SemaDecl.cpp revision fbce0e1d582f10d890111d8d27f6e88055be6422
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/AST/APValue.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclTemplate.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Sema/DeclSpec.h"
28#include "clang/Sema/ParsedTemplate.h"
29#include "clang/Parse/ParseDiagnostic.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
34#include "clang/Lex/Preprocessor.h"
35#include "clang/Lex/HeaderSearch.h"
36#include "llvm/ADT/Triple.h"
37#include <algorithm>
38#include <cstring>
39#include <functional>
40using namespace clang;
41
42/// getDeclName - Return a pretty name for the specified decl if possible, or
43/// an empty string if not.  This is used for pretty crash reporting.
44std::string Sema::getDeclName(Decl *D) {
45  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
46    return DN->getQualifiedNameAsString();
47  return "";
48}
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
51  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
52}
53
54/// \brief If the identifier refers to a type name within this scope,
55/// return the declaration of that type.
56///
57/// This routine performs ordinary name lookup of the identifier II
58/// within the given scope, with optional C++ scope specifier SS, to
59/// determine whether the name refers to a type. If so, returns an
60/// opaque pointer (actually a QualType) corresponding to that
61/// type. Otherwise, returns NULL.
62///
63/// If name lookup results in an ambiguity, this routine will complain
64/// and then return NULL.
65ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
66                             Scope *S, CXXScopeSpec *SS,
67                             bool isClassName,
68                             ParsedType ObjectTypePtr) {
69  // Determine where we will perform name lookup.
70  DeclContext *LookupCtx = 0;
71  if (ObjectTypePtr) {
72    QualType ObjectType = ObjectTypePtr.get();
73    if (ObjectType->isRecordType())
74      LookupCtx = computeDeclContext(ObjectType);
75  } else if (SS && SS->isNotEmpty()) {
76    LookupCtx = computeDeclContext(*SS, false);
77
78    if (!LookupCtx) {
79      if (isDependentScopeSpecifier(*SS)) {
80        // C++ [temp.res]p3:
81        //   A qualified-id that refers to a type and in which the
82        //   nested-name-specifier depends on a template-parameter (14.6.2)
83        //   shall be prefixed by the keyword typename to indicate that the
84        //   qualified-id denotes a type, forming an
85        //   elaborated-type-specifier (7.1.5.3).
86        //
87        // We therefore do not perform any name lookup if the result would
88        // refer to a member of an unknown specialization.
89        if (!isClassName)
90          return ParsedType();
91
92        // We know from the grammar that this name refers to a type,
93        // so build a dependent node to describe the type.
94        QualType T =
95          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
96                            SourceLocation(), SS->getRange(), NameLoc);
97        return ParsedType::make(T);
98      }
99
100      return ParsedType();
101    }
102
103    if (!LookupCtx->isDependentContext() &&
104        RequireCompleteDeclContext(*SS, LookupCtx))
105      return ParsedType();
106  }
107
108  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
109  // lookup for class-names.
110  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
111                                      LookupOrdinaryName;
112  LookupResult Result(*this, &II, NameLoc, Kind);
113  if (LookupCtx) {
114    // Perform "qualified" name lookup into the declaration context we
115    // computed, which is either the type of the base of a member access
116    // expression or the declaration context associated with a prior
117    // nested-name-specifier.
118    LookupQualifiedName(Result, LookupCtx);
119
120    if (ObjectTypePtr && Result.empty()) {
121      // C++ [basic.lookup.classref]p3:
122      //   If the unqualified-id is ~type-name, the type-name is looked up
123      //   in the context of the entire postfix-expression. If the type T of
124      //   the object expression is of a class type C, the type-name is also
125      //   looked up in the scope of class C. At least one of the lookups shall
126      //   find a name that refers to (possibly cv-qualified) T.
127      LookupName(Result, S);
128    }
129  } else {
130    // Perform unqualified name lookup.
131    LookupName(Result, S);
132  }
133
134  NamedDecl *IIDecl = 0;
135  switch (Result.getResultKind()) {
136  case LookupResult::NotFound:
137  case LookupResult::NotFoundInCurrentInstantiation:
138  case LookupResult::FoundOverloaded:
139  case LookupResult::FoundUnresolvedValue:
140    Result.suppressDiagnostics();
141    return ParsedType();
142
143  case LookupResult::Ambiguous:
144    // Recover from type-hiding ambiguities by hiding the type.  We'll
145    // do the lookup again when looking for an object, and we can
146    // diagnose the error then.  If we don't do this, then the error
147    // about hiding the type will be immediately followed by an error
148    // that only makes sense if the identifier was treated like a type.
149    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
150      Result.suppressDiagnostics();
151      return ParsedType();
152    }
153
154    // Look to see if we have a type anywhere in the list of results.
155    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
156         Res != ResEnd; ++Res) {
157      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
158        if (!IIDecl ||
159            (*Res)->getLocation().getRawEncoding() <
160              IIDecl->getLocation().getRawEncoding())
161          IIDecl = *Res;
162      }
163    }
164
165    if (!IIDecl) {
166      // None of the entities we found is a type, so there is no way
167      // to even assume that the result is a type. In this case, don't
168      // complain about the ambiguity. The parser will either try to
169      // perform this lookup again (e.g., as an object name), which
170      // will produce the ambiguity, or will complain that it expected
171      // a type name.
172      Result.suppressDiagnostics();
173      return ParsedType();
174    }
175
176    // We found a type within the ambiguous lookup; diagnose the
177    // ambiguity and then return that type. This might be the right
178    // answer, or it might not be, but it suppresses any attempt to
179    // perform the name lookup again.
180    break;
181
182  case LookupResult::Found:
183    IIDecl = Result.getFoundDecl();
184    break;
185  }
186
187  assert(IIDecl && "Didn't find decl");
188
189  QualType T;
190  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
191    DiagnoseUseOfDecl(IIDecl, NameLoc);
192
193    if (T.isNull())
194      T = Context.getTypeDeclType(TD);
195
196    if (SS)
197      T = getElaboratedType(ETK_None, *SS, T);
198
199  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
200    T = Context.getObjCInterfaceType(IDecl);
201  } else {
202    // If it's not plausibly a type, suppress diagnostics.
203    Result.suppressDiagnostics();
204    return ParsedType();
205  }
206
207  return ParsedType::make(T);
208}
209
210/// isTagName() - This method is called *for error recovery purposes only*
211/// to determine if the specified name is a valid tag name ("struct foo").  If
212/// so, this returns the TST for the tag corresponding to it (TST_enum,
213/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
214/// where the user forgot to specify the tag.
215DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
216  // Do a tag name lookup in this scope.
217  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
218  LookupName(R, S, false);
219  R.suppressDiagnostics();
220  if (R.getResultKind() == LookupResult::Found)
221    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
222      switch (TD->getTagKind()) {
223      default:         return DeclSpec::TST_unspecified;
224      case TTK_Struct: return DeclSpec::TST_struct;
225      case TTK_Union:  return DeclSpec::TST_union;
226      case TTK_Class:  return DeclSpec::TST_class;
227      case TTK_Enum:   return DeclSpec::TST_enum;
228      }
229    }
230
231  return DeclSpec::TST_unspecified;
232}
233
234bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
235                                   SourceLocation IILoc,
236                                   Scope *S,
237                                   CXXScopeSpec *SS,
238                                   ParsedType &SuggestedType) {
239  // We don't have anything to suggest (yet).
240  SuggestedType = ParsedType();
241
242  // There may have been a typo in the name of the type. Look up typo
243  // results, in case we have something that we can suggest.
244  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
245                      NotForRedeclaration);
246
247  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
248    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
249      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
250          !Result->isInvalidDecl()) {
251        // We found a similarly-named type or interface; suggest that.
252        if (!SS || !SS->isSet())
253          Diag(IILoc, diag::err_unknown_typename_suggest)
254            << &II << Lookup.getLookupName()
255            << FixItHint::CreateReplacement(SourceRange(IILoc),
256                                            Result->getNameAsString());
257        else if (DeclContext *DC = computeDeclContext(*SS, false))
258          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
259            << &II << DC << Lookup.getLookupName() << SS->getRange()
260            << FixItHint::CreateReplacement(SourceRange(IILoc),
261                                            Result->getNameAsString());
262        else
263          llvm_unreachable("could not have corrected a typo here");
264
265        Diag(Result->getLocation(), diag::note_previous_decl)
266          << Result->getDeclName();
267
268        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
269        return true;
270      }
271    } else if (Lookup.empty()) {
272      // We corrected to a keyword.
273      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
274      Diag(IILoc, diag::err_unknown_typename_suggest)
275        << &II << Corrected;
276      return true;
277    }
278  }
279
280  if (getLangOptions().CPlusPlus) {
281    // See if II is a class template that the user forgot to pass arguments to.
282    UnqualifiedId Name;
283    Name.setIdentifier(&II, IILoc);
284    CXXScopeSpec EmptySS;
285    TemplateTy TemplateResult;
286    bool MemberOfUnknownSpecialization;
287    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
288                       Name, ParsedType(), true, TemplateResult,
289                       MemberOfUnknownSpecialization) == TNK_Type_template) {
290      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
291      Diag(IILoc, diag::err_template_missing_args) << TplName;
292      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
293        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
294          << TplDecl->getTemplateParameters()->getSourceRange();
295      }
296      return true;
297    }
298  }
299
300  // FIXME: Should we move the logic that tries to recover from a missing tag
301  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
302
303  if (!SS || (!SS->isSet() && !SS->isInvalid()))
304    Diag(IILoc, diag::err_unknown_typename) << &II;
305  else if (DeclContext *DC = computeDeclContext(*SS, false))
306    Diag(IILoc, diag::err_typename_nested_not_found)
307      << &II << DC << SS->getRange();
308  else if (isDependentScopeSpecifier(*SS)) {
309    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
310      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
311      << SourceRange(SS->getRange().getBegin(), IILoc)
312      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
313    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
314  } else {
315    assert(SS && SS->isInvalid() &&
316           "Invalid scope specifier has already been diagnosed");
317  }
318
319  return true;
320}
321
322// Determines the context to return to after temporarily entering a
323// context.  This depends in an unnecessarily complicated way on the
324// exact ordering of callbacks from the parser.
325DeclContext *Sema::getContainingDC(DeclContext *DC) {
326
327  // Functions defined inline within classes aren't parsed until we've
328  // finished parsing the top-level class, so the top-level class is
329  // the context we'll need to return to.
330  if (isa<FunctionDecl>(DC)) {
331    DC = DC->getLexicalParent();
332
333    // A function not defined within a class will always return to its
334    // lexical context.
335    if (!isa<CXXRecordDecl>(DC))
336      return DC;
337
338    // A C++ inline method/friend is parsed *after* the topmost class
339    // it was declared in is fully parsed ("complete");  the topmost
340    // class is the context we need to return to.
341    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
342      DC = RD;
343
344    // Return the declaration context of the topmost class the inline method is
345    // declared in.
346    return DC;
347  }
348
349  // ObjCMethodDecls are parsed (for some reason) outside the context
350  // of the class.
