SemaDecl.cpp revision fb3f4aad0436a9c40e9130598162150890c405b5
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                             Scope *S, CXXScopeSpec *SS,
65                             bool isClassName, bool HasTrailingDot,
66                             ParsedType ObjectTypePtr,
67                             bool WantNontrivialTypeSourceInfo) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = ObjectTypePtr.get();
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isNotEmpty()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return ParsedType();
90
91        // We know from the grammar that this name refers to a type,
92        // so build a dependent node to describe the type.
93        if (WantNontrivialTypeSourceInfo)
94          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
95
96        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
97        QualType T =
98          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
99                            II, NameLoc);
100
101          return ParsedType::make(T);
102      }
103
104      return ParsedType();
105    }
106
107    if (!LookupCtx->isDependentContext() &&
108        RequireCompleteDeclContext(*SS, LookupCtx))
109      return ParsedType();
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    Result.suppressDiagnostics();
145    return ParsedType();
146
147  case LookupResult::Ambiguous:
148    // Recover from type-hiding ambiguities by hiding the type.  We'll
149    // do the lookup again when looking for an object, and we can
150    // diagnose the error then.  If we don't do this, then the error
151    // about hiding the type will be immediately followed by an error
152    // that only makes sense if the identifier was treated like a type.
153    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
154      Result.suppressDiagnostics();
155      return ParsedType();
156    }
157
158    // Look to see if we have a type anywhere in the list of results.
159    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
160         Res != ResEnd; ++Res) {
161      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
162        if (!IIDecl ||
163            (*Res)->getLocation().getRawEncoding() <
164              IIDecl->getLocation().getRawEncoding())
165          IIDecl = *Res;
166      }
167    }
168
169    if (!IIDecl) {
170      // None of the entities we found is a type, so there is no way
171      // to even assume that the result is a type. In this case, don't
172      // complain about the ambiguity. The parser will either try to
173      // perform this lookup again (e.g., as an object name), which
174      // will produce the ambiguity, or will complain that it expected
175      // a type name.
176      Result.suppressDiagnostics();
177      return ParsedType();
178    }
179
180    // We found a type within the ambiguous lookup; diagnose the
181    // ambiguity and then return that type. This might be the right
182    // answer, or it might not be, but it suppresses any attempt to
183    // perform the name lookup again.
184    break;
185
186  case LookupResult::Found:
187    IIDecl = Result.getFoundDecl();
188    break;
189  }
190
191  assert(IIDecl && "Didn't find decl");
192
193  QualType T;
194  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
195    DiagnoseUseOfDecl(IIDecl, NameLoc);
196
197    if (T.isNull())
198      T = Context.getTypeDeclType(TD);
199
200    if (SS && SS->isNotEmpty()) {
201      if (WantNontrivialTypeSourceInfo) {
202        // Construct a type with type-source information.
203        TypeLocBuilder Builder;
204        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
205
206        T = getElaboratedType(ETK_None, *SS, T);
207        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
208        ElabTL.setKeywordLoc(SourceLocation());
209        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
210        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
211      } else {
212        T = getElaboratedType(ETK_None, *SS, T);
213      }
214    }
215  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
216    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
217    if (!HasTrailingDot)
218      T = Context.getObjCInterfaceType(IDecl);
219  }
220
221  if (T.isNull()) {
222    // If it's not plausibly a type, suppress diagnostics.
223    Result.suppressDiagnostics();
224    return ParsedType();
225  }
226  return ParsedType::make(T);
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      default:         return DeclSpec::TST_unspecified;
243      case TTK_Struct: return DeclSpec::TST_struct;
244      case TTK_Union:  return DeclSpec::TST_union;
245      case TTK_Class:  return DeclSpec::TST_class;
246      case TTK_Enum:   return DeclSpec::TST_enum;
247      }
248    }
249
250  return DeclSpec::TST_unspecified;
251}
252
253/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
254/// if a CXXScopeSpec's type is equal to the type of one of the base classes
255/// then downgrade the missing typename error to a warning.
256/// This is needed for MSVC compatibility; Example:
257/// @code
258/// template<class T> class A {
259/// public:
260///   typedef int TYPE;
261/// };
262/// template<class T> class B : public A<T> {
263/// public:
264///   A<T>::TYPE a; // no typename required because A<T> is a base class.
265/// };
266/// @endcode
267bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
268  if (CurContext->isRecord()) {
269    const Type *Ty = SS->getScopeRep()->getAsType();
270
271    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
272    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
273          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
274      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
275        return true;
276  }
277  return false;
278}
279
280bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
281                                   SourceLocation IILoc,
282                                   Scope *S,
283                                   CXXScopeSpec *SS,
284                                   ParsedType &SuggestedType) {
285  // We don't have anything to suggest (yet).
286  SuggestedType = ParsedType();
287
288  // There may have been a typo in the name of the type. Look up typo
289  // results, in case we have something that we can suggest.
290  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
291                      NotForRedeclaration);
292
293  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
294    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
295      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
296          !Result->isInvalidDecl()) {
297        // We found a similarly-named type or interface; suggest that.
298        if (!SS || !SS->isSet())
299          Diag(IILoc, diag::err_unknown_typename_suggest)
300            << &II << Lookup.getLookupName()
301            << FixItHint::CreateReplacement(SourceRange(IILoc),
302                                            Result->getNameAsString());
303        else if (DeclContext *DC = computeDeclContext(*SS, false))
304          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
305            << &II << DC << Lookup.getLookupName() << SS->getRange()
306            << FixItHint::CreateReplacement(SourceRange(IILoc),
307                                            Result->getNameAsString());
308        else
309          llvm_unreachable("could not have corrected a typo here");
310
311        Diag(Result->getLocation(), diag::note_previous_decl)
312          << Result->getDeclName();
313
314        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
315                                    false, false, ParsedType(),
316                                    /*NonTrivialTypeSourceInfo=*/true);
317        return true;
318      }
319    } else if (Lookup.empty()) {
320      // We corrected to a keyword.
321      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
322      Diag(IILoc, diag::err_unknown_typename_suggest)
323        << &II << Corrected;
324      return true;
325    }
326  }
327
328  if (getLangOptions().CPlusPlus) {
329    // See if II is a class template that the user forgot to pass arguments to.
330    UnqualifiedId Name;
331    Name.setIdentifier(&II, IILoc);
332    CXXScopeSpec EmptySS;
333    TemplateTy TemplateResult;
334    bool MemberOfUnknownSpecialization;
335    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
336                       Name, ParsedType(), true, TemplateResult,
337                       MemberOfUnknownSpecialization) == TNK_Type_template) {
338      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
339      Diag(IILoc, diag::err_template_missing_args) << TplName;
340      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
341        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
342          << TplDecl->getTemplateParameters()->getSourceRange();
343      }
344      return true;
345    }
346  }
347
348  // FIXME: Should we move the logic that tries to recover from a missing tag
349  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
350
351  if (!SS || (!SS->isSet() && !SS->isInvalid()))
352    Diag(IILoc, diag::err_unknown_typename) << &II;
353  else if (DeclContext *DC = computeDeclContext(*SS, false))
354    Diag(IILoc, diag::err_typename_nested_not_found)
355      << &II << DC << SS->getRange();
356  else if (isDependentScopeSpecifier(*SS)) {
357    unsigned DiagID = diag::err_typename_missing;
358    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
359      DiagID = diag::warn_typename_missing;
360
361    Diag(SS->getRange().getBegin(), DiagID)
362      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
363      << SourceRange(SS->getRange().getBegin(), IILoc)
364      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
365    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
366  } else {
367    assert(SS && SS->isInvalid() &&
368           "Invalid scope specifier has already been diagnosed");
369  }
370
371  return true;
372}
373
374/// \brief Determine whether the given result set contains either a type name
375/// or
376static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
377  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
378                       NextToken.is(tok::less);
379
380  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
381    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
382      return true;
383
384    if (CheckTemplate && isa<TemplateDecl>(*I))
385      return true;
386  }
387
388  return false;
389}
390
391Sema::NameClassification Sema::ClassifyName(Scope *S,
392                                            CXXScopeSpec &SS,
393                                            IdentifierInfo *&Name,
394                                            SourceLocation NameLoc,
395                                            const Token &NextToken) {
396  DeclarationNameInfo NameInfo(Name, NameLoc);
397  ObjCMethodDecl *CurMethod = getCurMethodDecl();
398
399  if (NextToken.is(tok::coloncolon)) {
400    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
401                                QualType(), false, SS, 0, false);
402
403  }
404
405  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
406  LookupParsedName(Result, S, &SS, !CurMethod);
407
408  // Perform lookup for Objective-C instance variables (including automatically
409  // synthesized instance variables), if we're in an Objective-C method.
410  // FIXME: This lookup really, really needs to be folded in to the normal
411  // unqualified lookup mechanism.
412  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
413    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
414    if (E.get() || E.isInvalid())
415      return E;
416
417    // Synthesize ivars lazily.
418    if (getLangOptions().ObjCDefaultSynthProperties &&
419        getLangOptions().ObjCNonFragileABI2) {
420      if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
421        if (const ObjCPropertyDecl *Property =
422                                          canSynthesizeProvisionalIvar(Name)) {
423          Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
424          Diag(Property->getLocation(), diag::note_property_declare);
425        }
426
427        // FIXME: This is strange. Shouldn't we just take the ivar returned
428        // from SynthesizeProvisionalIvar and continue with that?
429        E = LookupInObjCMethod(Result, S, Name, true);
430        if (E.get() || E.isInvalid())
431          return E;
432      }
433    }
434  }
435
436  bool SecondTry = false;
437  bool IsFilteredTemplateName = false;
438
439Corrected:
440  switch (Result.getResultKind()) {
441  case LookupResult::NotFound:
442    // If an unqualified-id is followed by a '(', then we have a function
443    // call.
444    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
445      // In C++, this is an ADL-only call.
446      // FIXME: Reference?
447      if (getLangOptions().CPlusPlus)
448        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
449
450      // C90 6.3.2.2:
451      //   If the expression that precedes the parenthesized argument list in a
452      //   function call consists solely of an identifier, and if no
453      //   declaration is visible for this identifier, the identifier is
454      //   implicitly declared exactly as if, in the innermost block containing
455      //   the function call, the declaration
456      //
457      //     extern int identifier ();
458      //
459      //   appeared.
460      //
461      // We also allow this in C99 as an extension.
462      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
463        Result.addDecl(D);
464        Result.resolveKind();
465        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
466      }
467    }
468
469    // In C, we first see whether there is a tag type by the same name, in
470    // which case it's likely that the user just forget to write "enum",
471    // "struct", or "union".
472    if (!getLangOptions().CPlusPlus && !SecondTry) {
473      Result.clear(LookupTagName);
474      LookupParsedName(Result, S, &SS);
475      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
476        const char *TagName = 0;
477        const char *FixItTagName = 0;
478        switch (Tag->getTagKind()) {
479          case TTK_Class:
480            TagName = "class";
481            FixItTagName = "class ";
482            break;
483
484          case TTK_Enum:
485            TagName = "enum";
486            FixItTagName = "enum ";
487            break;
488
489          case TTK_Struct:
490            TagName = "struct";
491            FixItTagName = "struct ";
492            break;
493
494          case TTK_Union:
495            TagName = "union";
496            FixItTagName = "union ";
497            break;
498        }
499
500        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
501          << Name << TagName << getLangOptions().CPlusPlus
502          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
503        break;
504      }
505
506      Result.clear(LookupOrdinaryName);
507    }
508
509    // Perform typo correction to determine if there is another name that is
510    // close to this name.
511    if (!SecondTry) {
512      if (DeclarationName Corrected = CorrectTypo(Result, S, &SS)) {
513        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
514        unsigned QualifiedDiag = diag::err_no_member_suggest;
515
516        NamedDecl *FirstDecl = Result.empty()? 0 : *Result.begin();
517        NamedDecl *UnderlyingFirstDecl
518          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
519        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
520            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
521          UnqualifiedDiag = diag::err_no_template_suggest;
522          QualifiedDiag = diag::err_no_member_template_suggest;
523        } else if (UnderlyingFirstDecl &&
524                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
525                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
526                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
527           UnqualifiedDiag = diag::err_unknown_typename_suggest;
528           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
529         }
530
531        if (SS.isEmpty())
532          Diag(NameLoc, UnqualifiedDiag)
533            << Name << Corrected
534            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
535        else
536          Diag(NameLoc, QualifiedDiag)
537            << Name << computeDeclContext(SS, false) << Corrected
538            << SS.getRange()
539            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
540
541        // Update the name, so that the caller has the new name.
542        Name = Corrected.getAsIdentifierInfo();
543
544        // Typo correction corrected to a keyword.
545        if (Result.empty())
546          return Corrected.getAsIdentifierInfo();
547
548        Diag(FirstDecl->getLocation(), diag::note_previous_decl)
549          << FirstDecl->getDeclName();
550
551        // If we found an Objective-C instance variable, let
552        // LookupInObjCMethod build the appropriate expression to
553        // reference the ivar.
554        // FIXME: This is a gross hack.
555        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
556          Result.clear();
557          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
558          return move(E);
559        }
560
561        goto Corrected;
562      }
563    }
564
565    // We failed to correct; just fall through and let the parser deal with it.
566    Result.suppressDiagnostics();
567    return NameClassification::Unknown();
568
569  case LookupResult::NotFoundInCurrentInstantiation:
570    // We performed name lookup into the current instantiation, and there were
571    // dependent bases, so we treat this result the same way as any other
572    // dependent nested-name-specifier.
573
574    // C++ [temp.res]p2:
575    //   A name used in a template declaration or definition and that is
576    //   dependent on a template-parameter is assumed not to name a type
577    //   unless the applicable name lookup finds a type name or the name is
578    //   qualified by the keyword typename.
579    //
580    // FIXME: If the next token is '<', we might want to ask the parser to
581    // perform some heroics to see if we actually have a
582    // template-argument-list, which would indicate a missing 'template'
583    // keyword here.
584    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
585
586  case LookupResult::Found:
587  case LookupResult::FoundOverloaded:
588  case LookupResult::FoundUnresolvedValue:
589    break;
590
591  case LookupResult::Ambiguous:
592    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
593        hasAnyAcceptableTemplateNames(Result)) {
594      // C++ [temp.local]p3:
595      //   A lookup that finds an injected-class-name (10.2) can result in an
596      //   ambiguity in certain cases (for example, if it is found in more than
597      //   one base class). If all of the injected-class-names that are found
598      //   refer to specializations of the same class template, and if the name
599      //   is followed by a template-argument-list, the reference refers to the
600      //   class template itself and not a specialization thereof, and is not
601      //   ambiguous.
602      //
603      // This filtering can make an ambiguous result into an unambiguous one,
604      // so try again after filtering out template names.
605      FilterAcceptableTemplateNames(Result);
606      if (!Result.isAmbiguous()) {
607        IsFilteredTemplateName = true;
608        break;
609      }
610    }
611
612    // Diagnose the ambiguity and return an error.
613    return NameClassification::Error();
614  }
615
616  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
617      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
618    // C++ [temp.names]p3:
619    //   After name lookup (3.4) finds that a name is a template-name or that
620    //   an operator-function-id or a literal- operator-id refers to a set of
621    //   overloaded functions any member of which is a function template if
622    //   this is followed by a <, the < is always taken as the delimiter of a
623    //   template-argument-list and never as the less-than operator.
624    if (!IsFilteredTemplateName)
625      FilterAcceptableTemplateNames(Result);
626
627    if (!Result.empty()) {
628      bool IsFunctionTemplate;
629      TemplateName Template;
630      if (Result.end() - Result.begin() > 1) {
631        IsFunctionTemplate = true;
632        Template = Context.getOverloadedTemplateName(Result.begin(),
633                                                     Result.end());
634      } else {
635        TemplateDecl *TD
636          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
637        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
638
639        if (SS.isSet() && !SS.isInvalid())
640          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
641                                                    /*TemplateKeyword=*/false,
642                                                      TD);
643        else
644          Template = TemplateName(TD);
645      }
646
647      if (IsFunctionTemplate) {
648        // Function templates always go through overload resolution, at which
649        // point we'll perform the various checks (e.g., accessibility) we need
650        // to based on which function we selected.
651        Result.suppressDiagnostics();
652
653        return NameClassification::FunctionTemplate(Template);
654      }
655
656      return NameClassification::TypeTemplate(Template);
657    }
658  }
659
660  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
661  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
662    DiagnoseUseOfDecl(Type, NameLoc);
663    QualType T = Context.getTypeDeclType(Type);
664    return ParsedType::make(T);
665  }
666
667  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
668  if (!Class) {
669    // FIXME: It's unfortunate that we don't have a Type node for handling this.
670    if (ObjCCompatibleAliasDecl *Alias
671                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
672      Class = Alias->getClassInterface();
673  }
674
675  if (Class) {
676    DiagnoseUseOfDecl(Class, NameLoc);
677
678    if (NextToken.is(tok::period)) {
679      // Interface. <something> is parsed as a property reference expression.
680      // Just return "unknown" as a fall-through for now.
681      Result.suppressDiagnostics();
682      return NameClassification::Unknown();
683    }
684
685    QualType T = Context.getObjCInterfaceType(Class);
686    return ParsedType::make(T);
687  }
688
689  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
690    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
691
692  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
693  return BuildDeclarationNameExpr(SS, Result, ADL);
694}
695
696// Determines the context to return to after temporarily entering a
697// context.  This depends in an unnecessarily complicated way on the
698// exact ordering of callbacks from the parser.
699DeclContext *Sema::getContainingDC(DeclContext *DC) {
700
701  // Functions defined inline within classes aren't parsed until we've
702  // finished parsing the top-level class, so the top-level class is
703  // the context we'll need to return to.
704  if (isa<FunctionDecl>(DC)) {
705    DC = DC->getLexicalParent();
706
707    // A function not defined within a class will always return to its
708    // lexical context.
709    if (!isa<CXXRecordDecl>(DC))
710      return DC;
711
712    // A C++ inline method/friend is parsed *after* the topmost class
713    // it was declared in is fully parsed ("complete");  the topmost
714    // class is the context we need to return to.
715    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
716      DC = RD;
717
718    // Return the declaration context of the topmost class the inline method is
719    // declared in.
720    return DC;
721  }
722
723  // ObjCMethodDecls are parsed (for some reason) outside the context
724  // of the class.
725  if (isa<ObjCMethodDecl>(DC))
726    return DC->getLexicalParent()->getLexicalParent();
727
728  return DC->getLexicalParent();
729}
730
731void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
732  assert(getContainingDC(DC) == CurContext &&
733      "The next DeclContext should be lexically contained in the current one.");
734  CurContext = DC;
735  S->setEntity(DC);
736}
737
738void Sema::PopDeclContext() {
739  assert(CurContext && "DeclContext imbalance!");
740
741  CurContext = getContainingDC(CurContext);
742  assert(CurContext && "Popped translation unit!");
743}
744
745/// EnterDeclaratorContext - Used when we must lookup names in the context
746/// of a declarator's nested name specifier.
747///
748void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
749  // C++0x [basic.lookup.unqual]p13:
750  //   A name used in the definition of a static data member of class
751  //   X (after the qualified-id of the static member) is looked up as
752  //   if the name was used in a member function of X.
753  // C++0x [basic.lookup.unqual]p14:
754  //   If a variable member of a namespace is defined outside of the
755  //   scope of its namespace then any name used in the definition of
756  //   the variable member (after the declarator-id) is looked up as
757  //   if the definition of the variable member occurred in its
758  //   namespace.
759  // Both of these imply that we should push a scope whose context
760  // is the semantic context of the declaration.  We can't use
761  // PushDeclContext here because that context is not necessarily
762  // lexically contained in the current context.  Fortunately,
763  // the containing scope should have the appropriate information.
764
765  assert(!S->getEntity() && "scope already has entity");
766
767#ifndef NDEBUG
768  Scope *Ancestor = S->getParent();
769  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
770  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
771#endif
772
773  CurContext = DC;
774  S->setEntity(DC);
775}
776
777void Sema::ExitDeclaratorContext(Scope *S) {
778  assert(S->getEntity() == CurContext && "Context imbalance!");
779
780  // Switch back to the lexical context.  The safety of this is
781  // enforced by an assert in EnterDeclaratorContext.
782  Scope *Ancestor = S->getParent();
783  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
784  CurContext = (DeclContext*) Ancestor->getEntity();
785
786  // We don't need to do anything with the scope, which is going to
787  // disappear.
788}
789
790/// \brief Determine whether we allow overloading of the function
791/// PrevDecl with another declaration.
792///
793/// This routine determines whether overloading is possible, not
794/// whether some new function is actually an overload. It will return
795/// true in C++ (where we can always provide overloads) or, as an
796/// extension, in C when the previous function is already an
797/// overloaded function declaration or has the "overloadable"
798/// attribute.
799static bool AllowOverloadingOfFunction(LookupResult &Previous,
800                                       ASTContext &Context) {
801  if (Context.getLangOptions().CPlusPlus)
802    return true;
803
804  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
805    return true;
806
807  return (Previous.getResultKind() == LookupResult::Found
808          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
809}
810
811/// Add this decl to the scope shadowed decl chains.
812void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
813  // Move up the scope chain until we find the nearest enclosing
814  // non-transparent context. The declaration will be introduced into this
815  // scope.
816  while (S->getEntity() &&
817         ((DeclContext *)S->getEntity())->isTransparentContext())
818    S = S->getParent();
819
820  // Add scoped declarations into their context, so that they can be
821  // found later. Declarations without a context won't be inserted
822  // into any context.
823  if (AddToContext)
824    CurContext->addDecl(D);
825
826  // Out-of-line definitions shouldn't be pushed into scope in C++.
827  // Out-of-line variable and function definitions shouldn't even in C.
828  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
829      D->isOutOfLine())
830    return;
831
832  // Template instantiations should also not be pushed into scope.
833  if (isa<FunctionDecl>(D) &&
834      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
835    return;
836
837  // If this replaces anything in the current scope,
838  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
839                               IEnd = IdResolver.end();
840  for (; I != IEnd; ++I) {
841    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
842      S->RemoveDecl(*I);
843      IdResolver.RemoveDecl(*I);
844
845      // Should only need to replace one decl.
846      break;
847    }
848  }
849
850  S->AddDecl(D);
851
852  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
853    // Implicitly-generated labels may end up getting generated in an order that
854    // isn't strictly lexical, which breaks name lookup. Be careful to insert
855    // the label at the appropriate place in the identifier chain.
856    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
857      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
858      if (IDC == CurContext) {
859        if (!S->isDeclScope(*I))
860          continue;
861      } else if (IDC->Encloses(CurContext))
862        break;
863    }
864
865    IdResolver.InsertDeclAfter(I, D);
866  } else {
867    IdResolver.AddDecl(D);
868  }
869}
870
871bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
872                         bool ExplicitInstantiationOrSpecialization) {
873  return IdResolver.isDeclInScope(D, Ctx, Context, S,
874                                  ExplicitInstantiationOrSpecialization);
875}
876
877Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
878  DeclContext *TargetDC = DC->getPrimaryContext();
879  do {
880    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
881      if (ScopeDC->getPrimaryContext() == TargetDC)
882        return S;
883  } while ((S = S->getParent()));
884
885  return 0;
886}
887
888static bool isOutOfScopePreviousDeclaration(NamedDecl *,
889                                            DeclContext*,
890                                            ASTContext&);
891
892/// Filters out lookup results that don't fall within the given scope
893/// as determined by isDeclInScope.
894void Sema::FilterLookupForScope(LookupResult &R,
895                                DeclContext *Ctx, Scope *S,
896                                bool ConsiderLinkage,
897                                bool ExplicitInstantiationOrSpecialization) {
898  LookupResult::Filter F = R.makeFilter();
899  while (F.hasNext()) {
900    NamedDecl *D = F.next();
901
902    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
903      continue;
904
905    if (ConsiderLinkage &&
906        isOutOfScopePreviousDeclaration(D, Ctx, Context))
907      continue;
908
909    F.erase();
910  }
911
912  F.done();
913}
914
915static bool isUsingDecl(NamedDecl *D) {
916  return isa<UsingShadowDecl>(D) ||
917         isa<UnresolvedUsingTypenameDecl>(D) ||
918         isa<UnresolvedUsingValueDecl>(D);
919}
920
921/// Removes using shadow declarations from the lookup results.
922static void RemoveUsingDecls(LookupResult &R) {
923  LookupResult::Filter F = R.makeFilter();
924  while (F.hasNext())
925    if (isUsingDecl(F.next()))
926      F.erase();
927
928  F.done();
929}
930
931/// \brief Check for this common pattern:
932/// @code
933/// class S {
934///   S(const S&); // DO NOT IMPLEMENT
935///   void operator=(const S&); // DO NOT IMPLEMENT
936/// };
937/// @endcode
938static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
939  // FIXME: Should check for private access too but access is set after we get
940  // the decl here.
941  if (D->doesThisDeclarationHaveABody())
942    return false;
943
944  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
945    return CD->isCopyConstructor();
946  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
947    return Method->isCopyAssignmentOperator();
948  return false;
949}
950
951bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
952  assert(D);
953
954  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
955    return false;
956
957  // Ignore class templates.
958  if (D->getDeclContext()->isDependentContext() ||
959      D->getLexicalDeclContext()->isDependentContext())
960    return false;
961
962  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
963    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
964      return false;
965
966    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
967      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
968        return false;
969    } else {
970      // 'static inline' functions are used in headers; don't warn.
971      if (FD->getStorageClass() == SC_Static &&
972          FD->isInlineSpecified())
973        return false;
974    }
975
976    if (FD->doesThisDeclarationHaveABody() &&
977        Context.DeclMustBeEmitted(FD))
978      return false;
979  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
980    if (!VD->isFileVarDecl() ||
981        VD->getType().isConstant(Context) ||
982        Context.DeclMustBeEmitted(VD))
983      return false;
984
985    if (VD->isStaticDataMember() &&
986        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
987      return false;
988
989  } else {
990    return false;
991  }
992
993  // Only warn for unused decls internal to the translation unit.
994  if (D->getLinkage() == ExternalLinkage)
995    return false;
996
997  return true;
998}
999
1000void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1001  if (!D)
1002    return;
1003
1004  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1005    const FunctionDecl *First = FD->getFirstDeclaration();
1006    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1007      return; // First should already be in the vector.
1008  }
1009
1010  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1011    const VarDecl *First = VD->getFirstDeclaration();
1012    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1013      return; // First should already be in the vector.
1014  }
1015
1016   if (ShouldWarnIfUnusedFileScopedDecl(D))
1017     UnusedFileScopedDecls.push_back(D);
1018 }
1019
1020static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1021  if (D->isInvalidDecl())
1022    return false;
1023
1024  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1025    return false;
1026
1027  if (isa<LabelDecl>(D))
1028    return true;
1029
1030  // White-list anything that isn't a local variable.
1031  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1032      !D->getDeclContext()->isFunctionOrMethod())
1033    return false;
1034
1035  // Types of valid local variables should be complete, so this should succeed.
1036  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1037
1038    // White-list anything with an __attribute__((unused)) type.
1039    QualType Ty = VD->getType();
1040
1041    // Only look at the outermost level of typedef.
1042    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1043      if (TT->getDecl()->hasAttr<UnusedAttr>())
1044        return false;
1045    }
1046
1047    // If we failed to complete the type for some reason, or if the type is
1048    // dependent, don't diagnose the variable.
1049    if (Ty->isIncompleteType() || Ty->isDependentType())
1050      return false;
1051
1052    if (const TagType *TT = Ty->getAs<TagType>()) {
1053      const TagDecl *Tag = TT->getDecl();
1054      if (Tag->hasAttr<UnusedAttr>())
1055        return false;
1056
1057      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1058        // FIXME: Checking for the presence of a user-declared constructor
1059        // isn't completely accurate; we'd prefer to check that the initializer
1060        // has no side effects.
1061        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1062          return false;
1063      }
1064    }
1065
1066    // TODO: __attribute__((unused)) templates?
1067  }
1068
1069  return true;
1070}
1071
1072/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1073/// unless they are marked attr(unused).
1074void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1075  if (!ShouldDiagnoseUnusedDecl(D))
1076    return;
1077
1078  unsigned DiagID;
1079  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1080    DiagID = diag::warn_unused_exception_param;
1081  else if (isa<LabelDecl>(D))
1082    DiagID = diag::warn_unused_label;
1083  else
1084    DiagID = diag::warn_unused_variable;
1085
1086  Diag(D->getLocation(), DiagID) << D->getDeclName();
1087}
1088
1089static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1090  // Verify that we have no forward references left.  If so, there was a goto
1091  // or address of a label taken, but no definition of it.  Label fwd
1092  // definitions are indicated with a null substmt.
1093  if (L->getStmt() == 0)
1094    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1095}
1096
1097void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1098  if (S->decl_empty()) return;
1099  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1100         "Scope shouldn't contain decls!");
1101
1102  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1103       I != E; ++I) {
1104    Decl *TmpD = (*I);
1105    assert(TmpD && "This decl didn't get pushed??");
1106
1107    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1108    NamedDecl *D = cast<NamedDecl>(TmpD);
1109
1110    if (!D->getDeclName()) continue;
1111
1112    // Diagnose unused variables in this scope.
1113    if (!S->hasErrorOccurred())
1114      DiagnoseUnusedDecl(D);
1115
1116    // If this was a forward reference to a label, verify it was defined.
1117    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1118      CheckPoppedLabel(LD, *this);
1119
1120    // Remove this name from our lexical scope.
1121    IdResolver.RemoveDecl(D);
1122  }
1123}
1124
1125/// \brief Look for an Objective-C class in the translation unit.
1126///
1127/// \param Id The name of the Objective-C class we're looking for. If
1128/// typo-correction fixes this name, the Id will be updated
1129/// to the fixed name.
1130///
1131/// \param IdLoc The location of the name in the translation unit.
1132///
1133/// \param TypoCorrection If true, this routine will attempt typo correction
1134/// if there is no class with the given name.
1135///
1136/// \returns The declaration of the named Objective-C class, or NULL if the
1137/// class could not be found.
1138ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1139                                              SourceLocation IdLoc,
1140                                              bool TypoCorrection) {
1141  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1142  // creation from this context.
1143  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1144
1145  if (!IDecl && TypoCorrection) {
1146    // Perform typo correction at the given location, but only if we
1147    // find an Objective-C class name.
1148    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
1149    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
1150        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
1151      Diag(IdLoc, diag::err_undef_interface_suggest)
1152        << Id << IDecl->getDeclName()
1153        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1154      Diag(IDecl->getLocation(), diag::note_previous_decl)
1155        << IDecl->getDeclName();
1156
1157      Id = IDecl->getIdentifier();
1158    }
1159  }
1160
1161  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1162}
1163
1164/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1165/// from S, where a non-field would be declared. This routine copes
1166/// with the difference between C and C++ scoping rules in structs and
1167/// unions. For example, the following code is well-formed in C but
1168/// ill-formed in C++:
1169/// @code
1170/// struct S6 {
1171///   enum { BAR } e;
1172/// };
1173///
1174/// void test_S6() {
1175///   struct S6 a;
1176///   a.e = BAR;
1177/// }
1178/// @endcode
1179/// For the declaration of BAR, this routine will return a different
1180/// scope. The scope S will be the scope of the unnamed enumeration
1181/// within S6. In C++, this routine will return the scope associated
1182/// with S6, because the enumeration's scope is a transparent
1183/// context but structures can contain non-field names. In C, this
1184/// routine will return the translation unit scope, since the
1185/// enumeration's scope is a transparent context and structures cannot
1186/// contain non-field names.
1187Scope *Sema::getNonFieldDeclScope(Scope *S) {
1188  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1189         (S->getEntity() &&
1190          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1191         (S->isClassScope() && !getLangOptions().CPlusPlus))
1192    S = S->getParent();
1193  return S;
1194}
1195
1196/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1197/// file scope.  lazily create a decl for it. ForRedeclaration is true
1198/// if we're creating this built-in in anticipation of redeclaring the
1199/// built-in.
1200NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1201                                     Scope *S, bool ForRedeclaration,
1202                                     SourceLocation Loc) {
1203  Builtin::ID BID = (Builtin::ID)bid;
1204
1205  ASTContext::GetBuiltinTypeError Error;
1206  QualType R = Context.GetBuiltinType(BID, Error);
1207  switch (Error) {
1208  case ASTContext::GE_None:
1209    // Okay
1210    break;
1211
1212  case ASTContext::GE_Missing_stdio:
1213    if (ForRedeclaration)
1214      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1215        << Context.BuiltinInfo.GetName(BID);
1216    return 0;
1217
1218  case ASTContext::GE_Missing_setjmp:
1219    if (ForRedeclaration)
1220      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1221        << Context.BuiltinInfo.GetName(BID);
1222    return 0;
1223  }
1224
1225  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1226    Diag(Loc, diag::ext_implicit_lib_function_decl)
1227      << Context.BuiltinInfo.GetName(BID)
1228      << R;
1229    if (Context.BuiltinInfo.getHeaderName(BID) &&
1230        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1231          != Diagnostic::Ignored)
1232      Diag(Loc, diag::note_please_include_header)
1233        << Context.BuiltinInfo.getHeaderName(BID)
1234        << Context.BuiltinInfo.GetName(BID);
1235  }
1236
1237  FunctionDecl *New = FunctionDecl::Create(Context,
1238                                           Context.getTranslationUnitDecl(),
1239                                           Loc, Loc, II, R, /*TInfo=*/0,
1240                                           SC_Extern,
1241                                           SC_None, false,
1242                                           /*hasPrototype=*/true);
1243  New->setImplicit();
1244
1245  // Create Decl objects for each parameter, adding them to the
1246  // FunctionDecl.
1247  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1248    llvm::SmallVector<ParmVarDecl*, 16> Params;
1249    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1250      ParmVarDecl *parm =
1251        ParmVarDecl::Create(Context, New, SourceLocation(),
1252                            SourceLocation(), 0,
1253                            FT->getArgType(i), /*TInfo=*/0,
1254                            SC_None, SC_None, 0);
1255      parm->setScopeInfo(0, i);
1256      Params.push_back(parm);
1257    }
1258    New->setParams(Params.data(), Params.size());
1259  }
1260
1261  AddKnownFunctionAttributes(New);
1262
1263  // TUScope is the translation-unit scope to insert this function into.
1264  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1265  // relate Scopes to DeclContexts, and probably eliminate CurContext
1266  // entirely, but we're not there yet.
1267  DeclContext *SavedContext = CurContext;
1268  CurContext = Context.getTranslationUnitDecl();
1269  PushOnScopeChains(New, TUScope);
1270  CurContext = SavedContext;
1271  return New;
1272}
1273
1274/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1275/// same name and scope as a previous declaration 'Old'.  Figure out
1276/// how to resolve this situation, merging decls or emitting
1277/// diagnostics as appropriate. If there was an error, set New to be invalid.
1278///
1279void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1280  // If the new decl is known invalid already, don't bother doing any
1281  // merging checks.
1282  if (New->isInvalidDecl()) return;
1283
1284  // Allow multiple definitions for ObjC built-in typedefs.
1285  // FIXME: Verify the underlying types are equivalent!
