setInvalidDecl();
2193  }
2194
2195  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2196
2197  // attributes declared post-definition are currently ignored
2198  if (PrevDecl) {
2199    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2200    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2201      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2202      Diag(Def->getLocation(), diag::note_previous_definition);
2203    }
2204  }
2205
2206  // If this is a locally-scoped extern C variable, update the map of
2207  // such variables.
2208  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
2209      !NewVD->isInvalidDecl())
2210    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2211
2212  return NewVD;
2213}
2214
2215/// \brief Perform semantic checking on a newly-created variable
2216/// declaration.
2217///
2218/// This routine performs all of the type-checking required for a
2219/// variable declaration once it has been built. It is used both to
2220/// check variables after they have been parsed and their declarators
2221/// have been translated into a declaration, and to check variables
2222/// that have been instantiated from a template.
2223///
2224/// Sets NewVD->isInvalidDecl() if an error was encountered.
2225void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2226                                    bool &Redeclaration) {
2227  // If the decl is already known invalid, don't check it.
2228  if (NewVD->isInvalidDecl())
2229    return;
2230
2231  QualType T = NewVD->getType();
2232
2233  if (T->isObjCInterfaceType()) {
2234    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2235    return NewVD->setInvalidDecl();
2236  }
2237
2238  // The variable can not have an abstract class type.
2239  if (RequireNonAbstractType(NewVD->getLocation(), T,
2240                             diag::err_abstract_type_in_decl,
2241                             AbstractVariableType))
2242    return NewVD->setInvalidDecl();
2243
2244  // Emit an error if an address space was applied to decl with local storage.
2245  // This includes arrays of objects with address space qualifiers, but not
2246  // automatic variables that point to other address spaces.
2247  // ISO/IEC TR 18037 S5.1.2
2248  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2249    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2250    return NewVD->setInvalidDecl();
2251  }
2252
2253  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2254      && !NewVD->hasAttr<BlocksAttr>())
2255    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2256
2257  bool isVM = T->isVariablyModifiedType();
2258  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2259      NewVD->hasAttr<BlocksAttr>())
2260    CurFunctionNeedsScopeChecking = true;
2261
2262  if ((isVM && NewVD->hasLinkage()) ||
2263      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2264    bool SizeIsNegative;
2265    QualType FixedTy =
2266        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2267
2268    if (FixedTy.isNull() && T->isVariableArrayType()) {
2269      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2270      // FIXME: This won't give the correct result for
2271      // int a[10][n];
2272      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2273
2274      if (NewVD->isFileVarDecl())
2275        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2276        << SizeRange;
2277      else if (NewVD->getStorageClass() == VarDecl::Static)
2278        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2279        << SizeRange;
2280      else
2281        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2282        << SizeRange;
2283      return NewVD->setInvalidDecl();
2284    }
2285
2286    if (FixedTy.isNull()) {
2287      if (NewVD->isFileVarDecl())
2288        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2289      else
2290        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2291      return NewVD->setInvalidDecl();
2292    }
2293
2294    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2295    NewVD->setType(FixedTy);
2296  }
2297
2298  if (!PrevDecl && NewVD->isExternC(Context)) {
2299    // Since we did not find anything by this name and we're declaring
2300    // an extern "C" variable, look for a non-visible extern "C"
2301    // declaration with the same name.
2302    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2303      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2304    if (Pos != LocallyScopedExternalDecls.end())
2305      PrevDecl = Pos->second;
2306  }
2307
2308  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2309    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2310      << T;
2311    return NewVD->setInvalidDecl();
2312  }
2313
2314  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2315    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2316    return NewVD->setInvalidDecl();
2317  }
2318
2319  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2320    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2321    return NewVD->setInvalidDecl();
2322  }
2323
2324  if (PrevDecl) {
2325    Redeclaration = true;
2326    MergeVarDecl(NewVD, PrevDecl);
2327  }
2328}
2329
2330NamedDecl*
2331Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2332                              QualType R, DeclaratorInfo *DInfo,
2333                              NamedDecl* PrevDecl,
2334                              MultiTemplateParamsArg TemplateParamLists,
2335                              bool IsFunctionDefinition, bool &Redeclaration) {
2336  assert(R.getTypePtr()->isFunctionType());
2337
2338  DeclarationName Name = GetNameForDeclarator(D);
2339  FunctionDecl::StorageClass SC = FunctionDecl::None;
2340  switch (D.getDeclSpec().getStorageClassSpec()) {
2341  default: assert(0 && "Unknown storage class!");
2342  case DeclSpec::SCS_auto:
2343  case DeclSpec::SCS_register:
2344  case DeclSpec::SCS_mutable:
2345    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2346         diag::err_typecheck_sclass_func);
2347    D.setInvalidType();
2348    break;
2349  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2350  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2351  case DeclSpec::SCS_static: {
2352    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2353      // C99 6.7.1p5:
2354      //   The declaration of an identifier for a function that has
2355      //   block scope shall have no explicit storage-class specifier
2356      //   other than extern
2357      // See also (C++ [dcl.stc]p4).
2358      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2359           diag::err_static_block_func);
2360      SC = FunctionDecl::None;
2361    } else
2362      SC = FunctionDecl::Static;
2363    break;
2364  }
2365  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2366  }
2367
2368  if (D.getDeclSpec().isThreadSpecified())
2369    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2370
2371  bool isFriend = D.getDeclSpec().isFriendSpecified();
2372  bool isInline = D.getDeclSpec().isInlineSpecified();
2373  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2374  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2375
2376  // Check that the return type is not an abstract class type.
2377  // For record types, this is done by the AbstractClassUsageDiagnoser once
2378  // the class has been completely parsed.
2379  if (!DC->isRecord() &&
2380      RequireNonAbstractType(D.getIdentifierLoc(),
2381                             R->getAsFunctionType()->getResultType(),
2382                             diag::err_abstract_type_in_decl,
2383                             AbstractReturnType))
2384    D.setInvalidType();
2385
2386  // Do not allow returning a objc interface by-value.
2387  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2388    Diag(D.getIdentifierLoc(),
2389         diag::err_object_cannot_be_passed_returned_by_value) << 0
2390      << R->getAsFunctionType()->getResultType();
2391    D.setInvalidType();
2392  }
2393
2394  // Check that we can declare a template here.
2395  if (TemplateParamLists.size() &&
2396      CheckTemplateDeclScope(S, TemplateParamLists))
2397    return 0;
2398
2399  bool isVirtualOkay = false;
2400  FunctionDecl *NewFD;
2401  if (isFriend) {
2402    // DC is the namespace in which the function is being declared.
2403    assert(DC->isFileContext() || D.getCXXScopeSpec().isSet());
2404
2405    // C++ [class.friend]p5
2406    //   A function can be defined in a friend declaration of a
2407    //   class . . . . Such a function is implicitly inline.
2408    isInline |= IsFunctionDefinition;
2409
2410    NewFD = FriendFunctionDecl::Create(Context, DC,
2411                                       D.getIdentifierLoc(), Name, R, DInfo,
2412                                       isInline,
2413                                       D.getDeclSpec().getFriendSpecLoc());
2414
2415  } else if (D.getKind() == Declarator::DK_Constructor) {
2416    // This is a C++ constructor declaration.
2417    assert(DC->isRecord() &&
2418           "Constructors can only be declared in a member context");
2419
2420    R = CheckConstructorDeclarator(D, R, SC);
2421
2422    // Create the new declaration
2423    NewFD = CXXConstructorDecl::Create(Context,
2424                                       cast<CXXRecordDecl>(DC),
2425                                       D.getIdentifierLoc(), Name, R, DInfo,
2426                                       isExplicit, isInline,
2427                                       /*isImplicitlyDeclared=*/false);
2428  } else if (D.getKind() == Declarator::DK_Destructor) {
2429    // This is a C++ destructor declaration.
2430    if (DC->isRecord()) {
2431      R = CheckDestructorDeclarator(D, SC);
2432
2433      NewFD = CXXDestructorDecl::Create(Context,
2434                                        cast<CXXRecordDecl>(DC),
2435                                        D.getIdentifierLoc(), Name, R,
2436                                        isInline,
2437                                        /*isImplicitlyDeclared=*/false);
2438
2439      isVirtualOkay = true;
2440    } else {
2441      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2442
2443      // Create a FunctionDecl to satisfy the function definition parsing
2444      // code path.
2445      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2446                                   Name, R, DInfo, SC, isInline,
2447                                   /*hasPrototype=*/true);
2448      D.setInvalidType();
2449    }
2450  } else if (D.getKind() == Declarator::DK_Conversion) {
2451    if (!DC->isRecord()) {
2452      Diag(D.getIdentifierLoc(),
2453           diag::err_conv_function_not_member);
2454      return 0;
2455    }
2456
2457    CheckConversionDeclarator(D, R, SC);
2458    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2459                                      D.getIdentifierLoc(), Name, R, DInfo,
2460                                      isInline, isExplicit);
2461
2462    isVirtualOkay = true;
2463  } else if (DC->isRecord()) {
2464    // If the of the function is the same as the name of the record, then this
2465    // must be an invalid constructor that has a return type.
2466    // (The parser checks for a return type and makes the declarator a
2467    // constructor if it has no return type).
2468    // must have an invalid constructor that has a return type
2469    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2470      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2471        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2472        << SourceRange(D.getIdentifierLoc());
2473      return 0;
2474    }
2475
2476    // This is a C++ method declaration.
2477    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2478                                  D.getIdentifierLoc(), Name, R, DInfo,
2479                                  (SC == FunctionDecl::Static), isInline);
2480
2481    isVirtualOkay = (SC != FunctionDecl::Static);
2482  } else {
2483    // Determine whether the function was written with a
2484    // prototype. This true when:
2485    //   - we're in C++ (where every function has a prototype),
2486    //   - there is a prototype in the declarator, or
2487    //   - the type R of the function is some kind of typedef or other reference
2488    //     to a type name (which eventually refers to a function type).
2489    bool HasPrototype =
2490       getLangOptions().CPlusPlus ||
2491       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2492       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2493
2494    NewFD = FunctionDecl::Create(Context, DC,
2495                                 D.getIdentifierLoc(),
2496                                 Name, R, DInfo, SC, isInline, HasPrototype);
2497  }
2498
2499  if (D.isInvalidType())
2500    NewFD->setInvalidDecl();
2501
2502  // Set the lexical context. If the declarator has a C++
2503  // scope specifier, the lexical context will be different
2504  // from the semantic context.
2505  NewFD->setLexicalDeclContext(CurContext);
2506
2507  // Match up the template parameter lists with the scope specifier, then
2508  // determine whether we have a template or a template specialization.
2509  FunctionTemplateDecl *FunctionTemplate = 0;
2510  if (TemplateParameterList *TemplateParams
2511        = MatchTemplateParametersToScopeSpecifier(
2512                                  D.getDeclSpec().getSourceRange().getBegin(),
2513                                  D.getCXXScopeSpec(),
2514                           (TemplateParameterList**)TemplateParamLists.get(),
2515                                                  TemplateParamLists.size())) {
2516    if (TemplateParams->size() > 0) {
2517      // This is a function template
2518      FunctionTemplate = FunctionTemplateDecl::Create(Context, CurContext,
2519                                                      NewFD->getLocation(),
2520                                                      Name, TemplateParams,
2521                                                      NewFD);
2522      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2523    } else {
2524      // FIXME: Handle function template specializations
2525    }
2526
2527    // FIXME: Free this memory properly.
2528    TemplateParamLists.release();
2529  }
2530
2531  // C++ [dcl.fct.spec]p5:
2532  //   The virtual specifier shall only be used in declarations of
2533  //   nonstatic class member functions that appear within a
2534  //   member-specification of a class declaration; see 10.3.
2535  //
2536  if (isVirtual && !NewFD->isInvalidDecl()) {
2537    if (!isVirtualOkay) {
2538       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2539           diag::err_virtual_non_function);
2540    } else if (!CurContext->isRecord()) {
2541      // 'virtual' was specified outside of the class.
2542      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2543        << CodeModificationHint::CreateRemoval(
2544                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2545    } else {
2546      // Okay: Add virtual to the method.
2547      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2548      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2549      CurClass->setAggregate(false);
2550      CurClass->setPOD(false);
2551      CurClass->setEmpty(false);
2552      CurClass->setPolymorphic(true);
2553      CurClass->setHasTrivialConstructor(false);
2554      CurClass->setHasTrivialCopyConstructor(false);
2555      CurClass->setHasTrivialCopyAssignment(false);
2556    }
2557  }
2558
2559  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2560    // Look for virtual methods in base classes that this method might override.
2561
2562    BasePaths Paths;
2563    if (LookupInBases(cast<CXXRecordDecl>(DC),
2564                      MemberLookupCriteria(NewMD), Paths)) {
2565      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2566           E = Paths.found_decls_end(); I != E; ++I) {
2567        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2568          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2569              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2570            NewMD->addOverriddenMethod(OldMD);
2571        }
2572      }
2573    }
2574  }
2575
2576  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2577      !CurContext->isRecord()) {
2578    // C++ [class.static]p1:
2579    //   A data or function member of a class may be declared static
2580    //   in a class definition, in which case it is a static member of
2581    //   the class.
