SemaDecl.cpp revision fad03b75e0297546c5d12ec420b5b79d5b7baa2a
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Sema/DelayedDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/Triple.h"
43#include <algorithm>
44#include <cstring>
45#include <functional>
46using namespace clang;
47using namespace sema;
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
50  if (OwnedType) {
51    Decl *Group[2] = { OwnedType, Ptr };
52    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
53  }
54
55  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
56}
57
58namespace {
59
60class TypeNameValidatorCCC : public CorrectionCandidateCallback {
61 public:
62  TypeNameValidatorCCC(bool AllowInvalid) : AllowInvalidDecl(AllowInvalid) {
63    WantExpressionKeywords = false;
64    WantCXXNamedCasts = false;
65    WantRemainingKeywords = false;
66  }
67
68  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
69    if (NamedDecl *ND = candidate.getCorrectionDecl())
70      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
71          (AllowInvalidDecl || !ND->isInvalidDecl());
72    else
73      return candidate.isKeyword();
74  }
75
76 private:
77  bool AllowInvalidDecl;
78};
79
80}
81
82/// \brief If the identifier refers to a type name within this scope,
83/// return the declaration of that type.
84///
85/// This routine performs ordinary name lookup of the identifier II
86/// within the given scope, with optional C++ scope specifier SS, to
87/// determine whether the name refers to a type. If so, returns an
88/// opaque pointer (actually a QualType) corresponding to that
89/// type. Otherwise, returns NULL.
90///
91/// If name lookup results in an ambiguity, this routine will complain
92/// and then return NULL.
93ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
94                             Scope *S, CXXScopeSpec *SS,
95                             bool isClassName, bool HasTrailingDot,
96                             ParsedType ObjectTypePtr,
97                             bool IsCtorOrDtorName,
98                             bool WantNontrivialTypeSourceInfo,
99                             IdentifierInfo **CorrectedII) {
100  // Determine where we will perform name lookup.
101  DeclContext *LookupCtx = 0;
102  if (ObjectTypePtr) {
103    QualType ObjectType = ObjectTypePtr.get();
104    if (ObjectType->isRecordType())
105      LookupCtx = computeDeclContext(ObjectType);
106  } else if (SS && SS->isNotEmpty()) {
107    LookupCtx = computeDeclContext(*SS, false);
108
109    if (!LookupCtx) {
110      if (isDependentScopeSpecifier(*SS)) {
111        // C++ [temp.res]p3:
112        //   A qualified-id that refers to a type and in which the
113        //   nested-name-specifier depends on a template-parameter (14.6.2)
114        //   shall be prefixed by the keyword typename to indicate that the
115        //   qualified-id denotes a type, forming an
116        //   elaborated-type-specifier (7.1.5.3).
117        //
118        // We therefore do not perform any name lookup if the result would
119        // refer to a member of an unknown specialization.
120        if (!isClassName)
121          return ParsedType();
122
123        // We know from the grammar that this name refers to a type,
124        // so build a dependent node to describe the type.
125        if (WantNontrivialTypeSourceInfo)
126          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
127
128        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
129        QualType T =
130          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
131                            II, NameLoc);
132
133          return ParsedType::make(T);
134      }
135
136      return ParsedType();
137    }
138
139    if (!LookupCtx->isDependentContext() &&
140        RequireCompleteDeclContext(*SS, LookupCtx))
141      return ParsedType();
142  }
143
144  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
145  // lookup for class-names.
146  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
147                                      LookupOrdinaryName;
148  LookupResult Result(*this, &II, NameLoc, Kind);
149  if (LookupCtx) {
150    // Perform "qualified" name lookup into the declaration context we
151    // computed, which is either the type of the base of a member access
152    // expression or the declaration context associated with a prior
153    // nested-name-specifier.
154    LookupQualifiedName(Result, LookupCtx);
155
156    if (ObjectTypePtr && Result.empty()) {
157      // C++ [basic.lookup.classref]p3:
158      //   If the unqualified-id is ~type-name, the type-name is looked up
159      //   in the context of the entire postfix-expression. If the type T of
160      //   the object expression is of a class type C, the type-name is also
161      //   looked up in the scope of class C. At least one of the lookups shall
162      //   find a name that refers to (possibly cv-qualified) T.
163      LookupName(Result, S);
164    }
165  } else {
166    // Perform unqualified name lookup.
167    LookupName(Result, S);
168  }
169
170  NamedDecl *IIDecl = 0;
171  switch (Result.getResultKind()) {
172  case LookupResult::NotFound:
173  case LookupResult::NotFoundInCurrentInstantiation:
174    if (CorrectedII) {
175      TypeNameValidatorCCC Validator(true);
176      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
177                                              Kind, S, SS, &Validator);
178      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
179      TemplateTy Template;
180      bool MemberOfUnknownSpecialization;
181      UnqualifiedId TemplateName;
182      TemplateName.setIdentifier(NewII, NameLoc);
183      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
184      CXXScopeSpec NewSS, *NewSSPtr = SS;
185      if (SS && NNS) {
186        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
187        NewSSPtr = &NewSS;
188      }
189      if (Correction && (NNS || NewII != &II) &&
190          // Ignore a correction to a template type as the to-be-corrected
191          // identifier is not a template (typo correction for template names
192          // is handled elsewhere).
193          !(getLangOptions().CPlusPlus && NewSSPtr &&
194            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
195                           false, Template, MemberOfUnknownSpecialization))) {
196        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
197                                    isClassName, HasTrailingDot, ObjectTypePtr,
198                                    IsCtorOrDtorName,
199                                    WantNontrivialTypeSourceInfo);
200        if (Ty) {
201          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
202          std::string CorrectedQuotedStr(
203              Correction.getQuoted(getLangOptions()));
204          Diag(NameLoc, diag::err_unknown_typename_suggest)
205              << Result.getLookupName() << CorrectedQuotedStr
206              << FixItHint::CreateReplacement(SourceRange(NameLoc),
207                                              CorrectedStr);
208          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
209            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
210              << CorrectedQuotedStr;
211
212          if (SS && NNS)
213            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
214          *CorrectedII = NewII;
215          return Ty;
216        }
217      }
218    }
219    // If typo correction failed or was not performed, fall through
220  case LookupResult::FoundOverloaded:
221  case LookupResult::FoundUnresolvedValue:
222    Result.suppressDiagnostics();
223    return ParsedType();
224
225  case LookupResult::Ambiguous:
226    // Recover from type-hiding ambiguities by hiding the type.  We'll
227    // do the lookup again when looking for an object, and we can
228    // diagnose the error then.  If we don't do this, then the error
229    // about hiding the type will be immediately followed by an error
230    // that only makes sense if the identifier was treated like a type.
231    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
232      Result.suppressDiagnostics();
233      return ParsedType();
234    }
235
236    // Look to see if we have a type anywhere in the list of results.
237    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
238         Res != ResEnd; ++Res) {
239      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
240        if (!IIDecl ||
241            (*Res)->getLocation().getRawEncoding() <
242              IIDecl->getLocation().getRawEncoding())
243          IIDecl = *Res;
244      }
245    }
246
247    if (!IIDecl) {
248      // None of the entities we found is a type, so there is no way
249      // to even assume that the result is a type. In this case, don't
250      // complain about the ambiguity. The parser will either try to
251      // perform this lookup again (e.g., as an object name), which
252      // will produce the ambiguity, or will complain that it expected
253      // a type name.
254      Result.suppressDiagnostics();
255      return ParsedType();
256    }
257
258    // We found a type within the ambiguous lookup; diagnose the
259    // ambiguity and then return that type. This might be the right
260    // answer, or it might not be, but it suppresses any attempt to
261    // perform the name lookup again.
262    break;
263
264  case LookupResult::Found:
265    IIDecl = Result.getFoundDecl();
266    break;
267  }
268
269  assert(IIDecl && "Didn't find decl");
270
271  QualType T;
272  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
273    DiagnoseUseOfDecl(IIDecl, NameLoc);
274
275    if (T.isNull())
276      T = Context.getTypeDeclType(TD);
277
278    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
279    // constructor or destructor name (in such a case, the scope specifier
280    // will be attached to the enclosing Expr or Decl node).
281    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
282      if (WantNontrivialTypeSourceInfo) {
283        // Construct a type with type-source information.
284        TypeLocBuilder Builder;
285        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
286
287        T = getElaboratedType(ETK_None, *SS, T);
288        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
289        ElabTL.setKeywordLoc(SourceLocation());
290        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
291        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
292      } else {
293        T = getElaboratedType(ETK_None, *SS, T);
294      }
295    }
296  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
297    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
298    if (!HasTrailingDot)
299      T = Context.getObjCInterfaceType(IDecl);
300  }
301
302  if (T.isNull()) {
303    // If it's not plausibly a type, suppress diagnostics.
304    Result.suppressDiagnostics();
305    return ParsedType();
306  }
307  return ParsedType::make(T);
308}
309
310/// isTagName() - This method is called *for error recovery purposes only*
311/// to determine if the specified name is a valid tag name ("struct foo").  If
312/// so, this returns the TST for the tag corresponding to it (TST_enum,
313/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
314/// where the user forgot to specify the tag.
315DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
316  // Do a tag name lookup in this scope.
317  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
318  LookupName(R, S, false);
319  R.suppressDiagnostics();
320  if (R.getResultKind() == LookupResult::Found)
321    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
322      switch (TD->getTagKind()) {
323      case TTK_Struct: return DeclSpec::TST_struct;
324      case TTK_Union:  return DeclSpec::TST_union;
325      case TTK_Class:  return DeclSpec::TST_class;
326      case TTK_Enum:   return DeclSpec::TST_enum;
327      }
328    }
329
330  return DeclSpec::TST_unspecified;
331}
332
333/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
334/// if a CXXScopeSpec's type is equal to the type of one of the base classes
335/// then downgrade the missing typename error to a warning.
336/// This is needed for MSVC compatibility; Example:
337/// @code
338/// template<class T> class A {
339/// public:
340///   typedef int TYPE;
341/// };
342/// template<class T> class B : public A<T> {
343/// public:
344///   A<T>::TYPE a; // no typename required because A<T> is a base class.
345/// };
346/// @endcode
347bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
348  if (CurContext->isRecord()) {
349    const Type *Ty = SS->getScopeRep()->getAsType();
350
351    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
352    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
353          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
354      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
355        return true;
356    return S->isFunctionPrototypeScope();
357  }
358  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
359}
360
361bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
362                                   SourceLocation IILoc,
363                                   Scope *S,
364                                   CXXScopeSpec *SS,
365                                   ParsedType &SuggestedType) {
366  // We don't have anything to suggest (yet).
367  SuggestedType = ParsedType();
368
369  // There may have been a typo in the name of the type. Look up typo
370  // results, in case we have something that we can suggest.
371  TypeNameValidatorCCC Validator(false);
372  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
373                                             LookupOrdinaryName, S, SS,
374                                             &Validator)) {
375    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
376    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
377
378    if (Corrected.isKeyword()) {
379      // We corrected to a keyword.
380      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
381      Diag(IILoc, diag::err_unknown_typename_suggest)
382        << &II << CorrectedQuotedStr;
383    } else {
384      NamedDecl *Result = Corrected.getCorrectionDecl();
385      // We found a similarly-named type or interface; suggest that.
386      if (!SS || !SS->isSet())
387        Diag(IILoc, diag::err_unknown_typename_suggest)
388          << &II << CorrectedQuotedStr
389          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
390      else if (DeclContext *DC = computeDeclContext(*SS, false))
391        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
392          << &II << DC << CorrectedQuotedStr << SS->getRange()
393          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
394      else
395        llvm_unreachable("could not have corrected a typo here");
396
397      Diag(Result->getLocation(), diag::note_previous_decl)
398        << CorrectedQuotedStr;
399
400      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
401                                  false, false, ParsedType(),
402                                  /*IsCtorOrDtorName=*/false,
403                                  /*NonTrivialTypeSourceInfo=*/true);
404    }
405    return true;
406  }
407
408  if (getLangOptions().CPlusPlus) {
409    // See if II is a class template that the user forgot to pass arguments to.
410    UnqualifiedId Name;
411    Name.setIdentifier(&II, IILoc);
412    CXXScopeSpec EmptySS;
413    TemplateTy TemplateResult;
414    bool MemberOfUnknownSpecialization;
415    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
416                       Name, ParsedType(), true, TemplateResult,
417                       MemberOfUnknownSpecialization) == TNK_Type_template) {
418      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
419      Diag(IILoc, diag::err_template_missing_args) << TplName;
420      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
421        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
422          << TplDecl->getTemplateParameters()->getSourceRange();
423      }
424      return true;
425    }
426  }
427
428  // FIXME: Should we move the logic that tries to recover from a missing tag
429  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
430
431  if (!SS || (!SS->isSet() && !SS->isInvalid()))
432    Diag(IILoc, diag::err_unknown_typename) << &II;
433  else if (DeclContext *DC = computeDeclContext(*SS, false))
434    Diag(IILoc, diag::err_typename_nested_not_found)
435      << &II << DC << SS->getRange();
436  else if (isDependentScopeSpecifier(*SS)) {
437    unsigned DiagID = diag::err_typename_missing;
438    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
439      DiagID = diag::warn_typename_missing;
440
441    Diag(SS->getRange().getBegin(), DiagID)
442      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
443      << SourceRange(SS->getRange().getBegin(), IILoc)
444      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
445    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
446                                                                         .get();
447  } else {
448    assert(SS && SS->isInvalid() &&
449           "Invalid scope specifier has already been diagnosed");
450  }
451
452  return true;
453}
454
455/// \brief Determine whether the given result set contains either a type name
456/// or
457static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
458  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
459                       NextToken.is(tok::less);
460
461  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
462    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
463      return true;
464
465    if (CheckTemplate && isa<TemplateDecl>(*I))
466      return true;
467  }
468
469  return false;
470}
471
472Sema::NameClassification Sema::ClassifyName(Scope *S,
473                                            CXXScopeSpec &SS,
474                                            IdentifierInfo *&Name,
475                                            SourceLocation NameLoc,
476                                            const Token &NextToken) {
477  DeclarationNameInfo NameInfo(Name, NameLoc);
478  ObjCMethodDecl *CurMethod = getCurMethodDecl();
479
480  if (NextToken.is(tok::coloncolon)) {
481    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
482                                QualType(), false, SS, 0, false);
483
484  }
485
486  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
487  LookupParsedName(Result, S, &SS, !CurMethod);
488
489  // Perform lookup for Objective-C instance variables (including automatically
490  // synthesized instance variables), if we're in an Objective-C method.
491  // FIXME: This lookup really, really needs to be folded in to the normal
492  // unqualified lookup mechanism.
493  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
494    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
495    if (E.get() || E.isInvalid())
496      return E;
497  }
498
499  bool SecondTry = false;
500  bool IsFilteredTemplateName = false;
501
502Corrected:
503  switch (Result.getResultKind()) {
504  case LookupResult::NotFound:
505    // If an unqualified-id is followed by a '(', then we have a function
506    // call.
507    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
508      // In C++, this is an ADL-only call.
509      // FIXME: Reference?
510      if (getLangOptions().CPlusPlus)
511        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
512
513      // C90 6.3.2.2:
514      //   If the expression that precedes the parenthesized argument list in a
515      //   function call consists solely of an identifier, and if no
516      //   declaration is visible for this identifier, the identifier is
517      //   implicitly declared exactly as if, in the innermost block containing
518      //   the function call, the declaration
519      //
520      //     extern int identifier ();
521      //
522      //   appeared.
523      //
524      // We also allow this in C99 as an extension.
525      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
526        Result.addDecl(D);
527        Result.resolveKind();
528        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
529      }
530    }
531
532    // In C, we first see whether there is a tag type by the same name, in
533    // which case it's likely that the user just forget to write "enum",
534    // "struct", or "union".
535    if (!getLangOptions().CPlusPlus && !SecondTry) {
536      Result.clear(LookupTagName);
537      LookupParsedName(Result, S, &SS);
538      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
539        const char *TagName = 0;
540        const char *FixItTagName = 0;
541        switch (Tag->getTagKind()) {
542          case TTK_Class:
543            TagName = "class";
544            FixItTagName = "class ";
545            break;
546
547          case TTK_Enum:
548            TagName = "enum";
549            FixItTagName = "enum ";
550            break;
551
552          case TTK_Struct:
553            TagName = "struct";
554            FixItTagName = "struct ";
555            break;
556
557          case TTK_Union:
558            TagName = "union";
559            FixItTagName = "union ";
560            break;
561        }
562
563        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
564          << Name << TagName << getLangOptions().CPlusPlus
565          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
566        break;
567      }
568
569      Result.clear(LookupOrdinaryName);
570    }
571
572    // Perform typo correction to determine if there is another name that is
573    // close to this name.
574    if (!SecondTry) {
575      SecondTry = true;
576      CorrectionCandidateCallback DefaultValidator;
577      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
578                                                 Result.getLookupKind(), S,
579                                                 &SS, &DefaultValidator)) {
580        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
581        unsigned QualifiedDiag = diag::err_no_member_suggest;
582        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
583        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
584
585        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
586        NamedDecl *UnderlyingFirstDecl
587          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
588        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
589            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
590          UnqualifiedDiag = diag::err_no_template_suggest;
591          QualifiedDiag = diag::err_no_member_template_suggest;
592        } else if (UnderlyingFirstDecl &&
593                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
594                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
595                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
596           UnqualifiedDiag = diag::err_unknown_typename_suggest;
597           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
598         }
599
600        if (SS.isEmpty())
601          Diag(NameLoc, UnqualifiedDiag)
602            << Name << CorrectedQuotedStr
603            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
604        else
605          Diag(NameLoc, QualifiedDiag)
606            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
607            << SS.getRange()
608            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
609
610        // Update the name, so that the caller has the new name.
611        Name = Corrected.getCorrectionAsIdentifierInfo();
612
613        // Typo correction corrected to a keyword.
614        if (Corrected.isKeyword())
615          return Corrected.getCorrectionAsIdentifierInfo();
616
617        // Also update the LookupResult...
618        // FIXME: This should probably go away at some point
619        Result.clear();
620        Result.setLookupName(Corrected.getCorrection());
621        if (FirstDecl) {
622          Result.addDecl(FirstDecl);
623          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
624            << CorrectedQuotedStr;
625        }
626
627        // If we found an Objective-C instance variable, let
628        // LookupInObjCMethod build the appropriate expression to
629        // reference the ivar.
630        // FIXME: This is a gross hack.
631        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
632          Result.clear();
633          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
634          return move(E);
635        }
636
637        goto Corrected;
638      }
639    }
640
641    // We failed to correct; just fall through and let the parser deal with it.
642    Result.suppressDiagnostics();
643    return NameClassification::Unknown();
644
645  case LookupResult::NotFoundInCurrentInstantiation:
646    // We performed name lookup into the current instantiation, and there were
647    // dependent bases, so we treat this result the same way as any other
648    // dependent nested-name-specifier.
649
650    // C++ [temp.res]p2:
651    //   A name used in a template declaration or definition and that is
652    //   dependent on a template-parameter is assumed not to name a type
653    //   unless the applicable name lookup finds a type name or the name is
654    //   qualified by the keyword typename.
655    //
656    // FIXME: If the next token is '<', we might want to ask the parser to
657    // perform some heroics to see if we actually have a
658    // template-argument-list, which would indicate a missing 'template'
659    // keyword here.
660    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
661
662  case LookupResult::Found:
663  case LookupResult::FoundOverloaded:
664  case LookupResult::FoundUnresolvedValue:
665    break;
666
667  case LookupResult::Ambiguous:
668    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
669        hasAnyAcceptableTemplateNames(Result)) {
670      // C++ [temp.local]p3:
671      //   A lookup that finds an injected-class-name (10.2) can result in an
672      //   ambiguity in certain cases (for example, if it is found in more than
673      //   one base class). If all of the injected-class-names that are found
674      //   refer to specializations of the same class template, and if the name
675      //   is followed by a template-argument-list, the reference refers to the
676      //   class template itself and not a specialization thereof, and is not
677      //   ambiguous.
678      //
679      // This filtering can make an ambiguous result into an unambiguous one,
680      // so try again after filtering out template names.
681      FilterAcceptableTemplateNames(Result);
682      if (!Result.isAmbiguous()) {
683        IsFilteredTemplateName = true;
684        break;
685      }
686    }
687
688    // Diagnose the ambiguity and return an error.
689    return NameClassification::Error();
690  }
691
692  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
693      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
694    // C++ [temp.names]p3:
695    //   After name lookup (3.4) finds that a name is a template-name or that
696    //   an operator-function-id or a literal- operator-id refers to a set of
697    //   overloaded functions any member of which is a function template if
698    //   this is followed by a <, the < is always taken as the delimiter of a
699    //   template-argument-list and never as the less-than operator.
700    if (!IsFilteredTemplateName)
701      FilterAcceptableTemplateNames(Result);
702
703    if (!Result.empty()) {
704      bool IsFunctionTemplate;
705      TemplateName Template;
706      if (Result.end() - Result.begin() > 1) {
707        IsFunctionTemplate = true;
708        Template = Context.getOverloadedTemplateName(Result.begin(),
709                                                     Result.end());
710      } else {
711        TemplateDecl *TD
712          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
713        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
714
715        if (SS.isSet() && !SS.isInvalid())
716          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
717                                                    /*TemplateKeyword=*/false,
718                                                      TD);
719        else
720          Template = TemplateName(TD);
721      }
722
723      if (IsFunctionTemplate) {
724        // Function templates always go through overload resolution, at which
725        // point we'll perform the various checks (e.g., accessibility) we need
726        // to based on which function we selected.
727        Result.suppressDiagnostics();
728
729        return NameClassification::FunctionTemplate(Template);
730      }
731
732      return NameClassification::TypeTemplate(Template);
733    }
734  }
735
736  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
737  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
738    DiagnoseUseOfDecl(Type, NameLoc);
739    QualType T = Context.getTypeDeclType(Type);
740    return ParsedType::make(T);
741  }
742
743  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
744  if (!Class) {
745    // FIXME: It's unfortunate that we don't have a Type node for handling this.
746    if (ObjCCompatibleAliasDecl *Alias
747                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
748      Class = Alias->getClassInterface();
749  }
750
751  if (Class) {
752    DiagnoseUseOfDecl(Class, NameLoc);
753
754    if (NextToken.is(tok::period)) {
755      // Interface. <something> is parsed as a property reference expression.
756      // Just return "unknown" as a fall-through for now.
757      Result.suppressDiagnostics();
758      return NameClassification::Unknown();
759    }
760
761    QualType T = Context.getObjCInterfaceType(Class);
762    return ParsedType::make(T);
763  }
764
765  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
766    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
767
768  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
769  return BuildDeclarationNameExpr(SS, Result, ADL);
770}
771
772// Determines the context to return to after temporarily entering a
773// context.  This depends in an unnecessarily complicated way on the
774// exact ordering of callbacks from the parser.
775DeclContext *Sema::getContainingDC(DeclContext *DC) {
776
777  // Functions defined inline within classes aren't parsed until we've
778  // finished parsing the top-level class, so the top-level class is
779  // the context we'll need to return to.
780  if (isa<FunctionDecl>(DC)) {
781    DC = DC->getLexicalParent();
782
783    // A function not defined within a class will always return to its
784    // lexical context.
785    if (!isa<CXXRecordDecl>(DC))
786      return DC;
787
788    // A C++ inline method/friend is parsed *after* the topmost class
789    // it was declared in is fully parsed ("complete");  the topmost
790    // class is the context we need to return to.
791    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
792      DC = RD;
793
794    // Return the declaration context of the topmost class the inline method is
795    // declared in.
796    return DC;
797  }
798
799  return DC->getLexicalParent();
800}
801
802void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
803  assert(getContainingDC(DC) == CurContext &&
804      "The next DeclContext should be lexically contained in the current one.");
805  CurContext = DC;
806  S->setEntity(DC);
807}
808
809void Sema::PopDeclContext() {
810  assert(CurContext && "DeclContext imbalance!");
811
812  CurContext = getContainingDC(CurContext);
813  assert(CurContext && "Popped translation unit!");
814}
815
816/// EnterDeclaratorContext - Used when we must lookup names in the context
817/// of a declarator's nested name specifier.
818///
819void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
820  // C++0x [basic.lookup.unqual]p13:
821  //   A name used in the definition of a static data member of class
822  //   X (after the qualified-id of the static member) is looked up as
823  //   if the name was used in a member function of X.
824  // C++0x [basic.lookup.unqual]p14:
825  //   If a variable member of a namespace is defined outside of the
826  //   scope of its namespace then any name used in the definition of
827  //   the variable member (after the declarator-id) is looked up as
828  //   if the definition of the variable member occurred in its
829  //   namespace.
830  // Both of these imply that we should push a scope whose context
831  // is the semantic context of the declaration.  We can't use
832  // PushDeclContext here because that context is not necessarily
833  // lexically contained in the current context.  Fortunately,
834  // the containing scope should have the appropriate information.
835
836  assert(!S->getEntity() && "scope already has entity");
837
838#ifndef NDEBUG
839  Scope *Ancestor = S->getParent();
840  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
841  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
842#endif
843
844  CurContext = DC;
845  S->setEntity(DC);
846}
847
848void Sema::ExitDeclaratorContext(Scope *S) {
849  assert(S->getEntity() == CurContext && "Context imbalance!");
850
851  // Switch back to the lexical context.  The safety of this is
852  // enforced by an assert in EnterDeclaratorContext.
853  Scope *Ancestor = S->getParent();
854  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
855  CurContext = (DeclContext*) Ancestor->getEntity();
856
857  // We don't need to do anything with the scope, which is going to
858  // disappear.
859}
860
861
862void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
863  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
864  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
865    // We assume that the caller has already called
866    // ActOnReenterTemplateScope
867    FD = TFD->getTemplatedDecl();
868  }
869  if (!FD)
870    return;
871
872  PushDeclContext(S, FD);
873  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
874    ParmVarDecl *Param = FD->getParamDecl(P);
875    // If the parameter has an identifier, then add it to the scope
876    if (Param->getIdentifier()) {
877      S->AddDecl(Param);
878      IdResolver.AddDecl(Param);
879    }
880  }
881}
882
883
884/// \brief Determine whether we allow overloading of the function
885/// PrevDecl with another declaration.
886///
887/// This routine determines whether overloading is possible, not
888/// whether some new function is actually an overload. It will return
889/// true in C++ (where we can always provide overloads) or, as an
890/// extension, in C when the previous function is already an
891/// overloaded function declaration or has the "overloadable"
892/// attribute.
893static bool AllowOverloadingOfFunction(LookupResult &Previous,
894                                       ASTContext &Context) {
895  if (Context.getLangOptions().CPlusPlus)
896    return true;
897
898  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
899    return true;
900
901  return (Previous.getResultKind() == LookupResult::Found
902          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
903}
904
905/// Add this decl to the scope shadowed decl chains.
906void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
907  // Move up the scope chain until we find the nearest enclosing
908  // non-transparent context. The declaration will be introduced into this
909  // scope.
910  while (S->getEntity() &&
911         ((DeclContext *)S->getEntity())->isTransparentContext())
912    S = S->getParent();
913
914  // Add scoped declarations into their context, so that they can be
915  // found later. Declarations without a context won't be inserted
916  // into any context.
917  if (AddToContext)
918    CurContext->addDecl(D);
919
920  // Out-of-line definitions shouldn't be pushed into scope in C++.
921  // Out-of-line variable and function definitions shouldn't even in C.
922  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
923      D->isOutOfLine() &&
924      !D->getDeclContext()->getRedeclContext()->Equals(
925        D->getLexicalDeclContext()->getRedeclContext()))
926    return;
927
928  // Template instantiations should also not be pushed into scope.
929  if (isa<FunctionDecl>(D) &&
930      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
931    return;
932
933  // If this replaces anything in the current scope,
934  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
935                               IEnd = IdResolver.end();
936  for (; I != IEnd; ++I) {
937    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
938      S->RemoveDecl(*I);
939      IdResolver.RemoveDecl(*I);
940
941      // Should only need to replace one decl.
942      break;
943    }
944  }
945
946  S->AddDecl(D);
947
948  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
949    // Implicitly-generated labels may end up getting generated in an order that
950    // isn't strictly lexical, which breaks name lookup. Be careful to insert
951    // the label at the appropriate place in the identifier chain.
952    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
953      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
954      if (IDC == CurContext) {
955        if (!S->isDeclScope(*I))
956          continue;
957      } else if (IDC->Encloses(CurContext))
958        break;
959    }
960
961    IdResolver.InsertDeclAfter(I, D);
962  } else {
963    IdResolver.AddDecl(D);
964  }
965}
966
967void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
968  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
969    TUScope->AddDecl(D);
970}
971
972bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
973                         bool ExplicitInstantiationOrSpecialization) {
974  return IdResolver.isDeclInScope(D, Ctx, Context, S,
975                                  ExplicitInstantiationOrSpecialization);
976}
977
978Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
979  DeclContext *TargetDC = DC->getPrimaryContext();
980  do {
981    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
982      if (ScopeDC->getPrimaryContext() == TargetDC)
983        return S;
984  } while ((S = S->getParent()));
985
986  return 0;
987}
988
989static bool isOutOfScopePreviousDeclaration(NamedDecl *,
990                                            DeclContext*,
991                                            ASTContext&);
992
993/// Filters out lookup results that don't fall within the given scope
994/// as determined by isDeclInScope.
995void Sema::FilterLookupForScope(LookupResult &R,
996                                DeclContext *Ctx, Scope *S,
997                                bool ConsiderLinkage,
998                                bool ExplicitInstantiationOrSpecialization) {
999  LookupResult::Filter F = R.makeFilter();
1000  while (F.hasNext()) {
1001    NamedDecl *D = F.next();
1002
1003    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1004      continue;
1005
1006    if (ConsiderLinkage &&
1007        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1008      continue;
1009
1010    F.erase();
1011  }
1012
1013  F.done();
1014}
1015
1016static bool isUsingDecl(NamedDecl *D) {
1017  return isa<UsingShadowDecl>(D) ||
1018         isa<UnresolvedUsingTypenameDecl>(D) ||
1019         isa<UnresolvedUsingValueDecl>(D);
1020}
1021
1022/// Removes using shadow declarations from the lookup results.
1023static void RemoveUsingDecls(LookupResult &R) {
1024  LookupResult::Filter F = R.makeFilter();
1025  while (F.hasNext())
1026    if (isUsingDecl(F.next()))
1027      F.erase();
1028
1029  F.done();
1030}
1031
1032/// \brief Check for this common pattern:
1033/// @code
1034/// class S {
1035///   S(const S&); // DO NOT IMPLEMENT
1036///   void operator=(const S&); // DO NOT IMPLEMENT
1037/// };
1038/// @endcode
1039static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1040  // FIXME: Should check for private access too but access is set after we get
1041  // the decl here.
1042  if (D->doesThisDeclarationHaveABody())
1043    return false;
1044
1045  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1046    return CD->isCopyConstructor();
1047  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1048    return Method->isCopyAssignmentOperator();
1049  return false;
1050}
1051
1052bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1053  assert(D);
1054
1055  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1056    return false;
1057
1058  // Ignore class templates.
1059  if (D->getDeclContext()->isDependentContext() ||
1060      D->getLexicalDeclContext()->isDependentContext())
1061    return false;
1062
1063  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1064    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1065      return false;
1066
1067    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1068      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1069        return false;
1070    } else {
1071      // 'static inline' functions are used in headers; don't warn.
1072      if (FD->getStorageClass() == SC_Static &&
1073          FD->isInlineSpecified())
1074        return false;
1075    }
1076
1077    if (FD->doesThisDeclarationHaveABody() &&
1078        Context.DeclMustBeEmitted(FD))
1079      return false;
1080  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1081    if (!VD->isFileVarDecl() ||
1082        VD->getType().isConstant(Context) ||
1083        Context.DeclMustBeEmitted(VD))
1084      return false;
1085
1086    if (VD->isStaticDataMember() &&
1087        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1088      return false;
1089
1090  } else {
1091    return false;
1092  }
1093
1094  // Only warn for unused decls internal to the translation unit.
1095  if (D->getLinkage() == ExternalLinkage)
1096    return false;
1097
1098  return true;
1099}
1100
1101void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1102  if (!D)
1103    return;
1104
1105  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1106    const FunctionDecl *First = FD->getFirstDeclaration();
1107    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1108      return; // First should already be in the vector.
1109  }
1110
1111  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1112    const VarDecl *First = VD->getFirstDeclaration();
1113    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1114      return; // First should already be in the vector.
1115  }
1116
1117   if (ShouldWarnIfUnusedFileScopedDecl(D))
1118     UnusedFileScopedDecls.push_back(D);
1119 }
1120
1121static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1122  if (D->isInvalidDecl())
1123    return false;
1124
1125  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1126    return false;
1127
1128  if (isa<LabelDecl>(D))
1129    return true;
1130
1131  // White-list anything that isn't a local variable.
1132  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1133      !D->getDeclContext()->isFunctionOrMethod())
1134    return false;
1135
1136  // Types of valid local variables should be complete, so this should succeed.
1137  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1138
1139    // White-list anything with an __attribute__((unused)) type.
1140    QualType Ty = VD->getType();
1141
1142    // Only look at the outermost level of typedef.
1143    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1144      if (TT->getDecl()->hasAttr<UnusedAttr>())
1145        return false;
1146    }
1147
1148    // If we failed to complete the type for some reason, or if the type is
1149    // dependent, don't diagnose the variable.
1150    if (Ty->isIncompleteType() || Ty->isDependentType())
1151      return false;
1152
1153    if (const TagType *TT = Ty->getAs<TagType>()) {
1154      const TagDecl *Tag = TT->getDecl();
1155      if (Tag->hasAttr<UnusedAttr>())
1156        return false;
1157
1158      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1159        if (!RD->hasTrivialDestructor())
1160          return false;
1161
1162        if (const Expr *Init = VD->getInit()) {
1163          const CXXConstructExpr *Construct =
1164            dyn_cast<CXXConstructExpr>(Init);
1165          if (Construct && !Construct->isElidable()) {
1166            CXXConstructorDecl *CD = Construct->getConstructor();
1167            if (!CD->isTrivial())
1168              return false;
1169          }
1170        }
1171      }
1172    }
1173
1174    // TODO: __attribute__((unused)) templates?
1175  }
1176
1177  return true;
1178}
1179
1180static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1181                                     FixItHint &Hint) {
1182  if (isa<LabelDecl>(D)) {
1183    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1184                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1185    if (AfterColon.isInvalid())
1186      return;
1187    Hint = FixItHint::CreateRemoval(CharSourceRange::
1188                                    getCharRange(D->getLocStart(), AfterColon));
1189  }
1190  return;
1191}
1192
1193/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1194/// unless they are marked attr(unused).
1195void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1196  FixItHint Hint;
1197  if (!ShouldDiagnoseUnusedDecl(D))
1198    return;
1199
1200  GenerateFixForUnusedDecl(D, Context, Hint);
1201
1202  unsigned DiagID;
1203  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1204    DiagID = diag::warn_unused_exception_param;
1205  else if (isa<LabelDecl>(D))
1206    DiagID = diag::warn_unused_label;
1207  else
1208    DiagID = diag::warn_unused_variable;
1209
1210  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1211}
1212
1213static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1214  // Verify that we have no forward references left.  If so, there was a goto
1215  // or address of a label taken, but no definition of it.  Label fwd
1216  // definitions are indicated with a null substmt.
1217  if (L->getStmt() == 0)
1218    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1219}
1220
1221void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1222  if (S->decl_empty()) return;
1223  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1224         "Scope shouldn't contain decls!");
1225
1226  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1227       I != E; ++I) {
1228    Decl *TmpD = (*I);
1229    assert(TmpD && "This decl didn't get pushed??");
1230
1231    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1232    NamedDecl *D = cast<NamedDecl>(TmpD);
1233
1234    if (!D->getDeclName()) continue;
1235
1236    // Diagnose unused variables in this scope.
1237    if (!S->hasErrorOccurred())
1238      DiagnoseUnusedDecl(D);
1239
1240    // If this was a forward reference to a label, verify it was defined.
1241    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1242      CheckPoppedLabel(LD, *this);
1243
1244    // Remove this name from our lexical scope.
1245    IdResolver.RemoveDecl(D);
1246  }
1247}
1248
1249/// \brief Look for an Objective-C class in the translation unit.
1250///
1251/// \param Id The name of the Objective-C class we're looking for. If
1252/// typo-correction fixes this name, the Id will be updated
1253/// to the fixed name.
1254///
1255/// \param IdLoc The location of the name in the translation unit.
1256///
1257/// \param TypoCorrection If true, this routine will attempt typo correction
1258/// if there is no class with the given name.
1259///
1260/// \returns The declaration of the named Objective-C class, or NULL if the
1261/// class could not be found.
1262ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1263                                              SourceLocation IdLoc,
1264                                              bool DoTypoCorrection) {
1265  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1266  // creation from this context.
1267  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1268
1269  if (!IDecl && DoTypoCorrection) {
1270    // Perform typo correction at the given location, but only if we
1271    // find an Objective-C class name.
1272    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1273    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1274                                       LookupOrdinaryName, TUScope, NULL,
1275                                       &Validator)) {
1276      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1277      Diag(IdLoc, diag::err_undef_interface_suggest)
1278        << Id << IDecl->getDeclName()
1279        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1280      Diag(IDecl->getLocation(), diag::note_previous_decl)
1281        << IDecl->getDeclName();
1282
1283      Id = IDecl->getIdentifier();
1284    }
1285  }
1286  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1287  // This routine must always return a class definition, if any.
1288  if (Def && Def->getDefinition())
1289      Def = Def->getDefinition();
1290  return Def;
1291}
1292
1293/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1294/// from S, where a non-field would be declared. This routine copes
1295/// with the difference between C and C++ scoping rules in structs and
1296/// unions. For example, the following code is well-formed in C but
1297/// ill-formed in C++:
1298/// @code
1299/// struct S6 {
1300///   enum { BAR } e;
1301/// };
1302///
1303/// void test_S6() {
1304///   struct S6 a;
1305///   a.e = BAR;
1306/// }
1307/// @endcode
1308/// For the declaration of BAR, this routine will return a different
1309/// scope. The scope S will be the scope of the unnamed enumeration
1310/// within S6. In C++, this routine will return the scope associated
1311/// with S6, because the enumeration's scope is a transparent
1312/// context but structures can contain non-field names. In C, this
1313/// routine will return the translation unit scope, since the
1314/// enumeration's scope is a transparent context and structures cannot
1315/// contain non-field names.
1316Scope *Sema::getNonFieldDeclScope(Scope *S) {
1317  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1318         (S->getEntity() &&
1319          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1320         (S->isClassScope() && !getLangOptions().CPlusPlus))
1321    S = S->getParent();
1322  return S;
1323}
1324
1325/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1326/// file scope.  lazily create a decl for it. ForRedeclaration is true
1327/// if we're creating this built-in in anticipation of redeclaring the
1328/// built-in.
1329NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1330                                     Scope *S, bool ForRedeclaration,
1331                                     SourceLocation Loc) {
1332  Builtin::ID BID = (Builtin::ID)bid;
1333
1334  ASTContext::GetBuiltinTypeError Error;
1335  QualType R = Context.GetBuiltinType(BID, Error);
1336  switch (Error) {
1337  case ASTContext::GE_None:
1338    // Okay
1339    break;
1340
1341  case ASTContext::GE_Missing_stdio:
1342    if (ForRedeclaration)
1343      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1344        << Context.BuiltinInfo.GetName(BID);
1345    return 0;
1346
1347  case ASTContext::GE_Missing_setjmp:
1348    if (ForRedeclaration)
1349      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1350        << Context.BuiltinInfo.GetName(BID);
1351    return 0;
1352
1353  case ASTContext::GE_Missing_ucontext:
1354    if (ForRedeclaration)
1355      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1356        << Context.BuiltinInfo.GetName(BID);
1357    return 0;
1358  }
1359
1360  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1361    Diag(Loc, diag::ext_implicit_lib_function_decl)
1362      << Context.BuiltinInfo.GetName(BID)
1363      << R;
1364    if (Context.BuiltinInfo.getHeaderName(BID) &&
1365        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1366          != DiagnosticsEngine::Ignored)
1367      Diag(Loc, diag::note_please_include_header)
1368        << Context.BuiltinInfo.getHeaderName(BID)
1369        << Context.BuiltinInfo.GetName(BID);
1370  }
1371
1372  FunctionDecl *New = FunctionDecl::Create(Context,
1373                                           Context.getTranslationUnitDecl(),
1374                                           Loc, Loc, II, R, /*TInfo=*/0,
1375                                           SC_Extern,
1376                                           SC_None, false,
1377                                           /*hasPrototype=*/true);
1378  New->setImplicit();
1379
1380  // Create Decl objects for each parameter, adding them to the
1381  // FunctionDecl.