1286  if (getLangOptions().ObjC1) {
1287    const IdentifierInfo *TypeID = New->getIdentifier();
1288    switch (TypeID->getLength()) {
1289    default: break;
1290    case 2:
1291      if (!TypeID->isStr("id"))
1292        break;
1293      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
1294      // Install the built-in type for 'id', ignoring the current definition.
1295      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1296      return;
1297    case 5:
1298      if (!TypeID->isStr("Class"))
1299        break;
1300      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
1301      // Install the built-in type for 'Class', ignoring the current definition.
1302      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1303      return;
1304    case 3:
1305      if (!TypeID->isStr("SEL"))
1306        break;
1307      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
1308      // Install the built-in type for 'SEL', ignoring the current definition.
1309      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1310      return;
1311    case 8:
1312      if (!TypeID->isStr("Protocol"))
1313        break;
1314      Context.setObjCProtoType(New->getUnderlyingType());
1315      return;
1316    }
1317    // Fall through - the typedef name was not a builtin type.
1318  }
1319
1320  // Verify the old decl was also a type.
1321  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1322  if (!Old) {
1323    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1324      << New->getDeclName();
1325
1326    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1327    if (OldD->getLocation().isValid())
1328      Diag(OldD->getLocation(), diag::note_previous_definition);
1329
1330    return New->setInvalidDecl();
1331  }
1332
1333  // If the old declaration is invalid, just give up here.
1334  if (Old->isInvalidDecl())
1335    return New->setInvalidDecl();
1336
1337  // Determine the "old" type we'll use for checking and diagnostics.
1338  QualType OldType;
1339  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1340    OldType = OldTypedef->getUnderlyingType();
1341  else
1342    OldType = Context.getTypeDeclType(Old);
1343
1344  // If the typedef types are not identical, reject them in all languages and
1345  // with any extensions enabled.
1346
1347  if (OldType != New->getUnderlyingType() &&
1348      Context.getCanonicalType(OldType) !=
1349      Context.getCanonicalType(New->getUnderlyingType())) {
1350    int Kind = 0;
1351    if (isa<TypeAliasDecl>(Old))
1352      Kind = 1;
1353    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1354      << Kind << New->getUnderlyingType() << OldType;
1355    if (Old->getLocation().isValid())
1356      Diag(Old->getLocation(), diag::note_previous_definition);
1357    return New->setInvalidDecl();
1358  }
1359
1360  // The types match.  Link up the redeclaration chain if the old
1361  // declaration was a typedef.
1362  // FIXME: this is a potential source of wierdness if the type
1363  // spellings don't match exactly.
1364  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1365    New->setPreviousDeclaration(Typedef);
1366
1367  if (getLangOptions().Microsoft)
1368    return;
1369
1370  if (getLangOptions().CPlusPlus) {
1371    // C++ [dcl.typedef]p2:
1372    //   In a given non-class scope, a typedef specifier can be used to
1373    //   redefine the name of any type declared in that scope to refer
1374    //   to the type to which it already refers.
1375    if (!isa<CXXRecordDecl>(CurContext))
1376      return;
1377
1378    // C++0x [dcl.typedef]p4:
1379    //   In a given class scope, a typedef specifier can be used to redefine
1380    //   any class-name declared in that scope that is not also a typedef-name
1381    //   to refer to the type to which it already refers.
1382    //
1383    // This wording came in via DR424, which was a correction to the
1384    // wording in DR56, which accidentally banned code like:
1385    //
1386    //   struct S {
1387    //     typedef struct A { } A;
1388    //   };
1389    //
1390    // in the C++03 standard. We implement the C++0x semantics, which
1391    // allow the above but disallow
1392    //
1393    //   struct S {
1394    //     typedef int I;
1395    //     typedef int I;
1396    //   };
1397    //
1398    // since that was the intent of DR56.
1399    if (!isa<TypedefNameDecl>(Old))
1400      return;
1401
1402    Diag(New->getLocation(), diag::err_redefinition)
1403      << New->getDeclName();
1404    Diag(Old->getLocation(), diag::note_previous_definition);
1405    return New->setInvalidDecl();
1406  }
1407
1408  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1409  // is normally mapped to an error, but can be controlled with
1410  // -Wtypedef-redefinition.  If either the original or the redefinition is
1411  // in a system header, don't emit this for compatibility with GCC.
1412  if (getDiagnostics().getSuppressSystemWarnings() &&
1413      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1414       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1415    return;
1416
1417  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1418    << New->getDeclName();
1419  Diag(Old->getLocation(), diag::note_previous_definition);
1420  return;
1421}
1422
1423/// DeclhasAttr - returns true if decl Declaration already has the target
1424/// attribute.
1425static bool
1426DeclHasAttr(const Decl *D, const Attr *A) {
1427  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1428  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1429    if ((*i)->getKind() == A->getKind()) {
1430      // FIXME: Don't hardcode this check
1431      if (OA && isa<OwnershipAttr>(*i))
1432        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1433      return true;
1434    }
1435
1436  return false;
1437}
1438
1439/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1440static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1441                                ASTContext &C) {
1442  if (!oldDecl->hasAttrs())
1443    return;
1444
1445  bool foundAny = newDecl->hasAttrs();
1446
1447  // Ensure that any moving of objects within the allocated map is done before
1448  // we process them.
1449  if (!foundAny) newDecl->setAttrs(AttrVec());
1450
1451  for (specific_attr_iterator<InheritableAttr>
1452       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1453       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1454    if (!DeclHasAttr(newDecl, *i)) {
1455      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1456      newAttr->setInherited(true);
1457      newDecl->addAttr(newAttr);
1458      foundAny = true;
1459    }
1460  }
1461
1462  if (!foundAny) newDecl->dropAttrs();
1463}
1464
1465/// mergeParamDeclAttributes - Copy attributes from the old parameter
1466/// to the new one.
1467static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1468                                     const ParmVarDecl *oldDecl,
1469                                     ASTContext &C) {
1470  if (!oldDecl->hasAttrs())
1471    return;
1472
1473  bool foundAny = newDecl->hasAttrs();
1474
1475  // Ensure that any moving of objects within the allocated map is
1476  // done before we process them.
1477  if (!foundAny) newDecl->setAttrs(AttrVec());
1478
1479  for (specific_attr_iterator<InheritableParamAttr>
1480       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1481       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1482    if (!DeclHasAttr(newDecl, *i)) {
1483      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1484      newAttr->setInherited(true);
1485      newDecl->addAttr(newAttr);
1486      foundAny = true;
1487    }
1488  }
1489
1490  if (!foundAny) newDecl->dropAttrs();
1491}
1492
1493namespace {
1494
1495/// Used in MergeFunctionDecl to keep track of function parameters in
1496/// C.
1497struct GNUCompatibleParamWarning {
1498  ParmVarDecl *OldParm;
1499  ParmVarDecl *NewParm;
1500  QualType PromotedType;
1501};
1502
1503}
1504
1505/// getSpecialMember - get the special member enum for a method.
1506Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1507  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1508    if (Ctor->isDefaultConstructor())
1509      return Sema::CXXDefaultConstructor;
1510
1511    if (Ctor->isCopyConstructor())
1512      return Sema::CXXCopyConstructor;
1513
1514    if (Ctor->isMoveConstructor())
1515      return Sema::CXXMoveConstructor;
1516  } else if (isa<CXXDestructorDecl>(MD)) {
1517    return Sema::CXXDestructor;
1518  } else if (MD->isCopyAssignmentOperator()) {
1519    return Sema::CXXCopyAssignment;
1520  }
1521
1522  return Sema::CXXInvalid;
1523}
1524
1525/// canRedefineFunction - checks if a function can be redefined. Currently,
1526/// only extern inline functions can be redefined, and even then only in
1527/// GNU89 mode.
1528static bool canRedefineFunction(const FunctionDecl *FD,
1529                                const LangOptions& LangOpts) {
1530  return (LangOpts.GNUInline && !LangOpts.CPlusPlus &&
1531          FD->isInlineSpecified() &&
1532          FD->getStorageClass() == SC_Extern);
1533}
1534
1535/// MergeFunctionDecl - We just parsed a function 'New' from
1536/// declarator D which has the same name and scope as a previous
1537/// declaration 'Old'.  Figure out how to resolve this situation,
1538/// merging decls or emitting diagnostics as appropriate.
1539///
1540/// In C++, New and Old must be declarations that are not
1541/// overloaded. Use IsOverload to determine whether New and Old are
1542/// overloaded, and to select the Old declaration that New should be
1543/// merged with.
1544///
1545/// Returns true if there was an error, false otherwise.
1546bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1547  // Verify the old decl was also a function.
1548  FunctionDecl *Old = 0;
1549  if (FunctionTemplateDecl *OldFunctionTemplate
1550        = dyn_cast<FunctionTemplateDecl>(OldD))
1551    Old = OldFunctionTemplate->getTemplatedDecl();
1552  else
1553    Old = dyn_cast<FunctionDecl>(OldD);
1554  if (!Old) {
1555    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1556      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1557      Diag(Shadow->getTargetDecl()->getLocation(),
1558           diag::note_using_decl_target);
1559      Diag(Shadow->getUsingDecl()->getLocation(),
1560           diag::note_using_decl) << 0;
1561      return true;
1562    }
1563
1564    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1565      << New->getDeclName();
1566    Diag(OldD->getLocation(), diag::note_previous_definition);
1567    return true;
1568  }
1569
1570  // Determine whether the previous declaration was a definition,
1571  // implicit declaration, or a declaration.
1572  diag::kind PrevDiag;
1573  if (Old->isThisDeclarationADefinition())
1574    PrevDiag = diag::note_previous_definition;
1575  else if (Old->isImplicit())
1576    PrevDiag = diag::note_previous_implicit_declaration;
1577  else
1578    PrevDiag = diag::note_previous_declaration;
1579
1580  QualType OldQType = Context.getCanonicalType(Old->getType());
1581  QualType NewQType = Context.getCanonicalType(New->getType());
1582
1583  // Don't complain about this if we're in GNU89 mode and the old function
1584  // is an extern inline function.
1585  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1586      New->getStorageClass() == SC_Static &&
1587      Old->getStorageClass() != SC_Static &&
1588      !canRedefineFunction(Old, getLangOptions())) {
1589    if (getLangOptions().Microsoft) {
1590      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1591      Diag(Old->getLocation(), PrevDiag);
1592    } else {
1593      Diag(New->getLocation(), diag::err_static_non_static) << New;
1594      Diag(Old->getLocation(), PrevDiag);
1595      return true;
1596    }
1597  }
1598
1599  // If a function is first declared with a calling convention, but is
1600  // later declared or defined without one, the second decl assumes the
1601  // calling convention of the first.
1602  //
1603  // For the new decl, we have to look at the NON-canonical type to tell the
1604  // difference between a function that really doesn't have a calling
1605  // convention and one that is declared cdecl. That's because in
1606  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1607  // because it is the default calling convention.
1608  //
1609  // Note also that we DO NOT return at this point, because we still have
1610  // other tests to run.
1611  const FunctionType *OldType = cast<FunctionType>(OldQType);
1612  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1613  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1614  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1615  bool RequiresAdjustment = false;
1616  if (OldTypeInfo.getCC() != CC_Default &&
1617      NewTypeInfo.getCC() == CC_Default) {
1618    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1619    RequiresAdjustment = true;
1620  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1621                                     NewTypeInfo.getCC())) {
1622    // Calling conventions really aren't compatible, so complain.
1623    Diag(New->getLocation(), diag::err_cconv_change)
1624      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1625      << (OldTypeInfo.getCC() == CC_Default)
1626      << (OldTypeInfo.getCC() == CC_Default ? "" :
1627          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1628    Diag(Old->getLocation(), diag::note_previous_declaration);
1629    return true;
1630  }
1631
1632  // FIXME: diagnose the other way around?
1633  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1634    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1635    RequiresAdjustment = true;
1636  }
1637
1638  // Merge regparm attribute.
1639  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1640      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1641    if (NewTypeInfo.getHasRegParm()) {
1642      Diag(New->getLocation(), diag::err_regparm_mismatch)
1643        << NewType->getRegParmType()
1644        << OldType->getRegParmType();
1645      Diag(Old->getLocation(), diag::note_previous_declaration);
1646      return true;
1647    }
1648
1649    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1650    RequiresAdjustment = true;
1651  }
1652
1653  if (RequiresAdjustment) {
1654    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1655    New->setType(QualType(NewType, 0));
1656    NewQType = Context.getCanonicalType(New->getType());
1657  }
1658
1659  if (getLangOptions().CPlusPlus) {
1660    // (C++98 13.1p2):
1661    //   Certain function declarations cannot be overloaded:
1662    //     -- Function declarations that differ only in the return type
1663    //        cannot be overloaded.
1664    QualType OldReturnType = OldType->getResultType();
1665    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1666    QualType ResQT;
1667    if (OldReturnType != NewReturnType) {
1668      if (NewReturnType->isObjCObjectPointerType()
1669          && OldReturnType->isObjCObjectPointerType())
1670        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1671      if (ResQT.isNull()) {
1672        if (New->isCXXClassMember() && New->isOutOfLine())
1673          Diag(New->getLocation(),
1674               diag::err_member_def_does_not_match_ret_type) << New;
1675        else
1676          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1677        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1678        return true;
1679      }
1680      else
1681        NewQType = ResQT;
1682    }
1683
1684    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1685    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1686    if (OldMethod && NewMethod) {
1687      // Preserve triviality.
1688      NewMethod->setTrivial(OldMethod->isTrivial());
1689
1690      bool isFriend = NewMethod->getFriendObjectKind();
1691
1692      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1693        //    -- Member function declarations with the same name and the
1694        //       same parameter types cannot be overloaded if any of them
1695        //       is a static member function declaration.
1696        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1697          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1698          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1699          return true;
1700        }
1701
1702        // C++ [class.mem]p1:
1703        //   [...] A member shall not be declared twice in the
1704        //   member-specification, except that a nested class or member
1705        //   class template can be declared and then later defined.
1706        unsigned NewDiag;
1707        if (isa<CXXConstructorDecl>(OldMethod))
1708          NewDiag = diag::err_constructor_redeclared;
1709        else if (isa<CXXDestructorDecl>(NewMethod))
1710          NewDiag = diag::err_destructor_redeclared;
1711        else if (isa<CXXConversionDecl>(NewMethod))
1712          NewDiag = diag::err_conv_function_redeclared;
1713        else
1714          NewDiag = diag::err_member_redeclared;
1715
1716        Diag(New->getLocation(), NewDiag);
1717        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1718
1719      // Complain if this is an explicit declaration of a special
1720      // member that was initially declared implicitly.
1721      //
1722      // As an exception, it's okay to befriend such methods in order
1723      // to permit the implicit constructor/destructor/operator calls.
1724      } else if (OldMethod->isImplicit()) {
1725        if (isFriend) {
1726          NewMethod->setImplicit();
1727        } else {
1728          Diag(NewMethod->getLocation(),
1729               diag::err_definition_of_implicitly_declared_member)
1730            << New << getSpecialMember(OldMethod);
1731          return true;
1732        }
1733      } else if (OldMethod->isExplicitlyDefaulted()) {
1734        Diag(NewMethod->getLocation(),
1735             diag::err_definition_of_explicitly_defaulted_member)
1736          << getSpecialMember(OldMethod);
1737        return true;
1738      }
1739    }
1740
1741    // (C++98 8.3.5p3):
1742    //   All declarations for a function shall agree exactly in both the
1743    //   return type and the parameter-type-list.
1744    // We also want to respect all the extended bits except noreturn.
1745
1746    // noreturn should now match unless the old type info didn't have it.
1747    QualType OldQTypeForComparison = OldQType;
1748    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1749      assert(OldQType == QualType(OldType, 0));
1750      const FunctionType *OldTypeForComparison
1751        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1752      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1753      assert(OldQTypeForComparison.isCanonical());
1754    }
1755
1756    if (OldQTypeForComparison == NewQType)
1757      return MergeCompatibleFunctionDecls(New, Old);
1758
1759    // Fall through for conflicting redeclarations and redefinitions.
1760  }
1761
1762  // C: Function types need to be compatible, not identical. This handles
1763  // duplicate function decls like "void f(int); void f(enum X);" properly.
1764  if (!getLangOptions().CPlusPlus &&
1765      Context.typesAreCompatible(OldQType, NewQType)) {
1766    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1767    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1768    const FunctionProtoType *OldProto = 0;
1769    if (isa<FunctionNoProtoType>(NewFuncType) &&
1770        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1771      // The old declaration provided a function prototype, but the
1772      // new declaration does not. Merge in the prototype.
1773      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1774      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1775                                                 OldProto->arg_type_end());
1776      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1777                                         ParamTypes.data(), ParamTypes.size(),
1778                                         OldProto->getExtProtoInfo());
1779      New->setType(NewQType);
1780      New->setHasInheritedPrototype();
1781
1782      // Synthesize a parameter for each argument type.
1783      llvm::SmallVector<ParmVarDecl*, 16> Params;
1784      for (FunctionProtoType::arg_type_iterator
1785             ParamType = OldProto->arg_type_begin(),
1786             ParamEnd = OldProto->arg_type_end();
1787           ParamType != ParamEnd; ++ParamType) {
1788        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1789                                                 SourceLocation(),
1790                                                 SourceLocation(), 0,
1791                                                 *ParamType, /*TInfo=*/0,
1792                                                 SC_None, SC_None,
1793                                                 0);
1794        Param->setScopeInfo(0, Params.size());
1795        Param->setImplicit();
1796        Params.push_back(Param);
1797      }
1798
1799      New->setParams(Params.data(), Params.size());
1800    }
1801
1802    return MergeCompatibleFunctionDecls(New, Old);
1803  }
1804
1805  // GNU C permits a K&R definition to follow a prototype declaration
1806  // if the declared types of the parameters in the K&R definition
1807  // match the types in the prototype declaration, even when the
1808  // promoted types of the parameters from the K&R definition differ
1809  // from the types in the prototype. GCC then keeps the types from
1810  // the prototype.
1811  //
1812  // If a variadic prototype is followed by a non-variadic K&R definition,
1813  // the K&R definition becomes variadic.  This is sort of an edge case, but
1814  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1815  // C99 6.9.1p8.
1816  if (!getLangOptions().CPlusPlus &&
1817      Old->hasPrototype() && !New->hasPrototype() &&
1818      New->getType()->getAs<FunctionProtoType>() &&
1819      Old->getNumParams() == New->getNumParams()) {
1820    llvm::SmallVector<QualType, 16> ArgTypes;
1821    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1822    const FunctionProtoType *OldProto
1823      = Old->getType()->getAs<FunctionProtoType>();
1824    const FunctionProtoType *NewProto
1825      = New->getType()->getAs<FunctionProtoType>();
1826
1827    // Determine whether this is the GNU C extension.
1828    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1829                                               NewProto->getResultType());
1830    bool LooseCompatible = !MergedReturn.isNull();
1831    for (unsigned Idx = 0, End = Old->getNumParams();
1832         LooseCompatible && Idx != End; ++Idx) {
1833      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1834      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1835      if (Context.typesAreCompatible(OldParm->getType(),
1836                                     NewProto->getArgType(Idx))) {
1837        ArgTypes.push_back(NewParm->getType());
1838      } else if (Context.typesAreCompatible(OldParm->getType(),
1839                                            NewParm->getType(),
1840                                            /*CompareUnqualified=*/true)) {
1841        GNUCompatibleParamWarning Warn
1842          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1843        Warnings.push_back(Warn);
1844        ArgTypes.push_back(NewParm->getType());
1845      } else
1846        LooseCompatible = false;
1847    }
1848
1849    if (LooseCompatible) {
1850      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1851        Diag(Warnings[Warn].NewParm->getLocation(),
1852             diag::ext_param_promoted_not_compatible_with_prototype)
1853          << Warnings[Warn].PromotedType
1854          << Warnings[Warn].OldParm->getType();
1855        if (Warnings[Warn].OldParm->getLocation().isValid())
1856          Diag(Warnings[Warn].OldParm->getLocation(),
1857               diag::note_previous_declaration);
1858      }
1859
1860      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1861                                           ArgTypes.size(),
1862                                           OldProto->getExtProtoInfo()));
1863      return MergeCompatibleFunctionDecls(New, Old);
1864    }
1865
1866    // Fall through to diagnose conflicting types.
1867  }
1868
1869  // A function that has already been declared has been redeclared or defined
1870  // with a different type- show appropriate diagnostic
1871  if (unsigned BuiltinID = Old->getBuiltinID()) {
1872    // The user has declared a builtin function with an incompatible
1873    // signature.
1874    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1875      // The function the user is redeclaring is a library-defined
1876      // function like 'malloc' or 'printf'. Warn about the
1877      // redeclaration, then pretend that we don't know about this
1878      // library built-in.
1879      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1880      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1881        << Old << Old->getType();
1882      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1883      Old->setInvalidDecl();
1884      return false;
1885    }
1886
1887    PrevDiag = diag::note_previous_builtin_declaration;
1888  }
1889
1890  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1891  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1892  return true;
1893}
1894
1895/// \brief Completes the merge of two function declarations that are
1896/// known to be compatible.
1897///
1898/// This routine handles the merging of attributes and other
1899/// properties of function declarations form the old declaration to
1900/// the new declaration, once we know that New is in fact a
1901/// redeclaration of Old.
1902///
1903/// \returns false
1904bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1905  // Merge the attributes
1906  mergeDeclAttributes(New, Old, Context);
1907
1908  // Merge the storage class.
1909  if (Old->getStorageClass() != SC_Extern &&
1910      Old->getStorageClass() != SC_None)
1911    New->setStorageClass(Old->getStorageClass());
1912
1913  // Merge "pure" flag.
1914  if (Old->isPure())
1915    New->setPure();
1916
1917  // Merge attributes from the parameters.  These can mismatch with K&R
1918  // declarations.
1919  if (New->getNumParams() == Old->getNumParams())
1920    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1921      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1922                               Context);
1923
1924  if (getLangOptions().CPlusPlus)
1925    return MergeCXXFunctionDecl(New, Old);
1926
1927  return false;
1928}
1929
1930void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1931                                const ObjCMethodDecl *oldMethod) {
1932  // Merge the attributes.
1933  mergeDeclAttributes(newMethod, oldMethod, Context);
1934
1935  // Merge attributes from the parameters.
1936  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1937         ni = newMethod->param_begin(), ne = newMethod->param_end();
1938       ni != ne; ++ni, ++oi)
1939    mergeParamDeclAttributes(*ni, *oi, Context);
1940}
1941
1942/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1943/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1944/// emitting diagnostics as appropriate.
1945///
1946/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1947/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1948/// check them before the initializer is attached.
1949///
1950void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1951  if (New->isInvalidDecl() || Old->isInvalidDecl())
1952    return;
1953
1954  QualType MergedT;
1955  if (getLangOptions().CPlusPlus) {
1956    AutoType *AT = New->getType()->getContainedAutoType();
1957    if (AT && !AT->isDeduced()) {
1958      // We don't know what the new type is until the initializer is attached.
1959      return;
1960    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1961      // These could still be something that needs exception specs checked.
1962      return MergeVarDeclExceptionSpecs(New, Old);
1963    }
1964    // C++ [basic.link]p10:
1965    //   [...] the types specified by all declarations referring to a given
1966    //   object or function shall be identical, except that declarations for an
1967    //   array object can specify array types that differ by the presence or
1968    //   absence of a major array bound (8.3.4).
1969    else if (Old->getType()->isIncompleteArrayType() &&
1970             New->getType()->isArrayType()) {
1971      CanQual<ArrayType> OldArray
1972        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1973      CanQual<ArrayType> NewArray
1974        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1975      if (OldArray->getElementType() == NewArray->getElementType())
1976        MergedT = New->getType();
1977    } else if (Old->getType()->isArrayType() &&
1978             New->getType()->isIncompleteArrayType()) {
1979      CanQual<ArrayType> OldArray
1980        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1981      CanQual<ArrayType> NewArray
1982        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1983      if (OldArray->getElementType() == NewArray->getElementType())
1984        MergedT = Old->getType();
1985    } else if (New->getType()->isObjCObjectPointerType()
1986               && Old->getType()->isObjCObjectPointerType()) {
1987        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1988                                                        Old->getType());
1989    }
1990  } else {
1991    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1992  }
1993  if (MergedT.isNull()) {
1994    Diag(New->getLocation(), diag::err_redefinition_different_type)
1995      << New->getDeclName();
1996    Diag(Old->getLocation(), diag::note_previous_definition);
1997    return New->setInvalidDecl();
1998  }
1999  New->setType(MergedT);
2000}
2001
2002/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2003/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2004/// situation, merging decls or emitting diagnostics as appropriate.
2005///
2006/// Tentative definition rules (C99 6.9.2p2) are checked by
2007/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2008/// definitions here, since the initializer hasn't been attached.
2009///
2010void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2011  // If the new decl is already invalid, don't do any other checking.
2012  if (New->isInvalidDecl())
2013    return;
2014
2015  // Verify the old decl was also a variable.
2016  VarDecl *Old = 0;
2017  if (!Previous.isSingleResult() ||
2018      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2019    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2020      << New->getDeclName();
2021    Diag(Previous.getRepresentativeDecl()->getLocation(),
2022         diag::note_previous_definition);
2023    return New->setInvalidDecl();
2024  }
2025
2026  // C++ [class.mem]p1:
2027  //   A member shall not be declared twice in the member-specification [...]
2028  //
2029  // Here, we need only consider static data members.
2030  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2031    Diag(New->getLocation(), diag::err_duplicate_member)
2032      << New->getIdentifier();
2033    Diag(Old->getLocation(), diag::note_previous_declaration);
2034    New->setInvalidDecl();
2035  }
2036
2037  mergeDeclAttributes(New, Old, Context);
2038
2039  // Merge the types.
2040  MergeVarDeclTypes(New, Old);
2041  if (New->isInvalidDecl())
2042    return;
2043
2044  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2045  if (New->getStorageClass() == SC_Static &&
2046      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2047    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2048    Diag(Old->getLocation(), diag::note_previous_definition);
2049    return New->setInvalidDecl();
2050  }
2051  // C99 6.2.2p4:
2052  //   For an identifier declared with the storage-class specifier
2053  //   extern in a scope in which a prior declaration of that
2054  //   identifier is visible,23) if the prior declaration specifies
2055  //   internal or external linkage, the linkage of the identifier at
2056  //   the later declaration is the same as the linkage specified at
2057  //   the prior declaration. If no prior declaration is visible, or
2058  //   if the prior declaration specifies no linkage, then the
2059  //   identifier has external linkage.
2060  if (New->hasExternalStorage() && Old->hasLinkage())
2061    /* Okay */;
2062  else if (New->getStorageClass() != SC_Static &&
2063           Old->getStorageClass() == SC_Static) {
2064    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2065    Diag(Old->getLocation(), diag::note_previous_definition);
2066    return New->setInvalidDecl();
2067  }
2068
2069  // Check if extern is followed by non-extern and vice-versa.
2070  if (New->hasExternalStorage() &&
2071      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2072    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2073    Diag(Old->getLocation(), diag::note_previous_definition);
2074    return New->setInvalidDecl();
2075  }
2076  if (Old->hasExternalStorage() &&
2077      !New->hasLinkage() && New->isLocalVarDecl()) {
2078    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2079    Diag(Old->getLocation(), diag::note_previous_definition);
2080    return New->setInvalidDecl();
2081  }
2082
2083  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2084
2085  // FIXME: The test for external storage here seems wrong? We still
2086  // need to check for mismatches.
2087  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2088      // Don't complain about out-of-line definitions of static members.
2089      !(Old->getLexicalDeclContext()->isRecord() &&
2090        !New->getLexicalDeclContext()->isRecord())) {
2091    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2092    Diag(Old->getLocation(), diag::note_previous_definition);
2093    return New->setInvalidDecl();
2094  }
2095
2096  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2097    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2098    Diag(Old->getLocation(), diag::note_previous_definition);
2099  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2100    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2101    Diag(Old->getLocation(), diag::note_previous_definition);
2102  }
2103
2104  // C++ doesn't have tentative definitions, so go right ahead and check here.
2105  const VarDecl *Def;
2106  if (getLangOptions().CPlusPlus &&
2107      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2108      (Def = Old->getDefinition())) {
2109    Diag(New->getLocation(), diag::err_redefinition)
2110      << New->getDeclName();
2111    Diag(Def->getLocation(), diag::note_previous_definition);
2112    New->setInvalidDecl();
2113    return;
2114  }
2115  // c99 6.2.2 P4.
2116  // For an identifier declared with the storage-class specifier extern in a
2117  // scope in which a prior declaration of that identifier is visible, if
2118  // the prior declaration specifies internal or external linkage, the linkage
2119  // of the identifier at the later declaration is the same as the linkage
2120  // specified at the prior declaration.
2121  // FIXME. revisit this code.
2122  if (New->hasExternalStorage() &&
2123      Old->getLinkage() == InternalLinkage &&
2124      New->getDeclContext() == Old->getDeclContext())
2125    New->setStorageClass(Old->getStorageClass());
2126
2127  // Keep a chain of previous declarations.
2128  New->setPreviousDeclaration(Old);
2129
2130  // Inherit access appropriately.
2131  New->setAccess(Old->getAccess());
2132}
2133
2134/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2135/// no declarator (e.g. "struct foo;") is parsed.
2136Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2137                                       DeclSpec &DS) {
2138  return ParsedFreeStandingDeclSpec(S, AS, DS,
2139                                    MultiTemplateParamsArg(*this, 0, 0));
2140}
2141
2142/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2143/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2144/// parameters to cope with template friend declarations.
2145Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2146                                       DeclSpec &DS,
2147                                       MultiTemplateParamsArg TemplateParams) {
2148  Decl *TagD = 0;
2149  TagDecl *Tag = 0;
2150  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2151      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2152      DS.getTypeSpecType() == DeclSpec::TST_union ||
2153      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2154    TagD = DS.getRepAsDecl();
2155
2156    if (!TagD) // We probably had an error
2157      return 0;
2158
2159    // Note that the above type specs guarantee that the
2160    // type rep is a Decl, whereas in many of the others
2161    // it's a Type.
2162    Tag = dyn_cast<TagDecl>(TagD);
2163  }
2164
2165  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2166    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2167    // or incomplete types shall not be restrict-qualified."
2168    if (TypeQuals & DeclSpec::TQ_restrict)
2169      Diag(DS.getRestrictSpecLoc(),
2170           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2171           << DS.getSourceRange();
2172  }
2173
2174  if (DS.isFriendSpecified()) {
2175    // If we're dealing with a decl but not a TagDecl, assume that
2176    // whatever routines created it handled the friendship aspect.
2177    if (TagD && !Tag)
2178      return 0;
2179    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2180  }
2181
2182  // Track whether we warned about the fact that there aren't any
2183  // declarators.
2184  bool emittedWarning = false;
2185
2186  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2187    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2188
2189    if (!Record->getDeclName() && Record->isDefinition() &&
2190        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2191      if (getLangOptions().CPlusPlus ||
2192          Record->getDeclContext()->isRecord())
2193        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2194
2195      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2196        << DS.getSourceRange();
2197      emittedWarning = true;
2198    }
2199  }
2200
2201  // Check for Microsoft C extension: anonymous struct.
2202  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2203      CurContext->isRecord() &&
2204      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2205    // Handle 2 kinds of anonymous struct:
2206    //   struct STRUCT;
2207    // and
2208    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2209    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2210    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2211        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2212         DS.getRepAsType().get()->isStructureType())) {
2213      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2214        << DS.getSourceRange();
2215      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2216    }
2217  }
2218
2219  if (getLangOptions().CPlusPlus &&
2220      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2221    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2222      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2223          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2224        Diag(Enum->getLocation(), diag::ext_no_declarators)
2225          << DS.getSourceRange();
2226        emittedWarning = true;
2227      }
2228
2229  // Skip all the checks below if we have a type error.
2230  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2231
2232  if (!DS.isMissingDeclaratorOk()) {
2233    // Warn about typedefs of enums without names, since this is an
2234    // extension in both Microsoft and GNU.
2235    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2236        Tag && isa<EnumDecl>(Tag)) {
2237      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2238        << DS.getSourceRange();
2239      return Tag;
2240    }
2241
2242    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2243      << DS.getSourceRange();
2244    emittedWarning = true;
2245  }
2246
2247  // We're going to complain about a bunch of spurious specifiers;
2248  // only do this if we're declaring a tag, because otherwise we
2249  // should be getting diag::ext_no_declarators.
2250  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2251    return TagD;
2252
2253  // Note that a linkage-specification sets a storage class, but
2254  // 'extern "C" struct foo;' is actually valid and not theoretically
2255  // useless.
2256  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2257    if (!DS.isExternInLinkageSpec())
2258      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2259        << DeclSpec::getSpecifierName(scs);
2260
2261  if (DS.isThreadSpecified())
2262    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2263  if (DS.getTypeQualifiers()) {
2264    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2265      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2266    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2267      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2268    // Restrict is covered above.
2269  }
2270  if (DS.isInlineSpecified())
2271    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2272  if (DS.isVirtualSpecified())
2273    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2274  if (DS.isExplicitSpecified())
2275    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2276
2277  // FIXME: Warn on useless attributes
2278
2279  return TagD;
2280}
2281
2282/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2283/// builds a statement for it and returns it so it is evaluated.
2284StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2285  StmtResult R;
2286  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2287    Expr *Exp = DS.getRepAsExpr();
2288    QualType Ty = Exp->getType();
2289    if (Ty->isPointerType()) {
2290      do
2291        Ty = Ty->getAs<PointerType>()->getPointeeType();
2292      while (Ty->isPointerType());
2293    }
2294    if (Ty->isVariableArrayType()) {
2295      R = ActOnExprStmt(MakeFullExpr(Exp));
2296    }
2297  }
2298  return R;
2299}
2300
2301/// We are trying to inject an anonymous member into the given scope;
2302/// check if there's an existing declaration that can't be overloaded.
2303///
2304/// \return true if this is a forbidden redeclaration
2305static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2306                                         Scope *S,
2307                                         DeclContext *Owner,
2308                                         DeclarationName Name,
2309                                         SourceLocation NameLoc,
2310                                         unsigned diagnostic) {
2311  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2312                 Sema::ForRedeclaration);
2313  if (!SemaRef.LookupName(R, S)) return false;
2314
2315  if (R.getAsSingle<TagDecl>())
2316    return false;
2317
2318  // Pick a representative declaration.
2319  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2320  assert(PrevDecl && "Expected a non-null Decl");
2321
2322  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2323    return false;
2324
2325  SemaRef.Diag(NameLoc, diagnostic) << Name;
2326  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2327
2328  return true;
2329}
2330
2331/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2332/// anonymous struct or union AnonRecord into the owning context Owner
2333/// and scope S. This routine will be invoked just after we realize
2334/// that an unnamed union or struct is actually an anonymous union or
2335/// struct, e.g.,
2336///
2337/// @code
2338/// union {
2339///   int i;
2340///   float f;
2341/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2342///    // f into the surrounding scope.x
2343/// @endcode
2344///
2345/// This routine is recursive, injecting the names of nested anonymous
2346/// structs/unions into the owning context and scope as well.
2347static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2348                                                DeclContext *Owner,
2349                                                RecordDecl *AnonRecord,
2350                                                AccessSpecifier AS,
2351                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
2352                                                      bool MSAnonStruct) {
2353  unsigned diagKind
2354    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2355                            : diag::err_anonymous_struct_member_redecl;
2356
2357  bool Invalid = false;
2358
2359  // Look every FieldDecl and IndirectFieldDecl with a name.