2582
2583    // Complain about the 'static' specifier if it's on an out-of-line
2584    // member function definition.
2585    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2586         diag::err_static_out_of_line)
2587      << CodeModificationHint::CreateRemoval(
2588                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2589  }
2590
2591  // Handle GNU asm-label extension (encoded as an attribute).
2592  if (Expr *E = (Expr*) D.getAsmLabel()) {
2593    // The parser guarantees this is a string.
2594    StringLiteral *SE = cast<StringLiteral>(E);
2595    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2596                                                        SE->getByteLength())));
2597  }
2598
2599  // Copy the parameter declarations from the declarator D to the function
2600  // declaration NewFD, if they are available.  First scavenge them into Params.
2601  llvm::SmallVector<ParmVarDecl*, 16> Params;
2602  if (D.getNumTypeObjects() > 0) {
2603    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2604
2605    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2606    // function that takes no arguments, not a function that takes a
2607    // single void argument.
2608    // We let through "const void" here because Sema::GetTypeForDeclarator
2609    // already checks for that case.
2610    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2611        FTI.ArgInfo[0].Param &&
2612        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2613      // Empty arg list, don't push any params.
2614      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2615
2616      // In C++, the empty parameter-type-list must be spelled "void"; a
2617      // typedef of void is not permitted.
2618      if (getLangOptions().CPlusPlus &&
2619          Param->getType().getUnqualifiedType() != Context.VoidTy)
2620        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2621      // FIXME: Leaks decl?
2622    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2623      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2624        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2625        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2626        Param->setDeclContext(NewFD);
2627        Params.push_back(Param);
2628      }
2629    }
2630
2631  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2632    // When we're declaring a function with a typedef, typeof, etc as in the
2633    // following example, we'll need to synthesize (unnamed)
2634    // parameters for use in the declaration.
2635    //
2636    // @code
2637    // typedef void fn(int);
2638    // fn f;
2639    // @endcode
2640
2641    // Synthesize a parameter for each argument type.
2642    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2643         AE = FT->arg_type_end(); AI != AE; ++AI) {
2644      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2645                                               SourceLocation(), 0,
2646                                               *AI, /*DInfo=*/0,
2647                                               VarDecl::None, 0);
2648      Param->setImplicit();
2649      Params.push_back(Param);
2650    }
2651  } else {
2652    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2653           "Should not need args for typedef of non-prototype fn");
2654  }
2655  // Finally, we know we have the right number of parameters, install them.
2656  NewFD->setParams(Context, Params.data(), Params.size());
2657
2658  // If name lookup finds a previous declaration that is not in the
2659  // same scope as the new declaration, this may still be an
2660  // acceptable redeclaration.
2661  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2662      !(NewFD->hasLinkage() &&
2663        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2664    PrevDecl = 0;
2665
2666  // Perform semantic checking on the function declaration.
2667  bool OverloadableAttrRequired = false; // FIXME: HACK!
2668  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2669                           /*FIXME:*/OverloadableAttrRequired);
2670
2671  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2672    // An out-of-line member function declaration must also be a
2673    // definition (C++ [dcl.meaning]p1).
2674    if (!IsFunctionDefinition && !isFriend) {
2675      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2676        << D.getCXXScopeSpec().getRange();
2677      NewFD->setInvalidDecl();
2678    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
2679      // The user tried to provide an out-of-line definition for a
2680      // function that is a member of a class or namespace, but there
2681      // was no such member function declared (C++ [class.mfct]p2,
2682      // C++ [namespace.memdef]p2). For example:
2683      //
2684      // class X {
2685      //   void f() const;
2686      // };
2687      //
2688      // void X::f() { } // ill-formed
2689      //
2690      // Complain about this problem, and attempt to suggest close
2691      // matches (e.g., those that differ only in cv-qualifiers and
2692      // whether the parameter types are references).
2693      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2694        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2695      NewFD->setInvalidDecl();
2696
2697      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2698                                              true);
2699      assert(!Prev.isAmbiguous() &&
2700             "Cannot have an ambiguity in previous-declaration lookup");
2701      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2702           Func != FuncEnd; ++Func) {
2703        if (isa<FunctionDecl>(*Func) &&
2704            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2705          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2706      }
2707
2708      PrevDecl = 0;
2709    }
2710  }
2711
2712  // Handle attributes. We need to have merged decls when handling attributes
2713  // (for example to check for conflicts, etc).
2714  // FIXME: This needs to happen before we merge declarations. Then,
2715  // let attribute merging cope with attribute conflicts.
2716  ProcessDeclAttributes(S, NewFD, D);
2717
2718  // attributes declared post-definition are currently ignored
2719  if (PrevDecl) {
2720    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2721    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2722      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2723      Diag(Def->getLocation(), diag::note_previous_definition);
2724    }
2725  }
2726
2727  AddKnownFunctionAttributes(NewFD);
2728
2729  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2730    // If a function name is overloadable in C, then every function
2731    // with that name must be marked "overloadable".
2732    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2733      << Redeclaration << NewFD;
2734    if (PrevDecl)
2735      Diag(PrevDecl->getLocation(),
2736           diag::note_attribute_overloadable_prev_overload);
2737    NewFD->addAttr(::new (Context) OverloadableAttr());
2738  }
2739
2740  // If this is a locally-scoped extern C function, update the
2741  // map of such names.
2742  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2743      && !NewFD->isInvalidDecl())
2744    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2745
2746  // Set this FunctionDecl's range up to the right paren.
2747  NewFD->setLocEnd(D.getSourceRange().getEnd());
2748
2749  if (FunctionTemplate && NewFD->isInvalidDecl())
2750    FunctionTemplate->setInvalidDecl();
2751
2752  if (FunctionTemplate)
2753    return FunctionTemplate;
2754
2755  return NewFD;
2756}
2757
2758/// \brief Perform semantic checking of a new function declaration.
2759///
2760/// Performs semantic analysis of the new function declaration
2761/// NewFD. This routine performs all semantic checking that does not
2762/// require the actual declarator involved in the declaration, and is
2763/// used both for the declaration of functions as they are parsed
2764/// (called via ActOnDeclarator) and for the declaration of functions
2765/// that have been instantiated via C++ template instantiation (called
2766/// via InstantiateDecl).
2767///
2768/// This sets NewFD->isInvalidDecl() to true if there was an error.
2769void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2770                                    bool &Redeclaration,
2771                                    bool &OverloadableAttrRequired) {
2772  // If NewFD is already known erroneous, don't do any of this checking.
2773  if (NewFD->isInvalidDecl())
2774    return;
2775
2776  if (NewFD->getResultType()->isVariablyModifiedType()) {
2777    // Functions returning a variably modified type violate C99 6.7.5.2p2
2778    // because all functions have linkage.
2779    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2780    return NewFD->setInvalidDecl();
2781  }
2782
2783  if (NewFD->isMain(Context)) CheckMain(NewFD);
2784
2785  // Semantic checking for this function declaration (in isolation).
2786  if (getLangOptions().CPlusPlus) {
2787    // C++-specific checks.
2788    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2789      CheckConstructor(Constructor);
2790    } else if (isa<CXXDestructorDecl>(NewFD)) {
2791      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2792      QualType ClassType = Context.getTypeDeclType(Record);
2793      if (!ClassType->isDependentType()) {
2794        DeclarationName Name
2795          = Context.DeclarationNames.getCXXDestructorName(
2796                                        Context.getCanonicalType(ClassType));
2797        if (NewFD->getDeclName() != Name) {
2798          Diag(NewFD->getLocation(), diag::err_destructor_name);
2799          return NewFD->setInvalidDecl();
2800        }
2801      }
2802      Record->setUserDeclaredDestructor(true);
2803      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2804      // user-defined destructor.
2805      Record->setPOD(false);
2806
2807      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2808      // declared destructor.
2809      // FIXME: C++0x: don't do this for "= default" destructors
2810      Record->setHasTrivialDestructor(false);
2811    } else if (CXXConversionDecl *Conversion
2812               = dyn_cast<CXXConversionDecl>(NewFD))
2813      ActOnConversionDeclarator(Conversion);
2814
2815    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2816    if (NewFD->isOverloadedOperator() &&
2817        CheckOverloadedOperatorDeclaration(NewFD))
2818      return NewFD->setInvalidDecl();
2819  }
2820
2821  // C99 6.7.4p6:
2822  //   [... ] For a function with external linkage, the following
2823  //   restrictions apply: [...] If all of the file scope declarations
2824  //   for a function in a translation unit include the inline
2825  //   function specifier without extern, then the definition in that
2826  //   translation unit is an inline definition. An inline definition
2827  //   does not provide an external definition for the function, and
2828  //   does not forbid an external definition in another translation
2829  //   unit.
2830  //
2831  // Here we determine whether this function, in isolation, would be a
2832  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2833  // previous declarations.
2834  if (NewFD->isInline() && getLangOptions().C99 &&
2835      NewFD->getStorageClass() == FunctionDecl::None &&
2836      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2837    NewFD->setC99InlineDefinition(true);
2838
2839  // Check for a previous declaration of this name.
2840  if (!PrevDecl && NewFD->isExternC(Context)) {
2841    // Since we did not find anything by this name and we're declaring
2842    // an extern "C" function, look for a non-visible extern "C"
2843    // declaration with the same name.
2844    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2845      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2846    if (Pos != LocallyScopedExternalDecls.end())
2847      PrevDecl = Pos->second;
2848  }
2849
2850  // Merge or overload the declaration with an existing declaration of
2851  // the same name, if appropriate.
2852  if (PrevDecl) {
2853    // Determine whether NewFD is an overload of PrevDecl or
2854    // a declaration that requires merging. If it's an overload,
2855    // there's no more work to do here; we'll just add the new
2856    // function to the scope.
2857    OverloadedFunctionDecl::function_iterator MatchedDecl;
2858
2859    if (!getLangOptions().CPlusPlus &&
2860        AllowOverloadingOfFunction(PrevDecl, Context)) {
2861      OverloadableAttrRequired = true;
2862
2863      // Functions marked "overloadable" must have a prototype (that
2864      // we can't get through declaration merging).
2865      if (!NewFD->getType()->getAsFunctionProtoType()) {
2866        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2867          << NewFD;
2868        Redeclaration = true;
2869
2870        // Turn this into a variadic function with no parameters.
2871        QualType R = Context.getFunctionType(
2872                       NewFD->getType()->getAsFunctionType()->getResultType(),
2873                       0, 0, true, 0);
2874        NewFD->setType(R);
2875        return NewFD->setInvalidDecl();
2876      }
2877    }
2878
2879    if (PrevDecl &&
2880        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2881         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
2882        !isa<UsingDecl>(PrevDecl)) {
2883      Redeclaration = true;
2884      Decl *OldDecl = PrevDecl;
2885
2886      // If PrevDecl was an overloaded function, extract the
2887      // FunctionDecl that matched.
2888      if (isa<OverloadedFunctionDecl>(PrevDecl))
2889        OldDecl = *MatchedDecl;
2890
2891      // NewFD and OldDecl represent declarations that need to be
2892      // merged.
2893      if (MergeFunctionDecl(NewFD, OldDecl))
2894        return NewFD->setInvalidDecl();
2895
2896      if (FunctionTemplateDecl *OldTemplateDecl
2897            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2898        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2899      else {
2900        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2901          NewFD->setAccess(OldDecl->getAccess());
2902        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2903      }
2904    }
2905  }
2906
2907  // In C++, check default arguments now that we have merged decls. Unless
2908  // the lexical context is the class, because in this case this is done
2909  // during delayed parsing anyway.
2910  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2911    CheckCXXDefaultArguments(NewFD);
2912}
2913
2914void Sema::CheckMain(FunctionDecl* FD) {
2915  // C++ [basic.start.main]p3:  A program that declares main to be inline
2916  //   or static is ill-formed.
2917  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
2918  //   shall not appear in a declaration of main.
2919  // static main is not an error under C99, but we should warn about it.
2920  bool isInline = FD->isInline();
2921  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
2922  if (isInline || isStatic) {
2923    unsigned diagID = diag::warn_unusual_main_decl;
2924    if (isInline || getLangOptions().CPlusPlus)
2925      diagID = diag::err_unusual_main_decl;
2926
2927    int which = isStatic + (isInline << 1) - 1;
2928    Diag(FD->getLocation(), diagID) << which;
2929  }
2930
2931  QualType T = FD->getType();
2932  assert(T->isFunctionType() && "function decl is not of function type");
2933  const FunctionType* FT = T->getAsFunctionType();
2934
2935  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
2936    // TODO: add a replacement fixit to turn the return type into 'int'.
2937    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
2938    FD->setInvalidDecl(true);
2939  }
2940
2941  // Treat protoless main() as nullary.
2942  if (isa<FunctionNoProtoType>(FT)) return;
2943
2944  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
2945  unsigned nparams = FTP->getNumArgs();
2946  assert(FD->getNumParams() == nparams);
2947
2948  if (nparams > 3) {
2949    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
2950    FD->setInvalidDecl(true);
2951    nparams = 3;
2952  }
2953
2954  // FIXME: a lot of the following diagnostics would be improved
2955  // if we had some location information about types.