351  if (isa<ObjCMethodDecl>(DC))
352    return DC->getLexicalParent()->getLexicalParent();
353
354  return DC->getLexicalParent();
355}
356
357void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
358  assert(getContainingDC(DC) == CurContext &&
359      "The next DeclContext should be lexically contained in the current one.");
360  CurContext = DC;
361  S->setEntity(DC);
362}
363
364void Sema::PopDeclContext() {
365  assert(CurContext && "DeclContext imbalance!");
366
367  CurContext = getContainingDC(CurContext);
368  assert(CurContext && "Popped translation unit!");
369}
370
371/// EnterDeclaratorContext - Used when we must lookup names in the context
372/// of a declarator's nested name specifier.
373///
374void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
375  // C++0x [basic.lookup.unqual]p13:
376  //   A name used in the definition of a static data member of class
377  //   X (after the qualified-id of the static member) is looked up as
378  //   if the name was used in a member function of X.
379  // C++0x [basic.lookup.unqual]p14:
380  //   If a variable member of a namespace is defined outside of the
381  //   scope of its namespace then any name used in the definition of
382  //   the variable member (after the declarator-id) is looked up as
383  //   if the definition of the variable member occurred in its
384  //   namespace.
385  // Both of these imply that we should push a scope whose context
386  // is the semantic context of the declaration.  We can't use
387  // PushDeclContext here because that context is not necessarily
388  // lexically contained in the current context.  Fortunately,
389  // the containing scope should have the appropriate information.
390
391  assert(!S->getEntity() && "scope already has entity");
392
393#ifndef NDEBUG
394  Scope *Ancestor = S->getParent();
395  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
396  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
397#endif
398
399  CurContext = DC;
400  S->setEntity(DC);
401}
402
403void Sema::ExitDeclaratorContext(Scope *S) {
404  assert(S->getEntity() == CurContext && "Context imbalance!");
405
406  // Switch back to the lexical context.  The safety of this is
407  // enforced by an assert in EnterDeclaratorContext.
408  Scope *Ancestor = S->getParent();
409  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
410  CurContext = (DeclContext*) Ancestor->getEntity();
411
412  // We don't need to do anything with the scope, which is going to
413  // disappear.
414}
415
416/// \brief Determine whether we allow overloading of the function
417/// PrevDecl with another declaration.
418///
419/// This routine determines whether overloading is possible, not
420/// whether some new function is actually an overload. It will return
421/// true in C++ (where we can always provide overloads) or, as an
422/// extension, in C when the previous function is already an
423/// overloaded function declaration or has the "overloadable"
424/// attribute.
425static bool AllowOverloadingOfFunction(LookupResult &Previous,
426                                       ASTContext &Context) {
427  if (Context.getLangOptions().CPlusPlus)
428    return true;
429
430  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
431    return true;
432
433  return (Previous.getResultKind() == LookupResult::Found
434          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
435}
436
437/// Add this decl to the scope shadowed decl chains.
438void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
439  // Move up the scope chain until we find the nearest enclosing
440  // non-transparent context. The declaration will be introduced into this
441  // scope.
442  while (S->getEntity() &&
443         ((DeclContext *)S->getEntity())->isTransparentContext())
444    S = S->getParent();
445
446  // Add scoped declarations into their context, so that they can be
447  // found later. Declarations without a context won't be inserted
448  // into any context.
449  if (AddToContext)
450    CurContext->addDecl(D);
451
452  // Out-of-line definitions shouldn't be pushed into scope in C++.
453  // Out-of-line variable and function definitions shouldn't even in C.
454  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
455      D->isOutOfLine())
456    return;
457
458  // Template instantiations should also not be pushed into scope.
459  if (isa<FunctionDecl>(D) &&
460      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
461    return;
462
463  // If this replaces anything in the current scope,
464  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
465                               IEnd = IdResolver.end();
466  for (; I != IEnd; ++I) {
467    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
468      S->RemoveDecl(*I);
469      IdResolver.RemoveDecl(*I);
470
471      // Should only need to replace one decl.
472      break;
473    }
474  }
475
476  S->AddDecl(D);
477  IdResolver.AddDecl(D);
478}
479
480bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
481  return IdResolver.isDeclInScope(D, Ctx, Context, S);
482}
483
484Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
485  DeclContext *TargetDC = DC->getPrimaryContext();
486  do {
487    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
488      if (ScopeDC->getPrimaryContext() == TargetDC)
489        return S;
490  } while ((S = S->getParent()));
491
492  return 0;
493}
494
495static bool isOutOfScopePreviousDeclaration(NamedDecl *,
496                                            DeclContext*,
497                                            ASTContext&);
498
499/// Filters out lookup results that don't fall within the given scope
500/// as determined by isDeclInScope.
501static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
502                                 DeclContext *Ctx, Scope *S,
503                                 bool ConsiderLinkage) {
504  LookupResult::Filter F = R.makeFilter();
505  while (F.hasNext()) {
506    NamedDecl *D = F.next();
507
508    if (SemaRef.isDeclInScope(D, Ctx, S))
509      continue;
510
511    if (ConsiderLinkage &&
512        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
513      continue;
514
515    F.erase();
516  }
517
518  F.done();
519}
520
521static bool isUsingDecl(NamedDecl *D) {
522  return isa<UsingShadowDecl>(D) ||
523         isa<UnresolvedUsingTypenameDecl>(D) ||
524         isa<UnresolvedUsingValueDecl>(D);
525}
526
527/// Removes using shadow declarations from the lookup results.
528static void RemoveUsingDecls(LookupResult &R) {
529  LookupResult::Filter F = R.makeFilter();
530  while (F.hasNext())
531    if (isUsingDecl(F.next()))
532      F.erase();
533
534  F.done();
535}
536
537/// \brief Check for this common pattern:
538/// @code
539/// class S {
540///   S(const S&); // DO NOT IMPLEMENT
541///   void operator=(const S&); // DO NOT IMPLEMENT
542/// };
543/// @endcode
544static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
545  // FIXME: Should check for private access too but access is set after we get
546  // the decl here.
547  if (D->isThisDeclarationADefinition())
548    return false;
549
550  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
551    return CD->isCopyConstructor();
552  return D->isCopyAssignment();
553}
554
555bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
556  assert(D);
557
558  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
559    return false;
560
561  // Ignore class templates.
562  if (D->getDeclContext()->isDependentContext())
563    return false;
564
565  // We warn for unused decls internal to the translation unit.
566  if (D->getLinkage() == ExternalLinkage)
567    return false;
568
569  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
570    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
571      return false;
572
573    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
574      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
575        return false;
576    } else {
577      // 'static inline' functions are used in headers; don't warn.
578      if (FD->getStorageClass() == FunctionDecl::Static &&
579          FD->isInlineSpecified())
580        return false;
581    }
582
583    if (FD->isThisDeclarationADefinition())
584      return !Context.DeclMustBeEmitted(FD);
585    return true;
586  }
587
588  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
589    if (VD->isStaticDataMember() &&
590        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
591      return false;
592
593    if ( VD->isFileVarDecl() &&
594        !VD->getType().isConstant(Context))
595      return !Context.DeclMustBeEmitted(VD);
596  }
597
598   return false;
599 }
600
601 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
602  if (!D)
603    return;
604
605  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
606    const FunctionDecl *First = FD->getFirstDeclaration();
607    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
608      return; // First should already be in the vector.
609  }
610
611  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
612    const VarDecl *First = VD->getFirstDeclaration();
613    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
614      return; // First should already be in the vector.
615  }
616
617   if (ShouldWarnIfUnusedFileScopedDecl(D))
618     UnusedFileScopedDecls.push_back(D);
619 }
620
621static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
622  if (D->isInvalidDecl())
623    return false;
624
625  if (D->isUsed() || D->hasAttr<UnusedAttr>())
626    return false;
627
628  // White-list anything that isn't a local variable.
629  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
630      !D->getDeclContext()->isFunctionOrMethod())
631    return false;
632
633  // Types of valid local variables should be complete, so this should succeed.
634  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
635
636    // White-list anything with an __attribute__((unused)) type.
637    QualType Ty = VD->getType();
638
639    // Only look at the outermost level of typedef.
640    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
641      if (TT->getDecl()->hasAttr<UnusedAttr>())
642        return false;
643    }
644
645    // If we failed to complete the type for some reason, or if the type is
646    // dependent, don't diagnose the variable.
647    if (Ty->isIncompleteType() || Ty->isDependentType())
648      return false;
649
650    if (const TagType *TT = Ty->getAs<TagType>()) {
651      const TagDecl *Tag = TT->getDecl();
652      if (Tag->hasAttr<UnusedAttr>())
653        return false;
654
655      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
656        // FIXME: Checking for the presence of a user-declared constructor
657        // isn't completely accurate; we'd prefer to check that the initializer
658        // has no side effects.
659        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
660          return false;
661      }
662    }
663
664    // TODO: __attribute__((unused)) templates?
665  }
666
667  return true;
668}
669
670void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
671  if (!ShouldDiagnoseUnusedDecl(D))
672    return;
673
674  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
675    Diag(D->getLocation(), diag::warn_unused_exception_param)
676    << D->getDeclName();
677  else
678    Diag(D->getLocation(), diag::warn_unused_variable)
679    << D->getDeclName();
680}
681
682void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
683  if (S->decl_empty()) return;
684  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
685         "Scope shouldn't contain decls!");
686
687  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
688       I != E; ++I) {
689    Decl *TmpD = (*I);
690    assert(TmpD && "This decl didn't get pushed??");
691
692    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
693    NamedDecl *D = cast<NamedDecl>(TmpD);
694
695    if (!D->getDeclName()) continue;
696
697    // Diagnose unused variables in this scope.
698    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
699      DiagnoseUnusedDecl(D);
700
701    // Remove this name from our lexical scope.
702    IdResolver.RemoveDecl(D);
703  }
704}
705
706/// \brief Look for an Objective-C class in the translation unit.
707///
708/// \param Id The name of the Objective-C class we're looking for. If
709/// typo-correction fixes this name, the Id will be updated
710/// to the fixed name.
711///
712/// \param IdLoc The location of the name in the translation unit.
713///
714/// \param TypoCorrection If true, this routine will attempt typo correction
715/// if there is no class with the given name.
716///
717/// \returns The declaration of the named Objective-C class, or NULL if the
718/// class could not be found.
719ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
720                                              SourceLocation IdLoc,
721                                              bool TypoCorrection) {
722  // The third "scope" argument is 0 since we aren't enabling lazy built-in
723  // creation from this context.
724  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
725
726  if (!IDecl && TypoCorrection) {
727    // Perform typo correction at the given location, but only if we
728    // find an Objective-C class name.