1382  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1383    SmallVector<ParmVarDecl*, 16> Params;
1384    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1385      ParmVarDecl *parm =
1386        ParmVarDecl::Create(Context, New, SourceLocation(),
1387                            SourceLocation(), 0,
1388                            FT->getArgType(i), /*TInfo=*/0,
1389                            SC_None, SC_None, 0);
1390      parm->setScopeInfo(0, i);
1391      Params.push_back(parm);
1392    }
1393    New->setParams(Params);
1394  }
1395
1396  AddKnownFunctionAttributes(New);
1397
1398  // TUScope is the translation-unit scope to insert this function into.
1399  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1400  // relate Scopes to DeclContexts, and probably eliminate CurContext
1401  // entirely, but we're not there yet.
1402  DeclContext *SavedContext = CurContext;
1403  CurContext = Context.getTranslationUnitDecl();
1404  PushOnScopeChains(New, TUScope);
1405  CurContext = SavedContext;
1406  return New;
1407}
1408
1409bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1410  QualType OldType;
1411  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1412    OldType = OldTypedef->getUnderlyingType();
1413  else
1414    OldType = Context.getTypeDeclType(Old);
1415  QualType NewType = New->getUnderlyingType();
1416
1417  if (NewType->isVariablyModifiedType()) {
1418    // Must not redefine a typedef with a variably-modified type.
1419    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1420    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1421      << Kind << NewType;
1422    if (Old->getLocation().isValid())
1423      Diag(Old->getLocation(), diag::note_previous_definition);
1424    New->setInvalidDecl();
1425    return true;
1426  }
1427
1428  if (OldType != NewType &&
1429      !OldType->isDependentType() &&
1430      !NewType->isDependentType() &&
1431      !Context.hasSameType(OldType, NewType)) {
1432    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1433    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1434      << Kind << NewType << OldType;
1435    if (Old->getLocation().isValid())
1436      Diag(Old->getLocation(), diag::note_previous_definition);
1437    New->setInvalidDecl();
1438    return true;
1439  }
1440  return false;
1441}
1442
1443/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1444/// same name and scope as a previous declaration 'Old'.  Figure out
1445/// how to resolve this situation, merging decls or emitting
1446/// diagnostics as appropriate. If there was an error, set New to be invalid.
1447///
1448void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1449  // If the new decl is known invalid already, don't bother doing any
1450  // merging checks.
1451  if (New->isInvalidDecl()) return;
1452
1453  // Allow multiple definitions for ObjC built-in typedefs.
1454  // FIXME: Verify the underlying types are equivalent!
1455  if (getLangOptions().ObjC1) {
1456    const IdentifierInfo *TypeID = New->getIdentifier();
1457    switch (TypeID->getLength()) {
1458    default: break;
1459    case 2:
1460      if (!TypeID->isStr("id"))
1461        break;
1462      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1463      // Install the built-in type for 'id', ignoring the current definition.
1464      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1465      return;
1466    case 5:
1467      if (!TypeID->isStr("Class"))
1468        break;
1469      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1470      // Install the built-in type for 'Class', ignoring the current definition.
1471      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1472      return;
1473    case 3:
1474      if (!TypeID->isStr("SEL"))
1475        break;
1476      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1477      // Install the built-in type for 'SEL', ignoring the current definition.
1478      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1479      return;
1480    }
1481    // Fall through - the typedef name was not a builtin type.
1482  }
1483
1484  // Verify the old decl was also a type.
1485  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1486  if (!Old) {
1487    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1488      << New->getDeclName();
1489
1490    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1491    if (OldD->getLocation().isValid())
1492      Diag(OldD->getLocation(), diag::note_previous_definition);
1493
1494    return New->setInvalidDecl();
1495  }
1496
1497  // If the old declaration is invalid, just give up here.
1498  if (Old->isInvalidDecl())
1499    return New->setInvalidDecl();
1500
1501  // If the typedef types are not identical, reject them in all languages and
1502  // with any extensions enabled.
1503  if (isIncompatibleTypedef(Old, New))
1504    return;
1505
1506  // The types match.  Link up the redeclaration chain if the old
1507  // declaration was a typedef.
1508  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1509    New->setPreviousDeclaration(Typedef);
1510
1511  if (getLangOptions().MicrosoftExt)
1512    return;
1513
1514  if (getLangOptions().CPlusPlus) {
1515    // C++ [dcl.typedef]p2:
1516    //   In a given non-class scope, a typedef specifier can be used to
1517    //   redefine the name of any type declared in that scope to refer
1518    //   to the type to which it already refers.
1519    if (!isa<CXXRecordDecl>(CurContext))
1520      return;
1521
1522    // C++0x [dcl.typedef]p4:
1523    //   In a given class scope, a typedef specifier can be used to redefine
1524    //   any class-name declared in that scope that is not also a typedef-name
1525    //   to refer to the type to which it already refers.
1526    //
1527    // This wording came in via DR424, which was a correction to the
1528    // wording in DR56, which accidentally banned code like:
1529    //
1530    //   struct S {
1531    //     typedef struct A { } A;
1532    //   };
1533    //
1534    // in the C++03 standard. We implement the C++0x semantics, which
1535    // allow the above but disallow
1536    //
1537    //   struct S {
1538    //     typedef int I;
1539    //     typedef int I;
1540    //   };
1541    //
1542    // since that was the intent of DR56.
1543    if (!isa<TypedefNameDecl>(Old))
1544      return;
1545
1546    Diag(New->getLocation(), diag::err_redefinition)
1547      << New->getDeclName();
1548    Diag(Old->getLocation(), diag::note_previous_definition);
1549    return New->setInvalidDecl();
1550  }
1551
1552  // Modules always permit redefinition of typedefs, as does C11.
1553  if (getLangOptions().Modules || getLangOptions().C11)
1554    return;
1555
1556  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1557  // is normally mapped to an error, but can be controlled with
1558  // -Wtypedef-redefinition.  If either the original or the redefinition is
1559  // in a system header, don't emit this for compatibility with GCC.
1560  if (getDiagnostics().getSuppressSystemWarnings() &&
1561      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1562       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1563    return;
1564
1565  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1566    << New->getDeclName();
1567  Diag(Old->getLocation(), diag::note_previous_definition);
1568  return;
1569}
1570
1571/// DeclhasAttr - returns true if decl Declaration already has the target
1572/// attribute.
1573static bool
1574DeclHasAttr(const Decl *D, const Attr *A) {
1575  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1576  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1577  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1578    if ((*i)->getKind() == A->getKind()) {
1579      if (Ann) {
1580        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1581          return true;
1582        continue;
1583      }
1584      // FIXME: Don't hardcode this check
1585      if (OA && isa<OwnershipAttr>(*i))
1586        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1587      return true;
1588    }
1589
1590  return false;
1591}
1592
1593/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1594void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1595                               bool MergeDeprecation) {
1596  if (!Old->hasAttrs())
1597    return;
1598
1599  bool foundAny = New->hasAttrs();
1600
1601  // Ensure that any moving of objects within the allocated map is done before
1602  // we process them.
1603  if (!foundAny) New->setAttrs(AttrVec());
1604
1605  for (specific_attr_iterator<InheritableAttr>
1606         i = Old->specific_attr_begin<InheritableAttr>(),
1607         e = Old->specific_attr_end<InheritableAttr>();
1608       i != e; ++i) {
1609    // Ignore deprecated/unavailable/availability attributes if requested.
1610    if (!MergeDeprecation &&
1611        (isa<DeprecatedAttr>(*i) ||
1612         isa<UnavailableAttr>(*i) ||
1613         isa<AvailabilityAttr>(*i)))
1614      continue;
1615
1616    if (!DeclHasAttr(New, *i)) {
1617      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(Context));
1618      newAttr->setInherited(true);
1619      New->addAttr(newAttr);
1620      foundAny = true;
1621    }
1622  }
1623
1624  if (!foundAny) New->dropAttrs();
1625}
1626
1627/// mergeParamDeclAttributes - Copy attributes from the old parameter
1628/// to the new one.
1629static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1630                                     const ParmVarDecl *oldDecl,
1631                                     ASTContext &C) {
1632  if (!oldDecl->hasAttrs())
1633    return;
1634
1635  bool foundAny = newDecl->hasAttrs();
1636
1637  // Ensure that any moving of objects within the allocated map is
1638  // done before we process them.
1639  if (!foundAny) newDecl->setAttrs(AttrVec());
1640
1641  for (specific_attr_iterator<InheritableParamAttr>
1642       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1643       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1644    if (!DeclHasAttr(newDecl, *i)) {
1645      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1646      newAttr->setInherited(true);
1647      newDecl->addAttr(newAttr);
1648      foundAny = true;
1649    }
1650  }
1651
1652  if (!foundAny) newDecl->dropAttrs();
1653}
1654
1655namespace {
1656
1657/// Used in MergeFunctionDecl to keep track of function parameters in
1658/// C.
1659struct GNUCompatibleParamWarning {
1660  ParmVarDecl *OldParm;
1661  ParmVarDecl *NewParm;
1662  QualType PromotedType;
1663};
1664
1665}
1666
1667/// getSpecialMember - get the special member enum for a method.
1668Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1669  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1670    if (Ctor->isDefaultConstructor())
1671      return Sema::CXXDefaultConstructor;
1672
1673    if (Ctor->isCopyConstructor())
1674      return Sema::CXXCopyConstructor;
1675
1676    if (Ctor->isMoveConstructor())
1677      return Sema::CXXMoveConstructor;
1678  } else if (isa<CXXDestructorDecl>(MD)) {
1679    return Sema::CXXDestructor;
1680  } else if (MD->isCopyAssignmentOperator()) {
1681    return Sema::CXXCopyAssignment;
1682  } else if (MD->isMoveAssignmentOperator()) {
1683    return Sema::CXXMoveAssignment;
1684  }
1685
1686  return Sema::CXXInvalid;
1687}
1688
1689/// canRedefineFunction - checks if a function can be redefined. Currently,
1690/// only extern inline functions can be redefined, and even then only in
1691/// GNU89 mode.
1692static bool canRedefineFunction(const FunctionDecl *FD,
1693                                const LangOptions& LangOpts) {
1694  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1695          !LangOpts.CPlusPlus &&
1696          FD->isInlineSpecified() &&
1697          FD->getStorageClass() == SC_Extern);
1698}
1699
1700/// MergeFunctionDecl - We just parsed a function 'New' from
1701/// declarator D which has the same name and scope as a previous
1702/// declaration 'Old'.  Figure out how to resolve this situation,
1703/// merging decls or emitting diagnostics as appropriate.
1704///
1705/// In C++, New and Old must be declarations that are not
1706/// overloaded. Use IsOverload to determine whether New and Old are
1707/// overloaded, and to select the Old declaration that New should be
1708/// merged with.
1709///
1710/// Returns true if there was an error, false otherwise.
1711bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1712  // Verify the old decl was also a function.
1713  FunctionDecl *Old = 0;
1714  if (FunctionTemplateDecl *OldFunctionTemplate
1715        = dyn_cast<FunctionTemplateDecl>(OldD))
1716    Old = OldFunctionTemplate->getTemplatedDecl();
1717  else
1718    Old = dyn_cast<FunctionDecl>(OldD);
1719  if (!Old) {
1720    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1721      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1722      Diag(Shadow->getTargetDecl()->getLocation(),
1723           diag::note_using_decl_target);
1724      Diag(Shadow->getUsingDecl()->getLocation(),
1725           diag::note_using_decl) << 0;
1726      return true;
1727    }
1728
1729    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1730      << New->getDeclName();
1731    Diag(OldD->getLocation(), diag::note_previous_definition);
1732    return true;
1733  }
1734
1735  // Determine whether the previous declaration was a definition,
1736  // implicit declaration, or a declaration.
1737  diag::kind PrevDiag;
1738  if (Old->isThisDeclarationADefinition())
1739    PrevDiag = diag::note_previous_definition;
1740  else if (Old->isImplicit())
1741    PrevDiag = diag::note_previous_implicit_declaration;
1742  else
1743    PrevDiag = diag::note_previous_declaration;
1744
1745  QualType OldQType = Context.getCanonicalType(Old->getType());
1746  QualType NewQType = Context.getCanonicalType(New->getType());
1747
1748  // Don't complain about this if we're in GNU89 mode and the old function
1749  // is an extern inline function.
1750  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1751      New->getStorageClass() == SC_Static &&
1752      Old->getStorageClass() != SC_Static &&
1753      !canRedefineFunction(Old, getLangOptions())) {
1754    if (getLangOptions().MicrosoftExt) {
1755      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1756      Diag(Old->getLocation(), PrevDiag);
1757    } else {
1758      Diag(New->getLocation(), diag::err_static_non_static) << New;
1759      Diag(Old->getLocation(), PrevDiag);
1760      return true;
1761    }
1762  }
1763
1764  // If a function is first declared with a calling convention, but is
1765  // later declared or defined without one, the second decl assumes the
1766  // calling convention of the first.
1767  //
1768  // For the new decl, we have to look at the NON-canonical type to tell the
1769  // difference between a function that really doesn't have a calling
1770  // convention and one that is declared cdecl. That's because in
1771  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1772  // because it is the default calling convention.
1773  //
1774  // Note also that we DO NOT return at this point, because we still have
1775  // other tests to run.
1776  const FunctionType *OldType = cast<FunctionType>(OldQType);
1777  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1778  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1779  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1780  bool RequiresAdjustment = false;
1781  if (OldTypeInfo.getCC() != CC_Default &&
1782      NewTypeInfo.getCC() == CC_Default) {
1783    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1784    RequiresAdjustment = true;
1785  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1786                                     NewTypeInfo.getCC())) {
1787    // Calling conventions really aren't compatible, so complain.
1788    Diag(New->getLocation(), diag::err_cconv_change)
1789      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1790      << (OldTypeInfo.getCC() == CC_Default)
1791      << (OldTypeInfo.getCC() == CC_Default ? "" :
1792          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1793    Diag(Old->getLocation(), diag::note_previous_declaration);
1794    return true;
1795  }
1796
1797  // FIXME: diagnose the other way around?
1798  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1799    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1800    RequiresAdjustment = true;
1801  }
1802
1803  // Merge regparm attribute.
1804  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1805      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1806    if (NewTypeInfo.getHasRegParm()) {
1807      Diag(New->getLocation(), diag::err_regparm_mismatch)
1808        << NewType->getRegParmType()
1809        << OldType->getRegParmType();
1810      Diag(Old->getLocation(), diag::note_previous_declaration);
1811      return true;
1812    }
1813
1814    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1815    RequiresAdjustment = true;
1816  }
1817
1818  // Merge ns_returns_retained attribute.
1819  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1820    if (NewTypeInfo.getProducesResult()) {
1821      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1822      Diag(Old->getLocation(), diag::note_previous_declaration);
1823      return true;
1824    }
1825
1826    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1827    RequiresAdjustment = true;
1828  }
1829
1830  if (RequiresAdjustment) {
1831    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1832    New->setType(QualType(NewType, 0));
1833    NewQType = Context.getCanonicalType(New->getType());
1834  }
1835
1836  if (getLangOptions().CPlusPlus) {
1837    // (C++98 13.1p2):
1838    //   Certain function declarations cannot be overloaded:
1839    //     -- Function declarations that differ only in the return type
1840    //        cannot be overloaded.
1841    QualType OldReturnType = OldType->getResultType();
1842    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1843    QualType ResQT;
1844    if (OldReturnType != NewReturnType) {
1845      if (NewReturnType->isObjCObjectPointerType()
1846          && OldReturnType->isObjCObjectPointerType())
1847        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1848      if (ResQT.isNull()) {
1849        if (New->isCXXClassMember() && New->isOutOfLine())
1850          Diag(New->getLocation(),
1851               diag::err_member_def_does_not_match_ret_type) << New;
1852        else
1853          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1854        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1855        return true;
1856      }
1857      else
1858        NewQType = ResQT;
1859    }
1860
1861    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1862    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1863    if (OldMethod && NewMethod) {
1864      // Preserve triviality.
1865      NewMethod->setTrivial(OldMethod->isTrivial());
1866
1867      // MSVC allows explicit template specialization at class scope:
1868      // 2 CXMethodDecls referring to the same function will be injected.
1869      // We don't want a redeclartion error.
1870      bool IsClassScopeExplicitSpecialization =
1871                              OldMethod->isFunctionTemplateSpecialization() &&
1872                              NewMethod->isFunctionTemplateSpecialization();
1873      bool isFriend = NewMethod->getFriendObjectKind();
1874
1875      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1876          !IsClassScopeExplicitSpecialization) {
1877        //    -- Member function declarations with the same name and the
1878        //       same parameter types cannot be overloaded if any of them
1879        //       is a static member function declaration.
1880        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1881          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1882          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1883          return true;
1884        }
1885
1886        // C++ [class.mem]p1:
1887        //   [...] A member shall not be declared twice in the
1888        //   member-specification, except that a nested class or member
1889        //   class template can be declared and then later defined.
1890        unsigned NewDiag;
1891        if (isa<CXXConstructorDecl>(OldMethod))
1892          NewDiag = diag::err_constructor_redeclared;
1893        else if (isa<CXXDestructorDecl>(NewMethod))
1894          NewDiag = diag::err_destructor_redeclared;
1895        else if (isa<CXXConversionDecl>(NewMethod))
1896          NewDiag = diag::err_conv_function_redeclared;
1897        else
1898          NewDiag = diag::err_member_redeclared;
1899
1900        Diag(New->getLocation(), NewDiag);
1901        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1902
1903      // Complain if this is an explicit declaration of a special
1904      // member that was initially declared implicitly.
1905      //
1906      // As an exception, it's okay to befriend such methods in order
1907      // to permit the implicit constructor/destructor/operator calls.
1908      } else if (OldMethod->isImplicit()) {
1909        if (isFriend) {
1910          NewMethod->setImplicit();
1911        } else {
1912          Diag(NewMethod->getLocation(),
1913               diag::err_definition_of_implicitly_declared_member)
1914            << New << getSpecialMember(OldMethod);
1915          return true;
1916        }
1917      } else if (OldMethod->isExplicitlyDefaulted()) {
1918        Diag(NewMethod->getLocation(),
1919             diag::err_definition_of_explicitly_defaulted_member)
1920          << getSpecialMember(OldMethod);
1921        return true;
1922      }
1923    }
1924
1925    // (C++98 8.3.5p3):
1926    //   All declarations for a function shall agree exactly in both the
1927    //   return type and the parameter-type-list.
1928    // We also want to respect all the extended bits except noreturn.
1929
1930    // noreturn should now match unless the old type info didn't have it.
1931    QualType OldQTypeForComparison = OldQType;
1932    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1933      assert(OldQType == QualType(OldType, 0));
1934      const FunctionType *OldTypeForComparison
1935        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1936      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1937      assert(OldQTypeForComparison.isCanonical());
1938    }
1939
1940    if (OldQTypeForComparison == NewQType)
1941      return MergeCompatibleFunctionDecls(New, Old);
1942
1943    // Fall through for conflicting redeclarations and redefinitions.
1944  }
1945
1946  // C: Function types need to be compatible, not identical. This handles
1947  // duplicate function decls like "void f(int); void f(enum X);" properly.
1948  if (!getLangOptions().CPlusPlus &&
1949      Context.typesAreCompatible(OldQType, NewQType)) {
1950    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1951    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1952    const FunctionProtoType *OldProto = 0;
1953    if (isa<FunctionNoProtoType>(NewFuncType) &&
1954        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1955      // The old declaration provided a function prototype, but the
1956      // new declaration does not. Merge in the prototype.
1957      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1958      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1959                                                 OldProto->arg_type_end());
1960      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1961                                         ParamTypes.data(), ParamTypes.size(),
1962                                         OldProto->getExtProtoInfo());
1963      New->setType(NewQType);
1964      New->setHasInheritedPrototype();
1965
1966      // Synthesize a parameter for each argument type.
1967      SmallVector<ParmVarDecl*, 16> Params;
1968      for (FunctionProtoType::arg_type_iterator
1969             ParamType = OldProto->arg_type_begin(),
1970             ParamEnd = OldProto->arg_type_end();
1971           ParamType != ParamEnd; ++ParamType) {
1972        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1973                                                 SourceLocation(),
1974                                                 SourceLocation(), 0,
1975                                                 *ParamType, /*TInfo=*/0,
1976                                                 SC_None, SC_None,
1977                                                 0);
1978        Param->setScopeInfo(0, Params.size());
1979        Param->setImplicit();
1980        Params.push_back(Param);
1981      }
1982
1983      New->setParams(Params);
1984    }
1985
1986    return MergeCompatibleFunctionDecls(New, Old);
1987  }
1988
1989  // GNU C permits a K&R definition to follow a prototype declaration
1990  // if the declared types of the parameters in the K&R definition
1991  // match the types in the prototype declaration, even when the
1992  // promoted types of the parameters from the K&R definition differ
1993  // from the types in the prototype. GCC then keeps the types from
1994  // the prototype.
1995  //
1996  // If a variadic prototype is followed by a non-variadic K&R definition,
1997  // the K&R definition becomes variadic.  This is sort of an edge case, but
1998  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1999  // C99 6.9.1p8.
2000  if (!getLangOptions().CPlusPlus &&
2001      Old->hasPrototype() && !New->hasPrototype() &&
2002      New->getType()->getAs<FunctionProtoType>() &&
2003      Old->getNumParams() == New->getNumParams()) {
2004    SmallVector<QualType, 16> ArgTypes;
2005    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2006    const FunctionProtoType *OldProto
2007      = Old->getType()->getAs<FunctionProtoType>();
2008    const FunctionProtoType *NewProto
2009      = New->getType()->getAs<FunctionProtoType>();
2010
2011    // Determine whether this is the GNU C extension.
2012    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2013                                               NewProto->getResultType());
2014    bool LooseCompatible = !MergedReturn.isNull();
2015    for (unsigned Idx = 0, End = Old->getNumParams();
2016         LooseCompatible && Idx != End; ++Idx) {
2017      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2018      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2019      if (Context.typesAreCompatible(OldParm->getType(),
2020                                     NewProto->getArgType(Idx))) {
2021        ArgTypes.push_back(NewParm->getType());
2022      } else if (Context.typesAreCompatible(OldParm->getType(),
2023                                            NewParm->getType(),
2024                                            /*CompareUnqualified=*/true)) {
2025        GNUCompatibleParamWarning Warn
2026          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2027        Warnings.push_back(Warn);
2028        ArgTypes.push_back(NewParm->getType());
2029      } else
2030        LooseCompatible = false;
2031    }
2032
2033    if (LooseCompatible) {
2034      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2035        Diag(Warnings[Warn].NewParm->getLocation(),
2036             diag::ext_param_promoted_not_compatible_with_prototype)
2037          << Warnings[Warn].PromotedType
2038          << Warnings[Warn].OldParm->getType();
2039        if (Warnings[Warn].OldParm->getLocation().isValid())
2040          Diag(Warnings[Warn].OldParm->getLocation(),
2041               diag::note_previous_declaration);
2042      }
2043
2044      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2045                                           ArgTypes.size(),
2046                                           OldProto->getExtProtoInfo()));
2047      return MergeCompatibleFunctionDecls(New, Old);
2048    }
2049
2050    // Fall through to diagnose conflicting types.
2051  }
2052
2053  // A function that has already been declared has been redeclared or defined
2054  // with a different type- show appropriate diagnostic
2055  if (unsigned BuiltinID = Old->getBuiltinID()) {
2056    // The user has declared a builtin function with an incompatible
2057    // signature.
2058    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2059      // The function the user is redeclaring is a library-defined
2060      // function like 'malloc' or 'printf'. Warn about the
2061      // redeclaration, then pretend that we don't know about this
2062      // library built-in.
2063      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2064      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2065        << Old << Old->getType();
2066      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2067      Old->setInvalidDecl();
2068      return false;
2069    }
2070
2071    PrevDiag = diag::note_previous_builtin_declaration;
2072  }
2073
2074  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2075  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2076  return true;
2077}
2078
2079/// \brief Completes the merge of two function declarations that are
2080/// known to be compatible.
2081///
2082/// This routine handles the merging of attributes and other
2083/// properties of function declarations form the old declaration to
2084/// the new declaration, once we know that New is in fact a
2085/// redeclaration of Old.
2086///
2087/// \returns false
2088bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2089  // Merge the attributes
2090  mergeDeclAttributes(New, Old);
2091
2092  // Merge the storage class.
2093  if (Old->getStorageClass() != SC_Extern &&
2094      Old->getStorageClass() != SC_None)
2095    New->setStorageClass(Old->getStorageClass());
2096
2097  // Merge "pure" flag.
2098  if (Old->isPure())
2099    New->setPure();
2100
2101  // Merge attributes from the parameters.  These can mismatch with K&R
2102  // declarations.
2103  if (New->getNumParams() == Old->getNumParams())
2104    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2105      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2106                               Context);
2107
2108  if (getLangOptions().CPlusPlus)
2109    return MergeCXXFunctionDecl(New, Old);
2110
2111  return false;
2112}
2113
2114
2115void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2116                                ObjCMethodDecl *oldMethod) {
2117  // We don't want to merge unavailable and deprecated attributes
2118  // except from interface to implementation.
2119  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2120
2121  // Merge the attributes.
2122  mergeDeclAttributes(newMethod, oldMethod, mergeDeprecation);
2123
2124  // Merge attributes from the parameters.
2125  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2126  for (ObjCMethodDecl::param_iterator
2127         ni = newMethod->param_begin(), ne = newMethod->param_end();
2128       ni != ne; ++ni, ++oi)
2129    mergeParamDeclAttributes(*ni, *oi, Context);
2130
2131  CheckObjCMethodOverride(newMethod, oldMethod, true);
2132}
2133
2134/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2135/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2136/// emitting diagnostics as appropriate.
2137///
2138/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2139/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2140/// check them before the initializer is attached.
2141///
2142void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2143  if (New->isInvalidDecl() || Old->isInvalidDecl())
2144    return;
2145
2146  QualType MergedT;
2147  if (getLangOptions().CPlusPlus) {
2148    AutoType *AT = New->getType()->getContainedAutoType();
2149    if (AT && !AT->isDeduced()) {
2150      // We don't know what the new type is until the initializer is attached.
2151      return;
2152    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2153      // These could still be something that needs exception specs checked.
2154      return MergeVarDeclExceptionSpecs(New, Old);
2155    }
2156    // C++ [basic.link]p10:
2157    //   [...] the types specified by all declarations referring to a given
2158    //   object or function shall be identical, except that declarations for an
2159    //   array object can specify array types that differ by the presence or
2160    //   absence of a major array bound (8.3.4).
2161    else if (Old->getType()->isIncompleteArrayType() &&
2162             New->getType()->isArrayType()) {
2163      CanQual<ArrayType> OldArray
2164        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2165      CanQual<ArrayType> NewArray
2166        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2167      if (OldArray->getElementType() == NewArray->getElementType())
2168        MergedT = New->getType();
2169    } else if (Old->getType()->isArrayType() &&
2170             New->getType()->isIncompleteArrayType()) {
2171      CanQual<ArrayType> OldArray
2172        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2173      CanQual<ArrayType> NewArray
2174        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2175      if (OldArray->getElementType() == NewArray->getElementType())
2176        MergedT = Old->getType();
2177    } else if (New->getType()->isObjCObjectPointerType()
2178               && Old->getType()->isObjCObjectPointerType()) {
2179        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2180                                                        Old->getType());
2181    }
2182  } else {
2183    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2184  }
2185  if (MergedT.isNull()) {
2186    Diag(New->getLocation(), diag::err_redefinition_different_type)
2187      << New->getDeclName();
2188    Diag(Old->getLocation(), diag::note_previous_definition);
2189    return New->setInvalidDecl();
2190  }
2191  New->setType(MergedT);
2192}
2193
2194/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2195/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2196/// situation, merging decls or emitting diagnostics as appropriate.
2197///
2198/// Tentative definition rules (C99 6.9.2p2) are checked by
2199/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2200/// definitions here, since the initializer hasn't been attached.
2201///
2202void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2203  // If the new decl is already invalid, don't do any other checking.
2204  if (New->isInvalidDecl())
2205    return;
2206
2207  // Verify the old decl was also a variable.
2208  VarDecl *Old = 0;
2209  if (!Previous.isSingleResult() ||
2210      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2211    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2212      << New->getDeclName();
2213    Diag(Previous.getRepresentativeDecl()->getLocation(),
2214         diag::note_previous_definition);
2215    return New->setInvalidDecl();
2216  }
2217
2218  // C++ [class.mem]p1:
2219  //   A member shall not be declared twice in the member-specification [...]
2220  //
2221  // Here, we need only consider static data members.
2222  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2223    Diag(New->getLocation(), diag::err_duplicate_member)
2224      << New->getIdentifier();
2225    Diag(Old->getLocation(), diag::note_previous_declaration);
2226    New->setInvalidDecl();
2227  }
2228
2229  mergeDeclAttributes(New, Old);
2230  // Warn if an already-declared variable is made a weak_import in a subsequent
2231  // declaration
2232  if (New->getAttr<WeakImportAttr>() &&
2233      Old->getStorageClass() == SC_None &&
2234      !Old->getAttr<WeakImportAttr>()) {
2235    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2236    Diag(Old->getLocation(), diag::note_previous_definition);
2237    // Remove weak_import attribute on new declaration.
2238    New->dropAttr<WeakImportAttr>();
2239  }
2240
2241  // Merge the types.
2242  MergeVarDeclTypes(New, Old);
2243  if (New->isInvalidDecl())
2244    return;
2245
2246  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2247  if (New->getStorageClass() == SC_Static &&
2248      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2249    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2250    Diag(Old->getLocation(), diag::note_previous_definition);
2251    return New->setInvalidDecl();
2252  }
2253  // C99 6.2.2p4:
2254  //   For an identifier declared with the storage-class specifier
2255  //   extern in a scope in which a prior declaration of that
2256  //   identifier is visible,23) if the prior declaration specifies
2257  //   internal or external linkage, the linkage of the identifier at
2258  //   the later declaration is the same as the linkage specified at
2259  //   the prior declaration. If no prior declaration is visible, or
2260  //   if the prior declaration specifies no linkage, then the
2261  //   identifier has external linkage.
2262  if (New->hasExternalStorage() && Old->hasLinkage())
2263    /* Okay */;
2264  else if (New->getStorageClass() != SC_Static &&
2265           Old->getStorageClass() == SC_Static) {
2266    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2267    Diag(Old->getLocation(), diag::note_previous_definition);
2268    return New->setInvalidDecl();
2269  }
2270
2271  // Check if extern is followed by non-extern and vice-versa.
2272  if (New->hasExternalStorage() &&
2273      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2274    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2275    Diag(Old->getLocation(), diag::note_previous_definition);
2276    return New->setInvalidDecl();
2277  }
2278  if (Old->hasExternalStorage() &&
2279      !New->hasLinkage() && New->isLocalVarDecl()) {
2280    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2281    Diag(Old->getLocation(), diag::note_previous_definition);
2282    return New->setInvalidDecl();
2283  }
2284
2285  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2286
2287  // FIXME: The test for external storage here seems wrong? We still
2288  // need to check for mismatches.
2289  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2290      // Don't complain about out-of-line definitions of static members.
2291      !(Old->getLexicalDeclContext()->isRecord() &&
2292        !New->getLexicalDeclContext()->isRecord())) {
2293    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2294    Diag(Old->getLocation(), diag::note_previous_definition);
2295    return New->setInvalidDecl();
2296  }
2297
2298  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2299    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2300    Diag(Old->getLocation(), diag::note_previous_definition);
2301  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2302    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2303    Diag(Old->getLocation(), diag::note_previous_definition);
2304  }
2305
2306  // C++ doesn't have tentative definitions, so go right ahead and check here.
2307  const VarDecl *Def;
2308  if (getLangOptions().CPlusPlus &&
2309      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2310      (Def = Old->getDefinition())) {
2311    Diag(New->getLocation(), diag::err_redefinition)
2312      << New->getDeclName();
2313    Diag(Def->getLocation(), diag::note_previous_definition);
2314    New->setInvalidDecl();
2315    return;
2316  }
2317  // c99 6.2.2 P4.
2318  // For an identifier declared with the storage-class specifier extern in a
2319  // scope in which a prior declaration of that identifier is visible, if
2320  // the prior declaration specifies internal or external linkage, the linkage
2321  // of the identifier at the later declaration is the same as the linkage
2322  // specified at the prior declaration.
2323  // FIXME. revisit this code.
2324  if (New->hasExternalStorage() &&
2325      Old->getLinkage() == InternalLinkage &&
2326      New->getDeclContext() == Old->getDeclContext())
2327    New->setStorageClass(Old->getStorageClass());
2328
2329  // Keep a chain of previous declarations.
2330  New->setPreviousDeclaration(Old);
2331
2332  // Inherit access appropriately.
2333  New->setAccess(Old->getAccess());
2334}
2335
2336/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2337/// no declarator (e.g. "struct foo;") is parsed.
2338Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2339                                       DeclSpec &DS) {
2340  return ParsedFreeStandingDeclSpec(S, AS, DS,
2341                                    MultiTemplateParamsArg(*this, 0, 0));
2342}
2343
2344/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2345/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2346/// parameters to cope with template friend declarations.
2347Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2348                                       DeclSpec &DS,
2349                                       MultiTemplateParamsArg TemplateParams) {
2350  Decl *TagD = 0;
2351  TagDecl *Tag = 0;
2352  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2353      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2354      DS.getTypeSpecType() == DeclSpec::TST_union ||
2355      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2356    TagD = DS.getRepAsDecl();
2357
2358    if (!TagD) // We probably had an error
2359      return 0;
2360
2361    // Note that the above type specs guarantee that the
2362    // type rep is a Decl, whereas in many of the others
2363    // it's a Type.
2364    if (isa<TagDecl>(TagD))
2365      Tag = cast<TagDecl>(TagD);
2366    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2367      Tag = CTD->getTemplatedDecl();
2368  }
2369
2370  if (Tag)
2371    Tag->setFreeStanding();
2372
2373  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2374    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2375    // or incomplete types shall not be restrict-qualified."
2376    if (TypeQuals & DeclSpec::TQ_restrict)
2377      Diag(DS.getRestrictSpecLoc(),
2378           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2379           << DS.getSourceRange();
2380  }
2381
2382  if (DS.isConstexprSpecified()) {
2383    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2384    // and definitions of functions and variables.
2385    if (Tag)
2386      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2387        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2388            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2389            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2390    else
2391      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2392    // Don't emit warnings after this error.
2393    return TagD;
2394  }
2395
2396  if (DS.isFriendSpecified()) {
2397    // If we're dealing with a decl but not a TagDecl, assume that
2398    // whatever routines created it handled the friendship aspect.
2399    if (TagD && !Tag)
2400      return 0;
2401    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2402  }
2403
2404  // Track whether we warned about the fact that there aren't any
2405  // declarators.
2406  bool emittedWarning = false;
2407
2408  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2409    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2410        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2411      if (getLangOptions().CPlusPlus ||
2412          Record->getDeclContext()->isRecord())
2413        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2414
2415      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2416        << DS.getSourceRange();
2417      emittedWarning = true;
2418    }
2419  }
2420
2421  // Check for Microsoft C extension: anonymous struct.
2422  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2423      CurContext->isRecord() &&
2424      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2425    // Handle 2 kinds of anonymous struct:
2426    //   struct STRUCT;
2427    // and
2428    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2429    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2430    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2431        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2432         DS.getRepAsType().get()->isStructureType())) {
2433      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2434        << DS.getSourceRange();
2435      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2436    }
2437  }
2438
2439  if (getLangOptions().CPlusPlus &&
2440      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2441    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2442      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2443          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2444        Diag(Enum->getLocation(), diag::ext_no_declarators)
2445          << DS.getSourceRange();
2446        emittedWarning = true;
2447      }
2448
2449  // Skip all the checks below if we have a type error.
2450  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2451
2452  if (!DS.isMissingDeclaratorOk()) {
2453    // Warn about typedefs of enums without names, since this is an
2454    // extension in both Microsoft and GNU.
2455    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2456        Tag && isa<EnumDecl>(Tag)) {
2457      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2458        << DS.getSourceRange();
2459      return Tag;
2460    }
2461
2462    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2463      << DS.getSourceRange();
2464    emittedWarning = true;
2465  }
2466
2467  // We're going to complain about a bunch of spurious specifiers;
2468  // only do this if we're declaring a tag, because otherwise we
2469  // should be getting diag::ext_no_declarators.
2470  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2471    return TagD;
2472
2473  // Note that a linkage-specification sets a storage class, but
2474  // 'extern "C" struct foo;' is actually valid and not theoretically
2475  // useless.
2476  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2477    if (!DS.isExternInLinkageSpec())
2478      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2479        << DeclSpec::getSpecifierName(scs);
2480
2481  if (DS.isThreadSpecified())
2482    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2483  if (DS.getTypeQualifiers()) {
2484    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2485      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2486    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2487      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2488    // Restrict is covered above.
2489  }
2490  if (DS.isInlineSpecified())
2491    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2492  if (DS.isVirtualSpecified())
2493    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2494  if (DS.isExplicitSpecified())
2495    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2496
2497  if (DS.isModulePrivateSpecified() &&
2498      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2499    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2500      << Tag->getTagKind()
2501      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2502
2503  // Warn about ignored type attributes, for example:
2504  // __attribute__((aligned)) struct A;
2505  // Attributes should be placed after tag to apply to type declaration.
2506  if (!DS.getAttributes().empty()) {
2507    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2508    if (TypeSpecType == DeclSpec::TST_class ||
2509        TypeSpecType == DeclSpec::TST_struct ||
2510        TypeSpecType == DeclSpec::TST_union ||
2511        TypeSpecType == DeclSpec::TST_enum) {
2512      AttributeList* attrs = DS.getAttributes().getList();
2513      while (attrs) {
2514        Diag(attrs->getScopeLoc(),
2515             diag::warn_declspec_attribute_ignored)
2516        << attrs->getName()
2517        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2518            TypeSpecType == DeclSpec::TST_struct ? 1 :
2519            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2520        attrs = attrs->getNext();
2521      }
2522    }
2523  }
2524
2525  return TagD;
2526}
2527
2528/// We are trying to inject an anonymous member into the given scope;
2529/// check if there's an existing declaration that can't be overloaded.
2530///
2531/// \return true if this is a forbidden redeclaration
2532static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2533                                         Scope *S,
2534                                         DeclContext *Owner,
2535                                         DeclarationName Name,
2536                                         SourceLocation NameLoc,
2537                                         unsigned diagnostic) {
2538  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2539                 Sema::ForRedeclaration);
2540  if (!SemaRef.LookupName(R, S)) return false;
2541
2542  if (R.getAsSingle<TagDecl>())
2543    return false;
2544
2545  // Pick a representative declaration.
2546  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2547  assert(PrevDecl && "Expected a non-null Decl");
2548
2549  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2550    return false;
2551
2552  SemaRef.Diag(NameLoc, diagnostic) << Name;
2553  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2554
2555  return true;
2556}
2557
2558/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2559/// anonymous struct or union AnonRecord into the owning context Owner
2560/// and scope S. This routine will be invoked just after we realize
2561/// that an unnamed union or struct is actually an anonymous union or
2562/// struct, e.g.,
2563///
2564/// @code
2565/// union {
2566///   int i;
2567///   float f;
2568/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2569///    // f into the surrounding scope.x
2570/// @endcode
2571///
2572/// This routine is recursive, injecting the names of nested anonymous
2573/// structs/unions into the owning context and scope as well.
2574static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2575                                                DeclContext *Owner,
2576                                                RecordDecl *AnonRecord,
2577                                                AccessSpecifier AS,
2578                              SmallVector<NamedDecl*, 2> &Chaining,
2579                                                      bool MSAnonStruct) {
2580  unsigned diagKind
2581    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2582                            : diag::err_anonymous_struct_member_redecl;
2583
2584  bool Invalid = false;
2585
2586  // Look every FieldDecl and IndirectFieldDecl with a name.
2587  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2588                               DEnd = AnonRecord->decls_end();
2589       D != DEnd; ++D) {
2590    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2591        cast<NamedDecl>(*D)->getDeclName()) {
2592      ValueDecl *VD = cast<ValueDecl>(*D);
2593      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2594                                       VD->getLocation(), diagKind)) {
2595        // C++ [class.union]p2:
2596        //   The names of the members of an anonymous union shall be
2597        //   distinct from the names of any other entity in the
2598        //   scope in which the anonymous union is declared.
2599        Invalid = true;
2600      } else {
2601        // C++ [class.union]p2:
2602        //   For the purpose of name lookup, after the anonymous union
2603        //   definition, the members of the anonymous union are
2604        //   considered to have been defined in the scope in which the
2605        //   anonymous union is declared.