2956
2957  QualType CharPP =
2958    Context.getPointerType(Context.getPointerType(Context.CharTy));
2959  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
2960
2961  for (unsigned i = 0; i < nparams; ++i) {
2962    QualType AT = FTP->getArgType(i);
2963
2964    bool mismatch = true;
2965
2966    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
2967      mismatch = false;
2968    else if (Expected[i] == CharPP) {
2969      // As an extension, the following forms are okay:
2970      //   char const **
2971      //   char const * const *
2972      //   char * const *
2973
2974      QualifierSet qs;
2975      const PointerType* PT;
2976      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
2977          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
2978          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
2979        qs.removeConst();
2980        mismatch = !qs.empty();
2981      }
2982    }
2983
2984    if (mismatch) {
2985      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
2986      // TODO: suggest replacing given type with expected type
2987      FD->setInvalidDecl(true);
2988    }
2989  }
2990
2991  if (nparams == 1 && !FD->isInvalidDecl()) {
2992    Diag(FD->getLocation(), diag::warn_main_one_arg);
2993  }
2994}
2995
2996bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2997  // FIXME: Need strict checking.  In C89, we need to check for
2998  // any assignment, increment, decrement, function-calls, or
2999  // commas outside of a sizeof.  In C99, it's the same list,
3000  // except that the aforementioned are allowed in unevaluated
3001  // expressions.  Everything else falls under the
3002  // "may accept other forms of constant expressions" exception.
3003  // (We never end up here for C++, so the constant expression
3004  // rules there don't matter.)
3005  if (Init->isConstantInitializer(Context))
3006    return false;
3007  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3008    << Init->getSourceRange();
3009  return true;
3010}
3011
3012void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3013  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3014}
3015
3016/// AddInitializerToDecl - Adds the initializer Init to the
3017/// declaration dcl. If DirectInit is true, this is C++ direct
3018/// initialization rather than copy initialization.
3019void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3020  Decl *RealDecl = dcl.getAs<Decl>();
3021  // If there is no declaration, there was an error parsing it.  Just ignore
3022  // the initializer.
3023  if (RealDecl == 0)
3024    return;
3025
3026  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3027    // With declarators parsed the way they are, the parser cannot
3028    // distinguish between a normal initializer and a pure-specifier.
3029    // Thus this grotesque test.
3030    IntegerLiteral *IL;
3031    Expr *Init = static_cast<Expr *>(init.get());
3032    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3033        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3034      if (Method->isVirtualAsWritten()) {
3035        Method->setPure();
3036
3037        // A class is abstract if at least one function is pure virtual.
3038        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3039      } else if (!Method->isInvalidDecl()) {
3040        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3041          << Method->getDeclName() << Init->getSourceRange();
3042        Method->setInvalidDecl();
3043      }
3044    } else {
3045      Diag(Method->getLocation(), diag::err_member_function_initialization)
3046        << Method->getDeclName() << Init->getSourceRange();
3047      Method->setInvalidDecl();
3048    }
3049    return;
3050  }
3051
3052  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3053  if (!VDecl) {
3054    if (getLangOptions().CPlusPlus &&
3055        RealDecl->getLexicalDeclContext()->isRecord() &&
3056        isa<NamedDecl>(RealDecl))
3057      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3058        << cast<NamedDecl>(RealDecl)->getDeclName();
3059    else
3060      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3061    RealDecl->setInvalidDecl();
3062    return;
3063  }
3064
3065  if (!VDecl->getType()->isArrayType() &&
3066      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3067                          diag::err_typecheck_decl_incomplete_type)) {
3068    RealDecl->setInvalidDecl();
3069    return;
3070  }
3071
3072  const VarDecl *Def = 0;
3073  if (VDecl->getDefinition(Def)) {
3074    Diag(VDecl->getLocation(), diag::err_redefinition)
3075      << VDecl->getDeclName();
3076    Diag(Def->getLocation(), diag::note_previous_definition);
3077    VDecl->setInvalidDecl();
3078    return;
3079  }
3080
3081  // Take ownership of the expression, now that we're sure we have somewhere
3082  // to put it.
3083  Expr *Init = init.takeAs<Expr>();
3084  assert(Init && "missing initializer");
3085
3086  // Get the decls type and save a reference for later, since
3087  // CheckInitializerTypes may change it.
3088  QualType DclT = VDecl->getType(), SavT = DclT;
3089  if (VDecl->isBlockVarDecl()) {
3090    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3091      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3092      VDecl->setInvalidDecl();
3093    } else if (!VDecl->isInvalidDecl()) {
3094      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3095                                VDecl->getDeclName(), DirectInit))
3096        VDecl->setInvalidDecl();
3097
3098      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3099      // Don't check invalid declarations to avoid emitting useless diagnostics.
3100      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3101        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3102          CheckForConstantInitializer(Init, DclT);
3103      }
3104    }
3105  } else if (VDecl->isStaticDataMember() &&
3106             VDecl->getLexicalDeclContext()->isRecord()) {
3107    // This is an in-class initialization for a static data member, e.g.,
3108    //
3109    // struct S {
3110    //   static const int value = 17;
3111    // };
3112
3113    // Attach the initializer
3114    VDecl->setInit(Context, Init);
3115
3116    // C++ [class.mem]p4:
3117    //   A member-declarator can contain a constant-initializer only
3118    //   if it declares a static member (9.4) of const integral or
3119    //   const enumeration type, see 9.4.2.
3120    QualType T = VDecl->getType();
3121    if (!T->isDependentType() &&
3122        (!Context.getCanonicalType(T).isConstQualified() ||
3123         !T->isIntegralType())) {
3124      Diag(VDecl->getLocation(), diag::err_member_initialization)
3125        << VDecl->getDeclName() << Init->getSourceRange();
3126      VDecl->setInvalidDecl();
3127    } else {
3128      // C++ [class.static.data]p4:
3129      //   If a static data member is of const integral or const
3130      //   enumeration type, its declaration in the class definition
3131      //   can specify a constant-initializer which shall be an
3132      //   integral constant expression (5.19).
3133      if (!Init->isTypeDependent() &&
3134          !Init->getType()->isIntegralType()) {
3135        // We have a non-dependent, non-integral or enumeration type.
3136        Diag(Init->getSourceRange().getBegin(),
3137             diag::err_in_class_initializer_non_integral_type)
3138          << Init->getType() << Init->getSourceRange();
3139        VDecl->setInvalidDecl();
3140      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3141        // Check whether the expression is a constant expression.
3142        llvm::APSInt Value;
3143        SourceLocation Loc;
3144        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3145          Diag(Loc, diag::err_in_class_initializer_non_constant)
3146            << Init->getSourceRange();
3147          VDecl->setInvalidDecl();
3148        } else if (!VDecl->getType()->isDependentType())
3149          ImpCastExprToType(Init, VDecl->getType());
3150      }
3151    }
3152  } else if (VDecl->isFileVarDecl()) {
3153    if (VDecl->getStorageClass() == VarDecl::Extern)
3154      Diag(VDecl->getLocation(), diag::warn_extern_init);
3155    if (!VDecl->isInvalidDecl())
3156      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3157                                VDecl->getDeclName(), DirectInit))
3158        VDecl->setInvalidDecl();
3159
3160    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3161    // Don't check invalid declarations to avoid emitting useless diagnostics.
3162    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3163      // C99 6.7.8p4. All file scoped initializers need to be constant.
3164      CheckForConstantInitializer(Init, DclT);
3165    }
3166  }
3167  // If the type changed, it means we had an incomplete type that was
3168  // completed by the initializer. For example:
3169  //   int ary[] = { 1, 3, 5 };
3170  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3171  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3172    VDecl->setType(DclT);
3173    Init->setType(DclT);
3174  }
3175
3176  Init = MaybeCreateCXXExprWithTemporaries(Init,
3177                                           /*ShouldDestroyTemporaries=*/true);
3178  // Attach the initializer to the decl.
3179  VDecl->setInit(Context, Init);
3180
3181  // If the previous declaration of VDecl was a tentative definition,
3182  // remove it from the set of tentative definitions.
3183  if (VDecl->getPreviousDeclaration() &&
3184      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3185    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
3186      = TentativeDefinitions.find(VDecl->getDeclName());
3187    assert(Pos != TentativeDefinitions.end() &&
3188           "Unrecorded tentative definition?");
3189    TentativeDefinitions.erase(Pos);
3190  }
3191
3192  return;
3193}
3194
3195void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3196                                  bool TypeContainsUndeducedAuto) {
3197  Decl *RealDecl = dcl.getAs<Decl>();
3198
3199  // If there is no declaration, there was an error parsing it. Just ignore it.
3200  if (RealDecl == 0)
3201    return;
3202
3203  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3204    QualType Type = Var->getType();
3205
3206    // Record tentative definitions.
3207    if (Var->isTentativeDefinition(Context))
3208      TentativeDefinitions[Var->getDeclName()] = Var;
3209
3210    // C++ [dcl.init.ref]p3:
3211    //   The initializer can be omitted for a reference only in a
3212    //   parameter declaration (8.3.5), in the declaration of a
3213    //   function return type, in the declaration of a class member
3214    //   within its class declaration (9.2), and where the extern
3215    //   specifier is explicitly used.
3216    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3217      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3218        << Var->getDeclName()
3219        << SourceRange(Var->getLocation(), Var->getLocation());
3220      Var->setInvalidDecl();
3221      return;
3222    }
3223
3224    // C++0x [dcl.spec.auto]p3
3225    if (TypeContainsUndeducedAuto) {
3226      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3227        << Var->getDeclName() << Type;
3228      Var->setInvalidDecl();
3229      return;
3230    }
3231
3232    // C++ [dcl.init]p9:
3233    //
3234    //   If no initializer is specified for an object, and the object
3235    //   is of (possibly cv-qualified) non-POD class type (or array
3236    //   thereof), the object shall be default-initialized; if the
3237    //   object is of const-qualified type, the underlying class type
3238    //   shall have a user-declared default constructor.
3239    if (getLangOptions().CPlusPlus) {
3240      QualType InitType = Type;
3241      if (const ArrayType *Array = Context.getAsArrayType(Type))
3242        InitType = Array->getElementType();
3243      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
3244          InitType->isRecordType() && !InitType->isDependentType()) {
3245        CXXRecordDecl *RD =
3246          cast<CXXRecordDecl>(InitType->getAs<RecordType>()->getDecl());
3247        CXXConstructorDecl *Constructor = 0;
3248        if (!RequireCompleteType(Var->getLocation(), InitType,
3249                                    diag::err_invalid_incomplete_type_use))
3250          Constructor
3251            = PerformInitializationByConstructor(InitType, 0, 0,
3252                                                 Var->getLocation(),
3253                                               SourceRange(Var->getLocation(),
3254                                                           Var->getLocation()),
3255                                                 Var->getDeclName(),
3256                                                 IK_Default);
3257        if (!Constructor)
3258          Var->setInvalidDecl();
3259        else {
3260          if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
3261            InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
3262          FinalizeVarWithDestructor(Var, InitType);
3263        }
3264      }
3265    }
3266
3267#if 0
3268    // FIXME: Temporarily disabled because we are not properly parsing
3269    // linkage specifications on declarations, e.g.,
3270    //
3271    //   extern "C" const CGPoint CGPointerZero;
3272    //
3273    // C++ [dcl.init]p9:
3274    //
3275    //     If no initializer is specified for an object, and the
3276    //     object is of (possibly cv-qualified) non-POD class type (or
3277    //     array thereof), the object shall be default-initialized; if
3278    //     the object is of const-qualified type, the underlying class
3279    //     type shall have a user-declared default
3280    //     constructor. Otherwise, if no initializer is specified for
3281    //     an object, the object and its subobjects, if any, have an
3282    //     indeterminate initial value; if the object or any of its
3283    //     subobjects are of const-qualified type, the program is
3284    //     ill-formed.
3285    //
3286    // This isn't technically an error in C, so we don't diagnose it.
3287    //
3288    // FIXME: Actually perform the POD/user-defined default
3289    // constructor check.
3290    if (getLangOptions().CPlusPlus &&
3291        Context.getCanonicalType(Type).isConstQualified() &&
3292        !Var->hasExternalStorage())
3293      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3294        << Var->getName()
3295        << SourceRange(Var->getLocation(), Var->getLocation());
3296#endif
3297  }
3298}
3299
3300Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3301                                                   DeclPtrTy *Group,
3302                                                   unsigned NumDecls) {
3303  llvm::SmallVector<Decl*, 8> Decls;
3304
3305  if (DS.isTypeSpecOwned())
3306    Decls.push_back((Decl*)DS.getTypeRep());
3307
3308  for (unsigned i = 0; i != NumDecls; ++i)
3309    if (Decl *D = Group[i].getAs<Decl>())
3310      Decls.push_back(D);
3311
3312  // Perform semantic analysis that depends on having fully processed both
3313  // the declarator and initializer.
3314  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3315    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3316    if (!IDecl)
3317      continue;
3318    QualType T = IDecl->getType();
3319
3320    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3321    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3322    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3323      if (!IDecl->isInvalidDecl() &&
3324          RequireCompleteType(IDecl->getLocation(), T,
3325                              diag::err_typecheck_decl_incomplete_type))
3326        IDecl->setInvalidDecl();
3327    }
3328    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3329    // object that has file scope without an initializer, and without a
3330    // storage-class specifier or with the storage-class specifier "static",
3331    // constitutes a tentative definition. Note: A tentative definition with
3332    // external linkage is valid (C99 6.2.2p5).