2360  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2361                               DEnd = AnonRecord->decls_end();
2362       D != DEnd; ++D) {
2363    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2364        cast<NamedDecl>(*D)->getDeclName()) {
2365      ValueDecl *VD = cast<ValueDecl>(*D);
2366      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2367                                       VD->getLocation(), diagKind)) {
2368        // C++ [class.union]p2:
2369        //   The names of the members of an anonymous union shall be
2370        //   distinct from the names of any other entity in the
2371        //   scope in which the anonymous union is declared.
2372        Invalid = true;
2373      } else {
2374        // C++ [class.union]p2:
2375        //   For the purpose of name lookup, after the anonymous union
2376        //   definition, the members of the anonymous union are
2377        //   considered to have been defined in the scope in which the
2378        //   anonymous union is declared.
2379        unsigned OldChainingSize = Chaining.size();
2380        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2381          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2382               PE = IF->chain_end(); PI != PE; ++PI)
2383            Chaining.push_back(*PI);
2384        else
2385          Chaining.push_back(VD);
2386
2387        assert(Chaining.size() >= 2);
2388        NamedDecl **NamedChain =
2389          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2390        for (unsigned i = 0; i < Chaining.size(); i++)
2391          NamedChain[i] = Chaining[i];
2392
2393        IndirectFieldDecl* IndirectField =
2394          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2395                                    VD->getIdentifier(), VD->getType(),
2396                                    NamedChain, Chaining.size());
2397
2398        IndirectField->setAccess(AS);
2399        IndirectField->setImplicit();
2400        SemaRef.PushOnScopeChains(IndirectField, S);
2401
2402        // That includes picking up the appropriate access specifier.
2403        if (AS != AS_none) IndirectField->setAccess(AS);
2404
2405        Chaining.resize(OldChainingSize);
2406      }
2407    }
2408  }
2409
2410  return Invalid;
2411}
2412
2413/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2414/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2415/// illegal input values are mapped to SC_None.
2416static StorageClass
2417StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2418  switch (StorageClassSpec) {
2419  case DeclSpec::SCS_unspecified:    return SC_None;
2420  case DeclSpec::SCS_extern:         return SC_Extern;
2421  case DeclSpec::SCS_static:         return SC_Static;
2422  case DeclSpec::SCS_auto:           return SC_Auto;
2423  case DeclSpec::SCS_register:       return SC_Register;
2424  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2425    // Illegal SCSs map to None: error reporting is up to the caller.
2426  case DeclSpec::SCS_mutable:        // Fall through.
2427  case DeclSpec::SCS_typedef:        return SC_None;
2428  }
2429  llvm_unreachable("unknown storage class specifier");
2430}
2431
2432/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2433/// a StorageClass. Any error reporting is up to the caller:
2434/// illegal input values are mapped to SC_None.
2435static StorageClass
2436StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2437  switch (StorageClassSpec) {
2438  case DeclSpec::SCS_unspecified:    return SC_None;
2439  case DeclSpec::SCS_extern:         return SC_Extern;
2440  case DeclSpec::SCS_static:         return SC_Static;
2441  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2442    // Illegal SCSs map to None: error reporting is up to the caller.
2443  case DeclSpec::SCS_auto:           // Fall through.
2444  case DeclSpec::SCS_mutable:        // Fall through.
2445  case DeclSpec::SCS_register:       // Fall through.
2446  case DeclSpec::SCS_typedef:        return SC_None;
2447  }
2448  llvm_unreachable("unknown storage class specifier");
2449}
2450
2451/// BuildAnonymousStructOrUnion - Handle the declaration of an
2452/// anonymous structure or union. Anonymous unions are a C++ feature
2453/// (C++ [class.union]) and a GNU C extension; anonymous structures
2454/// are a GNU C and GNU C++ extension.
2455Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2456                                             AccessSpecifier AS,
2457                                             RecordDecl *Record) {
2458  DeclContext *Owner = Record->getDeclContext();
2459
2460  // Diagnose whether this anonymous struct/union is an extension.
2461  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2462    Diag(Record->getLocation(), diag::ext_anonymous_union);
2463  else if (!Record->isUnion())
2464    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2465
2466  // C and C++ require different kinds of checks for anonymous
2467  // structs/unions.
2468  bool Invalid = false;
2469  if (getLangOptions().CPlusPlus) {
2470    const char* PrevSpec = 0;
2471    unsigned DiagID;
2472    // C++ [class.union]p3:
2473    //   Anonymous unions declared in a named namespace or in the
2474    //   global namespace shall be declared static.
2475    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2476        (isa<TranslationUnitDecl>(Owner) ||
2477         (isa<NamespaceDecl>(Owner) &&
2478          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2479      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2480      Invalid = true;
2481
2482      // Recover by adding 'static'.
2483      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2484                             PrevSpec, DiagID, getLangOptions());
2485    }
2486    // C++ [class.union]p3:
2487    //   A storage class is not allowed in a declaration of an
2488    //   anonymous union in a class scope.
2489    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2490             isa<RecordDecl>(Owner)) {
2491      Diag(DS.getStorageClassSpecLoc(),
2492           diag::err_anonymous_union_with_storage_spec);
2493      Invalid = true;
2494
2495      // Recover by removing the storage specifier.
2496      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2497                             PrevSpec, DiagID, getLangOptions());
2498    }
2499
2500    // Ignore const/volatile/restrict qualifiers.
2501    if (DS.getTypeQualifiers()) {
2502      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2503        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2504          << Record->isUnion() << 0
2505          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2506      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2507        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2508          << Record->isUnion() << 1
2509          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2510      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2511        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2512          << Record->isUnion() << 2
2513          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2514
2515      DS.ClearTypeQualifiers();
2516    }
2517
2518    // C++ [class.union]p2:
2519    //   The member-specification of an anonymous union shall only
2520    //   define non-static data members. [Note: nested types and
2521    //   functions cannot be declared within an anonymous union. ]
2522    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2523                                 MemEnd = Record->decls_end();
2524         Mem != MemEnd; ++Mem) {
2525      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2526        // C++ [class.union]p3:
2527        //   An anonymous union shall not have private or protected
2528        //   members (clause 11).
2529        assert(FD->getAccess() != AS_none);
2530        if (FD->getAccess() != AS_public) {
2531          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2532            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2533          Invalid = true;
2534        }
2535
2536        // C++ [class.union]p1
2537        //   An object of a class with a non-trivial constructor, a non-trivial
2538        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2539        //   assignment operator cannot be a member of a union, nor can an
2540        //   array of such objects.
2541        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2542          Invalid = true;
2543      } else if ((*Mem)->isImplicit()) {
2544        // Any implicit members are fine.
2545      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2546        // This is a type that showed up in an
2547        // elaborated-type-specifier inside the anonymous struct or
2548        // union, but which actually declares a type outside of the
2549        // anonymous struct or union. It's okay.
2550      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2551        if (!MemRecord->isAnonymousStructOrUnion() &&
2552            MemRecord->getDeclName()) {
2553          // Visual C++ allows type definition in anonymous struct or union.
2554          if (getLangOptions().Microsoft)
2555            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2556              << (int)Record->isUnion();
2557          else {
2558            // This is a nested type declaration.
2559            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2560              << (int)Record->isUnion();
2561            Invalid = true;
2562          }
2563        }
2564      } else if (isa<AccessSpecDecl>(*Mem)) {
2565        // Any access specifier is fine.
2566      } else {
2567        // We have something that isn't a non-static data
2568        // member. Complain about it.
2569        unsigned DK = diag::err_anonymous_record_bad_member;
2570        if (isa<TypeDecl>(*Mem))
2571          DK = diag::err_anonymous_record_with_type;
2572        else if (isa<FunctionDecl>(*Mem))
2573          DK = diag::err_anonymous_record_with_function;
2574        else if (isa<VarDecl>(*Mem))
2575          DK = diag::err_anonymous_record_with_static;
2576
2577        // Visual C++ allows type definition in anonymous struct or union.
2578        if (getLangOptions().Microsoft &&
2579            DK == diag::err_anonymous_record_with_type)
2580          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2581            << (int)Record->isUnion();
2582        else {
2583          Diag((*Mem)->getLocation(), DK)
2584              << (int)Record->isUnion();
2585          Invalid = true;
2586        }
2587      }
2588    }
2589  }
2590
2591  if (!Record->isUnion() && !Owner->isRecord()) {
2592    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2593      << (int)getLangOptions().CPlusPlus;
2594    Invalid = true;
2595  }
2596
2597  // Mock up a declarator.
2598  Declarator Dc(DS, Declarator::TypeNameContext);
2599  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2600  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2601
2602  // Create a declaration for this anonymous struct/union.
2603  NamedDecl *Anon = 0;
2604  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2605    Anon = FieldDecl::Create(Context, OwningClass,
2606                             DS.getSourceRange().getBegin(),
2607                             Record->getLocation(),
2608                             /*IdentifierInfo=*/0,
2609                             Context.getTypeDeclType(Record),
2610                             TInfo,
2611                             /*BitWidth=*/0, /*Mutable=*/false);
2612    Anon->setAccess(AS);
2613    if (getLangOptions().CPlusPlus)
2614      FieldCollector->Add(cast<FieldDecl>(Anon));
2615  } else {
2616    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2617    assert(SCSpec != DeclSpec::SCS_typedef &&
2618           "Parser allowed 'typedef' as storage class VarDecl.");
2619    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2620    if (SCSpec == DeclSpec::SCS_mutable) {
2621      // mutable can only appear on non-static class members, so it's always
2622      // an error here
2623      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2624      Invalid = true;
2625      SC = SC_None;
2626    }
2627    SCSpec = DS.getStorageClassSpecAsWritten();
2628    VarDecl::StorageClass SCAsWritten
2629      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2630
2631    Anon = VarDecl::Create(Context, Owner,
2632                           DS.getSourceRange().getBegin(),
2633                           Record->getLocation(), /*IdentifierInfo=*/0,
2634                           Context.getTypeDeclType(Record),
2635                           TInfo, SC, SCAsWritten);
2636  }
2637  Anon->setImplicit();
2638
2639  // Add the anonymous struct/union object to the current
2640  // context. We'll be referencing this object when we refer to one of
2641  // its members.
2642  Owner->addDecl(Anon);
2643
2644  // Inject the members of the anonymous struct/union into the owning
2645  // context and into the identifier resolver chain for name lookup
2646  // purposes.
2647  llvm::SmallVector<NamedDecl*, 2> Chain;
2648  Chain.push_back(Anon);
2649
2650  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2651                                          Chain, false))
2652    Invalid = true;
2653
2654  // Mark this as an anonymous struct/union type. Note that we do not
2655  // do this until after we have already checked and injected the
2656  // members of this anonymous struct/union type, because otherwise
2657  // the members could be injected twice: once by DeclContext when it
2658  // builds its lookup table, and once by
2659  // InjectAnonymousStructOrUnionMembers.
2660  Record->setAnonymousStructOrUnion(true);
2661
2662  if (Invalid)
2663    Anon->setInvalidDecl();
2664
2665  return Anon;
2666}
2667
2668/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2669/// Microsoft C anonymous structure.
2670/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2671/// Example:
2672///
2673/// struct A { int a; };
2674/// struct B { struct A; int b; };
2675///
2676/// void foo() {
2677///   B var;
2678///   var.a = 3;
2679/// }
2680///
2681Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2682                                           RecordDecl *Record) {
2683
2684  // If there is no Record, get the record via the typedef.
2685  if (!Record)
2686    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2687
2688  // Mock up a declarator.
2689  Declarator Dc(DS, Declarator::TypeNameContext);
2690  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2691  assert(TInfo && "couldn't build declarator info for anonymous struct");
2692
2693  // Create a declaration for this anonymous struct.
2694  NamedDecl* Anon = FieldDecl::Create(Context,
2695                             cast<RecordDecl>(CurContext),
2696                             DS.getSourceRange().getBegin(),
2697                             DS.getSourceRange().getBegin(),
2698                             /*IdentifierInfo=*/0,
2699                             Context.getTypeDeclType(Record),
2700                             TInfo,
2701                             /*BitWidth=*/0, /*Mutable=*/false);
2702  Anon->setImplicit();
2703
2704  // Add the anonymous struct object to the current context.
2705  CurContext->addDecl(Anon);
2706
2707  // Inject the members of the anonymous struct into the current
2708  // context and into the identifier resolver chain for name lookup
2709  // purposes.
2710  llvm::SmallVector<NamedDecl*, 2> Chain;
2711  Chain.push_back(Anon);
2712
2713  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2714                                          Record->getDefinition(),
2715                                          AS_none, Chain, true))
2716    Anon->setInvalidDecl();
2717
2718  return Anon;
2719}
2720
2721/// GetNameForDeclarator - Determine the full declaration name for the
2722/// given Declarator.
2723DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2724  return GetNameFromUnqualifiedId(D.getName());
2725}
2726
2727/// \brief Retrieves the declaration name from a parsed unqualified-id.
2728DeclarationNameInfo
2729Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2730  DeclarationNameInfo NameInfo;
2731  NameInfo.setLoc(Name.StartLocation);
2732
2733  switch (Name.getKind()) {
2734
2735  case UnqualifiedId::IK_Identifier:
2736    NameInfo.setName(Name.Identifier);
2737    NameInfo.setLoc(Name.StartLocation);
2738    return NameInfo;
2739
2740  case UnqualifiedId::IK_OperatorFunctionId:
2741    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2742                                           Name.OperatorFunctionId.Operator));
2743    NameInfo.setLoc(Name.StartLocation);
2744    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2745      = Name.OperatorFunctionId.SymbolLocations[0];
2746    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2747      = Name.EndLocation.getRawEncoding();
2748    return NameInfo;
2749
2750  case UnqualifiedId::IK_LiteralOperatorId:
2751    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2752                                                           Name.Identifier));
2753    NameInfo.setLoc(Name.StartLocation);
2754    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2755    return NameInfo;
2756
2757  case UnqualifiedId::IK_ConversionFunctionId: {
2758    TypeSourceInfo *TInfo;
2759    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2760    if (Ty.isNull())
2761      return DeclarationNameInfo();
2762    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2763                                               Context.getCanonicalType(Ty)));
2764    NameInfo.setLoc(Name.StartLocation);
2765    NameInfo.setNamedTypeInfo(TInfo);
2766    return NameInfo;
2767  }
2768
2769  case UnqualifiedId::IK_ConstructorName: {
2770    TypeSourceInfo *TInfo;
2771    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2772    if (Ty.isNull())
2773      return DeclarationNameInfo();
2774    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2775                                              Context.getCanonicalType(Ty)));
2776    NameInfo.setLoc(Name.StartLocation);
2777    NameInfo.setNamedTypeInfo(TInfo);
2778    return NameInfo;
2779  }
2780
2781  case UnqualifiedId::IK_ConstructorTemplateId: {
2782    // In well-formed code, we can only have a constructor
2783    // template-id that refers to the current context, so go there
2784    // to find the actual type being constructed.
2785    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2786    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2787      return DeclarationNameInfo();
2788
2789    // Determine the type of the class being constructed.
2790    QualType CurClassType = Context.getTypeDeclType(CurClass);
2791
2792    // FIXME: Check two things: that the template-id names the same type as
2793    // CurClassType, and that the template-id does not occur when the name
2794    // was qualified.
2795
2796    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2797                                    Context.getCanonicalType(CurClassType)));
2798    NameInfo.setLoc(Name.StartLocation);
2799    // FIXME: should we retrieve TypeSourceInfo?
2800    NameInfo.setNamedTypeInfo(0);
2801    return NameInfo;
2802  }
2803
2804  case UnqualifiedId::IK_DestructorName: {
2805    TypeSourceInfo *TInfo;
2806    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2807    if (Ty.isNull())
2808      return DeclarationNameInfo();
2809    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2810                                              Context.getCanonicalType(Ty)));
2811    NameInfo.setLoc(Name.StartLocation);
2812    NameInfo.setNamedTypeInfo(TInfo);
2813    return NameInfo;
2814  }
2815
2816  case UnqualifiedId::IK_TemplateId: {
2817    TemplateName TName = Name.TemplateId->Template.get();
2818    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2819    return Context.getNameForTemplate(TName, TNameLoc);
2820  }
2821
2822  } // switch (Name.getKind())
2823
2824  assert(false && "Unknown name kind");
2825  return DeclarationNameInfo();
2826}
2827
2828/// isNearlyMatchingFunction - Determine whether the C++ functions
2829/// Declaration and Definition are "nearly" matching. This heuristic
2830/// is used to improve diagnostics in the case where an out-of-line
2831/// function definition doesn't match any declaration within
2832/// the class or namespace.
2833static bool isNearlyMatchingFunction(ASTContext &Context,
2834                                     FunctionDecl *Declaration,
2835                                     FunctionDecl *Definition) {
2836  if (Declaration->param_size() != Definition->param_size())
2837    return false;
2838  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2839    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2840    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2841
2842    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2843                                        DefParamTy.getNonReferenceType()))
2844      return false;
2845  }
2846
2847  return true;
2848}
2849
2850/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2851/// declarator needs to be rebuilt in the current instantiation.
2852/// Any bits of declarator which appear before the name are valid for
2853/// consideration here.  That's specifically the type in the decl spec
2854/// and the base type in any member-pointer chunks.
2855static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2856                                                    DeclarationName Name) {
2857  // The types we specifically need to rebuild are:
2858  //   - typenames, typeofs, and decltypes
2859  //   - types which will become injected class names
2860  // Of course, we also need to rebuild any type referencing such a
2861  // type.  It's safest to just say "dependent", but we call out a
2862  // few cases here.
2863
2864  DeclSpec &DS = D.getMutableDeclSpec();
2865  switch (DS.getTypeSpecType()) {
2866  case DeclSpec::TST_typename:
2867  case DeclSpec::TST_typeofType:
2868  case DeclSpec::TST_decltype:
2869  case DeclSpec::TST_underlyingType: {
2870    // Grab the type from the parser.
2871    TypeSourceInfo *TSI = 0;
2872    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2873    if (T.isNull() || !T->isDependentType()) break;
2874
2875    // Make sure there's a type source info.  This isn't really much
2876    // of a waste; most dependent types should have type source info
2877    // attached already.
2878    if (!TSI)
2879      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2880
2881    // Rebuild the type in the current instantiation.
2882    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2883    if (!TSI) return true;
2884
2885    // Store the new type back in the decl spec.
2886    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2887    DS.UpdateTypeRep(LocType);
2888    break;
2889  }
2890
2891  case DeclSpec::TST_typeofExpr: {
2892    Expr *E = DS.getRepAsExpr();
2893    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2894    if (Result.isInvalid()) return true;
2895    DS.UpdateExprRep(Result.get());
2896    break;
2897  }
2898
2899  default:
2900    // Nothing to do for these decl specs.
2901    break;
2902  }
2903
2904  // It doesn't matter what order we do this in.
2905  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2906    DeclaratorChunk &Chunk = D.getTypeObject(I);
2907
2908    // The only type information in the declarator which can come
2909    // before the declaration name is the base type of a member
2910    // pointer.
2911    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2912      continue;
2913
2914    // Rebuild the scope specifier in-place.
2915    CXXScopeSpec &SS = Chunk.Mem.Scope();
2916    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2917      return true;
2918  }
2919
2920  return false;
2921}
2922
2923Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D,
2924                            bool IsFunctionDefinition) {
2925  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
2926                          IsFunctionDefinition);
2927}
2928
2929/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2930///   If T is the name of a class, then each of the following shall have a
2931///   name different from T:
2932///     - every static data member of class T;
2933///     - every member function of class T
2934///     - every member of class T that is itself a type;
2935/// \returns true if the declaration name violates these rules.
2936bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2937                                   DeclarationNameInfo NameInfo) {
2938  DeclarationName Name = NameInfo.getName();
2939
2940  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2941    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2942      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2943      return true;
2944    }
2945
2946  return false;
2947}
2948
2949Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2950                             MultiTemplateParamsArg TemplateParamLists,
2951                             bool IsFunctionDefinition) {
2952  // TODO: consider using NameInfo for diagnostic.
2953  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2954  DeclarationName Name = NameInfo.getName();
2955
2956  // All of these full declarators require an identifier.  If it doesn't have
2957  // one, the ParsedFreeStandingDeclSpec action should be used.
2958  if (!Name) {
2959    if (!D.isInvalidType())  // Reject this if we think it is valid.
2960      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2961           diag::err_declarator_need_ident)
2962        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2963    return 0;
2964  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2965    return 0;
2966
2967  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2968  // we find one that is.
2969  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2970         (S->getFlags() & Scope::TemplateParamScope) != 0)
2971    S = S->getParent();
2972
2973  DeclContext *DC = CurContext;
2974  if (D.getCXXScopeSpec().isInvalid())
2975    D.setInvalidType();
2976  else if (D.getCXXScopeSpec().isSet()) {
2977    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2978                                        UPPC_DeclarationQualifier))
2979      return 0;
2980
2981    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2982    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2983    if (!DC) {
2984      // If we could not compute the declaration context, it's because the
2985      // declaration context is dependent but does not refer to a class,
2986      // class template, or class template partial specialization. Complain
2987      // and return early, to avoid the coming semantic disaster.
2988      Diag(D.getIdentifierLoc(),
2989           diag::err_template_qualified_declarator_no_match)
2990        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2991        << D.getCXXScopeSpec().getRange();
2992      return 0;
2993    }
2994    bool IsDependentContext = DC->isDependentContext();
2995
2996    if (!IsDependentContext &&
2997        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2998      return 0;
2999
3000    if (isa<CXXRecordDecl>(DC)) {
3001      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3002        Diag(D.getIdentifierLoc(),
3003             diag::err_member_def_undefined_record)
3004          << Name << DC << D.getCXXScopeSpec().getRange();
3005        D.setInvalidType();
3006      } else if (isa<CXXRecordDecl>(CurContext) &&
3007                 !D.getDeclSpec().isFriendSpecified()) {
3008        // The user provided a superfluous scope specifier inside a class
3009        // definition:
3010        //
3011        // class X {
3012        //   void X::f();
3013        // };
3014        if (CurContext->Equals(DC))
3015          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3016            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3017        else
3018          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3019            << Name << D.getCXXScopeSpec().getRange();
3020
3021        // Pretend that this qualifier was not here.
3022        D.getCXXScopeSpec().clear();
3023      }
3024    }
3025
3026    // Check whether we need to rebuild the type of the given
3027    // declaration in the current instantiation.
3028    if (EnteringContext && IsDependentContext &&
3029        TemplateParamLists.size() != 0) {
3030      ContextRAII SavedContext(*this, DC);
3031      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3032        D.setInvalidType();
3033    }
3034  }
3035
3036  if (DiagnoseClassNameShadow(DC, NameInfo))
3037    // If this is a typedef, we'll end up spewing multiple diagnostics.
3038    // Just return early; it's safer.
3039    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3040      return 0;
3041
3042  NamedDecl *New;
3043
3044  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3045  QualType R = TInfo->getType();
3046
3047  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3048                                      UPPC_DeclarationType))
3049    D.setInvalidType();
3050
3051  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3052                        ForRedeclaration);
3053
3054  // See if this is a redefinition of a variable in the same scope.
3055  if (!D.getCXXScopeSpec().isSet()) {
3056    bool IsLinkageLookup = false;
3057
3058    // If the declaration we're planning to build will be a function
3059    // or object with linkage, then look for another declaration with
3060    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3061    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3062      /* Do nothing*/;
3063    else if (R->isFunctionType()) {
3064      if (CurContext->isFunctionOrMethod() ||
3065          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3066        IsLinkageLookup = true;
3067    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3068      IsLinkageLookup = true;
3069    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3070             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3071      IsLinkageLookup = true;
3072
3073    if (IsLinkageLookup)
3074      Previous.clear(LookupRedeclarationWithLinkage);
3075
3076    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3077  } else { // Something like "int foo::x;"
3078    LookupQualifiedName(Previous, DC);
3079
3080    // Don't consider using declarations as previous declarations for
3081    // out-of-line members.
3082    RemoveUsingDecls(Previous);
3083
3084    // C++ 7.3.1.2p2:
3085    // Members (including explicit specializations of templates) of a named
3086    // namespace can also be defined outside that namespace by explicit
3087    // qualification of the name being defined, provided that the entity being
3088    // defined was already declared in the namespace and the definition appears
3089    // after the point of declaration in a namespace that encloses the
3090    // declarations namespace.
3091    //
3092    // Note that we only check the context at this point. We don't yet
3093    // have enough information to make sure that PrevDecl is actually
3094    // the declaration we want to match. For example, given:
3095    //
3096    //   class X {
3097    //     void f();
3098    //     void f(float);
3099    //   };
3100    //
3101    //   void X::f(int) { } // ill-formed
3102    //
3103    // In this case, PrevDecl will point to the overload set
3104    // containing the two f's declared in X, but neither of them
3105    // matches.
3106
3107    // First check whether we named the global scope.
3108    if (isa<TranslationUnitDecl>(DC)) {
3109      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3110        << Name << D.getCXXScopeSpec().getRange();
3111    } else {
3112      DeclContext *Cur = CurContext;
3113      while (isa<LinkageSpecDecl>(Cur))
3114        Cur = Cur->getParent();
3115      if (!Cur->Encloses(DC)) {
3116        // The qualifying scope doesn't enclose the original declaration.
3117        // Emit diagnostic based on current scope.
3118        SourceLocation L = D.getIdentifierLoc();
3119        SourceRange R = D.getCXXScopeSpec().getRange();
3120        if (isa<FunctionDecl>(Cur))
3121          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3122        else
3123          Diag(L, diag::err_invalid_declarator_scope)
3124            << Name << cast<NamedDecl>(DC) << R;
3125        D.setInvalidType();
3126      }
3127    }
3128  }
3129
3130  if (Previous.isSingleResult() &&
3131      Previous.getFoundDecl()->isTemplateParameter()) {
3132    // Maybe we will complain about the shadowed template parameter.
3133    if (!D.isInvalidType())
3134      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3135                                          Previous.getFoundDecl()))
3136        D.setInvalidType();
3137
3138    // Just pretend that we didn't see the previous declaration.
3139    Previous.clear();
3140  }
3141
3142  // In C++, the previous declaration we find might be a tag type
3143  // (class or enum). In this case, the new declaration will hide the
3144  // tag type. Note that this does does not apply if we're declaring a
3145  // typedef (C++ [dcl.typedef]p4).
3146  if (Previous.isSingleTagDecl() &&
3147      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3148    Previous.clear();
3149
3150  bool Redeclaration = false;
3151  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3152    if (TemplateParamLists.size()) {
3153      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3154      return 0;
3155    }
3156
3157    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3158  } else if (R->isFunctionType()) {
3159    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3160                                  move(TemplateParamLists),
3161                                  IsFunctionDefinition, Redeclaration);
3162  } else {
3163    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3164                                  move(TemplateParamLists),
3165                                  Redeclaration);
3166  }
3167
3168  if (New == 0)
3169    return 0;
3170
3171  // If this has an identifier and is not an invalid redeclaration or
3172  // function template specialization, add it to the scope stack.
3173  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
3174    PushOnScopeChains(New, S);
3175
3176  return New;
3177}
3178
3179/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3180/// types into constant array types in certain situations which would otherwise
3181/// be errors (for GCC compatibility).
3182static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3183                                                    ASTContext &Context,
3184                                                    bool &SizeIsNegative,
3185                                                    llvm::APSInt &Oversized) {
3186  // This method tries to turn a variable array into a constant
3187  // array even when the size isn't an ICE.  This is necessary
3188  // for compatibility with code that depends on gcc's buggy
3189  // constant expression folding, like struct {char x[(int)(char*)2];}
3190  SizeIsNegative = false;
3191  Oversized = 0;
3192
3193  if (T->isDependentType())
3194    return QualType();
3195
3196  QualifierCollector Qs;
3197  const Type *Ty = Qs.strip(T);
3198
3199  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3200    QualType Pointee = PTy->getPointeeType();
3201    QualType FixedType =
3202        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3203                                            Oversized);
3204    if (FixedType.isNull()) return FixedType;
3205    FixedType = Context.getPointerType(FixedType);
3206    return Qs.apply(Context, FixedType);
3207  }
3208  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3209    QualType Inner = PTy->getInnerType();
3210    QualType FixedType =
3211        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3212                                            Oversized);
3213    if (FixedType.isNull()) return FixedType;
3214    FixedType = Context.getParenType(FixedType);
3215    return Qs.apply(Context, FixedType);
3216  }
3217
3218  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3219  if (!VLATy)
3220    return QualType();
3221  // FIXME: We should probably handle this case
3222  if (VLATy->getElementType()->isVariablyModifiedType())
3223    return QualType();
3224
3225  Expr::EvalResult EvalResult;
3226  if (!VLATy->getSizeExpr() ||
3227      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3228      !EvalResult.Val.isInt())
3229    return QualType();
3230
3231  // Check whether the array size is negative.
3232  llvm::APSInt &Res = EvalResult.Val.getInt();
3233  if (Res.isSigned() && Res.isNegative()) {
3234    SizeIsNegative = true;
3235    return QualType();
3236  }
3237
3238  // Check whether the array is too large to be addressed.
3239  unsigned ActiveSizeBits
3240    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3241                                              Res);
3242  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3243    Oversized = Res;
3244    return QualType();
3245  }
3246
3247  return Context.getConstantArrayType(VLATy->getElementType(),
3248                                      Res, ArrayType::Normal, 0);
3249}
3250
3251/// \brief Register the given locally-scoped external C declaration so
3252/// that it can be found later for redeclarations
3253void
3254Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3255                                       const LookupResult &Previous,
3256                                       Scope *S) {
3257  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3258         "Decl is not a locally-scoped decl!");
3259  // Note that we have a locally-scoped external with this name.
3260  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3261
3262  if (!Previous.isSingleResult())
3263    return;
3264
3265  NamedDecl *PrevDecl = Previous.getFoundDecl();
3266
3267  // If there was a previous declaration of this variable, it may be
3268  // in our identifier chain. Update the identifier chain with the new
3269  // declaration.
3270  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3271    // The previous declaration was found on the identifer resolver
3272    // chain, so remove it from its scope.
3273    while (S && !S->isDeclScope(PrevDecl))
3274      S = S->getParent();
3275
3276    if (S)
3277      S->RemoveDecl(PrevDecl);
3278  }
3279}
3280
3281/// \brief Diagnose function specifiers on a declaration of an identifier that
3282/// does not identify a function.
3283void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3284  // FIXME: We should probably indicate the identifier in question to avoid
3285  // confusion for constructs like "inline int a(), b;"
3286  if (D.getDeclSpec().isInlineSpecified())
3287    Diag(D.getDeclSpec().getInlineSpecLoc(),
3288         diag::err_inline_non_function);
3289
3290  if (D.getDeclSpec().isVirtualSpecified())
3291    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3292         diag::err_virtual_non_function);
3293
3294  if (D.getDeclSpec().isExplicitSpecified())
3295    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3296         diag::err_explicit_non_function);
3297}
3298
3299NamedDecl*
3300Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3301                             QualType R,  TypeSourceInfo *TInfo,
3302                             LookupResult &Previous, bool &Redeclaration) {
3303  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3304  if (D.getCXXScopeSpec().isSet()) {
3305    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3306      << D.getCXXScopeSpec().getRange();
3307    D.setInvalidType();
3308    // Pretend we didn't see the scope specifier.
3309    DC = CurContext;
3310    Previous.clear();
3311  }
3312
3313  if (getLangOptions().CPlusPlus) {
3314    // Check that there are no default arguments (C++ only).
3315    CheckExtraCXXDefaultArguments(D);
3316  }
3317
3318  DiagnoseFunctionSpecifiers(D);
3319
3320  if (D.getDeclSpec().isThreadSpecified())
3321    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3322
3323  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3324    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3325      << D.getName().getSourceRange();
3326    return 0;
3327  }
3328
3329  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3330  if (!NewTD) return 0;
3331
3332  // Handle attributes prior to checking for duplicates in MergeVarDecl
3333  ProcessDeclAttributes(S, NewTD, D);
3334
3335  CheckTypedefForVariablyModifiedType(S, NewTD);
3336
3337  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3338}
3339
3340void
3341Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3342  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3343  // then it shall have block scope.
3344  // Note that variably modified types must be fixed before merging the decl so
3345  // that redeclarations will match.
3346  QualType T = NewTD->getUnderlyingType();
3347  if (T->isVariablyModifiedType()) {
3348    getCurFunction()->setHasBranchProtectedScope();
3349
3350    if (S->getFnParent() == 0) {
3351      bool SizeIsNegative;
3352      llvm::APSInt Oversized;
3353      QualType FixedTy =
3354          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3355                                              Oversized);
3356      if (!FixedTy.isNull()) {
3357        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3358        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3359      } else {
3360        if (SizeIsNegative)
3361          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3362        else if (T->isVariableArrayType())
3363          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3364        else if (Oversized.getBoolValue())
3365          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3366        else
3367          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3368        NewTD->setInvalidDecl();
3369      }
3370    }
3371  }
3372}
3373
3374
3375/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3376/// declares a typedef-name, either using the 'typedef' type specifier or via
3377/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3378NamedDecl*
3379Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3380                           LookupResult &Previous, bool &Redeclaration) {
3381  // Merge the decl with the existing one if appropriate. If the decl is
3382  // in an outer scope, it isn't the same thing.
3383  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3384                       /*ExplicitInstantiationOrSpecialization=*/false);
3385  if (!Previous.empty()) {
3386    Redeclaration = true;
3387    MergeTypedefNameDecl(NewTD, Previous);
3388  }
3389
3390  // If this is the C FILE type, notify the AST context.
3391  if (IdentifierInfo *II = NewTD->getIdentifier())
3392    if (!NewTD->isInvalidDecl() &&
3393        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3394      if (II->isStr("FILE"))
3395        Context.setFILEDecl(NewTD);
3396      else if (II->isStr("jmp_buf"))
3397        Context.setjmp_bufDecl(NewTD);
3398      else if (II->isStr("sigjmp_buf"))
3399        Context.setsigjmp_bufDecl(NewTD);
3400      else if (II->isStr("__builtin_va_list"))
3401        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3402    }
3403
3404  return NewTD;
3405}
3406
3407/// \brief Determines whether the given declaration is an out-of-scope
3408/// previous declaration.
3409///
3410/// This routine should be invoked when name lookup has found a
3411/// previous declaration (PrevDecl) that is not in the scope where a
3412/// new declaration by the same name is being introduced. If the new
3413/// declaration occurs in a local scope, previous declarations with
3414/// linkage may still be considered previous declarations (C99
3415/// 6.2.2p4-5, C++ [basic.link]p6).
3416///
3417/// \param PrevDecl the previous declaration found by name
3418/// lookup
3419///
3420/// \param DC the context in which the new declaration is being
3421/// declared.
3422///
3423/// \returns true if PrevDecl is an out-of-scope previous declaration
3424/// for a new delcaration with the same name.