729    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
730    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
731        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
732      Diag(IdLoc, diag::err_undef_interface_suggest)
733        << Id << IDecl->getDeclName()
734        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
735      Diag(IDecl->getLocation(), diag::note_previous_decl)
736        << IDecl->getDeclName();
737
738      Id = IDecl->getIdentifier();
739    }
740  }
741
742  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
743}
744
745/// getNonFieldDeclScope - Retrieves the innermost scope, starting
746/// from S, where a non-field would be declared. This routine copes
747/// with the difference between C and C++ scoping rules in structs and
748/// unions. For example, the following code is well-formed in C but
749/// ill-formed in C++:
750/// @code
751/// struct S6 {
752///   enum { BAR } e;
753/// };
754///
755/// void test_S6() {
756///   struct S6 a;
757///   a.e = BAR;
758/// }
759/// @endcode
760/// For the declaration of BAR, this routine will return a different
761/// scope. The scope S will be the scope of the unnamed enumeration
762/// within S6. In C++, this routine will return the scope associated
763/// with S6, because the enumeration's scope is a transparent
764/// context but structures can contain non-field names. In C, this
765/// routine will return the translation unit scope, since the
766/// enumeration's scope is a transparent context and structures cannot
767/// contain non-field names.
768Scope *Sema::getNonFieldDeclScope(Scope *S) {
769  while (((S->getFlags() & Scope::DeclScope) == 0) ||
770         (S->getEntity() &&
771          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
772         (S->isClassScope() && !getLangOptions().CPlusPlus))
773    S = S->getParent();
774  return S;
775}
776
777void Sema::InitBuiltinVaListType() {
778  if (!Context.getBuiltinVaListType().isNull())
779    return;
780
781  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
782  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
783                                       LookupOrdinaryName, ForRedeclaration);
784  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
785  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
786}
787
788/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
789/// file scope.  lazily create a decl for it. ForRedeclaration is true
790/// if we're creating this built-in in anticipation of redeclaring the
791/// built-in.
792NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
793                                     Scope *S, bool ForRedeclaration,
794                                     SourceLocation Loc) {
795  Builtin::ID BID = (Builtin::ID)bid;
796
797  if (Context.BuiltinInfo.hasVAListUse(BID))
798    InitBuiltinVaListType();
799
800  ASTContext::GetBuiltinTypeError Error;
801  QualType R = Context.GetBuiltinType(BID, Error);
802  switch (Error) {
803  case ASTContext::GE_None:
804    // Okay
805    break;
806
807  case ASTContext::GE_Missing_stdio:
808    if (ForRedeclaration)
809      Diag(Loc, diag::err_implicit_decl_requires_stdio)
810        << Context.BuiltinInfo.GetName(BID);
811    return 0;
812
813  case ASTContext::GE_Missing_setjmp:
814    if (ForRedeclaration)
815      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
816        << Context.BuiltinInfo.GetName(BID);
817    return 0;
818  }
819
820  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
821    Diag(Loc, diag::ext_implicit_lib_function_decl)
822      << Context.BuiltinInfo.GetName(BID)
823      << R;
824    if (Context.BuiltinInfo.getHeaderName(BID) &&
825        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
826          != Diagnostic::Ignored)
827      Diag(Loc, diag::note_please_include_header)
828        << Context.BuiltinInfo.getHeaderName(BID)
829        << Context.BuiltinInfo.GetName(BID);
830  }
831
832  FunctionDecl *New = FunctionDecl::Create(Context,
833                                           Context.getTranslationUnitDecl(),
834                                           Loc, II, R, /*TInfo=*/0,
835                                           FunctionDecl::Extern,
836                                           FunctionDecl::None, false,
837                                           /*hasPrototype=*/true);
838  New->setImplicit();
839
840  // Create Decl objects for each parameter, adding them to the
841  // FunctionDecl.
842  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
843    llvm::SmallVector<ParmVarDecl*, 16> Params;
844    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
845      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
846                                           FT->getArgType(i), /*TInfo=*/0,
847                                           VarDecl::None, VarDecl::None, 0));
848    New->setParams(Params.data(), Params.size());
849  }
850
851  AddKnownFunctionAttributes(New);
852
853  // TUScope is the translation-unit scope to insert this function into.
854  // FIXME: This is hideous. We need to teach PushOnScopeChains to
855  // relate Scopes to DeclContexts, and probably eliminate CurContext
856  // entirely, but we're not there yet.
857  DeclContext *SavedContext = CurContext;
858  CurContext = Context.getTranslationUnitDecl();
859  PushOnScopeChains(New, TUScope);
860  CurContext = SavedContext;
861  return New;
862}
863
864/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
865/// same name and scope as a previous declaration 'Old'.  Figure out
866/// how to resolve this situation, merging decls or emitting
867/// diagnostics as appropriate. If there was an error, set New to be invalid.
868///
869void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
870  // If the new decl is known invalid already, don't bother doing any
871  // merging checks.
872  if (New->isInvalidDecl()) return;
873
874  // Allow multiple definitions for ObjC built-in typedefs.
875  // FIXME: Verify the underlying types are equivalent!
876  if (getLangOptions().ObjC1) {
877    const IdentifierInfo *TypeID = New->getIdentifier();
878    switch (TypeID->getLength()) {
879    default: break;
880    case 2:
881      if (!TypeID->isStr("id"))
882        break;
883      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
884      // Install the built-in type for 'id', ignoring the current definition.
885      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
886      return;
887    case 5:
888      if (!TypeID->isStr("Class"))
889        break;
890      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
891      // Install the built-in type for 'Class', ignoring the current definition.
892      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
893      return;
894    case 3:
895      if (!TypeID->isStr("SEL"))
896        break;
897      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
898      // Install the built-in type for 'SEL', ignoring the current definition.
899      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
900      return;
901    case 8:
902      if (!TypeID->isStr("Protocol"))
903        break;
904      Context.setObjCProtoType(New->getUnderlyingType());
905      return;
906    }
907    // Fall through - the typedef name was not a builtin type.
908  }
909
910  // Verify the old decl was also a type.
911  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
912  if (!Old) {
913    Diag(New->getLocation(), diag::err_redefinition_different_kind)
914      << New->getDeclName();
915
916    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
917    if (OldD->getLocation().isValid())
918      Diag(OldD->getLocation(), diag::note_previous_definition);
919
920    return New->setInvalidDecl();
921  }
922
923  // If the old declaration is invalid, just give up here.
924  if (Old->isInvalidDecl())
925    return New->setInvalidDecl();
926
927  // Determine the "old" type we'll use for checking and diagnostics.
928  QualType OldType;
929  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
930    OldType = OldTypedef->getUnderlyingType();
931  else
932    OldType = Context.getTypeDeclType(Old);
933
934  // If the typedef types are not identical, reject them in all languages and
935  // with any extensions enabled.
936
937  if (OldType != New->getUnderlyingType() &&
938      Context.getCanonicalType(OldType) !=
939      Context.getCanonicalType(New->getUnderlyingType())) {
940    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
941      << New->getUnderlyingType() << OldType;
942    if (Old->getLocation().isValid())
943      Diag(Old->getLocation(), diag::note_previous_definition);
944    return New->setInvalidDecl();
945  }
946
947  // The types match.  Link up the redeclaration chain if the old
948  // declaration was a typedef.
949  // FIXME: this is a potential source of wierdness if the type
950  // spellings don't match exactly.
951  if (isa<TypedefDecl>(Old))
952    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
953
954  if (getLangOptions().Microsoft)
955    return;
956
957  if (getLangOptions().CPlusPlus) {
958    // C++ [dcl.typedef]p2:
959    //   In a given non-class scope, a typedef specifier can be used to
960    //   redefine the name of any type declared in that scope to refer
961    //   to the type to which it already refers.
962    if (!isa<CXXRecordDecl>(CurContext))
963      return;
964
965    // C++0x [dcl.typedef]p4:
966    //   In a given class scope, a typedef specifier can be used to redefine
967    //   any class-name declared in that scope that is not also a typedef-name
968    //   to refer to the type to which it already refers.
969    //
970    // This wording came in via DR424, which was a correction to the
971    // wording in DR56, which accidentally banned code like:
972    //
973    //   struct S {
974    //     typedef struct A { } A;
975    //   };
976    //
977    // in the C++03 standard. We implement the C++0x semantics, which
978    // allow the above but disallow
979    //
980    //   struct S {
981    //     typedef int I;
982    //     typedef int I;
983    //   };
984    //
985    // since that was the intent of DR56.
986    if (!isa<TypedefDecl >(Old))
987      return;
988
989    Diag(New->getLocation(), diag::err_redefinition)
990      << New->getDeclName();
991    Diag(Old->getLocation(), diag::note_previous_definition);
992    return New->setInvalidDecl();
993  }
994
995  // If we have a redefinition of a typedef in C, emit a warning.  This warning
996  // is normally mapped to an error, but can be controlled with
997  // -Wtypedef-redefinition.  If either the original or the redefinition is
998  // in a system header, don't emit this for compatibility with GCC.
999  if (getDiagnostics().getSuppressSystemWarnings() &&
1000      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1001       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1002    return;
1003
1004  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1005    << New->getDeclName();
1006  Diag(Old->getLocation(), diag::note_previous_definition);
1007  return;
1008}
1009
1010/// DeclhasAttr - returns true if decl Declaration already has the target
1011/// attribute.
1012static bool
1013DeclHasAttr(const Decl *D, const Attr *A) {
1014  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1015  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1016    if ((*i)->getKind() == A->getKind()) {
1017      // FIXME: Don't hardcode this check
1018      if (OA && isa<OwnershipAttr>(*i))
1019        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1020      return true;
1021    }
1022
1023  return false;
1024}
1025
1026/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1027static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1028  if (!Old->hasAttrs())
1029    return;
1030  // Ensure that any moving of objects within the allocated map is done before
1031  // we process them.
1032  if (!New->hasAttrs())
1033    New->setAttrs(AttrVec());
1034  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1035       ++i) {
1036    // FIXME: Make this more general than just checking for Overloadable.
1037    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1038      Attr *NewAttr = (*i)->clone(C);
1039      NewAttr->setInherited(true);
1040      New->addAttr(NewAttr);
1041    }
1042  }
1043}
1044
1045namespace {
1046
1047/// Used in MergeFunctionDecl to keep track of function parameters in
1048/// C.
1049struct GNUCompatibleParamWarning {
1050  ParmVarDecl *OldParm;
1051  ParmVarDecl *NewParm;
1052  QualType PromotedType;
1053};
1054
1055}
1056
1057/// getSpecialMember - get the special member enum for a method.
1058Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1059  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1060    if (Ctor->isCopyConstructor())
1061      return Sema::CXXCopyConstructor;
1062
1063    return Sema::CXXConstructor;
1064  }
1065
1066  if (isa<CXXDestructorDecl>(MD))
1067    return Sema::CXXDestructor;
1068
1069  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
1070  return Sema::CXXCopyAssignment;
1071}
1072
1073/// canRedefineFunction - checks if a function can be redefined. Currently,
1074/// only extern inline functions can be redefined, and even then only in
1075/// GNU89 mode.
1076static bool canRedefineFunction(const FunctionDecl *FD,
1077                                const LangOptions& LangOpts) {
1078  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1079          FD->isInlineSpecified() &&
1080          FD->getStorageClass() == FunctionDecl::Extern);
1081}
1082
1083/// MergeFunctionDecl - We just parsed a function 'New' from
1084/// declarator D which has the same name and scope as a previous
1085/// declaration 'Old'.  Figure out how to resolve this situation,
1086/// merging decls or emitting diagnostics as appropriate.