3333    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3334      if (const IncompleteArrayType *ArrayT
3335          = Context.getAsIncompleteArrayType(T)) {
3336        if (RequireCompleteType(IDecl->getLocation(),
3337                                ArrayT->getElementType(),
3338                                diag::err_illegal_decl_array_incomplete_type))
3339          IDecl->setInvalidDecl();
3340      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3341        // C99 6.9.2p3: If the declaration of an identifier for an object is
3342        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3343        // declared type shall not be an incomplete type.
3344        // NOTE: code such as the following
3345        //     static struct s;
3346        //     struct s { int a; };
3347        // is accepted by gcc. Hence here we issue a warning instead of
3348        // an error and we do not invalidate the static declaration.
3349        // NOTE: to avoid multiple warnings, only check the first declaration.
3350        if (IDecl->getPreviousDeclaration() == 0)
3351          RequireCompleteType(IDecl->getLocation(), T,
3352                              diag::ext_typecheck_decl_incomplete_type);
3353      }
3354    }
3355  }
3356  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3357                                                   Decls.data(), Decls.size()));
3358}
3359
3360
3361/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3362/// to introduce parameters into function prototype scope.
3363Sema::DeclPtrTy
3364Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3365  const DeclSpec &DS = D.getDeclSpec();
3366
3367  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3368  VarDecl::StorageClass StorageClass = VarDecl::None;
3369  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3370    StorageClass = VarDecl::Register;
3371  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3372    Diag(DS.getStorageClassSpecLoc(),
3373         diag::err_invalid_storage_class_in_func_decl);
3374    D.getMutableDeclSpec().ClearStorageClassSpecs();
3375  }
3376
3377  if (D.getDeclSpec().isThreadSpecified())
3378    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3379
3380  DiagnoseFunctionSpecifiers(D);
3381
3382  // Check that there are no default arguments inside the type of this
3383  // parameter (C++ only).
3384  if (getLangOptions().CPlusPlus)
3385    CheckExtraCXXDefaultArguments(D);
3386
3387  DeclaratorInfo *DInfo = 0;
3388  TagDecl *OwnedDecl = 0;
3389  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0,
3390                                               &OwnedDecl);
3391
3392  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3393    // C++ [dcl.fct]p6:
3394    //   Types shall not be defined in return or parameter types.
3395    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3396      << Context.getTypeDeclType(OwnedDecl);
3397  }
3398
3399  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3400  // Can this happen for params?  We already checked that they don't conflict
3401  // among each other.  Here they can only shadow globals, which is ok.
3402  IdentifierInfo *II = D.getIdentifier();
3403  if (II) {
3404    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3405      if (PrevDecl->isTemplateParameter()) {
3406        // Maybe we will complain about the shadowed template parameter.
3407        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3408        // Just pretend that we didn't see the previous declaration.
3409        PrevDecl = 0;
3410      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3411        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3412
3413        // Recover by removing the name
3414        II = 0;
3415        D.SetIdentifier(0, D.getIdentifierLoc());
3416      }
3417    }
3418  }
3419
3420  // Parameters can not be abstract class types.
3421  // For record types, this is done by the AbstractClassUsageDiagnoser once
3422  // the class has been completely parsed.
3423  if (!CurContext->isRecord() &&
3424      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3425                             diag::err_abstract_type_in_decl,
3426                             AbstractParamType))
3427    D.setInvalidType(true);
3428
3429  QualType T = adjustParameterType(parmDeclType);
3430
3431  ParmVarDecl *New;
3432  if (T == parmDeclType) // parameter type did not need adjustment
3433    New = ParmVarDecl::Create(Context, CurContext,
3434                              D.getIdentifierLoc(), II,
3435                              parmDeclType, DInfo, StorageClass,
3436                              0);
3437  else // keep track of both the adjusted and unadjusted types
3438    New = OriginalParmVarDecl::Create(Context, CurContext,
3439                                      D.getIdentifierLoc(), II, T, DInfo,
3440                                      parmDeclType, StorageClass, 0);
3441
3442  if (D.isInvalidType())
3443    New->setInvalidDecl();
3444
3445  // Parameter declarators cannot be interface types. All ObjC objects are
3446  // passed by reference.
3447  if (T->isObjCInterfaceType()) {
3448    Diag(D.getIdentifierLoc(),
3449         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3450    New->setInvalidDecl();
3451  }
3452
3453  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3454  if (D.getCXXScopeSpec().isSet()) {
3455    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3456      << D.getCXXScopeSpec().getRange();
3457    New->setInvalidDecl();
3458  }
3459
3460  // Add the parameter declaration into this scope.
3461  S->AddDecl(DeclPtrTy::make(New));
3462  if (II)
3463    IdResolver.AddDecl(New);
3464
3465  ProcessDeclAttributes(S, New, D);
3466
3467  if (New->hasAttr<BlocksAttr>()) {
3468    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3469  }
3470  return DeclPtrTy::make(New);
3471}
3472
3473void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3474                                           SourceLocation LocAfterDecls) {
3475  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3476         "Not a function declarator!");
3477  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3478
3479  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3480  // for a K&R function.
3481  if (!FTI.hasPrototype) {
3482    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3483      --i;
3484      if (FTI.ArgInfo[i].Param == 0) {
3485        std::string Code = "  int ";
3486        Code += FTI.ArgInfo[i].Ident->getName();
3487        Code += ";\n";
3488        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3489          << FTI.ArgInfo[i].Ident
3490          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3491
3492        // Implicitly declare the argument as type 'int' for lack of a better
3493        // type.
3494        DeclSpec DS;
3495        const char* PrevSpec; // unused
3496        unsigned DiagID; // unused
3497        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3498                           PrevSpec, DiagID);
3499        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3500        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3501        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3502      }
3503    }
3504  }
3505}
3506
3507Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3508                                              Declarator &D) {
3509  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3510  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3511         "Not a function declarator!");
3512  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3513
3514  if (FTI.hasPrototype) {
3515    // FIXME: Diagnose arguments without names in C.
3516  }
3517
3518  Scope *ParentScope = FnBodyScope->getParent();
3519
3520  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3521                                  MultiTemplateParamsArg(*this),
3522                                  /*IsFunctionDefinition=*/true);
3523  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3524}
3525
3526Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3527  if (!D)
3528    return D;
3529  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
3530
3531  CurFunctionNeedsScopeChecking = false;
3532
3533  // See if this is a redefinition.
3534  const FunctionDecl *Definition;
3535  if (FD->getBody(Definition)) {
3536    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3537    Diag(Definition->getLocation(), diag::note_previous_definition);
3538  }
3539
3540  // Builtin functions cannot be defined.
3541  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3542    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3543      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3544      FD->setInvalidDecl();
3545    }
3546  }
3547
3548  // The return type of a function definition must be complete
3549  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3550  QualType ResultType = FD->getResultType();
3551  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3552      !FD->isInvalidDecl() &&
3553      RequireCompleteType(FD->getLocation(), ResultType,
3554                          diag::err_func_def_incomplete_result))
3555    FD->setInvalidDecl();
3556
3557  // GNU warning -Wmissing-prototypes:
3558  //   Warn if a global function is defined without a previous
3559  //   prototype declaration. This warning is issued even if the
3560  //   definition itself provides a prototype. The aim is to detect
3561  //   global functions that fail to be declared in header files.
3562  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3563      !FD->isMain(Context)) {
3564    bool MissingPrototype = true;
3565    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3566         Prev; Prev = Prev->getPreviousDeclaration()) {
3567      // Ignore any declarations that occur in function or method
3568      // scope, because they aren't visible from the header.
3569      if (Prev->getDeclContext()->isFunctionOrMethod())
3570        continue;
3571
3572      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3573      break;
3574    }
3575
3576    if (MissingPrototype)
3577      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3578  }
3579
3580  if (FnBodyScope)
3581    PushDeclContext(FnBodyScope, FD);
3582
3583  // Check the validity of our function parameters
3584  CheckParmsForFunctionDef(FD);
3585
3586  // Introduce our parameters into the function scope
3587  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3588    ParmVarDecl *Param = FD->getParamDecl(p);
3589    Param->setOwningFunction(FD);
3590
3591    // If this has an identifier, add it to the scope stack.
3592    if (Param->getIdentifier() && FnBodyScope)
3593      PushOnScopeChains(Param, FnBodyScope);
3594  }
3595
3596  // Checking attributes of current function definition
3597  // dllimport attribute.
3598  if (FD->getAttr<DLLImportAttr>() &&
3599      (!FD->getAttr<DLLExportAttr>())) {
3600    // dllimport attribute cannot be applied to definition.
3601    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3602      Diag(FD->getLocation(),
3603           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3604        << "dllimport";
3605      FD->setInvalidDecl();
3606      return DeclPtrTy::make(FD);
3607    } else {
3608      // If a symbol previously declared dllimport is later defined, the
3609      // attribute is ignored in subsequent references, and a warning is
3610      // emitted.
3611      Diag(FD->getLocation(),
3612           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3613        << FD->getNameAsCString() << "dllimport";
3614    }
3615  }
3616  return DeclPtrTy::make(FD);
3617}
3618
3619Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3620  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3621}
3622
3623Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3624                                              bool IsInstantiation) {
3625  Decl *dcl = D.getAs<Decl>();
3626  Stmt *Body = BodyArg.takeAs<Stmt>();
3627  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3628    FD->setBody(Body);
3629    if (FD->isMain(Context))
3630      // C and C++ allow for main to automagically return 0.
3631      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3632      FD->setHasImplicitReturnZero(true);
3633    else
3634      CheckFallThroughForFunctionDef(FD, Body);
3635
3636    if (!FD->isInvalidDecl())
3637      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3638
3639    // C++ [basic.def.odr]p2:
3640    //   [...] A virtual member function is used if it is not pure. [...]
3641    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3642      if (Method->isVirtual() && !Method->isPure())
3643        MarkDeclarationReferenced(Method->getLocation(), Method);
3644
3645    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3646  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3647    assert(MD == getCurMethodDecl() && "Method parsing confused");
3648    MD->setBody(Body);
3649    CheckFallThroughForFunctionDef(MD, Body);
3650    MD->setEndLoc(Body->getLocEnd());
3651
3652    if (!MD->isInvalidDecl())
3653      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3654  } else {
3655    Body->Destroy(Context);
3656    return DeclPtrTy();
3657  }
3658  if (!IsInstantiation)
3659    PopDeclContext();
3660
3661  // Verify and clean out per-function state.
3662
3663  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3664
3665  // Check goto/label use.
3666  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3667       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3668    LabelStmt *L = I->second;
3669
3670    // Verify that we have no forward references left.  If so, there was a goto
3671    // or address of a label taken, but no definition of it.  Label fwd
3672    // definitions are indicated with a null substmt.
3673    if (L->getSubStmt() != 0)
3674      continue;
3675
3676    // Emit error.
3677    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3678
3679    // At this point, we have gotos that use the bogus label.  Stitch it into
3680    // the function body so that they aren't leaked and that the AST is well
3681    // formed.
3682    if (Body == 0) {
3683      // The whole function wasn't parsed correctly, just delete this.
3684      L->Destroy(Context);
3685      continue;
3686    }
3687
3688    // Otherwise, the body is valid: we want to stitch the label decl into the
3689    // function somewhere so that it is properly owned and so that the goto
3690    // has a valid target.  Do this by creating a new compound stmt with the
3691    // label in it.
3692
3693    // Give the label a sub-statement.
3694    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3695
3696    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3697                               cast<CXXTryStmt>(Body)->getTryBlock() :
3698                               cast<CompoundStmt>(Body);
3699    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3700    Elements.push_back(L);
3701    Compound->setStmts(Context, &Elements[0], Elements.size());
3702  }
3703  FunctionLabelMap.clear();
3704
3705  if (!Body) return D;
3706
3707  // Verify that that gotos and switch cases don't jump into scopes illegally.
3708  if (CurFunctionNeedsScopeChecking)
3709    DiagnoseInvalidJumps(Body);
3710
3711  // C++ constructors that have function-try-blocks can't have return
3712  // statements in the handlers of that block. (C++ [except.handle]p14)
3713  // Verify this.
3714  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3715    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3716
3717  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3718    Destructor->computeBaseOrMembersToDestroy(Context);
3719  return D;
3720}
3721
3722/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3723/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3724NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3725                                          IdentifierInfo &II, Scope *S) {
3726  // Before we produce a declaration for an implicitly defined
3727  // function, see whether there was a locally-scoped declaration of
3728  // this name as a function or variable. If so, use that
3729  // (non-visible) declaration, and complain about it.
3730  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3731    = LocallyScopedExternalDecls.find(&II);
3732  if (Pos != LocallyScopedExternalDecls.end()) {
3733    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3734    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3735    return Pos->second;
3736  }
3737
3738  // Extension in C99.  Legal in C90, but warn about it.
3739  if (getLangOptions().C99)
3740    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3741  else
3742    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3743
3744  // FIXME: handle stuff like:
3745  // void foo() { extern float X(); }
3746  // void bar() { X(); }  <-- implicit decl for X in another scope.