3425static bool
3426isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3427                                ASTContext &Context) {
3428  if (!PrevDecl)
3429    return false;
3430
3431  if (!PrevDecl->hasLinkage())
3432    return false;
3433
3434  if (Context.getLangOptions().CPlusPlus) {
3435    // C++ [basic.link]p6:
3436    //   If there is a visible declaration of an entity with linkage
3437    //   having the same name and type, ignoring entities declared
3438    //   outside the innermost enclosing namespace scope, the block
3439    //   scope declaration declares that same entity and receives the
3440    //   linkage of the previous declaration.
3441    DeclContext *OuterContext = DC->getRedeclContext();
3442    if (!OuterContext->isFunctionOrMethod())
3443      // This rule only applies to block-scope declarations.
3444      return false;
3445
3446    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3447    if (PrevOuterContext->isRecord())
3448      // We found a member function: ignore it.
3449      return false;
3450
3451    // Find the innermost enclosing namespace for the new and
3452    // previous declarations.
3453    OuterContext = OuterContext->getEnclosingNamespaceContext();
3454    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3455
3456    // The previous declaration is in a different namespace, so it
3457    // isn't the same function.
3458    if (!OuterContext->Equals(PrevOuterContext))
3459      return false;
3460  }
3461
3462  return true;
3463}
3464
3465static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3466  CXXScopeSpec &SS = D.getCXXScopeSpec();
3467  if (!SS.isSet()) return;
3468  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3469}
3470
3471NamedDecl*
3472Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3473                              QualType R, TypeSourceInfo *TInfo,
3474                              LookupResult &Previous,
3475                              MultiTemplateParamsArg TemplateParamLists,
3476                              bool &Redeclaration) {
3477  DeclarationName Name = GetNameForDeclarator(D).getName();
3478
3479  // Check that there are no default arguments (C++ only).
3480  if (getLangOptions().CPlusPlus)
3481    CheckExtraCXXDefaultArguments(D);
3482
3483  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3484  assert(SCSpec != DeclSpec::SCS_typedef &&
3485         "Parser allowed 'typedef' as storage class VarDecl.");
3486  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3487  if (SCSpec == DeclSpec::SCS_mutable) {
3488    // mutable can only appear on non-static class members, so it's always
3489    // an error here
3490    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3491    D.setInvalidType();
3492    SC = SC_None;
3493  }
3494  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3495  VarDecl::StorageClass SCAsWritten
3496    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3497
3498  IdentifierInfo *II = Name.getAsIdentifierInfo();
3499  if (!II) {
3500    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3501      << Name.getAsString();
3502    return 0;
3503  }
3504
3505  DiagnoseFunctionSpecifiers(D);
3506
3507  if (!DC->isRecord() && S->getFnParent() == 0) {
3508    // C99 6.9p2: The storage-class specifiers auto and register shall not
3509    // appear in the declaration specifiers in an external declaration.
3510    if (SC == SC_Auto || SC == SC_Register) {
3511
3512      // If this is a register variable with an asm label specified, then this
3513      // is a GNU extension.
3514      if (SC == SC_Register && D.getAsmLabel())
3515        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3516      else
3517        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3518      D.setInvalidType();
3519    }
3520  }
3521
3522  bool isExplicitSpecialization = false;
3523  VarDecl *NewVD;
3524  if (!getLangOptions().CPlusPlus) {
3525    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3526                            D.getIdentifierLoc(), II,
3527                            R, TInfo, SC, SCAsWritten);
3528
3529    if (D.isInvalidType())
3530      NewVD->setInvalidDecl();
3531  } else {
3532    if (DC->isRecord() && !CurContext->isRecord()) {
3533      // This is an out-of-line definition of a static data member.
3534      if (SC == SC_Static) {
3535        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3536             diag::err_static_out_of_line)
3537          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3538      } else if (SC == SC_None)
3539        SC = SC_Static;
3540    }
3541    if (SC == SC_Static) {
3542      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3543        if (RD->isLocalClass())
3544          Diag(D.getIdentifierLoc(),
3545               diag::err_static_data_member_not_allowed_in_local_class)
3546            << Name << RD->getDeclName();
3547
3548        // C++ [class.union]p1: If a union contains a static data member,
3549        // the program is ill-formed.
3550        //
3551        // We also disallow static data members in anonymous structs.
3552        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3553          Diag(D.getIdentifierLoc(),
3554               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3555            << Name << RD->isUnion();
3556      }
3557    }
3558
3559    // Match up the template parameter lists with the scope specifier, then
3560    // determine whether we have a template or a template specialization.
3561    isExplicitSpecialization = false;
3562    bool Invalid = false;
3563    if (TemplateParameterList *TemplateParams
3564        = MatchTemplateParametersToScopeSpecifier(
3565                                  D.getDeclSpec().getSourceRange().getBegin(),
3566                                                  D.getIdentifierLoc(),
3567                                                  D.getCXXScopeSpec(),
3568                                                  TemplateParamLists.get(),
3569                                                  TemplateParamLists.size(),
3570                                                  /*never a friend*/ false,
3571                                                  isExplicitSpecialization,
3572                                                  Invalid)) {
3573      if (TemplateParams->size() > 0) {
3574        // There is no such thing as a variable template.
3575        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3576          << II
3577          << SourceRange(TemplateParams->getTemplateLoc(),
3578                         TemplateParams->getRAngleLoc());
3579        return 0;
3580      } else {
3581        // There is an extraneous 'template<>' for this variable. Complain
3582        // about it, but allow the declaration of the variable.
3583        Diag(TemplateParams->getTemplateLoc(),
3584             diag::err_template_variable_noparams)
3585          << II
3586          << SourceRange(TemplateParams->getTemplateLoc(),
3587                         TemplateParams->getRAngleLoc());
3588      }
3589    }
3590
3591    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3592                            D.getIdentifierLoc(), II,
3593                            R, TInfo, SC, SCAsWritten);
3594
3595    // If this decl has an auto type in need of deduction, make a note of the
3596    // Decl so we can diagnose uses of it in its own initializer.
3597    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3598        R->getContainedAutoType())
3599      ParsingInitForAutoVars.insert(NewVD);
3600
3601    if (D.isInvalidType() || Invalid)
3602      NewVD->setInvalidDecl();
3603
3604    SetNestedNameSpecifier(NewVD, D);
3605
3606    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3607      NewVD->setTemplateParameterListsInfo(Context,
3608                                           TemplateParamLists.size(),
3609                                           TemplateParamLists.release());
3610    }
3611  }
3612
3613  if (D.getDeclSpec().isThreadSpecified()) {
3614    if (NewVD->hasLocalStorage())
3615      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3616    else if (!Context.Target.isTLSSupported())
3617      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3618    else
3619      NewVD->setThreadSpecified(true);
3620  }
3621
3622  // Set the lexical context. If the declarator has a C++ scope specifier, the
3623  // lexical context will be different from the semantic context.
3624  NewVD->setLexicalDeclContext(CurContext);
3625
3626  // Handle attributes prior to checking for duplicates in MergeVarDecl
3627  ProcessDeclAttributes(S, NewVD, D);
3628
3629  // Handle GNU asm-label extension (encoded as an attribute).
3630  if (Expr *E = (Expr*)D.getAsmLabel()) {
3631    // The parser guarantees this is a string.
3632    StringLiteral *SE = cast<StringLiteral>(E);
3633    llvm::StringRef Label = SE->getString();
3634    if (S->getFnParent() != 0) {
3635      switch (SC) {
3636      case SC_None:
3637      case SC_Auto:
3638        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3639        break;
3640      case SC_Register:
3641        if (!Context.Target.isValidGCCRegisterName(Label))
3642          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3643        break;
3644      case SC_Static:
3645      case SC_Extern:
3646      case SC_PrivateExtern:
3647        break;
3648      }
3649    }
3650
3651    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3652                                                Context, Label));
3653  }
3654
3655  // Diagnose shadowed variables before filtering for scope.
3656  if (!D.getCXXScopeSpec().isSet())
3657    CheckShadow(S, NewVD, Previous);
3658
3659  // Don't consider existing declarations that are in a different
3660  // scope and are out-of-semantic-context declarations (if the new
3661  // declaration has linkage).
3662  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3663                       isExplicitSpecialization);
3664
3665  if (!getLangOptions().CPlusPlus)
3666    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3667  else {
3668    // Merge the decl with the existing one if appropriate.
3669    if (!Previous.empty()) {
3670      if (Previous.isSingleResult() &&
3671          isa<FieldDecl>(Previous.getFoundDecl()) &&
3672          D.getCXXScopeSpec().isSet()) {
3673        // The user tried to define a non-static data member
3674        // out-of-line (C++ [dcl.meaning]p1).
3675        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3676          << D.getCXXScopeSpec().getRange();
3677        Previous.clear();
3678        NewVD->setInvalidDecl();
3679      }
3680    } else if (D.getCXXScopeSpec().isSet()) {
3681      // No previous declaration in the qualifying scope.
3682      Diag(D.getIdentifierLoc(), diag::err_no_member)
3683        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3684        << D.getCXXScopeSpec().getRange();
3685      NewVD->setInvalidDecl();
3686    }
3687
3688    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3689
3690    // This is an explicit specialization of a static data member. Check it.
3691    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3692        CheckMemberSpecialization(NewVD, Previous))
3693      NewVD->setInvalidDecl();
3694  }
3695
3696  // attributes declared post-definition are currently ignored
3697  // FIXME: This should be handled in attribute merging, not
3698  // here.
3699  if (Previous.isSingleResult()) {
3700    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3701    if (Def && (Def = Def->getDefinition()) &&
3702        Def != NewVD && D.hasAttributes()) {
3703      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3704      Diag(Def->getLocation(), diag::note_previous_definition);
3705    }
3706  }
3707
3708  // If this is a locally-scoped extern C variable, update the map of
3709  // such variables.
3710  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3711      !NewVD->isInvalidDecl())
3712    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3713
3714  // If there's a #pragma GCC visibility in scope, and this isn't a class
3715  // member, set the visibility of this variable.
3716  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3717    AddPushedVisibilityAttribute(NewVD);
3718
3719  MarkUnusedFileScopedDecl(NewVD);
3720
3721  return NewVD;
3722}
3723
3724/// \brief Diagnose variable or built-in function shadowing.  Implements
3725/// -Wshadow.
3726///
3727/// This method is called whenever a VarDecl is added to a "useful"
3728/// scope.
3729///
3730/// \param S the scope in which the shadowing name is being declared
3731/// \param R the lookup of the name
3732///
3733void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3734  // Return if warning is ignored.
3735  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3736        Diagnostic::Ignored)
3737    return;
3738
3739  // Don't diagnose declarations at file scope.
3740  if (D->hasGlobalStorage())
3741    return;
3742
3743  DeclContext *NewDC = D->getDeclContext();
3744
3745  // Only diagnose if we're shadowing an unambiguous field or variable.
3746  if (R.getResultKind() != LookupResult::Found)
3747    return;
3748
3749  NamedDecl* ShadowedDecl = R.getFoundDecl();
3750  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3751    return;
3752
3753  // Fields are not shadowed by variables in C++ static methods.
3754  if (isa<FieldDecl>(ShadowedDecl))
3755    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3756      if (MD->isStatic())
3757        return;
3758
3759  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3760    if (shadowedVar->isExternC()) {
3761      // For shadowing external vars, make sure that we point to the global
3762      // declaration, not a locally scoped extern declaration.
3763      for (VarDecl::redecl_iterator
3764             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3765           I != E; ++I)
3766        if (I->isFileVarDecl()) {
3767          ShadowedDecl = *I;
3768          break;
3769        }
3770    }
3771
3772  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3773
3774  // Only warn about certain kinds of shadowing for class members.
3775  if (NewDC && NewDC->isRecord()) {
3776    // In particular, don't warn about shadowing non-class members.
3777    if (!OldDC->isRecord())
3778      return;
3779
3780    // TODO: should we warn about static data members shadowing
3781    // static data members from base classes?
3782
3783    // TODO: don't diagnose for inaccessible shadowed members.
3784    // This is hard to do perfectly because we might friend the
3785    // shadowing context, but that's just a false negative.
3786  }
3787
3788  // Determine what kind of declaration we're shadowing.
3789  unsigned Kind;
3790  if (isa<RecordDecl>(OldDC)) {
3791    if (isa<FieldDecl>(ShadowedDecl))
3792      Kind = 3; // field
3793    else
3794      Kind = 2; // static data member
3795  } else if (OldDC->isFileContext())
3796    Kind = 1; // global
3797  else
3798    Kind = 0; // local
3799
3800  DeclarationName Name = R.getLookupName();
3801
3802  // Emit warning and note.
3803  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3804  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3805}
3806
3807/// \brief Check -Wshadow without the advantage of a previous lookup.
3808void Sema::CheckShadow(Scope *S, VarDecl *D) {
3809  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3810        Diagnostic::Ignored)
3811    return;
3812
3813  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3814                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3815  LookupName(R, S);
3816  CheckShadow(S, D, R);
3817}
3818
3819/// \brief Perform semantic checking on a newly-created variable
3820/// declaration.
3821///
3822/// This routine performs all of the type-checking required for a
3823/// variable declaration once it has been built. It is used both to
3824/// check variables after they have been parsed and their declarators
3825/// have been translated into a declaration, and to check variables
3826/// that have been instantiated from a template.
3827///
3828/// Sets NewVD->isInvalidDecl() if an error was encountered.
3829void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3830                                    LookupResult &Previous,
3831                                    bool &Redeclaration) {
3832  // If the decl is already known invalid, don't check it.
3833  if (NewVD->isInvalidDecl())
3834    return;
3835
3836  QualType T = NewVD->getType();
3837
3838  if (T->isObjCObjectType()) {
3839    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3840    return NewVD->setInvalidDecl();
3841  }
3842
3843  // Emit an error if an address space was applied to decl with local storage.
3844  // This includes arrays of objects with address space qualifiers, but not
3845  // automatic variables that point to other address spaces.
3846  // ISO/IEC TR 18037 S5.1.2
3847  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3848    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3849    return NewVD->setInvalidDecl();
3850  }
3851
3852  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3853      && !NewVD->hasAttr<BlocksAttr>())
3854    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3855
3856  bool isVM = T->isVariablyModifiedType();
3857  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3858      NewVD->hasAttr<BlocksAttr>())
3859    getCurFunction()->setHasBranchProtectedScope();
3860
3861  if ((isVM && NewVD->hasLinkage()) ||
3862      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3863    bool SizeIsNegative;
3864    llvm::APSInt Oversized;
3865    QualType FixedTy =
3866        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3867                                            Oversized);
3868
3869    if (FixedTy.isNull() && T->isVariableArrayType()) {
3870      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3871      // FIXME: This won't give the correct result for
3872      // int a[10][n];
3873      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3874
3875      if (NewVD->isFileVarDecl())
3876        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3877        << SizeRange;
3878      else if (NewVD->getStorageClass() == SC_Static)
3879        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3880        << SizeRange;
3881      else
3882        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3883        << SizeRange;
3884      return NewVD->setInvalidDecl();
3885    }
3886
3887    if (FixedTy.isNull()) {
3888      if (NewVD->isFileVarDecl())
3889        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3890      else
3891        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3892      return NewVD->setInvalidDecl();
3893    }
3894
3895    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3896    NewVD->setType(FixedTy);
3897  }
3898
3899  if (Previous.empty() && NewVD->isExternC()) {
3900    // Since we did not find anything by this name and we're declaring
3901    // an extern "C" variable, look for a non-visible extern "C"
3902    // declaration with the same name.
3903    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3904      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3905    if (Pos != LocallyScopedExternalDecls.end())
3906      Previous.addDecl(Pos->second);
3907  }
3908
3909  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3910    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3911      << T;
3912    return NewVD->setInvalidDecl();
3913  }
3914
3915  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3916    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3917    return NewVD->setInvalidDecl();
3918  }
3919
3920  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3921    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3922    return NewVD->setInvalidDecl();
3923  }
3924
3925  // Function pointers and references cannot have qualified function type, only
3926  // function pointer-to-members can do that.
3927  QualType Pointee;
3928  unsigned PtrOrRef = 0;
3929  if (const PointerType *Ptr = T->getAs<PointerType>())
3930    Pointee = Ptr->getPointeeType();
3931  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3932    Pointee = Ref->getPointeeType();
3933    PtrOrRef = 1;
3934  }
3935  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3936      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3937    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3938        << PtrOrRef;
3939    return NewVD->setInvalidDecl();
3940  }
3941
3942  if (!Previous.empty()) {
3943    Redeclaration = true;
3944    MergeVarDecl(NewVD, Previous);
3945  }
3946}
3947
3948/// \brief Data used with FindOverriddenMethod
3949struct FindOverriddenMethodData {
3950  Sema *S;
3951  CXXMethodDecl *Method;
3952};
3953
3954/// \brief Member lookup function that determines whether a given C++
3955/// method overrides a method in a base class, to be used with
3956/// CXXRecordDecl::lookupInBases().
3957static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3958                                 CXXBasePath &Path,
3959                                 void *UserData) {
3960  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3961
3962  FindOverriddenMethodData *Data
3963    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3964
3965  DeclarationName Name = Data->Method->getDeclName();
3966
3967  // FIXME: Do we care about other names here too?
3968  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3969    // We really want to find the base class destructor here.
3970    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3971    CanQualType CT = Data->S->Context.getCanonicalType(T);
3972
3973    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3974  }
3975
3976  for (Path.Decls = BaseRecord->lookup(Name);
3977       Path.Decls.first != Path.Decls.second;
3978       ++Path.Decls.first) {
3979    NamedDecl *D = *Path.Decls.first;
3980    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3981      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3982        return true;
3983    }
3984  }
3985
3986  return false;
3987}
3988
3989/// AddOverriddenMethods - See if a method overrides any in the base classes,
3990/// and if so, check that it's a valid override and remember it.
3991bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3992  // Look for virtual methods in base classes that this method might override.
3993  CXXBasePaths Paths;
3994  FindOverriddenMethodData Data;
3995  Data.Method = MD;
3996  Data.S = this;
3997  bool AddedAny = false;
3998  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3999    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4000         E = Paths.found_decls_end(); I != E; ++I) {
4001      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4002        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4003            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4004            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4005          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4006          AddedAny = true;
4007        }
4008      }
4009    }
4010  }
4011
4012  return AddedAny;
4013}
4014
4015static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
4016  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
4017                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4018  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
4019  assert(!Prev.isAmbiguous() &&
4020         "Cannot have an ambiguity in previous-declaration lookup");
4021  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4022       Func != FuncEnd; ++Func) {
4023    if (isa<FunctionDecl>(*Func) &&
4024        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
4025      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
4026  }
4027}
4028
4029NamedDecl*
4030Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4031                              QualType R, TypeSourceInfo *TInfo,
4032                              LookupResult &Previous,
4033                              MultiTemplateParamsArg TemplateParamLists,
4034                              bool IsFunctionDefinition, bool &Redeclaration) {
4035  assert(R.getTypePtr()->isFunctionType());
4036
4037  // TODO: consider using NameInfo for diagnostic.
4038  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4039  DeclarationName Name = NameInfo.getName();
4040  FunctionDecl::StorageClass SC = SC_None;
4041  switch (D.getDeclSpec().getStorageClassSpec()) {
4042  default: assert(0 && "Unknown storage class!");
4043  case DeclSpec::SCS_auto:
4044  case DeclSpec::SCS_register:
4045  case DeclSpec::SCS_mutable:
4046    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4047         diag::err_typecheck_sclass_func);
4048    D.setInvalidType();
4049    break;
4050  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4051  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4052  case DeclSpec::SCS_static: {
4053    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4054      // C99 6.7.1p5:
4055      //   The declaration of an identifier for a function that has
4056      //   block scope shall have no explicit storage-class specifier
4057      //   other than extern
4058      // See also (C++ [dcl.stc]p4).
4059      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4060           diag::err_static_block_func);
4061      SC = SC_None;
4062    } else
4063      SC = SC_Static;
4064    break;
4065  }
4066  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4067  }
4068
4069  if (D.getDeclSpec().isThreadSpecified())
4070    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4071
4072  // Do not allow returning a objc interface by-value.
4073  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4074    Diag(D.getIdentifierLoc(),
4075         diag::err_object_cannot_be_passed_returned_by_value) << 0
4076    << R->getAs<FunctionType>()->getResultType();
4077    D.setInvalidType();
4078  }
4079
4080  FunctionDecl *NewFD;
4081  bool isInline = D.getDeclSpec().isInlineSpecified();
4082  bool isFriend = false;
4083  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4084  FunctionDecl::StorageClass SCAsWritten
4085    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4086  FunctionTemplateDecl *FunctionTemplate = 0;
4087  bool isExplicitSpecialization = false;
4088  bool isFunctionTemplateSpecialization = false;
4089
4090  if (!getLangOptions().CPlusPlus) {
4091    // Determine whether the function was written with a
4092    // prototype. This true when:
4093    //   - there is a prototype in the declarator, or
4094    //   - the type R of the function is some kind of typedef or other reference
4095    //     to a type name (which eventually refers to a function type).
4096    bool HasPrototype =
4097    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4098    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4099
4100    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4101                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4102                                 HasPrototype);
4103    if (D.isInvalidType())
4104      NewFD->setInvalidDecl();
4105
4106    // Set the lexical context.
4107    NewFD->setLexicalDeclContext(CurContext);
4108    // Filter out previous declarations that don't match the scope.
4109    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4110                         /*ExplicitInstantiationOrSpecialization=*/false);
4111  } else {
4112    isFriend = D.getDeclSpec().isFriendSpecified();
4113    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4114    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4115    bool isVirtualOkay = false;
4116
4117    // Check that the return type is not an abstract class type.
4118    // For record types, this is done by the AbstractClassUsageDiagnoser once
4119    // the class has been completely parsed.
4120    if (!DC->isRecord() &&
4121      RequireNonAbstractType(D.getIdentifierLoc(),
4122                             R->getAs<FunctionType>()->getResultType(),
4123                             diag::err_abstract_type_in_decl,
4124                             AbstractReturnType))
4125      D.setInvalidType();
4126
4127    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4128      // This is a C++ constructor declaration.
4129      assert(DC->isRecord() &&
4130             "Constructors can only be declared in a member context");
4131
4132      R = CheckConstructorDeclarator(D, R, SC);
4133
4134      // Create the new declaration
4135      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4136                                         Context,
4137                                         cast<CXXRecordDecl>(DC),
4138                                         D.getSourceRange().getBegin(),
4139                                         NameInfo, R, TInfo,
4140                                         isExplicit, isInline,
4141                                         /*isImplicitlyDeclared=*/false);
4142
4143      NewFD = NewCD;
4144    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4145      // This is a C++ destructor declaration.
4146      if (DC->isRecord()) {
4147        R = CheckDestructorDeclarator(D, R, SC);
4148        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4149
4150        CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
4151                                          D.getSourceRange().getBegin(),
4152                                          NameInfo, R, TInfo,
4153                                          isInline,
4154                                          /*isImplicitlyDeclared=*/false);
4155        NewFD = NewDD;
4156        isVirtualOkay = true;
4157
4158        // If the class is complete, then we now create the implicit exception
4159        // specification. If the class is incomplete or dependent, we can't do
4160        // it yet.
4161        if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4162            Record->getDefinition() && !Record->isBeingDefined() &&
4163            R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4164          AdjustDestructorExceptionSpec(Record, NewDD);
4165        }
4166
4167      } else {
4168        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4169
4170        // Create a FunctionDecl to satisfy the function definition parsing
4171        // code path.
4172        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4173                                     D.getIdentifierLoc(), Name, R, TInfo,
4174                                     SC, SCAsWritten, isInline,
4175                                     /*hasPrototype=*/true);
4176        D.setInvalidType();
4177      }
4178    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4179      if (!DC->isRecord()) {
4180        Diag(D.getIdentifierLoc(),
4181             diag::err_conv_function_not_member);
4182        return 0;
4183      }
4184
4185      CheckConversionDeclarator(D, R, SC);
4186      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4187                                        D.getSourceRange().getBegin(),
4188                                        NameInfo, R, TInfo,
4189                                        isInline, isExplicit,
4190                                        SourceLocation());
4191
4192      isVirtualOkay = true;
4193    } else if (DC->isRecord()) {
4194      // If the of the function is the same as the name of the record, then this
4195      // must be an invalid constructor that has a return type.
4196      // (The parser checks for a return type and makes the declarator a
4197      // constructor if it has no return type).
4198      // must have an invalid constructor that has a return type
4199      if (Name.getAsIdentifierInfo() &&
4200          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4201        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4202          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4203          << SourceRange(D.getIdentifierLoc());
4204        return 0;
4205      }
4206
4207      bool isStatic = SC == SC_Static;
4208
4209      // [class.free]p1:
4210      // Any allocation function for a class T is a static member
4211      // (even if not explicitly declared static).
4212      if (Name.getCXXOverloadedOperator() == OO_New ||
4213          Name.getCXXOverloadedOperator() == OO_Array_New)
4214        isStatic = true;
4215
4216      // [class.free]p6 Any deallocation function for a class X is a static member
4217      // (even if not explicitly declared static).
4218      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4219          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4220        isStatic = true;
4221
4222      // This is a C++ method declaration.
4223      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4224                                               Context, cast<CXXRecordDecl>(DC),
4225                                               D.getSourceRange().getBegin(),
4226                                               NameInfo, R, TInfo,
4227                                               isStatic, SCAsWritten, isInline,
4228                                               SourceLocation());
4229      NewFD = NewMD;
4230
4231      isVirtualOkay = !isStatic;
4232    } else {
4233      // Determine whether the function was written with a
4234      // prototype. This true when:
4235      //   - we're in C++ (where every function has a prototype),
4236      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4237                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4238                                   true/*HasPrototype*/);
4239    }
4240
4241    if (isFriend && !isInline && IsFunctionDefinition) {
4242      // C++ [class.friend]p5
4243      //   A function can be defined in a friend declaration of a
4244      //   class . . . . Such a function is implicitly inline.
4245      NewFD->setImplicitlyInline();
4246    }
4247
4248    SetNestedNameSpecifier(NewFD, D);
4249    isExplicitSpecialization = false;
4250    isFunctionTemplateSpecialization = false;
4251    if (D.isInvalidType())
4252      NewFD->setInvalidDecl();
4253
4254    // Set the lexical context. If the declarator has a C++
4255    // scope specifier, or is the object of a friend declaration, the
4256    // lexical context will be different from the semantic context.
4257    NewFD->setLexicalDeclContext(CurContext);
4258
4259    // Match up the template parameter lists with the scope specifier, then
4260    // determine whether we have a template or a template specialization.
4261    bool Invalid = false;
4262    if (TemplateParameterList *TemplateParams
4263          = MatchTemplateParametersToScopeSpecifier(
4264                                  D.getDeclSpec().getSourceRange().getBegin(),
4265                                  D.getIdentifierLoc(),
4266                                  D.getCXXScopeSpec(),
4267                                  TemplateParamLists.get(),
4268                                  TemplateParamLists.size(),
4269                                  isFriend,
4270                                  isExplicitSpecialization,
4271                                  Invalid)) {
4272      if (TemplateParams->size() > 0) {
4273        // This is a function template
4274
4275        // Check that we can declare a template here.
4276        if (CheckTemplateDeclScope(S, TemplateParams))
4277          return 0;
4278
4279        // A destructor cannot be a template.
4280        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4281          Diag(NewFD->getLocation(), diag::err_destructor_template);
4282          return 0;
4283        }
4284
4285        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4286                                                        NewFD->getLocation(),
4287                                                        Name, TemplateParams,
4288                                                        NewFD);
4289        FunctionTemplate->setLexicalDeclContext(CurContext);
4290        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4291
4292        // For source fidelity, store the other template param lists.
4293        if (TemplateParamLists.size() > 1) {
4294          NewFD->setTemplateParameterListsInfo(Context,
4295                                               TemplateParamLists.size() - 1,
4296                                               TemplateParamLists.release());
4297        }
4298      } else {
4299        // This is a function template specialization.
4300        isFunctionTemplateSpecialization = true;
4301        // For source fidelity, store all the template param lists.
4302        NewFD->setTemplateParameterListsInfo(Context,
4303                                             TemplateParamLists.size(),
4304                                             TemplateParamLists.release());
4305
4306        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4307        if (isFriend) {
4308          // We want to remove the "template<>", found here.
4309          SourceRange RemoveRange = TemplateParams->getSourceRange();
4310
4311          // If we remove the template<> and the name is not a
4312          // template-id, we're actually silently creating a problem:
4313          // the friend declaration will refer to an untemplated decl,
4314          // and clearly the user wants a template specialization.  So
4315          // we need to insert '<>' after the name.
4316          SourceLocation InsertLoc;
4317          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4318            InsertLoc = D.getName().getSourceRange().getEnd();
4319            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4320          }
4321
4322          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4323            << Name << RemoveRange
4324            << FixItHint::CreateRemoval(RemoveRange)
4325            << FixItHint::CreateInsertion(InsertLoc, "<>");
4326        }
4327      }
4328    }
4329    else {
4330      // All template param lists were matched against the scope specifier:
4331      // this is NOT (an explicit specialization of) a template.
4332      if (TemplateParamLists.size() > 0)
4333        // For source fidelity, store all the template param lists.
4334        NewFD->setTemplateParameterListsInfo(Context,
4335                                             TemplateParamLists.size(),
4336                                             TemplateParamLists.release());
4337    }
4338
4339    if (Invalid) {
4340      NewFD->setInvalidDecl();
4341      if (FunctionTemplate)
4342        FunctionTemplate->setInvalidDecl();
4343    }
4344
4345    // C++ [dcl.fct.spec]p5:
4346    //   The virtual specifier shall only be used in declarations of
4347    //   nonstatic class member functions that appear within a
4348    //   member-specification of a class declaration; see 10.3.
4349    //
4350    if (isVirtual && !NewFD->isInvalidDecl()) {
4351      if (!isVirtualOkay) {
4352        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4353             diag::err_virtual_non_function);
4354      } else if (!CurContext->isRecord()) {
4355        // 'virtual' was specified outside of the class.
4356        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4357             diag::err_virtual_out_of_class)
4358          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4359      } else if (NewFD->getDescribedFunctionTemplate()) {
4360        // C++ [temp.mem]p3:
4361        //  A member function template shall not be virtual.
4362        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4363             diag::err_virtual_member_function_template)
4364          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4365      } else {
4366        // Okay: Add virtual to the method.
4367        NewFD->setVirtualAsWritten(true);
4368      }
4369    }
4370
4371    // C++ [dcl.fct.spec]p3:
4372    //  The inline specifier shall not appear on a block scope function declaration.
4373    if (isInline && !NewFD->isInvalidDecl()) {
4374      if (CurContext->isFunctionOrMethod()) {
4375        // 'inline' is not allowed on block scope function declaration.
4376        Diag(D.getDeclSpec().getInlineSpecLoc(),
4377             diag::err_inline_declaration_block_scope) << Name
4378          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4379      }
4380    }
4381
4382    // C++ [dcl.fct.spec]p6:
4383    //  The explicit specifier shall be used only in the declaration of a
4384    //  constructor or conversion function within its class definition; see 12.3.1
4385    //  and 12.3.2.
4386    if (isExplicit && !NewFD->isInvalidDecl()) {
4387      if (!CurContext->isRecord()) {
4388        // 'explicit' was specified outside of the class.
4389        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4390             diag::err_explicit_out_of_class)
4391          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4392      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4393                 !isa<CXXConversionDecl>(NewFD)) {
4394        // 'explicit' was specified on a function that wasn't a constructor
4395        // or conversion function.
4396        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4397             diag::err_explicit_non_ctor_or_conv_function)
4398          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4399      }
4400    }
4401
4402    // Filter out previous declarations that don't match the scope.
4403    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4404                         isExplicitSpecialization ||
4405                         isFunctionTemplateSpecialization);
4406
4407    if (isFriend) {
4408      // For now, claim that the objects have no previous declaration.
4409      if (FunctionTemplate) {
4410        FunctionTemplate->setObjectOfFriendDecl(false);
4411        FunctionTemplate->setAccess(AS_public);
4412      }
4413      NewFD->setObjectOfFriendDecl(false);
4414      NewFD->setAccess(AS_public);
4415    }
4416
4417    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4418      // A method is implicitly inline if it's defined in its class
4419      // definition.
4420      NewFD->setImplicitlyInline();
4421    }
4422
4423    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4424        !CurContext->isRecord()) {
4425      // C++ [class.static]p1:
4426      //   A data or function member of a class may be declared static
4427      //   in a class definition, in which case it is a static member of
4428      //   the class.
4429
4430      // Complain about the 'static' specifier if it's on an out-of-line
4431      // member function definition.
4432      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4433           diag::err_static_out_of_line)
4434        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4435    }
4436  }
4437
4438  // Handle GNU asm-label extension (encoded as an attribute).
4439  if (Expr *E = (Expr*) D.getAsmLabel()) {
4440    // The parser guarantees this is a string.
4441    StringLiteral *SE = cast<StringLiteral>(E);
4442    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4443                                                SE->getString()));
4444  }
4445
4446  // Copy the parameter declarations from the declarator D to the function
4447  // declaration NewFD, if they are available.  First scavenge them into Params.
4448  llvm::SmallVector<ParmVarDecl*, 16> Params;
4449  if (D.isFunctionDeclarator()) {
4450    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4451
4452    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4453    // function that takes no arguments, not a function that takes a
4454    // single void argument.
4455    // We let through "const void" here because Sema::GetTypeForDeclarator
4456    // already checks for that case.
4457    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4458        FTI.ArgInfo[0].Param &&
4459        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4460      // Empty arg list, don't push any params.
4461      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4462
4463      // In C++, the empty parameter-type-list must be spelled "void"; a
4464      // typedef of void is not permitted.
4465      if (getLangOptions().CPlusPlus &&
4466          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4467        bool IsTypeAlias = false;
4468        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4469          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4470        else if (const TemplateSpecializationType *TST =
4471                   Param->getType()->getAs<TemplateSpecializationType>())
4472          IsTypeAlias = TST->isTypeAlias();
4473        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4474          << IsTypeAlias;
4475      }
4476    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4477      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4478        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4479        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4480        Param->setDeclContext(NewFD);
4481        Params.push_back(Param);
4482
4483        if (Param->isInvalidDecl())
4484          NewFD->setInvalidDecl();
4485      }
4486    }
4487
4488  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4489    // When we're declaring a function with a typedef, typeof, etc as in the
4490    // following example, we'll need to synthesize (unnamed)
4491    // parameters for use in the declaration.
4492    //
4493    // @code
4494    // typedef void fn(int);
4495    // fn f;
4496    // @endcode
4497
4498    // Synthesize a parameter for each argument type.
4499    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4500         AE = FT->arg_type_end(); AI != AE; ++AI) {
4501      ParmVarDecl *Param =
4502        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4503      Param->setScopeInfo(0, Params.size());
4504      Params.push_back(Param);
4505    }
4506  } else {
4507    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4508           "Should not need args for typedef of non-prototype fn");
4509  }
4510  // Finally, we know we have the right number of parameters, install them.
4511  NewFD->setParams(Params.data(), Params.size());
4512
4513  // Process the non-inheritable attributes on this declaration.
4514  ProcessDeclAttributes(S, NewFD, D,
4515                        /*NonInheritable=*/true, /*Inheritable=*/false);
4516
4517  if (!getLangOptions().CPlusPlus) {
4518    // Perform semantic checking on the function declaration.