2606        unsigned OldChainingSize = Chaining.size();
2607        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2608          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2609               PE = IF->chain_end(); PI != PE; ++PI)
2610            Chaining.push_back(*PI);
2611        else
2612          Chaining.push_back(VD);
2613
2614        assert(Chaining.size() >= 2);
2615        NamedDecl **NamedChain =
2616          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2617        for (unsigned i = 0; i < Chaining.size(); i++)
2618          NamedChain[i] = Chaining[i];
2619
2620        IndirectFieldDecl* IndirectField =
2621          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2622                                    VD->getIdentifier(), VD->getType(),
2623                                    NamedChain, Chaining.size());
2624
2625        IndirectField->setAccess(AS);
2626        IndirectField->setImplicit();
2627        SemaRef.PushOnScopeChains(IndirectField, S);
2628
2629        // That includes picking up the appropriate access specifier.
2630        if (AS != AS_none) IndirectField->setAccess(AS);
2631
2632        Chaining.resize(OldChainingSize);
2633      }
2634    }
2635  }
2636
2637  return Invalid;
2638}
2639
2640/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2641/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2642/// illegal input values are mapped to SC_None.
2643static StorageClass
2644StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2645  switch (StorageClassSpec) {
2646  case DeclSpec::SCS_unspecified:    return SC_None;
2647  case DeclSpec::SCS_extern:         return SC_Extern;
2648  case DeclSpec::SCS_static:         return SC_Static;
2649  case DeclSpec::SCS_auto:           return SC_Auto;
2650  case DeclSpec::SCS_register:       return SC_Register;
2651  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2652    // Illegal SCSs map to None: error reporting is up to the caller.
2653  case DeclSpec::SCS_mutable:        // Fall through.
2654  case DeclSpec::SCS_typedef:        return SC_None;
2655  }
2656  llvm_unreachable("unknown storage class specifier");
2657}
2658
2659/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2660/// a StorageClass. Any error reporting is up to the caller:
2661/// illegal input values are mapped to SC_None.
2662static StorageClass
2663StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2664  switch (StorageClassSpec) {
2665  case DeclSpec::SCS_unspecified:    return SC_None;
2666  case DeclSpec::SCS_extern:         return SC_Extern;
2667  case DeclSpec::SCS_static:         return SC_Static;
2668  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2669    // Illegal SCSs map to None: error reporting is up to the caller.
2670  case DeclSpec::SCS_auto:           // Fall through.
2671  case DeclSpec::SCS_mutable:        // Fall through.
2672  case DeclSpec::SCS_register:       // Fall through.
2673  case DeclSpec::SCS_typedef:        return SC_None;
2674  }
2675  llvm_unreachable("unknown storage class specifier");
2676}
2677
2678/// BuildAnonymousStructOrUnion - Handle the declaration of an
2679/// anonymous structure or union. Anonymous unions are a C++ feature
2680/// (C++ [class.union]) and a GNU C extension; anonymous structures
2681/// are a GNU C and GNU C++ extension.
2682Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2683                                             AccessSpecifier AS,
2684                                             RecordDecl *Record) {
2685  DeclContext *Owner = Record->getDeclContext();
2686
2687  // Diagnose whether this anonymous struct/union is an extension.
2688  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2689    Diag(Record->getLocation(), diag::ext_anonymous_union);
2690  else if (!Record->isUnion())
2691    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2692
2693  // C and C++ require different kinds of checks for anonymous
2694  // structs/unions.
2695  bool Invalid = false;
2696  if (getLangOptions().CPlusPlus) {
2697    const char* PrevSpec = 0;
2698    unsigned DiagID;
2699    if (Record->isUnion()) {
2700      // C++ [class.union]p6:
2701      //   Anonymous unions declared in a named namespace or in the
2702      //   global namespace shall be declared static.
2703      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2704          (isa<TranslationUnitDecl>(Owner) ||
2705           (isa<NamespaceDecl>(Owner) &&
2706            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2707        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2708          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2709
2710        // Recover by adding 'static'.
2711        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2712                               PrevSpec, DiagID);
2713      }
2714      // C++ [class.union]p6:
2715      //   A storage class is not allowed in a declaration of an
2716      //   anonymous union in a class scope.
2717      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2718               isa<RecordDecl>(Owner)) {
2719        Diag(DS.getStorageClassSpecLoc(),
2720             diag::err_anonymous_union_with_storage_spec)
2721          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2722
2723        // Recover by removing the storage specifier.
2724        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2725                               SourceLocation(),
2726                               PrevSpec, DiagID);
2727      }
2728    }
2729
2730    // Ignore const/volatile/restrict qualifiers.
2731    if (DS.getTypeQualifiers()) {
2732      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2733        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2734          << Record->isUnion() << 0
2735          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2736      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2737        Diag(DS.getVolatileSpecLoc(),
2738             diag::ext_anonymous_struct_union_qualified)
2739          << Record->isUnion() << 1
2740          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2741      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2742        Diag(DS.getRestrictSpecLoc(),
2743             diag::ext_anonymous_struct_union_qualified)
2744          << Record->isUnion() << 2
2745          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2746
2747      DS.ClearTypeQualifiers();
2748    }
2749
2750    // C++ [class.union]p2:
2751    //   The member-specification of an anonymous union shall only
2752    //   define non-static data members. [Note: nested types and
2753    //   functions cannot be declared within an anonymous union. ]
2754    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2755                                 MemEnd = Record->decls_end();
2756         Mem != MemEnd; ++Mem) {
2757      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2758        // C++ [class.union]p3:
2759        //   An anonymous union shall not have private or protected
2760        //   members (clause 11).
2761        assert(FD->getAccess() != AS_none);
2762        if (FD->getAccess() != AS_public) {
2763          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2764            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2765          Invalid = true;
2766        }
2767
2768        // C++ [class.union]p1
2769        //   An object of a class with a non-trivial constructor, a non-trivial
2770        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2771        //   assignment operator cannot be a member of a union, nor can an
2772        //   array of such objects.
2773        if (CheckNontrivialField(FD))
2774          Invalid = true;
2775      } else if ((*Mem)->isImplicit()) {
2776        // Any implicit members are fine.
2777      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2778        // This is a type that showed up in an
2779        // elaborated-type-specifier inside the anonymous struct or
2780        // union, but which actually declares a type outside of the
2781        // anonymous struct or union. It's okay.
2782      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2783        if (!MemRecord->isAnonymousStructOrUnion() &&
2784            MemRecord->getDeclName()) {
2785          // Visual C++ allows type definition in anonymous struct or union.
2786          if (getLangOptions().MicrosoftExt)
2787            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2788              << (int)Record->isUnion();
2789          else {
2790            // This is a nested type declaration.
2791            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2792              << (int)Record->isUnion();
2793            Invalid = true;
2794          }
2795        }
2796      } else if (isa<AccessSpecDecl>(*Mem)) {
2797        // Any access specifier is fine.
2798      } else {
2799        // We have something that isn't a non-static data
2800        // member. Complain about it.
2801        unsigned DK = diag::err_anonymous_record_bad_member;
2802        if (isa<TypeDecl>(*Mem))
2803          DK = diag::err_anonymous_record_with_type;
2804        else if (isa<FunctionDecl>(*Mem))
2805          DK = diag::err_anonymous_record_with_function;
2806        else if (isa<VarDecl>(*Mem))
2807          DK = diag::err_anonymous_record_with_static;
2808
2809        // Visual C++ allows type definition in anonymous struct or union.
2810        if (getLangOptions().MicrosoftExt &&
2811            DK == diag::err_anonymous_record_with_type)
2812          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2813            << (int)Record->isUnion();
2814        else {
2815          Diag((*Mem)->getLocation(), DK)
2816              << (int)Record->isUnion();
2817          Invalid = true;
2818        }
2819      }
2820    }
2821  }
2822
2823  if (!Record->isUnion() && !Owner->isRecord()) {
2824    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2825      << (int)getLangOptions().CPlusPlus;
2826    Invalid = true;
2827  }
2828
2829  // Mock up a declarator.
2830  Declarator Dc(DS, Declarator::MemberContext);
2831  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2832  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2833
2834  // Create a declaration for this anonymous struct/union.
2835  NamedDecl *Anon = 0;
2836  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2837    Anon = FieldDecl::Create(Context, OwningClass,
2838                             DS.getSourceRange().getBegin(),
2839                             Record->getLocation(),
2840                             /*IdentifierInfo=*/0,
2841                             Context.getTypeDeclType(Record),
2842                             TInfo,
2843                             /*BitWidth=*/0, /*Mutable=*/false,
2844                             /*HasInit=*/false);
2845    Anon->setAccess(AS);
2846    if (getLangOptions().CPlusPlus)
2847      FieldCollector->Add(cast<FieldDecl>(Anon));
2848  } else {
2849    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2850    assert(SCSpec != DeclSpec::SCS_typedef &&
2851           "Parser allowed 'typedef' as storage class VarDecl.");
2852    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2853    if (SCSpec == DeclSpec::SCS_mutable) {
2854      // mutable can only appear on non-static class members, so it's always
2855      // an error here
2856      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2857      Invalid = true;
2858      SC = SC_None;
2859    }
2860    SCSpec = DS.getStorageClassSpecAsWritten();
2861    VarDecl::StorageClass SCAsWritten
2862      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2863
2864    Anon = VarDecl::Create(Context, Owner,
2865                           DS.getSourceRange().getBegin(),
2866                           Record->getLocation(), /*IdentifierInfo=*/0,
2867                           Context.getTypeDeclType(Record),
2868                           TInfo, SC, SCAsWritten);
2869
2870    // Default-initialize the implicit variable. This initialization will be
2871    // trivial in almost all cases, except if a union member has an in-class
2872    // initializer:
2873    //   union { int n = 0; };
2874    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2875  }
2876  Anon->setImplicit();
2877
2878  // Add the anonymous struct/union object to the current
2879  // context. We'll be referencing this object when we refer to one of
2880  // its members.
2881  Owner->addDecl(Anon);
2882
2883  // Inject the members of the anonymous struct/union into the owning
2884  // context and into the identifier resolver chain for name lookup
2885  // purposes.
2886  SmallVector<NamedDecl*, 2> Chain;
2887  Chain.push_back(Anon);
2888
2889  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2890                                          Chain, false))
2891    Invalid = true;
2892
2893  // Mark this as an anonymous struct/union type. Note that we do not
2894  // do this until after we have already checked and injected the
2895  // members of this anonymous struct/union type, because otherwise
2896  // the members could be injected twice: once by DeclContext when it
2897  // builds its lookup table, and once by
2898  // InjectAnonymousStructOrUnionMembers.
2899  Record->setAnonymousStructOrUnion(true);
2900
2901  if (Invalid)
2902    Anon->setInvalidDecl();
2903
2904  return Anon;
2905}
2906
2907/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2908/// Microsoft C anonymous structure.
2909/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2910/// Example:
2911///
2912/// struct A { int a; };
2913/// struct B { struct A; int b; };
2914///
2915/// void foo() {
2916///   B var;
2917///   var.a = 3;
2918/// }
2919///
2920Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2921                                           RecordDecl *Record) {
2922
2923  // If there is no Record, get the record via the typedef.
2924  if (!Record)
2925    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2926
2927  // Mock up a declarator.
2928  Declarator Dc(DS, Declarator::TypeNameContext);
2929  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2930  assert(TInfo && "couldn't build declarator info for anonymous struct");
2931
2932  // Create a declaration for this anonymous struct.
2933  NamedDecl* Anon = FieldDecl::Create(Context,
2934                             cast<RecordDecl>(CurContext),
2935                             DS.getSourceRange().getBegin(),
2936                             DS.getSourceRange().getBegin(),
2937                             /*IdentifierInfo=*/0,
2938                             Context.getTypeDeclType(Record),
2939                             TInfo,
2940                             /*BitWidth=*/0, /*Mutable=*/false,
2941                             /*HasInit=*/false);
2942  Anon->setImplicit();
2943
2944  // Add the anonymous struct object to the current context.
2945  CurContext->addDecl(Anon);
2946
2947  // Inject the members of the anonymous struct into the current
2948  // context and into the identifier resolver chain for name lookup
2949  // purposes.
2950  SmallVector<NamedDecl*, 2> Chain;
2951  Chain.push_back(Anon);
2952
2953  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2954                                          Record->getDefinition(),
2955                                          AS_none, Chain, true))
2956    Anon->setInvalidDecl();
2957
2958  return Anon;
2959}
2960
2961/// GetNameForDeclarator - Determine the full declaration name for the
2962/// given Declarator.
2963DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2964  return GetNameFromUnqualifiedId(D.getName());
2965}
2966
2967/// \brief Retrieves the declaration name from a parsed unqualified-id.
2968DeclarationNameInfo
2969Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2970  DeclarationNameInfo NameInfo;
2971  NameInfo.setLoc(Name.StartLocation);
2972
2973  switch (Name.getKind()) {
2974
2975  case UnqualifiedId::IK_ImplicitSelfParam:
2976  case UnqualifiedId::IK_Identifier:
2977    NameInfo.setName(Name.Identifier);
2978    NameInfo.setLoc(Name.StartLocation);
2979    return NameInfo;
2980
2981  case UnqualifiedId::IK_OperatorFunctionId:
2982    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2983                                           Name.OperatorFunctionId.Operator));
2984    NameInfo.setLoc(Name.StartLocation);
2985    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2986      = Name.OperatorFunctionId.SymbolLocations[0];
2987    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2988      = Name.EndLocation.getRawEncoding();
2989    return NameInfo;
2990
2991  case UnqualifiedId::IK_LiteralOperatorId:
2992    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2993                                                           Name.Identifier));
2994    NameInfo.setLoc(Name.StartLocation);
2995    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2996    return NameInfo;
2997
2998  case UnqualifiedId::IK_ConversionFunctionId: {
2999    TypeSourceInfo *TInfo;
3000    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3001    if (Ty.isNull())
3002      return DeclarationNameInfo();
3003    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3004                                               Context.getCanonicalType(Ty)));
3005    NameInfo.setLoc(Name.StartLocation);
3006    NameInfo.setNamedTypeInfo(TInfo);
3007    return NameInfo;
3008  }
3009
3010  case UnqualifiedId::IK_ConstructorName: {
3011    TypeSourceInfo *TInfo;
3012    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3013    if (Ty.isNull())
3014      return DeclarationNameInfo();
3015    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3016                                              Context.getCanonicalType(Ty)));
3017    NameInfo.setLoc(Name.StartLocation);
3018    NameInfo.setNamedTypeInfo(TInfo);
3019    return NameInfo;
3020  }
3021
3022  case UnqualifiedId::IK_ConstructorTemplateId: {
3023    // In well-formed code, we can only have a constructor
3024    // template-id that refers to the current context, so go there
3025    // to find the actual type being constructed.
3026    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3027    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3028      return DeclarationNameInfo();
3029
3030    // Determine the type of the class being constructed.
3031    QualType CurClassType = Context.getTypeDeclType(CurClass);
3032
3033    // FIXME: Check two things: that the template-id names the same type as
3034    // CurClassType, and that the template-id does not occur when the name
3035    // was qualified.
3036
3037    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3038                                    Context.getCanonicalType(CurClassType)));
3039    NameInfo.setLoc(Name.StartLocation);
3040    // FIXME: should we retrieve TypeSourceInfo?
3041    NameInfo.setNamedTypeInfo(0);
3042    return NameInfo;
3043  }
3044
3045  case UnqualifiedId::IK_DestructorName: {
3046    TypeSourceInfo *TInfo;
3047    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3048    if (Ty.isNull())
3049      return DeclarationNameInfo();
3050    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3051                                              Context.getCanonicalType(Ty)));
3052    NameInfo.setLoc(Name.StartLocation);
3053    NameInfo.setNamedTypeInfo(TInfo);
3054    return NameInfo;
3055  }
3056
3057  case UnqualifiedId::IK_TemplateId: {
3058    TemplateName TName = Name.TemplateId->Template.get();
3059    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3060    return Context.getNameForTemplate(TName, TNameLoc);
3061  }
3062
3063  } // switch (Name.getKind())
3064
3065  llvm_unreachable("Unknown name kind");
3066}
3067
3068static QualType getCoreType(QualType Ty) {
3069  do {
3070    if (Ty->isPointerType() || Ty->isReferenceType())
3071      Ty = Ty->getPointeeType();
3072    else if (Ty->isArrayType())
3073      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3074    else
3075      return Ty.withoutLocalFastQualifiers();
3076  } while (true);
3077}
3078
3079/// hasSimilarParameters - Determine whether the C++ functions Declaration
3080/// and Definition have "nearly" matching parameters. This heuristic is
3081/// used to improve diagnostics in the case where an out-of-line function
3082/// definition doesn't match any declaration within the class or namespace.
3083/// Also sets Params to the list of indices to the parameters that differ
3084/// between the declaration and the definition. If hasSimilarParameters
3085/// returns true and Params is empty, then all of the parameters match.
3086static bool hasSimilarParameters(ASTContext &Context,
3087                                     FunctionDecl *Declaration,
3088                                     FunctionDecl *Definition,
3089                                     llvm::SmallVectorImpl<unsigned> &Params) {
3090  Params.clear();
3091  if (Declaration->param_size() != Definition->param_size())
3092    return false;
3093  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3094    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3095    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3096
3097    // The parameter types are identical
3098    if (Context.hasSameType(DefParamTy, DeclParamTy))
3099      continue;
3100
3101    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3102    QualType DefParamBaseTy = getCoreType(DefParamTy);
3103    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3104    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3105
3106    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3107        (DeclTyName && DeclTyName == DefTyName))
3108      Params.push_back(Idx);
3109    else  // The two parameters aren't even close
3110      return false;
3111  }
3112
3113  return true;
3114}
3115
3116/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3117/// declarator needs to be rebuilt in the current instantiation.
3118/// Any bits of declarator which appear before the name are valid for
3119/// consideration here.  That's specifically the type in the decl spec
3120/// and the base type in any member-pointer chunks.
3121static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3122                                                    DeclarationName Name) {
3123  // The types we specifically need to rebuild are:
3124  //   - typenames, typeofs, and decltypes
3125  //   - types which will become injected class names
3126  // Of course, we also need to rebuild any type referencing such a
3127  // type.  It's safest to just say "dependent", but we call out a
3128  // few cases here.
3129
3130  DeclSpec &DS = D.getMutableDeclSpec();
3131  switch (DS.getTypeSpecType()) {
3132  case DeclSpec::TST_typename:
3133  case DeclSpec::TST_typeofType:
3134  case DeclSpec::TST_decltype:
3135  case DeclSpec::TST_underlyingType:
3136  case DeclSpec::TST_atomic: {
3137    // Grab the type from the parser.
3138    TypeSourceInfo *TSI = 0;
3139    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3140    if (T.isNull() || !T->isDependentType()) break;
3141
3142    // Make sure there's a type source info.  This isn't really much
3143    // of a waste; most dependent types should have type source info
3144    // attached already.
3145    if (!TSI)
3146      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3147
3148    // Rebuild the type in the current instantiation.
3149    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3150    if (!TSI) return true;
3151
3152    // Store the new type back in the decl spec.
3153    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3154    DS.UpdateTypeRep(LocType);
3155    break;
3156  }
3157
3158  case DeclSpec::TST_typeofExpr: {
3159    Expr *E = DS.getRepAsExpr();
3160    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3161    if (Result.isInvalid()) return true;
3162    DS.UpdateExprRep(Result.get());
3163    break;
3164  }
3165
3166  default:
3167    // Nothing to do for these decl specs.
3168    break;
3169  }
3170
3171  // It doesn't matter what order we do this in.
3172  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3173    DeclaratorChunk &Chunk = D.getTypeObject(I);
3174
3175    // The only type information in the declarator which can come
3176    // before the declaration name is the base type of a member
3177    // pointer.
3178    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3179      continue;
3180
3181    // Rebuild the scope specifier in-place.
3182    CXXScopeSpec &SS = Chunk.Mem.Scope();
3183    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3184      return true;
3185  }
3186
3187  return false;
3188}
3189
3190Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3191  D.setFunctionDefinitionKind(FDK_Declaration);
3192  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3193
3194  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3195      Dcl->getDeclContext()->isFileContext())
3196    Dcl->setTopLevelDeclInObjCContainer();
3197
3198  return Dcl;
3199}
3200
3201/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3202///   If T is the name of a class, then each of the following shall have a
3203///   name different from T:
3204///     - every static data member of class T;
3205///     - every member function of class T
3206///     - every member of class T that is itself a type;
3207/// \returns true if the declaration name violates these rules.
3208bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3209                                   DeclarationNameInfo NameInfo) {
3210  DeclarationName Name = NameInfo.getName();
3211
3212  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3213    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3214      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3215      return true;
3216    }
3217
3218  return false;
3219}
3220
3221Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3222                             MultiTemplateParamsArg TemplateParamLists) {
3223  // TODO: consider using NameInfo for diagnostic.
3224  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3225  DeclarationName Name = NameInfo.getName();
3226
3227  // All of these full declarators require an identifier.  If it doesn't have
3228  // one, the ParsedFreeStandingDeclSpec action should be used.
3229  if (!Name) {
3230    if (!D.isInvalidType())  // Reject this if we think it is valid.
3231      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3232           diag::err_declarator_need_ident)
3233        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3234    return 0;
3235  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3236    return 0;
3237
3238  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3239  // we find one that is.
3240  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3241         (S->getFlags() & Scope::TemplateParamScope) != 0)
3242    S = S->getParent();
3243
3244  DeclContext *DC = CurContext;
3245  if (D.getCXXScopeSpec().isInvalid())
3246    D.setInvalidType();
3247  else if (D.getCXXScopeSpec().isSet()) {
3248    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3249                                        UPPC_DeclarationQualifier))
3250      return 0;
3251
3252    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3253    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3254    if (!DC) {
3255      // If we could not compute the declaration context, it's because the
3256      // declaration context is dependent but does not refer to a class,
3257      // class template, or class template partial specialization. Complain
3258      // and return early, to avoid the coming semantic disaster.
3259      Diag(D.getIdentifierLoc(),
3260           diag::err_template_qualified_declarator_no_match)
3261        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3262        << D.getCXXScopeSpec().getRange();
3263      return 0;
3264    }
3265    bool IsDependentContext = DC->isDependentContext();
3266
3267    if (!IsDependentContext &&
3268        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3269      return 0;
3270
3271    if (isa<CXXRecordDecl>(DC)) {
3272      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3273        Diag(D.getIdentifierLoc(),
3274             diag::err_member_def_undefined_record)
3275          << Name << DC << D.getCXXScopeSpec().getRange();
3276        D.setInvalidType();
3277      } else if (isa<CXXRecordDecl>(CurContext) &&
3278                 !D.getDeclSpec().isFriendSpecified()) {
3279        // The user provided a superfluous scope specifier inside a class
3280        // definition:
3281        //
3282        // class X {
3283        //   void X::f();
3284        // };
3285        if (CurContext->Equals(DC)) {
3286          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3287            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3288        } else {
3289          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3290            << Name << D.getCXXScopeSpec().getRange();
3291
3292          // C++ constructors and destructors with incorrect scopes can break
3293          // our AST invariants by having the wrong underlying types. If
3294          // that's the case, then drop this declaration entirely.
3295          if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3296               Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3297              !Context.hasSameType(Name.getCXXNameType(),
3298                 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))))
3299            return 0;
3300        }
3301
3302        // Pretend that this qualifier was not here.
3303        D.getCXXScopeSpec().clear();
3304      }
3305    }
3306
3307    // Check whether we need to rebuild the type of the given
3308    // declaration in the current instantiation.
3309    if (EnteringContext && IsDependentContext &&
3310        TemplateParamLists.size() != 0) {
3311      ContextRAII SavedContext(*this, DC);
3312      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3313        D.setInvalidType();
3314    }
3315  }
3316
3317  if (DiagnoseClassNameShadow(DC, NameInfo))
3318    // If this is a typedef, we'll end up spewing multiple diagnostics.
3319    // Just return early; it's safer.
3320    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3321      return 0;
3322
3323  NamedDecl *New;
3324
3325  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3326  QualType R = TInfo->getType();
3327
3328  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3329                                      UPPC_DeclarationType))
3330    D.setInvalidType();
3331
3332  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3333                        ForRedeclaration);
3334
3335  // See if this is a redefinition of a variable in the same scope.
3336  if (!D.getCXXScopeSpec().isSet()) {
3337    bool IsLinkageLookup = false;
3338
3339    // If the declaration we're planning to build will be a function
3340    // or object with linkage, then look for another declaration with
3341    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3342    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3343      /* Do nothing*/;
3344    else if (R->isFunctionType()) {
3345      if (CurContext->isFunctionOrMethod() ||
3346          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3347        IsLinkageLookup = true;
3348    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3349      IsLinkageLookup = true;
3350    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3351             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3352      IsLinkageLookup = true;
3353
3354    if (IsLinkageLookup)
3355      Previous.clear(LookupRedeclarationWithLinkage);
3356
3357    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3358  } else { // Something like "int foo::x;"
3359    LookupQualifiedName(Previous, DC);
3360
3361    // Don't consider using declarations as previous declarations for
3362    // out-of-line members.
3363    RemoveUsingDecls(Previous);
3364
3365    // C++ 7.3.1.2p2:
3366    // Members (including explicit specializations of templates) of a named
3367    // namespace can also be defined outside that namespace by explicit
3368    // qualification of the name being defined, provided that the entity being
3369    // defined was already declared in the namespace and the definition appears
3370    // after the point of declaration in a namespace that encloses the
3371    // declarations namespace.
3372    //
3373    // Note that we only check the context at this point. We don't yet
3374    // have enough information to make sure that PrevDecl is actually
3375    // the declaration we want to match. For example, given:
3376    //
3377    //   class X {
3378    //     void f();
3379    //     void f(float);
3380    //   };
3381    //
3382    //   void X::f(int) { } // ill-formed
3383    //
3384    // In this case, PrevDecl will point to the overload set
3385    // containing the two f's declared in X, but neither of them
3386    // matches.
3387
3388    // First check whether we named the global scope.
3389    if (isa<TranslationUnitDecl>(DC)) {
3390      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3391        << Name << D.getCXXScopeSpec().getRange();
3392    } else {
3393      DeclContext *Cur = CurContext;
3394      while (isa<LinkageSpecDecl>(Cur))
3395        Cur = Cur->getParent();
3396      if (!Cur->Encloses(DC)) {
3397        // The qualifying scope doesn't enclose the original declaration.
3398        // Emit diagnostic based on current scope.
3399        SourceLocation L = D.getIdentifierLoc();
3400        SourceRange R = D.getCXXScopeSpec().getRange();
3401        if (isa<FunctionDecl>(Cur))
3402          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3403        else
3404          Diag(L, diag::err_invalid_declarator_scope)
3405            << Name << cast<NamedDecl>(DC) << R;
3406        D.setInvalidType();
3407      }
3408
3409      // C++11 8.3p1:
3410      // ... "The nested-name-specifier of the qualified declarator-id shall
3411      // not begin with a decltype-specifer"
3412      NestedNameSpecifierLoc SpecLoc =
3413            D.getCXXScopeSpec().getWithLocInContext(Context);
3414      assert(SpecLoc && "A non-empty CXXScopeSpec should have a non-empty "
3415                        "NestedNameSpecifierLoc");
3416      while (SpecLoc.getPrefix())
3417        SpecLoc = SpecLoc.getPrefix();
3418      if (dyn_cast_or_null<DecltypeType>(
3419            SpecLoc.getNestedNameSpecifier()->getAsType()))
3420        Diag(SpecLoc.getBeginLoc(), diag::err_decltype_in_declarator)
3421          << SpecLoc.getTypeLoc().getSourceRange();
3422    }
3423  }
3424
3425  if (Previous.isSingleResult() &&
3426      Previous.getFoundDecl()->isTemplateParameter()) {
3427    // Maybe we will complain about the shadowed template parameter.
3428    if (!D.isInvalidType())
3429      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3430                                      Previous.getFoundDecl());
3431
3432    // Just pretend that we didn't see the previous declaration.
3433    Previous.clear();
3434  }
3435
3436  // In C++, the previous declaration we find might be a tag type
3437  // (class or enum). In this case, the new declaration will hide the
3438  // tag type. Note that this does does not apply if we're declaring a
3439  // typedef (C++ [dcl.typedef]p4).
3440  if (Previous.isSingleTagDecl() &&
3441      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3442    Previous.clear();
3443
3444  bool AddToScope = true;
3445  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3446    if (TemplateParamLists.size()) {
3447      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3448      return 0;
3449    }
3450
3451    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3452  } else if (R->isFunctionType()) {
3453    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3454                                  move(TemplateParamLists),
3455                                  AddToScope);
3456  } else {
3457    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3458                                  move(TemplateParamLists));
3459  }
3460
3461  if (New == 0)
3462    return 0;
3463
3464  // If this has an identifier and is not an invalid redeclaration or
3465  // function template specialization, add it to the scope stack.
3466  if (New->getDeclName() && AddToScope &&
3467       !(D.isRedeclaration() && New->isInvalidDecl()))
3468    PushOnScopeChains(New, S);
3469
3470  return New;
3471}
3472
3473/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3474/// types into constant array types in certain situations which would otherwise
3475/// be errors (for GCC compatibility).
3476static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3477                                                    ASTContext &Context,
3478                                                    bool &SizeIsNegative,
3479                                                    llvm::APSInt &Oversized) {
3480  // This method tries to turn a variable array into a constant
3481  // array even when the size isn't an ICE.  This is necessary
3482  // for compatibility with code that depends on gcc's buggy
3483  // constant expression folding, like struct {char x[(int)(char*)2];}
3484  SizeIsNegative = false;
3485  Oversized = 0;
3486
3487  if (T->isDependentType())
3488    return QualType();
3489
3490  QualifierCollector Qs;
3491  const Type *Ty = Qs.strip(T);
3492
3493  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3494    QualType Pointee = PTy->getPointeeType();
3495    QualType FixedType =
3496        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3497                                            Oversized);
3498    if (FixedType.isNull()) return FixedType;
3499    FixedType = Context.getPointerType(FixedType);
3500    return Qs.apply(Context, FixedType);
3501  }
3502  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3503    QualType Inner = PTy->getInnerType();
3504    QualType FixedType =
3505        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3506                                            Oversized);
3507    if (FixedType.isNull()) return FixedType;
3508    FixedType = Context.getParenType(FixedType);
3509    return Qs.apply(Context, FixedType);
3510  }
3511
3512  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3513  if (!VLATy)
3514    return QualType();
3515  // FIXME: We should probably handle this case
3516  if (VLATy->getElementType()->isVariablyModifiedType())
3517    return QualType();
3518
3519  llvm::APSInt Res;
3520  if (!VLATy->getSizeExpr() ||
3521      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3522    return QualType();
3523
3524  // Check whether the array size is negative.
3525  if (Res.isSigned() && Res.isNegative()) {
3526    SizeIsNegative = true;
3527    return QualType();
3528  }
3529
3530  // Check whether the array is too large to be addressed.
3531  unsigned ActiveSizeBits
3532    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3533                                              Res);
3534  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3535    Oversized = Res;
3536    return QualType();
3537  }
3538
3539  return Context.getConstantArrayType(VLATy->getElementType(),
3540                                      Res, ArrayType::Normal, 0);
3541}
3542
3543/// \brief Register the given locally-scoped external C declaration so
3544/// that it can be found later for redeclarations
3545void
3546Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3547                                       const LookupResult &Previous,
3548                                       Scope *S) {
3549  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3550         "Decl is not a locally-scoped decl!");
3551  // Note that we have a locally-scoped external with this name.
3552  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3553
3554  if (!Previous.isSingleResult())
3555    return;
3556
3557  NamedDecl *PrevDecl = Previous.getFoundDecl();
3558
3559  // If there was a previous declaration of this variable, it may be
3560  // in our identifier chain. Update the identifier chain with the new
3561  // declaration.
3562  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3563    // The previous declaration was found on the identifer resolver
3564    // chain, so remove it from its scope.
3565
3566    if (S->isDeclScope(PrevDecl)) {
3567      // Special case for redeclarations in the SAME scope.
3568      // Because this declaration is going to be added to the identifier chain
3569      // later, we should temporarily take it OFF the chain.
3570      IdResolver.RemoveDecl(ND);
3571
3572    } else {
3573      // Find the scope for the original declaration.
3574      while (S && !S->isDeclScope(PrevDecl))
3575        S = S->getParent();
3576    }
3577
3578    if (S)
3579      S->RemoveDecl(PrevDecl);
3580  }
3581}
3582
3583llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3584Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3585  if (ExternalSource) {
3586    // Load locally-scoped external decls from the external source.
3587    SmallVector<NamedDecl *, 4> Decls;
3588    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3589    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3590      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3591        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3592      if (Pos == LocallyScopedExternalDecls.end())
3593        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3594    }
3595  }
3596
3597  return LocallyScopedExternalDecls.find(Name);
3598}
3599
3600/// \brief Diagnose function specifiers on a declaration of an identifier that
3601/// does not identify a function.
3602void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3603  // FIXME: We should probably indicate the identifier in question to avoid
3604  // confusion for constructs like "inline int a(), b;"
3605  if (D.getDeclSpec().isInlineSpecified())
3606    Diag(D.getDeclSpec().getInlineSpecLoc(),
3607         diag::err_inline_non_function);
3608
3609  if (D.getDeclSpec().isVirtualSpecified())
3610    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3611         diag::err_virtual_non_function);
3612
3613  if (D.getDeclSpec().isExplicitSpecified())
3614    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3615         diag::err_explicit_non_function);
3616}
3617
3618NamedDecl*
3619Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3620                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3621  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3622  if (D.getCXXScopeSpec().isSet()) {
3623    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3624      << D.getCXXScopeSpec().getRange();
3625    D.setInvalidType();
3626    // Pretend we didn't see the scope specifier.
3627    DC = CurContext;
3628    Previous.clear();
3629  }
3630
3631  if (getLangOptions().CPlusPlus) {
3632    // Check that there are no default arguments (C++ only).
3633    CheckExtraCXXDefaultArguments(D);
3634  }
3635
3636  DiagnoseFunctionSpecifiers(D);
3637
3638  if (D.getDeclSpec().isThreadSpecified())
3639    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3640  if (D.getDeclSpec().isConstexprSpecified())
3641    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3642      << 1;
3643
3644  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3645    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3646      << D.getName().getSourceRange();
3647    return 0;
3648  }
3649
3650  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3651  if (!NewTD) return 0;
3652
3653  // Handle attributes prior to checking for duplicates in MergeVarDecl
3654  ProcessDeclAttributes(S, NewTD, D);
3655
3656  CheckTypedefForVariablyModifiedType(S, NewTD);
3657
3658  bool Redeclaration = D.isRedeclaration();
3659  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3660  D.setRedeclaration(Redeclaration);
3661  return ND;
3662}
3663
3664void
3665Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3666  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3667  // then it shall have block scope.
3668  // Note that variably modified types must be fixed before merging the decl so
3669  // that redeclarations will match.
3670  QualType T = NewTD->getUnderlyingType();
3671  if (T->isVariablyModifiedType()) {
3672    getCurFunction()->setHasBranchProtectedScope();
3673
3674    if (S->getFnParent() == 0) {
3675      bool SizeIsNegative;
3676      llvm::APSInt Oversized;
3677      QualType FixedTy =
3678          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3679                                              Oversized);
3680      if (!FixedTy.isNull()) {
3681        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3682        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3683      } else {
3684        if (SizeIsNegative)
3685          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3686        else if (T->isVariableArrayType())
3687          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3688        else if (Oversized.getBoolValue())
3689          Diag(NewTD->getLocation(), diag::err_array_too_large)
3690            << Oversized.toString(10);
3691        else
3692          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3693        NewTD->setInvalidDecl();
3694      }
3695    }
3696  }
3697}
3698
3699
3700/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3701/// declares a typedef-name, either using the 'typedef' type specifier or via
3702/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3703NamedDecl*
3704Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3705                           LookupResult &Previous, bool &Redeclaration) {
3706  // Merge the decl with the existing one if appropriate. If the decl is
3707  // in an outer scope, it isn't the same thing.
3708  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3709                       /*ExplicitInstantiationOrSpecialization=*/false);
3710  if (!Previous.empty()) {
3711    Redeclaration = true;
3712    MergeTypedefNameDecl(NewTD, Previous);
3713  }
3714
3715  // If this is the C FILE type, notify the AST context.
3716  if (IdentifierInfo *II = NewTD->getIdentifier())
3717    if (!NewTD->isInvalidDecl() &&
3718        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3719      if (II->isStr("FILE"))
3720        Context.setFILEDecl(NewTD);
3721      else if (II->isStr("jmp_buf"))
3722        Context.setjmp_bufDecl(NewTD);
3723      else if (II->isStr("sigjmp_buf"))
3724        Context.setsigjmp_bufDecl(NewTD);
3725      else if (II->isStr("ucontext_t"))
3726        Context.setucontext_tDecl(NewTD);
3727      else if (II->isStr("__builtin_va_list"))
3728        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3729    }
3730
3731  return NewTD;
3732}
3733
3734/// \brief Determines whether the given declaration is an out-of-scope
3735/// previous declaration.
3736///
3737/// This routine should be invoked when name lookup has found a
3738/// previous declaration (PrevDecl) that is not in the scope where a
3739/// new declaration by the same name is being introduced. If the new
3740/// declaration occurs in a local scope, previous declarations with
3741/// linkage may still be considered previous declarations (C99
3742/// 6.2.2p4-5, C++ [basic.link]p6).
3743///
3744/// \param PrevDecl the previous declaration found by name
3745/// lookup
3746///
3747/// \param DC the context in which the new declaration is being
3748/// declared.
3749///
3750/// \returns true if PrevDecl is an out-of-scope previous declaration
3751/// for a new delcaration with the same name.
3752static bool
3753isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3754                                ASTContext &Context) {
3755  if (!PrevDecl)
3756    return false;
3757
3758  if (!PrevDecl->hasLinkage())
3759    return false;
3760
3761  if (Context.getLangOptions().CPlusPlus) {
3762    // C++ [basic.link]p6:
3763    //   If there is a visible declaration of an entity with linkage
3764    //   having the same name and type, ignoring entities declared
3765    //   outside the innermost enclosing namespace scope, the block
3766    //   scope declaration declares that same entity and receives the
3767    //   linkage of the previous declaration.
3768    DeclContext *OuterContext = DC->getRedeclContext();
3769    if (!OuterContext->isFunctionOrMethod())
3770      // This rule only applies to block-scope declarations.
3771      return false;
3772
3773    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3774    if (PrevOuterContext->isRecord())
3775      // We found a member function: ignore it.
3776      return false;
3777
3778    // Find the innermost enclosing namespace for the new and
3779    // previous declarations.
3780    OuterContext = OuterContext->getEnclosingNamespaceContext();
3781    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3782
3783    // The previous declaration is in a different namespace, so it
3784    // isn't the same function.
3785    if (!OuterContext->Equals(PrevOuterContext))
3786      return false;
3787  }
3788
3789  return true;
3790}
3791
3792static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3793  CXXScopeSpec &SS = D.getCXXScopeSpec();
3794  if (!SS.isSet()) return;
3795  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3796}
3797
3798bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3799  QualType type = decl->getType();
3800  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3801  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3802    // Various kinds of declaration aren't allowed to be __autoreleasing.
3803    unsigned kind = -1U;
3804    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3805      if (var->hasAttr<BlocksAttr>())
3806        kind = 0; // __block
3807      else if (!var->hasLocalStorage())
3808        kind = 1; // global
3809    } else if (isa<ObjCIvarDecl>(decl)) {
3810      kind = 3; // ivar
3811    } else if (isa<FieldDecl>(decl)) {
3812      kind = 2; // field
3813    }
3814
3815    if (kind != -1U) {
3816      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3817        << kind;
3818    }
3819  } else if (lifetime == Qualifiers::OCL_None) {
3820    // Try to infer lifetime.
3821    if (!type->isObjCLifetimeType())
3822      return false;
3823
3824    lifetime = type->getObjCARCImplicitLifetime();
3825    type = Context.getLifetimeQualifiedType(type, lifetime);
3826    decl->setType(type);
3827  }
3828
3829  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3830    // Thread-local variables cannot have lifetime.
3831    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3832        var->isThreadSpecified()) {
3833      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3834        << var->getType();
3835      return true;
3836    }
3837  }
3838
3839  return false;
3840}
3841
3842NamedDecl*
3843Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3844                              TypeSourceInfo *TInfo, LookupResult &Previous,
3845                              MultiTemplateParamsArg TemplateParamLists) {
3846  QualType R = TInfo->getType();
3847  DeclarationName Name = GetNameForDeclarator(D).getName();
3848
3849  // Check that there are no default arguments (C++ only).
3850  if (getLangOptions().CPlusPlus)
3851    CheckExtraCXXDefaultArguments(D);
3852
3853  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3854  assert(SCSpec != DeclSpec::SCS_typedef &&
3855         "Parser allowed 'typedef' as storage class VarDecl.");
3856  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3857  if (SCSpec == DeclSpec::SCS_mutable) {
3858    // mutable can only appear on non-static class members, so it's always
3859    // an error here
3860    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3861    D.setInvalidType();
3862    SC = SC_None;
3863  }
3864  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3865  VarDecl::StorageClass SCAsWritten
3866    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3867
3868  IdentifierInfo *II = Name.getAsIdentifierInfo();
3869  if (!II) {
3870    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3871      << Name;
3872    return 0;
3873  }
3874
3875  DiagnoseFunctionSpecifiers(D);
3876
3877  if (!DC->isRecord() && S->getFnParent() == 0) {
3878    // C99 6.9p2: The storage-class specifiers auto and register shall not
3879    // appear in the declaration specifiers in an external declaration.