1087///
1088/// In C++, New and Old must be declarations that are not
1089/// overloaded. Use IsOverload to determine whether New and Old are
1090/// overloaded, and to select the Old declaration that New should be
1091/// merged with.
1092///
1093/// Returns true if there was an error, false otherwise.
1094bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1095  // Verify the old decl was also a function.
1096  FunctionDecl *Old = 0;
1097  if (FunctionTemplateDecl *OldFunctionTemplate
1098        = dyn_cast<FunctionTemplateDecl>(OldD))
1099    Old = OldFunctionTemplate->getTemplatedDecl();
1100  else
1101    Old = dyn_cast<FunctionDecl>(OldD);
1102  if (!Old) {
1103    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1104      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1105      Diag(Shadow->getTargetDecl()->getLocation(),
1106           diag::note_using_decl_target);
1107      Diag(Shadow->getUsingDecl()->getLocation(),
1108           diag::note_using_decl) << 0;
1109      return true;
1110    }
1111
1112    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1113      << New->getDeclName();
1114    Diag(OldD->getLocation(), diag::note_previous_definition);
1115    return true;
1116  }
1117
1118  // Determine whether the previous declaration was a definition,
1119  // implicit declaration, or a declaration.
1120  diag::kind PrevDiag;
1121  if (Old->isThisDeclarationADefinition())
1122    PrevDiag = diag::note_previous_definition;
1123  else if (Old->isImplicit())
1124    PrevDiag = diag::note_previous_implicit_declaration;
1125  else
1126    PrevDiag = diag::note_previous_declaration;
1127
1128  QualType OldQType = Context.getCanonicalType(Old->getType());
1129  QualType NewQType = Context.getCanonicalType(New->getType());
1130
1131  // Don't complain about this if we're in GNU89 mode and the old function
1132  // is an extern inline function.
1133  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1134      New->getStorageClass() == FunctionDecl::Static &&
1135      Old->getStorageClass() != FunctionDecl::Static &&
1136      !canRedefineFunction(Old, getLangOptions())) {
1137    Diag(New->getLocation(), diag::err_static_non_static)
1138      << New;
1139    Diag(Old->getLocation(), PrevDiag);
1140    return true;
1141  }
1142
1143  // If a function is first declared with a calling convention, but is
1144  // later declared or defined without one, the second decl assumes the
1145  // calling convention of the first.
1146  //
1147  // For the new decl, we have to look at the NON-canonical type to tell the
1148  // difference between a function that really doesn't have a calling
1149  // convention and one that is declared cdecl. That's because in
1150  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1151  // because it is the default calling convention.
1152  //
1153  // Note also that we DO NOT return at this point, because we still have
1154  // other tests to run.
1155  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1156  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1157  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1158  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1159  if (OldTypeInfo.getCC() != CC_Default &&
1160      NewTypeInfo.getCC() == CC_Default) {
1161    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1162    New->setType(NewQType);
1163    NewQType = Context.getCanonicalType(NewQType);
1164  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1165                                     NewTypeInfo.getCC())) {
1166    // Calling conventions really aren't compatible, so complain.
1167    Diag(New->getLocation(), diag::err_cconv_change)
1168      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1169      << (OldTypeInfo.getCC() == CC_Default)
1170      << (OldTypeInfo.getCC() == CC_Default ? "" :
1171          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1172    Diag(Old->getLocation(), diag::note_previous_declaration);
1173    return true;
1174  }
1175
1176  // FIXME: diagnose the other way around?
1177  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1178    NewQType = Context.getNoReturnType(NewQType);
1179    New->setType(NewQType);
1180    assert(NewQType.isCanonical());
1181  }
1182
1183  // Merge regparm attribute.
1184  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1185    if (NewType->getRegParmType()) {
1186      Diag(New->getLocation(), diag::err_regparm_mismatch)
1187        << NewType->getRegParmType()
1188        << OldType->getRegParmType();
1189      Diag(Old->getLocation(), diag::note_previous_declaration);
1190      return true;
1191    }
1192
1193    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1194    New->setType(NewQType);
1195    assert(NewQType.isCanonical());
1196  }
1197
1198  if (getLangOptions().CPlusPlus) {
1199    // (C++98 13.1p2):
1200    //   Certain function declarations cannot be overloaded:
1201    //     -- Function declarations that differ only in the return type
1202    //        cannot be overloaded.
1203    QualType OldReturnType
1204      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1205    QualType NewReturnType
1206      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1207    QualType ResQT;
1208    if (OldReturnType != NewReturnType) {
1209      if (NewReturnType->isObjCObjectPointerType()
1210          && OldReturnType->isObjCObjectPointerType())
1211        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1212      if (ResQT.isNull()) {
1213        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1214        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1215        return true;
1216      }
1217      else
1218        NewQType = ResQT;
1219    }
1220
1221    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1222    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1223    if (OldMethod && NewMethod) {
1224      // Preserve triviality.
1225      NewMethod->setTrivial(OldMethod->isTrivial());
1226
1227      bool isFriend = NewMethod->getFriendObjectKind();
1228
1229      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1230        //    -- Member function declarations with the same name and the
1231        //       same parameter types cannot be overloaded if any of them
1232        //       is a static member function declaration.
1233        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1234          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1235          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1236          return true;
1237        }
1238
1239        // C++ [class.mem]p1:
1240        //   [...] A member shall not be declared twice in the
1241        //   member-specification, except that a nested class or member
1242        //   class template can be declared and then later defined.
1243        unsigned NewDiag;
1244        if (isa<CXXConstructorDecl>(OldMethod))
1245          NewDiag = diag::err_constructor_redeclared;
1246        else if (isa<CXXDestructorDecl>(NewMethod))
1247          NewDiag = diag::err_destructor_redeclared;
1248        else if (isa<CXXConversionDecl>(NewMethod))
1249          NewDiag = diag::err_conv_function_redeclared;
1250        else
1251          NewDiag = diag::err_member_redeclared;
1252
1253        Diag(New->getLocation(), NewDiag);
1254        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1255
1256      // Complain if this is an explicit declaration of a special
1257      // member that was initially declared implicitly.
1258      //
1259      // As an exception, it's okay to befriend such methods in order
1260      // to permit the implicit constructor/destructor/operator calls.
1261      } else if (OldMethod->isImplicit()) {
1262        if (isFriend) {
1263          NewMethod->setImplicit();
1264        } else {
1265          Diag(NewMethod->getLocation(),
1266               diag::err_definition_of_implicitly_declared_member)
1267            << New << getSpecialMember(OldMethod);
1268          return true;
1269        }
1270      }
1271    }
1272
1273    // (C++98 8.3.5p3):
1274    //   All declarations for a function shall agree exactly in both the
1275    //   return type and the parameter-type-list.
1276    // attributes should be ignored when comparing.
1277    if (Context.getNoReturnType(OldQType, false) ==
1278        Context.getNoReturnType(NewQType, false))
1279      return MergeCompatibleFunctionDecls(New, Old);
1280
1281    // Fall through for conflicting redeclarations and redefinitions.
1282  }
1283
1284  // C: Function types need to be compatible, not identical. This handles
1285  // duplicate function decls like "void f(int); void f(enum X);" properly.
1286  if (!getLangOptions().CPlusPlus &&
1287      Context.typesAreCompatible(OldQType, NewQType)) {
1288    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1289    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1290    const FunctionProtoType *OldProto = 0;
1291    if (isa<FunctionNoProtoType>(NewFuncType) &&
1292        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1293      // The old declaration provided a function prototype, but the
1294      // new declaration does not. Merge in the prototype.
1295      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1296      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1297                                                 OldProto->arg_type_end());
1298      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1299                                         ParamTypes.data(), ParamTypes.size(),
1300                                         OldProto->isVariadic(),
1301                                         OldProto->getTypeQuals(),
1302                                         false, false, 0, 0,
1303                                         OldProto->getExtInfo());
1304      New->setType(NewQType);
1305      New->setHasInheritedPrototype();
1306
1307      // Synthesize a parameter for each argument type.
1308      llvm::SmallVector<ParmVarDecl*, 16> Params;
1309      for (FunctionProtoType::arg_type_iterator
1310             ParamType = OldProto->arg_type_begin(),
1311             ParamEnd = OldProto->arg_type_end();
1312           ParamType != ParamEnd; ++ParamType) {
1313        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1314                                                 SourceLocation(), 0,
1315                                                 *ParamType, /*TInfo=*/0,
1316                                                 VarDecl::None, VarDecl::None,
1317                                                 0);
1318        Param->setImplicit();
1319        Params.push_back(Param);
1320      }
1321
1322      New->setParams(Params.data(), Params.size());
1323    }
1324
1325    return MergeCompatibleFunctionDecls(New, Old);
1326  }
1327
1328  // GNU C permits a K&R definition to follow a prototype declaration
1329  // if the declared types of the parameters in the K&R definition
1330  // match the types in the prototype declaration, even when the
1331  // promoted types of the parameters from the K&R definition differ
1332  // from the types in the prototype. GCC then keeps the types from
1333  // the prototype.
1334  //
1335  // If a variadic prototype is followed by a non-variadic K&R definition,
1336  // the K&R definition becomes variadic.  This is sort of an edge case, but
1337  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1338  // C99 6.9.1p8.
1339  if (!getLangOptions().CPlusPlus &&
1340      Old->hasPrototype() && !New->hasPrototype() &&
1341      New->getType()->getAs<FunctionProtoType>() &&
1342      Old->getNumParams() == New->getNumParams()) {
1343    llvm::SmallVector<QualType, 16> ArgTypes;
1344    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1345    const FunctionProtoType *OldProto
1346      = Old->getType()->getAs<FunctionProtoType>();
1347    const FunctionProtoType *NewProto
1348      = New->getType()->getAs<FunctionProtoType>();
1349
1350    // Determine whether this is the GNU C extension.
1351    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1352                                               NewProto->getResultType());
1353    bool LooseCompatible = !MergedReturn.isNull();
1354    for (unsigned Idx = 0, End = Old->getNumParams();
1355         LooseCompatible && Idx != End; ++Idx) {
1356      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1357      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1358      if (Context.typesAreCompatible(OldParm->getType(),
1359                                     NewProto->getArgType(Idx))) {
1360        ArgTypes.push_back(NewParm->getType());
1361      } else if (Context.typesAreCompatible(OldParm->getType(),
1362                                            NewParm->getType(),
1363                                            /*CompareUnqualified=*/true)) {
1364        GNUCompatibleParamWarning Warn
1365          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1366        Warnings.push_back(Warn);
1367        ArgTypes.push_back(NewParm->getType());
1368      } else
1369        LooseCompatible = false;
1370    }
1371
1372    if (LooseCompatible) {
1373      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1374        Diag(Warnings[Warn].NewParm->getLocation(),
1375             diag::ext_param_promoted_not_compatible_with_prototype)
1376          << Warnings[Warn].PromotedType
1377          << Warnings[Warn].OldParm->getType();
1378        if (Warnings[Warn].OldParm->getLocation().isValid())
1379          Diag(Warnings[Warn].OldParm->getLocation(),
1380               diag::note_previous_declaration);
1381      }
1382
1383      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1384                                           ArgTypes.size(),
1385                                           OldProto->isVariadic(), 0,
1386                                           false, false, 0, 0,
1387                                           OldProto->getExtInfo()));
1388      return MergeCompatibleFunctionDecls(New, Old);
1389    }
1390
1391    // Fall through to diagnose conflicting types.