4519    bool isExplctSpecialization=false;
4520    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
4521                             Redeclaration);
4522    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4523            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4524           "previous declaration set still overloaded");
4525  } else {
4526    // If the declarator is a template-id, translate the parser's template
4527    // argument list into our AST format.
4528    bool HasExplicitTemplateArgs = false;
4529    TemplateArgumentListInfo TemplateArgs;
4530    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4531      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4532      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4533      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4534      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4535                                         TemplateId->getTemplateArgs(),
4536                                         TemplateId->NumArgs);
4537      translateTemplateArguments(TemplateArgsPtr,
4538                                 TemplateArgs);
4539      TemplateArgsPtr.release();
4540
4541      HasExplicitTemplateArgs = true;
4542
4543      if (FunctionTemplate) {
4544        // Function template with explicit template arguments.
4545        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4546          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4547
4548        HasExplicitTemplateArgs = false;
4549      } else if (!isFunctionTemplateSpecialization &&
4550                 !D.getDeclSpec().isFriendSpecified()) {
4551        // We have encountered something that the user meant to be a
4552        // specialization (because it has explicitly-specified template
4553        // arguments) but that was not introduced with a "template<>" (or had
4554        // too few of them).
4555        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4556          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4557          << FixItHint::CreateInsertion(
4558                                        D.getDeclSpec().getSourceRange().getBegin(),
4559                                                  "template<> ");
4560        isFunctionTemplateSpecialization = true;
4561      } else {
4562        // "friend void foo<>(int);" is an implicit specialization decl.
4563        isFunctionTemplateSpecialization = true;
4564      }
4565    } else if (isFriend && isFunctionTemplateSpecialization) {
4566      // This combination is only possible in a recovery case;  the user
4567      // wrote something like:
4568      //   template <> friend void foo(int);
4569      // which we're recovering from as if the user had written:
4570      //   friend void foo<>(int);
4571      // Go ahead and fake up a template id.
4572      HasExplicitTemplateArgs = true;
4573        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4574      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4575    }
4576
4577    // If it's a friend (and only if it's a friend), it's possible
4578    // that either the specialized function type or the specialized
4579    // template is dependent, and therefore matching will fail.  In
4580    // this case, don't check the specialization yet.
4581    if (isFunctionTemplateSpecialization && isFriend &&
4582        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4583      assert(HasExplicitTemplateArgs &&
4584             "friend function specialization without template args");
4585      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4586                                                       Previous))
4587        NewFD->setInvalidDecl();
4588    } else if (isFunctionTemplateSpecialization) {
4589      if (CurContext->isDependentContext() && CurContext->isRecord()
4590          && !isFriend && !getLangOptions().Microsoft) {
4591        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4592          << NewFD->getDeclName();
4593        NewFD->setInvalidDecl();
4594        return 0;
4595      } else if (CheckFunctionTemplateSpecialization(NewFD,
4596                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4597                                                     Previous))
4598        NewFD->setInvalidDecl();
4599
4600      // C++ [dcl.stc]p1:
4601      //   A storage-class-specifier shall not be specified in an explicit
4602      //   specialization (14.7.3)
4603      if (SC != SC_None) {
4604        Diag(NewFD->getLocation(),
4605             diag::err_explicit_specialization_storage_class)
4606          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4607      }
4608
4609    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4610      if (CheckMemberSpecialization(NewFD, Previous))
4611          NewFD->setInvalidDecl();
4612    }
4613
4614    // Perform semantic checking on the function declaration.
4615    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4616                             Redeclaration);
4617
4618    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4619            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4620           "previous declaration set still overloaded");
4621
4622    NamedDecl *PrincipalDecl = (FunctionTemplate
4623                                ? cast<NamedDecl>(FunctionTemplate)
4624                                : NewFD);
4625
4626    if (isFriend && Redeclaration) {
4627      AccessSpecifier Access = AS_public;
4628      if (!NewFD->isInvalidDecl())
4629        Access = NewFD->getPreviousDeclaration()->getAccess();
4630
4631      NewFD->setAccess(Access);
4632      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4633
4634      PrincipalDecl->setObjectOfFriendDecl(true);
4635    }
4636
4637    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4638        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4639      PrincipalDecl->setNonMemberOperator();
4640
4641    // If we have a function template, check the template parameter
4642    // list. This will check and merge default template arguments.
4643    if (FunctionTemplate) {
4644      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4645      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4646                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4647                            D.getDeclSpec().isFriendSpecified()
4648                              ? (IsFunctionDefinition
4649                                   ? TPC_FriendFunctionTemplateDefinition
4650                                   : TPC_FriendFunctionTemplate)
4651                              : (D.getCXXScopeSpec().isSet() &&
4652                                 DC && DC->isRecord() &&
4653                                 DC->isDependentContext())
4654                                  ? TPC_ClassTemplateMember
4655                                  : TPC_FunctionTemplate);
4656    }
4657
4658    if (NewFD->isInvalidDecl()) {
4659      // Ignore all the rest of this.
4660    } else if (!Redeclaration) {
4661      // Fake up an access specifier if it's supposed to be a class member.
4662      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4663        NewFD->setAccess(AS_public);
4664
4665      // Qualified decls generally require a previous declaration.
4666      if (D.getCXXScopeSpec().isSet()) {
4667        // ...with the major exception of templated-scope or
4668        // dependent-scope friend declarations.
4669
4670        // TODO: we currently also suppress this check in dependent
4671        // contexts because (1) the parameter depth will be off when
4672        // matching friend templates and (2) we might actually be
4673        // selecting a friend based on a dependent factor.  But there
4674        // are situations where these conditions don't apply and we
4675        // can actually do this check immediately.
4676        if (isFriend &&
4677            (TemplateParamLists.size() ||
4678             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4679             CurContext->isDependentContext())) {
4680              // ignore these
4681            } else {
4682              // The user tried to provide an out-of-line definition for a
4683              // function that is a member of a class or namespace, but there
4684              // was no such member function declared (C++ [class.mfct]p2,
4685              // C++ [namespace.memdef]p2). For example:
4686              //
4687              // class X {
4688              //   void f() const;
4689              // };
4690              //
4691              // void X::f() { } // ill-formed
4692              //
4693              // Complain about this problem, and attempt to suggest close
4694              // matches (e.g., those that differ only in cv-qualifiers and
4695              // whether the parameter types are references).
4696              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4697              << Name << DC << D.getCXXScopeSpec().getRange();
4698              NewFD->setInvalidDecl();
4699
4700              DiagnoseInvalidRedeclaration(*this, NewFD);
4701            }
4702
4703        // Unqualified local friend declarations are required to resolve
4704        // to something.
4705        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4706          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4707          NewFD->setInvalidDecl();
4708          DiagnoseInvalidRedeclaration(*this, NewFD);
4709        }
4710
4711    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4712               !isFriend && !isFunctionTemplateSpecialization &&
4713               !isExplicitSpecialization) {
4714      // An out-of-line member function declaration must also be a
4715      // definition (C++ [dcl.meaning]p1).
4716      // Note that this is not the case for explicit specializations of
4717      // function templates or member functions of class templates, per
4718      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4719      // for compatibility with old SWIG code which likes to generate them.
4720      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4721        << D.getCXXScopeSpec().getRange();
4722    }
4723  }
4724
4725
4726  // Handle attributes. We need to have merged decls when handling attributes
4727  // (for example to check for conflicts, etc).
4728  // FIXME: This needs to happen before we merge declarations. Then,
4729  // let attribute merging cope with attribute conflicts.
4730  ProcessDeclAttributes(S, NewFD, D,
4731                        /*NonInheritable=*/false, /*Inheritable=*/true);
4732
4733  // attributes declared post-definition are currently ignored
4734  // FIXME: This should happen during attribute merging
4735  if (Redeclaration && Previous.isSingleResult()) {
4736    const FunctionDecl *Def;
4737    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4738    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
4739      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4740      Diag(Def->getLocation(), diag::note_previous_definition);
4741    }
4742  }
4743
4744  AddKnownFunctionAttributes(NewFD);
4745
4746  if (NewFD->hasAttr<OverloadableAttr>() &&
4747      !NewFD->getType()->getAs<FunctionProtoType>()) {
4748    Diag(NewFD->getLocation(),
4749         diag::err_attribute_overloadable_no_prototype)
4750      << NewFD;
4751
4752    // Turn this into a variadic function with no parameters.
4753    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4754    FunctionProtoType::ExtProtoInfo EPI;
4755    EPI.Variadic = true;
4756    EPI.ExtInfo = FT->getExtInfo();
4757
4758    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4759    NewFD->setType(R);
4760  }
4761
4762  // If there's a #pragma GCC visibility in scope, and this isn't a class
4763  // member, set the visibility of this function.
4764  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4765    AddPushedVisibilityAttribute(NewFD);
4766
4767  // If this is a locally-scoped extern C function, update the
4768  // map of such names.
4769  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4770      && !NewFD->isInvalidDecl())
4771    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4772
4773  // Set this FunctionDecl's range up to the right paren.
4774  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4775
4776  if (getLangOptions().CPlusPlus) {
4777    if (FunctionTemplate) {
4778      if (NewFD->isInvalidDecl())
4779        FunctionTemplate->setInvalidDecl();
4780      return FunctionTemplate;
4781    }
4782  }
4783
4784  MarkUnusedFileScopedDecl(NewFD);
4785
4786  if (getLangOptions().CUDA)
4787    if (IdentifierInfo *II = NewFD->getIdentifier())
4788      if (!NewFD->isInvalidDecl() &&
4789          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4790        if (II->isStr("cudaConfigureCall")) {
4791          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4792            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4793
4794          Context.setcudaConfigureCallDecl(NewFD);
4795        }
4796      }
4797
4798  return NewFD;
4799}
4800
4801/// \brief Perform semantic checking of a new function declaration.
4802///
4803/// Performs semantic analysis of the new function declaration
4804/// NewFD. This routine performs all semantic checking that does not
4805/// require the actual declarator involved in the declaration, and is
4806/// used both for the declaration of functions as they are parsed
4807/// (called via ActOnDeclarator) and for the declaration of functions
4808/// that have been instantiated via C++ template instantiation (called
4809/// via InstantiateDecl).
4810///
4811/// \param IsExplicitSpecialiation whether this new function declaration is
4812/// an explicit specialization of the previous declaration.
4813///
4814/// This sets NewFD->isInvalidDecl() to true if there was an error.
4815void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4816                                    LookupResult &Previous,
4817                                    bool IsExplicitSpecialization,
4818                                    bool &Redeclaration) {
4819  // If NewFD is already known erroneous, don't do any of this checking.
4820  if (NewFD->isInvalidDecl()) {
4821    // If this is a class member, mark the class invalid immediately.
4822    // This avoids some consistency errors later.
4823    if (isa<CXXMethodDecl>(NewFD))
4824      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4825
4826    return;
4827  }
4828
4829  if (NewFD->getResultType()->isVariablyModifiedType()) {
4830    // Functions returning a variably modified type violate C99 6.7.5.2p2
4831    // because all functions have linkage.
4832    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4833    return NewFD->setInvalidDecl();
4834  }
4835
4836  if (NewFD->isMain())
4837    CheckMain(NewFD);
4838
4839  // Check for a previous declaration of this name.
4840  if (Previous.empty() && NewFD->isExternC()) {
4841    // Since we did not find anything by this name and we're declaring
4842    // an extern "C" function, look for a non-visible extern "C"
4843    // declaration with the same name.
4844    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4845      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4846    if (Pos != LocallyScopedExternalDecls.end())
4847      Previous.addDecl(Pos->second);
4848  }
4849
4850  // Merge or overload the declaration with an existing declaration of
4851  // the same name, if appropriate.
4852  if (!Previous.empty()) {
4853    // Determine whether NewFD is an overload of PrevDecl or
4854    // a declaration that requires merging. If it's an overload,
4855    // there's no more work to do here; we'll just add the new
4856    // function to the scope.
4857
4858    NamedDecl *OldDecl = 0;
4859    if (!AllowOverloadingOfFunction(Previous, Context)) {
4860      Redeclaration = true;
4861      OldDecl = Previous.getFoundDecl();
4862    } else {
4863      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4864                            /*NewIsUsingDecl*/ false)) {
4865      case Ovl_Match:
4866        Redeclaration = true;
4867        break;
4868
4869      case Ovl_NonFunction:
4870        Redeclaration = true;
4871        break;
4872
4873      case Ovl_Overload:
4874        Redeclaration = false;
4875        break;
4876      }
4877
4878      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4879        // If a function name is overloadable in C, then every function
4880        // with that name must be marked "overloadable".
4881        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4882          << Redeclaration << NewFD;
4883        NamedDecl *OverloadedDecl = 0;
4884        if (Redeclaration)
4885          OverloadedDecl = OldDecl;
4886        else if (!Previous.empty())
4887          OverloadedDecl = Previous.getRepresentativeDecl();
4888        if (OverloadedDecl)
4889          Diag(OverloadedDecl->getLocation(),
4890               diag::note_attribute_overloadable_prev_overload);
4891        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4892                                                        Context));
4893      }
4894    }
4895
4896    if (Redeclaration) {
4897      // NewFD and OldDecl represent declarations that need to be
4898      // merged.
4899      if (MergeFunctionDecl(NewFD, OldDecl))
4900        return NewFD->setInvalidDecl();
4901
4902      Previous.clear();
4903      Previous.addDecl(OldDecl);
4904
4905      if (FunctionTemplateDecl *OldTemplateDecl
4906                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4907        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4908        FunctionTemplateDecl *NewTemplateDecl
4909          = NewFD->getDescribedFunctionTemplate();
4910        assert(NewTemplateDecl && "Template/non-template mismatch");
4911        if (CXXMethodDecl *Method
4912              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4913          Method->setAccess(OldTemplateDecl->getAccess());
4914          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4915        }
4916
4917        // If this is an explicit specialization of a member that is a function
4918        // template, mark it as a member specialization.
4919        if (IsExplicitSpecialization &&
4920            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4921          NewTemplateDecl->setMemberSpecialization();
4922          assert(OldTemplateDecl->isMemberSpecialization());
4923        }
4924      } else {
4925        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4926          NewFD->setAccess(OldDecl->getAccess());
4927        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4928      }
4929    }
4930  }
4931
4932  // Semantic checking for this function declaration (in isolation).
4933  if (getLangOptions().CPlusPlus) {
4934    // C++-specific checks.
4935    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4936      CheckConstructor(Constructor);
4937    } else if (CXXDestructorDecl *Destructor =
4938                dyn_cast<CXXDestructorDecl>(NewFD)) {
4939      CXXRecordDecl *Record = Destructor->getParent();
4940      QualType ClassType = Context.getTypeDeclType(Record);
4941
4942      // FIXME: Shouldn't we be able to perform this check even when the class
4943      // type is dependent? Both gcc and edg can handle that.
4944      if (!ClassType->isDependentType()) {
4945        DeclarationName Name
4946          = Context.DeclarationNames.getCXXDestructorName(
4947                                        Context.getCanonicalType(ClassType));
4948        if (NewFD->getDeclName() != Name) {
4949          Diag(NewFD->getLocation(), diag::err_destructor_name);
4950          return NewFD->setInvalidDecl();
4951        }
4952      }
4953    } else if (CXXConversionDecl *Conversion
4954               = dyn_cast<CXXConversionDecl>(NewFD)) {
4955      ActOnConversionDeclarator(Conversion);
4956    }
4957
4958    // Find any virtual functions that this function overrides.
4959    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4960      if (!Method->isFunctionTemplateSpecialization() &&
4961          !Method->getDescribedFunctionTemplate()) {
4962        if (AddOverriddenMethods(Method->getParent(), Method)) {
4963          // If the function was marked as "static", we have a problem.
4964          if (NewFD->getStorageClass() == SC_Static) {
4965            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4966              << NewFD->getDeclName();
4967            for (CXXMethodDecl::method_iterator
4968                      Overridden = Method->begin_overridden_methods(),
4969                   OverriddenEnd = Method->end_overridden_methods();
4970                 Overridden != OverriddenEnd;
4971                 ++Overridden) {
4972              Diag((*Overridden)->getLocation(),
4973                   diag::note_overridden_virtual_function);
4974            }
4975          }
4976        }
4977      }
4978    }
4979
4980    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4981    if (NewFD->isOverloadedOperator() &&
4982        CheckOverloadedOperatorDeclaration(NewFD))
4983      return NewFD->setInvalidDecl();
4984
4985    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4986    if (NewFD->getLiteralIdentifier() &&
4987        CheckLiteralOperatorDeclaration(NewFD))
4988      return NewFD->setInvalidDecl();
4989
4990    // In C++, check default arguments now that we have merged decls. Unless
4991    // the lexical context is the class, because in this case this is done
4992    // during delayed parsing anyway.
4993    if (!CurContext->isRecord())
4994      CheckCXXDefaultArguments(NewFD);
4995
4996    // If this function declares a builtin function, check the type of this
4997    // declaration against the expected type for the builtin.
4998    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4999      ASTContext::GetBuiltinTypeError Error;
5000      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5001      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5002        // The type of this function differs from the type of the builtin,
5003        // so forget about the builtin entirely.
5004        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5005      }
5006    }
5007  }
5008}
5009
5010void Sema::CheckMain(FunctionDecl* FD) {
5011  // C++ [basic.start.main]p3:  A program that declares main to be inline
5012  //   or static is ill-formed.
5013  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5014  //   shall not appear in a declaration of main.
5015  // static main is not an error under C99, but we should warn about it.
5016  bool isInline = FD->isInlineSpecified();
5017  bool isStatic = FD->getStorageClass() == SC_Static;
5018  if (isInline || isStatic) {
5019    unsigned diagID = diag::warn_unusual_main_decl;
5020    if (isInline || getLangOptions().CPlusPlus)
5021      diagID = diag::err_unusual_main_decl;
5022
5023    int which = isStatic + (isInline << 1) - 1;
5024    Diag(FD->getLocation(), diagID) << which;
5025  }
5026
5027  QualType T = FD->getType();
5028  assert(T->isFunctionType() && "function decl is not of function type");
5029  const FunctionType* FT = T->getAs<FunctionType>();
5030
5031  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5032    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5033    FD->setInvalidDecl(true);
5034  }
5035
5036  // Treat protoless main() as nullary.
5037  if (isa<FunctionNoProtoType>(FT)) return;
5038
5039  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5040  unsigned nparams = FTP->getNumArgs();
5041  assert(FD->getNumParams() == nparams);
5042
5043  bool HasExtraParameters = (nparams > 3);
5044
5045  // Darwin passes an undocumented fourth argument of type char**.  If
5046  // other platforms start sprouting these, the logic below will start
5047  // getting shifty.
5048  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
5049    HasExtraParameters = false;
5050
5051  if (HasExtraParameters) {
5052    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5053    FD->setInvalidDecl(true);
5054    nparams = 3;
5055  }
5056
5057  // FIXME: a lot of the following diagnostics would be improved
5058  // if we had some location information about types.
5059
5060  QualType CharPP =
5061    Context.getPointerType(Context.getPointerType(Context.CharTy));
5062  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5063
5064  for (unsigned i = 0; i < nparams; ++i) {
5065    QualType AT = FTP->getArgType(i);
5066
5067    bool mismatch = true;
5068
5069    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5070      mismatch = false;
5071    else if (Expected[i] == CharPP) {
5072      // As an extension, the following forms are okay:
5073      //   char const **
5074      //   char const * const *
5075      //   char * const *
5076
5077      QualifierCollector qs;
5078      const PointerType* PT;
5079      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5080          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5081          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5082        qs.removeConst();
5083        mismatch = !qs.empty();
5084      }
5085    }
5086
5087    if (mismatch) {
5088      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5089      // TODO: suggest replacing given type with expected type
5090      FD->setInvalidDecl(true);
5091    }
5092  }
5093
5094  if (nparams == 1 && !FD->isInvalidDecl()) {
5095    Diag(FD->getLocation(), diag::warn_main_one_arg);
5096  }
5097
5098  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5099    Diag(FD->getLocation(), diag::err_main_template_decl);
5100    FD->setInvalidDecl();
5101  }
5102}
5103
5104bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5105  // FIXME: Need strict checking.  In C89, we need to check for
5106  // any assignment, increment, decrement, function-calls, or
5107  // commas outside of a sizeof.  In C99, it's the same list,
5108  // except that the aforementioned are allowed in unevaluated
5109  // expressions.  Everything else falls under the
5110  // "may accept other forms of constant expressions" exception.
5111  // (We never end up here for C++, so the constant expression
5112  // rules there don't matter.)
5113  if (Init->isConstantInitializer(Context, false))
5114    return false;
5115  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5116    << Init->getSourceRange();
5117  return true;
5118}
5119
5120namespace {
5121  // Visits an initialization expression to see if OrigDecl is evaluated in
5122  // its own initialization and throws a warning if it does.
5123  class SelfReferenceChecker
5124      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5125    Sema &S;
5126    Decl *OrigDecl;
5127
5128  public:
5129    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5130
5131    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5132                                                    S(S), OrigDecl(OrigDecl) { }
5133
5134    void VisitExpr(Expr *E) {
5135      if (isa<ObjCMessageExpr>(*E)) return;
5136      Inherited::VisitExpr(E);
5137    }
5138
5139    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5140      CheckForSelfReference(E);
5141      Inherited::VisitImplicitCastExpr(E);
5142    }
5143
5144    void CheckForSelfReference(ImplicitCastExpr *E) {
5145      if (E->getCastKind() != CK_LValueToRValue) return;
5146      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5147      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
5148      if (!DRE) return;
5149      Decl* ReferenceDecl = DRE->getDecl();
5150      if (OrigDecl != ReferenceDecl) return;
5151      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5152                          Sema::NotForRedeclaration);
5153      S.DiagRuntimeBehavior(SubExpr->getLocStart(), SubExpr,
5154                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5155                              << Result.getLookupName()
5156                              << OrigDecl->getLocation()
5157                              << SubExpr->getSourceRange());
5158    }
5159  };
5160}
5161
5162/// AddInitializerToDecl - Adds the initializer Init to the
5163/// declaration dcl. If DirectInit is true, this is C++ direct
5164/// initialization rather than copy initialization.
5165void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5166                                bool DirectInit, bool TypeMayContainAuto) {
5167  // If there is no declaration, there was an error parsing it.  Just ignore
5168  // the initializer.
5169  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5170    return;
5171
5172  // Check for self-references within variable initializers.
5173  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5174    // Variables declared within a function/method body are handled
5175    // by a dataflow analysis.
5176    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5177      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5178  }
5179  else {
5180    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5181  }
5182
5183  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5184    // With declarators parsed the way they are, the parser cannot
5185    // distinguish between a normal initializer and a pure-specifier.
5186    // Thus this grotesque test.
5187    IntegerLiteral *IL;
5188    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5189        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5190      CheckPureMethod(Method, Init->getSourceRange());
5191    else {
5192      Diag(Method->getLocation(), diag::err_member_function_initialization)
5193        << Method->getDeclName() << Init->getSourceRange();
5194      Method->setInvalidDecl();
5195    }
5196    return;
5197  }
5198
5199  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5200  if (!VDecl) {
5201    if (getLangOptions().CPlusPlus &&
5202        RealDecl->getLexicalDeclContext()->isRecord() &&
5203        isa<NamedDecl>(RealDecl))
5204      Diag(RealDecl->getLocation(), diag::err_member_initialization);
5205    else
5206      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5207    RealDecl->setInvalidDecl();
5208    return;
5209  }
5210
5211  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5212  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5213    TypeSourceInfo *DeducedType = 0;
5214    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5215      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5216        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5217        << Init->getSourceRange();
5218    if (!DeducedType) {
5219      RealDecl->setInvalidDecl();
5220      return;
5221    }
5222    VDecl->setTypeSourceInfo(DeducedType);
5223    VDecl->setType(DeducedType->getType());
5224
5225    // If this is a redeclaration, check that the type we just deduced matches
5226    // the previously declared type.
5227    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5228      MergeVarDeclTypes(VDecl, Old);
5229  }
5230
5231
5232  // A definition must end up with a complete type, which means it must be
5233  // complete with the restriction that an array type might be completed by the
5234  // initializer; note that later code assumes this restriction.
5235  QualType BaseDeclType = VDecl->getType();
5236  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5237    BaseDeclType = Array->getElementType();
5238  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5239                          diag::err_typecheck_decl_incomplete_type)) {
5240    RealDecl->setInvalidDecl();
5241    return;
5242  }
5243
5244  // The variable can not have an abstract class type.
5245  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5246                             diag::err_abstract_type_in_decl,
5247                             AbstractVariableType))
5248    VDecl->setInvalidDecl();
5249
5250  const VarDecl *Def;
5251  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5252    Diag(VDecl->getLocation(), diag::err_redefinition)
5253      << VDecl->getDeclName();
5254    Diag(Def->getLocation(), diag::note_previous_definition);
5255    VDecl->setInvalidDecl();
5256    return;
5257  }
5258
5259  const VarDecl* PrevInit = 0;
5260  if (getLangOptions().CPlusPlus) {
5261    // C++ [class.static.data]p4
5262    //   If a static data member is of const integral or const
5263    //   enumeration type, its declaration in the class definition can
5264    //   specify a constant-initializer which shall be an integral
5265    //   constant expression (5.19). In that case, the member can appear
5266    //   in integral constant expressions. The member shall still be
5267    //   defined in a namespace scope if it is used in the program and the
5268    //   namespace scope definition shall not contain an initializer.
5269    //
5270    // We already performed a redefinition check above, but for static
5271    // data members we also need to check whether there was an in-class
5272    // declaration with an initializer.
5273    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5274      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5275      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5276      return;
5277    }
5278
5279    if (VDecl->hasLocalStorage())
5280      getCurFunction()->setHasBranchProtectedScope();
5281
5282    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5283      VDecl->setInvalidDecl();
5284      return;
5285    }
5286  }
5287
5288  // Capture the variable that is being initialized and the style of
5289  // initialization.
5290  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5291
5292  // FIXME: Poor source location information.
5293  InitializationKind Kind
5294    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5295                                                   Init->getLocStart(),
5296                                                   Init->getLocEnd())
5297                : InitializationKind::CreateCopy(VDecl->getLocation(),
5298                                                 Init->getLocStart());
5299
5300  // Get the decls type and save a reference for later, since
5301  // CheckInitializerTypes may change it.
5302  QualType DclT = VDecl->getType(), SavT = DclT;
5303  if (VDecl->isLocalVarDecl()) {
5304    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5305      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5306      VDecl->setInvalidDecl();
5307    } else if (!VDecl->isInvalidDecl()) {
5308      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5309      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5310                                                MultiExprArg(*this, &Init, 1),
5311                                                &DclT);
5312      if (Result.isInvalid()) {
5313        VDecl->setInvalidDecl();
5314        return;
5315      }
5316
5317      Init = Result.takeAs<Expr>();
5318
5319      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5320      // Don't check invalid declarations to avoid emitting useless diagnostics.
5321      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5322        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5323          CheckForConstantInitializer(Init, DclT);
5324      }
5325    }
5326  } else if (VDecl->isStaticDataMember() &&
5327             VDecl->getLexicalDeclContext()->isRecord()) {
5328    // This is an in-class initialization for a static data member, e.g.,
5329    //
5330    // struct S {
5331    //   static const int value = 17;
5332    // };
5333
5334    // Try to perform the initialization regardless.
5335    if (!VDecl->isInvalidDecl()) {
5336      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5337      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5338                                          MultiExprArg(*this, &Init, 1),
5339                                          &DclT);
5340      if (Result.isInvalid()) {
5341        VDecl->setInvalidDecl();
5342        return;
5343      }
5344
5345      Init = Result.takeAs<Expr>();
5346    }
5347
5348    // C++ [class.mem]p4:
5349    //   A member-declarator can contain a constant-initializer only
5350    //   if it declares a static member (9.4) of const integral or
5351    //   const enumeration type, see 9.4.2.
5352    QualType T = VDecl->getType();
5353
5354    // Do nothing on dependent types.
5355    if (T->isDependentType()) {
5356
5357    // Require constness.
5358    } else if (!T.isConstQualified()) {
5359      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5360        << Init->getSourceRange();
5361      VDecl->setInvalidDecl();
5362
5363    // We allow integer constant expressions in all cases.
5364    } else if (T->isIntegralOrEnumerationType()) {
5365      if (!Init->isValueDependent()) {
5366        // Check whether the expression is a constant expression.
5367        llvm::APSInt Value;
5368        SourceLocation Loc;
5369        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
5370          Diag(Loc, diag::err_in_class_initializer_non_constant)
5371            << Init->getSourceRange();
5372          VDecl->setInvalidDecl();
5373        }
5374      }
5375
5376    // We allow floating-point constants as an extension in C++03, and
5377    // C++0x has far more complicated rules that we don't really
5378    // implement fully.
5379    } else {
5380      bool Allowed = false;
5381      if (getLangOptions().CPlusPlus0x) {
5382        Allowed = T->isLiteralType();
5383      } else if (T->isFloatingType()) { // also permits complex, which is ok
5384        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5385          << T << Init->getSourceRange();
5386        Allowed = true;
5387      }
5388
5389      if (!Allowed) {
5390        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5391          << T << Init->getSourceRange();
5392        VDecl->setInvalidDecl();
5393
5394      // TODO: there are probably expressions that pass here that shouldn't.
5395      } else if (!Init->isValueDependent() &&
5396                 !Init->isConstantInitializer(Context, false)) {
5397        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5398          << Init->getSourceRange();
5399        VDecl->setInvalidDecl();
5400      }
5401    }
5402  } else if (VDecl->isFileVarDecl()) {
5403    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5404        (!getLangOptions().CPlusPlus ||
5405         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5406      Diag(VDecl->getLocation(), diag::warn_extern_init);
5407    if (!VDecl->isInvalidDecl()) {
5408      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5409      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5410                                                MultiExprArg(*this, &Init, 1),
5411                                                &DclT);
5412      if (Result.isInvalid()) {
5413        VDecl->setInvalidDecl();
5414        return;
5415      }
5416
5417      Init = Result.takeAs<Expr>();
5418    }
5419
5420    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5421    // Don't check invalid declarations to avoid emitting useless diagnostics.
5422    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5423      // C99 6.7.8p4. All file scoped initializers need to be constant.
5424      CheckForConstantInitializer(Init, DclT);
5425    }
5426  }
5427  // If the type changed, it means we had an incomplete type that was
5428  // completed by the initializer. For example:
5429  //   int ary[] = { 1, 3, 5 };
5430  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5431  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5432    VDecl->setType(DclT);
5433    Init->setType(DclT);
5434  }
5435
5436
5437  // If this variable is a local declaration with record type, make sure it
5438  // doesn't have a flexible member initialization.  We only support this as a
5439  // global/static definition.
5440  if (VDecl->hasLocalStorage())
5441    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5442      if (RT->getDecl()->hasFlexibleArrayMember()) {
5443        // Check whether the initializer tries to initialize the flexible
5444        // array member itself to anything other than an empty initializer list.
5445        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5446          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5447                                         RT->getDecl()->field_end()) - 1;
5448          if (Index < ILE->getNumInits() &&
5449              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5450                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5451            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5452            VDecl->setInvalidDecl();
5453          }
5454        }
5455      }
5456
5457  // Check any implicit conversions within the expression.
5458  CheckImplicitConversions(Init, VDecl->getLocation());
5459
5460  Init = MaybeCreateExprWithCleanups(Init);
5461  // Attach the initializer to the decl.
5462  VDecl->setInit(Init);
5463
5464  CheckCompleteVariableDeclaration(VDecl);
5465}
5466
5467/// ActOnInitializerError - Given that there was an error parsing an
5468/// initializer for the given declaration, try to return to some form
5469/// of sanity.
5470void Sema::ActOnInitializerError(Decl *D) {
5471  // Our main concern here is re-establishing invariants like "a
5472  // variable's type is either dependent or complete".
5473  if (!D || D->isInvalidDecl()) return;
5474
5475  VarDecl *VD = dyn_cast<VarDecl>(D);
5476  if (!VD) return;
5477
5478  // Auto types are meaningless if we can't make sense of the initializer.
5479  if (ParsingInitForAutoVars.count(D)) {
5480    D->setInvalidDecl();
5481    return;
5482  }
5483
5484  QualType Ty = VD->getType();
5485  if (Ty->isDependentType()) return;
5486
5487  // Require a complete type.
5488  if (RequireCompleteType(VD->getLocation(),
5489                          Context.getBaseElementType(Ty),
5490                          diag::err_typecheck_decl_incomplete_type)) {
5491    VD->setInvalidDecl();
5492    return;
5493  }
5494
5495  // Require an abstract type.
5496  if (RequireNonAbstractType(VD->getLocation(), Ty,
5497                             diag::err_abstract_type_in_decl,
5498                             AbstractVariableType)) {
5499    VD->setInvalidDecl();
5500    return;
5501  }
5502
5503  // Don't bother complaining about constructors or destructors,
5504  // though.
5505}
5506
5507void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5508                                  bool TypeMayContainAuto) {
5509  // If there is no declaration, there was an error parsing it. Just ignore it.
5510  if (RealDecl == 0)
5511    return;
5512
5513  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5514    QualType Type = Var->getType();
5515
5516    // C++0x [dcl.spec.auto]p3
5517    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5518      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5519        << Var->getDeclName() << Type;
5520      Var->setInvalidDecl();
5521      return;
5522    }
5523
5524    switch (Var->isThisDeclarationADefinition()) {
5525    case VarDecl::Definition:
5526      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5527        break;
5528
5529      // We have an out-of-line definition of a static data member
5530      // that has an in-class initializer, so we type-check this like
5531      // a declaration.
5532      //
5533      // Fall through
5534
5535    case VarDecl::DeclarationOnly:
5536      // It's only a declaration.
5537
5538      // Block scope. C99 6.7p7: If an identifier for an object is
5539      // declared with no linkage (C99 6.2.2p6), the type for the
5540      // object shall be complete.
5541      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5542          !Var->getLinkage() && !Var->isInvalidDecl() &&
5543          RequireCompleteType(Var->getLocation(), Type,
5544                              diag::err_typecheck_decl_incomplete_type))
5545        Var->setInvalidDecl();
5546
5547      // Make sure that the type is not abstract.
5548      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5549          RequireNonAbstractType(Var->getLocation(), Type,
5550                                 diag::err_abstract_type_in_decl,
5551                                 AbstractVariableType))
5552        Var->setInvalidDecl();
5553      return;
5554
5555    case VarDecl::TentativeDefinition:
5556      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5557      // object that has file scope without an initializer, and without a
5558      // storage-class specifier or with the storage-class specifier "static",
5559      // constitutes a tentative definition. Note: A tentative definition with
5560      // external linkage is valid (C99 6.2.2p5).
5561      if (!Var->isInvalidDecl()) {
5562        if (const IncompleteArrayType *ArrayT
5563                                    = Context.getAsIncompleteArrayType(Type)) {
5564          if (RequireCompleteType(Var->getLocation(),
5565                                  ArrayT->getElementType(),
5566                                  diag::err_illegal_decl_array_incomplete_type))
5567            Var->setInvalidDecl();
5568        } else if (Var->getStorageClass() == SC_Static) {
5569          // C99 6.9.2p3: If the declaration of an identifier for an object is
5570          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5571          // declared type shall not be an incomplete type.