3880    if (SC == SC_Auto || SC == SC_Register) {
3881
3882      // If this is a register variable with an asm label specified, then this
3883      // is a GNU extension.
3884      if (SC == SC_Register && D.getAsmLabel())
3885        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3886      else
3887        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3888      D.setInvalidType();
3889    }
3890  }
3891
3892  if (getLangOptions().OpenCL) {
3893    // Set up the special work-group-local storage class for variables in the
3894    // OpenCL __local address space.
3895    if (R.getAddressSpace() == LangAS::opencl_local)
3896      SC = SC_OpenCLWorkGroupLocal;
3897  }
3898
3899  bool isExplicitSpecialization = false;
3900  VarDecl *NewVD;
3901  if (!getLangOptions().CPlusPlus) {
3902    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3903                            D.getIdentifierLoc(), II,
3904                            R, TInfo, SC, SCAsWritten);
3905
3906    if (D.isInvalidType())
3907      NewVD->setInvalidDecl();
3908  } else {
3909    if (DC->isRecord() && !CurContext->isRecord()) {
3910      // This is an out-of-line definition of a static data member.
3911      if (SC == SC_Static) {
3912        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3913             diag::err_static_out_of_line)
3914          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3915      } else if (SC == SC_None)
3916        SC = SC_Static;
3917    }
3918    if (SC == SC_Static) {
3919      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3920        if (RD->isLocalClass())
3921          Diag(D.getIdentifierLoc(),
3922               diag::err_static_data_member_not_allowed_in_local_class)
3923            << Name << RD->getDeclName();
3924
3925        // C++ [class.union]p1: If a union contains a static data member,
3926        // the program is ill-formed.
3927        //
3928        // We also disallow static data members in anonymous structs.
3929        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3930          Diag(D.getIdentifierLoc(),
3931               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3932            << Name << RD->isUnion();
3933      }
3934    }
3935
3936    // Match up the template parameter lists with the scope specifier, then
3937    // determine whether we have a template or a template specialization.
3938    isExplicitSpecialization = false;
3939    bool Invalid = false;
3940    if (TemplateParameterList *TemplateParams
3941        = MatchTemplateParametersToScopeSpecifier(
3942                                  D.getDeclSpec().getSourceRange().getBegin(),
3943                                                  D.getIdentifierLoc(),
3944                                                  D.getCXXScopeSpec(),
3945                                                  TemplateParamLists.get(),
3946                                                  TemplateParamLists.size(),
3947                                                  /*never a friend*/ false,
3948                                                  isExplicitSpecialization,
3949                                                  Invalid)) {
3950      if (TemplateParams->size() > 0) {
3951        // There is no such thing as a variable template.
3952        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3953          << II
3954          << SourceRange(TemplateParams->getTemplateLoc(),
3955                         TemplateParams->getRAngleLoc());
3956        return 0;
3957      } else {
3958        // There is an extraneous 'template<>' for this variable. Complain
3959        // about it, but allow the declaration of the variable.
3960        Diag(TemplateParams->getTemplateLoc(),
3961             diag::err_template_variable_noparams)
3962          << II
3963          << SourceRange(TemplateParams->getTemplateLoc(),
3964                         TemplateParams->getRAngleLoc());
3965      }
3966    }
3967
3968    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3969                            D.getIdentifierLoc(), II,
3970                            R, TInfo, SC, SCAsWritten);
3971
3972    // If this decl has an auto type in need of deduction, make a note of the
3973    // Decl so we can diagnose uses of it in its own initializer.
3974    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3975        R->getContainedAutoType())
3976      ParsingInitForAutoVars.insert(NewVD);
3977
3978    if (D.isInvalidType() || Invalid)
3979      NewVD->setInvalidDecl();
3980
3981    SetNestedNameSpecifier(NewVD, D);
3982
3983    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3984      NewVD->setTemplateParameterListsInfo(Context,
3985                                           TemplateParamLists.size(),
3986                                           TemplateParamLists.release());
3987    }
3988
3989    if (D.getDeclSpec().isConstexprSpecified())
3990      NewVD->setConstexpr(true);
3991  }
3992
3993  // Set the lexical context. If the declarator has a C++ scope specifier, the
3994  // lexical context will be different from the semantic context.
3995  NewVD->setLexicalDeclContext(CurContext);
3996
3997  if (D.getDeclSpec().isThreadSpecified()) {
3998    if (NewVD->hasLocalStorage())
3999      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4000    else if (!Context.getTargetInfo().isTLSSupported())
4001      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4002    else
4003      NewVD->setThreadSpecified(true);
4004  }
4005
4006  if (D.getDeclSpec().isModulePrivateSpecified()) {
4007    if (isExplicitSpecialization)
4008      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4009        << 2
4010        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4011    else if (NewVD->hasLocalStorage())
4012      Diag(NewVD->getLocation(), diag::err_module_private_local)
4013        << 0 << NewVD->getDeclName()
4014        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4015        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4016    else
4017      NewVD->setModulePrivate();
4018  }
4019
4020  // Handle attributes prior to checking for duplicates in MergeVarDecl
4021  ProcessDeclAttributes(S, NewVD, D);
4022
4023  // In auto-retain/release, infer strong retension for variables of
4024  // retainable type.
4025  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4026    NewVD->setInvalidDecl();
4027
4028  // Handle GNU asm-label extension (encoded as an attribute).
4029  if (Expr *E = (Expr*)D.getAsmLabel()) {
4030    // The parser guarantees this is a string.
4031    StringLiteral *SE = cast<StringLiteral>(E);
4032    StringRef Label = SE->getString();
4033    if (S->getFnParent() != 0) {
4034      switch (SC) {
4035      case SC_None:
4036      case SC_Auto:
4037        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4038        break;
4039      case SC_Register:
4040        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4041          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4042        break;
4043      case SC_Static:
4044      case SC_Extern:
4045      case SC_PrivateExtern:
4046      case SC_OpenCLWorkGroupLocal:
4047        break;
4048      }
4049    }
4050
4051    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4052                                                Context, Label));
4053  }
4054
4055  // Diagnose shadowed variables before filtering for scope.
4056  if (!D.getCXXScopeSpec().isSet())
4057    CheckShadow(S, NewVD, Previous);
4058
4059  // Don't consider existing declarations that are in a different
4060  // scope and are out-of-semantic-context declarations (if the new
4061  // declaration has linkage).
4062  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4063                       isExplicitSpecialization);
4064
4065  if (!getLangOptions().CPlusPlus) {
4066    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4067  } else {
4068    // Merge the decl with the existing one if appropriate.
4069    if (!Previous.empty()) {
4070      if (Previous.isSingleResult() &&
4071          isa<FieldDecl>(Previous.getFoundDecl()) &&
4072          D.getCXXScopeSpec().isSet()) {
4073        // The user tried to define a non-static data member
4074        // out-of-line (C++ [dcl.meaning]p1).
4075        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4076          << D.getCXXScopeSpec().getRange();
4077        Previous.clear();
4078        NewVD->setInvalidDecl();
4079      }
4080    } else if (D.getCXXScopeSpec().isSet()) {
4081      // No previous declaration in the qualifying scope.
4082      Diag(D.getIdentifierLoc(), diag::err_no_member)
4083        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4084        << D.getCXXScopeSpec().getRange();
4085      NewVD->setInvalidDecl();
4086    }
4087
4088    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4089
4090    // This is an explicit specialization of a static data member. Check it.
4091    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4092        CheckMemberSpecialization(NewVD, Previous))
4093      NewVD->setInvalidDecl();
4094  }
4095
4096  // attributes declared post-definition are currently ignored
4097  // FIXME: This should be handled in attribute merging, not
4098  // here.
4099  if (Previous.isSingleResult()) {
4100    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4101    if (Def && (Def = Def->getDefinition()) &&
4102        Def != NewVD && D.hasAttributes()) {
4103      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4104      Diag(Def->getLocation(), diag::note_previous_definition);
4105    }
4106  }
4107
4108  // If this is a locally-scoped extern C variable, update the map of
4109  // such variables.
4110  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4111      !NewVD->isInvalidDecl())
4112    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4113
4114  // If there's a #pragma GCC visibility in scope, and this isn't a class
4115  // member, set the visibility of this variable.
4116  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4117    AddPushedVisibilityAttribute(NewVD);
4118
4119  MarkUnusedFileScopedDecl(NewVD);
4120
4121  return NewVD;
4122}
4123
4124/// \brief Diagnose variable or built-in function shadowing.  Implements
4125/// -Wshadow.
4126///
4127/// This method is called whenever a VarDecl is added to a "useful"
4128/// scope.
4129///
4130/// \param S the scope in which the shadowing name is being declared
4131/// \param R the lookup of the name
4132///
4133void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4134  // Return if warning is ignored.
4135  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4136        DiagnosticsEngine::Ignored)
4137    return;
4138
4139  // Don't diagnose declarations at file scope.
4140  if (D->hasGlobalStorage())
4141    return;
4142
4143  DeclContext *NewDC = D->getDeclContext();
4144
4145  // Only diagnose if we're shadowing an unambiguous field or variable.
4146  if (R.getResultKind() != LookupResult::Found)
4147    return;
4148
4149  NamedDecl* ShadowedDecl = R.getFoundDecl();
4150  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4151    return;
4152
4153  // Fields are not shadowed by variables in C++ static methods.
4154  if (isa<FieldDecl>(ShadowedDecl))
4155    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4156      if (MD->isStatic())
4157        return;
4158
4159  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4160    if (shadowedVar->isExternC()) {
4161      // For shadowing external vars, make sure that we point to the global
4162      // declaration, not a locally scoped extern declaration.
4163      for (VarDecl::redecl_iterator
4164             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4165           I != E; ++I)
4166        if (I->isFileVarDecl()) {
4167          ShadowedDecl = *I;
4168          break;
4169        }
4170    }
4171
4172  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4173
4174  // Only warn about certain kinds of shadowing for class members.
4175  if (NewDC && NewDC->isRecord()) {
4176    // In particular, don't warn about shadowing non-class members.
4177    if (!OldDC->isRecord())
4178      return;
4179
4180    // TODO: should we warn about static data members shadowing
4181    // static data members from base classes?
4182
4183    // TODO: don't diagnose for inaccessible shadowed members.
4184    // This is hard to do perfectly because we might friend the
4185    // shadowing context, but that's just a false negative.
4186  }
4187
4188  // Determine what kind of declaration we're shadowing.
4189  unsigned Kind;
4190  if (isa<RecordDecl>(OldDC)) {
4191    if (isa<FieldDecl>(ShadowedDecl))
4192      Kind = 3; // field
4193    else
4194      Kind = 2; // static data member
4195  } else if (OldDC->isFileContext())
4196    Kind = 1; // global
4197  else
4198    Kind = 0; // local
4199
4200  DeclarationName Name = R.getLookupName();
4201
4202  // Emit warning and note.
4203  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4204  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4205}
4206
4207/// \brief Check -Wshadow without the advantage of a previous lookup.
4208void Sema::CheckShadow(Scope *S, VarDecl *D) {
4209  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4210        DiagnosticsEngine::Ignored)
4211    return;
4212
4213  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4214                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4215  LookupName(R, S);
4216  CheckShadow(S, D, R);
4217}
4218
4219/// \brief Perform semantic checking on a newly-created variable
4220/// declaration.
4221///
4222/// This routine performs all of the type-checking required for a
4223/// variable declaration once it has been built. It is used both to
4224/// check variables after they have been parsed and their declarators
4225/// have been translated into a declaration, and to check variables
4226/// that have been instantiated from a template.
4227///
4228/// Sets NewVD->isInvalidDecl() if an error was encountered.
4229///
4230/// Returns true if the variable declaration is a redeclaration.
4231bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4232                                    LookupResult &Previous) {
4233  // If the decl is already known invalid, don't check it.
4234  if (NewVD->isInvalidDecl())
4235    return false;
4236
4237  QualType T = NewVD->getType();
4238
4239  if (T->isObjCObjectType()) {
4240    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4241      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4242    T = Context.getObjCObjectPointerType(T);
4243    NewVD->setType(T);
4244  }
4245
4246  // Emit an error if an address space was applied to decl with local storage.
4247  // This includes arrays of objects with address space qualifiers, but not
4248  // automatic variables that point to other address spaces.
4249  // ISO/IEC TR 18037 S5.1.2
4250  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4251    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4252    NewVD->setInvalidDecl();
4253    return false;
4254  }
4255
4256  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4257      && !NewVD->hasAttr<BlocksAttr>()) {
4258    if (getLangOptions().getGC() != LangOptions::NonGC)
4259      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4260    else
4261      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4262  }
4263
4264  bool isVM = T->isVariablyModifiedType();
4265  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4266      NewVD->hasAttr<BlocksAttr>())
4267    getCurFunction()->setHasBranchProtectedScope();
4268
4269  if ((isVM && NewVD->hasLinkage()) ||
4270      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4271    bool SizeIsNegative;
4272    llvm::APSInt Oversized;
4273    QualType FixedTy =
4274        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4275                                            Oversized);
4276
4277    if (FixedTy.isNull() && T->isVariableArrayType()) {
4278      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4279      // FIXME: This won't give the correct result for
4280      // int a[10][n];
4281      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4282
4283      if (NewVD->isFileVarDecl())
4284        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4285        << SizeRange;
4286      else if (NewVD->getStorageClass() == SC_Static)
4287        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4288        << SizeRange;
4289      else
4290        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4291        << SizeRange;
4292      NewVD->setInvalidDecl();
4293      return false;
4294    }
4295
4296    if (FixedTy.isNull()) {
4297      if (NewVD->isFileVarDecl())
4298        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4299      else
4300        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4301      NewVD->setInvalidDecl();
4302      return false;
4303    }
4304
4305    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4306    NewVD->setType(FixedTy);
4307  }
4308
4309  if (Previous.empty() && NewVD->isExternC()) {
4310    // Since we did not find anything by this name and we're declaring
4311    // an extern "C" variable, look for a non-visible extern "C"
4312    // declaration with the same name.
4313    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4314      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4315    if (Pos != LocallyScopedExternalDecls.end())
4316      Previous.addDecl(Pos->second);
4317  }
4318
4319  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4320    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4321      << T;
4322    NewVD->setInvalidDecl();
4323    return false;
4324  }
4325
4326  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4327    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4328    NewVD->setInvalidDecl();
4329    return false;
4330  }
4331
4332  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4333    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4334    NewVD->setInvalidDecl();
4335    return false;
4336  }
4337
4338  // Function pointers and references cannot have qualified function type, only
4339  // function pointer-to-members can do that.
4340  QualType Pointee;
4341  unsigned PtrOrRef = 0;
4342  if (const PointerType *Ptr = T->getAs<PointerType>())
4343    Pointee = Ptr->getPointeeType();
4344  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4345    Pointee = Ref->getPointeeType();
4346    PtrOrRef = 1;
4347  }
4348  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4349      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4350    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4351        << PtrOrRef;
4352    NewVD->setInvalidDecl();
4353    return false;
4354  }
4355
4356  if (!Previous.empty()) {
4357    MergeVarDecl(NewVD, Previous);
4358    return true;
4359  }
4360  return false;
4361}
4362
4363/// \brief Data used with FindOverriddenMethod
4364struct FindOverriddenMethodData {
4365  Sema *S;
4366  CXXMethodDecl *Method;
4367};
4368
4369/// \brief Member lookup function that determines whether a given C++
4370/// method overrides a method in a base class, to be used with
4371/// CXXRecordDecl::lookupInBases().
4372static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4373                                 CXXBasePath &Path,
4374                                 void *UserData) {
4375  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4376
4377  FindOverriddenMethodData *Data
4378    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4379
4380  DeclarationName Name = Data->Method->getDeclName();
4381
4382  // FIXME: Do we care about other names here too?
4383  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4384    // We really want to find the base class destructor here.
4385    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4386    CanQualType CT = Data->S->Context.getCanonicalType(T);
4387
4388    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4389  }
4390
4391  for (Path.Decls = BaseRecord->lookup(Name);
4392       Path.Decls.first != Path.Decls.second;
4393       ++Path.Decls.first) {
4394    NamedDecl *D = *Path.Decls.first;
4395    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4396      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4397        return true;
4398    }
4399  }
4400
4401  return false;
4402}
4403
4404/// AddOverriddenMethods - See if a method overrides any in the base classes,
4405/// and if so, check that it's a valid override and remember it.
4406bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4407  // Look for virtual methods in base classes that this method might override.
4408  CXXBasePaths Paths;
4409  FindOverriddenMethodData Data;
4410  Data.Method = MD;
4411  Data.S = this;
4412  bool AddedAny = false;
4413  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4414    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4415         E = Paths.found_decls_end(); I != E; ++I) {
4416      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4417        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4418        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4419            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4420            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4421          AddedAny = true;
4422        }
4423      }
4424    }
4425  }
4426
4427  return AddedAny;
4428}
4429
4430namespace {
4431  // Struct for holding all of the extra arguments needed by
4432  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4433  struct ActOnFDArgs {
4434    Scope *S;
4435    Declarator &D;
4436    MultiTemplateParamsArg TemplateParamLists;
4437    bool AddToScope;
4438  };
4439}
4440
4441namespace {
4442
4443// Callback to only accept typo corrections that have a non-zero edit distance.
4444class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4445 public:
4446  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4447    return candidate.getEditDistance() > 0;
4448  }
4449};
4450
4451}
4452
4453/// \brief Generate diagnostics for an invalid function redeclaration.
4454///
4455/// This routine handles generating the diagnostic messages for an invalid
4456/// function redeclaration, including finding possible similar declarations
4457/// or performing typo correction if there are no previous declarations with
4458/// the same name.
4459///
4460/// Returns a NamedDecl iff typo correction was performed and substituting in
4461/// the new declaration name does not cause new errors.
4462static NamedDecl* DiagnoseInvalidRedeclaration(
4463    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4464    ActOnFDArgs &ExtraArgs) {
4465  NamedDecl *Result = NULL;
4466  DeclarationName Name = NewFD->getDeclName();
4467  DeclContext *NewDC = NewFD->getDeclContext();
4468  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4469                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4470  llvm::SmallVector<unsigned, 1> MismatchedParams;
4471  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4472  TypoCorrection Correction;
4473  bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
4474                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4475  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4476                                  : diag::err_member_def_does_not_match;
4477
4478  NewFD->setInvalidDecl();
4479  SemaRef.LookupQualifiedName(Prev, NewDC);
4480  assert(!Prev.isAmbiguous() &&
4481         "Cannot have an ambiguity in previous-declaration lookup");
4482  DifferentNameValidatorCCC Validator;
4483  if (!Prev.empty()) {
4484    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4485         Func != FuncEnd; ++Func) {
4486      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4487      if (FD &&
4488          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4489        // Add 1 to the index so that 0 can mean the mismatch didn't
4490        // involve a parameter
4491        unsigned ParamNum =
4492            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4493        NearMatches.push_back(std::make_pair(FD, ParamNum));
4494      }
4495    }
4496  // If the qualified name lookup yielded nothing, try typo correction
4497  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4498                                         Prev.getLookupKind(), 0, 0,
4499                                         &Validator, NewDC))) {
4500    // Trap errors.
4501    Sema::SFINAETrap Trap(SemaRef);
4502
4503    // Set up everything for the call to ActOnFunctionDeclarator
4504    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4505                              ExtraArgs.D.getIdentifierLoc());
4506    Previous.clear();
4507    Previous.setLookupName(Correction.getCorrection());
4508    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4509                                    CDeclEnd = Correction.end();
4510         CDecl != CDeclEnd; ++CDecl) {
4511      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4512      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4513                                     MismatchedParams)) {
4514        Previous.addDecl(FD);
4515      }
4516    }
4517    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4518    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4519    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4520    // eliminate the need for the parameter pack ExtraArgs.
4521    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4522                                             NewFD->getDeclContext(),
4523                                             NewFD->getTypeSourceInfo(),
4524                                             Previous,
4525                                             ExtraArgs.TemplateParamLists,
4526                                             ExtraArgs.AddToScope);
4527    if (Trap.hasErrorOccurred()) {
4528      // Pretend the typo correction never occurred
4529      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4530                                ExtraArgs.D.getIdentifierLoc());
4531      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4532      Previous.clear();
4533      Previous.setLookupName(Name);
4534      Result = NULL;
4535    } else {
4536      for (LookupResult::iterator Func = Previous.begin(),
4537                               FuncEnd = Previous.end();
4538           Func != FuncEnd; ++Func) {
4539        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4540          NearMatches.push_back(std::make_pair(FD, 0));
4541      }
4542    }
4543    if (NearMatches.empty()) {
4544      // Ignore the correction if it didn't yield any close FunctionDecl matches
4545      Correction = TypoCorrection();
4546    } else {
4547      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4548                             : diag::err_member_def_does_not_match_suggest;
4549    }
4550  }
4551
4552  if (Correction)
4553    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4554        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
4555        << FixItHint::CreateReplacement(
4556            NewFD->getLocation(),
4557            Correction.getAsString(SemaRef.getLangOptions()));
4558  else
4559    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4560        << Name << NewDC << NewFD->getLocation();
4561
4562  bool NewFDisConst = false;
4563  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4564    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4565
4566  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4567       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4568       NearMatch != NearMatchEnd; ++NearMatch) {
4569    FunctionDecl *FD = NearMatch->first;
4570    bool FDisConst = false;
4571    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4572      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4573
4574    if (unsigned Idx = NearMatch->second) {
4575      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4576      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4577             diag::note_member_def_close_param_match)
4578          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4579    } else if (Correction) {
4580      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4581          << Correction.getQuoted(SemaRef.getLangOptions());
4582    } else if (FDisConst != NewFDisConst) {
4583      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4584          << NewFDisConst << FD->getSourceRange().getEnd();
4585    } else
4586      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4587  }
4588  return Result;
4589}
4590
4591static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4592                                                          Declarator &D) {
4593  switch (D.getDeclSpec().getStorageClassSpec()) {
4594  default: llvm_unreachable("Unknown storage class!");
4595  case DeclSpec::SCS_auto:
4596  case DeclSpec::SCS_register:
4597  case DeclSpec::SCS_mutable:
4598    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4599                 diag::err_typecheck_sclass_func);
4600    D.setInvalidType();
4601    break;
4602  case DeclSpec::SCS_unspecified: break;
4603  case DeclSpec::SCS_extern: return SC_Extern;
4604  case DeclSpec::SCS_static: {
4605    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4606      // C99 6.7.1p5:
4607      //   The declaration of an identifier for a function that has
4608      //   block scope shall have no explicit storage-class specifier
4609      //   other than extern
4610      // See also (C++ [dcl.stc]p4).
4611      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4612                   diag::err_static_block_func);
4613      break;
4614    } else
4615      return SC_Static;
4616  }
4617  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4618  }
4619
4620  // No explicit storage class has already been returned
4621  return SC_None;
4622}
4623
4624static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4625                                           DeclContext *DC, QualType &R,
4626                                           TypeSourceInfo *TInfo,
4627                                           FunctionDecl::StorageClass SC,
4628                                           bool &IsVirtualOkay) {
4629  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4630  DeclarationName Name = NameInfo.getName();
4631
4632  FunctionDecl *NewFD = 0;
4633  bool isInline = D.getDeclSpec().isInlineSpecified();
4634  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4635  FunctionDecl::StorageClass SCAsWritten
4636    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4637
4638  if (!SemaRef.getLangOptions().CPlusPlus) {
4639    // Determine whether the function was written with a
4640    // prototype. This true when:
4641    //   - there is a prototype in the declarator, or
4642    //   - the type R of the function is some kind of typedef or other reference
4643    //     to a type name (which eventually refers to a function type).
4644    bool HasPrototype =
4645      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4646      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4647
4648    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4649                                 D.getSourceRange().getBegin(), NameInfo, R,
4650                                 TInfo, SC, SCAsWritten, isInline,
4651                                 HasPrototype);
4652    if (D.isInvalidType())
4653      NewFD->setInvalidDecl();
4654
4655    // Set the lexical context.
4656    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4657
4658    return NewFD;
4659  }
4660
4661  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4662  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4663
4664  // Check that the return type is not an abstract class type.
4665  // For record types, this is done by the AbstractClassUsageDiagnoser once
4666  // the class has been completely parsed.
4667  if (!DC->isRecord() &&
4668      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4669                                     R->getAs<FunctionType>()->getResultType(),
4670                                     diag::err_abstract_type_in_decl,
4671                                     SemaRef.AbstractReturnType))
4672    D.setInvalidType();
4673
4674  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4675    // This is a C++ constructor declaration.
4676    assert(DC->isRecord() &&
4677           "Constructors can only be declared in a member context");
4678
4679    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4680    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4681                                      D.getSourceRange().getBegin(), NameInfo,
4682                                      R, TInfo, isExplicit, isInline,
4683                                      /*isImplicitlyDeclared=*/false,
4684                                      isConstexpr);
4685
4686  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4687    // This is a C++ destructor declaration.
4688    if (DC->isRecord()) {
4689      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4690      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4691      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4692                                        SemaRef.Context, Record,
4693                                        D.getSourceRange().getBegin(),
4694                                        NameInfo, R, TInfo, isInline,
4695                                        /*isImplicitlyDeclared=*/false);
4696
4697      // If the class is complete, then we now create the implicit exception
4698      // specification. If the class is incomplete or dependent, we can't do
4699      // it yet.
4700      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4701          Record->getDefinition() && !Record->isBeingDefined() &&
4702          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4703        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4704      }
4705
4706      IsVirtualOkay = true;
4707      return NewDD;
4708
4709    } else {
4710      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4711      D.setInvalidType();
4712
4713      // Create a FunctionDecl to satisfy the function definition parsing
4714      // code path.
4715      return FunctionDecl::Create(SemaRef.Context, DC,
4716                                  D.getSourceRange().getBegin(),
4717                                  D.getIdentifierLoc(), Name, R, TInfo,
4718                                  SC, SCAsWritten, isInline,
4719                                  /*hasPrototype=*/true, isConstexpr);
4720    }
4721
4722  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4723    if (!DC->isRecord()) {
4724      SemaRef.Diag(D.getIdentifierLoc(),
4725           diag::err_conv_function_not_member);
4726      return 0;
4727    }
4728
4729    SemaRef.CheckConversionDeclarator(D, R, SC);
4730    IsVirtualOkay = true;
4731    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4732                                     D.getSourceRange().getBegin(), NameInfo,
4733                                     R, TInfo, isInline, isExplicit,
4734                                     isConstexpr, SourceLocation());
4735
4736  } else if (DC->isRecord()) {
4737    // If the name of the function is the same as the name of the record,
4738    // then this must be an invalid constructor that has a return type.
4739    // (The parser checks for a return type and makes the declarator a
4740    // constructor if it has no return type).
4741    if (Name.getAsIdentifierInfo() &&
4742        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4743      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4744        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4745        << SourceRange(D.getIdentifierLoc());
4746      return 0;
4747    }
4748
4749    bool isStatic = SC == SC_Static;
4750
4751    // [class.free]p1:
4752    // Any allocation function for a class T is a static member
4753    // (even if not explicitly declared static).
4754    if (Name.getCXXOverloadedOperator() == OO_New ||
4755        Name.getCXXOverloadedOperator() == OO_Array_New)
4756      isStatic = true;
4757
4758    // [class.free]p6 Any deallocation function for a class X is a static member
4759    // (even if not explicitly declared static).
4760    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4761        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4762      isStatic = true;
4763
4764    IsVirtualOkay = !isStatic;
4765
4766    // This is a C++ method declaration.
4767    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4768                                 D.getSourceRange().getBegin(), NameInfo, R,
4769                                 TInfo, isStatic, SCAsWritten, isInline,
4770                                 isConstexpr, SourceLocation());
4771
4772  } else {
4773    // Determine whether the function was written with a
4774    // prototype. This true when:
4775    //   - we're in C++ (where every function has a prototype),
4776    return FunctionDecl::Create(SemaRef.Context, DC,
4777                                D.getSourceRange().getBegin(),
4778                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4779                                true/*HasPrototype*/, isConstexpr);
4780  }
4781}
4782
4783NamedDecl*
4784Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4785                              TypeSourceInfo *TInfo, LookupResult &Previous,
4786                              MultiTemplateParamsArg TemplateParamLists,
4787                              bool &AddToScope) {
4788  QualType R = TInfo->getType();
4789
4790  assert(R.getTypePtr()->isFunctionType());
4791
4792  // TODO: consider using NameInfo for diagnostic.
4793  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4794  DeclarationName Name = NameInfo.getName();
4795  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4796
4797  if (D.getDeclSpec().isThreadSpecified())
4798    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4799
4800  // Do not allow returning a objc interface by-value.
4801  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4802    Diag(D.getIdentifierLoc(),
4803         diag::err_object_cannot_be_passed_returned_by_value) << 0
4804    << R->getAs<FunctionType>()->getResultType()
4805    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4806
4807    QualType T = R->getAs<FunctionType>()->getResultType();
4808    T = Context.getObjCObjectPointerType(T);
4809    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4810      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4811      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4812                                  FPT->getNumArgs(), EPI);
4813    }
4814    else if (isa<FunctionNoProtoType>(R))
4815      R = Context.getFunctionNoProtoType(T);
4816  }
4817
4818  bool isFriend = false;
4819  FunctionTemplateDecl *FunctionTemplate = 0;
4820  bool isExplicitSpecialization = false;
4821  bool isFunctionTemplateSpecialization = false;
4822  bool isDependentClassScopeExplicitSpecialization = false;
4823  bool isVirtualOkay = false;
4824
4825  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4826                                              isVirtualOkay);
4827  if (!NewFD) return 0;
4828
4829  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
4830    NewFD->setTopLevelDeclInObjCContainer();
4831
4832  if (getLangOptions().CPlusPlus) {
4833    bool isInline = D.getDeclSpec().isInlineSpecified();
4834    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4835    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4836    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4837    isFriend = D.getDeclSpec().isFriendSpecified();
4838    if (isFriend && !isInline && D.isFunctionDefinition()) {
4839      // C++ [class.friend]p5
4840      //   A function can be defined in a friend declaration of a
4841      //   class . . . . Such a function is implicitly inline.
4842      NewFD->setImplicitlyInline();
4843    }
4844
4845    SetNestedNameSpecifier(NewFD, D);
4846    isExplicitSpecialization = false;
4847    isFunctionTemplateSpecialization = false;
4848    if (D.isInvalidType())
4849      NewFD->setInvalidDecl();
4850
4851    // Set the lexical context. If the declarator has a C++
4852    // scope specifier, or is the object of a friend declaration, the
4853    // lexical context will be different from the semantic context.
4854    NewFD->setLexicalDeclContext(CurContext);
4855
4856    // Match up the template parameter lists with the scope specifier, then
4857    // determine whether we have a template or a template specialization.
4858    bool Invalid = false;
4859    if (TemplateParameterList *TemplateParams
4860          = MatchTemplateParametersToScopeSpecifier(
4861                                  D.getDeclSpec().getSourceRange().getBegin(),
4862                                  D.getIdentifierLoc(),
4863                                  D.getCXXScopeSpec(),
4864                                  TemplateParamLists.get(),
4865                                  TemplateParamLists.size(),
4866                                  isFriend,
4867                                  isExplicitSpecialization,
4868                                  Invalid)) {
4869      if (TemplateParams->size() > 0) {
4870        // This is a function template
4871
4872        // Check that we can declare a template here.
4873        if (CheckTemplateDeclScope(S, TemplateParams))
4874          return 0;
4875
4876        // A destructor cannot be a template.
4877        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4878          Diag(NewFD->getLocation(), diag::err_destructor_template);
4879          return 0;
4880        }
4881
4882        // If we're adding a template to a dependent context, we may need to
4883        // rebuilding some of the types used within the template parameter list,
4884        // now that we know what the current instantiation is.
4885        if (DC->isDependentContext()) {
4886          ContextRAII SavedContext(*this, DC);
4887          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4888            Invalid = true;
4889        }
4890
4891
4892        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4893                                                        NewFD->getLocation(),
4894                                                        Name, TemplateParams,
4895                                                        NewFD);
4896        FunctionTemplate->setLexicalDeclContext(CurContext);
4897        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4898
4899        // For source fidelity, store the other template param lists.
4900        if (TemplateParamLists.size() > 1) {
4901          NewFD->setTemplateParameterListsInfo(Context,
4902                                               TemplateParamLists.size() - 1,
4903                                               TemplateParamLists.release());
4904        }
4905      } else {
4906        // This is a function template specialization.
4907        isFunctionTemplateSpecialization = true;
4908        // For source fidelity, store all the template param lists.
4909        NewFD->setTemplateParameterListsInfo(Context,
4910                                             TemplateParamLists.size(),
4911                                             TemplateParamLists.release());
4912
4913        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4914        if (isFriend) {
4915          // We want to remove the "template<>", found here.
4916          SourceRange RemoveRange = TemplateParams->getSourceRange();
4917
4918          // If we remove the template<> and the name is not a
4919          // template-id, we're actually silently creating a problem:
4920          // the friend declaration will refer to an untemplated decl,
4921          // and clearly the user wants a template specialization.  So
4922          // we need to insert '<>' after the name.
4923          SourceLocation InsertLoc;
4924          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4925            InsertLoc = D.getName().getSourceRange().getEnd();
4926            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4927          }
4928
4929          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4930            << Name << RemoveRange
4931            << FixItHint::CreateRemoval(RemoveRange)
4932            << FixItHint::CreateInsertion(InsertLoc, "<>");
4933        }
4934      }
4935    }
4936    else {
4937      // All template param lists were matched against the scope specifier:
4938      // this is NOT (an explicit specialization of) a template.
4939      if (TemplateParamLists.size() > 0)
4940        // For source fidelity, store all the template param lists.
4941        NewFD->setTemplateParameterListsInfo(Context,
4942                                             TemplateParamLists.size(),
4943                                             TemplateParamLists.release());
4944    }
4945
4946    if (Invalid) {
4947      NewFD->setInvalidDecl();
4948      if (FunctionTemplate)
4949        FunctionTemplate->setInvalidDecl();
4950    }
4951
4952    // If we see "T var();" at block scope, where T is a class type, it is
4953    // probably an attempt to initialize a variable, not a function declaration.
4954    // We don't catch this case earlier, since there is no ambiguity here.
4955    if (!FunctionTemplate && D.getFunctionDefinitionKind() == FDK_Declaration &&
4956        CurContext->isFunctionOrMethod() &&
4957        D.getNumTypeObjects() == 1 && D.isFunctionDeclarator() &&
4958        D.getDeclSpec().getStorageClassSpecAsWritten()
4959          == DeclSpec::SCS_unspecified) {
4960      QualType T = R->getAs<FunctionType>()->getResultType();
4961      DeclaratorChunk &C = D.getTypeObject(0);
4962      if (!T->isVoidType() && C.Fun.NumArgs == 0 && !C.Fun.isVariadic &&
4963          !C.Fun.TrailingReturnType &&
4964          C.Fun.getExceptionSpecType() == EST_None) {
4965        SourceRange ParenRange(C.Loc, C.EndLoc);
4966        Diag(C.Loc, diag::warn_empty_parens_are_function_decl) << ParenRange;
4967
4968        // If the declaration looks like:
4969        //   T var1,
4970        //   f();
4971        // and name lookup finds a function named 'f', then the ',' was
4972        // probably intended to be a ';'.
4973        if (!D.isFirstDeclarator() && D.getIdentifier()) {
4974          FullSourceLoc Comma(D.getCommaLoc(), SourceMgr);
4975          FullSourceLoc Name(D.getIdentifierLoc(), SourceMgr);
4976          if (Comma.getFileID() != Name.getFileID() ||
4977              Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
4978            LookupResult Result(*this, D.getIdentifier(), SourceLocation(),
4979                                LookupOrdinaryName);
4980            if (LookupName(Result, S))
4981              Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
4982                << FixItHint::CreateReplacement(D.getCommaLoc(), ";") << NewFD;
4983          }
4984        }
4985        const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4986        // Empty parens mean value-initialization, and no parens mean default
4987        // initialization. These are equivalent if the default constructor is
4988        // user-provided, or if zero-initialization is a no-op.
4989        if (RD && RD->hasDefinition() &&
4990            (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
4991          Diag(C.Loc, diag::note_empty_parens_default_ctor)
4992            << FixItHint::CreateRemoval(ParenRange);
4993        else if (const char *Init = getFixItZeroInitializerForType(T))
4994          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
4995            << FixItHint::CreateReplacement(ParenRange, Init);
4996        else if (LangOpts.CPlusPlus0x)
4997          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
4998            << FixItHint::CreateReplacement(ParenRange, "{}");
4999      }
5000    }
5001
5002    // C++ [dcl.fct.spec]p5:
5003    //   The virtual specifier shall only be used in declarations of
5004    //   nonstatic class member functions that appear within a
5005    //   member-specification of a class declaration; see 10.3.
5006    //
5007    if (isVirtual && !NewFD->isInvalidDecl()) {
5008      if (!isVirtualOkay) {
5009        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5010             diag::err_virtual_non_function);
5011      } else if (!CurContext->isRecord()) {
5012        // 'virtual' was specified outside of the class.
5013        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5014             diag::err_virtual_out_of_class)
5015          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5016      } else if (NewFD->getDescribedFunctionTemplate()) {
5017        // C++ [temp.mem]p3:
5018        //  A member function template shall not be virtual.
5019        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5020             diag::err_virtual_member_function_template)
5021          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5022      } else {
5023        // Okay: Add virtual to the method.
5024        NewFD->setVirtualAsWritten(true);
5025      }
5026    }
5027
5028    // C++ [dcl.fct.spec]p3:
5029    //  The inline specifier shall not appear on a block scope function
5030    //  declaration.
5031    if (isInline && !NewFD->isInvalidDecl()) {
5032      if (CurContext->isFunctionOrMethod()) {
5033        // 'inline' is not allowed on block scope function declaration.
5034        Diag(D.getDeclSpec().getInlineSpecLoc(),
5035             diag::err_inline_declaration_block_scope) << Name
5036          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5037      }
5038    }
5039
5040    // C++ [dcl.fct.spec]p6:
5041    //  The explicit specifier shall be used only in the declaration of a
5042    //  constructor or conversion function within its class definition;
5043    //  see 12.3.1 and 12.3.2.
5044    if (isExplicit && !NewFD->isInvalidDecl()) {
5045      if (!CurContext->isRecord()) {
5046        // 'explicit' was specified outside of the class.
5047        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5048             diag::err_explicit_out_of_class)
5049          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5050      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5051                 !isa<CXXConversionDecl>(NewFD)) {
5052        // 'explicit' was specified on a function that wasn't a constructor
5053        // or conversion function.
5054        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5055             diag::err_explicit_non_ctor_or_conv_function)
5056          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5057      }
5058    }
5059
5060    if (isConstexpr) {
5061      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5062      // are implicitly inline.
5063      NewFD->setImplicitlyInline();
5064
5065      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5066      // be either constructors or to return a literal type. Therefore,
5067      // destructors cannot be declared constexpr.
5068      if (isa<CXXDestructorDecl>(NewFD))
5069        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5070    }
5071
5072    // If __module_private__ was specified, mark the function accordingly.
5073    if (D.getDeclSpec().isModulePrivateSpecified()) {
5074      if (isFunctionTemplateSpecialization) {
5075        SourceLocation ModulePrivateLoc
5076          = D.getDeclSpec().getModulePrivateSpecLoc();
5077        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5078          << 0
5079          << FixItHint::CreateRemoval(ModulePrivateLoc);
5080      } else {
5081        NewFD->setModulePrivate();
5082        if (FunctionTemplate)
5083          FunctionTemplate->setModulePrivate();
5084      }
5085    }
5086
5087    if (isFriend) {
5088      // For now, claim that the objects have no previous declaration.
5089      if (FunctionTemplate) {
5090        FunctionTemplate->setObjectOfFriendDecl(false);
5091        FunctionTemplate->setAccess(AS_public);
5092      }
5093      NewFD->setObjectOfFriendDecl(false);
5094      NewFD->setAccess(AS_public);
5095    }
5096
5097    // If a function is defined as defaulted or deleted, mark it as such now.
5098    switch (D.getFunctionDefinitionKind()) {
5099      case FDK_Declaration:
5100      case FDK_Definition:
5101        break;
5102
5103      case FDK_Defaulted:
5104        NewFD->setDefaulted();
5105        break;
5106
5107      case FDK_Deleted:
5108        NewFD->setDeletedAsWritten();
5109        break;
5110    }
5111
5112    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5113        D.isFunctionDefinition()) {
5114      // C++ [class.mfct]p2:
5115      //   A member function may be defined (8.4) in its class definition, in
5116      //   which case it is an inline member function (7.1.2)
5117      NewFD->setImplicitlyInline();
5118    }
5119
5120    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5121        !CurContext->isRecord()) {
5122      // C++ [class.static]p1:
5123      //   A data or function member of a class may be declared static
5124      //   in a class definition, in which case it is a static member of
5125      //   the class.