3747
3748  // Set a Declarator for the implicit definition: int foo();
3749  const char *Dummy;
3750  DeclSpec DS;
3751  unsigned DiagID;
3752  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
3753  Error = Error; // Silence warning.
3754  assert(!Error && "Error setting up implicit decl!");
3755  Declarator D(DS, Declarator::BlockContext);
3756  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3757                                             0, 0, false, SourceLocation(),
3758                                             false, 0,0,0, Loc, Loc, D),
3759                SourceLocation());
3760  D.SetIdentifier(&II, Loc);
3761
3762  // Insert this function into translation-unit scope.
3763
3764  DeclContext *PrevDC = CurContext;
3765  CurContext = Context.getTranslationUnitDecl();
3766
3767  FunctionDecl *FD =
3768 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3769  FD->setImplicit();
3770
3771  CurContext = PrevDC;
3772
3773  AddKnownFunctionAttributes(FD);
3774
3775  return FD;
3776}
3777
3778/// \brief Adds any function attributes that we know a priori based on
3779/// the declaration of this function.
3780///
3781/// These attributes can apply both to implicitly-declared builtins
3782/// (like __builtin___printf_chk) or to library-declared functions
3783/// like NSLog or printf.
3784void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3785  if (FD->isInvalidDecl())
3786    return;
3787
3788  // If this is a built-in function, map its builtin attributes to
3789  // actual attributes.
3790  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3791    // Handle printf-formatting attributes.
3792    unsigned FormatIdx;
3793    bool HasVAListArg;
3794    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3795      if (!FD->getAttr<FormatAttr>())
3796        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3797                                             HasVAListArg ? 0 : FormatIdx + 2));
3798    }
3799
3800    // Mark const if we don't care about errno and that is the only
3801    // thing preventing the function from being const. This allows
3802    // IRgen to use LLVM intrinsics for such functions.
3803    if (!getLangOptions().MathErrno &&
3804        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3805      if (!FD->getAttr<ConstAttr>())
3806        FD->addAttr(::new (Context) ConstAttr());
3807    }
3808
3809    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
3810      FD->addAttr(::new (Context) NoReturnAttr());
3811  }
3812
3813  IdentifierInfo *Name = FD->getIdentifier();
3814  if (!Name)
3815    return;
3816  if ((!getLangOptions().CPlusPlus &&
3817       FD->getDeclContext()->isTranslationUnit()) ||
3818      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3819       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3820       LinkageSpecDecl::lang_c)) {
3821    // Okay: this could be a libc/libm/Objective-C function we know
3822    // about.
3823  } else
3824    return;
3825
3826  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3827    // FIXME: NSLog and NSLogv should be target specific
3828    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3829      // FIXME: We known better than our headers.
3830      const_cast<FormatAttr *>(Format)->setType("printf");
3831    } else
3832      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3833                                             Name->isStr("NSLogv") ? 0 : 2));
3834  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3835    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
3836    // target-specific builtins, perhaps?
3837    if (!FD->getAttr<FormatAttr>())
3838      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3839                                             Name->isStr("vasprintf") ? 0 : 3));
3840  }
3841}
3842
3843TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3844  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3845  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3846
3847  // Scope manipulation handled by caller.
3848  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3849                                           D.getIdentifierLoc(),
3850                                           D.getIdentifier(),
3851                                           T);
3852
3853  if (TagType *TT = dyn_cast<TagType>(T)) {
3854    TagDecl *TD = TT->getDecl();
3855
3856    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3857    // keep track of the TypedefDecl.
3858    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3859      TD->setTypedefForAnonDecl(NewTD);
3860  }
3861
3862  if (D.isInvalidType())
3863    NewTD->setInvalidDecl();
3864  return NewTD;
3865}
3866
3867
3868/// \brief Determine whether a tag with a given kind is acceptable
3869/// as a redeclaration of the given tag declaration.
3870///
3871/// \returns true if the new tag kind is acceptable, false otherwise.
3872bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3873                                        TagDecl::TagKind NewTag,
3874                                        SourceLocation NewTagLoc,
3875                                        const IdentifierInfo &Name) {
3876  // C++ [dcl.type.elab]p3:
3877  //   The class-key or enum keyword present in the
3878  //   elaborated-type-specifier shall agree in kind with the
3879  //   declaration to which the name in theelaborated-type-specifier
3880  //   refers. This rule also applies to the form of
3881  //   elaborated-type-specifier that declares a class-name or
3882  //   friend class since it can be construed as referring to the
3883  //   definition of the class. Thus, in any
3884  //   elaborated-type-specifier, the enum keyword shall be used to
3885  //   refer to an enumeration (7.2), the union class-keyshall be
3886  //   used to refer to a union (clause 9), and either the class or
3887  //   struct class-key shall be used to refer to a class (clause 9)
3888  //   declared using the class or struct class-key.
3889  TagDecl::TagKind OldTag = Previous->getTagKind();
3890  if (OldTag == NewTag)
3891    return true;
3892
3893  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3894      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3895    // Warn about the struct/class tag mismatch.
3896    bool isTemplate = false;
3897    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3898      isTemplate = Record->getDescribedClassTemplate();
3899
3900    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3901      << (NewTag == TagDecl::TK_class)
3902      << isTemplate << &Name
3903      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3904                              OldTag == TagDecl::TK_class? "class" : "struct");
3905    Diag(Previous->getLocation(), diag::note_previous_use);
3906    return true;
3907  }
3908  return false;
3909}
3910
3911/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3912/// former case, Name will be non-null.  In the later case, Name will be null.
3913/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
3914/// reference/declaration/definition of a tag.
3915Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3916                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3917                               IdentifierInfo *Name, SourceLocation NameLoc,
3918                               AttributeList *Attr, AccessSpecifier AS,
3919                               MultiTemplateParamsArg TemplateParameterLists,
3920                               bool &OwnedDecl) {
3921  // If this is not a definition, it must have a name.
3922  assert((Name != 0 || TUK == TUK_Definition) &&
3923         "Nameless record must be a definition!");
3924
3925  OwnedDecl = false;
3926  TagDecl::TagKind Kind;
3927  switch (TagSpec) {
3928  default: assert(0 && "Unknown tag type!");
3929  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3930  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3931  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3932  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3933  }
3934
3935  if (TUK != TUK_Reference) {
3936    if (TemplateParameterList *TemplateParams
3937          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
3938                        (TemplateParameterList**)TemplateParameterLists.get(),
3939                                              TemplateParameterLists.size())) {
3940      if (TemplateParams->size() > 0) {
3941        // This is a declaration or definition of a class template (which may
3942        // be a member of another template).
3943        OwnedDecl = false;
3944        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
3945                                               SS, Name, NameLoc, Attr,
3946                                               move(TemplateParameterLists),
3947                                               AS);
3948        return Result.get();
3949      } else {
3950        // FIXME: diagnose the extraneous 'template<>', once we recover
3951        // slightly better in ParseTemplate.cpp from bogus template
3952        // parameters.
3953      }
3954    }
3955  }
3956
3957  DeclContext *SearchDC = CurContext;
3958  DeclContext *DC = CurContext;
3959  NamedDecl *PrevDecl = 0;
3960
3961  bool Invalid = false;
3962
3963  if (Name && SS.isNotEmpty()) {
3964    // We have a nested-name tag ('struct foo::bar').
3965
3966    // Check for invalid 'foo::'.
3967    if (SS.isInvalid()) {
3968      Name = 0;
3969      goto CreateNewDecl;
3970    }
3971
3972    if (RequireCompleteDeclContext(SS))
3973      return DeclPtrTy::make((Decl *)0);
3974
3975    DC = computeDeclContext(SS, true);
3976    SearchDC = DC;
3977    // Look-up name inside 'foo::'.
3978    PrevDecl
3979      = dyn_cast_or_null<TagDecl>(
3980               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3981
3982    // A tag 'foo::bar' must already exist.
3983    if (PrevDecl == 0) {
3984      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3985      Name = 0;
3986      Invalid = true;
3987      goto CreateNewDecl;
3988    }
3989  } else if (Name) {
3990    // If this is a named struct, check to see if there was a previous forward
3991    // declaration or definition.
3992    // FIXME: We're looking into outer scopes here, even when we
3993    // shouldn't be. Doing so can result in ambiguities that we
3994    // shouldn't be diagnosing.
3995    LookupResult R = LookupName(S, Name, LookupTagName,
3996                                /*RedeclarationOnly=*/(TUK != TUK_Reference));
3997    if (R.isAmbiguous()) {
3998      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3999      // FIXME: This is not best way to recover from case like:
4000      //
4001      // struct S s;
4002      //
4003      // causes needless "incomplete type" error later.
4004      Name = 0;
4005      PrevDecl = 0;
4006      Invalid = true;
4007    } else
4008      PrevDecl = R;
4009
4010    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4011      // FIXME: This makes sure that we ignore the contexts associated
4012      // with C structs, unions, and enums when looking for a matching
4013      // tag declaration or definition. See the similar lookup tweak
4014      // in Sema::LookupName; is there a better way to deal with this?
4015      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4016        SearchDC = SearchDC->getParent();
4017    }
4018  }
4019
4020  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4021    // Maybe we will complain about the shadowed template parameter.
4022    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4023    // Just pretend that we didn't see the previous declaration.
4024    PrevDecl = 0;
4025  }
4026
4027  if (PrevDecl) {
4028    // Check whether the previous declaration is usable.
4029    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4030
4031    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4032      // If this is a use of a previous tag, or if the tag is already declared
4033      // in the same scope (so that the definition/declaration completes or
4034      // rementions the tag), reuse the decl.
4035      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4036          isDeclInScope(PrevDecl, SearchDC, S)) {
4037        // Make sure that this wasn't declared as an enum and now used as a
4038        // struct or something similar.
4039        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4040          bool SafeToContinue
4041            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4042               Kind != TagDecl::TK_enum);
4043          if (SafeToContinue)
4044            Diag(KWLoc, diag::err_use_with_wrong_tag)
4045              << Name
4046              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4047                                                  PrevTagDecl->getKindName());
4048          else
4049            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4050          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4051
4052          if (SafeToContinue)
4053            Kind = PrevTagDecl->getTagKind();
4054          else {
4055            // Recover by making this an anonymous redefinition.
4056            Name = 0;
4057            PrevDecl = 0;
4058            Invalid = true;
4059          }
4060        }
4061
4062        if (!Invalid) {
4063          // If this is a use, just return the declaration we found.
4064
4065          // FIXME: In the future, return a variant or some other clue
4066          // for the consumer of this Decl to know it doesn't own it.
4067          // For our current ASTs this shouldn't be a problem, but will
4068          // need to be changed with DeclGroups.
4069          if (TUK == TUK_Reference)
4070            return DeclPtrTy::make(PrevDecl);
4071
4072          // If this is a friend, make sure we create the new
4073          // declaration in the appropriate semantic context.
4074          if (TUK == TUK_Friend)
4075            SearchDC = PrevDecl->getDeclContext();
4076
4077          // Diagnose attempts to redefine a tag.
4078          if (TUK == TUK_Definition) {
4079            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4080              Diag(NameLoc, diag::err_redefinition) << Name;
4081              Diag(Def->getLocation(), diag::note_previous_definition);
4082              // If this is a redefinition, recover by making this
4083              // struct be anonymous, which will make any later
4084              // references get the previous definition.
4085              Name = 0;
4086              PrevDecl = 0;
4087              Invalid = true;
4088            } else {
4089              // If the type is currently being defined, complain
4090              // about a nested redefinition.
4091              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4092              if (Tag->isBeingDefined()) {
4093                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4094                Diag(PrevTagDecl->getLocation(),
4095                     diag::note_previous_definition);
4096                Name = 0;
4097                PrevDecl = 0;
4098                Invalid = true;
4099              }
4100            }
4101
4102            // Okay, this is definition of a previously declared or referenced
4103            // tag PrevDecl. We're going to create a new Decl for it.
4104          }
4105        }
4106        // If we get here we have (another) forward declaration or we
4107        // have a definition.  Just create a new decl.
4108
4109      } else {
4110        // If we get here, this is a definition of a new tag type in a nested
4111        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4112        // new decl/type.  We set PrevDecl to NULL so that the entities
4113        // have distinct types.
4114        PrevDecl = 0;
4115      }
4116      // If we get here, we're going to create a new Decl. If PrevDecl
4117      // is non-NULL, it's a definition of the tag declared by
4118      // PrevDecl. If it's NULL, we have a new definition.
4119    } else {
4120      // PrevDecl is a namespace, template, or anything else
4121      // that lives in the IDNS_Tag identifier namespace.
4122      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4123        // The tag name clashes with a namespace name, issue an error and
4124        // recover by making this tag be anonymous.
4125        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4126        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4127        Name = 0;
4128        PrevDecl = 0;
4129        Invalid = true;
4130      } else {
4131        // The existing declaration isn't relevant to us; we're in a
4132        // new scope, so clear out the previous declaration.
4133        PrevDecl = 0;
4134      }
4135    }
4136  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4137             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4138    // C++ [basic.scope.pdecl]p5:
4139    //   -- for an elaborated-type-specifier of the form
4140    //
4141    //          class-key identifier
4142    //
4143    //      if the elaborated-type-specifier is used in the
4144    //      decl-specifier-seq or parameter-declaration-clause of a
4145    //      function defined in namespace scope, the identifier is
4146    //      declared as a class-name in the namespace that contains
4147    //      the declaration; otherwise, except as a friend
4148    //      declaration, the identifier is declared in the smallest
4149    //      non-class, non-function-prototype scope that contains the
4150    //      declaration.