5572          // NOTE: code such as the following
5573          //     static struct s;
5574          //     struct s { int a; };
5575          // is accepted by gcc. Hence here we issue a warning instead of
5576          // an error and we do not invalidate the static declaration.
5577          // NOTE: to avoid multiple warnings, only check the first declaration.
5578          if (Var->getPreviousDeclaration() == 0)
5579            RequireCompleteType(Var->getLocation(), Type,
5580                                diag::ext_typecheck_decl_incomplete_type);
5581        }
5582      }
5583
5584      // Record the tentative definition; we're done.
5585      if (!Var->isInvalidDecl())
5586        TentativeDefinitions.push_back(Var);
5587      return;
5588    }
5589
5590    // Provide a specific diagnostic for uninitialized variable
5591    // definitions with incomplete array type.
5592    if (Type->isIncompleteArrayType()) {
5593      Diag(Var->getLocation(),
5594           diag::err_typecheck_incomplete_array_needs_initializer);
5595      Var->setInvalidDecl();
5596      return;
5597    }
5598
5599    // Provide a specific diagnostic for uninitialized variable
5600    // definitions with reference type.
5601    if (Type->isReferenceType()) {
5602      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5603        << Var->getDeclName()
5604        << SourceRange(Var->getLocation(), Var->getLocation());
5605      Var->setInvalidDecl();
5606      return;
5607    }
5608
5609    // Do not attempt to type-check the default initializer for a
5610    // variable with dependent type.
5611    if (Type->isDependentType())
5612      return;
5613
5614    if (Var->isInvalidDecl())
5615      return;
5616
5617    if (RequireCompleteType(Var->getLocation(),
5618                            Context.getBaseElementType(Type),
5619                            diag::err_typecheck_decl_incomplete_type)) {
5620      Var->setInvalidDecl();
5621      return;
5622    }
5623
5624    // The variable can not have an abstract class type.
5625    if (RequireNonAbstractType(Var->getLocation(), Type,
5626                               diag::err_abstract_type_in_decl,
5627                               AbstractVariableType)) {
5628      Var->setInvalidDecl();
5629      return;
5630    }
5631
5632    // Check for jumps past the implicit initializer.  C++0x
5633    // clarifies that this applies to a "variable with automatic
5634    // storage duration", not a "local variable".
5635    // C++0x [stmt.dcl]p3
5636    //   A program that jumps from a point where a variable with automatic
5637    //   storage duration is not in scope to a point where it is in scope is
5638    //   ill-formed unless the variable has scalar type, class type with a
5639    //   trivial default constructor and a trivial destructor, a cv-qualified
5640    //   version of one of these types, or an array of one of the preceding
5641    //   types and is declared without an initializer.
5642    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
5643      if (const RecordType *Record
5644            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
5645        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
5646        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
5647            (getLangOptions().CPlusPlus0x &&
5648             (!CXXRecord->hasTrivialDefaultConstructor() ||
5649              !CXXRecord->hasTrivialDestructor())))
5650          getCurFunction()->setHasBranchProtectedScope();
5651      }
5652    }
5653
5654    // C++03 [dcl.init]p9:
5655    //   If no initializer is specified for an object, and the
5656    //   object is of (possibly cv-qualified) non-POD class type (or
5657    //   array thereof), the object shall be default-initialized; if
5658    //   the object is of const-qualified type, the underlying class
5659    //   type shall have a user-declared default
5660    //   constructor. Otherwise, if no initializer is specified for
5661    //   a non- static object, the object and its subobjects, if
5662    //   any, have an indeterminate initial value); if the object
5663    //   or any of its subobjects are of const-qualified type, the
5664    //   program is ill-formed.
5665    // C++0x [dcl.init]p11:
5666    //   If no initializer is specified for an object, the object is
5667    //   default-initialized; [...].
5668    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5669    InitializationKind Kind
5670      = InitializationKind::CreateDefault(Var->getLocation());
5671
5672    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5673    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5674                                      MultiExprArg(*this, 0, 0));
5675    if (Init.isInvalid())
5676      Var->setInvalidDecl();
5677    else if (Init.get())
5678      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5679
5680    CheckCompleteVariableDeclaration(Var);
5681  }
5682}
5683
5684void Sema::ActOnCXXForRangeDecl(Decl *D) {
5685  VarDecl *VD = dyn_cast<VarDecl>(D);
5686  if (!VD) {
5687    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5688    D->setInvalidDecl();
5689    return;
5690  }
5691
5692  VD->setCXXForRangeDecl(true);
5693
5694  // for-range-declaration cannot be given a storage class specifier.
5695  int Error = -1;
5696  switch (VD->getStorageClassAsWritten()) {
5697  case SC_None:
5698    break;
5699  case SC_Extern:
5700    Error = 0;
5701    break;
5702  case SC_Static:
5703    Error = 1;
5704    break;
5705  case SC_PrivateExtern:
5706    Error = 2;
5707    break;
5708  case SC_Auto:
5709    Error = 3;
5710    break;
5711  case SC_Register:
5712    Error = 4;
5713    break;
5714  }
5715  // FIXME: constexpr isn't allowed here.
5716  //if (DS.isConstexprSpecified())
5717  //  Error = 5;
5718  if (Error != -1) {
5719    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5720      << VD->getDeclName() << Error;
5721    D->setInvalidDecl();
5722  }
5723}
5724
5725void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5726  if (var->isInvalidDecl()) return;
5727
5728  // All the following checks are C++ only.
5729  if (!getLangOptions().CPlusPlus) return;
5730
5731  QualType baseType = Context.getBaseElementType(var->getType());
5732  if (baseType->isDependentType()) return;
5733
5734  // __block variables might require us to capture a copy-initializer.
5735  if (var->hasAttr<BlocksAttr>()) {
5736    // It's currently invalid to ever have a __block variable with an
5737    // array type; should we diagnose that here?
5738
5739    // Regardless, we don't want to ignore array nesting when
5740    // constructing this copy.
5741    QualType type = var->getType();
5742
5743    if (type->isStructureOrClassType()) {
5744      SourceLocation poi = var->getLocation();
5745      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5746      ExprResult result =
5747        PerformCopyInitialization(
5748                        InitializedEntity::InitializeBlock(poi, type, false),
5749                                  poi, Owned(varRef));
5750      if (!result.isInvalid()) {
5751        result = MaybeCreateExprWithCleanups(result);
5752        Expr *init = result.takeAs<Expr>();
5753        Context.setBlockVarCopyInits(var, init);
5754      }
5755    }
5756  }
5757
5758  // Check for global constructors.
5759  if (!var->getDeclContext()->isDependentContext() &&
5760      var->hasGlobalStorage() &&
5761      !var->isStaticLocal() &&
5762      var->getInit() &&
5763      !var->getInit()->isConstantInitializer(Context,
5764                                             baseType->isReferenceType()))
5765    Diag(var->getLocation(), diag::warn_global_constructor)
5766      << var->getInit()->getSourceRange();
5767
5768  // Require the destructor.
5769  if (const RecordType *recordType = baseType->getAs<RecordType>())
5770    FinalizeVarWithDestructor(var, recordType);
5771}
5772
5773/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5774/// any semantic actions necessary after any initializer has been attached.
5775void
5776Sema::FinalizeDeclaration(Decl *ThisDecl) {
5777  // Note that we are no longer parsing the initializer for this declaration.
5778  ParsingInitForAutoVars.erase(ThisDecl);
5779}
5780
5781Sema::DeclGroupPtrTy
5782Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5783                              Decl **Group, unsigned NumDecls) {
5784  llvm::SmallVector<Decl*, 8> Decls;
5785
5786  if (DS.isTypeSpecOwned())
5787    Decls.push_back(DS.getRepAsDecl());
5788
5789  for (unsigned i = 0; i != NumDecls; ++i)
5790    if (Decl *D = Group[i])
5791      Decls.push_back(D);
5792
5793  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5794                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5795}
5796
5797/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5798/// group, performing any necessary semantic checking.
5799Sema::DeclGroupPtrTy
5800Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5801                           bool TypeMayContainAuto) {
5802  // C++0x [dcl.spec.auto]p7:
5803  //   If the type deduced for the template parameter U is not the same in each
5804  //   deduction, the program is ill-formed.
5805  // FIXME: When initializer-list support is added, a distinction is needed
5806  // between the deduced type U and the deduced type which 'auto' stands for.
5807  //   auto a = 0, b = { 1, 2, 3 };
5808  // is legal because the deduced type U is 'int' in both cases.
5809  if (TypeMayContainAuto && NumDecls > 1) {
5810    QualType Deduced;
5811    CanQualType DeducedCanon;
5812    VarDecl *DeducedDecl = 0;
5813    for (unsigned i = 0; i != NumDecls; ++i) {
5814      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5815        AutoType *AT = D->getType()->getContainedAutoType();
5816        // Don't reissue diagnostics when instantiating a template.
5817        if (AT && D->isInvalidDecl())
5818          break;
5819        if (AT && AT->isDeduced()) {
5820          QualType U = AT->getDeducedType();
5821          CanQualType UCanon = Context.getCanonicalType(U);
5822          if (Deduced.isNull()) {
5823            Deduced = U;
5824            DeducedCanon = UCanon;
5825            DeducedDecl = D;
5826          } else if (DeducedCanon != UCanon) {
5827            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5828                 diag::err_auto_different_deductions)
5829              << Deduced << DeducedDecl->getDeclName()
5830              << U << D->getDeclName()
5831              << DeducedDecl->getInit()->getSourceRange()
5832              << D->getInit()->getSourceRange();
5833            D->setInvalidDecl();
5834            break;
5835          }
5836        }
5837      }
5838    }
5839  }
5840
5841  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5842}
5843
5844
5845/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5846/// to introduce parameters into function prototype scope.
5847Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5848  const DeclSpec &DS = D.getDeclSpec();
5849
5850  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5851  VarDecl::StorageClass StorageClass = SC_None;
5852  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5853  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5854    StorageClass = SC_Register;
5855    StorageClassAsWritten = SC_Register;
5856  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5857    Diag(DS.getStorageClassSpecLoc(),
5858         diag::err_invalid_storage_class_in_func_decl);
5859    D.getMutableDeclSpec().ClearStorageClassSpecs();
5860  }
5861
5862  if (D.getDeclSpec().isThreadSpecified())
5863    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5864
5865  DiagnoseFunctionSpecifiers(D);
5866
5867  TagDecl *OwnedDecl = 0;
5868  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5869  QualType parmDeclType = TInfo->getType();
5870
5871  if (getLangOptions().CPlusPlus) {
5872    // Check that there are no default arguments inside the type of this
5873    // parameter.
5874    CheckExtraCXXDefaultArguments(D);
5875
5876    if (OwnedDecl && OwnedDecl->isDefinition()) {
5877      // C++ [dcl.fct]p6:
5878      //   Types shall not be defined in return or parameter types.
5879      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5880        << Context.getTypeDeclType(OwnedDecl);
5881    }
5882
5883    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5884    if (D.getCXXScopeSpec().isSet()) {
5885      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5886        << D.getCXXScopeSpec().getRange();
5887      D.getCXXScopeSpec().clear();
5888    }
5889  }
5890
5891  // Ensure we have a valid name
5892  IdentifierInfo *II = 0;
5893  if (D.hasName()) {
5894    II = D.getIdentifier();
5895    if (!II) {
5896      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5897        << GetNameForDeclarator(D).getName().getAsString();
5898      D.setInvalidType(true);
5899    }
5900  }
5901
5902  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5903  if (II) {
5904    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5905                   ForRedeclaration);
5906    LookupName(R, S);
5907    if (R.isSingleResult()) {
5908      NamedDecl *PrevDecl = R.getFoundDecl();
5909      if (PrevDecl->isTemplateParameter()) {
5910        // Maybe we will complain about the shadowed template parameter.
5911        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5912        // Just pretend that we didn't see the previous declaration.
5913        PrevDecl = 0;
5914      } else if (S->isDeclScope(PrevDecl)) {
5915        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5916        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5917
5918        // Recover by removing the name
5919        II = 0;
5920        D.SetIdentifier(0, D.getIdentifierLoc());
5921        D.setInvalidType(true);
5922      }
5923    }
5924  }
5925
5926  // Temporarily put parameter variables in the translation unit, not
5927  // the enclosing context.  This prevents them from accidentally
5928  // looking like class members in C++.
5929  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5930                                    D.getSourceRange().getBegin(),
5931                                    D.getIdentifierLoc(), II,
5932                                    parmDeclType, TInfo,
5933                                    StorageClass, StorageClassAsWritten);
5934
5935  if (D.isInvalidType())
5936    New->setInvalidDecl();
5937
5938  assert(S->isFunctionPrototypeScope());
5939  assert(S->getFunctionPrototypeDepth() >= 1);
5940  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
5941                    S->getNextFunctionPrototypeIndex());
5942
5943  // Add the parameter declaration into this scope.
5944  S->AddDecl(New);
5945  if (II)
5946    IdResolver.AddDecl(New);
5947
5948  ProcessDeclAttributes(S, New, D);
5949
5950  if (New->hasAttr<BlocksAttr>()) {
5951    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5952  }
5953  return New;
5954}
5955
5956/// \brief Synthesizes a variable for a parameter arising from a
5957/// typedef.
5958ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5959                                              SourceLocation Loc,
5960                                              QualType T) {
5961  /* FIXME: setting StartLoc == Loc.
5962     Would it be worth to modify callers so as to provide proper source
5963     location for the unnamed parameters, embedding the parameter's type? */
5964  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5965                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5966                                           SC_None, SC_None, 0);
5967  Param->setImplicit();
5968  return Param;
5969}
5970
5971void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5972                                    ParmVarDecl * const *ParamEnd) {
5973  // Don't diagnose unused-parameter errors in template instantiations; we
5974  // will already have done so in the template itself.
5975  if (!ActiveTemplateInstantiations.empty())
5976    return;
5977
5978  for (; Param != ParamEnd; ++Param) {
5979    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5980        !(*Param)->hasAttr<UnusedAttr>()) {
5981      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5982        << (*Param)->getDeclName();
5983    }
5984  }
5985}
5986
5987void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5988                                                  ParmVarDecl * const *ParamEnd,
5989                                                  QualType ReturnTy,
5990                                                  NamedDecl *D) {
5991  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5992    return;
5993
5994  // Warn if the return value is pass-by-value and larger than the specified
5995  // threshold.
5996  if (ReturnTy->isPODType()) {
5997    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5998    if (Size > LangOpts.NumLargeByValueCopy)
5999      Diag(D->getLocation(), diag::warn_return_value_size)
6000          << D->getDeclName() << Size;
6001  }
6002
6003  // Warn if any parameter is pass-by-value and larger than the specified
6004  // threshold.
6005  for (; Param != ParamEnd; ++Param) {
6006    QualType T = (*Param)->getType();
6007    if (!T->isPODType())
6008      continue;
6009    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6010    if (Size > LangOpts.NumLargeByValueCopy)
6011      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6012          << (*Param)->getDeclName() << Size;
6013  }
6014}
6015
6016ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6017                                  SourceLocation NameLoc, IdentifierInfo *Name,
6018                                  QualType T, TypeSourceInfo *TSInfo,
6019                                  VarDecl::StorageClass StorageClass,
6020                                  VarDecl::StorageClass StorageClassAsWritten) {
6021  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6022                                         adjustParameterType(T), TSInfo,
6023                                         StorageClass, StorageClassAsWritten,
6024                                         0);
6025
6026  // Parameters can not be abstract class types.
6027  // For record types, this is done by the AbstractClassUsageDiagnoser once
6028  // the class has been completely parsed.
6029  if (!CurContext->isRecord() &&
6030      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6031                             AbstractParamType))
6032    New->setInvalidDecl();
6033
6034  // Parameter declarators cannot be interface types. All ObjC objects are
6035  // passed by reference.
6036  if (T->isObjCObjectType()) {
6037    Diag(NameLoc,
6038         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
6039    New->setInvalidDecl();
6040  }
6041
6042  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6043  // duration shall not be qualified by an address-space qualifier."
6044  // Since all parameters have automatic store duration, they can not have
6045  // an address space.
6046  if (T.getAddressSpace() != 0) {
6047    Diag(NameLoc, diag::err_arg_with_address_space);
6048    New->setInvalidDecl();
6049  }
6050
6051  return New;
6052}
6053
6054void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6055                                           SourceLocation LocAfterDecls) {
6056  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6057
6058  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6059  // for a K&R function.
6060  if (!FTI.hasPrototype) {
6061    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6062      --i;
6063      if (FTI.ArgInfo[i].Param == 0) {
6064        llvm::SmallString<256> Code;
6065        llvm::raw_svector_ostream(Code) << "  int "
6066                                        << FTI.ArgInfo[i].Ident->getName()
6067                                        << ";\n";
6068        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6069          << FTI.ArgInfo[i].Ident
6070          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6071
6072        // Implicitly declare the argument as type 'int' for lack of a better
6073        // type.
6074        AttributeFactory attrs;
6075        DeclSpec DS(attrs);
6076        const char* PrevSpec; // unused
6077        unsigned DiagID; // unused
6078        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6079                           PrevSpec, DiagID);
6080        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6081        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6082        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6083      }
6084    }
6085  }
6086}
6087
6088Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6089                                         Declarator &D) {
6090  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6091  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6092  Scope *ParentScope = FnBodyScope->getParent();
6093
6094  Decl *DP = HandleDeclarator(ParentScope, D,
6095                              MultiTemplateParamsArg(*this),
6096                              /*IsFunctionDefinition=*/true);
6097  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6098}
6099
6100static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6101  // Don't warn about invalid declarations.
6102  if (FD->isInvalidDecl())
6103    return false;
6104
6105  // Or declarations that aren't global.
6106  if (!FD->isGlobal())
6107    return false;
6108
6109  // Don't warn about C++ member functions.
6110  if (isa<CXXMethodDecl>(FD))
6111    return false;
6112
6113  // Don't warn about 'main'.
6114  if (FD->isMain())
6115    return false;
6116
6117  // Don't warn about inline functions.
6118  if (FD->isInlined())
6119    return false;
6120
6121  // Don't warn about function templates.
6122  if (FD->getDescribedFunctionTemplate())
6123    return false;
6124
6125  // Don't warn about function template specializations.
6126  if (FD->isFunctionTemplateSpecialization())
6127    return false;
6128
6129  bool MissingPrototype = true;
6130  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6131       Prev; Prev = Prev->getPreviousDeclaration()) {
6132    // Ignore any declarations that occur in function or method
6133    // scope, because they aren't visible from the header.
6134    if (Prev->getDeclContext()->isFunctionOrMethod())
6135      continue;
6136
6137    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6138    break;
6139  }
6140
6141  return MissingPrototype;
6142}
6143
6144void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6145  // Don't complain if we're in GNU89 mode and the previous definition
6146  // was an extern inline function.
6147  const FunctionDecl *Definition;
6148  if (FD->isDefined(Definition) &&
6149      !canRedefineFunction(Definition, getLangOptions())) {
6150    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6151        Definition->getStorageClass() == SC_Extern)
6152      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6153        << FD->getDeclName() << getLangOptions().CPlusPlus;
6154    else
6155      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6156    Diag(Definition->getLocation(), diag::note_previous_definition);
6157  }
6158}
6159
6160Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6161  // Clear the last template instantiation error context.
6162  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6163
6164  if (!D)
6165    return D;
6166  FunctionDecl *FD = 0;
6167
6168  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6169    FD = FunTmpl->getTemplatedDecl();
6170  else
6171    FD = cast<FunctionDecl>(D);
6172
6173  // Enter a new function scope
6174  PushFunctionScope();
6175
6176  // See if this is a redefinition.
6177  if (!FD->isLateTemplateParsed())
6178    CheckForFunctionRedefinition(FD);
6179
6180  // Builtin functions cannot be defined.
6181  if (unsigned BuiltinID = FD->getBuiltinID()) {
6182    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6183      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6184      FD->setInvalidDecl();
6185    }
6186  }
6187
6188  // The return type of a function definition must be complete
6189  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6190  QualType ResultType = FD->getResultType();
6191  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6192      !FD->isInvalidDecl() &&
6193      RequireCompleteType(FD->getLocation(), ResultType,
6194                          diag::err_func_def_incomplete_result))
6195    FD->setInvalidDecl();
6196
6197  // GNU warning -Wmissing-prototypes:
6198  //   Warn if a global function is defined without a previous
6199  //   prototype declaration. This warning is issued even if the
6200  //   definition itself provides a prototype. The aim is to detect
6201  //   global functions that fail to be declared in header files.
6202  if (ShouldWarnAboutMissingPrototype(FD))
6203    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6204
6205  if (FnBodyScope)
6206    PushDeclContext(FnBodyScope, FD);
6207
6208  // Check the validity of our function parameters
6209  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6210                           /*CheckParameterNames=*/true);
6211
6212  // Introduce our parameters into the function scope
6213  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6214    ParmVarDecl *Param = FD->getParamDecl(p);
6215    Param->setOwningFunction(FD);
6216
6217    // If this has an identifier, add it to the scope stack.
6218    if (Param->getIdentifier() && FnBodyScope) {
6219      CheckShadow(FnBodyScope, Param);
6220
6221      PushOnScopeChains(Param, FnBodyScope);
6222    }
6223  }
6224
6225  // Checking attributes of current function definition
6226  // dllimport attribute.
6227  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6228  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6229    // dllimport attribute cannot be directly applied to definition.
6230    // Microsoft accepts dllimport for functions defined within class scope.
6231    if (!DA->isInherited() &&
6232        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6233      Diag(FD->getLocation(),
6234           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6235        << "dllimport";
6236      FD->setInvalidDecl();
6237      return FD;
6238    }
6239
6240    // Visual C++ appears to not think this is an issue, so only issue
6241    // a warning when Microsoft extensions are disabled.
6242    if (!LangOpts.Microsoft) {
6243      // If a symbol previously declared dllimport is later defined, the
6244      // attribute is ignored in subsequent references, and a warning is
6245      // emitted.
6246      Diag(FD->getLocation(),
6247           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6248        << FD->getName() << "dllimport";
6249    }
6250  }
6251  return FD;
6252}
6253
6254/// \brief Given the set of return statements within a function body,
6255/// compute the variables that are subject to the named return value
6256/// optimization.
6257///
6258/// Each of the variables that is subject to the named return value
6259/// optimization will be marked as NRVO variables in the AST, and any
6260/// return statement that has a marked NRVO variable as its NRVO candidate can
6261/// use the named return value optimization.
6262///
6263/// This function applies a very simplistic algorithm for NRVO: if every return
6264/// statement in the function has the same NRVO candidate, that candidate is
6265/// the NRVO variable.
6266///
6267/// FIXME: Employ a smarter algorithm that accounts for multiple return
6268/// statements and the lifetimes of the NRVO candidates. We should be able to
6269/// find a maximal set of NRVO variables.
6270static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6271  ReturnStmt **Returns = Scope->Returns.data();
6272
6273  const VarDecl *NRVOCandidate = 0;
6274  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6275    if (!Returns[I]->getNRVOCandidate())
6276      return;
6277
6278    if (!NRVOCandidate)
6279      NRVOCandidate = Returns[I]->getNRVOCandidate();
6280    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6281      return;
6282  }
6283
6284  if (NRVOCandidate)
6285    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6286}
6287
6288Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6289  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6290}
6291
6292Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6293                                    bool IsInstantiation) {
6294  FunctionDecl *FD = 0;
6295  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6296  if (FunTmpl)
6297    FD = FunTmpl->getTemplatedDecl();
6298  else
6299    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6300
6301  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6302  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6303
6304  if (FD) {
6305    FD->setBody(Body);
6306    if (FD->isMain()) {
6307      // C and C++ allow for main to automagically return 0.
6308      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6309      FD->setHasImplicitReturnZero(true);
6310      WP.disableCheckFallThrough();
6311    }
6312
6313    // MSVC permits the use of pure specifier (=0) on function definition,
6314    // defined at class scope, warn about this non standard construct.
6315    if (getLangOptions().Microsoft && FD->isPure())
6316      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6317
6318    if (!FD->isInvalidDecl()) {
6319      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6320      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6321                                             FD->getResultType(), FD);
6322
6323      // If this is a constructor, we need a vtable.
6324      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6325        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6326
6327      ComputeNRVO(Body, getCurFunction());
6328    }
6329
6330    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6331  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6332    assert(MD == getCurMethodDecl() && "Method parsing confused");
6333    MD->setBody(Body);
6334    if (Body)
6335      MD->setEndLoc(Body->getLocEnd());
6336    if (!MD->isInvalidDecl()) {
6337      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6338      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6339                                             MD->getResultType(), MD);
6340    }
6341  } else {
6342    return 0;
6343  }
6344
6345  // Verify and clean out per-function state.
6346  if (Body) {
6347    // C++ constructors that have function-try-blocks can't have return
6348    // statements in the handlers of that block. (C++ [except.handle]p14)
6349    // Verify this.
6350    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6351      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6352
6353    // Verify that that gotos and switch cases don't jump into scopes illegally.
6354    // Verify that that gotos and switch cases don't jump into scopes illegally.
6355    if (getCurFunction()->NeedsScopeChecking() &&
6356        !dcl->isInvalidDecl() &&
6357        !hasAnyErrorsInThisFunction())
6358      DiagnoseInvalidJumps(Body);
6359
6360    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6361      if (!Destructor->getParent()->isDependentType())
6362        CheckDestructor(Destructor);
6363
6364      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6365                                             Destructor->getParent());
6366    }
6367
6368    // If any errors have occurred, clear out any temporaries that may have
6369    // been leftover. This ensures that these temporaries won't be picked up for
6370    // deletion in some later function.
6371    if (PP.getDiagnostics().hasErrorOccurred() ||
6372        PP.getDiagnostics().getSuppressAllDiagnostics())
6373      ExprTemporaries.clear();
6374    else if (!isa<FunctionTemplateDecl>(dcl)) {
6375      // Since the body is valid, issue any analysis-based warnings that are
6376      // enabled.
6377      ActivePolicy = &WP;
6378    }
6379
6380    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6381  }
6382
6383  if (!IsInstantiation)
6384    PopDeclContext();
6385
6386  PopFunctionOrBlockScope(ActivePolicy, dcl);
6387
6388  // If any errors have occurred, clear out any temporaries that may have
6389  // been leftover. This ensures that these temporaries won't be picked up for
6390  // deletion in some later function.
6391  if (getDiagnostics().hasErrorOccurred())
6392    ExprTemporaries.clear();
6393
6394  return dcl;
6395}
6396
6397/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6398/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6399NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6400                                          IdentifierInfo &II, Scope *S) {
6401  // Before we produce a declaration for an implicitly defined
6402  // function, see whether there was a locally-scoped declaration of
6403  // this name as a function or variable. If so, use that
6404  // (non-visible) declaration, and complain about it.
6405  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6406    = LocallyScopedExternalDecls.find(&II);
6407  if (Pos != LocallyScopedExternalDecls.end()) {
6408    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6409    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6410    return Pos->second;
6411  }
6412
6413  // Extension in C99.  Legal in C90, but warn about it.
6414  if (II.getName().startswith("__builtin_"))
6415    Diag(Loc, diag::warn_builtin_unknown) << &II;
6416  else if (getLangOptions().C99)
6417    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6418  else
6419    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6420
6421  // Set a Declarator for the implicit definition: int foo();
6422  const char *Dummy;
6423  AttributeFactory attrFactory;
6424  DeclSpec DS(attrFactory);
6425  unsigned DiagID;
6426  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6427  (void)Error; // Silence warning.
6428  assert(!Error && "Error setting up implicit decl!");
6429  Declarator D(DS, Declarator::BlockContext);
6430  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6431                                             0, 0, true, SourceLocation(),
6432                                             EST_None, SourceLocation(),
6433                                             0, 0, 0, 0, Loc, Loc, D),
6434                DS.getAttributes(),
6435                SourceLocation());
6436  D.SetIdentifier(&II, Loc);
6437
6438  // Insert this function into translation-unit scope.
6439
6440  DeclContext *PrevDC = CurContext;
6441  CurContext = Context.getTranslationUnitDecl();
6442
6443  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6444  FD->setImplicit();
6445
6446  CurContext = PrevDC;
6447
6448  AddKnownFunctionAttributes(FD);
6449
6450  return FD;
6451}
6452
6453/// \brief Adds any function attributes that we know a priori based on
6454/// the declaration of this function.
6455///
6456/// These attributes can apply both to implicitly-declared builtins
6457/// (like __builtin___printf_chk) or to library-declared functions
6458/// like NSLog or printf.
6459void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6460  if (FD->isInvalidDecl())
6461    return;
6462
6463  // If this is a built-in function, map its builtin attributes to
6464  // actual attributes.
6465  if (unsigned BuiltinID = FD->getBuiltinID()) {
6466    // Handle printf-formatting attributes.
6467    unsigned FormatIdx;
6468    bool HasVAListArg;
6469    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6470      if (!FD->getAttr<FormatAttr>())
6471        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6472                                                "printf", FormatIdx+1,
6473                                               HasVAListArg ? 0 : FormatIdx+2));
6474    }
6475    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6476                                             HasVAListArg)) {
6477     if (!FD->getAttr<FormatAttr>())
6478       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6479                                              "scanf", FormatIdx+1,
6480                                              HasVAListArg ? 0 : FormatIdx+2));
6481    }
6482
6483    // Mark const if we don't care about errno and that is the only
6484    // thing preventing the function from being const. This allows
6485    // IRgen to use LLVM intrinsics for such functions.
6486    if (!getLangOptions().MathErrno &&
6487        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6488      if (!FD->getAttr<ConstAttr>())
6489        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6490    }
6491
6492    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
6493      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6494    if (Context.BuiltinInfo.isConst(BuiltinID))
6495      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6496  }
6497
6498  IdentifierInfo *Name = FD->getIdentifier();
6499  if (!Name)
6500    return;
6501  if ((!getLangOptions().CPlusPlus &&
6502       FD->getDeclContext()->isTranslationUnit()) ||
6503      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6504       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6505       LinkageSpecDecl::lang_c)) {
6506    // Okay: this could be a libc/libm/Objective-C function we know
6507    // about.
6508  } else
6509    return;
6510
6511  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6512    // FIXME: NSLog and NSLogv should be target specific
6513    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6514      // FIXME: We known better than our headers.
6515      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6516    } else
6517      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6518                                             "printf", 1,
6519                                             Name->isStr("NSLogv") ? 0 : 2));
6520  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6521    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6522    // target-specific builtins, perhaps?
6523    if (!FD->getAttr<FormatAttr>())
6524      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6525                                             "printf", 2,
6526                                             Name->isStr("vasprintf") ? 0 : 3));
6527  }
6528}
6529
6530TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6531                                    TypeSourceInfo *TInfo) {
6532  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6533  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6534
6535  if (!TInfo) {
6536    assert(D.isInvalidType() && "no declarator info for valid type");
6537    TInfo = Context.getTrivialTypeSourceInfo(T);
6538  }
6539
6540  // Scope manipulation handled by caller.
6541  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6542                                           D.getSourceRange().getBegin(),
6543                                           D.getIdentifierLoc(),
6544                                           D.getIdentifier(),
6545                                           TInfo);
6546
6547  // Bail out immediately if we have an invalid declaration.
6548  if (D.isInvalidType()) {
6549    NewTD->setInvalidDecl();
6550    return NewTD;
6551  }
6552
6553  // C++ [dcl.typedef]p8:
6554  //   If the typedef declaration defines an unnamed class (or
6555  //   enum), the first typedef-name declared by the declaration
6556  //   to be that class type (or enum type) is used to denote the
6557  //   class type (or enum type) for linkage purposes only.
6558  // We need to check whether the type was declared in the declaration.
6559  switch (D.getDeclSpec().getTypeSpecType()) {
6560  case TST_enum:
6561  case TST_struct:
6562  case TST_union:
6563  case TST_class: {
6564    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6565
6566    // Do nothing if the tag is not anonymous or already has an
6567    // associated typedef (from an earlier typedef in this decl group).
6568    if (tagFromDeclSpec->getIdentifier()) break;
6569    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6570
6571    // A well-formed anonymous tag must always be a TUK_Definition.
6572    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6573
6574    // The type must match the tag exactly;  no qualifiers allowed.
6575    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6576      break;
6577
6578    // Otherwise, set this is the anon-decl typedef for the tag.
6579    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6580    break;
6581  }
6582
6583  default:
6584    break;
6585  }
6586
6587  return NewTD;
6588}
6589
6590
6591/// \brief Determine whether a tag with a given kind is acceptable
6592/// as a redeclaration of the given tag declaration.
6593///
6594/// \returns true if the new tag kind is acceptable, false otherwise.
6595bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6596                                        TagTypeKind NewTag,
6597                                        SourceLocation NewTagLoc,
6598                                        const IdentifierInfo &Name) {
6599  // C++ [dcl.type.elab]p3:
6600  //   The class-key or enum keyword present in the
6601  //   elaborated-type-specifier shall agree in kind with the
6602  //   declaration to which the name in the elaborated-type-specifier
6603  //   refers. This rule also applies to the form of
6604  //   elaborated-type-specifier that declares a class-name or
6605  //   friend class since it can be construed as referring to the
6606  //   definition of the class. Thus, in any
6607  //   elaborated-type-specifier, the enum keyword shall be used to
6608  //   refer to an enumeration (7.2), the union class-key shall be
6609  //   used to refer to a union (clause 9), and either the class or
6610  //   struct class-key shall be used to refer to a class (clause 9)
6611  //   declared using the class or struct class-key.
6612  TagTypeKind OldTag = Previous->getTagKind();
6613  if (OldTag == NewTag)
6614    return true;
6615
6616  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6617      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6618    // Warn about the struct/class tag mismatch.
6619    bool isTemplate = false;
6620    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6621      isTemplate = Record->getDescribedClassTemplate();
6622
6623    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6624      << (NewTag == TTK_Class)
6625      << isTemplate << &Name
6626      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6627                              OldTag == TTK_Class? "class" : "struct");
6628    Diag(Previous->getLocation(), diag::note_previous_use);
6629    return true;
6630  }
6631  return false;
6632}
6633
6634/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6635/// former case, Name will be non-null.  In the later case, Name will be null.
6636/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6637/// reference/declaration/definition of a tag.
6638Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6639                     SourceLocation KWLoc, CXXScopeSpec &SS,
6640                     IdentifierInfo *Name, SourceLocation NameLoc,
6641                     AttributeList *Attr, AccessSpecifier AS,
6642                     MultiTemplateParamsArg TemplateParameterLists,
6643                     bool &OwnedDecl, bool &IsDependent,
6644                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6645                     TypeResult UnderlyingType) {
6646  // If this is not a definition, it must have a name.
6647  assert((Name != 0 || TUK == TUK_Definition) &&
6648         "Nameless record must be a definition!");
6649  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6650
6651  OwnedDecl = false;
6652  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6653
6654  // FIXME: Check explicit specializations more carefully.
6655  bool isExplicitSpecialization = false;
6656  bool Invalid = false;
6657
6658  // We only need to do this matching if we have template parameters
6659  // or a scope specifier, which also conveniently avoids this work
6660  // for non-C++ cases.