5126
5127      // Complain about the 'static' specifier if it's on an out-of-line
5128      // member function definition.
5129      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5130           diag::err_static_out_of_line)
5131        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5132    }
5133  }
5134
5135  // Filter out previous declarations that don't match the scope.
5136  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5137                       isExplicitSpecialization ||
5138                       isFunctionTemplateSpecialization);
5139
5140  // Handle GNU asm-label extension (encoded as an attribute).
5141  if (Expr *E = (Expr*) D.getAsmLabel()) {
5142    // The parser guarantees this is a string.
5143    StringLiteral *SE = cast<StringLiteral>(E);
5144    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5145                                                SE->getString()));
5146  }
5147
5148  // Copy the parameter declarations from the declarator D to the function
5149  // declaration NewFD, if they are available.  First scavenge them into Params.
5150  SmallVector<ParmVarDecl*, 16> Params;
5151  if (D.isFunctionDeclarator()) {
5152    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5153
5154    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5155    // function that takes no arguments, not a function that takes a
5156    // single void argument.
5157    // We let through "const void" here because Sema::GetTypeForDeclarator
5158    // already checks for that case.
5159    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5160        FTI.ArgInfo[0].Param &&
5161        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5162      // Empty arg list, don't push any params.
5163      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5164
5165      // In C++, the empty parameter-type-list must be spelled "void"; a
5166      // typedef of void is not permitted.
5167      if (getLangOptions().CPlusPlus &&
5168          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5169        bool IsTypeAlias = false;
5170        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5171          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5172        else if (const TemplateSpecializationType *TST =
5173                   Param->getType()->getAs<TemplateSpecializationType>())
5174          IsTypeAlias = TST->isTypeAlias();
5175        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5176          << IsTypeAlias;
5177      }
5178    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5179      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5180        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5181        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5182        Param->setDeclContext(NewFD);
5183        Params.push_back(Param);
5184
5185        if (Param->isInvalidDecl())
5186          NewFD->setInvalidDecl();
5187      }
5188    }
5189
5190  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5191    // When we're declaring a function with a typedef, typeof, etc as in the
5192    // following example, we'll need to synthesize (unnamed)
5193    // parameters for use in the declaration.
5194    //
5195    // @code
5196    // typedef void fn(int);
5197    // fn f;
5198    // @endcode
5199
5200    // Synthesize a parameter for each argument type.
5201    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5202         AE = FT->arg_type_end(); AI != AE; ++AI) {
5203      ParmVarDecl *Param =
5204        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5205      Param->setScopeInfo(0, Params.size());
5206      Params.push_back(Param);
5207    }
5208  } else {
5209    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5210           "Should not need args for typedef of non-prototype fn");
5211  }
5212
5213  // Finally, we know we have the right number of parameters, install them.
5214  NewFD->setParams(Params);
5215
5216  // Process the non-inheritable attributes on this declaration.
5217  ProcessDeclAttributes(S, NewFD, D,
5218                        /*NonInheritable=*/true, /*Inheritable=*/false);
5219
5220  if (!getLangOptions().CPlusPlus) {
5221    // Perform semantic checking on the function declaration.
5222    bool isExplicitSpecialization=false;
5223    if (!NewFD->isInvalidDecl()) {
5224      if (NewFD->getResultType()->isVariablyModifiedType()) {
5225        // Functions returning a variably modified type violate C99 6.7.5.2p2
5226        // because all functions have linkage.
5227        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5228        NewFD->setInvalidDecl();
5229      } else {
5230        if (NewFD->isMain())
5231          CheckMain(NewFD, D.getDeclSpec());
5232        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5233                                                    isExplicitSpecialization));
5234      }
5235    }
5236    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5237            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5238           "previous declaration set still overloaded");
5239  } else {
5240    // If the declarator is a template-id, translate the parser's template
5241    // argument list into our AST format.
5242    bool HasExplicitTemplateArgs = false;
5243    TemplateArgumentListInfo TemplateArgs;
5244    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5245      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5246      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5247      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5248      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5249                                         TemplateId->getTemplateArgs(),
5250                                         TemplateId->NumArgs);
5251      translateTemplateArguments(TemplateArgsPtr,
5252                                 TemplateArgs);
5253      TemplateArgsPtr.release();
5254
5255      HasExplicitTemplateArgs = true;
5256
5257      if (NewFD->isInvalidDecl()) {
5258        HasExplicitTemplateArgs = false;
5259      } else if (FunctionTemplate) {
5260        // Function template with explicit template arguments.
5261        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5262          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5263
5264        HasExplicitTemplateArgs = false;
5265      } else if (!isFunctionTemplateSpecialization &&
5266                 !D.getDeclSpec().isFriendSpecified()) {
5267        // We have encountered something that the user meant to be a
5268        // specialization (because it has explicitly-specified template
5269        // arguments) but that was not introduced with a "template<>" (or had
5270        // too few of them).
5271        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5272          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5273          << FixItHint::CreateInsertion(
5274                                    D.getDeclSpec().getSourceRange().getBegin(),
5275                                        "template<> ");
5276        isFunctionTemplateSpecialization = true;
5277      } else {
5278        // "friend void foo<>(int);" is an implicit specialization decl.
5279        isFunctionTemplateSpecialization = true;
5280      }
5281    } else if (isFriend && isFunctionTemplateSpecialization) {
5282      // This combination is only possible in a recovery case;  the user
5283      // wrote something like:
5284      //   template <> friend void foo(int);
5285      // which we're recovering from as if the user had written:
5286      //   friend void foo<>(int);
5287      // Go ahead and fake up a template id.
5288      HasExplicitTemplateArgs = true;
5289        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5290      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5291    }
5292
5293    // If it's a friend (and only if it's a friend), it's possible
5294    // that either the specialized function type or the specialized
5295    // template is dependent, and therefore matching will fail.  In
5296    // this case, don't check the specialization yet.
5297    bool InstantiationDependent = false;
5298    if (isFunctionTemplateSpecialization && isFriend &&
5299        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5300         TemplateSpecializationType::anyDependentTemplateArguments(
5301            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5302            InstantiationDependent))) {
5303      assert(HasExplicitTemplateArgs &&
5304             "friend function specialization without template args");
5305      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5306                                                       Previous))
5307        NewFD->setInvalidDecl();
5308    } else if (isFunctionTemplateSpecialization) {
5309      if (CurContext->isDependentContext() && CurContext->isRecord()
5310          && !isFriend) {
5311        isDependentClassScopeExplicitSpecialization = true;
5312        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5313          diag::ext_function_specialization_in_class :
5314          diag::err_function_specialization_in_class)
5315          << NewFD->getDeclName();
5316      } else if (CheckFunctionTemplateSpecialization(NewFD,
5317                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5318                                                     Previous))
5319        NewFD->setInvalidDecl();
5320
5321      // C++ [dcl.stc]p1:
5322      //   A storage-class-specifier shall not be specified in an explicit
5323      //   specialization (14.7.3)
5324      if (SC != SC_None) {
5325        if (SC != NewFD->getStorageClass())
5326          Diag(NewFD->getLocation(),
5327               diag::err_explicit_specialization_inconsistent_storage_class)
5328            << SC
5329            << FixItHint::CreateRemoval(
5330                                      D.getDeclSpec().getStorageClassSpecLoc());
5331
5332        else
5333          Diag(NewFD->getLocation(),
5334               diag::ext_explicit_specialization_storage_class)
5335            << FixItHint::CreateRemoval(
5336                                      D.getDeclSpec().getStorageClassSpecLoc());
5337      }
5338
5339    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5340      if (CheckMemberSpecialization(NewFD, Previous))
5341          NewFD->setInvalidDecl();
5342    }
5343
5344    // Perform semantic checking on the function declaration.
5345    if (!isDependentClassScopeExplicitSpecialization) {
5346      if (NewFD->isInvalidDecl()) {
5347        // If this is a class member, mark the class invalid immediately.
5348        // This avoids some consistency errors later.
5349        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5350          methodDecl->getParent()->setInvalidDecl();
5351      } else {
5352        if (NewFD->isMain())
5353          CheckMain(NewFD, D.getDeclSpec());
5354        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5355                                                    isExplicitSpecialization));
5356      }
5357    }
5358
5359    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5360            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5361           "previous declaration set still overloaded");
5362
5363    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5364        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5365      NewFD->setInvalidDecl();
5366
5367    NamedDecl *PrincipalDecl = (FunctionTemplate
5368                                ? cast<NamedDecl>(FunctionTemplate)
5369                                : NewFD);
5370
5371    if (isFriend && D.isRedeclaration()) {
5372      AccessSpecifier Access = AS_public;
5373      if (!NewFD->isInvalidDecl())
5374        Access = NewFD->getPreviousDecl()->getAccess();
5375
5376      NewFD->setAccess(Access);
5377      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5378
5379      PrincipalDecl->setObjectOfFriendDecl(true);
5380    }
5381
5382    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5383        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5384      PrincipalDecl->setNonMemberOperator();
5385
5386    // If we have a function template, check the template parameter
5387    // list. This will check and merge default template arguments.
5388    if (FunctionTemplate) {
5389      FunctionTemplateDecl *PrevTemplate =
5390                                     FunctionTemplate->getPreviousDecl();
5391      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5392                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5393                            D.getDeclSpec().isFriendSpecified()
5394                              ? (D.isFunctionDefinition()
5395                                   ? TPC_FriendFunctionTemplateDefinition
5396                                   : TPC_FriendFunctionTemplate)
5397                              : (D.getCXXScopeSpec().isSet() &&
5398                                 DC && DC->isRecord() &&
5399                                 DC->isDependentContext())
5400                                  ? TPC_ClassTemplateMember
5401                                  : TPC_FunctionTemplate);
5402    }
5403
5404    if (NewFD->isInvalidDecl()) {
5405      // Ignore all the rest of this.
5406    } else if (!D.isRedeclaration()) {
5407      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5408                                       AddToScope };
5409      // Fake up an access specifier if it's supposed to be a class member.
5410      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5411        NewFD->setAccess(AS_public);
5412
5413      // Qualified decls generally require a previous declaration.
5414      if (D.getCXXScopeSpec().isSet()) {
5415        // ...with the major exception of templated-scope or
5416        // dependent-scope friend declarations.
5417
5418        // TODO: we currently also suppress this check in dependent
5419        // contexts because (1) the parameter depth will be off when
5420        // matching friend templates and (2) we might actually be
5421        // selecting a friend based on a dependent factor.  But there
5422        // are situations where these conditions don't apply and we
5423        // can actually do this check immediately.
5424        if (isFriend &&
5425            (TemplateParamLists.size() ||
5426             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5427             CurContext->isDependentContext())) {
5428          // ignore these
5429        } else {
5430          // The user tried to provide an out-of-line definition for a
5431          // function that is a member of a class or namespace, but there
5432          // was no such member function declared (C++ [class.mfct]p2,
5433          // C++ [namespace.memdef]p2). For example:
5434          //
5435          // class X {
5436          //   void f() const;
5437          // };
5438          //
5439          // void X::f() { } // ill-formed
5440          //
5441          // Complain about this problem, and attempt to suggest close
5442          // matches (e.g., those that differ only in cv-qualifiers and
5443          // whether the parameter types are references).
5444
5445          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5446                                                               NewFD,
5447                                                               ExtraArgs)) {
5448            AddToScope = ExtraArgs.AddToScope;
5449            return Result;
5450          }
5451        }
5452
5453        // Unqualified local friend declarations are required to resolve
5454        // to something.
5455      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5456        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5457                                                             NewFD,
5458                                                             ExtraArgs)) {
5459          AddToScope = ExtraArgs.AddToScope;
5460          return Result;
5461        }
5462      }
5463
5464    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5465               !isFriend && !isFunctionTemplateSpecialization &&
5466               !isExplicitSpecialization) {
5467      // An out-of-line member function declaration must also be a
5468      // definition (C++ [dcl.meaning]p1).
5469      // Note that this is not the case for explicit specializations of
5470      // function templates or member functions of class templates, per
5471      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5472      // extension for compatibility with old SWIG code which likes to
5473      // generate them.
5474      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5475        << D.getCXXScopeSpec().getRange();
5476    }
5477  }
5478
5479
5480  // Handle attributes. We need to have merged decls when handling attributes
5481  // (for example to check for conflicts, etc).
5482  // FIXME: This needs to happen before we merge declarations. Then,
5483  // let attribute merging cope with attribute conflicts.
5484  ProcessDeclAttributes(S, NewFD, D,
5485                        /*NonInheritable=*/false, /*Inheritable=*/true);
5486
5487  // attributes declared post-definition are currently ignored
5488  // FIXME: This should happen during attribute merging
5489  if (D.isRedeclaration() && Previous.isSingleResult()) {
5490    const FunctionDecl *Def;
5491    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5492    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5493      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5494      Diag(Def->getLocation(), diag::note_previous_definition);
5495    }
5496  }
5497
5498  AddKnownFunctionAttributes(NewFD);
5499
5500  if (NewFD->hasAttr<OverloadableAttr>() &&
5501      !NewFD->getType()->getAs<FunctionProtoType>()) {
5502    Diag(NewFD->getLocation(),
5503         diag::err_attribute_overloadable_no_prototype)
5504      << NewFD;
5505
5506    // Turn this into a variadic function with no parameters.
5507    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5508    FunctionProtoType::ExtProtoInfo EPI;
5509    EPI.Variadic = true;
5510    EPI.ExtInfo = FT->getExtInfo();
5511
5512    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5513    NewFD->setType(R);
5514  }
5515
5516  // If there's a #pragma GCC visibility in scope, and this isn't a class
5517  // member, set the visibility of this function.
5518  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5519    AddPushedVisibilityAttribute(NewFD);
5520
5521  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5522  // marking the function.
5523  AddCFAuditedAttribute(NewFD);
5524
5525  // If this is a locally-scoped extern C function, update the
5526  // map of such names.
5527  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5528      && !NewFD->isInvalidDecl())
5529    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5530
5531  // Set this FunctionDecl's range up to the right paren.
5532  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5533
5534  if (getLangOptions().CPlusPlus) {
5535    if (FunctionTemplate) {
5536      if (NewFD->isInvalidDecl())
5537        FunctionTemplate->setInvalidDecl();
5538      return FunctionTemplate;
5539    }
5540  }
5541
5542  MarkUnusedFileScopedDecl(NewFD);
5543
5544  if (getLangOptions().CUDA)
5545    if (IdentifierInfo *II = NewFD->getIdentifier())
5546      if (!NewFD->isInvalidDecl() &&
5547          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5548        if (II->isStr("cudaConfigureCall")) {
5549          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5550            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5551
5552          Context.setcudaConfigureCallDecl(NewFD);
5553        }
5554      }
5555
5556  // Here we have an function template explicit specialization at class scope.
5557  // The actually specialization will be postponed to template instatiation
5558  // time via the ClassScopeFunctionSpecializationDecl node.
5559  if (isDependentClassScopeExplicitSpecialization) {
5560    ClassScopeFunctionSpecializationDecl *NewSpec =
5561                         ClassScopeFunctionSpecializationDecl::Create(
5562                                Context, CurContext,  SourceLocation(),
5563                                cast<CXXMethodDecl>(NewFD));
5564    CurContext->addDecl(NewSpec);
5565    AddToScope = false;
5566  }
5567
5568  return NewFD;
5569}
5570
5571/// \brief Perform semantic checking of a new function declaration.
5572///
5573/// Performs semantic analysis of the new function declaration
5574/// NewFD. This routine performs all semantic checking that does not
5575/// require the actual declarator involved in the declaration, and is
5576/// used both for the declaration of functions as they are parsed
5577/// (called via ActOnDeclarator) and for the declaration of functions
5578/// that have been instantiated via C++ template instantiation (called
5579/// via InstantiateDecl).
5580///
5581/// \param IsExplicitSpecialiation whether this new function declaration is
5582/// an explicit specialization of the previous declaration.
5583///
5584/// This sets NewFD->isInvalidDecl() to true if there was an error.
5585///
5586/// Returns true if the function declaration is a redeclaration.
5587bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5588                                    LookupResult &Previous,
5589                                    bool IsExplicitSpecialization) {
5590  assert(!NewFD->getResultType()->isVariablyModifiedType()
5591         && "Variably modified return types are not handled here");
5592
5593  // Check for a previous declaration of this name.
5594  if (Previous.empty() && NewFD->isExternC()) {
5595    // Since we did not find anything by this name and we're declaring
5596    // an extern "C" function, look for a non-visible extern "C"
5597    // declaration with the same name.
5598    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5599      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5600    if (Pos != LocallyScopedExternalDecls.end())
5601      Previous.addDecl(Pos->second);
5602  }
5603
5604  bool Redeclaration = false;
5605
5606  // Merge or overload the declaration with an existing declaration of
5607  // the same name, if appropriate.
5608  if (!Previous.empty()) {
5609    // Determine whether NewFD is an overload of PrevDecl or
5610    // a declaration that requires merging. If it's an overload,
5611    // there's no more work to do here; we'll just add the new
5612    // function to the scope.
5613
5614    NamedDecl *OldDecl = 0;
5615    if (!AllowOverloadingOfFunction(Previous, Context)) {
5616      Redeclaration = true;
5617      OldDecl = Previous.getFoundDecl();
5618    } else {
5619      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5620                            /*NewIsUsingDecl*/ false)) {
5621      case Ovl_Match:
5622        Redeclaration = true;
5623        break;
5624
5625      case Ovl_NonFunction:
5626        Redeclaration = true;
5627        break;
5628
5629      case Ovl_Overload:
5630        Redeclaration = false;
5631        break;
5632      }
5633
5634      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5635        // If a function name is overloadable in C, then every function
5636        // with that name must be marked "overloadable".
5637        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5638          << Redeclaration << NewFD;
5639        NamedDecl *OverloadedDecl = 0;
5640        if (Redeclaration)
5641          OverloadedDecl = OldDecl;
5642        else if (!Previous.empty())
5643          OverloadedDecl = Previous.getRepresentativeDecl();
5644        if (OverloadedDecl)
5645          Diag(OverloadedDecl->getLocation(),
5646               diag::note_attribute_overloadable_prev_overload);
5647        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5648                                                        Context));
5649      }
5650    }
5651
5652    if (Redeclaration) {
5653      // NewFD and OldDecl represent declarations that need to be
5654      // merged.
5655      if (MergeFunctionDecl(NewFD, OldDecl)) {
5656        NewFD->setInvalidDecl();
5657        return Redeclaration;
5658      }
5659
5660      Previous.clear();
5661      Previous.addDecl(OldDecl);
5662
5663      if (FunctionTemplateDecl *OldTemplateDecl
5664                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5665        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5666        FunctionTemplateDecl *NewTemplateDecl
5667          = NewFD->getDescribedFunctionTemplate();
5668        assert(NewTemplateDecl && "Template/non-template mismatch");
5669        if (CXXMethodDecl *Method
5670              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5671          Method->setAccess(OldTemplateDecl->getAccess());
5672          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5673        }
5674
5675        // If this is an explicit specialization of a member that is a function
5676        // template, mark it as a member specialization.
5677        if (IsExplicitSpecialization &&
5678            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5679          NewTemplateDecl->setMemberSpecialization();
5680          assert(OldTemplateDecl->isMemberSpecialization());
5681        }
5682
5683      } else {
5684        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5685          NewFD->setAccess(OldDecl->getAccess());
5686        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5687      }
5688    }
5689  }
5690
5691  // Semantic checking for this function declaration (in isolation).
5692  if (getLangOptions().CPlusPlus) {
5693    // C++-specific checks.
5694    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5695      CheckConstructor(Constructor);
5696    } else if (CXXDestructorDecl *Destructor =
5697                dyn_cast<CXXDestructorDecl>(NewFD)) {
5698      CXXRecordDecl *Record = Destructor->getParent();
5699      QualType ClassType = Context.getTypeDeclType(Record);
5700
5701      // FIXME: Shouldn't we be able to perform this check even when the class
5702      // type is dependent? Both gcc and edg can handle that.
5703      if (!ClassType->isDependentType()) {
5704        DeclarationName Name
5705          = Context.DeclarationNames.getCXXDestructorName(
5706                                        Context.getCanonicalType(ClassType));
5707        if (NewFD->getDeclName() != Name) {
5708          Diag(NewFD->getLocation(), diag::err_destructor_name);
5709          NewFD->setInvalidDecl();
5710          return Redeclaration;
5711        }
5712      }
5713    } else if (CXXConversionDecl *Conversion
5714               = dyn_cast<CXXConversionDecl>(NewFD)) {
5715      ActOnConversionDeclarator(Conversion);
5716    }
5717
5718    // Find any virtual functions that this function overrides.
5719    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5720      if (!Method->isFunctionTemplateSpecialization() &&
5721          !Method->getDescribedFunctionTemplate()) {
5722        if (AddOverriddenMethods(Method->getParent(), Method)) {
5723          // If the function was marked as "static", we have a problem.
5724          if (NewFD->getStorageClass() == SC_Static) {
5725            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5726              << NewFD->getDeclName();
5727            for (CXXMethodDecl::method_iterator
5728                      Overridden = Method->begin_overridden_methods(),
5729                   OverriddenEnd = Method->end_overridden_methods();
5730                 Overridden != OverriddenEnd;
5731                 ++Overridden) {
5732              Diag((*Overridden)->getLocation(),
5733                   diag::note_overridden_virtual_function);
5734            }
5735          }
5736        }
5737      }
5738    }
5739
5740    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5741    if (NewFD->isOverloadedOperator() &&
5742        CheckOverloadedOperatorDeclaration(NewFD)) {
5743      NewFD->setInvalidDecl();
5744      return Redeclaration;
5745    }
5746
5747    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5748    if (NewFD->getLiteralIdentifier() &&
5749        CheckLiteralOperatorDeclaration(NewFD)) {
5750      NewFD->setInvalidDecl();
5751      return Redeclaration;
5752    }
5753
5754    // In C++, check default arguments now that we have merged decls. Unless
5755    // the lexical context is the class, because in this case this is done
5756    // during delayed parsing anyway.
5757    if (!CurContext->isRecord())
5758      CheckCXXDefaultArguments(NewFD);
5759
5760    // If this function declares a builtin function, check the type of this
5761    // declaration against the expected type for the builtin.
5762    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5763      ASTContext::GetBuiltinTypeError Error;
5764      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5765      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5766        // The type of this function differs from the type of the builtin,
5767        // so forget about the builtin entirely.
5768        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5769      }
5770    }
5771  }
5772  return Redeclaration;
5773}
5774
5775void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5776  // C++ [basic.start.main]p3:  A program that declares main to be inline
5777  //   or static is ill-formed.
5778  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5779  //   shall not appear in a declaration of main.
5780  // static main is not an error under C99, but we should warn about it.
5781  if (FD->getStorageClass() == SC_Static)
5782    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5783         ? diag::err_static_main : diag::warn_static_main)
5784      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5785  if (FD->isInlineSpecified())
5786    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5787      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5788
5789  QualType T = FD->getType();
5790  assert(T->isFunctionType() && "function decl is not of function type");
5791  const FunctionType* FT = T->getAs<FunctionType>();
5792
5793  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5794    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5795    FD->setInvalidDecl(true);
5796  }
5797
5798  // Treat protoless main() as nullary.
5799  if (isa<FunctionNoProtoType>(FT)) return;
5800
5801  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5802  unsigned nparams = FTP->getNumArgs();
5803  assert(FD->getNumParams() == nparams);
5804
5805  bool HasExtraParameters = (nparams > 3);
5806
5807  // Darwin passes an undocumented fourth argument of type char**.  If
5808  // other platforms start sprouting these, the logic below will start
5809  // getting shifty.
5810  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5811    HasExtraParameters = false;
5812
5813  if (HasExtraParameters) {
5814    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5815    FD->setInvalidDecl(true);
5816    nparams = 3;
5817  }
5818
5819  // FIXME: a lot of the following diagnostics would be improved
5820  // if we had some location information about types.
5821
5822  QualType CharPP =
5823    Context.getPointerType(Context.getPointerType(Context.CharTy));
5824  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5825
5826  for (unsigned i = 0; i < nparams; ++i) {
5827    QualType AT = FTP->getArgType(i);
5828
5829    bool mismatch = true;
5830
5831    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5832      mismatch = false;
5833    else if (Expected[i] == CharPP) {
5834      // As an extension, the following forms are okay:
5835      //   char const **
5836      //   char const * const *
5837      //   char * const *
5838
5839      QualifierCollector qs;
5840      const PointerType* PT;
5841      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5842          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5843          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5844        qs.removeConst();
5845        mismatch = !qs.empty();
5846      }
5847    }
5848
5849    if (mismatch) {
5850      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5851      // TODO: suggest replacing given type with expected type
5852      FD->setInvalidDecl(true);
5853    }
5854  }
5855
5856  if (nparams == 1 && !FD->isInvalidDecl()) {
5857    Diag(FD->getLocation(), diag::warn_main_one_arg);
5858  }
5859
5860  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5861    Diag(FD->getLocation(), diag::err_main_template_decl);
5862    FD->setInvalidDecl();
5863  }
5864}
5865
5866bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5867  // FIXME: Need strict checking.  In C89, we need to check for
5868  // any assignment, increment, decrement, function-calls, or
5869  // commas outside of a sizeof.  In C99, it's the same list,
5870  // except that the aforementioned are allowed in unevaluated
5871  // expressions.  Everything else falls under the
5872  // "may accept other forms of constant expressions" exception.
5873  // (We never end up here for C++, so the constant expression
5874  // rules there don't matter.)
5875  if (Init->isConstantInitializer(Context, false))
5876    return false;
5877  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5878    << Init->getSourceRange();
5879  return true;
5880}
5881
5882namespace {
5883  // Visits an initialization expression to see if OrigDecl is evaluated in
5884  // its own initialization and throws a warning if it does.
5885  class SelfReferenceChecker
5886      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5887    Sema &S;
5888    Decl *OrigDecl;
5889    bool isRecordType;
5890    bool isPODType;
5891
5892  public:
5893    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5894
5895    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5896                                                    S(S), OrigDecl(OrigDecl) {
5897      isPODType = false;
5898      isRecordType = false;
5899      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5900        isPODType = VD->getType().isPODType(S.Context);
5901        isRecordType = VD->getType()->isRecordType();
5902      }
5903    }
5904
5905    void VisitExpr(Expr *E) {
5906      if (isa<ObjCMessageExpr>(*E)) return;
5907      if (isRecordType) {
5908        Expr *expr = E;
5909        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5910          ValueDecl *VD = ME->getMemberDecl();
5911          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5912          expr = ME->getBase();
5913        }
5914        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5915          HandleDeclRefExpr(DRE);
5916          return;
5917        }
5918      }
5919      Inherited::VisitExpr(E);
5920    }
5921
5922    void VisitMemberExpr(MemberExpr *E) {
5923      if (E->getType()->canDecayToPointerType()) return;
5924      if (isa<FieldDecl>(E->getMemberDecl()))
5925        if (DeclRefExpr *DRE
5926              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5927          HandleDeclRefExpr(DRE);
5928          return;
5929        }
5930      Inherited::VisitMemberExpr(E);
5931    }
5932
5933    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5934      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5935          (isRecordType && E->getCastKind() == CK_NoOp)) {
5936        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5937        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5938          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5939        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5940          HandleDeclRefExpr(DRE);
5941          return;
5942        }
5943      }
5944      Inherited::VisitImplicitCastExpr(E);
5945    }
5946
5947    void VisitUnaryOperator(UnaryOperator *E) {
5948      // For POD record types, addresses of its own members are well-defined.
5949      if (isRecordType && isPODType) return;
5950      Inherited::VisitUnaryOperator(E);
5951    }
5952
5953    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5954      Decl* ReferenceDecl = DRE->getDecl();
5955      if (OrigDecl != ReferenceDecl) return;
5956      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5957                          Sema::NotForRedeclaration);
5958      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5959                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5960                              << Result.getLookupName()
5961                              << OrigDecl->getLocation()
5962                              << DRE->getSourceRange());
5963    }
5964  };
5965}
5966
5967/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5968void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5969  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5970}
5971
5972/// AddInitializerToDecl - Adds the initializer Init to the
5973/// declaration dcl. If DirectInit is true, this is C++ direct
5974/// initialization rather than copy initialization.
5975void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5976                                bool DirectInit, bool TypeMayContainAuto) {
5977  // If there is no declaration, there was an error parsing it.  Just ignore
5978  // the initializer.
5979  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5980    return;
5981
5982  // Check for self-references within variable initializers.
5983  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5984    // Variables declared within a function/method body are handled
5985    // by a dataflow analysis.
5986    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5987      CheckSelfReference(RealDecl, Init);
5988  }
5989  else {
5990    CheckSelfReference(RealDecl, Init);
5991  }
5992
5993  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5994    // With declarators parsed the way they are, the parser cannot
5995    // distinguish between a normal initializer and a pure-specifier.
5996    // Thus this grotesque test.
5997    IntegerLiteral *IL;
5998    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5999        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6000      CheckPureMethod(Method, Init->getSourceRange());
6001    else {
6002      Diag(Method->getLocation(), diag::err_member_function_initialization)
6003        << Method->getDeclName() << Init->getSourceRange();
6004      Method->setInvalidDecl();
6005    }
6006    return;
6007  }
6008
6009  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6010  if (!VDecl) {
6011    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6012    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6013    RealDecl->setInvalidDecl();
6014    return;
6015  }
6016
6017  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6018  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6019    TypeSourceInfo *DeducedType = 0;
6020    if (DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType) ==
6021            DAR_Failed)
6022      DiagnoseAutoDeductionFailure(VDecl, Init);
6023    if (!DeducedType) {
6024      RealDecl->setInvalidDecl();
6025      return;
6026    }
6027    VDecl->setTypeSourceInfo(DeducedType);
6028    VDecl->setType(DeducedType->getType());
6029
6030    // In ARC, infer lifetime.
6031    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6032      VDecl->setInvalidDecl();
6033
6034    // If this is a redeclaration, check that the type we just deduced matches
6035    // the previously declared type.
6036    if (VarDecl *Old = VDecl->getPreviousDecl())
6037      MergeVarDeclTypes(VDecl, Old);
6038  }
6039
6040  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6041    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6042    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6043    VDecl->setInvalidDecl();
6044    return;
6045  }
6046
6047
6048  // A definition must end up with a complete type, which means it must be
6049  // complete with the restriction that an array type might be completed by the
6050  // initializer; note that later code assumes this restriction.
6051  QualType BaseDeclType = VDecl->getType();
6052  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6053    BaseDeclType = Array->getElementType();
6054  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6055                          diag::err_typecheck_decl_incomplete_type)) {
6056    RealDecl->setInvalidDecl();
6057    return;
6058  }
6059
6060  // The variable can not have an abstract class type.
6061  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6062                             diag::err_abstract_type_in_decl,
6063                             AbstractVariableType))
6064    VDecl->setInvalidDecl();
6065
6066  const VarDecl *Def;
6067  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6068    Diag(VDecl->getLocation(), diag::err_redefinition)
6069      << VDecl->getDeclName();
6070    Diag(Def->getLocation(), diag::note_previous_definition);
6071    VDecl->setInvalidDecl();
6072    return;
6073  }
6074
6075  const VarDecl* PrevInit = 0;
6076  if (getLangOptions().CPlusPlus) {
6077    // C++ [class.static.data]p4
6078    //   If a static data member is of const integral or const
6079    //   enumeration type, its declaration in the class definition can
6080    //   specify a constant-initializer which shall be an integral
6081    //   constant expression (5.19). In that case, the member can appear
6082    //   in integral constant expressions. The member shall still be
6083    //   defined in a namespace scope if it is used in the program and the
6084    //   namespace scope definition shall not contain an initializer.
6085    //
6086    // We already performed a redefinition check above, but for static
6087    // data members we also need to check whether there was an in-class
6088    // declaration with an initializer.
6089    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6090      Diag(VDecl->getLocation(), diag::err_redefinition)
6091        << VDecl->getDeclName();
6092      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6093      return;
6094    }
6095
6096    if (VDecl->hasLocalStorage())
6097      getCurFunction()->setHasBranchProtectedScope();
6098
6099    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6100      VDecl->setInvalidDecl();
6101      return;
6102    }
6103  }
6104
6105  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6106  // a kernel function cannot be initialized."
6107  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6108    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6109    VDecl->setInvalidDecl();
6110    return;
6111  }
6112
6113  // Get the decls type and save a reference for later, since
6114  // CheckInitializerTypes may change it.
6115  QualType DclT = VDecl->getType(), SavT = DclT;
6116
6117  // Perform the initialization.
6118  if (!VDecl->isInvalidDecl()) {
6119    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6120    InitializationKind Kind
6121      = DirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6122                                                      Init->getLocStart(),
6123                                                      Init->getLocEnd())
6124                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6125                                                    Init->getLocStart());
6126
6127    InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6128    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6129                                              MultiExprArg(*this, &Init, 1),
6130                                              &DclT);
6131    if (Result.isInvalid()) {
6132      VDecl->setInvalidDecl();
6133      return;
6134    }
6135
6136    Init = Result.takeAs<Expr>();
6137  }
6138
6139  // If the type changed, it means we had an incomplete type that was
6140  // completed by the initializer. For example:
6141  //   int ary[] = { 1, 3, 5 };
6142  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6143  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
6144    VDecl->setType(DclT);
6145    Init->setType(DclT.getNonReferenceType());
6146  }
6147
6148  // Check any implicit conversions within the expression.
6149  CheckImplicitConversions(Init, VDecl->getLocation());
6150
6151  if (!VDecl->isInvalidDecl())
6152    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6153
6154  Init = MaybeCreateExprWithCleanups(Init);
6155  // Attach the initializer to the decl.
6156  VDecl->setInit(Init);
6157
6158  if (VDecl->isLocalVarDecl()) {
6159    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6160    // static storage duration shall be constant expressions or string literals.
6161    // C++ does not have this restriction.
6162    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl() &&
6163        VDecl->getStorageClass() == SC_Static)
6164      CheckForConstantInitializer(Init, DclT);
6165  } else if (VDecl->isStaticDataMember() &&
6166             VDecl->getLexicalDeclContext()->isRecord()) {
6167    // This is an in-class initialization for a static data member, e.g.,
6168    //
6169    // struct S {
6170    //   static const int value = 17;
6171    // };
6172
6173    // C++ [class.mem]p4:
6174    //   A member-declarator can contain a constant-initializer only
6175    //   if it declares a static member (9.4) of const integral or
6176    //   const enumeration type, see 9.4.2.
6177    //
6178    // C++11 [class.static.data]p3:
6179    //   If a non-volatile const static data member is of integral or
6180    //   enumeration type, its declaration in the class definition can
6181    //   specify a brace-or-equal-initializer in which every initalizer-clause
6182    //   that is an assignment-expression is a constant expression. A static
6183    //   data member of literal type can be declared in the class definition
6184    //   with the constexpr specifier; if so, its declaration shall specify a
6185    //   brace-or-equal-initializer in which every initializer-clause that is
6186    //   an assignment-expression is a constant expression.
6187
6188    // Do nothing on dependent types.
6189    if (DclT->isDependentType()) {
6190
6191    // Allow any 'static constexpr' members, whether or not they are of literal
6192    // type. We separately check that the initializer is a constant expression,
6193    // which implicitly requires the member to be of literal type.
6194    } else if (VDecl->isConstexpr()) {
6195
6196    // Require constness.
6197    } else if (!DclT.isConstQualified()) {
6198      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6199        << Init->getSourceRange();
6200      VDecl->setInvalidDecl();
6201
6202    // We allow integer constant expressions in all cases.
6203    } else if (DclT->isIntegralOrEnumerationType()) {
6204      // Check whether the expression is a constant expression.
6205      SourceLocation Loc;
6206      if (getLangOptions().CPlusPlus0x && DclT.isVolatileQualified())
6207        // In C++11, a non-constexpr const static data member with an
6208        // in-class initializer cannot be volatile.
6209        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6210      else if (Init->isValueDependent())
6211        ; // Nothing to check.
6212      else if (Init->isIntegerConstantExpr(Context, &Loc))
6213        ; // Ok, it's an ICE!
6214      else if (Init->isEvaluatable(Context)) {
6215        // If we can constant fold the initializer through heroics, accept it,
6216        // but report this as a use of an extension for -pedantic.
6217        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6218          << Init->getSourceRange();
6219      } else {
6220        // Otherwise, this is some crazy unknown case.  Report the issue at the
6221        // location provided by the isIntegerConstantExpr failed check.
6222        Diag(Loc, diag::err_in_class_initializer_non_constant)
6223          << Init->getSourceRange();
6224        VDecl->setInvalidDecl();
6225      }
6226
6227    // We allow foldable floating-point constants as an extension.
6228    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6229      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6230        << DclT << Init->getSourceRange();
6231      if (getLangOptions().CPlusPlus0x)
6232        Diag(VDecl->getLocation(),
6233             diag::note_in_class_initializer_float_type_constexpr)
6234          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6235
6236      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6237        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6238          << Init->getSourceRange();
6239        VDecl->setInvalidDecl();
6240      }
6241
6242    // Suggest adding 'constexpr' in C++11 for literal types.
6243    } else if (getLangOptions().CPlusPlus0x && DclT->isLiteralType()) {
6244      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6245        << DclT << Init->getSourceRange()
6246        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6247      VDecl->setConstexpr(true);
6248
6249    } else {
6250      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6251        << DclT << Init->getSourceRange();
6252      VDecl->setInvalidDecl();
6253    }
6254  } else if (VDecl->isFileVarDecl()) {
6255    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6256        (!getLangOptions().CPlusPlus ||
6257         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6258      Diag(VDecl->getLocation(), diag::warn_extern_init);
6259
6260    // C99 6.7.8p4. All file scoped initializers need to be constant.
6261    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl())
6262      CheckForConstantInitializer(Init, DclT);
6263  }
6264
6265  CheckCompleteVariableDeclaration(VDecl);
6266}
6267
6268/// ActOnInitializerError - Given that there was an error parsing an
6269/// initializer for the given declaration, try to return to some form
6270/// of sanity.
6271void Sema::ActOnInitializerError(Decl *D) {
6272  // Our main concern here is re-establishing invariants like "a
6273  // variable's type is either dependent or complete".
6274  if (!D || D->isInvalidDecl()) return;
6275
6276  VarDecl *VD = dyn_cast<VarDecl>(D);
6277  if (!VD) return;
6278
6279  // Auto types are meaningless if we can't make sense of the initializer.
6280  if (ParsingInitForAutoVars.count(D)) {
6281    D->setInvalidDecl();
6282    return;
6283  }
6284
6285  QualType Ty = VD->getType();
6286  if (Ty->isDependentType()) return;
6287
6288  // Require a complete type.
6289  if (RequireCompleteType(VD->getLocation(),
6290                          Context.getBaseElementType(Ty),
6291                          diag::err_typecheck_decl_incomplete_type)) {
6292    VD->setInvalidDecl();
6293    return;
6294  }
6295
6296  // Require an abstract type.
6297  if (RequireNonAbstractType(VD->getLocation(), Ty,
6298                             diag::err_abstract_type_in_decl,
6299                             AbstractVariableType)) {
6300    VD->setInvalidDecl();
6301    return;
6302  }
6303
6304  // Don't bother complaining about constructors or destructors,
6305  // though.
6306}
6307
6308void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6309                                  bool TypeMayContainAuto) {
6310  // If there is no declaration, there was an error parsing it. Just ignore it.
6311  if (RealDecl == 0)
6312    return;
6313
6314  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6315    QualType Type = Var->getType();
6316
6317    // C++11 [dcl.spec.auto]p3
6318    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6319      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6320        << Var->getDeclName() << Type;
6321      Var->setInvalidDecl();
6322      return;
6323    }
6324
6325    // C++11 [class.static.data]p3: A static data member can be declared with
6326    // the constexpr specifier; if so, its declaration shall specify
6327    // a brace-or-equal-initializer.
6328    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6329    // the definition of a variable [...] or the declaration of a static data
6330    // member.
6331    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6332      if (Var->isStaticDataMember())
6333        Diag(Var->getLocation(),
6334             diag::err_constexpr_static_mem_var_requires_init)
6335          << Var->getDeclName();
6336      else
6337        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6338      Var->setInvalidDecl();
6339      return;
6340    }
6341
6342    switch (Var->isThisDeclarationADefinition()) {
6343    case VarDecl::Definition:
6344      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6345        break;
6346
6347      // We have an out-of-line definition of a static data member
6348      // that has an in-class initializer, so we type-check this like
6349      // a declaration.
6350      //
6351      // Fall through
6352
6353    case VarDecl::DeclarationOnly:
6354      // It's only a declaration.