4151    //
4152    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4153    // C structs and unions.
4154    //
4155    // GNU C also supports this behavior as part of its incomplete
4156    // enum types extension, while GNU C++ does not.
4157    //
4158    // Find the context where we'll be declaring the tag.
4159    // FIXME: We would like to maintain the current DeclContext as the
4160    // lexical context,
4161    while (SearchDC->isRecord())
4162      SearchDC = SearchDC->getParent();
4163
4164    // Find the scope where we'll be declaring the tag.
4165    while (S->isClassScope() ||
4166           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4167           ((S->getFlags() & Scope::DeclScope) == 0) ||
4168           (S->getEntity() &&
4169            ((DeclContext *)S->getEntity())->isTransparentContext()))
4170      S = S->getParent();
4171
4172  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4173    // C++ [namespace.memdef]p3:
4174    //   If a friend declaration in a non-local class first declares a
4175    //   class or function, the friend class or function is a member of
4176    //   the innermost enclosing namespace.
4177    while (!SearchDC->isFileContext())
4178      SearchDC = SearchDC->getParent();
4179
4180    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4181    while (S->getEntity() != SearchDC)
4182      S = S->getParent();
4183  }
4184
4185CreateNewDecl:
4186
4187  // If there is an identifier, use the location of the identifier as the
4188  // location of the decl, otherwise use the location of the struct/union
4189  // keyword.
4190  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4191
4192  // Otherwise, create a new declaration. If there is a previous
4193  // declaration of the same entity, the two will be linked via
4194  // PrevDecl.
4195  TagDecl *New;
4196
4197  if (Kind == TagDecl::TK_enum) {
4198    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4199    // enum X { A, B, C } D;    D should chain to X.
4200    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4201                           cast_or_null<EnumDecl>(PrevDecl));
4202    // If this is an undefined enum, warn.
4203    if (TUK != TUK_Definition && !Invalid)  {
4204      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4205                                              : diag::ext_forward_ref_enum;
4206      Diag(Loc, DK);
4207    }
4208  } else {
4209    // struct/union/class
4210
4211    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4212    // struct X { int A; } D;    D should chain to X.
4213    if (getLangOptions().CPlusPlus)
4214      // FIXME: Look for a way to use RecordDecl for simple structs.
4215      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4216                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4217    else
4218      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4219                               cast_or_null<RecordDecl>(PrevDecl));
4220  }
4221
4222  if (Kind != TagDecl::TK_enum) {
4223    // Handle #pragma pack: if the #pragma pack stack has non-default
4224    // alignment, make up a packed attribute for this decl. These
4225    // attributes are checked when the ASTContext lays out the
4226    // structure.
4227    //
4228    // It is important for implementing the correct semantics that this
4229    // happen here (in act on tag decl). The #pragma pack stack is
4230    // maintained as a result of parser callbacks which can occur at
4231    // many points during the parsing of a struct declaration (because
4232    // the #pragma tokens are effectively skipped over during the
4233    // parsing of the struct).
4234    if (unsigned Alignment = getPragmaPackAlignment())
4235      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4236  }
4237
4238  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4239    // C++ [dcl.typedef]p3:
4240    //   [...] Similarly, in a given scope, a class or enumeration
4241    //   shall not be declared with the same name as a typedef-name
4242    //   that is declared in that scope and refers to a type other
4243    //   than the class or enumeration itself.
4244    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
4245    TypedefDecl *PrevTypedef = 0;
4246    if (Lookup.getKind() == LookupResult::Found)
4247      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
4248
4249    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
4250        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4251          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4252      Diag(Loc, diag::err_tag_definition_of_typedef)
4253        << Context.getTypeDeclType(New)
4254        << PrevTypedef->getUnderlyingType();
4255      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4256      Invalid = true;
4257    }
4258  }
4259
4260  if (Invalid)
4261    New->setInvalidDecl();
4262
4263  if (Attr)
4264    ProcessDeclAttributeList(S, New, Attr);
4265
4266  // If we're declaring or defining a tag in function prototype scope
4267  // in C, note that this type can only be used within the function.
4268  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4269    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4270
4271  // Set the lexical context. If the tag has a C++ scope specifier, the
4272  // lexical context will be different from the semantic context.
4273  New->setLexicalDeclContext(CurContext);
4274
4275  // Set the access specifier.
4276  if (!Invalid && TUK != TUK_Friend)
4277    SetMemberAccessSpecifier(New, PrevDecl, AS);
4278
4279  if (TUK == TUK_Definition)
4280    New->startDefinition();
4281
4282  // If this has an identifier, add it to the scope stack.
4283  if (Name && TUK != TUK_Friend) {
4284    S = getNonFieldDeclScope(S);
4285    PushOnScopeChains(New, S);
4286  } else {
4287    CurContext->addDecl(New);
4288  }
4289
4290  // If this is the C FILE type, notify the AST context.
4291  if (IdentifierInfo *II = New->getIdentifier())
4292    if (!New->isInvalidDecl() &&
4293        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4294        II->isStr("FILE"))
4295      Context.setFILEDecl(New);
4296
4297  OwnedDecl = true;
4298  return DeclPtrTy::make(New);
4299}
4300
4301void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4302  AdjustDeclIfTemplate(TagD);
4303  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4304
4305  // Enter the tag context.
4306  PushDeclContext(S, Tag);
4307
4308  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4309    FieldCollector->StartClass();
4310
4311    if (Record->getIdentifier()) {
4312      // C++ [class]p2:
4313      //   [...] The class-name is also inserted into the scope of the
4314      //   class itself; this is known as the injected-class-name. For
4315      //   purposes of access checking, the injected-class-name is treated
4316      //   as if it were a public member name.
4317      CXXRecordDecl *InjectedClassName
4318        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4319                                CurContext, Record->getLocation(),
4320                                Record->getIdentifier(),
4321                                Record->getTagKeywordLoc(),
4322                                Record);
4323      InjectedClassName->setImplicit();
4324      InjectedClassName->setAccess(AS_public);
4325      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4326        InjectedClassName->setDescribedClassTemplate(Template);
4327      PushOnScopeChains(InjectedClassName, S);
4328      assert(InjectedClassName->isInjectedClassName() &&
4329             "Broken injected-class-name");
4330    }
4331  }
4332}
4333
4334void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4335                                    SourceLocation RBraceLoc) {
4336  AdjustDeclIfTemplate(TagD);
4337  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4338  Tag->setRBraceLoc(RBraceLoc);
4339
4340  if (isa<CXXRecordDecl>(Tag))
4341    FieldCollector->FinishClass();
4342
4343  // Exit this scope of this tag's definition.
4344  PopDeclContext();
4345
4346  // Notify the consumer that we've defined a tag.
4347  Consumer.HandleTagDeclDefinition(Tag);
4348}
4349
4350// Note that FieldName may be null for anonymous bitfields.
4351bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4352                          QualType FieldTy, const Expr *BitWidth,
4353                          bool *ZeroWidth) {
4354  // Default to true; that shouldn't confuse checks for emptiness
4355  if (ZeroWidth)
4356    *ZeroWidth = true;
4357
4358  // C99 6.7.2.1p4 - verify the field type.
4359  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4360  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4361    // Handle incomplete types with specific error.
4362    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4363      return true;
4364    if (FieldName)
4365      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4366        << FieldName << FieldTy << BitWidth->getSourceRange();
4367    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4368      << FieldTy << BitWidth->getSourceRange();
4369  }
4370
4371  // If the bit-width is type- or value-dependent, don't try to check
4372  // it now.
4373  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4374    return false;
4375
4376  llvm::APSInt Value;
4377  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4378    return true;
4379
4380  if (Value != 0 && ZeroWidth)
4381    *ZeroWidth = false;
4382
4383  // Zero-width bitfield is ok for anonymous field.
4384  if (Value == 0 && FieldName)
4385    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4386
4387  if (Value.isSigned() && Value.isNegative()) {
4388    if (FieldName)
4389      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4390               << FieldName << Value.toString(10);
4391    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4392      << Value.toString(10);
4393  }
4394
4395  if (!FieldTy->isDependentType()) {
4396    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4397    if (Value.getZExtValue() > TypeSize) {
4398      if (FieldName)
4399        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4400          << FieldName << (unsigned)TypeSize;
4401      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4402        << (unsigned)TypeSize;
4403    }
4404  }
4405
4406  return false;
4407}
4408
4409/// ActOnField - Each field of a struct/union/class is passed into this in order
4410/// to create a FieldDecl object for it.
4411Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4412                                 SourceLocation DeclStart,
4413                                 Declarator &D, ExprTy *BitfieldWidth) {
4414  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4415                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4416                               AS_public);
4417  return DeclPtrTy::make(Res);
4418}
4419
4420/// HandleField - Analyze a field of a C struct or a C++ data member.
4421///
4422FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4423                             SourceLocation DeclStart,
4424                             Declarator &D, Expr *BitWidth,
4425                             AccessSpecifier AS) {
4426  IdentifierInfo *II = D.getIdentifier();
4427  SourceLocation Loc = DeclStart;
4428  if (II) Loc = D.getIdentifierLoc();
4429
4430  DeclaratorInfo *DInfo = 0;
4431  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4432  if (getLangOptions().CPlusPlus)
4433    CheckExtraCXXDefaultArguments(D);
4434
4435  DiagnoseFunctionSpecifiers(D);
4436
4437  if (D.getDeclSpec().isThreadSpecified())
4438    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4439
4440  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4441
4442  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4443    // Maybe we will complain about the shadowed template parameter.
4444    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4445    // Just pretend that we didn't see the previous declaration.
4446    PrevDecl = 0;
4447  }
4448
4449  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4450    PrevDecl = 0;
4451
4452  bool Mutable
4453    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4454  SourceLocation TSSL = D.getSourceRange().getBegin();
4455  FieldDecl *NewFD
4456    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4457                     AS, PrevDecl, &D);
4458  if (NewFD->isInvalidDecl() && PrevDecl) {
4459    // Don't introduce NewFD into scope; there's already something
4460    // with the same name in the same scope.
4461  } else if (II) {
4462    PushOnScopeChains(NewFD, S);
4463  } else
4464    Record->addDecl(NewFD);
4465
4466  return NewFD;
4467}
4468
4469/// \brief Build a new FieldDecl and check its well-formedness.
4470///
4471/// This routine builds a new FieldDecl given the fields name, type,
4472/// record, etc. \p PrevDecl should refer to any previous declaration
4473/// with the same name and in the same scope as the field to be
4474/// created.
4475///
4476/// \returns a new FieldDecl.
4477///
4478/// \todo The Declarator argument is a hack. It will be removed once
4479FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4480                                DeclaratorInfo *DInfo,
4481                                RecordDecl *Record, SourceLocation Loc,
4482                                bool Mutable, Expr *BitWidth,
4483                                SourceLocation TSSL,
4484                                AccessSpecifier AS, NamedDecl *PrevDecl,
4485                                Declarator *D) {
4486  IdentifierInfo *II = Name.getAsIdentifierInfo();
4487  bool InvalidDecl = false;
4488  if (D) InvalidDecl = D->isInvalidType();
4489
4490  // If we receive a broken type, recover by assuming 'int' and
4491  // marking this declaration as invalid.
4492  if (T.isNull()) {
4493    InvalidDecl = true;
4494    T = Context.IntTy;
4495  }
4496
4497  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4498  // than a variably modified type.
4499  if (T->isVariablyModifiedType()) {
4500    bool SizeIsNegative;
4501    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4502                                                           SizeIsNegative);
4503    if (!FixedTy.isNull()) {
4504      Diag(Loc, diag::warn_illegal_constant_array_size);
4505      T = FixedTy;
4506    } else {
4507      if (SizeIsNegative)
4508        Diag(Loc, diag::err_typecheck_negative_array_size);
4509      else
4510        Diag(Loc, diag::err_typecheck_field_variable_size);
4511      InvalidDecl = true;
4512    }
4513  }
4514
4515  // Fields can not have abstract class types
4516  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4517                             AbstractFieldType))
4518    InvalidDecl = true;
4519
4520  bool ZeroWidth = false;
4521  // If this is declared as a bit-field, check the bit-field.
4522  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4523    InvalidDecl = true;
4524    DeleteExpr(BitWidth);
4525    BitWidth = 0;
4526    ZeroWidth = false;
4527  }
4528
4529  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4530                                       BitWidth, Mutable);
4531  if (InvalidDecl)
4532    NewFD->setInvalidDecl();
4533
4534  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4535    Diag(Loc, diag::err_duplicate_member) << II;
4536    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4537    NewFD->setInvalidDecl();
4538  }
4539
4540  if (getLangOptions().CPlusPlus) {
4541    QualType EltTy = Context.getBaseElementType(T);
4542
4543    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4544
4545    if (!T->isPODType())
4546      CXXRecord->setPOD(false);
4547    if (!ZeroWidth)
4548      CXXRecord->setEmpty(false);
4549
4550    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4551      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4552
4553      if (!RDecl->hasTrivialConstructor())
4554        CXXRecord->setHasTrivialConstructor(false);
4555      if (!RDecl->hasTrivialCopyConstructor())
4556        CXXRecord->setHasTrivialCopyConstructor(false);
4557      if (!RDecl->hasTrivialCopyAssignment())
4558        CXXRecord->setHasTrivialCopyAssignment(false);
4559      if (!RDecl->hasTrivialDestructor())
4560        CXXRecord->setHasTrivialDestructor(false);
4561
4562      // C++ 9.5p1: An object of a class with a non-trivial
4563      // constructor, a non-trivial copy constructor, a non-trivial
4564      // destructor, or a non-trivial copy assignment operator
4565      // cannot be a member of a union, nor can an array of such
4566      // objects.