6661  if (TemplateParameterLists.size() > 0 ||
6662      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6663    if (TemplateParameterList *TemplateParams
6664          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
6665                                                TemplateParameterLists.get(),
6666                                                TemplateParameterLists.size(),
6667                                                    TUK == TUK_Friend,
6668                                                    isExplicitSpecialization,
6669                                                    Invalid)) {
6670      if (TemplateParams->size() > 0) {
6671        // This is a declaration or definition of a class template (which may
6672        // be a member of another template).
6673
6674        if (Invalid)
6675          return 0;
6676
6677        OwnedDecl = false;
6678        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6679                                               SS, Name, NameLoc, Attr,
6680                                               TemplateParams, AS,
6681                                           TemplateParameterLists.size() - 1,
6682                 (TemplateParameterList**) TemplateParameterLists.release());
6683        return Result.get();
6684      } else {
6685        // The "template<>" header is extraneous.
6686        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6687          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6688        isExplicitSpecialization = true;
6689      }
6690    }
6691  }
6692
6693  // Figure out the underlying type if this a enum declaration. We need to do
6694  // this early, because it's needed to detect if this is an incompatible
6695  // redeclaration.
6696  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6697
6698  if (Kind == TTK_Enum) {
6699    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6700      // No underlying type explicitly specified, or we failed to parse the
6701      // type, default to int.
6702      EnumUnderlying = Context.IntTy.getTypePtr();
6703    else if (UnderlyingType.get()) {
6704      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6705      // integral type; any cv-qualification is ignored.
6706      TypeSourceInfo *TI = 0;
6707      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6708      EnumUnderlying = TI;
6709
6710      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6711
6712      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6713        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6714          << T;
6715        // Recover by falling back to int.
6716        EnumUnderlying = Context.IntTy.getTypePtr();
6717      }
6718
6719      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6720                                          UPPC_FixedUnderlyingType))
6721        EnumUnderlying = Context.IntTy.getTypePtr();
6722
6723    } else if (getLangOptions().Microsoft)
6724      // Microsoft enums are always of int type.
6725      EnumUnderlying = Context.IntTy.getTypePtr();
6726  }
6727
6728  DeclContext *SearchDC = CurContext;
6729  DeclContext *DC = CurContext;
6730  bool isStdBadAlloc = false;
6731
6732  RedeclarationKind Redecl = ForRedeclaration;
6733  if (TUK == TUK_Friend || TUK == TUK_Reference)
6734    Redecl = NotForRedeclaration;
6735
6736  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6737
6738  if (Name && SS.isNotEmpty()) {
6739    // We have a nested-name tag ('struct foo::bar').
6740
6741    // Check for invalid 'foo::'.
6742    if (SS.isInvalid()) {
6743      Name = 0;
6744      goto CreateNewDecl;
6745    }
6746
6747    // If this is a friend or a reference to a class in a dependent
6748    // context, don't try to make a decl for it.
6749    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6750      DC = computeDeclContext(SS, false);
6751      if (!DC) {
6752        IsDependent = true;
6753        return 0;
6754      }
6755    } else {
6756      DC = computeDeclContext(SS, true);
6757      if (!DC) {
6758        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6759          << SS.getRange();
6760        return 0;
6761      }
6762    }
6763
6764    if (RequireCompleteDeclContext(SS, DC))
6765      return 0;
6766
6767    SearchDC = DC;
6768    // Look-up name inside 'foo::'.
6769    LookupQualifiedName(Previous, DC);
6770
6771    if (Previous.isAmbiguous())
6772      return 0;
6773
6774    if (Previous.empty()) {
6775      // Name lookup did not find anything. However, if the
6776      // nested-name-specifier refers to the current instantiation,
6777      // and that current instantiation has any dependent base
6778      // classes, we might find something at instantiation time: treat
6779      // this as a dependent elaborated-type-specifier.
6780      // But this only makes any sense for reference-like lookups.
6781      if (Previous.wasNotFoundInCurrentInstantiation() &&
6782          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6783        IsDependent = true;
6784        return 0;
6785      }
6786
6787      // A tag 'foo::bar' must already exist.
6788      Diag(NameLoc, diag::err_not_tag_in_scope)
6789        << Kind << Name << DC << SS.getRange();
6790      Name = 0;
6791      Invalid = true;
6792      goto CreateNewDecl;
6793    }
6794  } else if (Name) {
6795    // If this is a named struct, check to see if there was a previous forward
6796    // declaration or definition.
6797    // FIXME: We're looking into outer scopes here, even when we
6798    // shouldn't be. Doing so can result in ambiguities that we
6799    // shouldn't be diagnosing.
6800    LookupName(Previous, S);
6801
6802    if (Previous.isAmbiguous() &&
6803        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
6804      LookupResult::Filter F = Previous.makeFilter();
6805      while (F.hasNext()) {
6806        NamedDecl *ND = F.next();
6807        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
6808          F.erase();
6809      }
6810      F.done();
6811    }
6812
6813    // Note:  there used to be some attempt at recovery here.
6814    if (Previous.isAmbiguous())
6815      return 0;
6816
6817    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6818      // FIXME: This makes sure that we ignore the contexts associated
6819      // with C structs, unions, and enums when looking for a matching
6820      // tag declaration or definition. See the similar lookup tweak
6821      // in Sema::LookupName; is there a better way to deal with this?
6822      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6823        SearchDC = SearchDC->getParent();
6824    }
6825  } else if (S->isFunctionPrototypeScope()) {
6826    // If this is an enum declaration in function prototype scope, set its
6827    // initial context to the translation unit.
6828    SearchDC = Context.getTranslationUnitDecl();
6829  }
6830
6831  if (Previous.isSingleResult() &&
6832      Previous.getFoundDecl()->isTemplateParameter()) {
6833    // Maybe we will complain about the shadowed template parameter.
6834    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6835    // Just pretend that we didn't see the previous declaration.
6836    Previous.clear();
6837  }
6838
6839  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6840      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6841    // This is a declaration of or a reference to "std::bad_alloc".
6842    isStdBadAlloc = true;
6843
6844    if (Previous.empty() && StdBadAlloc) {
6845      // std::bad_alloc has been implicitly declared (but made invisible to
6846      // name lookup). Fill in this implicit declaration as the previous
6847      // declaration, so that the declarations get chained appropriately.
6848      Previous.addDecl(getStdBadAlloc());
6849    }
6850  }
6851
6852  // If we didn't find a previous declaration, and this is a reference
6853  // (or friend reference), move to the correct scope.  In C++, we
6854  // also need to do a redeclaration lookup there, just in case
6855  // there's a shadow friend decl.
6856  if (Name && Previous.empty() &&
6857      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6858    if (Invalid) goto CreateNewDecl;
6859    assert(SS.isEmpty());
6860
6861    if (TUK == TUK_Reference) {
6862      // C++ [basic.scope.pdecl]p5:
6863      //   -- for an elaborated-type-specifier of the form
6864      //
6865      //          class-key identifier
6866      //
6867      //      if the elaborated-type-specifier is used in the
6868      //      decl-specifier-seq or parameter-declaration-clause of a
6869      //      function defined in namespace scope, the identifier is
6870      //      declared as a class-name in the namespace that contains
6871      //      the declaration; otherwise, except as a friend
6872      //      declaration, the identifier is declared in the smallest
6873      //      non-class, non-function-prototype scope that contains the
6874      //      declaration.
6875      //
6876      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6877      // C structs and unions.
6878      //
6879      // It is an error in C++ to declare (rather than define) an enum
6880      // type, including via an elaborated type specifier.  We'll
6881      // diagnose that later; for now, declare the enum in the same
6882      // scope as we would have picked for any other tag type.
6883      //
6884      // GNU C also supports this behavior as part of its incomplete
6885      // enum types extension, while GNU C++ does not.
6886      //
6887      // Find the context where we'll be declaring the tag.
6888      // FIXME: We would like to maintain the current DeclContext as the
6889      // lexical context,
6890      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6891        SearchDC = SearchDC->getParent();
6892
6893      // Find the scope where we'll be declaring the tag.
6894      while (S->isClassScope() ||
6895             (getLangOptions().CPlusPlus &&
6896              S->isFunctionPrototypeScope()) ||
6897             ((S->getFlags() & Scope::DeclScope) == 0) ||
6898             (S->getEntity() &&
6899              ((DeclContext *)S->getEntity())->isTransparentContext()))
6900        S = S->getParent();
6901    } else {
6902      assert(TUK == TUK_Friend);
6903      // C++ [namespace.memdef]p3:
6904      //   If a friend declaration in a non-local class first declares a
6905      //   class or function, the friend class or function is a member of
6906      //   the innermost enclosing namespace.
6907      SearchDC = SearchDC->getEnclosingNamespaceContext();
6908    }
6909
6910    // In C++, we need to do a redeclaration lookup to properly
6911    // diagnose some problems.
6912    if (getLangOptions().CPlusPlus) {
6913      Previous.setRedeclarationKind(ForRedeclaration);
6914      LookupQualifiedName(Previous, SearchDC);
6915    }
6916  }
6917
6918  if (!Previous.empty()) {
6919    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6920
6921    // It's okay to have a tag decl in the same scope as a typedef
6922    // which hides a tag decl in the same scope.  Finding this
6923    // insanity with a redeclaration lookup can only actually happen
6924    // in C++.
6925    //
6926    // This is also okay for elaborated-type-specifiers, which is
6927    // technically forbidden by the current standard but which is
6928    // okay according to the likely resolution of an open issue;
6929    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6930    if (getLangOptions().CPlusPlus) {
6931      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
6932        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6933          TagDecl *Tag = TT->getDecl();
6934          if (Tag->getDeclName() == Name &&
6935              Tag->getDeclContext()->getRedeclContext()
6936                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6937            PrevDecl = Tag;
6938            Previous.clear();
6939            Previous.addDecl(Tag);
6940            Previous.resolveKind();
6941          }
6942        }
6943      }
6944    }
6945
6946    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6947      // If this is a use of a previous tag, or if the tag is already declared
6948      // in the same scope (so that the definition/declaration completes or
6949      // rementions the tag), reuse the decl.
6950      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6951          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
6952        // Make sure that this wasn't declared as an enum and now used as a
6953        // struct or something similar.
6954        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6955          bool SafeToContinue
6956            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6957               Kind != TTK_Enum);
6958          if (SafeToContinue)
6959            Diag(KWLoc, diag::err_use_with_wrong_tag)
6960              << Name
6961              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6962                                              PrevTagDecl->getKindName());
6963          else
6964            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6965          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6966
6967          if (SafeToContinue)
6968            Kind = PrevTagDecl->getTagKind();
6969          else {
6970            // Recover by making this an anonymous redefinition.
6971            Name = 0;
6972            Previous.clear();
6973            Invalid = true;
6974          }
6975        }
6976
6977        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6978          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6979
6980          // All conflicts with previous declarations are recovered by
6981          // returning the previous declaration.
6982          if (ScopedEnum != PrevEnum->isScoped()) {
6983            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6984              << PrevEnum->isScoped();
6985            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6986            return PrevTagDecl;
6987          }
6988          else if (EnumUnderlying && PrevEnum->isFixed()) {
6989            QualType T;
6990            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6991                T = TI->getType();
6992            else
6993                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6994
6995            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6996              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6997                   diag::err_enum_redeclare_type_mismatch)
6998                << T
6999                << PrevEnum->getIntegerType();
7000              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7001              return PrevTagDecl;
7002            }
7003          }
7004          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7005            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7006              << PrevEnum->isFixed();
7007            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7008            return PrevTagDecl;
7009          }
7010        }
7011
7012        if (!Invalid) {
7013          // If this is a use, just return the declaration we found.
7014
7015          // FIXME: In the future, return a variant or some other clue
7016          // for the consumer of this Decl to know it doesn't own it.
7017          // For our current ASTs this shouldn't be a problem, but will
7018          // need to be changed with DeclGroups.
7019          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7020               getLangOptions().Microsoft)) || TUK == TUK_Friend)
7021            return PrevTagDecl;
7022
7023          // Diagnose attempts to redefine a tag.
7024          if (TUK == TUK_Definition) {
7025            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7026              // If we're defining a specialization and the previous definition
7027              // is from an implicit instantiation, don't emit an error
7028              // here; we'll catch this in the general case below.
7029              if (!isExplicitSpecialization ||
7030                  !isa<CXXRecordDecl>(Def) ||
7031                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7032                                               == TSK_ExplicitSpecialization) {
7033                Diag(NameLoc, diag::err_redefinition) << Name;
7034                Diag(Def->getLocation(), diag::note_previous_definition);
7035                // If this is a redefinition, recover by making this
7036                // struct be anonymous, which will make any later
7037                // references get the previous definition.
7038                Name = 0;
7039                Previous.clear();
7040                Invalid = true;
7041              }
7042            } else {
7043              // If the type is currently being defined, complain
7044              // about a nested redefinition.
7045              const TagType *Tag
7046                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7047              if (Tag->isBeingDefined()) {
7048                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7049                Diag(PrevTagDecl->getLocation(),
7050                     diag::note_previous_definition);
7051                Name = 0;
7052                Previous.clear();
7053                Invalid = true;
7054              }
7055            }
7056
7057            // Okay, this is definition of a previously declared or referenced
7058            // tag PrevDecl. We're going to create a new Decl for it.
7059          }
7060        }
7061        // If we get here we have (another) forward declaration or we
7062        // have a definition.  Just create a new decl.
7063
7064      } else {
7065        // If we get here, this is a definition of a new tag type in a nested
7066        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7067        // new decl/type.  We set PrevDecl to NULL so that the entities
7068        // have distinct types.
7069        Previous.clear();
7070      }
7071      // If we get here, we're going to create a new Decl. If PrevDecl
7072      // is non-NULL, it's a definition of the tag declared by
7073      // PrevDecl. If it's NULL, we have a new definition.
7074
7075
7076    // Otherwise, PrevDecl is not a tag, but was found with tag
7077    // lookup.  This is only actually possible in C++, where a few
7078    // things like templates still live in the tag namespace.
7079    } else {
7080      assert(getLangOptions().CPlusPlus);
7081
7082      // Use a better diagnostic if an elaborated-type-specifier
7083      // found the wrong kind of type on the first
7084      // (non-redeclaration) lookup.
7085      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7086          !Previous.isForRedeclaration()) {
7087        unsigned Kind = 0;
7088        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7089        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7090        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7091        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7092        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7093        Invalid = true;
7094
7095      // Otherwise, only diagnose if the declaration is in scope.
7096      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7097                                isExplicitSpecialization)) {
7098        // do nothing
7099
7100      // Diagnose implicit declarations introduced by elaborated types.
7101      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7102        unsigned Kind = 0;
7103        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7104        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7105        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7106        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7107        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7108        Invalid = true;
7109
7110      // Otherwise it's a declaration.  Call out a particularly common
7111      // case here.
7112      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7113        unsigned Kind = 0;
7114        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7115        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7116          << Name << Kind << TND->getUnderlyingType();
7117        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7118        Invalid = true;
7119
7120      // Otherwise, diagnose.
7121      } else {
7122        // The tag name clashes with something else in the target scope,
7123        // issue an error and recover by making this tag be anonymous.
7124        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7125        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7126        Name = 0;
7127        Invalid = true;
7128      }
7129
7130      // The existing declaration isn't relevant to us; we're in a
7131      // new scope, so clear out the previous declaration.
7132      Previous.clear();
7133    }
7134  }
7135
7136CreateNewDecl:
7137
7138  TagDecl *PrevDecl = 0;
7139  if (Previous.isSingleResult())
7140    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7141
7142  // If there is an identifier, use the location of the identifier as the
7143  // location of the decl, otherwise use the location of the struct/union
7144  // keyword.
7145  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7146
7147  // Otherwise, create a new declaration. If there is a previous
7148  // declaration of the same entity, the two will be linked via
7149  // PrevDecl.
7150  TagDecl *New;
7151
7152  bool IsForwardReference = false;
7153  if (Kind == TTK_Enum) {
7154    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7155    // enum X { A, B, C } D;    D should chain to X.
7156    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7157                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7158                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7159    // If this is an undefined enum, warn.
7160    if (TUK != TUK_Definition && !Invalid) {
7161      TagDecl *Def;
7162      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7163        // C++0x: 7.2p2: opaque-enum-declaration.
7164        // Conflicts are diagnosed above. Do nothing.
7165      }
7166      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7167        Diag(Loc, diag::ext_forward_ref_enum_def)
7168          << New;
7169        Diag(Def->getLocation(), diag::note_previous_definition);
7170      } else {
7171        unsigned DiagID = diag::ext_forward_ref_enum;
7172        if (getLangOptions().Microsoft)
7173          DiagID = diag::ext_ms_forward_ref_enum;
7174        else if (getLangOptions().CPlusPlus)
7175          DiagID = diag::err_forward_ref_enum;
7176        Diag(Loc, DiagID);
7177
7178        // If this is a forward-declared reference to an enumeration, make a
7179        // note of it; we won't actually be introducing the declaration into
7180        // the declaration context.
7181        if (TUK == TUK_Reference)
7182          IsForwardReference = true;
7183      }
7184    }
7185
7186    if (EnumUnderlying) {
7187      EnumDecl *ED = cast<EnumDecl>(New);
7188      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7189        ED->setIntegerTypeSourceInfo(TI);
7190      else
7191        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7192      ED->setPromotionType(ED->getIntegerType());
7193    }
7194
7195  } else {
7196    // struct/union/class
7197
7198    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7199    // struct X { int A; } D;    D should chain to X.
7200    if (getLangOptions().CPlusPlus) {
7201      // FIXME: Look for a way to use RecordDecl for simple structs.
7202      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7203                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7204
7205      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7206        StdBadAlloc = cast<CXXRecordDecl>(New);
7207    } else
7208      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7209                               cast_or_null<RecordDecl>(PrevDecl));
7210  }
7211
7212  // Maybe add qualifier info.
7213  if (SS.isNotEmpty()) {
7214    if (SS.isSet()) {
7215      New->setQualifierInfo(SS.getWithLocInContext(Context));
7216      if (TemplateParameterLists.size() > 0) {
7217        New->setTemplateParameterListsInfo(Context,
7218                                           TemplateParameterLists.size(),
7219                    (TemplateParameterList**) TemplateParameterLists.release());
7220      }
7221    }
7222    else
7223      Invalid = true;
7224  }
7225
7226  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7227    // Add alignment attributes if necessary; these attributes are checked when
7228    // the ASTContext lays out the structure.
7229    //
7230    // It is important for implementing the correct semantics that this
7231    // happen here (in act on tag decl). The #pragma pack stack is
7232    // maintained as a result of parser callbacks which can occur at
7233    // many points during the parsing of a struct declaration (because
7234    // the #pragma tokens are effectively skipped over during the
7235    // parsing of the struct).
7236    AddAlignmentAttributesForRecord(RD);
7237
7238    AddMsStructLayoutForRecord(RD);
7239  }
7240
7241  // If this is a specialization of a member class (of a class template),
7242  // check the specialization.
7243  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7244    Invalid = true;
7245
7246  if (Invalid)
7247    New->setInvalidDecl();
7248
7249  if (Attr)
7250    ProcessDeclAttributeList(S, New, Attr);
7251
7252  // If we're declaring or defining a tag in function prototype scope
7253  // in C, note that this type can only be used within the function.
7254  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7255    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7256
7257  // Set the lexical context. If the tag has a C++ scope specifier, the
7258  // lexical context will be different from the semantic context.
7259  New->setLexicalDeclContext(CurContext);
7260
7261  // Mark this as a friend decl if applicable.
7262  // In Microsoft mode, a friend declaration also acts as a forward
7263  // declaration so we always pass true to setObjectOfFriendDecl to make
7264  // the tag name visible.
7265  if (TUK == TUK_Friend)
7266    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
7267                               getLangOptions().Microsoft);
7268
7269  // Set the access specifier.
7270  if (!Invalid && SearchDC->isRecord())
7271    SetMemberAccessSpecifier(New, PrevDecl, AS);
7272
7273  if (TUK == TUK_Definition)
7274    New->startDefinition();
7275
7276  // If this has an identifier, add it to the scope stack.
7277  if (TUK == TUK_Friend) {
7278    // We might be replacing an existing declaration in the lookup tables;
7279    // if so, borrow its access specifier.
7280    if (PrevDecl)
7281      New->setAccess(PrevDecl->getAccess());
7282
7283    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7284    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7285    if (Name) // can be null along some error paths
7286      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7287        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7288  } else if (Name) {
7289    S = getNonFieldDeclScope(S);
7290    PushOnScopeChains(New, S, !IsForwardReference);
7291    if (IsForwardReference)
7292      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7293
7294  } else {
7295    CurContext->addDecl(New);
7296  }
7297
7298  // If this is the C FILE type, notify the AST context.
7299  if (IdentifierInfo *II = New->getIdentifier())
7300    if (!New->isInvalidDecl() &&
7301        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7302        II->isStr("FILE"))
7303      Context.setFILEDecl(New);
7304
7305  OwnedDecl = true;
7306  return New;
7307}
7308
7309void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7310  AdjustDeclIfTemplate(TagD);
7311  TagDecl *Tag = cast<TagDecl>(TagD);
7312
7313  // Enter the tag context.
7314  PushDeclContext(S, Tag);
7315}
7316
7317void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7318                                           SourceLocation FinalLoc,
7319                                           SourceLocation LBraceLoc) {
7320  AdjustDeclIfTemplate(TagD);
7321  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7322
7323  FieldCollector->StartClass();
7324
7325  if (!Record->getIdentifier())
7326    return;
7327
7328  if (FinalLoc.isValid())
7329    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7330
7331  // C++ [class]p2:
7332  //   [...] The class-name is also inserted into the scope of the
7333  //   class itself; this is known as the injected-class-name. For
7334  //   purposes of access checking, the injected-class-name is treated
7335  //   as if it were a public member name.
7336  CXXRecordDecl *InjectedClassName
7337    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7338                            Record->getLocStart(), Record->getLocation(),
7339                            Record->getIdentifier(),
7340                            /*PrevDecl=*/0,
7341                            /*DelayTypeCreation=*/true);
7342  Context.getTypeDeclType(InjectedClassName, Record);
7343  InjectedClassName->setImplicit();
7344  InjectedClassName->setAccess(AS_public);
7345  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7346      InjectedClassName->setDescribedClassTemplate(Template);
7347  PushOnScopeChains(InjectedClassName, S);
7348  assert(InjectedClassName->isInjectedClassName() &&
7349         "Broken injected-class-name");
7350}
7351
7352void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7353                                    SourceLocation RBraceLoc) {
7354  AdjustDeclIfTemplate(TagD);
7355  TagDecl *Tag = cast<TagDecl>(TagD);
7356  Tag->setRBraceLoc(RBraceLoc);
7357
7358  if (isa<CXXRecordDecl>(Tag))
7359    FieldCollector->FinishClass();
7360
7361  // Exit this scope of this tag's definition.
7362  PopDeclContext();
7363
7364  // Notify the consumer that we've defined a tag.
7365  Consumer.HandleTagDeclDefinition(Tag);
7366}
7367
7368void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7369  AdjustDeclIfTemplate(TagD);
7370  TagDecl *Tag = cast<TagDecl>(TagD);
7371  Tag->setInvalidDecl();
7372
7373  // We're undoing ActOnTagStartDefinition here, not
7374  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7375  // the FieldCollector.
7376
7377  PopDeclContext();
7378}
7379
7380// Note that FieldName may be null for anonymous bitfields.
7381bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7382                          QualType FieldTy, const Expr *BitWidth,
7383                          bool *ZeroWidth) {
7384  // Default to true; that shouldn't confuse checks for emptiness
7385  if (ZeroWidth)
7386    *ZeroWidth = true;
7387
7388  // C99 6.7.2.1p4 - verify the field type.
7389  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7390  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7391    // Handle incomplete types with specific error.
7392    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7393      return true;
7394    if (FieldName)
7395      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7396        << FieldName << FieldTy << BitWidth->getSourceRange();
7397    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7398      << FieldTy << BitWidth->getSourceRange();
7399  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7400                                             UPPC_BitFieldWidth))
7401    return true;
7402
7403  // If the bit-width is type- or value-dependent, don't try to check
7404  // it now.
7405  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7406    return false;
7407
7408  llvm::APSInt Value;
7409  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7410    return true;
7411
7412  if (Value != 0 && ZeroWidth)
7413    *ZeroWidth = false;
7414
7415  // Zero-width bitfield is ok for anonymous field.
7416  if (Value == 0 && FieldName)
7417    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7418
7419  if (Value.isSigned() && Value.isNegative()) {
7420    if (FieldName)
7421      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7422               << FieldName << Value.toString(10);
7423    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7424      << Value.toString(10);
7425  }
7426
7427  if (!FieldTy->isDependentType()) {
7428    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7429    if (Value.getZExtValue() > TypeSize) {
7430      if (!getLangOptions().CPlusPlus) {
7431        if (FieldName)
7432          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7433            << FieldName << (unsigned)Value.getZExtValue()
7434            << (unsigned)TypeSize;
7435
7436        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7437          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7438      }
7439
7440      if (FieldName)
7441        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7442          << FieldName << (unsigned)Value.getZExtValue()
7443          << (unsigned)TypeSize;
7444      else
7445        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7446          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7447    }
7448  }
7449
7450  return false;
7451}
7452
7453/// ActOnField - Each field of a struct/union/class is passed into this in order
7454/// to create a FieldDecl object for it.
7455Decl *Sema::ActOnField(Scope *S, Decl *TagD,
7456                                 SourceLocation DeclStart,
7457                                 Declarator &D, ExprTy *BitfieldWidth) {
7458  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7459                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7460                               AS_public);
7461  return Res;
7462}
7463
7464/// HandleField - Analyze a field of a C struct or a C++ data member.
7465///
7466FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7467                             SourceLocation DeclStart,
7468                             Declarator &D, Expr *BitWidth,
7469                             AccessSpecifier AS) {
7470  IdentifierInfo *II = D.getIdentifier();
7471  SourceLocation Loc = DeclStart;
7472  if (II) Loc = D.getIdentifierLoc();
7473
7474  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7475  QualType T = TInfo->getType();
7476  if (getLangOptions().CPlusPlus) {
7477    CheckExtraCXXDefaultArguments(D);
7478
7479    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7480                                        UPPC_DataMemberType)) {
7481      D.setInvalidType();
7482      T = Context.IntTy;
7483      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7484    }
7485  }
7486
7487  DiagnoseFunctionSpecifiers(D);
7488
7489  if (D.getDeclSpec().isThreadSpecified())
7490    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7491
7492  // Check to see if this name was declared as a member previously
7493  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7494  LookupName(Previous, S);
7495  assert((Previous.empty() || Previous.isOverloadedResult() ||
7496          Previous.isSingleResult())
7497    && "Lookup of member name should be either overloaded, single or null");
7498
7499  // If the name is overloaded then get any declaration else get the single result
7500  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7501    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7502
7503  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7504    // Maybe we will complain about the shadowed template parameter.
7505    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7506    // Just pretend that we didn't see the previous declaration.
7507    PrevDecl = 0;
7508  }
7509
7510  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7511    PrevDecl = 0;
7512
7513  bool Mutable
7514    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7515  SourceLocation TSSL = D.getSourceRange().getBegin();
7516  FieldDecl *NewFD
7517    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
7518                     AS, PrevDecl, &D);
7519
7520  if (NewFD->isInvalidDecl())
7521    Record->setInvalidDecl();
7522
7523  if (NewFD->isInvalidDecl() && PrevDecl) {
7524    // Don't introduce NewFD into scope; there's already something
7525    // with the same name in the same scope.
7526  } else if (II) {
7527    PushOnScopeChains(NewFD, S);
7528  } else
7529    Record->addDecl(NewFD);
7530
7531  return NewFD;
7532}
7533
7534/// \brief Build a new FieldDecl and check its well-formedness.
7535///
7536/// This routine builds a new FieldDecl given the fields name, type,
7537/// record, etc. \p PrevDecl should refer to any previous declaration
7538/// with the same name and in the same scope as the field to be
7539/// created.
7540///
7541/// \returns a new FieldDecl.
7542///
7543/// \todo The Declarator argument is a hack. It will be removed once
7544FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7545                                TypeSourceInfo *TInfo,
7546                                RecordDecl *Record, SourceLocation Loc,
7547                                bool Mutable, Expr *BitWidth,
7548                                SourceLocation TSSL,
7549                                AccessSpecifier AS, NamedDecl *PrevDecl,
7550                                Declarator *D) {
7551  IdentifierInfo *II = Name.getAsIdentifierInfo();
7552  bool InvalidDecl = false;
7553  if (D) InvalidDecl = D->isInvalidType();
7554
7555  // If we receive a broken type, recover by assuming 'int' and
7556  // marking this declaration as invalid.
7557  if (T.isNull()) {
7558    InvalidDecl = true;
7559    T = Context.IntTy;
7560  }
7561
7562  QualType EltTy = Context.getBaseElementType(T);
7563  if (!EltTy->isDependentType() &&
7564      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7565    // Fields of incomplete type force their record to be invalid.
7566    Record->setInvalidDecl();
7567    InvalidDecl = true;
7568  }
7569
7570  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7571  // than a variably modified type.
7572  if (!InvalidDecl && T->isVariablyModifiedType()) {
7573    bool SizeIsNegative;
7574    llvm::APSInt Oversized;
7575    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7576                                                           SizeIsNegative,
7577                                                           Oversized);
7578    if (!FixedTy.isNull()) {
7579      Diag(Loc, diag::warn_illegal_constant_array_size);
7580      T = FixedTy;
7581    } else {
7582      if (SizeIsNegative)
7583        Diag(Loc, diag::err_typecheck_negative_array_size);
7584      else if (Oversized.getBoolValue())
7585        Diag(Loc, diag::err_array_too_large)
7586          << Oversized.toString(10);
7587      else
7588        Diag(Loc, diag::err_typecheck_field_variable_size);
7589      InvalidDecl = true;
7590    }
7591  }
7592
7593  // Fields can not have abstract class types
7594  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7595                                             diag::err_abstract_type_in_decl,
7596                                             AbstractFieldType))
7597    InvalidDecl = true;
7598
7599  bool ZeroWidth = false;
7600  // If this is declared as a bit-field, check the bit-field.
7601  if (!InvalidDecl && BitWidth &&
7602      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7603    InvalidDecl = true;
7604    BitWidth = 0;
7605    ZeroWidth = false;
7606  }
7607
7608  // Check that 'mutable' is consistent with the type of the declaration.
7609  if (!InvalidDecl && Mutable) {
7610    unsigned DiagID = 0;
7611    if (T->isReferenceType())
7612      DiagID = diag::err_mutable_reference;
7613    else if (T.isConstQualified())
7614      DiagID = diag::err_mutable_const;
7615
7616    if (DiagID) {
7617      SourceLocation ErrLoc = Loc;
7618      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7619        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7620      Diag(ErrLoc, DiagID);
7621      Mutable = false;
7622      InvalidDecl = true;
7623    }
7624  }
7625
7626  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7627                                       BitWidth, Mutable);
7628  if (InvalidDecl)
7629    NewFD->setInvalidDecl();
7630
7631  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7632    Diag(Loc, diag::err_duplicate_member) << II;
7633    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7634    NewFD->setInvalidDecl();
7635  }
7636
7637  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7638    if (Record->isUnion()) {
7639      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7640        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7641        if (RDecl->getDefinition()) {
7642          // C++ [class.union]p1: An object of a class with a non-trivial
7643          // constructor, a non-trivial copy constructor, a non-trivial
7644          // destructor, or a non-trivial copy assignment operator
7645          // cannot be a member of a union, nor can an array of such
7646          // objects.
7647          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
7648            NewFD->setInvalidDecl();
7649        }
7650      }
7651
7652      // C++ [class.union]p1: If a union contains a member of reference type,
7653      // the program is ill-formed.
7654      if (EltTy->isReferenceType()) {
7655        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7656          << NewFD->getDeclName() << EltTy;
7657        NewFD->setInvalidDecl();
7658      }
7659    }
7660  }
7661
7662  // FIXME: We need to pass in the attributes given an AST
7663  // representation, not a parser representation.
7664  if (D)
7665    // FIXME: What to pass instead of TUScope?
7666    ProcessDeclAttributes(TUScope, NewFD, *D);
7667
7668  if (T.isObjCGCWeak())
7669    Diag(Loc, diag::warn_attribute_weak_on_field);
7670
7671  NewFD->setAccess(AS);
7672  return NewFD;
7673}
7674
7675bool Sema::CheckNontrivialField(FieldDecl *FD) {
7676  assert(FD);
7677  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7678
7679  if (FD->isInvalidDecl())
7680    return true;
7681
7682  QualType EltTy = Context.getBaseElementType(FD->getType());
7683  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7684    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7685    if (RDecl->getDefinition()) {
7686      // We check for copy constructors before constructors
7687      // because otherwise we'll never get complaints about
7688      // copy constructors.
7689
7690      CXXSpecialMember member = CXXInvalid;
7691      if (!RDecl->hasTrivialCopyConstructor())
7692        member = CXXCopyConstructor;
7693      else if (!RDecl->hasTrivialDefaultConstructor())
7694        member = CXXDefaultConstructor;
7695      else if (!RDecl->hasTrivialCopyAssignment())
7696        member = CXXCopyAssignment;
7697      else if (!RDecl->hasTrivialDestructor())
7698        member = CXXDestructor;
7699
7700      if (member != CXXInvalid) {
7701        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7702              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7703        DiagnoseNontrivial(RT, member);
7704        return true;
7705      }
7706    }
7707  }
7708
7709  return false;
7710}
7711
7712/// DiagnoseNontrivial - Given that a class has a non-trivial
7713/// special member, figure out why.
7714void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7715  QualType QT(T, 0U);
7716  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7717
7718  // Check whether the member was user-declared.
7719  switch (member) {
7720  case CXXInvalid:
7721    break;
7722
7723  case CXXDefaultConstructor:
7724    if (RD->hasUserDeclaredConstructor()) {
7725      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7726      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7727        const FunctionDecl *body = 0;
7728        ci->hasBody(body);
7729        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7730          SourceLocation CtorLoc = ci->getLocation();
7731          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7732          return;
7733        }
7734      }
7735
7736      assert(0 && "found no user-declared constructors");
7737      return;
7738    }
7739    break;
7740
7741  case CXXCopyConstructor:
7742    if (RD->hasUserDeclaredCopyConstructor()) {
7743      SourceLocation CtorLoc =
7744        RD->getCopyConstructor(0)->getLocation();
7745      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7746      return;
7747    }
7748    break;
7749
7750  case CXXMoveConstructor:
7751    if (RD->hasUserDeclaredMoveConstructor()) {
7752      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
7753      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7754      return;
7755    }
7756    break;
7757
7758  case CXXCopyAssignment:
7759    if (RD->hasUserDeclaredCopyAssignment()) {
7760      // FIXME: this should use the location of the copy
7761      // assignment, not the type.
7762      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7763      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7764      return;
7765    }
7766    break;
7767
7768  case CXXMoveAssignment:
7769    if (RD->hasUserDeclaredMoveAssignment()) {
7770      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
7771      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
7772      return;
7773    }
7774    break;
7775
7776  case CXXDestructor:
7777    if (RD->hasUserDeclaredDestructor()) {
7778      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7779      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7780      return;
7781    }
7782    break;
7783  }
7784
7785  typedef CXXRecordDecl::base_class_iterator base_iter;
7786
7787  // Virtual bases and members inhibit trivial copying/construction,
7788  // but not trivial destruction.