6355
6356      // Block scope. C99 6.7p7: If an identifier for an object is
6357      // declared with no linkage (C99 6.2.2p6), the type for the
6358      // object shall be complete.
6359      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6360          !Var->getLinkage() && !Var->isInvalidDecl() &&
6361          RequireCompleteType(Var->getLocation(), Type,
6362                              diag::err_typecheck_decl_incomplete_type))
6363        Var->setInvalidDecl();
6364
6365      // Make sure that the type is not abstract.
6366      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6367          RequireNonAbstractType(Var->getLocation(), Type,
6368                                 diag::err_abstract_type_in_decl,
6369                                 AbstractVariableType))
6370        Var->setInvalidDecl();
6371      return;
6372
6373    case VarDecl::TentativeDefinition:
6374      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6375      // object that has file scope without an initializer, and without a
6376      // storage-class specifier or with the storage-class specifier "static",
6377      // constitutes a tentative definition. Note: A tentative definition with
6378      // external linkage is valid (C99 6.2.2p5).
6379      if (!Var->isInvalidDecl()) {
6380        if (const IncompleteArrayType *ArrayT
6381                                    = Context.getAsIncompleteArrayType(Type)) {
6382          if (RequireCompleteType(Var->getLocation(),
6383                                  ArrayT->getElementType(),
6384                                  diag::err_illegal_decl_array_incomplete_type))
6385            Var->setInvalidDecl();
6386        } else if (Var->getStorageClass() == SC_Static) {
6387          // C99 6.9.2p3: If the declaration of an identifier for an object is
6388          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6389          // declared type shall not be an incomplete type.
6390          // NOTE: code such as the following
6391          //     static struct s;
6392          //     struct s { int a; };
6393          // is accepted by gcc. Hence here we issue a warning instead of
6394          // an error and we do not invalidate the static declaration.
6395          // NOTE: to avoid multiple warnings, only check the first declaration.
6396          if (Var->getPreviousDecl() == 0)
6397            RequireCompleteType(Var->getLocation(), Type,
6398                                diag::ext_typecheck_decl_incomplete_type);
6399        }
6400      }
6401
6402      // Record the tentative definition; we're done.
6403      if (!Var->isInvalidDecl())
6404        TentativeDefinitions.push_back(Var);
6405      return;
6406    }
6407
6408    // Provide a specific diagnostic for uninitialized variable
6409    // definitions with incomplete array type.
6410    if (Type->isIncompleteArrayType()) {
6411      Diag(Var->getLocation(),
6412           diag::err_typecheck_incomplete_array_needs_initializer);
6413      Var->setInvalidDecl();
6414      return;
6415    }
6416
6417    // Provide a specific diagnostic for uninitialized variable
6418    // definitions with reference type.
6419    if (Type->isReferenceType()) {
6420      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6421        << Var->getDeclName()
6422        << SourceRange(Var->getLocation(), Var->getLocation());
6423      Var->setInvalidDecl();
6424      return;
6425    }
6426
6427    // Do not attempt to type-check the default initializer for a
6428    // variable with dependent type.
6429    if (Type->isDependentType())
6430      return;
6431
6432    if (Var->isInvalidDecl())
6433      return;
6434
6435    if (RequireCompleteType(Var->getLocation(),
6436                            Context.getBaseElementType(Type),
6437                            diag::err_typecheck_decl_incomplete_type)) {
6438      Var->setInvalidDecl();
6439      return;
6440    }
6441
6442    // The variable can not have an abstract class type.
6443    if (RequireNonAbstractType(Var->getLocation(), Type,
6444                               diag::err_abstract_type_in_decl,
6445                               AbstractVariableType)) {
6446      Var->setInvalidDecl();
6447      return;
6448    }
6449
6450    // Check for jumps past the implicit initializer.  C++0x
6451    // clarifies that this applies to a "variable with automatic
6452    // storage duration", not a "local variable".
6453    // C++11 [stmt.dcl]p3
6454    //   A program that jumps from a point where a variable with automatic
6455    //   storage duration is not in scope to a point where it is in scope is
6456    //   ill-formed unless the variable has scalar type, class type with a
6457    //   trivial default constructor and a trivial destructor, a cv-qualified
6458    //   version of one of these types, or an array of one of the preceding
6459    //   types and is declared without an initializer.
6460    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6461      if (const RecordType *Record
6462            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6463        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6464        // Mark the function for further checking even if the looser rules of
6465        // C++11 do not require such checks, so that we can diagnose
6466        // incompatibilities with C++98.
6467        if (!CXXRecord->isPOD())
6468          getCurFunction()->setHasBranchProtectedScope();
6469      }
6470    }
6471
6472    // C++03 [dcl.init]p9:
6473    //   If no initializer is specified for an object, and the
6474    //   object is of (possibly cv-qualified) non-POD class type (or
6475    //   array thereof), the object shall be default-initialized; if
6476    //   the object is of const-qualified type, the underlying class
6477    //   type shall have a user-declared default
6478    //   constructor. Otherwise, if no initializer is specified for
6479    //   a non- static object, the object and its subobjects, if
6480    //   any, have an indeterminate initial value); if the object
6481    //   or any of its subobjects are of const-qualified type, the
6482    //   program is ill-formed.
6483    // C++0x [dcl.init]p11:
6484    //   If no initializer is specified for an object, the object is
6485    //   default-initialized; [...].
6486    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6487    InitializationKind Kind
6488      = InitializationKind::CreateDefault(Var->getLocation());
6489
6490    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6491    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6492                                      MultiExprArg(*this, 0, 0));
6493    if (Init.isInvalid())
6494      Var->setInvalidDecl();
6495    else if (Init.get())
6496      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6497
6498    CheckCompleteVariableDeclaration(Var);
6499  }
6500}
6501
6502void Sema::ActOnCXXForRangeDecl(Decl *D) {
6503  VarDecl *VD = dyn_cast<VarDecl>(D);
6504  if (!VD) {
6505    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6506    D->setInvalidDecl();
6507    return;
6508  }
6509
6510  VD->setCXXForRangeDecl(true);
6511
6512  // for-range-declaration cannot be given a storage class specifier.
6513  int Error = -1;
6514  switch (VD->getStorageClassAsWritten()) {
6515  case SC_None:
6516    break;
6517  case SC_Extern:
6518    Error = 0;
6519    break;
6520  case SC_Static:
6521    Error = 1;
6522    break;
6523  case SC_PrivateExtern:
6524    Error = 2;
6525    break;
6526  case SC_Auto:
6527    Error = 3;
6528    break;
6529  case SC_Register:
6530    Error = 4;
6531    break;
6532  case SC_OpenCLWorkGroupLocal:
6533    llvm_unreachable("Unexpected storage class");
6534  }
6535  if (VD->isConstexpr())
6536    Error = 5;
6537  if (Error != -1) {
6538    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6539      << VD->getDeclName() << Error;
6540    D->setInvalidDecl();
6541  }
6542}
6543
6544void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6545  if (var->isInvalidDecl()) return;
6546
6547  // In ARC, don't allow jumps past the implicit initialization of a
6548  // local retaining variable.
6549  if (getLangOptions().ObjCAutoRefCount &&
6550      var->hasLocalStorage()) {
6551    switch (var->getType().getObjCLifetime()) {
6552    case Qualifiers::OCL_None:
6553    case Qualifiers::OCL_ExplicitNone:
6554    case Qualifiers::OCL_Autoreleasing:
6555      break;
6556
6557    case Qualifiers::OCL_Weak:
6558    case Qualifiers::OCL_Strong:
6559      getCurFunction()->setHasBranchProtectedScope();
6560      break;
6561    }
6562  }
6563
6564  // All the following checks are C++ only.
6565  if (!getLangOptions().CPlusPlus) return;
6566
6567  QualType baseType = Context.getBaseElementType(var->getType());
6568  if (baseType->isDependentType()) return;
6569
6570  // __block variables might require us to capture a copy-initializer.
6571  if (var->hasAttr<BlocksAttr>()) {
6572    // It's currently invalid to ever have a __block variable with an
6573    // array type; should we diagnose that here?
6574
6575    // Regardless, we don't want to ignore array nesting when
6576    // constructing this copy.
6577    QualType type = var->getType();
6578
6579    if (type->isStructureOrClassType()) {
6580      SourceLocation poi = var->getLocation();
6581      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6582      ExprResult result =
6583        PerformCopyInitialization(
6584                        InitializedEntity::InitializeBlock(poi, type, false),
6585                                  poi, Owned(varRef));
6586      if (!result.isInvalid()) {
6587        result = MaybeCreateExprWithCleanups(result);
6588        Expr *init = result.takeAs<Expr>();
6589        Context.setBlockVarCopyInits(var, init);
6590      }
6591    }
6592  }
6593
6594  Expr *Init = var->getInit();
6595  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6596
6597  if (!var->getDeclContext()->isDependentContext() && Init) {
6598    if (IsGlobal && !var->isConstexpr() &&
6599        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6600                                            var->getLocation())
6601          != DiagnosticsEngine::Ignored &&
6602        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
6603      Diag(var->getLocation(), diag::warn_global_constructor)
6604        << Init->getSourceRange();
6605
6606    if (var->isConstexpr()) {
6607      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
6608      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
6609        SourceLocation DiagLoc = var->getLocation();
6610        // If the note doesn't add any useful information other than a source
6611        // location, fold it into the primary diagnostic.
6612        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6613              diag::note_invalid_subexpr_in_const_expr) {
6614          DiagLoc = Notes[0].first;
6615          Notes.clear();
6616        }
6617        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
6618          << var << Init->getSourceRange();
6619        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6620          Diag(Notes[I].first, Notes[I].second);
6621      }
6622    } else if (var->isUsableInConstantExpressions()) {
6623      // Check whether the initializer of a const variable of integral or
6624      // enumeration type is an ICE now, since we can't tell whether it was
6625      // initialized by a constant expression if we check later.
6626      var->checkInitIsICE();
6627    }
6628  }
6629
6630  // Require the destructor.
6631  if (const RecordType *recordType = baseType->getAs<RecordType>())
6632    FinalizeVarWithDestructor(var, recordType);
6633}
6634
6635/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6636/// any semantic actions necessary after any initializer has been attached.
6637void
6638Sema::FinalizeDeclaration(Decl *ThisDecl) {
6639  // Note that we are no longer parsing the initializer for this declaration.
6640  ParsingInitForAutoVars.erase(ThisDecl);
6641}
6642
6643Sema::DeclGroupPtrTy
6644Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6645                              Decl **Group, unsigned NumDecls) {
6646  SmallVector<Decl*, 8> Decls;
6647
6648  if (DS.isTypeSpecOwned())
6649    Decls.push_back(DS.getRepAsDecl());
6650
6651  for (unsigned i = 0; i != NumDecls; ++i)
6652    if (Decl *D = Group[i])
6653      Decls.push_back(D);
6654
6655  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6656                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6657}
6658
6659/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6660/// group, performing any necessary semantic checking.
6661Sema::DeclGroupPtrTy
6662Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6663                           bool TypeMayContainAuto) {
6664  // C++0x [dcl.spec.auto]p7:
6665  //   If the type deduced for the template parameter U is not the same in each
6666  //   deduction, the program is ill-formed.
6667  // FIXME: When initializer-list support is added, a distinction is needed
6668  // between the deduced type U and the deduced type which 'auto' stands for.
6669  //   auto a = 0, b = { 1, 2, 3 };
6670  // is legal because the deduced type U is 'int' in both cases.
6671  if (TypeMayContainAuto && NumDecls > 1) {
6672    QualType Deduced;
6673    CanQualType DeducedCanon;
6674    VarDecl *DeducedDecl = 0;
6675    for (unsigned i = 0; i != NumDecls; ++i) {
6676      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6677        AutoType *AT = D->getType()->getContainedAutoType();
6678        // Don't reissue diagnostics when instantiating a template.
6679        if (AT && D->isInvalidDecl())
6680          break;
6681        if (AT && AT->isDeduced()) {
6682          QualType U = AT->getDeducedType();
6683          CanQualType UCanon = Context.getCanonicalType(U);
6684          if (Deduced.isNull()) {
6685            Deduced = U;
6686            DeducedCanon = UCanon;
6687            DeducedDecl = D;
6688          } else if (DeducedCanon != UCanon) {
6689            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6690                 diag::err_auto_different_deductions)
6691              << Deduced << DeducedDecl->getDeclName()
6692              << U << D->getDeclName()
6693              << DeducedDecl->getInit()->getSourceRange()
6694              << D->getInit()->getSourceRange();
6695            D->setInvalidDecl();
6696            break;
6697          }
6698        }
6699      }
6700    }
6701  }
6702
6703  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6704}
6705
6706
6707/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6708/// to introduce parameters into function prototype scope.
6709Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6710  const DeclSpec &DS = D.getDeclSpec();
6711
6712  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6713  // C++03 [dcl.stc]p2 also permits 'auto'.
6714  VarDecl::StorageClass StorageClass = SC_None;
6715  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6716  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6717    StorageClass = SC_Register;
6718    StorageClassAsWritten = SC_Register;
6719  } else if (getLangOptions().CPlusPlus &&
6720             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
6721    StorageClass = SC_Auto;
6722    StorageClassAsWritten = SC_Auto;
6723  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6724    Diag(DS.getStorageClassSpecLoc(),
6725         diag::err_invalid_storage_class_in_func_decl);
6726    D.getMutableDeclSpec().ClearStorageClassSpecs();
6727  }
6728
6729  if (D.getDeclSpec().isThreadSpecified())
6730    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6731  if (D.getDeclSpec().isConstexprSpecified())
6732    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6733      << 0;
6734
6735  DiagnoseFunctionSpecifiers(D);
6736
6737  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6738  QualType parmDeclType = TInfo->getType();
6739
6740  if (getLangOptions().CPlusPlus) {
6741    // Check that there are no default arguments inside the type of this
6742    // parameter.
6743    CheckExtraCXXDefaultArguments(D);
6744
6745    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6746    if (D.getCXXScopeSpec().isSet()) {
6747      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6748        << D.getCXXScopeSpec().getRange();
6749      D.getCXXScopeSpec().clear();
6750    }
6751  }
6752
6753  // Ensure we have a valid name
6754  IdentifierInfo *II = 0;
6755  if (D.hasName()) {
6756    II = D.getIdentifier();
6757    if (!II) {
6758      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6759        << GetNameForDeclarator(D).getName().getAsString();
6760      D.setInvalidType(true);
6761    }
6762  }
6763
6764  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6765  if (II) {
6766    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6767                   ForRedeclaration);
6768    LookupName(R, S);
6769    if (R.isSingleResult()) {
6770      NamedDecl *PrevDecl = R.getFoundDecl();
6771      if (PrevDecl->isTemplateParameter()) {
6772        // Maybe we will complain about the shadowed template parameter.
6773        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6774        // Just pretend that we didn't see the previous declaration.
6775        PrevDecl = 0;
6776      } else if (S->isDeclScope(PrevDecl)) {
6777        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6778        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6779
6780        // Recover by removing the name
6781        II = 0;
6782        D.SetIdentifier(0, D.getIdentifierLoc());
6783        D.setInvalidType(true);
6784      }
6785    }
6786  }
6787
6788  // Temporarily put parameter variables in the translation unit, not
6789  // the enclosing context.  This prevents them from accidentally
6790  // looking like class members in C++.
6791  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6792                                    D.getSourceRange().getBegin(),
6793                                    D.getIdentifierLoc(), II,
6794                                    parmDeclType, TInfo,
6795                                    StorageClass, StorageClassAsWritten);
6796
6797  if (D.isInvalidType())
6798    New->setInvalidDecl();
6799
6800  assert(S->isFunctionPrototypeScope());
6801  assert(S->getFunctionPrototypeDepth() >= 1);
6802  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6803                    S->getNextFunctionPrototypeIndex());
6804
6805  // Add the parameter declaration into this scope.
6806  S->AddDecl(New);
6807  if (II)
6808    IdResolver.AddDecl(New);
6809
6810  ProcessDeclAttributes(S, New, D);
6811
6812  if (D.getDeclSpec().isModulePrivateSpecified())
6813    Diag(New->getLocation(), diag::err_module_private_local)
6814      << 1 << New->getDeclName()
6815      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6816      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6817
6818  if (New->hasAttr<BlocksAttr>()) {
6819    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6820  }
6821  return New;
6822}
6823
6824/// \brief Synthesizes a variable for a parameter arising from a
6825/// typedef.
6826ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6827                                              SourceLocation Loc,
6828                                              QualType T) {
6829  /* FIXME: setting StartLoc == Loc.
6830     Would it be worth to modify callers so as to provide proper source
6831     location for the unnamed parameters, embedding the parameter's type? */
6832  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6833                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6834                                           SC_None, SC_None, 0);
6835  Param->setImplicit();
6836  return Param;
6837}
6838
6839void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6840                                    ParmVarDecl * const *ParamEnd) {
6841  // Don't diagnose unused-parameter errors in template instantiations; we
6842  // will already have done so in the template itself.
6843  if (!ActiveTemplateInstantiations.empty())
6844    return;
6845
6846  for (; Param != ParamEnd; ++Param) {
6847    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
6848        !(*Param)->hasAttr<UnusedAttr>()) {
6849      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6850        << (*Param)->getDeclName();
6851    }
6852  }
6853}
6854
6855void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6856                                                  ParmVarDecl * const *ParamEnd,
6857                                                  QualType ReturnTy,
6858                                                  NamedDecl *D) {
6859  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6860    return;
6861
6862  // Warn if the return value is pass-by-value and larger than the specified
6863  // threshold.
6864  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
6865    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6866    if (Size > LangOpts.NumLargeByValueCopy)
6867      Diag(D->getLocation(), diag::warn_return_value_size)
6868          << D->getDeclName() << Size;
6869  }
6870
6871  // Warn if any parameter is pass-by-value and larger than the specified
6872  // threshold.
6873  for (; Param != ParamEnd; ++Param) {
6874    QualType T = (*Param)->getType();
6875    if (T->isDependentType() || !T.isPODType(Context))
6876      continue;
6877    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6878    if (Size > LangOpts.NumLargeByValueCopy)
6879      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6880          << (*Param)->getDeclName() << Size;
6881  }
6882}
6883
6884ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6885                                  SourceLocation NameLoc, IdentifierInfo *Name,
6886                                  QualType T, TypeSourceInfo *TSInfo,
6887                                  VarDecl::StorageClass StorageClass,
6888                                  VarDecl::StorageClass StorageClassAsWritten) {
6889  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6890  if (getLangOptions().ObjCAutoRefCount &&
6891      T.getObjCLifetime() == Qualifiers::OCL_None &&
6892      T->isObjCLifetimeType()) {
6893
6894    Qualifiers::ObjCLifetime lifetime;
6895
6896    // Special cases for arrays:
6897    //   - if it's const, use __unsafe_unretained
6898    //   - otherwise, it's an error
6899    if (T->isArrayType()) {
6900      if (!T.isConstQualified()) {
6901        DelayedDiagnostics.add(
6902            sema::DelayedDiagnostic::makeForbiddenType(
6903            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6904      }
6905      lifetime = Qualifiers::OCL_ExplicitNone;
6906    } else {
6907      lifetime = T->getObjCARCImplicitLifetime();
6908    }
6909    T = Context.getLifetimeQualifiedType(T, lifetime);
6910  }
6911
6912  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6913                                         Context.getAdjustedParameterType(T),
6914                                         TSInfo,
6915                                         StorageClass, StorageClassAsWritten,
6916                                         0);
6917
6918  // Parameters can not be abstract class types.
6919  // For record types, this is done by the AbstractClassUsageDiagnoser once
6920  // the class has been completely parsed.
6921  if (!CurContext->isRecord() &&
6922      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6923                             AbstractParamType))
6924    New->setInvalidDecl();
6925
6926  // Parameter declarators cannot be interface types. All ObjC objects are
6927  // passed by reference.
6928  if (T->isObjCObjectType()) {
6929    Diag(NameLoc,
6930         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6931      << FixItHint::CreateInsertion(NameLoc, "*");
6932    T = Context.getObjCObjectPointerType(T);
6933    New->setType(T);
6934  }
6935
6936  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6937  // duration shall not be qualified by an address-space qualifier."
6938  // Since all parameters have automatic store duration, they can not have
6939  // an address space.
6940  if (T.getAddressSpace() != 0) {
6941    Diag(NameLoc, diag::err_arg_with_address_space);
6942    New->setInvalidDecl();
6943  }
6944
6945  return New;
6946}
6947
6948void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6949                                           SourceLocation LocAfterDecls) {
6950  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6951
6952  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6953  // for a K&R function.
6954  if (!FTI.hasPrototype) {
6955    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6956      --i;
6957      if (FTI.ArgInfo[i].Param == 0) {
6958        llvm::SmallString<256> Code;
6959        llvm::raw_svector_ostream(Code) << "  int "
6960                                        << FTI.ArgInfo[i].Ident->getName()
6961                                        << ";\n";
6962        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6963          << FTI.ArgInfo[i].Ident
6964          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6965
6966        // Implicitly declare the argument as type 'int' for lack of a better
6967        // type.
6968        AttributeFactory attrs;
6969        DeclSpec DS(attrs);
6970        const char* PrevSpec; // unused
6971        unsigned DiagID; // unused
6972        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6973                           PrevSpec, DiagID);
6974        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6975        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6976        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6977      }
6978    }
6979  }
6980}
6981
6982Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6983                                         Declarator &D) {
6984  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6985  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6986  Scope *ParentScope = FnBodyScope->getParent();
6987
6988  D.setFunctionDefinitionKind(FDK_Definition);
6989  Decl *DP = HandleDeclarator(ParentScope, D,
6990                              MultiTemplateParamsArg(*this));
6991  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6992}
6993
6994static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6995  // Don't warn about invalid declarations.
6996  if (FD->isInvalidDecl())
6997    return false;
6998
6999  // Or declarations that aren't global.
7000  if (!FD->isGlobal())
7001    return false;
7002
7003  // Don't warn about C++ member functions.
7004  if (isa<CXXMethodDecl>(FD))
7005    return false;
7006
7007  // Don't warn about 'main'.
7008  if (FD->isMain())
7009    return false;
7010
7011  // Don't warn about inline functions.
7012  if (FD->isInlined())
7013    return false;
7014
7015  // Don't warn about function templates.
7016  if (FD->getDescribedFunctionTemplate())
7017    return false;
7018
7019  // Don't warn about function template specializations.
7020  if (FD->isFunctionTemplateSpecialization())
7021    return false;
7022
7023  bool MissingPrototype = true;
7024  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7025       Prev; Prev = Prev->getPreviousDecl()) {
7026    // Ignore any declarations that occur in function or method
7027    // scope, because they aren't visible from the header.
7028    if (Prev->getDeclContext()->isFunctionOrMethod())
7029      continue;
7030
7031    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7032    break;
7033  }
7034
7035  return MissingPrototype;
7036}
7037
7038void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7039  // Don't complain if we're in GNU89 mode and the previous definition
7040  // was an extern inline function.
7041  const FunctionDecl *Definition;
7042  if (FD->isDefined(Definition) &&
7043      !canRedefineFunction(Definition, getLangOptions())) {
7044    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
7045        Definition->getStorageClass() == SC_Extern)
7046      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7047        << FD->getDeclName() << getLangOptions().CPlusPlus;
7048    else
7049      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7050    Diag(Definition->getLocation(), diag::note_previous_definition);
7051  }
7052}
7053
7054Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7055  // Clear the last template instantiation error context.
7056  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7057
7058  if (!D)
7059    return D;
7060  FunctionDecl *FD = 0;
7061
7062  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7063    FD = FunTmpl->getTemplatedDecl();
7064  else
7065    FD = cast<FunctionDecl>(D);
7066
7067  // Enter a new function scope
7068  PushFunctionScope();
7069
7070  // See if this is a redefinition.
7071  if (!FD->isLateTemplateParsed())
7072    CheckForFunctionRedefinition(FD);
7073
7074  // Builtin functions cannot be defined.
7075  if (unsigned BuiltinID = FD->getBuiltinID()) {
7076    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7077      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7078      FD->setInvalidDecl();
7079    }
7080  }
7081
7082  // The return type of a function definition must be complete
7083  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7084  QualType ResultType = FD->getResultType();
7085  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7086      !FD->isInvalidDecl() &&
7087      RequireCompleteType(FD->getLocation(), ResultType,
7088                          diag::err_func_def_incomplete_result))
7089    FD->setInvalidDecl();
7090
7091  // GNU warning -Wmissing-prototypes:
7092  //   Warn if a global function is defined without a previous
7093  //   prototype declaration. This warning is issued even if the
7094  //   definition itself provides a prototype. The aim is to detect
7095  //   global functions that fail to be declared in header files.
7096  if (ShouldWarnAboutMissingPrototype(FD))
7097    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7098
7099  if (FnBodyScope)
7100    PushDeclContext(FnBodyScope, FD);
7101
7102  // Check the validity of our function parameters
7103  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7104                           /*CheckParameterNames=*/true);
7105
7106  // Introduce our parameters into the function scope
7107  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7108    ParmVarDecl *Param = FD->getParamDecl(p);
7109    Param->setOwningFunction(FD);
7110
7111    // If this has an identifier, add it to the scope stack.
7112    if (Param->getIdentifier() && FnBodyScope) {
7113      CheckShadow(FnBodyScope, Param);
7114
7115      PushOnScopeChains(Param, FnBodyScope);
7116    }
7117  }
7118
7119  // Checking attributes of current function definition
7120  // dllimport attribute.
7121  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7122  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7123    // dllimport attribute cannot be directly applied to definition.
7124    // Microsoft accepts dllimport for functions defined within class scope.
7125    if (!DA->isInherited() &&
7126        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7127      Diag(FD->getLocation(),
7128           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7129        << "dllimport";
7130      FD->setInvalidDecl();
7131      return FD;
7132    }
7133
7134    // Visual C++ appears to not think this is an issue, so only issue
7135    // a warning when Microsoft extensions are disabled.
7136    if (!LangOpts.MicrosoftExt) {
7137      // If a symbol previously declared dllimport is later defined, the
7138      // attribute is ignored in subsequent references, and a warning is
7139      // emitted.
7140      Diag(FD->getLocation(),
7141           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7142        << FD->getName() << "dllimport";
7143    }
7144  }
7145  return FD;
7146}
7147
7148/// \brief Given the set of return statements within a function body,
7149/// compute the variables that are subject to the named return value
7150/// optimization.
7151///
7152/// Each of the variables that is subject to the named return value
7153/// optimization will be marked as NRVO variables in the AST, and any
7154/// return statement that has a marked NRVO variable as its NRVO candidate can
7155/// use the named return value optimization.
7156///
7157/// This function applies a very simplistic algorithm for NRVO: if every return
7158/// statement in the function has the same NRVO candidate, that candidate is
7159/// the NRVO variable.
7160///
7161/// FIXME: Employ a smarter algorithm that accounts for multiple return
7162/// statements and the lifetimes of the NRVO candidates. We should be able to
7163/// find a maximal set of NRVO variables.
7164void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7165  ReturnStmt **Returns = Scope->Returns.data();
7166
7167  const VarDecl *NRVOCandidate = 0;
7168  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7169    if (!Returns[I]->getNRVOCandidate())
7170      return;
7171
7172    if (!NRVOCandidate)
7173      NRVOCandidate = Returns[I]->getNRVOCandidate();
7174    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7175      return;
7176  }
7177
7178  if (NRVOCandidate)
7179    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7180}
7181
7182Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7183  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7184}
7185
7186Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7187                                    bool IsInstantiation) {
7188  FunctionDecl *FD = 0;
7189  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7190  if (FunTmpl)
7191    FD = FunTmpl->getTemplatedDecl();
7192  else
7193    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7194
7195  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7196  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7197
7198  if (FD) {
7199    FD->setBody(Body);
7200    if (FD->isMain()) {
7201      // C and C++ allow for main to automagically return 0.
7202      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7203      FD->setHasImplicitReturnZero(true);
7204      WP.disableCheckFallThrough();
7205    } else if (FD->hasAttr<NakedAttr>()) {
7206      // If the function is marked 'naked', don't complain about missing return
7207      // statements.
7208      WP.disableCheckFallThrough();
7209    }
7210
7211    // MSVC permits the use of pure specifier (=0) on function definition,
7212    // defined at class scope, warn about this non standard construct.
7213    if (getLangOptions().MicrosoftExt && FD->isPure())
7214      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7215
7216    if (!FD->isInvalidDecl()) {
7217      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7218      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7219                                             FD->getResultType(), FD);
7220
7221      // If this is a constructor, we need a vtable.
7222      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7223        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7224
7225      computeNRVO(Body, getCurFunction());
7226    }
7227
7228    assert(FD == getCurFunctionDecl() && "Function parsing confused");
7229  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7230    assert(MD == getCurMethodDecl() && "Method parsing confused");
7231    MD->setBody(Body);
7232    if (Body)
7233      MD->setEndLoc(Body->getLocEnd());
7234    if (!MD->isInvalidDecl()) {
7235      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7236      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7237                                             MD->getResultType(), MD);
7238
7239      if (Body)
7240        computeNRVO(Body, getCurFunction());
7241    }
7242    if (ObjCShouldCallSuperDealloc) {
7243      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7244      ObjCShouldCallSuperDealloc = false;
7245    }
7246    if (ObjCShouldCallSuperFinalize) {
7247      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7248      ObjCShouldCallSuperFinalize = false;
7249    }
7250  } else {
7251    return 0;
7252  }
7253
7254  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7255         "ObjC methods, which should have been handled in the block above.");
7256  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7257         "ObjC methods, which should have been handled in the block above.");
7258
7259  // Verify and clean out per-function state.
7260  if (Body) {
7261    // C++ constructors that have function-try-blocks can't have return
7262    // statements in the handlers of that block. (C++ [except.handle]p14)
7263    // Verify this.
7264    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7265      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7266
7267    // Verify that gotos and switch cases don't jump into scopes illegally.
7268    if (getCurFunction()->NeedsScopeChecking() &&
7269        !dcl->isInvalidDecl() &&
7270        !hasAnyUnrecoverableErrorsInThisFunction())
7271      DiagnoseInvalidJumps(Body);
7272
7273    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7274      if (!Destructor->getParent()->isDependentType())
7275        CheckDestructor(Destructor);
7276
7277      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7278                                             Destructor->getParent());
7279    }
7280
7281    // If any errors have occurred, clear out any temporaries that may have
7282    // been leftover. This ensures that these temporaries won't be picked up for
7283    // deletion in some later function.
7284    if (PP.getDiagnostics().hasErrorOccurred() ||
7285        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7286      DiscardCleanupsInEvaluationContext();
7287    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7288      // Since the body is valid, issue any analysis-based warnings that are
7289      // enabled.
7290      ActivePolicy = &WP;
7291    }
7292
7293    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7294        !CheckConstexprFunctionBody(FD, Body))
7295      FD->setInvalidDecl();
7296
7297    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7298    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7299  }
7300
7301  if (!IsInstantiation)
7302    PopDeclContext();
7303
7304  PopFunctionScopeInfo(ActivePolicy, dcl);
7305
7306  // If any errors have occurred, clear out any temporaries that may have
7307  // been leftover. This ensures that these temporaries won't be picked up for
7308  // deletion in some later function.
7309  if (getDiagnostics().hasErrorOccurred()) {
7310    DiscardCleanupsInEvaluationContext();
7311  }
7312
7313  return dcl;
7314}
7315
7316
7317/// When we finish delayed parsing of an attribute, we must attach it to the
7318/// relevant Decl.
7319void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7320                                       ParsedAttributes &Attrs) {
7321  // Always attach attributes to the underlying decl.
7322  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7323    D = TD->getTemplatedDecl();
7324  ProcessDeclAttributeList(S, D, Attrs.getList());
7325}
7326
7327
7328/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7329/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7330NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7331                                          IdentifierInfo &II, Scope *S) {
7332  // Before we produce a declaration for an implicitly defined
7333  // function, see whether there was a locally-scoped declaration of
7334  // this name as a function or variable. If so, use that
7335  // (non-visible) declaration, and complain about it.
7336  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7337    = findLocallyScopedExternalDecl(&II);
7338  if (Pos != LocallyScopedExternalDecls.end()) {
7339    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7340    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7341    return Pos->second;
7342  }
7343
7344  // Extension in C99.  Legal in C90, but warn about it.
7345  unsigned diag_id;
7346  if (II.getName().startswith("__builtin_"))
7347    diag_id = diag::warn_builtin_unknown;
7348  else if (getLangOptions().C99)
7349    diag_id = diag::ext_implicit_function_decl;
7350  else
7351    diag_id = diag::warn_implicit_function_decl;
7352  Diag(Loc, diag_id) << &II;
7353
7354  // Because typo correction is expensive, only do it if the implicit
7355  // function declaration is going to be treated as an error.
7356  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7357    TypoCorrection Corrected;
7358    DeclFilterCCC<FunctionDecl> Validator;
7359    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7360                                      LookupOrdinaryName, S, 0, &Validator))) {
7361      std::string CorrectedStr = Corrected.getAsString(getLangOptions());
7362      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOptions());
7363      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7364
7365      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7366          << FixItHint::CreateReplacement(Loc, CorrectedStr);
7367
7368      if (Func->getLocation().isValid()
7369          && !II.getName().startswith("__builtin_"))
7370        Diag(Func->getLocation(), diag::note_previous_decl)
7371            << CorrectedQuotedStr;
7372    }
7373  }
7374
7375  // Set a Declarator for the implicit definition: int foo();
7376  const char *Dummy;
7377  AttributeFactory attrFactory;
7378  DeclSpec DS(attrFactory);
7379  unsigned DiagID;
7380  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7381  (void)Error; // Silence warning.
7382  assert(!Error && "Error setting up implicit decl!");
7383  Declarator D(DS, Declarator::BlockContext);
7384  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7385                                             0, 0, true, SourceLocation(),
7386                                             SourceLocation(), SourceLocation(),
7387                                             SourceLocation(),
7388                                             EST_None, SourceLocation(),
7389                                             0, 0, 0, 0, Loc, Loc, D),
7390                DS.getAttributes(),
7391                SourceLocation());
7392  D.SetIdentifier(&II, Loc);
7393
7394  // Insert this function into translation-unit scope.
7395
7396  DeclContext *PrevDC = CurContext;
7397  CurContext = Context.getTranslationUnitDecl();
7398
7399  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7400  FD->setImplicit();
7401
7402  CurContext = PrevDC;
7403
7404  AddKnownFunctionAttributes(FD);
7405
7406  return FD;
7407}
7408
7409/// \brief Adds any function attributes that we know a priori based on
7410/// the declaration of this function.
7411///
7412/// These attributes can apply both to implicitly-declared builtins
7413/// (like __builtin___printf_chk) or to library-declared functions
7414/// like NSLog or printf.
7415///
7416/// We need to check for duplicate attributes both here and where user-written
7417/// attributes are applied to declarations.
7418void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7419  if (FD->isInvalidDecl())
7420    return;
7421
7422  // If this is a built-in function, map its builtin attributes to
7423  // actual attributes.
7424  if (unsigned BuiltinID = FD->getBuiltinID()) {
7425    // Handle printf-formatting attributes.
7426    unsigned FormatIdx;
7427    bool HasVAListArg;
7428    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7429      if (!FD->getAttr<FormatAttr>()) {
7430        const char *fmt = "printf";
7431        unsigned int NumParams = FD->getNumParams();
7432        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
7433            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
7434          fmt = "NSString";
7435        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7436                                               fmt, FormatIdx+1,
7437                                               HasVAListArg ? 0 : FormatIdx+2));
7438      }
7439    }
7440    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7441                                             HasVAListArg)) {
7442     if (!FD->getAttr<FormatAttr>())
7443       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7444                                              "scanf", FormatIdx+1,
7445                                              HasVAListArg ? 0 : FormatIdx+2));
7446    }
7447
7448    // Mark const if we don't care about errno and that is the only
7449    // thing preventing the function from being const. This allows
7450    // IRgen to use LLVM intrinsics for such functions.
7451    if (!getLangOptions().MathErrno &&
7452        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7453      if (!FD->getAttr<ConstAttr>())
7454        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7455    }
7456
7457    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7458        !FD->getAttr<ReturnsTwiceAttr>())
7459      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7460    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7461      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7462    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7463      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7464  }
7465
7466  IdentifierInfo *Name = FD->getIdentifier();
7467  if (!Name)
7468    return;
7469  if ((!getLangOptions().CPlusPlus &&
7470       FD->getDeclContext()->isTranslationUnit()) ||
7471      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7472       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7473       LinkageSpecDecl::lang_c)) {
7474    // Okay: this could be a libc/libm/Objective-C function we know
7475    // about.
7476  } else
7477    return;
7478
7479  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7480    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7481    // target-specific builtins, perhaps?
7482    if (!FD->getAttr<FormatAttr>())
7483      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7484                                             "printf", 2,
7485                                             Name->isStr("vasprintf") ? 0 : 3));
7486  }
7487}
7488
7489TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7490                                    TypeSourceInfo *TInfo) {
7491  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7492  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7493
7494  if (!TInfo) {
7495    assert(D.isInvalidType() && "no declarator info for valid type");
7496    TInfo = Context.getTrivialTypeSourceInfo(T);
7497  }
7498
7499  // Scope manipulation handled by caller.
7500  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7501                                           D.getSourceRange().getBegin(),
7502                                           D.getIdentifierLoc(),
7503                                           D.getIdentifier(),
7504                                           TInfo);
7505
7506  // Bail out immediately if we have an invalid declaration.
7507  if (D.isInvalidType()) {
7508    NewTD->setInvalidDecl();
7509    return NewTD;
7510  }
7511
7512  if (D.getDeclSpec().isModulePrivateSpecified()) {
7513    if (CurContext->isFunctionOrMethod())
7514      Diag(NewTD->getLocation(), diag::err_module_private_local)
7515        << 2 << NewTD->getDeclName()
7516        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7517        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7518    else
7519      NewTD->setModulePrivate();
7520  }
7521
7522  // C++ [dcl.typedef]p8:
7523  //   If the typedef declaration defines an unnamed class (or
7524  //   enum), the first typedef-name declared by the declaration
7525  //   to be that class type (or enum type) is used to denote the
7526  //   class type (or enum type) for linkage purposes only.
7527  // We need to check whether the type was declared in the declaration.
7528  switch (D.getDeclSpec().getTypeSpecType()) {
7529  case TST_enum:
7530  case TST_struct:
7531  case TST_union:
7532  case TST_class: {
7533    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7534
7535    // Do nothing if the tag is not anonymous or already has an
7536    // associated typedef (from an earlier typedef in this decl group).
7537    if (tagFromDeclSpec->getIdentifier()) break;
7538    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7539
7540    // A well-formed anonymous tag must always be a TUK_Definition.
7541    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7542
7543    // The type must match the tag exactly;  no qualifiers allowed.
7544    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7545      break;
7546
7547    // Otherwise, set this is the anon-decl typedef for the tag.
7548    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7549    break;
7550  }
7551
7552  default:
7553    break;
7554  }
7555
7556  return NewTD;
7557}
7558
7559
7560/// \brief Determine whether a tag with a given kind is acceptable
7561/// as a redeclaration of the given tag declaration.
7562///
7563/// \returns true if the new tag kind is acceptable, false otherwise.
7564bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7565                                        TagTypeKind NewTag, bool isDefinition,
7566                                        SourceLocation NewTagLoc,
7567                                        const IdentifierInfo &Name) {
7568  // C++ [dcl.type.elab]p3:
7569  //   The class-key or enum keyword present in the
7570  //   elaborated-type-specifier shall agree in kind with the
7571  //   declaration to which the name in the elaborated-type-specifier
7572  //   refers. This rule also applies to the form of
7573  //   elaborated-type-specifier that declares a class-name or
7574  //   friend class since it can be construed as referring to the
7575  //   definition of the class. Thus, in any
7576  //   elaborated-type-specifier, the enum keyword shall be used to
7577  //   refer to an enumeration (7.2), the union class-key shall be
7578  //   used to refer to a union (clause 9), and either the class or
7579  //   struct class-key shall be used to refer to a class (clause 9)
7580  //   declared using the class or struct class-key.
7581  TagTypeKind OldTag = Previous->getTagKind();
7582  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7583    if (OldTag == NewTag)
7584      return true;
7585
7586  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7587      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7588    // Warn about the struct/class tag mismatch.
7589    bool isTemplate = false;
7590    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7591      isTemplate = Record->getDescribedClassTemplate();
7592
7593    if (!ActiveTemplateInstantiations.empty()) {
7594      // In a template instantiation, do not offer fix-its for tag mismatches
7595      // since they usually mess up the template instead of fixing the problem.
7596      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7597        << (NewTag == TTK_Class) << isTemplate << &Name;
7598      return true;
7599    }
7600
7601    if (isDefinition) {
7602      // On definitions, check previous tags and issue a fix-it for each
7603      // one that doesn't match the current tag.
7604      if (Previous->getDefinition()) {
7605        // Don't suggest fix-its for redefinitions.