1392  }
1393
1394  // A function that has already been declared has been redeclared or defined
1395  // with a different type- show appropriate diagnostic
1396  if (unsigned BuiltinID = Old->getBuiltinID()) {
1397    // The user has declared a builtin function with an incompatible
1398    // signature.
1399    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1400      // The function the user is redeclaring is a library-defined
1401      // function like 'malloc' or 'printf'. Warn about the
1402      // redeclaration, then pretend that we don't know about this
1403      // library built-in.
1404      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1405      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1406        << Old << Old->getType();
1407      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1408      Old->setInvalidDecl();
1409      return false;
1410    }
1411
1412    PrevDiag = diag::note_previous_builtin_declaration;
1413  }
1414
1415  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1416  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1417  return true;
1418}
1419
1420/// \brief Completes the merge of two function declarations that are
1421/// known to be compatible.
1422///
1423/// This routine handles the merging of attributes and other
1424/// properties of function declarations form the old declaration to
1425/// the new declaration, once we know that New is in fact a
1426/// redeclaration of Old.
1427///
1428/// \returns false
1429bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1430  // Merge the attributes
1431  MergeDeclAttributes(New, Old, Context);
1432
1433  // Merge the storage class.
1434  if (Old->getStorageClass() != FunctionDecl::Extern &&
1435      Old->getStorageClass() != FunctionDecl::None)
1436    New->setStorageClass(Old->getStorageClass());
1437
1438  // Merge "pure" flag.
1439  if (Old->isPure())
1440    New->setPure();
1441
1442  // Merge the "deleted" flag.
1443  if (Old->isDeleted())
1444    New->setDeleted();
1445
1446  if (getLangOptions().CPlusPlus)
1447    return MergeCXXFunctionDecl(New, Old);
1448
1449  return false;
1450}
1451
1452/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1453/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1454/// situation, merging decls or emitting diagnostics as appropriate.
1455///
1456/// Tentative definition rules (C99 6.9.2p2) are checked by
1457/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1458/// definitions here, since the initializer hasn't been attached.
1459///
1460void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1461  // If the new decl is already invalid, don't do any other checking.
1462  if (New->isInvalidDecl())
1463    return;
1464
1465  // Verify the old decl was also a variable.
1466  VarDecl *Old = 0;
1467  if (!Previous.isSingleResult() ||
1468      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1469    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1470      << New->getDeclName();
1471    Diag(Previous.getRepresentativeDecl()->getLocation(),
1472         diag::note_previous_definition);
1473    return New->setInvalidDecl();
1474  }
1475
1476  MergeDeclAttributes(New, Old, Context);
1477
1478  // Merge the types
1479  QualType MergedT;
1480  if (getLangOptions().CPlusPlus) {
1481    if (Context.hasSameType(New->getType(), Old->getType()))
1482      MergedT = New->getType();
1483    // C++ [basic.link]p10:
1484    //   [...] the types specified by all declarations referring to a given
1485    //   object or function shall be identical, except that declarations for an
1486    //   array object can specify array types that differ by the presence or
1487    //   absence of a major array bound (8.3.4).
1488    else if (Old->getType()->isIncompleteArrayType() &&
1489             New->getType()->isArrayType()) {
1490      CanQual<ArrayType> OldArray
1491        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1492      CanQual<ArrayType> NewArray
1493        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1494      if (OldArray->getElementType() == NewArray->getElementType())
1495        MergedT = New->getType();
1496    } else if (Old->getType()->isArrayType() &&
1497             New->getType()->isIncompleteArrayType()) {
1498      CanQual<ArrayType> OldArray
1499        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1500      CanQual<ArrayType> NewArray
1501        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1502      if (OldArray->getElementType() == NewArray->getElementType())
1503        MergedT = Old->getType();
1504    } else if (New->getType()->isObjCObjectPointerType()
1505               && Old->getType()->isObjCObjectPointerType()) {
1506        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1507    }
1508  } else {
1509    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1510  }
1511  if (MergedT.isNull()) {
1512    Diag(New->getLocation(), diag::err_redefinition_different_type)
1513      << New->getDeclName();
1514    Diag(Old->getLocation(), diag::note_previous_definition);
1515    return New->setInvalidDecl();
1516  }
1517  New->setType(MergedT);
1518
1519  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1520  if (New->getStorageClass() == VarDecl::Static &&
1521      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1522    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1523    Diag(Old->getLocation(), diag::note_previous_definition);
1524    return New->setInvalidDecl();
1525  }
1526  // C99 6.2.2p4:
1527  //   For an identifier declared with the storage-class specifier
1528  //   extern in a scope in which a prior declaration of that
1529  //   identifier is visible,23) if the prior declaration specifies
1530  //   internal or external linkage, the linkage of the identifier at
1531  //   the later declaration is the same as the linkage specified at
1532  //   the prior declaration. If no prior declaration is visible, or
1533  //   if the prior declaration specifies no linkage, then the
1534  //   identifier has external linkage.
1535  if (New->hasExternalStorage() && Old->hasLinkage())
1536    /* Okay */;
1537  else if (New->getStorageClass() != VarDecl::Static &&
1538           Old->getStorageClass() == VarDecl::Static) {
1539    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1540    Diag(Old->getLocation(), diag::note_previous_definition);
1541    return New->setInvalidDecl();
1542  }
1543
1544  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1545
1546  // FIXME: The test for external storage here seems wrong? We still
1547  // need to check for mismatches.
1548  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1549      // Don't complain about out-of-line definitions of static members.
1550      !(Old->getLexicalDeclContext()->isRecord() &&
1551        !New->getLexicalDeclContext()->isRecord())) {
1552    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1553    Diag(Old->getLocation(), diag::note_previous_definition);
1554    return New->setInvalidDecl();
1555  }
1556
1557  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1558    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1559    Diag(Old->getLocation(), diag::note_previous_definition);
1560  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1561    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1562    Diag(Old->getLocation(), diag::note_previous_definition);
1563  }
1564
1565  // C++ doesn't have tentative definitions, so go right ahead and check here.
1566  const VarDecl *Def;
1567  if (getLangOptions().CPlusPlus &&
1568      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1569      (Def = Old->getDefinition())) {
1570    Diag(New->getLocation(), diag::err_redefinition)
1571      << New->getDeclName();
1572    Diag(Def->getLocation(), diag::note_previous_definition);
1573    New->setInvalidDecl();
1574    return;
1575  }
1576  // c99 6.2.2 P4.
1577  // For an identifier declared with the storage-class specifier extern in a
1578  // scope in which a prior declaration of that identifier is visible, if
1579  // the prior declaration specifies internal or external linkage, the linkage
1580  // of the identifier at the later declaration is the same as the linkage
1581  // specified at the prior declaration.
1582  // FIXME. revisit this code.
1583  if (New->hasExternalStorage() &&
1584      Old->getLinkage() == InternalLinkage &&
1585      New->getDeclContext() == Old->getDeclContext())
1586    New->setStorageClass(Old->getStorageClass());
1587
1588  // Keep a chain of previous declarations.
1589  New->setPreviousDeclaration(Old);
1590
1591  // Inherit access appropriately.
1592  New->setAccess(Old->getAccess());
1593}
1594
1595/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1596/// no declarator (e.g. "struct foo;") is parsed.
1597Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1598                                            DeclSpec &DS) {
1599  // FIXME: Error on auto/register at file scope
1600  // FIXME: Error on inline/virtual/explicit
1601  // FIXME: Warn on useless __thread
1602  // FIXME: Warn on useless const/volatile
1603  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1604  // FIXME: Warn on useless attributes
1605  Decl *TagD = 0;
1606  TagDecl *Tag = 0;
1607  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1608      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1609      DS.getTypeSpecType() == DeclSpec::TST_union ||
1610      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1611    TagD = DS.getRepAsDecl();
1612
1613    if (!TagD) // We probably had an error
1614      return 0;
1615
1616    // Note that the above type specs guarantee that the
1617    // type rep is a Decl, whereas in many of the others
1618    // it's a Type.
1619    Tag = dyn_cast<TagDecl>(TagD);
1620  }
1621
1622  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1623    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1624    // or incomplete types shall not be restrict-qualified."
1625    if (TypeQuals & DeclSpec::TQ_restrict)
1626      Diag(DS.getRestrictSpecLoc(),
1627           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1628           << DS.getSourceRange();
1629  }
1630
1631  if (DS.isFriendSpecified()) {
1632    // If we're dealing with a class template decl, assume that the
1633    // template routines are handling it.
1634    if (TagD && isa<ClassTemplateDecl>(TagD))
1635      return 0;
1636    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1637  }
1638
1639  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1640    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1641
1642    if (!Record->getDeclName() && Record->isDefinition() &&
1643        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1644      if (getLangOptions().CPlusPlus ||
1645          Record->getDeclContext()->isRecord())
1646        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1647
1648      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1649        << DS.getSourceRange();
1650    }
1651
1652    // Microsoft allows unnamed struct/union fields. Don't complain
1653    // about them.
1654    // FIXME: Should we support Microsoft's extensions in this area?
1655    if (Record->getDeclName() && getLangOptions().Microsoft)
1656      return Tag;
1657  }
1658
1659  if (getLangOptions().CPlusPlus &&
1660      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1661    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1662      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1663          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1664        Diag(Enum->getLocation(), diag::ext_no_declarators)
1665          << DS.getSourceRange();
1666
1667  if (!DS.isMissingDeclaratorOk() &&
1668      DS.getTypeSpecType() != DeclSpec::TST_error) {
1669    // Warn about typedefs of enums without names, since this is an
1670    // extension in both Microsoft and GNU.
1671    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1672        Tag && isa<EnumDecl>(Tag)) {
1673      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1674        << DS.getSourceRange();
1675      return Tag;
1676    }
1677
1678    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1679      << DS.getSourceRange();
1680  }
1681
1682  return TagD;
1683}
1684
1685/// We are trying to inject an anonymous member into the given scope;
1686/// check if there's an existing declaration that can't be overloaded.
1687///
1688/// \return true if this is a forbidden redeclaration
1689static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1690                                         Scope *S,
1691                                         DeclContext *Owner,
1692                                         DeclarationName Name,
1693                                         SourceLocation NameLoc,
1694                                         unsigned diagnostic) {
1695  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1696                 Sema::ForRedeclaration);
1697  if (!SemaRef.LookupName(R, S)) return false;
1698
1699  if (R.getAsSingle<TagDecl>())
1700    return false;
1701
1702  // Pick a representative declaration.