4567      // TODO: C++0x alters this restriction significantly.
4568      if (Record->isUnion()) {
4569        // We check for copy constructors before constructors
4570        // because otherwise we'll never get complaints about
4571        // copy constructors.
4572
4573        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4574
4575        CXXSpecialMember member;
4576        if (!RDecl->hasTrivialCopyConstructor())
4577          member = CXXCopyConstructor;
4578        else if (!RDecl->hasTrivialConstructor())
4579          member = CXXDefaultConstructor;
4580        else if (!RDecl->hasTrivialCopyAssignment())
4581          member = CXXCopyAssignment;
4582        else if (!RDecl->hasTrivialDestructor())
4583          member = CXXDestructor;
4584        else
4585          member = invalid;
4586
4587        if (member != invalid) {
4588          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4589          DiagnoseNontrivial(RT, member);
4590          NewFD->setInvalidDecl();
4591        }
4592      }
4593    }
4594  }
4595
4596  // FIXME: We need to pass in the attributes given an AST
4597  // representation, not a parser representation.
4598  if (D)
4599    // FIXME: What to pass instead of TUScope?
4600    ProcessDeclAttributes(TUScope, NewFD, *D);
4601
4602  if (T.isObjCGCWeak())
4603    Diag(Loc, diag::warn_attribute_weak_on_field);
4604
4605  NewFD->setAccess(AS);
4606
4607  // C++ [dcl.init.aggr]p1:
4608  //   An aggregate is an array or a class (clause 9) with [...] no
4609  //   private or protected non-static data members (clause 11).
4610  // A POD must be an aggregate.
4611  if (getLangOptions().CPlusPlus &&
4612      (AS == AS_private || AS == AS_protected)) {
4613    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4614    CXXRecord->setAggregate(false);
4615    CXXRecord->setPOD(false);
4616  }
4617
4618  return NewFD;
4619}
4620
4621/// DiagnoseNontrivial - Given that a class has a non-trivial
4622/// special member, figure out why.
4623void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4624  QualType QT(T, 0U);
4625  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4626
4627  // Check whether the member was user-declared.
4628  switch (member) {
4629  case CXXDefaultConstructor:
4630    if (RD->hasUserDeclaredConstructor()) {
4631      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4632      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4633        if (!ci->isImplicitlyDefined(Context)) {
4634          SourceLocation CtorLoc = ci->getLocation();
4635          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4636          return;
4637        }
4638
4639      assert(0 && "found no user-declared constructors");
4640      return;
4641    }
4642    break;
4643
4644  case CXXCopyConstructor:
4645    if (RD->hasUserDeclaredCopyConstructor()) {
4646      SourceLocation CtorLoc =
4647        RD->getCopyConstructor(Context, 0)->getLocation();
4648      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4649      return;
4650    }
4651    break;
4652
4653  case CXXCopyAssignment:
4654    if (RD->hasUserDeclaredCopyAssignment()) {
4655      // FIXME: this should use the location of the copy
4656      // assignment, not the type.
4657      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4658      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4659      return;
4660    }
4661    break;
4662
4663  case CXXDestructor:
4664    if (RD->hasUserDeclaredDestructor()) {
4665      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4666      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4667      return;
4668    }
4669    break;
4670  }
4671
4672  typedef CXXRecordDecl::base_class_iterator base_iter;
4673
4674  // Virtual bases and members inhibit trivial copying/construction,
4675  // but not trivial destruction.
4676  if (member != CXXDestructor) {
4677    // Check for virtual bases.  vbases includes indirect virtual bases,
4678    // so we just iterate through the direct bases.
4679    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4680      if (bi->isVirtual()) {
4681        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4682        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4683        return;
4684      }
4685
4686    // Check for virtual methods.
4687    typedef CXXRecordDecl::method_iterator meth_iter;
4688    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4689         ++mi) {
4690      if (mi->isVirtual()) {
4691        SourceLocation MLoc = mi->getSourceRange().getBegin();
4692        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4693        return;
4694      }
4695    }
4696  }
4697
4698  bool (CXXRecordDecl::*hasTrivial)() const;
4699  switch (member) {
4700  case CXXDefaultConstructor:
4701    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4702  case CXXCopyConstructor:
4703    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4704  case CXXCopyAssignment:
4705    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4706  case CXXDestructor:
4707    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4708  default:
4709    assert(0 && "unexpected special member"); return;
4710  }
4711
4712  // Check for nontrivial bases (and recurse).
4713  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4714    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
4715    assert(BaseRT);
4716    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4717    if (!(BaseRecTy->*hasTrivial)()) {
4718      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4719      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4720      DiagnoseNontrivial(BaseRT, member);
4721      return;
4722    }
4723  }
4724
4725  // Check for nontrivial members (and recurse).
4726  typedef RecordDecl::field_iterator field_iter;
4727  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4728       ++fi) {
4729    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4730    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
4731      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4732
4733      if (!(EltRD->*hasTrivial)()) {
4734        SourceLocation FLoc = (*fi)->getLocation();
4735        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4736        DiagnoseNontrivial(EltRT, member);
4737        return;
4738      }
4739    }
4740  }
4741
4742  assert(0 && "found no explanation for non-trivial member");
4743}
4744
4745/// TranslateIvarVisibility - Translate visibility from a token ID to an
4746///  AST enum value.
4747static ObjCIvarDecl::AccessControl
4748TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4749  switch (ivarVisibility) {
4750  default: assert(0 && "Unknown visitibility kind");
4751  case tok::objc_private: return ObjCIvarDecl::Private;
4752  case tok::objc_public: return ObjCIvarDecl::Public;
4753  case tok::objc_protected: return ObjCIvarDecl::Protected;
4754  case tok::objc_package: return ObjCIvarDecl::Package;
4755  }
4756}
4757
4758/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4759/// in order to create an IvarDecl object for it.
4760Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4761                                SourceLocation DeclStart,
4762                                DeclPtrTy IntfDecl,
4763                                Declarator &D, ExprTy *BitfieldWidth,
4764                                tok::ObjCKeywordKind Visibility) {
4765
4766  IdentifierInfo *II = D.getIdentifier();
4767  Expr *BitWidth = (Expr*)BitfieldWidth;
4768  SourceLocation Loc = DeclStart;
4769  if (II) Loc = D.getIdentifierLoc();
4770
4771  // FIXME: Unnamed fields can be handled in various different ways, for
4772  // example, unnamed unions inject all members into the struct namespace!
4773
4774  DeclaratorInfo *DInfo = 0;
4775  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4776
4777  if (BitWidth) {
4778    // 6.7.2.1p3, 6.7.2.1p4
4779    if (VerifyBitField(Loc, II, T, BitWidth)) {
4780      D.setInvalidType();
4781      DeleteExpr(BitWidth);
4782      BitWidth = 0;
4783    }
4784  } else {
4785    // Not a bitfield.
4786
4787    // validate II.
4788
4789  }
4790
4791  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4792  // than a variably modified type.
4793  if (T->isVariablyModifiedType()) {
4794    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4795    D.setInvalidType();
4796  }
4797
4798  // Get the visibility (access control) for this ivar.
4799  ObjCIvarDecl::AccessControl ac =
4800    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4801                                        : ObjCIvarDecl::None;
4802  // Must set ivar's DeclContext to its enclosing interface.
4803  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4804  DeclContext *EnclosingContext;
4805  if (ObjCImplementationDecl *IMPDecl =
4806      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4807    // Case of ivar declared in an implementation. Context is that of its class.
4808    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4809    assert(IDecl && "No class- ActOnIvar");
4810    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4811  } else
4812    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4813  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4814
4815  // Construct the decl.
4816  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4817                                             EnclosingContext, Loc, II, T,
4818                                             DInfo, ac, (Expr *)BitfieldWidth);
4819
4820  if (II) {
4821    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4822    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4823        && !isa<TagDecl>(PrevDecl)) {
4824      Diag(Loc, diag::err_duplicate_member) << II;
4825      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4826      NewID->setInvalidDecl();
4827    }
4828  }
4829
4830  // Process attributes attached to the ivar.
4831  ProcessDeclAttributes(S, NewID, D);
4832
4833  if (D.isInvalidType())
4834    NewID->setInvalidDecl();
4835
4836  if (II) {
4837    // FIXME: When interfaces are DeclContexts, we'll need to add
4838    // these to the interface.
4839    S->AddDecl(DeclPtrTy::make(NewID));
4840    IdResolver.AddDecl(NewID);
4841  }
4842
4843  return DeclPtrTy::make(NewID);
4844}
4845
4846void Sema::ActOnFields(Scope* S,
4847                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4848                       DeclPtrTy *Fields, unsigned NumFields,
4849                       SourceLocation LBrac, SourceLocation RBrac,
4850                       AttributeList *Attr) {
4851  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4852  assert(EnclosingDecl && "missing record or interface decl");
4853
4854  // If the decl this is being inserted into is invalid, then it may be a
4855  // redeclaration or some other bogus case.  Don't try to add fields to it.
4856  if (EnclosingDecl->isInvalidDecl()) {
4857    // FIXME: Deallocate fields?
4858    return;
4859  }
4860
4861
4862  // Verify that all the fields are okay.
4863  unsigned NumNamedMembers = 0;
4864  llvm::SmallVector<FieldDecl*, 32> RecFields;
4865
4866  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4867  for (unsigned i = 0; i != NumFields; ++i) {
4868    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4869
4870    // Get the type for the field.
4871    Type *FDTy = FD->getType().getTypePtr();
4872
4873    if (!FD->isAnonymousStructOrUnion()) {
4874      // Remember all fields written by the user.
4875      RecFields.push_back(FD);
4876    }
4877
4878    // If the field is already invalid for some reason, don't emit more
4879    // diagnostics about it.
4880    if (FD->isInvalidDecl())
4881      continue;
4882
4883    // C99 6.7.2.1p2:
4884    //   A structure or union shall not contain a member with
4885    //   incomplete or function type (hence, a structure shall not
4886    //   contain an instance of itself, but may contain a pointer to
4887    //   an instance of itself), except that the last member of a
4888    //   structure with more than one named member may have incomplete
4889    //   array type; such a structure (and any union containing,
4890    //   possibly recursively, a member that is such a structure)
4891    //   shall not be a member of a structure or an element of an
4892    //   array.
4893    if (FDTy->isFunctionType()) {
4894      // Field declared as a function.
4895      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4896        << FD->getDeclName();
4897      FD->setInvalidDecl();
4898      EnclosingDecl->setInvalidDecl();
4899      continue;
4900    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4901               Record && Record->isStruct()) {
4902      // Flexible array member.
4903      if (NumNamedMembers < 1) {
4904        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4905          << FD->getDeclName();
4906        FD->setInvalidDecl();
4907        EnclosingDecl->setInvalidDecl();
4908        continue;
4909      }
4910      // Okay, we have a legal flexible array member at the end of the struct.
4911      if (Record)
4912        Record->setHasFlexibleArrayMember(true);
4913    } else if (!FDTy->isDependentType() &&
4914               RequireCompleteType(FD->getLocation(), FD->getType(),
4915                                   diag::err_field_incomplete)) {
4916      // Incomplete type
4917      FD->setInvalidDecl();
4918      EnclosingDecl->setInvalidDecl();
4919      continue;
4920    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
4921      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4922        // If this is a member of a union, then entire union becomes "flexible".
4923        if (Record && Record->isUnion()) {
4924          Record->setHasFlexibleArrayMember(true);
4925        } else {
4926          // If this is a struct/class and this is not the last element, reject
4927          // it.  Note that GCC supports variable sized arrays in the middle of
4928          // structures.
4929          if (i != NumFields-1)
4930            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4931              << FD->getDeclName() << FD->getType();
4932          else {
4933            // We support flexible arrays at the end of structs in
4934            // other structs as an extension.
4935            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4936              << FD->getDeclName();
4937            if (Record)
4938              Record->setHasFlexibleArrayMember(true);
4939          }
4940        }
4941      }
4942      if (Record && FDTTy->getDecl()->hasObjectMember())
4943        Record->setHasObjectMember(true);
4944    } else if (FDTy->isObjCInterfaceType()) {
4945      /// A field cannot be an Objective-c object
4946      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4947      FD->setInvalidDecl();
4948      EnclosingDecl->setInvalidDecl();
4949      continue;
4950    } else if (getLangOptions().ObjC1 &&
4951               getLangOptions().getGCMode() != LangOptions::NonGC &&
4952               Record &&
4953               (FD->getType()->isObjCObjectPointerType() ||
4954                FD->getType().isObjCGCStrong()))
4955      Record->setHasObjectMember(true);
4956    // Keep track of the number of named members.