7606        return true;
7607      }
7608
7609      bool previousMismatch = false;
7610      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7611           E(Previous->redecls_end()); I != E; ++I) {
7612        if (I->getTagKind() != NewTag) {
7613          if (!previousMismatch) {
7614            previousMismatch = true;
7615            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7616              << (NewTag == TTK_Class) << isTemplate << &Name;
7617          }
7618          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7619            << (NewTag == TTK_Class)
7620            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7621                                            NewTag == TTK_Class?
7622                                            "class" : "struct");
7623        }
7624      }
7625      return true;
7626    }
7627
7628    // Check for a previous definition.  If current tag and definition
7629    // are same type, do nothing.  If no definition, but disagree with
7630    // with previous tag type, give a warning, but no fix-it.
7631    const TagDecl *Redecl = Previous->getDefinition() ?
7632                            Previous->getDefinition() : Previous;
7633    if (Redecl->getTagKind() == NewTag) {
7634      return true;
7635    }
7636
7637    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7638      << (NewTag == TTK_Class)
7639      << isTemplate << &Name;
7640    Diag(Redecl->getLocation(), diag::note_previous_use);
7641
7642    // If there is a previous defintion, suggest a fix-it.
7643    if (Previous->getDefinition()) {
7644        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7645          << (Redecl->getTagKind() == TTK_Class)
7646          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7647                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7648    }
7649
7650    return true;
7651  }
7652  return false;
7653}
7654
7655/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7656/// former case, Name will be non-null.  In the later case, Name will be null.
7657/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7658/// reference/declaration/definition of a tag.
7659Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7660                     SourceLocation KWLoc, CXXScopeSpec &SS,
7661                     IdentifierInfo *Name, SourceLocation NameLoc,
7662                     AttributeList *Attr, AccessSpecifier AS,
7663                     SourceLocation ModulePrivateLoc,
7664                     MultiTemplateParamsArg TemplateParameterLists,
7665                     bool &OwnedDecl, bool &IsDependent,
7666                     SourceLocation ScopedEnumKWLoc,
7667                     bool ScopedEnumUsesClassTag,
7668                     TypeResult UnderlyingType) {
7669  // If this is not a definition, it must have a name.
7670  assert((Name != 0 || TUK == TUK_Definition) &&
7671         "Nameless record must be a definition!");
7672  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7673
7674  OwnedDecl = false;
7675  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7676  bool ScopedEnum = ScopedEnumKWLoc.isValid();
7677
7678  // FIXME: Check explicit specializations more carefully.
7679  bool isExplicitSpecialization = false;
7680  bool Invalid = false;
7681
7682  // We only need to do this matching if we have template parameters
7683  // or a scope specifier, which also conveniently avoids this work
7684  // for non-C++ cases.
7685  if (TemplateParameterLists.size() > 0 ||
7686      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7687    if (TemplateParameterList *TemplateParams
7688          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7689                                                TemplateParameterLists.get(),
7690                                                TemplateParameterLists.size(),
7691                                                    TUK == TUK_Friend,
7692                                                    isExplicitSpecialization,
7693                                                    Invalid)) {
7694      if (TemplateParams->size() > 0) {
7695        // This is a declaration or definition of a class template (which may
7696        // be a member of another template).
7697
7698        if (Invalid)
7699          return 0;
7700
7701        OwnedDecl = false;
7702        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7703                                               SS, Name, NameLoc, Attr,
7704                                               TemplateParams, AS,
7705                                               ModulePrivateLoc,
7706                                           TemplateParameterLists.size() - 1,
7707                 (TemplateParameterList**) TemplateParameterLists.release());
7708        return Result.get();
7709      } else {
7710        // The "template<>" header is extraneous.
7711        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7712          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7713        isExplicitSpecialization = true;
7714      }
7715    }
7716  }
7717
7718  // Figure out the underlying type if this a enum declaration. We need to do
7719  // this early, because it's needed to detect if this is an incompatible
7720  // redeclaration.
7721  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7722
7723  if (Kind == TTK_Enum) {
7724    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7725      // No underlying type explicitly specified, or we failed to parse the
7726      // type, default to int.
7727      EnumUnderlying = Context.IntTy.getTypePtr();
7728    else if (UnderlyingType.get()) {
7729      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7730      // integral type; any cv-qualification is ignored.
7731      TypeSourceInfo *TI = 0;
7732      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7733      EnumUnderlying = TI;
7734
7735      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7736
7737      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7738        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7739          << T;
7740        // Recover by falling back to int.
7741        EnumUnderlying = Context.IntTy.getTypePtr();
7742      }
7743
7744      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7745                                          UPPC_FixedUnderlyingType))
7746        EnumUnderlying = Context.IntTy.getTypePtr();
7747
7748    } else if (getLangOptions().MicrosoftExt)
7749      // Microsoft enums are always of int type.
7750      EnumUnderlying = Context.IntTy.getTypePtr();
7751  }
7752
7753  DeclContext *SearchDC = CurContext;
7754  DeclContext *DC = CurContext;
7755  bool isStdBadAlloc = false;
7756
7757  RedeclarationKind Redecl = ForRedeclaration;
7758  if (TUK == TUK_Friend || TUK == TUK_Reference)
7759    Redecl = NotForRedeclaration;
7760
7761  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7762
7763  if (Name && SS.isNotEmpty()) {
7764    // We have a nested-name tag ('struct foo::bar').
7765
7766    // Check for invalid 'foo::'.
7767    if (SS.isInvalid()) {
7768      Name = 0;
7769      goto CreateNewDecl;
7770    }
7771
7772    // If this is a friend or a reference to a class in a dependent
7773    // context, don't try to make a decl for it.
7774    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7775      DC = computeDeclContext(SS, false);
7776      if (!DC) {
7777        IsDependent = true;
7778        return 0;
7779      }
7780    } else {
7781      DC = computeDeclContext(SS, true);
7782      if (!DC) {
7783        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7784          << SS.getRange();
7785        return 0;
7786      }
7787    }
7788
7789    if (RequireCompleteDeclContext(SS, DC))
7790      return 0;
7791
7792    SearchDC = DC;
7793    // Look-up name inside 'foo::'.
7794    LookupQualifiedName(Previous, DC);
7795
7796    if (Previous.isAmbiguous())
7797      return 0;
7798
7799    if (Previous.empty()) {
7800      // Name lookup did not find anything. However, if the
7801      // nested-name-specifier refers to the current instantiation,
7802      // and that current instantiation has any dependent base
7803      // classes, we might find something at instantiation time: treat
7804      // this as a dependent elaborated-type-specifier.
7805      // But this only makes any sense for reference-like lookups.
7806      if (Previous.wasNotFoundInCurrentInstantiation() &&
7807          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7808        IsDependent = true;
7809        return 0;
7810      }
7811
7812      // A tag 'foo::bar' must already exist.
7813      Diag(NameLoc, diag::err_not_tag_in_scope)
7814        << Kind << Name << DC << SS.getRange();
7815      Name = 0;
7816      Invalid = true;
7817      goto CreateNewDecl;
7818    }
7819  } else if (Name) {
7820    // If this is a named struct, check to see if there was a previous forward
7821    // declaration or definition.
7822    // FIXME: We're looking into outer scopes here, even when we
7823    // shouldn't be. Doing so can result in ambiguities that we
7824    // shouldn't be diagnosing.
7825    LookupName(Previous, S);
7826
7827    if (Previous.isAmbiguous() &&
7828        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7829      LookupResult::Filter F = Previous.makeFilter();
7830      while (F.hasNext()) {
7831        NamedDecl *ND = F.next();
7832        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7833          F.erase();
7834      }
7835      F.done();
7836    }
7837
7838    // Note:  there used to be some attempt at recovery here.
7839    if (Previous.isAmbiguous())
7840      return 0;
7841
7842    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7843      // FIXME: This makes sure that we ignore the contexts associated
7844      // with C structs, unions, and enums when looking for a matching
7845      // tag declaration or definition. See the similar lookup tweak
7846      // in Sema::LookupName; is there a better way to deal with this?
7847      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7848        SearchDC = SearchDC->getParent();
7849    }
7850  } else if (S->isFunctionPrototypeScope()) {
7851    // If this is an enum declaration in function prototype scope, set its
7852    // initial context to the translation unit.
7853    SearchDC = Context.getTranslationUnitDecl();
7854  }
7855
7856  if (Previous.isSingleResult() &&
7857      Previous.getFoundDecl()->isTemplateParameter()) {
7858    // Maybe we will complain about the shadowed template parameter.
7859    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7860    // Just pretend that we didn't see the previous declaration.
7861    Previous.clear();
7862  }
7863
7864  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7865      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7866    // This is a declaration of or a reference to "std::bad_alloc".
7867    isStdBadAlloc = true;
7868
7869    if (Previous.empty() && StdBadAlloc) {
7870      // std::bad_alloc has been implicitly declared (but made invisible to
7871      // name lookup). Fill in this implicit declaration as the previous
7872      // declaration, so that the declarations get chained appropriately.
7873      Previous.addDecl(getStdBadAlloc());
7874    }
7875  }
7876
7877  // If we didn't find a previous declaration, and this is a reference
7878  // (or friend reference), move to the correct scope.  In C++, we
7879  // also need to do a redeclaration lookup there, just in case
7880  // there's a shadow friend decl.
7881  if (Name && Previous.empty() &&
7882      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7883    if (Invalid) goto CreateNewDecl;
7884    assert(SS.isEmpty());
7885
7886    if (TUK == TUK_Reference) {
7887      // C++ [basic.scope.pdecl]p5:
7888      //   -- for an elaborated-type-specifier of the form
7889      //
7890      //          class-key identifier
7891      //
7892      //      if the elaborated-type-specifier is used in the
7893      //      decl-specifier-seq or parameter-declaration-clause of a
7894      //      function defined in namespace scope, the identifier is
7895      //      declared as a class-name in the namespace that contains
7896      //      the declaration; otherwise, except as a friend
7897      //      declaration, the identifier is declared in the smallest
7898      //      non-class, non-function-prototype scope that contains the
7899      //      declaration.
7900      //
7901      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7902      // C structs and unions.
7903      //
7904      // It is an error in C++ to declare (rather than define) an enum
7905      // type, including via an elaborated type specifier.  We'll
7906      // diagnose that later; for now, declare the enum in the same
7907      // scope as we would have picked for any other tag type.
7908      //
7909      // GNU C also supports this behavior as part of its incomplete
7910      // enum types extension, while GNU C++ does not.
7911      //
7912      // Find the context where we'll be declaring the tag.
7913      // FIXME: We would like to maintain the current DeclContext as the
7914      // lexical context,
7915      while (SearchDC->isRecord() || SearchDC->isTransparentContext() ||
7916             SearchDC->isObjCContainer())
7917        SearchDC = SearchDC->getParent();
7918
7919      // Find the scope where we'll be declaring the tag.
7920      while (S->isClassScope() ||
7921             (getLangOptions().CPlusPlus &&
7922              S->isFunctionPrototypeScope()) ||
7923             ((S->getFlags() & Scope::DeclScope) == 0) ||
7924             (S->getEntity() &&
7925              ((DeclContext *)S->getEntity())->isTransparentContext()))
7926        S = S->getParent();
7927    } else {
7928      assert(TUK == TUK_Friend);
7929      // C++ [namespace.memdef]p3:
7930      //   If a friend declaration in a non-local class first declares a
7931      //   class or function, the friend class or function is a member of
7932      //   the innermost enclosing namespace.
7933      SearchDC = SearchDC->getEnclosingNamespaceContext();
7934    }
7935
7936    // In C++, we need to do a redeclaration lookup to properly
7937    // diagnose some problems.
7938    if (getLangOptions().CPlusPlus) {
7939      Previous.setRedeclarationKind(ForRedeclaration);
7940      LookupQualifiedName(Previous, SearchDC);
7941    }
7942  }
7943
7944  if (!Previous.empty()) {
7945    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7946
7947    // It's okay to have a tag decl in the same scope as a typedef
7948    // which hides a tag decl in the same scope.  Finding this
7949    // insanity with a redeclaration lookup can only actually happen
7950    // in C++.
7951    //
7952    // This is also okay for elaborated-type-specifiers, which is
7953    // technically forbidden by the current standard but which is
7954    // okay according to the likely resolution of an open issue;
7955    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7956    if (getLangOptions().CPlusPlus) {
7957      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7958        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7959          TagDecl *Tag = TT->getDecl();
7960          if (Tag->getDeclName() == Name &&
7961              Tag->getDeclContext()->getRedeclContext()
7962                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7963            PrevDecl = Tag;
7964            Previous.clear();
7965            Previous.addDecl(Tag);
7966            Previous.resolveKind();
7967          }
7968        }
7969      }
7970    }
7971
7972    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7973      // If this is a use of a previous tag, or if the tag is already declared
7974      // in the same scope (so that the definition/declaration completes or
7975      // rementions the tag), reuse the decl.
7976      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7977          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7978        // Make sure that this wasn't declared as an enum and now used as a
7979        // struct or something similar.
7980        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7981                                          TUK == TUK_Definition, KWLoc,
7982                                          *Name)) {
7983          bool SafeToContinue
7984            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7985               Kind != TTK_Enum);
7986          if (SafeToContinue)
7987            Diag(KWLoc, diag::err_use_with_wrong_tag)
7988              << Name
7989              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7990                                              PrevTagDecl->getKindName());
7991          else
7992            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7993          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7994
7995          if (SafeToContinue)
7996            Kind = PrevTagDecl->getTagKind();
7997          else {
7998            // Recover by making this an anonymous redefinition.
7999            Name = 0;
8000            Previous.clear();
8001            Invalid = true;
8002          }
8003        }
8004
8005        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8006          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8007
8008          // If this is an elaborated-type-specifier for a scoped enumeration,
8009          // the 'class' keyword is not necessary and not permitted.
8010          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8011            if (ScopedEnum)
8012              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8013                << PrevEnum->isScoped()
8014                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8015            return PrevTagDecl;
8016          }
8017
8018          // All conflicts with previous declarations are recovered by
8019          // returning the previous declaration.
8020          if (ScopedEnum != PrevEnum->isScoped()) {
8021            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
8022              << PrevEnum->isScoped();
8023            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8024            return PrevTagDecl;
8025          }
8026          else if (EnumUnderlying && PrevEnum->isFixed()) {
8027            QualType T;
8028            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8029                T = TI->getType();
8030            else
8031                T = QualType(EnumUnderlying.get<const Type*>(), 0);
8032
8033            if (!Context.hasSameUnqualifiedType(T,
8034                                                PrevEnum->getIntegerType())) {
8035              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
8036                   diag::err_enum_redeclare_type_mismatch)
8037                << T
8038                << PrevEnum->getIntegerType();
8039              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8040              return PrevTagDecl;
8041            }
8042          }
8043          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
8044            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
8045              << PrevEnum->isFixed();
8046            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8047            return PrevTagDecl;
8048          }
8049        }
8050
8051        if (!Invalid) {
8052          // If this is a use, just return the declaration we found.
8053
8054          // FIXME: In the future, return a variant or some other clue
8055          // for the consumer of this Decl to know it doesn't own it.
8056          // For our current ASTs this shouldn't be a problem, but will
8057          // need to be changed with DeclGroups.
8058          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8059               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
8060            return PrevTagDecl;
8061
8062          // Diagnose attempts to redefine a tag.
8063          if (TUK == TUK_Definition) {
8064            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8065              // If we're defining a specialization and the previous definition
8066              // is from an implicit instantiation, don't emit an error
8067              // here; we'll catch this in the general case below.
8068              if (!isExplicitSpecialization ||
8069                  !isa<CXXRecordDecl>(Def) ||
8070                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
8071                                               == TSK_ExplicitSpecialization) {
8072                Diag(NameLoc, diag::err_redefinition) << Name;
8073                Diag(Def->getLocation(), diag::note_previous_definition);
8074                // If this is a redefinition, recover by making this
8075                // struct be anonymous, which will make any later
8076                // references get the previous definition.
8077                Name = 0;
8078                Previous.clear();
8079                Invalid = true;
8080              }
8081            } else {
8082              // If the type is currently being defined, complain
8083              // about a nested redefinition.
8084              const TagType *Tag
8085                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8086              if (Tag->isBeingDefined()) {
8087                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8088                Diag(PrevTagDecl->getLocation(),
8089                     diag::note_previous_definition);
8090                Name = 0;
8091                Previous.clear();
8092                Invalid = true;
8093              }
8094            }
8095
8096            // Okay, this is definition of a previously declared or referenced
8097            // tag PrevDecl. We're going to create a new Decl for it.
8098          }
8099        }
8100        // If we get here we have (another) forward declaration or we
8101        // have a definition.  Just create a new decl.
8102
8103      } else {
8104        // If we get here, this is a definition of a new tag type in a nested
8105        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8106        // new decl/type.  We set PrevDecl to NULL so that the entities
8107        // have distinct types.
8108        Previous.clear();
8109      }
8110      // If we get here, we're going to create a new Decl. If PrevDecl
8111      // is non-NULL, it's a definition of the tag declared by
8112      // PrevDecl. If it's NULL, we have a new definition.
8113
8114
8115    // Otherwise, PrevDecl is not a tag, but was found with tag
8116    // lookup.  This is only actually possible in C++, where a few
8117    // things like templates still live in the tag namespace.
8118    } else {
8119      // Use a better diagnostic if an elaborated-type-specifier
8120      // found the wrong kind of type on the first
8121      // (non-redeclaration) lookup.
8122      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8123          !Previous.isForRedeclaration()) {
8124        unsigned Kind = 0;
8125        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8126        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8127        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8128        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8129        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8130        Invalid = true;
8131
8132      // Otherwise, only diagnose if the declaration is in scope.
8133      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8134                                isExplicitSpecialization)) {
8135        // do nothing
8136
8137      // Diagnose implicit declarations introduced by elaborated types.
8138      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8139        unsigned Kind = 0;
8140        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8141        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8142        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8143        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8144        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8145        Invalid = true;
8146
8147      // Otherwise it's a declaration.  Call out a particularly common
8148      // case here.
8149      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8150        unsigned Kind = 0;
8151        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8152        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8153          << Name << Kind << TND->getUnderlyingType();
8154        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8155        Invalid = true;
8156
8157      // Otherwise, diagnose.
8158      } else {
8159        // The tag name clashes with something else in the target scope,
8160        // issue an error and recover by making this tag be anonymous.
8161        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8162        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8163        Name = 0;
8164        Invalid = true;
8165      }
8166
8167      // The existing declaration isn't relevant to us; we're in a
8168      // new scope, so clear out the previous declaration.
8169      Previous.clear();
8170    }
8171  }
8172
8173CreateNewDecl:
8174
8175  TagDecl *PrevDecl = 0;
8176  if (Previous.isSingleResult())
8177    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8178
8179  // If there is an identifier, use the location of the identifier as the
8180  // location of the decl, otherwise use the location of the struct/union
8181  // keyword.
8182  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8183
8184  // Otherwise, create a new declaration. If there is a previous
8185  // declaration of the same entity, the two will be linked via
8186  // PrevDecl.
8187  TagDecl *New;
8188
8189  bool IsForwardReference = false;
8190  if (Kind == TTK_Enum) {
8191    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8192    // enum X { A, B, C } D;    D should chain to X.
8193    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8194                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8195                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8196    // If this is an undefined enum, warn.
8197    if (TUK != TUK_Definition && !Invalid) {
8198      TagDecl *Def;
8199      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8200        // C++0x: 7.2p2: opaque-enum-declaration.
8201        // Conflicts are diagnosed above. Do nothing.
8202      }
8203      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8204        Diag(Loc, diag::ext_forward_ref_enum_def)
8205          << New;
8206        Diag(Def->getLocation(), diag::note_previous_definition);
8207      } else {
8208        unsigned DiagID = diag::ext_forward_ref_enum;
8209        if (getLangOptions().MicrosoftExt)
8210          DiagID = diag::ext_ms_forward_ref_enum;
8211        else if (getLangOptions().CPlusPlus)
8212          DiagID = diag::err_forward_ref_enum;
8213        Diag(Loc, DiagID);
8214
8215        // If this is a forward-declared reference to an enumeration, make a
8216        // note of it; we won't actually be introducing the declaration into
8217        // the declaration context.
8218        if (TUK == TUK_Reference)
8219          IsForwardReference = true;
8220      }
8221    }
8222
8223    if (EnumUnderlying) {
8224      EnumDecl *ED = cast<EnumDecl>(New);
8225      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8226        ED->setIntegerTypeSourceInfo(TI);
8227      else
8228        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8229      ED->setPromotionType(ED->getIntegerType());
8230    }
8231
8232  } else {
8233    // struct/union/class
8234
8235    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8236    // struct X { int A; } D;    D should chain to X.
8237    if (getLangOptions().CPlusPlus) {
8238      // FIXME: Look for a way to use RecordDecl for simple structs.
8239      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8240                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8241
8242      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8243        StdBadAlloc = cast<CXXRecordDecl>(New);
8244    } else
8245      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8246                               cast_or_null<RecordDecl>(PrevDecl));
8247  }
8248
8249  // Maybe add qualifier info.
8250  if (SS.isNotEmpty()) {
8251    if (SS.isSet()) {
8252      New->setQualifierInfo(SS.getWithLocInContext(Context));
8253      if (TemplateParameterLists.size() > 0) {
8254        New->setTemplateParameterListsInfo(Context,
8255                                           TemplateParameterLists.size(),
8256                    (TemplateParameterList**) TemplateParameterLists.release());
8257      }
8258    }
8259    else
8260      Invalid = true;
8261  }
8262
8263  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8264    // Add alignment attributes if necessary; these attributes are checked when
8265    // the ASTContext lays out the structure.
8266    //
8267    // It is important for implementing the correct semantics that this
8268    // happen here (in act on tag decl). The #pragma pack stack is
8269    // maintained as a result of parser callbacks which can occur at
8270    // many points during the parsing of a struct declaration (because
8271    // the #pragma tokens are effectively skipped over during the
8272    // parsing of the struct).
8273    AddAlignmentAttributesForRecord(RD);
8274
8275    AddMsStructLayoutForRecord(RD);
8276  }
8277
8278  if (ModulePrivateLoc.isValid()) {
8279    if (isExplicitSpecialization)
8280      Diag(New->getLocation(), diag::err_module_private_specialization)
8281        << 2
8282        << FixItHint::CreateRemoval(ModulePrivateLoc);
8283    // __module_private__ does not apply to local classes. However, we only
8284    // diagnose this as an error when the declaration specifiers are
8285    // freestanding. Here, we just ignore the __module_private__.
8286    else if (!SearchDC->isFunctionOrMethod())
8287      New->setModulePrivate();
8288  }
8289
8290  // If this is a specialization of a member class (of a class template),
8291  // check the specialization.
8292  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8293    Invalid = true;
8294
8295  if (Invalid)
8296    New->setInvalidDecl();
8297
8298  if (Attr)
8299    ProcessDeclAttributeList(S, New, Attr);
8300
8301  // If we're declaring or defining a tag in function prototype scope
8302  // in C, note that this type can only be used within the function.
8303  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8304    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8305
8306  // Set the lexical context. If the tag has a C++ scope specifier, the
8307  // lexical context will be different from the semantic context.
8308  New->setLexicalDeclContext(CurContext);
8309
8310  // Mark this as a friend decl if applicable.
8311  // In Microsoft mode, a friend declaration also acts as a forward
8312  // declaration so we always pass true to setObjectOfFriendDecl to make
8313  // the tag name visible.
8314  if (TUK == TUK_Friend)
8315    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8316                               getLangOptions().MicrosoftExt);
8317
8318  // Set the access specifier.
8319  if (!Invalid && SearchDC->isRecord())
8320    SetMemberAccessSpecifier(New, PrevDecl, AS);
8321
8322  if (TUK == TUK_Definition)
8323    New->startDefinition();
8324
8325  // If this has an identifier, add it to the scope stack.
8326  if (TUK == TUK_Friend) {
8327    // We might be replacing an existing declaration in the lookup tables;
8328    // if so, borrow its access specifier.
8329    if (PrevDecl)
8330      New->setAccess(PrevDecl->getAccess());
8331
8332    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8333    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8334    if (Name) // can be null along some error paths
8335      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8336        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8337  } else if (Name) {
8338    S = getNonFieldDeclScope(S);
8339    PushOnScopeChains(New, S, !IsForwardReference);
8340    if (IsForwardReference)
8341      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8342
8343  } else {
8344    CurContext->addDecl(New);
8345  }
8346
8347  // If this is the C FILE type, notify the AST context.
8348  if (IdentifierInfo *II = New->getIdentifier())
8349    if (!New->isInvalidDecl() &&
8350        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8351        II->isStr("FILE"))
8352      Context.setFILEDecl(New);
8353
8354  OwnedDecl = true;
8355  return New;
8356}
8357
8358void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8359  AdjustDeclIfTemplate(TagD);
8360  TagDecl *Tag = cast<TagDecl>(TagD);
8361
8362  // Enter the tag context.
8363  PushDeclContext(S, Tag);
8364}
8365
8366Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8367  assert(isa<ObjCContainerDecl>(IDecl) &&
8368         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8369  DeclContext *OCD = cast<DeclContext>(IDecl);
8370  assert(getContainingDC(OCD) == CurContext &&
8371      "The next DeclContext should be lexically contained in the current one.");
8372  CurContext = OCD;
8373  return IDecl;
8374}
8375
8376void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8377                                           SourceLocation FinalLoc,
8378                                           SourceLocation LBraceLoc) {
8379  AdjustDeclIfTemplate(TagD);
8380  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8381
8382  FieldCollector->StartClass();
8383
8384  if (!Record->getIdentifier())
8385    return;
8386
8387  if (FinalLoc.isValid())
8388    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8389
8390  // C++ [class]p2:
8391  //   [...] The class-name is also inserted into the scope of the
8392  //   class itself; this is known as the injected-class-name. For
8393  //   purposes of access checking, the injected-class-name is treated
8394  //   as if it were a public member name.
8395  CXXRecordDecl *InjectedClassName
8396    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8397                            Record->getLocStart(), Record->getLocation(),
8398                            Record->getIdentifier(),
8399                            /*PrevDecl=*/0,
8400                            /*DelayTypeCreation=*/true);
8401  Context.getTypeDeclType(InjectedClassName, Record);
8402  InjectedClassName->setImplicit();
8403  InjectedClassName->setAccess(AS_public);
8404  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8405      InjectedClassName->setDescribedClassTemplate(Template);
8406  PushOnScopeChains(InjectedClassName, S);
8407  assert(InjectedClassName->isInjectedClassName() &&
8408         "Broken injected-class-name");
8409}
8410
8411void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8412                                    SourceLocation RBraceLoc) {
8413  AdjustDeclIfTemplate(TagD);
8414  TagDecl *Tag = cast<TagDecl>(TagD);
8415  Tag->setRBraceLoc(RBraceLoc);
8416
8417  if (isa<CXXRecordDecl>(Tag))
8418    FieldCollector->FinishClass();
8419
8420  // Exit this scope of this tag's definition.
8421  PopDeclContext();
8422
8423  // Notify the consumer that we've defined a tag.
8424  Consumer.HandleTagDeclDefinition(Tag);
8425}
8426
8427void Sema::ActOnObjCContainerFinishDefinition() {
8428  // Exit this scope of this interface definition.
8429  PopDeclContext();
8430}
8431
8432void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8433  assert(DC == CurContext && "Mismatch of container contexts");
8434  OriginalLexicalContext = DC;
8435  ActOnObjCContainerFinishDefinition();
8436}
8437
8438void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8439  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8440  OriginalLexicalContext = 0;
8441}
8442
8443void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8444  AdjustDeclIfTemplate(TagD);
8445  TagDecl *Tag = cast<TagDecl>(TagD);
8446  Tag->setInvalidDecl();
8447
8448  // We're undoing ActOnTagStartDefinition here, not
8449  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8450  // the FieldCollector.
8451
8452  PopDeclContext();
8453}
8454
8455// Note that FieldName may be null for anonymous bitfields.
8456bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
8457                          QualType FieldTy, const Expr *BitWidth,
8458                          bool *ZeroWidth) {
8459  // Default to true; that shouldn't confuse checks for emptiness
8460  if (ZeroWidth)
8461    *ZeroWidth = true;
8462
8463  // C99 6.7.2.1p4 - verify the field type.
8464  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8465  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8466    // Handle incomplete types with specific error.
8467    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8468      return true;
8469    if (FieldName)
8470      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8471        << FieldName << FieldTy << BitWidth->getSourceRange();
8472    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8473      << FieldTy << BitWidth->getSourceRange();
8474  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8475                                             UPPC_BitFieldWidth))
8476    return true;
8477
8478  // If the bit-width is type- or value-dependent, don't try to check
8479  // it now.
8480  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8481    return false;
8482
8483  llvm::APSInt Value;
8484  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8485    return true;
8486
8487  if (Value != 0 && ZeroWidth)
8488    *ZeroWidth = false;
8489
8490  // Zero-width bitfield is ok for anonymous field.
8491  if (Value == 0 && FieldName)
8492    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8493
8494  if (Value.isSigned() && Value.isNegative()) {
8495    if (FieldName)
8496      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8497               << FieldName << Value.toString(10);
8498    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8499      << Value.toString(10);
8500  }
8501
8502  if (!FieldTy->isDependentType()) {
8503    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8504    if (Value.getZExtValue() > TypeSize) {
8505      if (!getLangOptions().CPlusPlus) {
8506        if (FieldName)
8507          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8508            << FieldName << (unsigned)Value.getZExtValue()
8509            << (unsigned)TypeSize;
8510
8511        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8512          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8513      }
8514
8515      if (FieldName)
8516        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8517          << FieldName << (unsigned)Value.getZExtValue()
8518          << (unsigned)TypeSize;
8519      else
8520        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8521          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8522    }
8523  }
8524
8525  return false;
8526}
8527
8528/// ActOnField - Each field of a C struct/union is passed into this in order
8529/// to create a FieldDecl object for it.
8530Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8531                       Declarator &D, Expr *BitfieldWidth) {
8532  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8533                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8534                               /*HasInit=*/false, AS_public);
8535  return Res;
8536}
8537
8538/// HandleField - Analyze a field of a C struct or a C++ data member.
8539///
8540FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8541                             SourceLocation DeclStart,
8542                             Declarator &D, Expr *BitWidth, bool HasInit,
8543                             AccessSpecifier AS) {
8544  IdentifierInfo *II = D.getIdentifier();
8545  SourceLocation Loc = DeclStart;
8546  if (II) Loc = D.getIdentifierLoc();
8547
8548  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8549  QualType T = TInfo->getType();
8550  if (getLangOptions().CPlusPlus) {
8551    CheckExtraCXXDefaultArguments(D);
8552
8553    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8554                                        UPPC_DataMemberType)) {
8555      D.setInvalidType();
8556      T = Context.IntTy;
8557      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8558    }
8559  }
8560
8561  DiagnoseFunctionSpecifiers(D);
8562
8563  if (D.getDeclSpec().isThreadSpecified())
8564    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8565  if (D.getDeclSpec().isConstexprSpecified())
8566    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8567      << 2;
8568
8569  // Check to see if this name was declared as a member previously
8570  NamedDecl *PrevDecl = 0;
8571  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8572  LookupName(Previous, S);
8573  switch (Previous.getResultKind()) {
8574    case LookupResult::Found:
8575    case LookupResult::FoundUnresolvedValue:
8576      PrevDecl = Previous.getAsSingle<NamedDecl>();
8577      break;
8578
8579    case LookupResult::FoundOverloaded:
8580      PrevDecl = Previous.getRepresentativeDecl();
8581      break;
8582
8583    case LookupResult::NotFound:
8584    case LookupResult::NotFoundInCurrentInstantiation:
8585    case LookupResult::Ambiguous:
8586      break;
8587  }
8588  Previous.suppressDiagnostics();
8589
8590  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8591    // Maybe we will complain about the shadowed template parameter.
8592    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8593    // Just pretend that we didn't see the previous declaration.
8594    PrevDecl = 0;
8595  }
8596
8597  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8598    PrevDecl = 0;
8599
8600  bool Mutable
8601    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8602  SourceLocation TSSL = D.getSourceRange().getBegin();
8603  FieldDecl *NewFD
8604    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8605                     TSSL, AS, PrevDecl, &D);
8606
8607  if (NewFD->isInvalidDecl())
8608    Record->setInvalidDecl();
8609
8610  if (D.getDeclSpec().isModulePrivateSpecified())
8611    NewFD->setModulePrivate();
8612
8613  if (NewFD->isInvalidDecl() && PrevDecl) {
8614    // Don't introduce NewFD into scope; there's already something
8615    // with the same name in the same scope.
8616  } else if (II) {
8617    PushOnScopeChains(NewFD, S);
8618  } else
8619    Record->addDecl(NewFD);
8620
8621  return NewFD;
8622}
8623
8624/// \brief Build a new FieldDecl and check its well-formedness.
8625///
8626/// This routine builds a new FieldDecl given the fields name, type,
8627/// record, etc. \p PrevDecl should refer to any previous declaration
8628/// with the same name and in the same scope as the field to be
8629/// created.
8630///
8631/// \returns a new FieldDecl.
8632///
8633/// \todo The Declarator argument is a hack. It will be removed once
8634FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8635                                TypeSourceInfo *TInfo,
8636                                RecordDecl *Record, SourceLocation Loc,
8637                                bool Mutable, Expr *BitWidth, bool HasInit,
8638                                SourceLocation TSSL,
8639                                AccessSpecifier AS, NamedDecl *PrevDecl,
8640                                Declarator *D) {
8641  IdentifierInfo *II = Name.getAsIdentifierInfo();
8642  bool InvalidDecl = false;
8643  if (D) InvalidDecl = D->isInvalidType();
8644
8645  // If we receive a broken type, recover by assuming 'int' and
8646  // marking this declaration as invalid.
8647  if (T.isNull()) {
8648    InvalidDecl = true;
8649    T = Context.IntTy;
8650  }
8651
8652  QualType EltTy = Context.getBaseElementType(T);
8653  if (!EltTy->isDependentType() &&
8654      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8655    // Fields of incomplete type force their record to be invalid.
8656    Record->setInvalidDecl();
8657    InvalidDecl = true;
8658  }
8659
8660  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8661  // than a variably modified type.
8662  if (!InvalidDecl && T->isVariablyModifiedType()) {
8663    bool SizeIsNegative;
8664    llvm::APSInt Oversized;
8665    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8666                                                           SizeIsNegative,
8667                                                           Oversized);
8668    if (!FixedTy.isNull()) {
8669      Diag(Loc, diag::warn_illegal_constant_array_size);
8670      T = FixedTy;
8671    } else {
8672      if (SizeIsNegative)
8673        Diag(Loc, diag::err_typecheck_negative_array_size);
8674      else if (Oversized.getBoolValue())
8675        Diag(Loc, diag::err_array_too_large)
8676          << Oversized.toString(10);
8677      else
8678        Diag(Loc, diag::err_typecheck_field_variable_size);
8679      InvalidDecl = true;
8680    }
8681  }
8682
8683  // Fields can not have abstract class types
8684  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8685                                             diag::err_abstract_type_in_decl,
8686                                             AbstractFieldType))
8687    InvalidDecl = true;
8688
8689  bool ZeroWidth = false;
8690  // If this is declared as a bit-field, check the bit-field.
8691  if (!InvalidDecl && BitWidth &&
8692      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8693    InvalidDecl = true;
8694    BitWidth = 0;
8695    ZeroWidth = false;
8696  }
8697
8698  // Check that 'mutable' is consistent with the type of the declaration.
8699  if (!InvalidDecl && Mutable) {
8700    unsigned DiagID = 0;
8701    if (T->isReferenceType())
8702      DiagID = diag::err_mutable_reference;
8703    else if (T.isConstQualified())
8704      DiagID = diag::err_mutable_const;
8705
8706    if (DiagID) {
8707      SourceLocation ErrLoc = Loc;
8708      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8709        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8710      Diag(ErrLoc, DiagID);
8711      Mutable = false;
8712      InvalidDecl = true;
8713    }
8714  }
8715
8716  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8717                                       BitWidth, Mutable, HasInit);
8718  if (InvalidDecl)
8719    NewFD->setInvalidDecl();
8720
8721  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8722    Diag(Loc, diag::err_duplicate_member) << II;
8723    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8724    NewFD->setInvalidDecl();
8725  }
8726
8727  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8728    if (Record->isUnion()) {
8729      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8730        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8731        if (RDecl->getDefinition()) {
8732          // C++ [class.union]p1: An object of a class with a non-trivial
8733          // constructor, a non-trivial copy constructor, a non-trivial
8734          // destructor, or a non-trivial copy assignment operator
8735          // cannot be a member of a union, nor can an array of such
8736          // objects.
8737          if (CheckNontrivialField(NewFD))
8738            NewFD->setInvalidDecl();
8739        }
8740      }
8741
8742      // C++ [class.union]p1: If a union contains a member of reference type,
8743      // the program is ill-formed.
8744      if (EltTy->isReferenceType()) {
8745        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8746          << NewFD->getDeclName() << EltTy;
8747        NewFD->setInvalidDecl();
8748      }
8749    }
8750  }
8751
8752  // FIXME: We need to pass in the attributes given an AST
8753  // representation, not a parser representation.
8754  if (D)
8755    // FIXME: What to pass instead of TUScope?
8756    ProcessDeclAttributes(TUScope, NewFD, *D);
8757
8758  // In auto-retain/release, infer strong retension for fields of
8759  // retainable type.
8760  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8761    NewFD->setInvalidDecl();
8762
8763  if (T.isObjCGCWeak())
8764    Diag(Loc, diag::warn_attribute_weak_on_field);
8765
8766  NewFD->setAccess(AS);
8767  return NewFD;
8768}
8769
8770bool Sema::CheckNontrivialField(FieldDecl *FD) {
8771  assert(FD);
8772  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8773
8774  if (FD->isInvalidDecl())
8775    return true;
8776
8777  QualType EltTy = Context.getBaseElementType(FD->getType());
8778  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8779    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8780    if (RDecl->getDefinition()) {
8781      // We check for copy constructors before constructors
8782      // because otherwise we'll never get complaints about
8783      // copy constructors.
8784
8785      CXXSpecialMember member = CXXInvalid;
8786      if (!RDecl->hasTrivialCopyConstructor())
8787        member = CXXCopyConstructor;
8788      else if (!RDecl->hasTrivialDefaultConstructor())
8789        member = CXXDefaultConstructor;
8790      else if (!RDecl->hasTrivialCopyAssignment())
8791        member = CXXCopyAssignment;
8792      else if (!RDecl->hasTrivialDestructor())
8793        member = CXXDestructor;
8794
8795      if (member != CXXInvalid) {
8796        if (!getLangOptions().CPlusPlus0x &&
8797            getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8798          // Objective-C++ ARC: it is an error to have a non-trivial field of
8799          // a union. However, system headers in Objective-C programs
8800          // occasionally have Objective-C lifetime objects within unions,
8801          // and rather than cause the program to fail, we make those
8802          // members unavailable.
8803          SourceLocation Loc = FD->getLocation();
8804          if (getSourceManager().isInSystemHeader(Loc)) {
8805            if (!FD->hasAttr<UnavailableAttr>())
8806              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8807                                  "this system field has retaining ownership"));
8808            return false;
8809          }
8810        }
8811
8812        Diag(FD->getLocation(), getLangOptions().CPlusPlus0x ?
8813               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
8814               diag::err_illegal_union_or_anon_struct_member)
8815          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8816        DiagnoseNontrivial(RT, member);
8817        return !getLangOptions().CPlusPlus0x;
8818      }
8819    }
8820  }
8821
8822  return false;
8823}
8824
8825/// DiagnoseNontrivial - Given that a class has a non-trivial
8826/// special member, figure out why.
8827void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8828  QualType QT(T, 0U);
8829  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8830
8831  // Check whether the member was user-declared.
8832  switch (member) {
8833  case CXXInvalid:
8834    break;
8835
8836  case CXXDefaultConstructor:
8837    if (RD->hasUserDeclaredConstructor()) {
8838      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8839      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8840        const FunctionDecl *body = 0;
8841        ci->hasBody(body);
8842        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8843          SourceLocation CtorLoc = ci->getLocation();
8844          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8845          return;
8846        }
8847      }
8848
8849      llvm_unreachable("found no user-declared constructors");
8850    }
8851    break;
8852
8853  case CXXCopyConstructor:
8854    if (RD->hasUserDeclaredCopyConstructor()) {
8855      SourceLocation CtorLoc =
8856        RD->getCopyConstructor(0)->getLocation();
8857      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8858      return;
8859    }
8860    break;
8861
8862  case CXXMoveConstructor:
8863    if (RD->hasUserDeclaredMoveConstructor()) {
8864      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8865      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8866      return;
8867    }
8868    break;
8869
8870  case CXXCopyAssignment:
8871    if (RD->hasUserDeclaredCopyAssignment()) {
8872      // FIXME: this should use the location of the copy
8873      // assignment, not the type.