1703  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1704  if (PrevDecl && Owner->isRecord()) {
1705    RecordDecl *Record = cast<RecordDecl>(Owner);
1706    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1707      return false;
1708  }
1709
1710  SemaRef.Diag(NameLoc, diagnostic) << Name;
1711  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1712
1713  return true;
1714}
1715
1716/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1717/// anonymous struct or union AnonRecord into the owning context Owner
1718/// and scope S. This routine will be invoked just after we realize
1719/// that an unnamed union or struct is actually an anonymous union or
1720/// struct, e.g.,
1721///
1722/// @code
1723/// union {
1724///   int i;
1725///   float f;
1726/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1727///    // f into the surrounding scope.x
1728/// @endcode
1729///
1730/// This routine is recursive, injecting the names of nested anonymous
1731/// structs/unions into the owning context and scope as well.
1732static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1733                                                DeclContext *Owner,
1734                                                RecordDecl *AnonRecord,
1735                                                AccessSpecifier AS) {
1736  unsigned diagKind
1737    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1738                            : diag::err_anonymous_struct_member_redecl;
1739
1740  bool Invalid = false;
1741  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1742                               FEnd = AnonRecord->field_end();
1743       F != FEnd; ++F) {
1744    if ((*F)->getDeclName()) {
1745      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1746                                       (*F)->getLocation(), diagKind)) {
1747        // C++ [class.union]p2:
1748        //   The names of the members of an anonymous union shall be
1749        //   distinct from the names of any other entity in the
1750        //   scope in which the anonymous union is declared.
1751        Invalid = true;
1752      } else {
1753        // C++ [class.union]p2:
1754        //   For the purpose of name lookup, after the anonymous union
1755        //   definition, the members of the anonymous union are
1756        //   considered to have been defined in the scope in which the
1757        //   anonymous union is declared.
1758        Owner->makeDeclVisibleInContext(*F);
1759        S->AddDecl(*F);
1760        SemaRef.IdResolver.AddDecl(*F);
1761
1762        // That includes picking up the appropriate access specifier.
1763        if (AS != AS_none) (*F)->setAccess(AS);
1764      }
1765    } else if (const RecordType *InnerRecordType
1766                 = (*F)->getType()->getAs<RecordType>()) {
1767      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1768      if (InnerRecord->isAnonymousStructOrUnion())
1769        Invalid = Invalid ||
1770          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1771                                              InnerRecord, AS);
1772    }
1773  }
1774
1775  return Invalid;
1776}
1777
1778/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1779/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1780/// illegal input values are mapped to VarDecl::None.
1781static VarDecl::StorageClass
1782StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1783  switch (StorageClassSpec) {
1784  case DeclSpec::SCS_unspecified:    return VarDecl::None;
1785  case DeclSpec::SCS_extern:         return VarDecl::Extern;
1786  case DeclSpec::SCS_static:         return VarDecl::Static;
1787  case DeclSpec::SCS_auto:           return VarDecl::Auto;
1788  case DeclSpec::SCS_register:       return VarDecl::Register;
1789  case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
1790    // Illegal SCSs map to None: error reporting is up to the caller.
1791  case DeclSpec::SCS_mutable:        // Fall through.
1792  case DeclSpec::SCS_typedef:        return VarDecl::None;
1793  }
1794  llvm_unreachable("unknown storage class specifier");
1795}
1796
1797/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1798/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
1799/// illegal input values are mapped to FunctionDecl::None.
1800static FunctionDecl::StorageClass
1801StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1802  switch (StorageClassSpec) {
1803  case DeclSpec::SCS_unspecified:    return FunctionDecl::None;
1804  case DeclSpec::SCS_extern:         return FunctionDecl::Extern;
1805  case DeclSpec::SCS_static:         return FunctionDecl::Static;
1806  case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
1807    // Illegal SCSs map to None: error reporting is up to the caller.
1808  case DeclSpec::SCS_auto:           // Fall through.
1809  case DeclSpec::SCS_mutable:        // Fall through.
1810  case DeclSpec::SCS_register:       // Fall through.
1811  case DeclSpec::SCS_typedef:        return FunctionDecl::None;
1812  }
1813  llvm_unreachable("unknown storage class specifier");
1814}
1815
1816/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1817/// anonymous structure or union. Anonymous unions are a C++ feature
1818/// (C++ [class.union]) and a GNU C extension; anonymous structures
1819/// are a GNU C and GNU C++ extension.
1820Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1821                                             AccessSpecifier AS,
1822                                             RecordDecl *Record) {
1823  DeclContext *Owner = Record->getDeclContext();
1824
1825  // Diagnose whether this anonymous struct/union is an extension.
1826  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1827    Diag(Record->getLocation(), diag::ext_anonymous_union);
1828  else if (!Record->isUnion())
1829    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1830
1831  // C and C++ require different kinds of checks for anonymous
1832  // structs/unions.
1833  bool Invalid = false;
1834  if (getLangOptions().CPlusPlus) {
1835    const char* PrevSpec = 0;
1836    unsigned DiagID;
1837    // C++ [class.union]p3:
1838    //   Anonymous unions declared in a named namespace or in the
1839    //   global namespace shall be declared static.
1840    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1841        (isa<TranslationUnitDecl>(Owner) ||
1842         (isa<NamespaceDecl>(Owner) &&
1843          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1844      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1845      Invalid = true;
1846
1847      // Recover by adding 'static'.
1848      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1849                             PrevSpec, DiagID);
1850    }
1851    // C++ [class.union]p3:
1852    //   A storage class is not allowed in a declaration of an
1853    //   anonymous union in a class scope.
1854    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1855             isa<RecordDecl>(Owner)) {
1856      Diag(DS.getStorageClassSpecLoc(),
1857           diag::err_anonymous_union_with_storage_spec);
1858      Invalid = true;
1859
1860      // Recover by removing the storage specifier.
1861      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1862                             PrevSpec, DiagID);
1863    }
1864
1865    // C++ [class.union]p2:
1866    //   The member-specification of an anonymous union shall only
1867    //   define non-static data members. [Note: nested types and
1868    //   functions cannot be declared within an anonymous union. ]
1869    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1870                                 MemEnd = Record->decls_end();
1871         Mem != MemEnd; ++Mem) {
1872      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1873        // C++ [class.union]p3:
1874        //   An anonymous union shall not have private or protected
1875        //   members (clause 11).
1876        assert(FD->getAccess() != AS_none);
1877        if (FD->getAccess() != AS_public) {
1878          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1879            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1880          Invalid = true;
1881        }
1882
1883        if (CheckNontrivialField(FD))
1884          Invalid = true;
1885      } else if ((*Mem)->isImplicit()) {
1886        // Any implicit members are fine.
1887      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1888        // This is a type that showed up in an
1889        // elaborated-type-specifier inside the anonymous struct or
1890        // union, but which actually declares a type outside of the
1891        // anonymous struct or union. It's okay.
1892      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1893        if (!MemRecord->isAnonymousStructOrUnion() &&
1894            MemRecord->getDeclName()) {
1895          // This is a nested type declaration.
1896          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1897            << (int)Record->isUnion();
1898          Invalid = true;
1899        }
1900      } else if (isa<AccessSpecDecl>(*Mem)) {
1901        // Any access specifier is fine.
1902      } else {
1903        // We have something that isn't a non-static data
1904        // member. Complain about it.
1905        unsigned DK = diag::err_anonymous_record_bad_member;
1906        if (isa<TypeDecl>(*Mem))
1907          DK = diag::err_anonymous_record_with_type;
1908        else if (isa<FunctionDecl>(*Mem))
1909          DK = diag::err_anonymous_record_with_function;
1910        else if (isa<VarDecl>(*Mem))
1911          DK = diag::err_anonymous_record_with_static;
1912        Diag((*Mem)->getLocation(), DK)
1913            << (int)Record->isUnion();
1914          Invalid = true;
1915      }
1916    }
1917  }
1918
1919  if (!Record->isUnion() && !Owner->isRecord()) {
1920    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1921      << (int)getLangOptions().CPlusPlus;
1922    Invalid = true;
1923  }
1924
1925  // Mock up a declarator.
1926  Declarator Dc(DS, Declarator::TypeNameContext);
1927  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1928  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1929
1930  // Create a declaration for this anonymous struct/union.
1931  NamedDecl *Anon = 0;
1932  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1933    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1934                             /*IdentifierInfo=*/0,
1935                             Context.getTypeDeclType(Record),
1936                             TInfo,
1937                             /*BitWidth=*/0, /*Mutable=*/false);
1938    Anon->setAccess(AS);
1939    if (getLangOptions().CPlusPlus) {
1940      FieldCollector->Add(cast<FieldDecl>(Anon));
1941      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1942        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1943    }
1944  } else {
1945    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1946    assert(SCSpec != DeclSpec::SCS_typedef &&
1947           "Parser allowed 'typedef' as storage class VarDecl.");
1948    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1949    if (SCSpec == DeclSpec::SCS_mutable) {
1950      // mutable can only appear on non-static class members, so it's always
1951      // an error here
1952      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1953      Invalid = true;
1954      SC = VarDecl::None;
1955    }
1956    SCSpec = DS.getStorageClassSpecAsWritten();
1957    VarDecl::StorageClass SCAsWritten
1958      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1959
1960    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1961                           /*IdentifierInfo=*/0,
1962                           Context.getTypeDeclType(Record),
1963                           TInfo, SC, SCAsWritten);
1964  }
1965  Anon->setImplicit();
1966
1967  // Add the anonymous struct/union object to the current
1968  // context. We'll be referencing this object when we refer to one of
1969  // its members.
1970  Owner->addDecl(Anon);
1971
1972  // Inject the members of the anonymous struct/union into the owning
1973  // context and into the identifier resolver chain for name lookup
1974  // purposes.
1975  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1976    Invalid = true;
1977
1978  // Mark this as an anonymous struct/union type. Note that we do not
1979  // do this until after we have already checked and injected the
1980  // members of this anonymous struct/union type, because otherwise
1981  // the members could be injected twice: once by DeclContext when it
1982  // builds its lookup table, and once by
1983  // InjectAnonymousStructOrUnionMembers.
1984  Record->setAnonymousStructOrUnion(true);
1985
1986  if (Invalid)
1987    Anon->setInvalidDecl();
1988
1989  return Anon;
1990}
1991
1992
1993/// GetNameForDeclarator - Determine the full declaration name for the
1994/// given Declarator.
1995DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
1996  return GetNameFromUnqualifiedId(D.getName());
1997}
1998
1999/// \brief Retrieves the declaration name from a parsed unqualified-id.