4957    if (FD->getIdentifier())
4958      ++NumNamedMembers;
4959  }
4960
4961  // Okay, we successfully defined 'Record'.
4962  if (Record) {
4963    Record->completeDefinition(Context);
4964  } else {
4965    ObjCIvarDecl **ClsFields =
4966      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4967    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4968      ID->setIVarList(ClsFields, RecFields.size(), Context);
4969      ID->setLocEnd(RBrac);
4970      // Add ivar's to class's DeclContext.
4971      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4972        ClsFields[i]->setLexicalDeclContext(ID);
4973        ID->addDecl(ClsFields[i]);
4974      }
4975      // Must enforce the rule that ivars in the base classes may not be
4976      // duplicates.
4977      if (ID->getSuperClass()) {
4978        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4979             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4980          ObjCIvarDecl* Ivar = (*IVI);
4981
4982          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4983            ObjCIvarDecl* prevIvar =
4984              ID->getSuperClass()->lookupInstanceVariable(II);
4985            if (prevIvar) {
4986              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4987              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4988            }
4989          }
4990        }
4991      }
4992    } else if (ObjCImplementationDecl *IMPDecl =
4993                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4994      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4995      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
4996        // Ivar declared in @implementation never belongs to the implementation.
4997        // Only it is in implementation's lexical context.
4998        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4999      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5000    }
5001  }
5002
5003  if (Attr)
5004    ProcessDeclAttributeList(S, Record, Attr);
5005}
5006
5007EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5008                                          EnumConstantDecl *LastEnumConst,
5009                                          SourceLocation IdLoc,
5010                                          IdentifierInfo *Id,
5011                                          ExprArg val) {
5012  Expr *Val = (Expr *)val.get();
5013
5014  llvm::APSInt EnumVal(32);
5015  QualType EltTy;
5016  if (Val && !Val->isTypeDependent()) {
5017    // Make sure to promote the operand type to int.
5018    UsualUnaryConversions(Val);
5019    if (Val != val.get()) {
5020      val.release();
5021      val = Val;
5022    }
5023
5024    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5025    SourceLocation ExpLoc;
5026    if (!Val->isValueDependent() &&
5027        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5028      Val = 0;
5029    } else {
5030      EltTy = Val->getType();
5031    }
5032  }
5033
5034  if (!Val) {
5035    if (LastEnumConst) {
5036      // Assign the last value + 1.
5037      EnumVal = LastEnumConst->getInitVal();
5038      ++EnumVal;
5039
5040      // Check for overflow on increment.
5041      if (EnumVal < LastEnumConst->getInitVal())
5042        Diag(IdLoc, diag::warn_enum_value_overflow);
5043
5044      EltTy = LastEnumConst->getType();
5045    } else {
5046      // First value, set to zero.
5047      EltTy = Context.IntTy;
5048      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5049    }
5050  }
5051
5052  val.release();
5053  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5054                                  Val, EnumVal);
5055}
5056
5057
5058Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5059                                        DeclPtrTy lastEnumConst,
5060                                        SourceLocation IdLoc,
5061                                        IdentifierInfo *Id,
5062                                        SourceLocation EqualLoc, ExprTy *val) {
5063  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5064  EnumConstantDecl *LastEnumConst =
5065    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5066  Expr *Val = static_cast<Expr*>(val);
5067
5068  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5069  // we find one that is.
5070  S = getNonFieldDeclScope(S);
5071
5072  // Verify that there isn't already something declared with this name in this
5073  // scope.
5074  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
5075  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5076    // Maybe we will complain about the shadowed template parameter.
5077    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5078    // Just pretend that we didn't see the previous declaration.
5079    PrevDecl = 0;
5080  }
5081
5082  if (PrevDecl) {
5083    // When in C++, we may get a TagDecl with the same name; in this case the
5084    // enum constant will 'hide' the tag.
5085    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5086           "Received TagDecl when not in C++!");
5087    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5088      if (isa<EnumConstantDecl>(PrevDecl))
5089        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5090      else
5091        Diag(IdLoc, diag::err_redefinition) << Id;
5092      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5093      if (Val) Val->Destroy(Context);
5094      return DeclPtrTy();
5095    }
5096  }
5097
5098  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5099                                            IdLoc, Id, Owned(Val));
5100
5101  // Register this decl in the current scope stack.
5102  if (New)
5103    PushOnScopeChains(New, S);
5104
5105  return DeclPtrTy::make(New);
5106}
5107
5108void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5109                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5110                         DeclPtrTy *Elements, unsigned NumElements,
5111                         Scope *S, AttributeList *Attr) {
5112  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5113  QualType EnumType = Context.getTypeDeclType(Enum);
5114
5115  if (Attr)
5116    ProcessDeclAttributeList(S, Enum, Attr);
5117
5118  // TODO: If the result value doesn't fit in an int, it must be a long or long
5119  // long value.  ISO C does not support this, but GCC does as an extension,
5120  // emit a warning.
5121  unsigned IntWidth = Context.Target.getIntWidth();
5122  unsigned CharWidth = Context.Target.getCharWidth();
5123  unsigned ShortWidth = Context.Target.getShortWidth();
5124
5125  // Verify that all the values are okay, compute the size of the values, and
5126  // reverse the list.
5127  unsigned NumNegativeBits = 0;
5128  unsigned NumPositiveBits = 0;
5129
5130  // Keep track of whether all elements have type int.
5131  bool AllElementsInt = true;
5132
5133  for (unsigned i = 0; i != NumElements; ++i) {
5134    EnumConstantDecl *ECD =
5135      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5136    if (!ECD) continue;  // Already issued a diagnostic.
5137
5138    // If the enum value doesn't fit in an int, emit an extension warning.
5139    const llvm::APSInt &InitVal = ECD->getInitVal();
5140    assert(InitVal.getBitWidth() >= IntWidth &&
5141           "Should have promoted value to int");
5142    if (InitVal.getBitWidth() > IntWidth) {
5143      llvm::APSInt V(InitVal);
5144      V.trunc(IntWidth);
5145      V.extend(InitVal.getBitWidth());
5146      if (V != InitVal)
5147        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5148          << InitVal.toString(10);
5149    }
5150
5151    // Keep track of the size of positive and negative values.
5152    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5153      NumPositiveBits = std::max(NumPositiveBits,
5154                                 (unsigned)InitVal.getActiveBits());
5155    else
5156      NumNegativeBits = std::max(NumNegativeBits,
5157                                 (unsigned)InitVal.getMinSignedBits());
5158
5159    // Keep track of whether every enum element has type int (very commmon).
5160    if (AllElementsInt)
5161      AllElementsInt = ECD->getType() == Context.IntTy;
5162  }
5163
5164  // Figure out the type that should be used for this enum.
5165  // FIXME: Support -fshort-enums.
5166  QualType BestType;
5167  unsigned BestWidth;
5168
5169  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5170
5171  if (NumNegativeBits) {
5172    // If there is a negative value, figure out the smallest integer type (of
5173    // int/long/longlong) that fits.
5174    // If it's packed, check also if it fits a char or a short.
5175    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5176        BestType = Context.SignedCharTy;
5177        BestWidth = CharWidth;
5178    } else if (Packed && NumNegativeBits <= ShortWidth &&
5179               NumPositiveBits < ShortWidth) {
5180        BestType = Context.ShortTy;
5181        BestWidth = ShortWidth;
5182    }
5183    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5184      BestType = Context.IntTy;
5185      BestWidth = IntWidth;
5186    } else {
5187      BestWidth = Context.Target.getLongWidth();
5188
5189      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5190        BestType = Context.LongTy;
5191      else {
5192        BestWidth = Context.Target.getLongLongWidth();
5193
5194        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5195          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5196        BestType = Context.LongLongTy;
5197      }
5198    }
5199  } else {
5200    // If there is no negative value, figure out which of uint, ulong, ulonglong
5201    // fits.
5202    // If it's packed, check also if it fits a char or a short.
5203    if (Packed && NumPositiveBits <= CharWidth) {
5204        BestType = Context.UnsignedCharTy;
5205        BestWidth = CharWidth;
5206    } else if (Packed && NumPositiveBits <= ShortWidth) {
5207        BestType = Context.UnsignedShortTy;
5208        BestWidth = ShortWidth;
5209    }
5210    else if (NumPositiveBits <= IntWidth) {
5211      BestType = Context.UnsignedIntTy;
5212      BestWidth = IntWidth;
5213    } else if (NumPositiveBits <=
5214               (BestWidth = Context.Target.getLongWidth())) {
5215      BestType = Context.UnsignedLongTy;
5216    } else {
5217      BestWidth = Context.Target.getLongLongWidth();
5218      assert(NumPositiveBits <= BestWidth &&
5219             "How could an initializer get larger than ULL?");
5220      BestType = Context.UnsignedLongLongTy;
5221    }
5222  }
5223
5224  // Loop over all of the enumerator constants, changing their types to match
5225  // the type of the enum if needed.
5226  for (unsigned i = 0; i != NumElements; ++i) {
5227    EnumConstantDecl *ECD =
5228      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5229    if (!ECD) continue;  // Already issued a diagnostic.
5230
5231    // Standard C says the enumerators have int type, but we allow, as an
5232    // extension, the enumerators to be larger than int size.  If each
5233    // enumerator value fits in an int, type it as an int, otherwise type it the
5234    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5235    // that X has type 'int', not 'unsigned'.
5236    if (ECD->getType() == Context.IntTy) {
5237      // Make sure the init value is signed.
5238      llvm::APSInt IV = ECD->getInitVal();
5239      IV.setIsSigned(true);
5240      ECD->setInitVal(IV);
5241
5242      if (getLangOptions().CPlusPlus)
5243        // C++ [dcl.enum]p4: Following the closing brace of an
5244        // enum-specifier, each enumerator has the type of its
5245        // enumeration.
5246        ECD->setType(EnumType);
5247      continue;  // Already int type.
5248    }
5249
5250    // Determine whether the value fits into an int.
5251    llvm::APSInt InitVal = ECD->getInitVal();
5252    bool FitsInInt;
5253    if (InitVal.isUnsigned() || !InitVal.isNegative())
5254      FitsInInt = InitVal.getActiveBits() < IntWidth;
5255    else
5256      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5257
5258    // If it fits into an integer type, force it.  Otherwise force it to match
5259    // the enum decl type.
5260    QualType NewTy;
5261    unsigned NewWidth;
5262    bool NewSign;
5263    if (FitsInInt) {
5264      NewTy = Context.IntTy;
5265      NewWidth = IntWidth;
5266      NewSign = true;
5267    } else if (ECD->getType() == BestType) {
5268      // Already the right type!
5269      if (getLangOptions().CPlusPlus)
5270        // C++ [dcl.enum]p4: Following the closing brace of an
5271        // enum-specifier, each enumerator has the type of its
5272        // enumeration.
5273        ECD->setType(EnumType);
5274      continue;
5275    } else {
5276      NewTy = BestType;
5277      NewWidth = BestWidth;
5278      NewSign = BestType->isSignedIntegerType();
5279    }
5280
5281    // Adjust the APSInt value.
5282    InitVal.extOrTrunc(NewWidth);
5283    InitVal.setIsSigned(NewSign);
5284    ECD->setInitVal(InitVal);
5285
5286    // Adjust the Expr initializer and type.
5287    if (ECD->getInitExpr())
5288      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5289                                                      CastExpr::CK_Unknown,
5290                                                      ECD->getInitExpr(),
5291                                                      /*isLvalue=*/false));
5292    if (getLangOptions().CPlusPlus)
5293      // C++ [dcl.enum]p4: Following the closing brace of an
5294      // enum-specifier, each enumerator has the type of its
5295      // enumeration.
5296      ECD->setType(EnumType);
5297    else
5298      ECD->setType(NewTy);
5299  }
5300
5301  Enum->completeDefinition(Context, BestType);
5302}
5303
5304Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5305                                            ExprArg expr) {
5306  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5307
5308  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5309                                                   Loc, AsmString);
5310  CurContext->addDecl(New);
5311  return DeclPtrTy::make(New);
5312}
5313
5314void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5315                             SourceLocation PragmaLoc,
5316                             SourceLocation NameLoc) {
5317  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5318
5319  if (PrevDecl) {
5320    PrevDecl->addAttr(::new (Context) WeakAttr());
5321  } else {
5322    (void)WeakUndeclaredIdentifiers.insert(
5323      std::pair<IdentifierInfo*,WeakInfo>
5324        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5325  }
5326}
5327
5328void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5329                                IdentifierInfo* AliasName,
5330                                SourceLocation PragmaLoc,
5331                                SourceLocation NameLoc,
5332                                SourceLocation AliasNameLoc) {
5333  Decl *PrevDecl = LookupName(TUScope, AliasName, LookupOrdinaryName);
5334  WeakInfo W = WeakInfo(Name, NameLoc);
5335
5336  if (PrevDecl) {
5337    if (!PrevDecl->hasAttr<AliasAttr>())
5338      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5339        DeclApplyPragmaWeak(TUScope, ND, W);
5340  } else {
5341    (void)WeakUndeclaredIdentifiers.insert(
5342      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5343  }
5344}
5345