8874      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8875      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8876      return;
8877    }
8878    break;
8879
8880  case CXXMoveAssignment:
8881    if (RD->hasUserDeclaredMoveAssignment()) {
8882      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8883      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8884      return;
8885    }
8886    break;
8887
8888  case CXXDestructor:
8889    if (RD->hasUserDeclaredDestructor()) {
8890      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8891      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8892      return;
8893    }
8894    break;
8895  }
8896
8897  typedef CXXRecordDecl::base_class_iterator base_iter;
8898
8899  // Virtual bases and members inhibit trivial copying/construction,
8900  // but not trivial destruction.
8901  if (member != CXXDestructor) {
8902    // Check for virtual bases.  vbases includes indirect virtual bases,
8903    // so we just iterate through the direct bases.
8904    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8905      if (bi->isVirtual()) {
8906        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8907        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8908        return;
8909      }
8910
8911    // Check for virtual methods.
8912    typedef CXXRecordDecl::method_iterator meth_iter;
8913    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8914         ++mi) {
8915      if (mi->isVirtual()) {
8916        SourceLocation MLoc = mi->getSourceRange().getBegin();
8917        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8918        return;
8919      }
8920    }
8921  }
8922
8923  bool (CXXRecordDecl::*hasTrivial)() const;
8924  switch (member) {
8925  case CXXDefaultConstructor:
8926    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8927  case CXXCopyConstructor:
8928    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8929  case CXXCopyAssignment:
8930    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8931  case CXXDestructor:
8932    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8933  default:
8934    llvm_unreachable("unexpected special member");
8935  }
8936
8937  // Check for nontrivial bases (and recurse).
8938  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8939    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8940    assert(BaseRT && "Don't know how to handle dependent bases");
8941    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8942    if (!(BaseRecTy->*hasTrivial)()) {
8943      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8944      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8945      DiagnoseNontrivial(BaseRT, member);
8946      return;
8947    }
8948  }
8949
8950  // Check for nontrivial members (and recurse).
8951  typedef RecordDecl::field_iterator field_iter;
8952  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8953       ++fi) {
8954    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8955    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8956      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8957
8958      if (!(EltRD->*hasTrivial)()) {
8959        SourceLocation FLoc = (*fi)->getLocation();
8960        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8961        DiagnoseNontrivial(EltRT, member);
8962        return;
8963      }
8964    }
8965
8966    if (EltTy->isObjCLifetimeType()) {
8967      switch (EltTy.getObjCLifetime()) {
8968      case Qualifiers::OCL_None:
8969      case Qualifiers::OCL_ExplicitNone:
8970        break;
8971
8972      case Qualifiers::OCL_Autoreleasing:
8973      case Qualifiers::OCL_Weak:
8974      case Qualifiers::OCL_Strong:
8975        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8976          << QT << EltTy.getObjCLifetime();
8977        return;
8978      }
8979    }
8980  }
8981
8982  llvm_unreachable("found no explanation for non-trivial member");
8983}
8984
8985/// TranslateIvarVisibility - Translate visibility from a token ID to an
8986///  AST enum value.
8987static ObjCIvarDecl::AccessControl
8988TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8989  switch (ivarVisibility) {
8990  default: llvm_unreachable("Unknown visitibility kind");
8991  case tok::objc_private: return ObjCIvarDecl::Private;
8992  case tok::objc_public: return ObjCIvarDecl::Public;
8993  case tok::objc_protected: return ObjCIvarDecl::Protected;
8994  case tok::objc_package: return ObjCIvarDecl::Package;
8995  }
8996}
8997
8998/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8999/// in order to create an IvarDecl object for it.
9000Decl *Sema::ActOnIvar(Scope *S,
9001                                SourceLocation DeclStart,
9002                                Declarator &D, Expr *BitfieldWidth,
9003                                tok::ObjCKeywordKind Visibility) {
9004
9005  IdentifierInfo *II = D.getIdentifier();
9006  Expr *BitWidth = (Expr*)BitfieldWidth;
9007  SourceLocation Loc = DeclStart;
9008  if (II) Loc = D.getIdentifierLoc();
9009
9010  // FIXME: Unnamed fields can be handled in various different ways, for
9011  // example, unnamed unions inject all members into the struct namespace!
9012
9013  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9014  QualType T = TInfo->getType();
9015
9016  if (BitWidth) {
9017    // 6.7.2.1p3, 6.7.2.1p4
9018    if (VerifyBitField(Loc, II, T, BitWidth)) {
9019      D.setInvalidType();
9020      BitWidth = 0;
9021    }
9022  } else {
9023    // Not a bitfield.
9024
9025    // validate II.
9026
9027  }
9028  if (T->isReferenceType()) {
9029    Diag(Loc, diag::err_ivar_reference_type);
9030    D.setInvalidType();
9031  }
9032  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9033  // than a variably modified type.
9034  else if (T->isVariablyModifiedType()) {
9035    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9036    D.setInvalidType();
9037  }
9038
9039  // Get the visibility (access control) for this ivar.
9040  ObjCIvarDecl::AccessControl ac =
9041    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9042                                        : ObjCIvarDecl::None;
9043  // Must set ivar's DeclContext to its enclosing interface.
9044  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9045  ObjCContainerDecl *EnclosingContext;
9046  if (ObjCImplementationDecl *IMPDecl =
9047      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9048    if (!LangOpts.ObjCNonFragileABI2) {
9049    // Case of ivar declared in an implementation. Context is that of its class.
9050      EnclosingContext = IMPDecl->getClassInterface();
9051      assert(EnclosingContext && "Implementation has no class interface!");
9052    }
9053    else
9054      EnclosingContext = EnclosingDecl;
9055  } else {
9056    if (ObjCCategoryDecl *CDecl =
9057        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9058      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
9059        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9060        return 0;
9061      }
9062    }
9063    EnclosingContext = EnclosingDecl;
9064  }
9065
9066  // Construct the decl.
9067  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9068                                             DeclStart, Loc, II, T,
9069                                             TInfo, ac, (Expr *)BitfieldWidth);
9070
9071  if (II) {
9072    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9073                                           ForRedeclaration);
9074    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9075        && !isa<TagDecl>(PrevDecl)) {
9076      Diag(Loc, diag::err_duplicate_member) << II;
9077      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9078      NewID->setInvalidDecl();
9079    }
9080  }
9081
9082  // Process attributes attached to the ivar.
9083  ProcessDeclAttributes(S, NewID, D);
9084
9085  if (D.isInvalidType())
9086    NewID->setInvalidDecl();
9087
9088  // In ARC, infer 'retaining' for ivars of retainable type.
9089  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9090    NewID->setInvalidDecl();
9091
9092  if (D.getDeclSpec().isModulePrivateSpecified())
9093    NewID->setModulePrivate();
9094
9095  if (II) {
9096    // FIXME: When interfaces are DeclContexts, we'll need to add
9097    // these to the interface.
9098    S->AddDecl(NewID);
9099    IdResolver.AddDecl(NewID);
9100  }
9101
9102  return NewID;
9103}
9104
9105/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9106/// class and class extensions. For every class @interface and class
9107/// extension @interface, if the last ivar is a bitfield of any type,
9108/// then add an implicit `char :0` ivar to the end of that interface.
9109void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9110                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9111  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
9112    return;
9113
9114  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9115  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9116
9117  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9118    return;
9119  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9120  if (!ID) {
9121    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9122      if (!CD->IsClassExtension())
9123        return;
9124    }
9125    // No need to add this to end of @implementation.
9126    else
9127      return;
9128  }
9129  // All conditions are met. Add a new bitfield to the tail end of ivars.
9130  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9131  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9132
9133  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9134                              DeclLoc, DeclLoc, 0,
9135                              Context.CharTy,
9136                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9137                                                               DeclLoc),
9138                              ObjCIvarDecl::Private, BW,
9139                              true);
9140  AllIvarDecls.push_back(Ivar);
9141}
9142
9143void Sema::ActOnFields(Scope* S,
9144                       SourceLocation RecLoc, Decl *EnclosingDecl,
9145                       llvm::ArrayRef<Decl *> Fields,
9146                       SourceLocation LBrac, SourceLocation RBrac,
9147                       AttributeList *Attr) {
9148  assert(EnclosingDecl && "missing record or interface decl");
9149
9150  // If the decl this is being inserted into is invalid, then it may be a
9151  // redeclaration or some other bogus case.  Don't try to add fields to it.
9152  if (EnclosingDecl->isInvalidDecl())
9153    return;
9154
9155  // Verify that all the fields are okay.
9156  unsigned NumNamedMembers = 0;
9157  SmallVector<FieldDecl*, 32> RecFields;
9158
9159  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9160  bool ARCErrReported = false;
9161  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9162       i != end; ++i) {
9163    FieldDecl *FD = cast<FieldDecl>(*i);
9164
9165    // Get the type for the field.
9166    const Type *FDTy = FD->getType().getTypePtr();
9167
9168    if (!FD->isAnonymousStructOrUnion()) {
9169      // Remember all fields written by the user.
9170      RecFields.push_back(FD);
9171    }
9172
9173    // If the field is already invalid for some reason, don't emit more
9174    // diagnostics about it.
9175    if (FD->isInvalidDecl()) {
9176      EnclosingDecl->setInvalidDecl();
9177      continue;
9178    }
9179
9180    // C99 6.7.2.1p2:
9181    //   A structure or union shall not contain a member with
9182    //   incomplete or function type (hence, a structure shall not
9183    //   contain an instance of itself, but may contain a pointer to
9184    //   an instance of itself), except that the last member of a
9185    //   structure with more than one named member may have incomplete
9186    //   array type; such a structure (and any union containing,
9187    //   possibly recursively, a member that is such a structure)
9188    //   shall not be a member of a structure or an element of an
9189    //   array.
9190    if (FDTy->isFunctionType()) {
9191      // Field declared as a function.
9192      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9193        << FD->getDeclName();
9194      FD->setInvalidDecl();
9195      EnclosingDecl->setInvalidDecl();
9196      continue;
9197    } else if (FDTy->isIncompleteArrayType() && Record &&
9198               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9199                ((getLangOptions().MicrosoftExt ||
9200                  getLangOptions().CPlusPlus) &&
9201                 (i + 1 == Fields.end() || Record->isUnion())))) {
9202      // Flexible array member.
9203      // Microsoft and g++ is more permissive regarding flexible array.
9204      // It will accept flexible array in union and also
9205      // as the sole element of a struct/class.
9206      if (getLangOptions().MicrosoftExt) {
9207        if (Record->isUnion())
9208          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9209            << FD->getDeclName();
9210        else if (Fields.size() == 1)
9211          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9212            << FD->getDeclName() << Record->getTagKind();
9213      } else if (getLangOptions().CPlusPlus) {
9214        if (Record->isUnion())
9215          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9216            << FD->getDeclName();
9217        else if (Fields.size() == 1)
9218          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9219            << FD->getDeclName() << Record->getTagKind();
9220      } else if (NumNamedMembers < 1) {
9221        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9222          << FD->getDeclName();
9223        FD->setInvalidDecl();
9224        EnclosingDecl->setInvalidDecl();
9225        continue;
9226      }
9227      if (!FD->getType()->isDependentType() &&
9228          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9229        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9230          << FD->getDeclName() << FD->getType();
9231        FD->setInvalidDecl();
9232        EnclosingDecl->setInvalidDecl();
9233        continue;
9234      }
9235      // Okay, we have a legal flexible array member at the end of the struct.
9236      if (Record)
9237        Record->setHasFlexibleArrayMember(true);
9238    } else if (!FDTy->isDependentType() &&
9239               RequireCompleteType(FD->getLocation(), FD->getType(),
9240                                   diag::err_field_incomplete)) {
9241      // Incomplete type
9242      FD->setInvalidDecl();
9243      EnclosingDecl->setInvalidDecl();
9244      continue;
9245    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9246      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9247        // If this is a member of a union, then entire union becomes "flexible".
9248        if (Record && Record->isUnion()) {
9249          Record->setHasFlexibleArrayMember(true);
9250        } else {
9251          // If this is a struct/class and this is not the last element, reject
9252          // it.  Note that GCC supports variable sized arrays in the middle of
9253          // structures.
9254          if (i + 1 != Fields.end())
9255            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9256              << FD->getDeclName() << FD->getType();
9257          else {
9258            // We support flexible arrays at the end of structs in
9259            // other structs as an extension.
9260            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9261              << FD->getDeclName();
9262            if (Record)
9263              Record->setHasFlexibleArrayMember(true);
9264          }
9265        }
9266      }
9267      if (Record && FDTTy->getDecl()->hasObjectMember())
9268        Record->setHasObjectMember(true);
9269    } else if (FDTy->isObjCObjectType()) {
9270      /// A field cannot be an Objective-c object
9271      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9272        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9273      QualType T = Context.getObjCObjectPointerType(FD->getType());
9274      FD->setType(T);
9275    }
9276    else if (!getLangOptions().CPlusPlus) {
9277      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9278        // It's an error in ARC if a field has lifetime.
9279        // We don't want to report this in a system header, though,
9280        // so we just make the field unavailable.
9281        // FIXME: that's really not sufficient; we need to make the type
9282        // itself invalid to, say, initialize or copy.
9283        QualType T = FD->getType();
9284        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9285        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9286          SourceLocation loc = FD->getLocation();
9287          if (getSourceManager().isInSystemHeader(loc)) {
9288            if (!FD->hasAttr<UnavailableAttr>()) {
9289              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9290                                "this system field has retaining ownership"));
9291            }
9292          } else {
9293            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9294              << T->isBlockPointerType();
9295          }
9296          ARCErrReported = true;
9297        }
9298      }
9299      else if (getLangOptions().ObjC1 &&
9300               getLangOptions().getGC() != LangOptions::NonGC &&
9301               Record && !Record->hasObjectMember()) {
9302        if (FD->getType()->isObjCObjectPointerType() ||
9303            FD->getType().isObjCGCStrong())
9304          Record->setHasObjectMember(true);
9305        else if (Context.getAsArrayType(FD->getType())) {
9306          QualType BaseType = Context.getBaseElementType(FD->getType());
9307          if (BaseType->isRecordType() &&
9308              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9309            Record->setHasObjectMember(true);
9310          else if (BaseType->isObjCObjectPointerType() ||
9311                   BaseType.isObjCGCStrong())
9312                 Record->setHasObjectMember(true);
9313        }
9314      }
9315    }
9316    // Keep track of the number of named members.
9317    if (FD->getIdentifier())
9318      ++NumNamedMembers;
9319  }
9320
9321  // Okay, we successfully defined 'Record'.
9322  if (Record) {
9323    bool Completed = false;
9324    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9325      if (!CXXRecord->isInvalidDecl()) {
9326        // Set access bits correctly on the directly-declared conversions.
9327        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9328        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9329             I != E; ++I)
9330          Convs->setAccess(I, (*I)->getAccess());
9331
9332        if (!CXXRecord->isDependentType()) {
9333          // Objective-C Automatic Reference Counting:
9334          //   If a class has a non-static data member of Objective-C pointer
9335          //   type (or array thereof), it is a non-POD type and its
9336          //   default constructor (if any), copy constructor, copy assignment
9337          //   operator, and destructor are non-trivial.
9338          //
9339          // This rule is also handled by CXXRecordDecl::completeDefinition().
9340          // However, here we check whether this particular class is only
9341          // non-POD because of the presence of an Objective-C pointer member.
9342          // If so, objects of this type cannot be shared between code compiled
9343          // with instant objects and code compiled with manual retain/release.
9344          if (getLangOptions().ObjCAutoRefCount &&
9345              CXXRecord->hasObjectMember() &&
9346              CXXRecord->getLinkage() == ExternalLinkage) {
9347            if (CXXRecord->isPOD()) {
9348              Diag(CXXRecord->getLocation(),
9349                   diag::warn_arc_non_pod_class_with_object_member)
9350               << CXXRecord;
9351            } else {
9352              // FIXME: Fix-Its would be nice here, but finding a good location
9353              // for them is going to be tricky.
9354              if (CXXRecord->hasTrivialCopyConstructor())
9355                Diag(CXXRecord->getLocation(),
9356                     diag::warn_arc_trivial_member_function_with_object_member)
9357                  << CXXRecord << 0;
9358              if (CXXRecord->hasTrivialCopyAssignment())
9359                Diag(CXXRecord->getLocation(),
9360                     diag::warn_arc_trivial_member_function_with_object_member)
9361                << CXXRecord << 1;
9362              if (CXXRecord->hasTrivialDestructor())
9363                Diag(CXXRecord->getLocation(),
9364                     diag::warn_arc_trivial_member_function_with_object_member)
9365                << CXXRecord << 2;
9366            }
9367          }
9368
9369          // Adjust user-defined destructor exception spec.
9370          if (getLangOptions().CPlusPlus0x &&
9371              CXXRecord->hasUserDeclaredDestructor())
9372            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9373
9374          // Add any implicitly-declared members to this class.
9375          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9376
9377          // If we have virtual base classes, we may end up finding multiple
9378          // final overriders for a given virtual function. Check for this
9379          // problem now.
9380          if (CXXRecord->getNumVBases()) {
9381            CXXFinalOverriderMap FinalOverriders;
9382            CXXRecord->getFinalOverriders(FinalOverriders);
9383
9384            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9385                                             MEnd = FinalOverriders.end();
9386                 M != MEnd; ++M) {
9387              for (OverridingMethods::iterator SO = M->second.begin(),
9388                                            SOEnd = M->second.end();
9389                   SO != SOEnd; ++SO) {
9390                assert(SO->second.size() > 0 &&
9391                       "Virtual function without overridding functions?");
9392                if (SO->second.size() == 1)
9393                  continue;
9394
9395                // C++ [class.virtual]p2:
9396                //   In a derived class, if a virtual member function of a base
9397                //   class subobject has more than one final overrider the
9398                //   program is ill-formed.
9399                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9400                  << (NamedDecl *)M->first << Record;
9401                Diag(M->first->getLocation(),
9402                     diag::note_overridden_virtual_function);
9403                for (OverridingMethods::overriding_iterator
9404                          OM = SO->second.begin(),
9405                       OMEnd = SO->second.end();
9406                     OM != OMEnd; ++OM)
9407                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9408                    << (NamedDecl *)M->first << OM->Method->getParent();
9409
9410                Record->setInvalidDecl();
9411              }
9412            }
9413            CXXRecord->completeDefinition(&FinalOverriders);
9414            Completed = true;
9415          }
9416        }
9417      }
9418    }
9419
9420    if (!Completed)
9421      Record->completeDefinition();
9422
9423    // Now that the record is complete, do any delayed exception spec checks
9424    // we were missing.
9425    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9426      const CXXDestructorDecl *Dtor =
9427              DelayedDestructorExceptionSpecChecks.back().first;
9428      if (Dtor->getParent() != Record)
9429        break;
9430
9431      assert(!Dtor->getParent()->isDependentType() &&
9432          "Should not ever add destructors of templates into the list.");
9433      CheckOverridingFunctionExceptionSpec(Dtor,
9434          DelayedDestructorExceptionSpecChecks.back().second);
9435      DelayedDestructorExceptionSpecChecks.pop_back();
9436    }
9437
9438  } else {
9439    ObjCIvarDecl **ClsFields =
9440      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9441    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9442      ID->setEndOfDefinitionLoc(RBrac);
9443      // Add ivar's to class's DeclContext.
9444      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9445        ClsFields[i]->setLexicalDeclContext(ID);
9446        ID->addDecl(ClsFields[i]);
9447      }
9448      // Must enforce the rule that ivars in the base classes may not be
9449      // duplicates.
9450      if (ID->getSuperClass())
9451        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9452    } else if (ObjCImplementationDecl *IMPDecl =
9453                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9454      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9455      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9456        // Ivar declared in @implementation never belongs to the implementation.
9457        // Only it is in implementation's lexical context.
9458        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9459      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9460    } else if (ObjCCategoryDecl *CDecl =
9461                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9462      // case of ivars in class extension; all other cases have been
9463      // reported as errors elsewhere.
9464      // FIXME. Class extension does not have a LocEnd field.
9465      // CDecl->setLocEnd(RBrac);
9466      // Add ivar's to class extension's DeclContext.
9467      // Diagnose redeclaration of private ivars.
9468      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
9469      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9470        if (IDecl) {
9471          if (const ObjCIvarDecl *ClsIvar =
9472              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9473            Diag(ClsFields[i]->getLocation(),
9474                 diag::err_duplicate_ivar_declaration);
9475            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
9476            continue;
9477          }
9478          for (const ObjCCategoryDecl *ClsExtDecl =
9479                IDecl->getFirstClassExtension();
9480               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
9481            if (const ObjCIvarDecl *ClsExtIvar =
9482                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9483              Diag(ClsFields[i]->getLocation(),
9484                   diag::err_duplicate_ivar_declaration);
9485              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
9486              continue;
9487            }
9488          }
9489        }
9490        ClsFields[i]->setLexicalDeclContext(CDecl);
9491        CDecl->addDecl(ClsFields[i]);
9492      }
9493    }
9494  }
9495
9496  if (Attr)
9497    ProcessDeclAttributeList(S, Record, Attr);
9498
9499  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9500  // set the visibility of this record.
9501  if (Record && !Record->getDeclContext()->isRecord())
9502    AddPushedVisibilityAttribute(Record);
9503}
9504
9505/// \brief Determine whether the given integral value is representable within
9506/// the given type T.
9507static bool isRepresentableIntegerValue(ASTContext &Context,
9508                                        llvm::APSInt &Value,
9509                                        QualType T) {
9510  assert(T->isIntegralType(Context) && "Integral type required!");
9511  unsigned BitWidth = Context.getIntWidth(T);
9512
9513  if (Value.isUnsigned() || Value.isNonNegative()) {
9514    if (T->isSignedIntegerOrEnumerationType())
9515      --BitWidth;
9516    return Value.getActiveBits() <= BitWidth;
9517  }
9518  return Value.getMinSignedBits() <= BitWidth;
9519}
9520
9521// \brief Given an integral type, return the next larger integral type
9522// (or a NULL type of no such type exists).
9523static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9524  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9525  // enum checking below.
9526  assert(T->isIntegralType(Context) && "Integral type required!");
9527  const unsigned NumTypes = 4;
9528  QualType SignedIntegralTypes[NumTypes] = {
9529    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9530  };
9531  QualType UnsignedIntegralTypes[NumTypes] = {
9532    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9533    Context.UnsignedLongLongTy
9534  };
9535
9536  unsigned BitWidth = Context.getTypeSize(T);
9537  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9538                                                        : UnsignedIntegralTypes;
9539  for (unsigned I = 0; I != NumTypes; ++I)
9540    if (Context.getTypeSize(Types[I]) > BitWidth)
9541      return Types[I];
9542
9543  return QualType();
9544}
9545
9546EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9547                                          EnumConstantDecl *LastEnumConst,
9548                                          SourceLocation IdLoc,
9549                                          IdentifierInfo *Id,
9550                                          Expr *Val) {
9551  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9552  llvm::APSInt EnumVal(IntWidth);
9553  QualType EltTy;
9554
9555  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9556    Val = 0;
9557
9558  if (Val)
9559    Val = DefaultLvalueConversion(Val).take();
9560
9561  if (Val) {
9562    if (Enum->isDependentType() || Val->isTypeDependent())
9563      EltTy = Context.DependentTy;
9564    else {
9565      SourceLocation ExpLoc;
9566      if (getLangOptions().CPlusPlus0x && Enum->isFixed() &&
9567          !getLangOptions().MicrosoftMode) {
9568        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
9569        // constant-expression in the enumerator-definition shall be a converted
9570        // constant expression of the underlying type.
9571        EltTy = Enum->getIntegerType();
9572        ExprResult Converted =
9573          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
9574                                           CCEK_Enumerator);
9575        if (Converted.isInvalid())
9576          Val = 0;
9577        else
9578          Val = Converted.take();
9579      } else if (!Val->isValueDependent() &&
9580                 VerifyIntegerConstantExpression(Val, &EnumVal)) {
9581        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9582        Val = 0;
9583      } else {
9584        if (!getLangOptions().CPlusPlus) {
9585          // C99 6.7.2.2p2:
9586          //   The expression that defines the value of an enumeration constant
9587          //   shall be an integer constant expression that has a value
9588          //   representable as an int.
9589
9590          // Complain if the value is not representable in an int.
9591          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9592            Diag(IdLoc, diag::ext_enum_value_not_int)
9593              << EnumVal.toString(10) << Val->getSourceRange()
9594              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9595          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9596            // Force the type of the expression to 'int'.
9597            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9598          }
9599        }
9600
9601        if (Enum->isFixed()) {
9602          EltTy = Enum->getIntegerType();
9603
9604          // In Obj-C and Microsoft mode, require the enumeration value to be
9605          // representable in the underlying type of the enumeration. In C++11,
9606          // we perform a non-narrowing conversion as part of converted constant
9607          // expression checking.
9608          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9609            if (getLangOptions().MicrosoftExt) {
9610              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9611              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9612            } else
9613              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
9614          } else
9615            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9616        } else {
9617          // C++11 [dcl.enum]p5:
9618          //   If the underlying type is not fixed, the type of each enumerator
9619          //   is the type of its initializing value:
9620          //     - If an initializer is specified for an enumerator, the
9621          //       initializing value has the same type as the expression.
9622          EltTy = Val->getType();
9623        }
9624      }
9625    }
9626  }
9627
9628  if (!Val) {
9629    if (Enum->isDependentType())
9630      EltTy = Context.DependentTy;
9631    else if (!LastEnumConst) {
9632      // C++0x [dcl.enum]p5:
9633      //   If the underlying type is not fixed, the type of each enumerator
9634      //   is the type of its initializing value:
9635      //     - If no initializer is specified for the first enumerator, the
9636      //       initializing value has an unspecified integral type.
9637      //
9638      // GCC uses 'int' for its unspecified integral type, as does
9639      // C99 6.7.2.2p3.
9640      if (Enum->isFixed()) {
9641        EltTy = Enum->getIntegerType();
9642      }
9643      else {
9644        EltTy = Context.IntTy;
9645      }
9646    } else {
9647      // Assign the last value + 1.
9648      EnumVal = LastEnumConst->getInitVal();
9649      ++EnumVal;
9650      EltTy = LastEnumConst->getType();
9651
9652      // Check for overflow on increment.
9653      if (EnumVal < LastEnumConst->getInitVal()) {
9654        // C++0x [dcl.enum]p5:
9655        //   If the underlying type is not fixed, the type of each enumerator
9656        //   is the type of its initializing value:
9657        //
9658        //     - Otherwise the type of the initializing value is the same as
9659        //       the type of the initializing value of the preceding enumerator
9660        //       unless the incremented value is not representable in that type,
9661        //       in which case the type is an unspecified integral type
9662        //       sufficient to contain the incremented value. If no such type
9663        //       exists, the program is ill-formed.
9664        QualType T = getNextLargerIntegralType(Context, EltTy);
9665        if (T.isNull() || Enum->isFixed()) {
9666          // There is no integral type larger enough to represent this
9667          // value. Complain, then allow the value to wrap around.
9668          EnumVal = LastEnumConst->getInitVal();
9669          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9670          ++EnumVal;
9671          if (Enum->isFixed())
9672            // When the underlying type is fixed, this is ill-formed.
9673            Diag(IdLoc, diag::err_enumerator_wrapped)
9674              << EnumVal.toString(10)
9675              << EltTy;
9676          else
9677            Diag(IdLoc, diag::warn_enumerator_too_large)
9678              << EnumVal.toString(10);
9679        } else {
9680          EltTy = T;
9681        }
9682
9683        // Retrieve the last enumerator's value, extent that type to the
9684        // type that is supposed to be large enough to represent the incremented
9685        // value, then increment.
9686        EnumVal = LastEnumConst->getInitVal();
9687        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9688        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9689        ++EnumVal;
9690
9691        // If we're not in C++, diagnose the overflow of enumerator values,
9692        // which in C99 means that the enumerator value is not representable in
9693        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9694        // permits enumerator values that are representable in some larger
9695        // integral type.
9696        if (!getLangOptions().CPlusPlus && !T.isNull())
9697          Diag(IdLoc, diag::warn_enum_value_overflow);
9698      } else if (!getLangOptions().CPlusPlus &&
9699                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9700        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9701        Diag(IdLoc, diag::ext_enum_value_not_int)
9702          << EnumVal.toString(10) << 1;
9703      }
9704    }
9705  }
9706
9707  if (!EltTy->isDependentType()) {
9708    // Make the enumerator value match the signedness and size of the
9709    // enumerator's type.
9710    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9711    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9712  }
9713
9714  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9715                                  Val, EnumVal);
9716}
9717
9718
9719Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9720                              SourceLocation IdLoc, IdentifierInfo *Id,
9721                              AttributeList *Attr,
9722                              SourceLocation EqualLoc, Expr *Val) {
9723  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9724  EnumConstantDecl *LastEnumConst =
9725    cast_or_null<EnumConstantDecl>(lastEnumConst);
9726
9727  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9728  // we find one that is.
9729  S = getNonFieldDeclScope(S);
9730
9731  // Verify that there isn't already something declared with this name in this
9732  // scope.
9733  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9734                                         ForRedeclaration);
9735  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9736    // Maybe we will complain about the shadowed template parameter.
9737    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9738    // Just pretend that we didn't see the previous declaration.
9739    PrevDecl = 0;
9740  }
9741
9742  if (PrevDecl) {
9743    // When in C++, we may get a TagDecl with the same name; in this case the
9744    // enum constant will 'hide' the tag.
9745    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9746           "Received TagDecl when not in C++!");
9747    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9748      if (isa<EnumConstantDecl>(PrevDecl))
9749        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9750      else
9751        Diag(IdLoc, diag::err_redefinition) << Id;
9752      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9753      return 0;
9754    }
9755  }
9756
9757  // C++ [class.mem]p13:
9758  //   If T is the name of a class, then each of the following shall have a
9759  //   name different from T:
9760  //     - every enumerator of every member of class T that is an enumerated
9761  //       type
9762  if (CXXRecordDecl *Record
9763                      = dyn_cast<CXXRecordDecl>(
9764                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9765    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9766      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9767
9768  EnumConstantDecl *New =
9769    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9770
9771  if (New) {
9772    // Process attributes.
9773    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9774
9775    // Register this decl in the current scope stack.
9776    New->setAccess(TheEnumDecl->getAccess());
9777    PushOnScopeChains(New, S);
9778  }
9779
9780  return New;
9781}
9782
9783void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9784                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9785                         Decl **Elements, unsigned NumElements,
9786                         Scope *S, AttributeList *Attr) {
9787  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9788  QualType EnumType = Context.getTypeDeclType(Enum);
9789
9790  if (Attr)
9791    ProcessDeclAttributeList(S, Enum, Attr);
9792
9793  if (Enum->isDependentType()) {
9794    for (unsigned i = 0; i != NumElements; ++i) {
9795      EnumConstantDecl *ECD =
9796        cast_or_null<EnumConstantDecl>(Elements[i]);
9797      if (!ECD) continue;
9798
9799      ECD->setType(EnumType);
9800    }
9801
9802    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9803    return;
9804  }
9805
9806  // TODO: If the result value doesn't fit in an int, it must be a long or long
9807  // long value.  ISO C does not support this, but GCC does as an extension,
9808  // emit a warning.
9809  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9810  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9811  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9812
9813  // Verify that all the values are okay, compute the size of the values, and
9814  // reverse the list.
9815  unsigned NumNegativeBits = 0;
9816  unsigned NumPositiveBits = 0;
9817
9818  // Keep track of whether all elements have type int.
9819  bool AllElementsInt = true;
9820
9821  for (unsigned i = 0; i != NumElements; ++i) {
9822    EnumConstantDecl *ECD =
9823      cast_or_null<EnumConstantDecl>(Elements[i]);
9824    if (!ECD) continue;  // Already issued a diagnostic.
9825
9826    const llvm::APSInt &InitVal = ECD->getInitVal();
9827
9828    // Keep track of the size of positive and negative values.
9829    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9830      NumPositiveBits = std::max(NumPositiveBits,
9831                                 (unsigned)InitVal.getActiveBits());
9832    else
9833      NumNegativeBits = std::max(NumNegativeBits,
9834                                 (unsigned)InitVal.getMinSignedBits());
9835
9836    // Keep track of whether every enum element has type int (very commmon).
9837    if (AllElementsInt)
9838      AllElementsInt = ECD->getType() == Context.IntTy;
9839  }
9840
9841  // Figure out the type that should be used for this enum.
9842  QualType BestType;
9843  unsigned BestWidth;
9844
9845  // C++0x N3000 [conv.prom]p3:
9846  //   An rvalue of an unscoped enumeration type whose underlying
9847  //   type is not fixed can be converted to an rvalue of the first
9848  //   of the following types that can represent all the values of
9849  //   the enumeration: int, unsigned int, long int, unsigned long
9850  //   int, long long int, or unsigned long long int.
9851  // C99 6.4.4.3p2:
9852  //   An identifier declared as an enumeration constant has type int.
9853  // The C99 rule is modified by a gcc extension
9854  QualType BestPromotionType;
9855
9856  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9857  // -fshort-enums is the equivalent to specifying the packed attribute on all
9858  // enum definitions.
9859  if (LangOpts.ShortEnums)
9860    Packed = true;
9861
9862  if (Enum->isFixed()) {
9863    BestType = Enum->getIntegerType();
9864    if (BestType->isPromotableIntegerType())
9865      BestPromotionType = Context.getPromotedIntegerType(BestType);
9866    else
9867      BestPromotionType = BestType;
9868    // We don't need to set BestWidth, because BestType is going to be the type
9869    // of the enumerators, but we do anyway because otherwise some compilers
9870    // warn that it might be used uninitialized.
9871    BestWidth = CharWidth;
9872  }
9873  else if (NumNegativeBits) {
9874    // If there is a negative value, figure out the smallest integer type (of
9875    // int/long/longlong) that fits.
9876    // If it's packed, check also if it fits a char or a short.
9877    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9878      BestType = Context.SignedCharTy;
9879      BestWidth = CharWidth;
9880    } else if (Packed && NumNegativeBits <= ShortWidth &&
9881               NumPositiveBits < ShortWidth) {
9882      BestType = Context.ShortTy;
9883      BestWidth = ShortWidth;
9884    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9885      BestType = Context.IntTy;
9886      BestWidth = IntWidth;
9887    } else {
9888      BestWidth = Context.getTargetInfo().getLongWidth();
9889
9890      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9891        BestType = Context.LongTy;
9892      } else {
9893        BestWidth = Context.getTargetInfo().getLongLongWidth();
9894
9895        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9896          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9897        BestType = Context.LongLongTy;
9898      }
9899    }
9900    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9901  } else {
9902    // If there is no negative value, figure out the smallest type that fits
9903    // all of the enumerator values.
9904    // If it's packed, check also if it fits a char or a short.
9905    if (Packed && NumPositiveBits <= CharWidth) {
9906      BestType = Context.UnsignedCharTy;
9907      BestPromotionType = Context.IntTy;
9908      BestWidth = CharWidth;
9909    } else if (Packed && NumPositiveBits <= ShortWidth) {
9910      BestType = Context.UnsignedShortTy;
9911      BestPromotionType = Context.IntTy;
9912      BestWidth = ShortWidth;
9913    } else if (NumPositiveBits <= IntWidth) {
9914      BestType = Context.UnsignedIntTy;
9915      BestWidth = IntWidth;
9916      BestPromotionType
9917        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9918                           ? Context.UnsignedIntTy : Context.IntTy;
9919    } else if (NumPositiveBits <=
9920               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9921      BestType = Context.UnsignedLongTy;
9922      BestPromotionType
9923        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9924                           ? Context.UnsignedLongTy : Context.LongTy;
9925    } else {
9926      BestWidth = Context.getTargetInfo().getLongLongWidth();
9927      assert(NumPositiveBits <= BestWidth &&
9928             "How could an initializer get larger than ULL?");
9929      BestType = Context.UnsignedLongLongTy;
9930      BestPromotionType
9931        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9932                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9933    }
9934  }
9935
9936  // Loop over all of the enumerator constants, changing their types to match
9937  // the type of the enum if needed.
9938  for (unsigned i = 0; i != NumElements; ++i) {
9939    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9940    if (!ECD) continue;  // Already issued a diagnostic.
9941
9942    // Standard C says the enumerators have int type, but we allow, as an
9943    // extension, the enumerators to be larger than int size.  If each
9944    // enumerator value fits in an int, type it as an int, otherwise type it the
9945    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9946    // that X has type 'int', not 'unsigned'.
9947
9948    // Determine whether the value fits into an int.
9949    llvm::APSInt InitVal = ECD->getInitVal();
9950
9951    // If it fits into an integer type, force it.  Otherwise force it to match
9952    // the enum decl type.
9953    QualType NewTy;
9954    unsigned NewWidth;
9955    bool NewSign;
9956    if (!getLangOptions().CPlusPlus &&
9957        !Enum->isFixed() &&
9958        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9959      NewTy = Context.IntTy;
9960      NewWidth = IntWidth;
9961      NewSign = true;
9962    } else if (ECD->getType() == BestType) {
9963      // Already the right type!
9964      if (getLangOptions().CPlusPlus)
9965        // C++ [dcl.enum]p4: Following the closing brace of an
9966        // enum-specifier, each enumerator has the type of its
9967        // enumeration.
9968        ECD->setType(EnumType);
9969      continue;
9970    } else {
9971      NewTy = BestType;
9972      NewWidth = BestWidth;
9973      NewSign = BestType->isSignedIntegerOrEnumerationType();
9974    }
9975
9976    // Adjust the APSInt value.
9977    InitVal = InitVal.extOrTrunc(NewWidth);
9978    InitVal.setIsSigned(NewSign);
9979    ECD->setInitVal(InitVal);
9980
9981    // Adjust the Expr initializer and type.
9982    if (ECD->getInitExpr() &&
9983        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9984      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9985                                                CK_IntegralCast,
9986                                                ECD->getInitExpr(),
9987                                                /*base paths*/ 0,
9988                                                VK_RValue));
9989    if (getLangOptions().CPlusPlus)
9990      // C++ [dcl.enum]p4: Following the closing brace of an
9991      // enum-specifier, each enumerator has the type of its
9992      // enumeration.
9993      ECD->setType(EnumType);
9994    else
9995      ECD->setType(NewTy);
9996  }
9997
9998  Enum->completeDefinition(BestType, BestPromotionType,
9999                           NumPositiveBits, NumNegativeBits);
10000}
10001
10002Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
10003                                  SourceLocation StartLoc,
10004                                  SourceLocation EndLoc) {
10005  StringLiteral *AsmString = cast<StringLiteral>(expr);
10006
10007  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
10008                                                   AsmString, StartLoc,
10009                                                   EndLoc);
10010  CurContext->addDecl(New);
10011  return New;
10012}
10013
10014DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
10015                                   SourceLocation ImportLoc,
10016                                   ModuleIdPath Path) {
10017  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
10018                                                Module::AllVisible,
10019                                                /*IsIncludeDirective=*/false);
10020  if (!Mod)
10021    return true;
10022
10023  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
10024  Module *ModCheck = Mod;
10025  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
10026    // If we've run out of module parents, just drop the remaining identifiers.
10027    // We need the length to be consistent.
10028    if (!ModCheck)
10029      break;
10030    ModCheck = ModCheck->Parent;
10031
10032    IdentifierLocs.push_back(Path[I].second);
10033  }
10034
10035  ImportDecl *Import = ImportDecl::Create(Context,
10036                                          Context.getTranslationUnitDecl(),
10037                                          AtLoc.isValid()? AtLoc : ImportLoc,
10038                                          Mod, IdentifierLocs);
10039  Context.getTranslationUnitDecl()->addDecl(Import);
10040  return Import;
10041}
10042
10043void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
10044                             SourceLocation PragmaLoc,
10045                             SourceLocation NameLoc) {
10046  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
10047
10048  if (PrevDecl) {
10049    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
10050  } else {
10051    (void)WeakUndeclaredIdentifiers.insert(
10052      std::pair<IdentifierInfo*,WeakInfo>
10053        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
10054  }
10055}
10056
10057void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
10058                                IdentifierInfo* AliasName,
10059                                SourceLocation PragmaLoc,
10060                                SourceLocation NameLoc,
10061                                SourceLocation AliasNameLoc) {
10062  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
10063                                    LookupOrdinaryName);
10064  WeakInfo W = WeakInfo(Name, NameLoc);
10065
10066  if (PrevDecl) {
10067    if (!PrevDecl->hasAttr<AliasAttr>())
10068      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
10069        DeclApplyPragmaWeak(TUScope, ND, W);
10070  } else {
10071    (void)WeakUndeclaredIdentifiers.insert(
10072      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10073  }
10074}
10075
10076Decl *Sema::getObjCDeclContext() const {
10077  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10078}
10079
10080AvailabilityResult Sema::getCurContextAvailability() const {
10081  const Decl *D = cast<Decl>(getCurLexicalContext());
10082  // A category implicitly has the availability of the interface.
10083  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10084    D = CatD->getClassInterface();
10085
10086  return D->getAvailability();
10087}
10088