7789  if (member != CXXDestructor) {
7790    // Check for virtual bases.  vbases includes indirect virtual bases,
7791    // so we just iterate through the direct bases.
7792    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7793      if (bi->isVirtual()) {
7794        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7795        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7796        return;
7797      }
7798
7799    // Check for virtual methods.
7800    typedef CXXRecordDecl::method_iterator meth_iter;
7801    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7802         ++mi) {
7803      if (mi->isVirtual()) {
7804        SourceLocation MLoc = mi->getSourceRange().getBegin();
7805        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7806        return;
7807      }
7808    }
7809  }
7810
7811  bool (CXXRecordDecl::*hasTrivial)() const;
7812  switch (member) {
7813  case CXXDefaultConstructor:
7814    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
7815  case CXXCopyConstructor:
7816    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7817  case CXXCopyAssignment:
7818    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7819  case CXXDestructor:
7820    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7821  default:
7822    assert(0 && "unexpected special member"); return;
7823  }
7824
7825  // Check for nontrivial bases (and recurse).
7826  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7827    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7828    assert(BaseRT && "Don't know how to handle dependent bases");
7829    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7830    if (!(BaseRecTy->*hasTrivial)()) {
7831      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7832      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7833      DiagnoseNontrivial(BaseRT, member);
7834      return;
7835    }
7836  }
7837
7838  // Check for nontrivial members (and recurse).
7839  typedef RecordDecl::field_iterator field_iter;
7840  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7841       ++fi) {
7842    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7843    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7844      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7845
7846      if (!(EltRD->*hasTrivial)()) {
7847        SourceLocation FLoc = (*fi)->getLocation();
7848        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7849        DiagnoseNontrivial(EltRT, member);
7850        return;
7851      }
7852    }
7853  }
7854
7855  assert(0 && "found no explanation for non-trivial member");
7856}
7857
7858/// TranslateIvarVisibility - Translate visibility from a token ID to an
7859///  AST enum value.
7860static ObjCIvarDecl::AccessControl
7861TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7862  switch (ivarVisibility) {
7863  default: assert(0 && "Unknown visitibility kind");
7864  case tok::objc_private: return ObjCIvarDecl::Private;
7865  case tok::objc_public: return ObjCIvarDecl::Public;
7866  case tok::objc_protected: return ObjCIvarDecl::Protected;
7867  case tok::objc_package: return ObjCIvarDecl::Package;
7868  }
7869}
7870
7871/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7872/// in order to create an IvarDecl object for it.
7873Decl *Sema::ActOnIvar(Scope *S,
7874                                SourceLocation DeclStart,
7875                                Decl *IntfDecl,
7876                                Declarator &D, ExprTy *BitfieldWidth,
7877                                tok::ObjCKeywordKind Visibility) {
7878
7879  IdentifierInfo *II = D.getIdentifier();
7880  Expr *BitWidth = (Expr*)BitfieldWidth;
7881  SourceLocation Loc = DeclStart;
7882  if (II) Loc = D.getIdentifierLoc();
7883
7884  // FIXME: Unnamed fields can be handled in various different ways, for
7885  // example, unnamed unions inject all members into the struct namespace!
7886
7887  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7888  QualType T = TInfo->getType();
7889
7890  if (BitWidth) {
7891    // 6.7.2.1p3, 6.7.2.1p4
7892    if (VerifyBitField(Loc, II, T, BitWidth)) {
7893      D.setInvalidType();
7894      BitWidth = 0;
7895    }
7896  } else {
7897    // Not a bitfield.
7898
7899    // validate II.
7900
7901  }
7902  if (T->isReferenceType()) {
7903    Diag(Loc, diag::err_ivar_reference_type);
7904    D.setInvalidType();
7905  }
7906  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7907  // than a variably modified type.
7908  else if (T->isVariablyModifiedType()) {
7909    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7910    D.setInvalidType();
7911  }
7912
7913  // Get the visibility (access control) for this ivar.
7914  ObjCIvarDecl::AccessControl ac =
7915    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7916                                        : ObjCIvarDecl::None;
7917  // Must set ivar's DeclContext to its enclosing interface.
7918  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7919  ObjCContainerDecl *EnclosingContext;
7920  if (ObjCImplementationDecl *IMPDecl =
7921      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7922    if (!LangOpts.ObjCNonFragileABI2) {
7923    // Case of ivar declared in an implementation. Context is that of its class.
7924      EnclosingContext = IMPDecl->getClassInterface();
7925      assert(EnclosingContext && "Implementation has no class interface!");
7926    }
7927    else
7928      EnclosingContext = EnclosingDecl;
7929  } else {
7930    if (ObjCCategoryDecl *CDecl =
7931        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7932      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7933        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7934        return 0;
7935      }
7936    }
7937    EnclosingContext = EnclosingDecl;
7938  }
7939
7940  // Construct the decl.
7941  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
7942                                             DeclStart, Loc, II, T,
7943                                             TInfo, ac, (Expr *)BitfieldWidth);
7944
7945  if (II) {
7946    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7947                                           ForRedeclaration);
7948    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7949        && !isa<TagDecl>(PrevDecl)) {
7950      Diag(Loc, diag::err_duplicate_member) << II;
7951      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7952      NewID->setInvalidDecl();
7953    }
7954  }
7955
7956  // Process attributes attached to the ivar.
7957  ProcessDeclAttributes(S, NewID, D);
7958
7959  if (D.isInvalidType())
7960    NewID->setInvalidDecl();
7961
7962  if (II) {
7963    // FIXME: When interfaces are DeclContexts, we'll need to add
7964    // these to the interface.
7965    S->AddDecl(NewID);
7966    IdResolver.AddDecl(NewID);
7967  }
7968
7969  return NewID;
7970}
7971
7972/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7973/// class and class extensions. For every class @interface and class
7974/// extension @interface, if the last ivar is a bitfield of any type,
7975/// then add an implicit `char :0` ivar to the end of that interface.
7976void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7977                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7978  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7979    return;
7980
7981  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7982  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7983
7984  if (!Ivar->isBitField())
7985    return;
7986  uint64_t BitFieldSize =
7987    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7988  if (BitFieldSize == 0)
7989    return;
7990  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7991  if (!ID) {
7992    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7993      if (!CD->IsClassExtension())
7994        return;
7995    }
7996    // No need to add this to end of @implementation.
7997    else
7998      return;
7999  }
8000  // All conditions are met. Add a new bitfield to the tail end of ivars.
8001  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
8002  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
8003
8004  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
8005                              DeclLoc, DeclLoc, 0,
8006                              Context.CharTy,
8007                              Context.CreateTypeSourceInfo(Context.CharTy),
8008                              ObjCIvarDecl::Private, BW,
8009                              true);
8010  AllIvarDecls.push_back(Ivar);
8011}
8012
8013void Sema::ActOnFields(Scope* S,
8014                       SourceLocation RecLoc, Decl *EnclosingDecl,
8015                       Decl **Fields, unsigned NumFields,
8016                       SourceLocation LBrac, SourceLocation RBrac,
8017                       AttributeList *Attr) {
8018  assert(EnclosingDecl && "missing record or interface decl");
8019
8020  // If the decl this is being inserted into is invalid, then it may be a
8021  // redeclaration or some other bogus case.  Don't try to add fields to it.
8022  if (EnclosingDecl->isInvalidDecl()) {
8023    // FIXME: Deallocate fields?
8024    return;
8025  }
8026
8027
8028  // Verify that all the fields are okay.
8029  unsigned NumNamedMembers = 0;
8030  llvm::SmallVector<FieldDecl*, 32> RecFields;
8031
8032  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8033  for (unsigned i = 0; i != NumFields; ++i) {
8034    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
8035
8036    // Get the type for the field.
8037    const Type *FDTy = FD->getType().getTypePtr();
8038
8039    if (!FD->isAnonymousStructOrUnion()) {
8040      // Remember all fields written by the user.
8041      RecFields.push_back(FD);
8042    }
8043
8044    // If the field is already invalid for some reason, don't emit more
8045    // diagnostics about it.
8046    if (FD->isInvalidDecl()) {
8047      EnclosingDecl->setInvalidDecl();
8048      continue;
8049    }
8050
8051    // C99 6.7.2.1p2:
8052    //   A structure or union shall not contain a member with
8053    //   incomplete or function type (hence, a structure shall not
8054    //   contain an instance of itself, but may contain a pointer to
8055    //   an instance of itself), except that the last member of a
8056    //   structure with more than one named member may have incomplete
8057    //   array type; such a structure (and any union containing,
8058    //   possibly recursively, a member that is such a structure)
8059    //   shall not be a member of a structure or an element of an
8060    //   array.
8061    if (FDTy->isFunctionType()) {
8062      // Field declared as a function.
8063      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8064        << FD->getDeclName();
8065      FD->setInvalidDecl();
8066      EnclosingDecl->setInvalidDecl();
8067      continue;
8068    } else if (FDTy->isIncompleteArrayType() && Record &&
8069               ((i == NumFields - 1 && !Record->isUnion()) ||
8070                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
8071                 (i == NumFields - 1 || Record->isUnion())))) {
8072      // Flexible array member.
8073      // Microsoft and g++ is more permissive regarding flexible array.
8074      // It will accept flexible array in union and also
8075      // as the sole element of a struct/class.
8076      if (getLangOptions().Microsoft) {
8077        if (Record->isUnion())
8078          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8079            << FD->getDeclName();
8080        else if (NumFields == 1)
8081          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8082            << FD->getDeclName() << Record->getTagKind();
8083      } else if (getLangOptions().CPlusPlus) {
8084        if (Record->isUnion())
8085          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8086            << FD->getDeclName();
8087        else if (NumFields == 1)
8088          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8089            << FD->getDeclName() << Record->getTagKind();
8090      } else if (NumNamedMembers < 1) {
8091        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8092          << FD->getDeclName();
8093        FD->setInvalidDecl();
8094        EnclosingDecl->setInvalidDecl();
8095        continue;
8096      }
8097      if (!FD->getType()->isDependentType() &&
8098          !Context.getBaseElementType(FD->getType())->isPODType()) {
8099        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8100          << FD->getDeclName() << FD->getType();
8101        FD->setInvalidDecl();
8102        EnclosingDecl->setInvalidDecl();
8103        continue;
8104      }
8105      // Okay, we have a legal flexible array member at the end of the struct.
8106      if (Record)
8107        Record->setHasFlexibleArrayMember(true);
8108    } else if (!FDTy->isDependentType() &&
8109               RequireCompleteType(FD->getLocation(), FD->getType(),
8110                                   diag::err_field_incomplete)) {
8111      // Incomplete type
8112      FD->setInvalidDecl();
8113      EnclosingDecl->setInvalidDecl();
8114      continue;
8115    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8116      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8117        // If this is a member of a union, then entire union becomes "flexible".
8118        if (Record && Record->isUnion()) {
8119          Record->setHasFlexibleArrayMember(true);
8120        } else {
8121          // If this is a struct/class and this is not the last element, reject
8122          // it.  Note that GCC supports variable sized arrays in the middle of
8123          // structures.
8124          if (i != NumFields-1)
8125            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8126              << FD->getDeclName() << FD->getType();
8127          else {
8128            // We support flexible arrays at the end of structs in
8129            // other structs as an extension.
8130            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8131              << FD->getDeclName();
8132            if (Record)
8133              Record->setHasFlexibleArrayMember(true);
8134          }
8135        }
8136      }
8137      if (Record && FDTTy->getDecl()->hasObjectMember())
8138        Record->setHasObjectMember(true);
8139    } else if (FDTy->isObjCObjectType()) {
8140      /// A field cannot be an Objective-c object
8141      Diag(FD->getLocation(), diag::err_statically_allocated_object);
8142      FD->setInvalidDecl();
8143      EnclosingDecl->setInvalidDecl();
8144      continue;
8145    } else if (getLangOptions().ObjC1 &&
8146               getLangOptions().getGCMode() != LangOptions::NonGC &&
8147               Record &&
8148               (FD->getType()->isObjCObjectPointerType() ||
8149                FD->getType().isObjCGCStrong()))
8150      Record->setHasObjectMember(true);
8151    else if (Context.getAsArrayType(FD->getType())) {
8152      QualType BaseType = Context.getBaseElementType(FD->getType());
8153      if (Record && BaseType->isRecordType() &&
8154          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8155        Record->setHasObjectMember(true);
8156    }
8157    // Keep track of the number of named members.
8158    if (FD->getIdentifier())
8159      ++NumNamedMembers;
8160  }
8161
8162  // Okay, we successfully defined 'Record'.
8163  if (Record) {
8164    bool Completed = false;
8165    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8166      if (!CXXRecord->isInvalidDecl()) {
8167        // Set access bits correctly on the directly-declared conversions.
8168        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8169        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8170             I != E; ++I)
8171          Convs->setAccess(I, (*I)->getAccess());
8172
8173        if (!CXXRecord->isDependentType()) {
8174          // Adjust user-defined destructor exception spec.
8175          if (getLangOptions().CPlusPlus0x &&
8176              CXXRecord->hasUserDeclaredDestructor())
8177            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
8178
8179          // Add any implicitly-declared members to this class.
8180          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8181
8182          // If we have virtual base classes, we may end up finding multiple
8183          // final overriders for a given virtual function. Check for this
8184          // problem now.
8185          if (CXXRecord->getNumVBases()) {
8186            CXXFinalOverriderMap FinalOverriders;
8187            CXXRecord->getFinalOverriders(FinalOverriders);
8188
8189            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8190                                             MEnd = FinalOverriders.end();
8191                 M != MEnd; ++M) {
8192              for (OverridingMethods::iterator SO = M->second.begin(),
8193                                            SOEnd = M->second.end();
8194                   SO != SOEnd; ++SO) {
8195                assert(SO->second.size() > 0 &&
8196                       "Virtual function without overridding functions?");
8197                if (SO->second.size() == 1)
8198                  continue;
8199
8200                // C++ [class.virtual]p2:
8201                //   In a derived class, if a virtual member function of a base
8202                //   class subobject has more than one final overrider the
8203                //   program is ill-formed.
8204                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8205                  << (NamedDecl *)M->first << Record;
8206                Diag(M->first->getLocation(),
8207                     diag::note_overridden_virtual_function);
8208                for (OverridingMethods::overriding_iterator
8209                          OM = SO->second.begin(),
8210                       OMEnd = SO->second.end();
8211                     OM != OMEnd; ++OM)
8212                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8213                    << (NamedDecl *)M->first << OM->Method->getParent();
8214
8215                Record->setInvalidDecl();
8216              }
8217            }
8218            CXXRecord->completeDefinition(&FinalOverriders);
8219            Completed = true;
8220          }
8221        }
8222      }
8223    }
8224
8225    if (!Completed)
8226      Record->completeDefinition();
8227
8228    // Now that the record is complete, do any delayed exception spec checks
8229    // we were missing.
8230    if (!DelayedDestructorExceptionSpecChecks.empty()) {
8231      const CXXDestructorDecl *Dtor =
8232              DelayedDestructorExceptionSpecChecks.back().first;
8233      if (Dtor->getParent() == Record) {
8234        assert(!Dtor->getParent()->isDependentType() &&
8235            "Should not ever add destructors of templates into the list.");
8236        CheckOverridingFunctionExceptionSpec(Dtor,
8237            DelayedDestructorExceptionSpecChecks.back().second);
8238        DelayedDestructorExceptionSpecChecks.pop_back();
8239      }
8240    }
8241
8242  } else {
8243    ObjCIvarDecl **ClsFields =
8244      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8245    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8246      ID->setLocEnd(RBrac);
8247      // Add ivar's to class's DeclContext.
8248      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8249        ClsFields[i]->setLexicalDeclContext(ID);
8250        ID->addDecl(ClsFields[i]);
8251      }
8252      // Must enforce the rule that ivars in the base classes may not be
8253      // duplicates.
8254      if (ID->getSuperClass())
8255        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8256    } else if (ObjCImplementationDecl *IMPDecl =
8257                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8258      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8259      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8260        // Ivar declared in @implementation never belongs to the implementation.
8261        // Only it is in implementation's lexical context.
8262        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8263      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8264    } else if (ObjCCategoryDecl *CDecl =
8265                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8266      // case of ivars in class extension; all other cases have been
8267      // reported as errors elsewhere.
8268      // FIXME. Class extension does not have a LocEnd field.
8269      // CDecl->setLocEnd(RBrac);
8270      // Add ivar's to class extension's DeclContext.
8271      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8272        ClsFields[i]->setLexicalDeclContext(CDecl);
8273        CDecl->addDecl(ClsFields[i]);
8274      }
8275    }
8276  }
8277
8278  if (Attr)
8279    ProcessDeclAttributeList(S, Record, Attr);
8280
8281  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8282  // set the visibility of this record.
8283  if (Record && !Record->getDeclContext()->isRecord())
8284    AddPushedVisibilityAttribute(Record);
8285}
8286
8287/// \brief Determine whether the given integral value is representable within
8288/// the given type T.
8289static bool isRepresentableIntegerValue(ASTContext &Context,
8290                                        llvm::APSInt &Value,
8291                                        QualType T) {
8292  assert(T->isIntegralType(Context) && "Integral type required!");
8293  unsigned BitWidth = Context.getIntWidth(T);
8294
8295  if (Value.isUnsigned() || Value.isNonNegative()) {
8296    if (T->isSignedIntegerOrEnumerationType())
8297      --BitWidth;
8298    return Value.getActiveBits() <= BitWidth;
8299  }
8300  return Value.getMinSignedBits() <= BitWidth;
8301}
8302
8303// \brief Given an integral type, return the next larger integral type
8304// (or a NULL type of no such type exists).
8305static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8306  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8307  // enum checking below.
8308  assert(T->isIntegralType(Context) && "Integral type required!");
8309  const unsigned NumTypes = 4;
8310  QualType SignedIntegralTypes[NumTypes] = {
8311    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8312  };
8313  QualType UnsignedIntegralTypes[NumTypes] = {
8314    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8315    Context.UnsignedLongLongTy
8316  };
8317
8318  unsigned BitWidth = Context.getTypeSize(T);
8319  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
8320                                                        : UnsignedIntegralTypes;
8321  for (unsigned I = 0; I != NumTypes; ++I)
8322    if (Context.getTypeSize(Types[I]) > BitWidth)
8323      return Types[I];
8324
8325  return QualType();
8326}
8327
8328EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8329                                          EnumConstantDecl *LastEnumConst,
8330                                          SourceLocation IdLoc,
8331                                          IdentifierInfo *Id,
8332                                          Expr *Val) {
8333  unsigned IntWidth = Context.Target.getIntWidth();
8334  llvm::APSInt EnumVal(IntWidth);
8335  QualType EltTy;
8336
8337  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8338    Val = 0;
8339
8340  if (Val) {
8341    if (Enum->isDependentType() || Val->isTypeDependent())
8342      EltTy = Context.DependentTy;
8343    else {
8344      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8345      SourceLocation ExpLoc;
8346      if (!Val->isValueDependent() &&
8347          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8348        Val = 0;
8349      } else {
8350        if (!getLangOptions().CPlusPlus) {
8351          // C99 6.7.2.2p2:
8352          //   The expression that defines the value of an enumeration constant
8353          //   shall be an integer constant expression that has a value
8354          //   representable as an int.
8355
8356          // Complain if the value is not representable in an int.
8357          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8358            Diag(IdLoc, diag::ext_enum_value_not_int)
8359              << EnumVal.toString(10) << Val->getSourceRange()
8360              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8361          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8362            // Force the type of the expression to 'int'.
8363            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8364          }
8365        }
8366
8367        if (Enum->isFixed()) {
8368          EltTy = Enum->getIntegerType();
8369
8370          // C++0x [dcl.enum]p5:
8371          //   ... if the initializing value of an enumerator cannot be
8372          //   represented by the underlying type, the program is ill-formed.
8373          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8374            if (getLangOptions().Microsoft) {
8375              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8376              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8377            } else
8378              Diag(IdLoc, diag::err_enumerator_too_large)
8379                << EltTy;
8380          } else
8381            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8382        }
8383        else {
8384          // C++0x [dcl.enum]p5:
8385          //   If the underlying type is not fixed, the type of each enumerator
8386          //   is the type of its initializing value:
8387          //     - If an initializer is specified for an enumerator, the
8388          //       initializing value has the same type as the expression.
8389          EltTy = Val->getType();
8390        }
8391      }
8392    }
8393  }
8394
8395  if (!Val) {
8396    if (Enum->isDependentType())
8397      EltTy = Context.DependentTy;
8398    else if (!LastEnumConst) {
8399      // C++0x [dcl.enum]p5:
8400      //   If the underlying type is not fixed, the type of each enumerator
8401      //   is the type of its initializing value:
8402      //     - If no initializer is specified for the first enumerator, the
8403      //       initializing value has an unspecified integral type.
8404      //
8405      // GCC uses 'int' for its unspecified integral type, as does
8406      // C99 6.7.2.2p3.
8407      if (Enum->isFixed()) {
8408        EltTy = Enum->getIntegerType();
8409      }
8410      else {
8411        EltTy = Context.IntTy;
8412      }
8413    } else {
8414      // Assign the last value + 1.
8415      EnumVal = LastEnumConst->getInitVal();
8416      ++EnumVal;
8417      EltTy = LastEnumConst->getType();
8418
8419      // Check for overflow on increment.
8420      if (EnumVal < LastEnumConst->getInitVal()) {
8421        // C++0x [dcl.enum]p5:
8422        //   If the underlying type is not fixed, the type of each enumerator
8423        //   is the type of its initializing value:
8424        //
8425        //     - Otherwise the type of the initializing value is the same as
8426        //       the type of the initializing value of the preceding enumerator
8427        //       unless the incremented value is not representable in that type,
8428        //       in which case the type is an unspecified integral type
8429        //       sufficient to contain the incremented value. If no such type
8430        //       exists, the program is ill-formed.
8431        QualType T = getNextLargerIntegralType(Context, EltTy);
8432        if (T.isNull() || Enum->isFixed()) {
8433          // There is no integral type larger enough to represent this
8434          // value. Complain, then allow the value to wrap around.
8435          EnumVal = LastEnumConst->getInitVal();
8436          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8437          ++EnumVal;
8438          if (Enum->isFixed())
8439            // When the underlying type is fixed, this is ill-formed.
8440            Diag(IdLoc, diag::err_enumerator_wrapped)
8441              << EnumVal.toString(10)
8442              << EltTy;
8443          else
8444            Diag(IdLoc, diag::warn_enumerator_too_large)
8445              << EnumVal.toString(10);
8446        } else {
8447          EltTy = T;
8448        }
8449
8450        // Retrieve the last enumerator's value, extent that type to the
8451        // type that is supposed to be large enough to represent the incremented
8452        // value, then increment.
8453        EnumVal = LastEnumConst->getInitVal();
8454        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
8455        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8456        ++EnumVal;
8457
8458        // If we're not in C++, diagnose the overflow of enumerator values,
8459        // which in C99 means that the enumerator value is not representable in
8460        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
8461        // permits enumerator values that are representable in some larger
8462        // integral type.
8463        if (!getLangOptions().CPlusPlus && !T.isNull())
8464          Diag(IdLoc, diag::warn_enum_value_overflow);
8465      } else if (!getLangOptions().CPlusPlus &&
8466                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8467        // Enforce C99 6.7.2.2p2 even when we compute the next value.
8468        Diag(IdLoc, diag::ext_enum_value_not_int)
8469          << EnumVal.toString(10) << 1;
8470      }
8471    }
8472  }
8473
8474  if (!EltTy->isDependentType()) {
8475    // Make the enumerator value match the signedness and size of the
8476    // enumerator's type.
8477    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8478    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
8479  }
8480
8481  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8482                                  Val, EnumVal);
8483}
8484
8485
8486Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8487                              SourceLocation IdLoc, IdentifierInfo *Id,
8488                              AttributeList *Attr,
8489                              SourceLocation EqualLoc, ExprTy *val) {
8490  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8491  EnumConstantDecl *LastEnumConst =
8492    cast_or_null<EnumConstantDecl>(lastEnumConst);
8493  Expr *Val = static_cast<Expr*>(val);
8494
8495  // The scope passed in may not be a decl scope.  Zip up the scope tree until
8496  // we find one that is.
8497  S = getNonFieldDeclScope(S);
8498
8499  // Verify that there isn't already something declared with this name in this
8500  // scope.
8501  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8502                                         ForRedeclaration);
8503  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8504    // Maybe we will complain about the shadowed template parameter.
8505    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8506    // Just pretend that we didn't see the previous declaration.
8507    PrevDecl = 0;
8508  }
8509
8510  if (PrevDecl) {
8511    // When in C++, we may get a TagDecl with the same name; in this case the
8512    // enum constant will 'hide' the tag.
8513    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8514           "Received TagDecl when not in C++!");
8515    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8516      if (isa<EnumConstantDecl>(PrevDecl))
8517        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8518      else
8519        Diag(IdLoc, diag::err_redefinition) << Id;
8520      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8521      return 0;
8522    }
8523  }
8524
8525  // C++ [class.mem]p13:
8526  //   If T is the name of a class, then each of the following shall have a
8527  //   name different from T:
8528  //     - every enumerator of every member of class T that is an enumerated
8529  //       type
8530  if (CXXRecordDecl *Record
8531                      = dyn_cast<CXXRecordDecl>(
8532                             TheEnumDecl->getDeclContext()->getRedeclContext()))
8533    if (Record->getIdentifier() && Record->getIdentifier() == Id)
8534      Diag(IdLoc, diag::err_member_name_of_class) << Id;
8535
8536  EnumConstantDecl *New =
8537    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8538
8539  if (New) {
8540    // Process attributes.
8541    if (Attr) ProcessDeclAttributeList(S, New, Attr);
8542
8543    // Register this decl in the current scope stack.
8544    New->setAccess(TheEnumDecl->getAccess());
8545    PushOnScopeChains(New, S);
8546  }
8547
8548  return New;
8549}
8550
8551void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8552                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8553                         Decl **Elements, unsigned NumElements,
8554                         Scope *S, AttributeList *Attr) {
8555  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8556  QualType EnumType = Context.getTypeDeclType(Enum);
8557
8558  if (Attr)
8559    ProcessDeclAttributeList(S, Enum, Attr);
8560
8561  if (Enum->isDependentType()) {
8562    for (unsigned i = 0; i != NumElements; ++i) {
8563      EnumConstantDecl *ECD =
8564        cast_or_null<EnumConstantDecl>(Elements[i]);
8565      if (!ECD) continue;
8566
8567      ECD->setType(EnumType);
8568    }
8569
8570    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8571    return;
8572  }
8573
8574  // TODO: If the result value doesn't fit in an int, it must be a long or long
8575  // long value.  ISO C does not support this, but GCC does as an extension,
8576  // emit a warning.
8577  unsigned IntWidth = Context.Target.getIntWidth();
8578  unsigned CharWidth = Context.Target.getCharWidth();
8579  unsigned ShortWidth = Context.Target.getShortWidth();
8580
8581  // Verify that all the values are okay, compute the size of the values, and
8582  // reverse the list.
8583  unsigned NumNegativeBits = 0;
8584  unsigned NumPositiveBits = 0;
8585
8586  // Keep track of whether all elements have type int.
8587  bool AllElementsInt = true;
8588
8589  for (unsigned i = 0; i != NumElements; ++i) {
8590    EnumConstantDecl *ECD =
8591      cast_or_null<EnumConstantDecl>(Elements[i]);
8592    if (!ECD) continue;  // Already issued a diagnostic.
8593
8594    const llvm::APSInt &InitVal = ECD->getInitVal();
8595
8596    // Keep track of the size of positive and negative values.
8597    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8598      NumPositiveBits = std::max(NumPositiveBits,
8599                                 (unsigned)InitVal.getActiveBits());
8600    else
8601      NumNegativeBits = std::max(NumNegativeBits,
8602                                 (unsigned)InitVal.getMinSignedBits());
8603
8604    // Keep track of whether every enum element has type int (very commmon).
8605    if (AllElementsInt)
8606      AllElementsInt = ECD->getType() == Context.IntTy;
8607  }
8608
8609  // Figure out the type that should be used for this enum.
8610  QualType BestType;
8611  unsigned BestWidth;
8612
8613  // C++0x N3000 [conv.prom]p3:
8614  //   An rvalue of an unscoped enumeration type whose underlying
8615  //   type is not fixed can be converted to an rvalue of the first
8616  //   of the following types that can represent all the values of
8617  //   the enumeration: int, unsigned int, long int, unsigned long
8618  //   int, long long int, or unsigned long long int.
8619  // C99 6.4.4.3p2:
8620  //   An identifier declared as an enumeration constant has type int.
8621  // The C99 rule is modified by a gcc extension
8622  QualType BestPromotionType;
8623
8624  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8625  // -fshort-enums is the equivalent to specifying the packed attribute on all
8626  // enum definitions.
8627  if (LangOpts.ShortEnums)
8628    Packed = true;
8629
8630  if (Enum->isFixed()) {
8631    BestType = BestPromotionType = Enum->getIntegerType();
8632    // We don't need to set BestWidth, because BestType is going to be the type
8633    // of the enumerators, but we do anyway because otherwise some compilers
8634    // warn that it might be used uninitialized.
8635    BestWidth = CharWidth;
8636  }
8637  else if (NumNegativeBits) {
8638    // If there is a negative value, figure out the smallest integer type (of
8639    // int/long/longlong) that fits.
8640    // If it's packed, check also if it fits a char or a short.
8641    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8642      BestType = Context.SignedCharTy;
8643      BestWidth = CharWidth;
8644    } else if (Packed && NumNegativeBits <= ShortWidth &&
8645               NumPositiveBits < ShortWidth) {
8646      BestType = Context.ShortTy;
8647      BestWidth = ShortWidth;
8648    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8649      BestType = Context.IntTy;
8650      BestWidth = IntWidth;
8651    } else {
8652      BestWidth = Context.Target.getLongWidth();
8653
8654      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8655        BestType = Context.LongTy;
8656      } else {
8657        BestWidth = Context.Target.getLongLongWidth();
8658
8659        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8660          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8661        BestType = Context.LongLongTy;
8662      }
8663    }
8664    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8665  } else {
8666    // If there is no negative value, figure out the smallest type that fits
8667    // all of the enumerator values.
8668    // If it's packed, check also if it fits a char or a short.
8669    if (Packed && NumPositiveBits <= CharWidth) {
8670      BestType = Context.UnsignedCharTy;
8671      BestPromotionType = Context.IntTy;
8672      BestWidth = CharWidth;
8673    } else if (Packed && NumPositiveBits <= ShortWidth) {
8674      BestType = Context.UnsignedShortTy;
8675      BestPromotionType = Context.IntTy;
8676      BestWidth = ShortWidth;
8677    } else if (NumPositiveBits <= IntWidth) {
8678      BestType = Context.UnsignedIntTy;
8679      BestWidth = IntWidth;
8680      BestPromotionType
8681        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8682                           ? Context.UnsignedIntTy : Context.IntTy;
8683    } else if (NumPositiveBits <=
8684               (BestWidth = Context.Target.getLongWidth())) {
8685      BestType = Context.UnsignedLongTy;
8686      BestPromotionType
8687        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8688                           ? Context.UnsignedLongTy : Context.LongTy;
8689    } else {
8690      BestWidth = Context.Target.getLongLongWidth();
8691      assert(NumPositiveBits <= BestWidth &&
8692             "How could an initializer get larger than ULL?");
8693      BestType = Context.UnsignedLongLongTy;
8694      BestPromotionType
8695        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8696                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8697    }
8698  }
8699
8700  // Loop over all of the enumerator constants, changing their types to match
8701  // the type of the enum if needed.
8702  for (unsigned i = 0; i != NumElements; ++i) {
8703    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8704    if (!ECD) continue;  // Already issued a diagnostic.
8705
8706    // Standard C says the enumerators have int type, but we allow, as an
8707    // extension, the enumerators to be larger than int size.  If each
8708    // enumerator value fits in an int, type it as an int, otherwise type it the
8709    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8710    // that X has type 'int', not 'unsigned'.
8711
8712    // Determine whether the value fits into an int.
8713    llvm::APSInt InitVal = ECD->getInitVal();
8714
8715    // If it fits into an integer type, force it.  Otherwise force it to match
8716    // the enum decl type.
8717    QualType NewTy;
8718    unsigned NewWidth;
8719    bool NewSign;
8720    if (!getLangOptions().CPlusPlus &&
8721        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8722      NewTy = Context.IntTy;
8723      NewWidth = IntWidth;
8724      NewSign = true;
8725    } else if (ECD->getType() == BestType) {
8726      // Already the right type!
8727      if (getLangOptions().CPlusPlus)
8728        // C++ [dcl.enum]p4: Following the closing brace of an
8729        // enum-specifier, each enumerator has the type of its
8730        // enumeration.
8731        ECD->setType(EnumType);
8732      continue;
8733    } else {
8734      NewTy = BestType;
8735      NewWidth = BestWidth;
8736      NewSign = BestType->isSignedIntegerOrEnumerationType();
8737    }
8738
8739    // Adjust the APSInt value.
8740    InitVal = InitVal.extOrTrunc(NewWidth);
8741    InitVal.setIsSigned(NewSign);
8742    ECD->setInitVal(InitVal);
8743
8744    // Adjust the Expr initializer and type.
8745    if (ECD->getInitExpr() &&
8746	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8747      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8748                                                CK_IntegralCast,
8749                                                ECD->getInitExpr(),
8750                                                /*base paths*/ 0,
8751                                                VK_RValue));
8752    if (getLangOptions().CPlusPlus)
8753      // C++ [dcl.enum]p4: Following the closing brace of an
8754      // enum-specifier, each enumerator has the type of its
8755      // enumeration.
8756      ECD->setType(EnumType);
8757    else
8758      ECD->setType(NewTy);
8759  }
8760
8761  Enum->completeDefinition(BestType, BestPromotionType,
8762                           NumPositiveBits, NumNegativeBits);
8763}
8764
8765Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8766                                  SourceLocation StartLoc,
8767                                  SourceLocation EndLoc) {
8768  StringLiteral *AsmString = cast<StringLiteral>(expr);
8769
8770  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8771                                                   AsmString, StartLoc,
8772                                                   EndLoc);
8773  CurContext->addDecl(New);
8774  return New;
8775}
8776
8777void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8778                             SourceLocation PragmaLoc,
8779                             SourceLocation NameLoc) {
8780  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8781
8782  if (PrevDecl) {
8783    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8784  } else {
8785    (void)WeakUndeclaredIdentifiers.insert(
8786      std::pair<IdentifierInfo*,WeakInfo>
8787        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8788  }
8789}
8790
8791void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8792                                IdentifierInfo* AliasName,
8793                                SourceLocation PragmaLoc,
8794                                SourceLocation NameLoc,
8795                                SourceLocation AliasNameLoc) {
8796  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8797                                    LookupOrdinaryName);
8798  WeakInfo W = WeakInfo(Name, NameLoc);
8799
8800  if (PrevDecl) {
8801    if (!PrevDecl->hasAttr<AliasAttr>())
8802      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8803        DeclApplyPragmaWeak(TUScope, ND, W);
8804  } else {
8805    (void)WeakUndeclaredIdentifiers.insert(
8806      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8807  }
8808}
8809