2000DeclarationNameInfo
2001Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2002  DeclarationNameInfo NameInfo;
2003  NameInfo.setLoc(Name.StartLocation);
2004
2005  switch (Name.getKind()) {
2006
2007  case UnqualifiedId::IK_Identifier:
2008    NameInfo.setName(Name.Identifier);
2009    NameInfo.setLoc(Name.StartLocation);
2010    return NameInfo;
2011
2012  case UnqualifiedId::IK_OperatorFunctionId:
2013    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2014                                           Name.OperatorFunctionId.Operator));
2015    NameInfo.setLoc(Name.StartLocation);
2016    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2017      = Name.OperatorFunctionId.SymbolLocations[0];
2018    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2019      = Name.EndLocation.getRawEncoding();
2020    return NameInfo;
2021
2022  case UnqualifiedId::IK_LiteralOperatorId:
2023    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2024                                                           Name.Identifier));
2025    NameInfo.setLoc(Name.StartLocation);
2026    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2027    return NameInfo;
2028
2029  case UnqualifiedId::IK_ConversionFunctionId: {
2030    TypeSourceInfo *TInfo;
2031    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2032    if (Ty.isNull())
2033      return DeclarationNameInfo();
2034    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2035                                               Context.getCanonicalType(Ty)));
2036    NameInfo.setLoc(Name.StartLocation);
2037    NameInfo.setNamedTypeInfo(TInfo);
2038    return NameInfo;
2039  }
2040
2041  case UnqualifiedId::IK_ConstructorName: {
2042    TypeSourceInfo *TInfo;
2043    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2044    if (Ty.isNull())
2045      return DeclarationNameInfo();
2046    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2047                                              Context.getCanonicalType(Ty)));
2048    NameInfo.setLoc(Name.StartLocation);
2049    NameInfo.setNamedTypeInfo(TInfo);
2050    return NameInfo;
2051  }
2052
2053  case UnqualifiedId::IK_ConstructorTemplateId: {
2054    // In well-formed code, we can only have a constructor
2055    // template-id that refers to the current context, so go there
2056    // to find the actual type being constructed.
2057    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2058    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2059      return DeclarationNameInfo();
2060
2061    // Determine the type of the class being constructed.
2062    QualType CurClassType = Context.getTypeDeclType(CurClass);
2063
2064    // FIXME: Check two things: that the template-id names the same type as
2065    // CurClassType, and that the template-id does not occur when the name
2066    // was qualified.
2067
2068    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2069                                    Context.getCanonicalType(CurClassType)));
2070    NameInfo.setLoc(Name.StartLocation);
2071    // FIXME: should we retrieve TypeSourceInfo?
2072    NameInfo.setNamedTypeInfo(0);
2073    return NameInfo;
2074  }
2075
2076  case UnqualifiedId::IK_DestructorName: {
2077    TypeSourceInfo *TInfo;
2078    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2079    if (Ty.isNull())
2080      return DeclarationNameInfo();
2081    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2082                                              Context.getCanonicalType(Ty)));
2083    NameInfo.setLoc(Name.StartLocation);
2084    NameInfo.setNamedTypeInfo(TInfo);
2085    return NameInfo;
2086  }
2087
2088  case UnqualifiedId::IK_TemplateId: {
2089    TemplateName TName = Name.TemplateId->Template.get();
2090    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2091    return Context.getNameForTemplate(TName, TNameLoc);
2092  }
2093
2094  } // switch (Name.getKind())
2095
2096  assert(false && "Unknown name kind");
2097  return DeclarationNameInfo();
2098}
2099
2100/// isNearlyMatchingFunction - Determine whether the C++ functions
2101/// Declaration and Definition are "nearly" matching. This heuristic
2102/// is used to improve diagnostics in the case where an out-of-line
2103/// function definition doesn't match any declaration within
2104/// the class or namespace.
2105static bool isNearlyMatchingFunction(ASTContext &Context,
2106                                     FunctionDecl *Declaration,
2107                                     FunctionDecl *Definition) {
2108  if (Declaration->param_size() != Definition->param_size())
2109    return false;
2110  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2111    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2112    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2113
2114    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2115                                        DefParamTy.getNonReferenceType()))
2116      return false;
2117  }
2118
2119  return true;
2120}
2121
2122/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2123/// declarator needs to be rebuilt in the current instantiation.
2124/// Any bits of declarator which appear before the name are valid for
2125/// consideration here.  That's specifically the type in the decl spec
2126/// and the base type in any member-pointer chunks.
2127static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2128                                                    DeclarationName Name) {
2129  // The types we specifically need to rebuild are:
2130  //   - typenames, typeofs, and decltypes
2131  //   - types which will become injected class names
2132  // Of course, we also need to rebuild any type referencing such a
2133  // type.  It's safest to just say "dependent", but we call out a
2134  // few cases here.
2135
2136  DeclSpec &DS = D.getMutableDeclSpec();
2137  switch (DS.getTypeSpecType()) {
2138  case DeclSpec::TST_typename:
2139  case DeclSpec::TST_typeofType:
2140  case DeclSpec::TST_decltype: {
2141    // Grab the type from the parser.
2142    TypeSourceInfo *TSI = 0;
2143    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2144    if (T.isNull() || !T->isDependentType()) break;
2145
2146    // Make sure there's a type source info.  This isn't really much
2147    // of a waste; most dependent types should have type source info
2148    // attached already.
2149    if (!TSI)
2150      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2151
2152    // Rebuild the type in the current instantiation.
2153    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2154    if (!TSI) return true;
2155
2156    // Store the new type back in the decl spec.
2157    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2158    DS.UpdateTypeRep(LocType);
2159    break;
2160  }
2161
2162  case DeclSpec::TST_typeofExpr: {
2163    Expr *E = DS.getRepAsExpr();
2164    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2165    if (Result.isInvalid()) return true;
2166    DS.UpdateExprRep(Result.get());
2167    break;
2168  }
2169
2170  default:
2171    // Nothing to do for these decl specs.
2172    break;
2173  }
2174
2175  // It doesn't matter what order we do this in.
2176  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2177    DeclaratorChunk &Chunk = D.getTypeObject(I);
2178
2179    // The only type information in the declarator which can come
2180    // before the declaration name is the base type of a member
2181    // pointer.
2182    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2183      continue;
2184
2185    // Rebuild the scope specifier in-place.
2186    CXXScopeSpec &SS = Chunk.Mem.Scope();
2187    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2188      return true;
2189  }
2190
2191  return false;
2192}
2193
2194Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2195  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2196}
2197
2198Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2199                             MultiTemplateParamsArg TemplateParamLists,
2200                             bool IsFunctionDefinition) {
2201  // TODO: consider using NameInfo for diagnostic.
2202  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2203  DeclarationName Name = NameInfo.getName();
2204
2205  // All of these full declarators require an identifier.  If it doesn't have
2206  // one, the ParsedFreeStandingDeclSpec action should be used.
2207  if (!Name) {
2208    if (!D.isInvalidType())  // Reject this if we think it is valid.
2209      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2210           diag::err_declarator_need_ident)
2211        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2212    return 0;
2213  }
2214
2215  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2216  // we find one that is.
2217  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2218         (S->getFlags() & Scope::TemplateParamScope) != 0)
2219    S = S->getParent();
2220
2221  DeclContext *DC = CurContext;
2222  if (D.getCXXScopeSpec().isInvalid())
2223    D.setInvalidType();
2224  else if (D.getCXXScopeSpec().isSet()) {
2225    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2226    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2227    if (!DC) {
2228      // If we could not compute the declaration context, it's because the
2229      // declaration context is dependent but does not refer to a class,
2230      // class template, or class template partial specialization. Complain
2231      // and return early, to avoid the coming semantic disaster.
2232      Diag(D.getIdentifierLoc(),
2233           diag::err_template_qualified_declarator_no_match)
2234        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2235        << D.getCXXScopeSpec().getRange();
2236      return 0;
2237    }
2238
2239    bool IsDependentContext = DC->isDependentContext();
2240
2241    if (!IsDependentContext &&
2242        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2243      return 0;
2244
2245    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2246      Diag(D.getIdentifierLoc(),
2247           diag::err_member_def_undefined_record)
2248        << Name << DC << D.getCXXScopeSpec().getRange();
2249      D.setInvalidType();
2250    }
2251
2252    // Check whether we need to rebuild the type of the given
2253    // declaration in the current instantiation.
2254    if (EnteringContext && IsDependentContext &&
2255        TemplateParamLists.size() != 0) {
2256      ContextRAII SavedContext(*this, DC);
2257      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2258        D.setInvalidType();
2259    }
2260  }
2261
2262  NamedDecl *New;
2263
2264  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2265  QualType R = TInfo->getType();
2266
2267  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2268                        ForRedeclaration);
2269
2270  // See if this is a redefinition of a variable in the same scope.
2271  if (!D.getCXXScopeSpec().isSet()) {
2272    bool IsLinkageLookup = false;
2273
2274    // If the declaration we're planning to build will be a function
2275    // or object with linkage, then look for another declaration with
2276    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2277    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2278      /* Do nothing*/;
2279    else if (R->isFunctionType()) {
2280      if (CurContext->isFunctionOrMethod() ||
2281          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2282        IsLinkageLookup = true;
2283    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2284      IsLinkageLookup = true;
2285    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2286             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2287      IsLinkageLookup = true;
2288
2289    if (IsLinkageLookup)
2290      Previous.clear(LookupRedeclarationWithLinkage);
2291
2292    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2293  } else { // Something like "int foo::x;"
2294    LookupQualifiedName(Previous, DC);
2295
2296    // Don't consider using declarations as previous declarations for
2297    // out-of-line members.
2298    RemoveUsingDecls(Previous);
2299
2300    // C++ 7.3.1.2p2:
2301    // Members (including explicit specializations of templates) of a named
2302    // namespace can also be defined outside that namespace by explicit
2303    // qualification of the name being defined, provided that the entity being
2304    // defined was already declared in the namespace and the definition appears
2305    // after the point of declaration in a namespace that encloses the
2306    // declarations namespace.
2307    //
2308    // Note that we only check the context at this point. We don't yet
2309    // have enough information to make sure that PrevDecl is actually
2310    // the declaration we want to match. For example, given:
2311    //
2312    //   class X {
2313    //     void f();
2314    //     void f(float);
2315    //   };
2316    //
2317    //   void X::f(int) { } // ill-formed
2318    //
2319    // In this case, PrevDecl will point to the overload set
2320    // containing the two f's declared in X, but neither of them
2321    // matches.
2322
2323    // First check whether we named the global scope.
2324    if (isa<TranslationUnitDecl>(DC)) {
2325      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2326        << Name << D.getCXXScopeSpec().getRange();
2327    } else {
2328      DeclContext *Cur = CurContext;
2329      while (isa<LinkageSpecDecl>(Cur))
2330        Cur = Cur->getParent();
2331      if (!Cur->Encloses(DC)) {
2332        // The qualifying scope doesn't enclose the original declaration.
2333        // Emit diagnostic based on current scope.
2334        SourceLocation L = D.getIdentifierLoc();
2335        SourceRange R = D.getCXXScopeSpec().getRange();
2336        if (isa<FunctionDecl>(Cur))
2337          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2338        else
2339          Diag(L, diag::err_invalid_declarator_scope)
2340            << Name << cast<NamedDecl>(DC) << R;
2341        D.setInvalidType();
2342      }
2343    }
2344  }
2345
2346  if (Previous.isSingleResult() &&
2347      Previous.getFoundDecl()->isTemplateParameter()) {
2348    // Maybe we will complain about the shadowed template parameter.
2349    if (!D.isInvalidType())
2350      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2351                                          Previous.getFoundDecl()))
2352        D.setInvalidType();
2353
2354    // Just pretend that we didn't see the previous declaration.
2355    Previous.clear();
2356  }
2357
2358  // In C++, the previous declaration we find might be a tag type
2359  // (class or enum). In this case, the new declaration will hide the
2360  // tag type. Note that this does does not apply if we're declaring a
2361  // typedef (C++ [dcl.typedef]p4).
2362  if (Previous.isSingleTagDecl() &&
2363      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2364    Previous.clear();
2365
2366  bool Redeclaration = false;
2367  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2368    if (TemplateParamLists.size()) {
2369      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2370      return 0;
2371    }
2372
2373    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2374  } else if (R->isFunctionType()) {
2375    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2376                                  move(TemplateParamLists),
2377                                  IsFunctionDefinition, Redeclaration);
2378  } else {
2379    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2380                                  move(TemplateParamLists),
2381                                  Redeclaration);
2382  }
2383
2384  if (New == 0)
2385    return 0;
2386
2387  // If this has an identifier and is not an invalid redeclaration or
2388  // function template specialization, add it to the scope stack.
2389  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2390    PushOnScopeChains(New, S);
2391
2392  return New;
2393}
2394
2395/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2396/// types into constant array types in certain situations which would otherwise
2397/// be errors (for GCC compatibility).
2398static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2399                                                    ASTContext &Context,
2400                                                    bool &SizeIsNegative,
2401                                                    llvm::APSInt &Oversized) {
2402  // This method tries to turn a variable array into a constant
2403  // array even when the size isn't an ICE.  This is necessary
2404  // for compatibility with code that depends on gcc's buggy
2405  // constant expression folding, like struct {char x[(int)(char*)2];}
2406  SizeIsNegative = false;
2407  Oversized = 0;
2408
2409  if (T->isDependentType())
2410    return QualType();
2411
2412  QualifierCollector Qs;
2413  const Type *Ty = Qs.strip(T);
2414
2415  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2416    QualType Pointee = PTy->getPointeeType();
2417    QualType FixedType =
2418        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2419                                            Oversized);
2420    if (FixedType.isNull()) return FixedType;
2421    FixedType = Context.getPointerType(FixedType);
2422    return Qs.apply(FixedType);
2423  }
2424
2425  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2426  if (!VLATy)
2427    return QualType();
2428  // FIXME: We should probably handle this case
2429  if (VLATy->getElementType()->isVariablyModifiedType())
2430    return QualType();
2431
2432  Expr::EvalResult EvalResult;
2433  if (!VLATy->getSizeExpr() ||
2434      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2435      !EvalResult.Val.isInt())
2436    return QualType();
2437
2438  // Check whether the array size is negative.
2439  llvm::APSInt &Res = EvalResult.Val.getInt();
2440  if (Res.isSigned() && Res.isNegative()) {
2441    SizeIsNegative = true;
2442    return QualType();
2443  }
2444
2445  // Check whether the array is too large to be addressed.
2446  unsigned ActiveSizeBits
2447    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2448                                              Res);
2449  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2450    Oversized = Res;
2451    return QualType();
2452  }
2453
2454  return Context.getConstantArrayType(VLATy->getElementType(),
2455                                      Res, ArrayType::Normal, 0);
2456}
2457
2458/// \brief Register the given locally-scoped external C declaration so
2459/// that it can be found later for redeclarations
2460void
2461Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2462                                       const LookupResult &Previous,
2463                                       Scope *S) {
2464  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2465         "Decl is not a locally-scoped decl!");
2466  // Note that we have a locally-scoped external with this name.
2467  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2468
2469  if (!Previous.isSingleResult())
2470    return;
2471
2472  NamedDecl *PrevDecl = Previous.getFoundDecl();
2473
2474  // If there was a previous declaration of this variable, it may be
2475  // in our identifier chain. Update the identifier chain with the new
2476  // declaration.
2477  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2478    // The previous declaration was found on the identifer resolver
2479    // chain, so remove it from its scope.
2480    while (S && !S->isDeclScope(PrevDecl))
2481      S = S->getParent();
2482
2483    if (S)
2484      S->RemoveDecl(PrevDecl);
2485  }
2486}
2487
2488/// \brief Diagnose function specifiers on a declaration of an identifier that
2489/// does not identify a function.
2490void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2491  // FIXME: We should probably indicate the identifier in question to avoid
2492  // confusion for constructs like "inline int a(), b;"
2493  if (D.getDeclSpec().isInlineSpecified())
2494    Diag(D.getDeclSpec().getInlineSpecLoc(),
2495         diag::err_inline_non_function);
2496
2497  if (D.getDeclSpec().isVirtualSpecified())
2498    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2499         diag::err_virtual_non_function);
2500
2501  if (D.getDeclSpec().isExplicitSpecified())
2502    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2503         diag::err_explicit_non_function);
2504}
2505
2506NamedDecl*
2507Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2508                             QualType R,  TypeSourceInfo *TInfo,
2509                             LookupResult &Previous, bool &Redeclaration) {
2510  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2511  if (D.getCXXScopeSpec().isSet()) {
2512    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2513      << D.getCXXScopeSpec().getRange();
2514    D.setInvalidType();
2515    // Pretend we didn't see the scope specifier.
2516    DC = CurContext;
2517    Previous.clear();
2518  }
2519
2520  if (getLangOptions().CPlusPlus) {
2521    // Check that there are no default arguments (C++ only).
2522    CheckExtraCXXDefaultArguments(D);
2523  }
2524
2525  DiagnoseFunctionSpecifiers(D);
2526
2527  if (D.getDeclSpec().isThreadSpecified())
2528    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2529
2530  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2531    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2532      << D.getName().getSourceRange();
2533    return 0;
2534  }
2535
2536  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2537  if (!NewTD) return 0;
2538
2539  // Handle attributes prior to checking for duplicates in MergeVarDecl
2540  ProcessDeclAttributes(S, NewTD, D);
2541
2542  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2543  // then it shall have block scope.
2544  // Note that variably modified types must be fixed before merging the decl so
2545  // that redeclarations will match.
2546  QualType T = NewTD->getUnderlyingType();
2547  if (T->isVariablyModifiedType()) {
2548    setFunctionHasBranchProtectedScope();
2549
2550    if (S->getFnParent() == 0) {
2551      bool SizeIsNegative;
2552      llvm::APSInt Oversized;
2553      QualType FixedTy =
2554          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2555                                              Oversized);
2556      if (!FixedTy.isNull()) {
2557        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2558        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2559      } else {
2560        if (SizeIsNegative)
2561          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2562        else if (T->isVariableArrayType())
2563          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2564        else if (Oversized.getBoolValue())
2565          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2566            << Oversized.toString(10);
2567        else
2568          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2569        NewTD->setInvalidDecl();
2570      }
2571    }
2572  }
2573
2574  // Merge the decl with the existing one if appropriate. If the decl is
2575  // in an outer scope, it isn't the same thing.
2576  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2577  if (!Previous.empty()) {
2578    Redeclaration = true;
2579    MergeTypeDefDecl(NewTD, Previous);
2580  }
2581
2582  // If this is the C FILE type, notify the AST context.
2583  if (IdentifierInfo *II = NewTD->getIdentifier())
2584    if (!NewTD->isInvalidDecl() &&
2585        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2586      if (II->isStr("FILE"))
2587        Context.setFILEDecl(NewTD);
2588      else if (II->isStr("jmp_buf"))
2589        Context.setjmp_bufDecl(NewTD);
2590      else if (II->isStr("sigjmp_buf"))
2591        Context.setsigjmp_bufDecl(NewTD);
2592    }
2593
2594  return NewTD;
2595}
2596
2597/// \brief Determines whether the given declaration is an out-of-scope
2598/// previous declaration.
2599///
2600/// This routine should be invoked when name lookup has found a
2601/// previous declaration (PrevDecl) that is not in the scope where a
2602/// new declaration by the same name is being introduced. If the new
2603/// declaration occurs in a local scope, previous declarations with
2604/// linkage may still be considered previous declarations (C99
2605/// 6.2.2p4-5, C++ [basic.link]p6).
2606///
2607/// \param PrevDecl the previous declaration found by name
2608/// lookup
2609///
2610/// \param DC the context in which the new declaration is being
2611/// declared.
2612///
2613/// \returns true if PrevDecl is an out-of-scope previous declaration
2614/// for a new delcaration with the same name.
2615static bool
2616isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2617                                ASTContext &Context) {
2618  if (!PrevDecl)
2619    return 0;
2620
2621  if (!PrevDecl->hasLinkage())
2622    return false;
2623
2624  if (Context.getLangOptions().CPlusPlus) {
2625    // C++ [basic.link]p6:
2626    //   If there is a visible declaration of an entity with linkage
2627    //   having the same name and type, ignoring entities declared
2628    //   outside the innermost enclosing namespace scope, the block
2629    //   scope declaration declares that same entity and receives the
2630    //   linkage of the previous declaration.
2631    DeclContext *OuterContext = DC->getLookupContext();
2632    if (!OuterContext->isFunctionOrMethod())
2633      // This rule only applies to block-scope declarations.
2634      return false;
2635    else {
2636      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2637      if (PrevOuterContext->isRecord())
2638        // We found a member function: ignore it.
2639        return false;
2640      else {
2641        // Find the innermost enclosing namespace for the new and
2642        // previous declarations.
2643        while (!OuterContext->isFileContext())
2644          OuterContext = OuterContext->getParent();
2645        while (!PrevOuterContext->isFileContext())
2646          PrevOuterContext = PrevOuterContext->getParent();
2647
2648        // The previous declaration is in a different namespace, so it
2649        // isn't the same function.
2650        if (OuterContext->getPrimaryContext() !=
2651            PrevOuterContext->getPrimaryContext())
2652          return false;
2653      }
2654    }
2655  }
2656
2657  return true;
2658}
2659
2660static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2661  CXXScopeSpec &SS = D.getCXXScopeSpec();
2662  if (!SS.isSet()) return;
2663  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2664                       SS.getRange());
2665}
2666
2667NamedDecl*
2668Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2669                              QualType R, TypeSourceInfo *TInfo,
2670                              LookupResult &Previous,
2671                              MultiTemplateParamsArg TemplateParamLists,
2672                              bool &Redeclaration) {
2673  DeclarationName Name = GetNameForDeclarator(D).getName();
2674
2675  // Check that there are no default arguments (C++ only).
2676  if (getLangOptions().CPlusPlus)
2677    CheckExtraCXXDefaultArguments(D);
2678
2679  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2680  assert(SCSpec != DeclSpec::SCS_typedef &&
2681         "Parser allowed 'typedef' as storage class VarDecl.");
2682  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2683  if (SCSpec == DeclSpec::SCS_mutable) {
2684    // mutable can only appear on non-static class members, so it's always
2685    // an error here
2686    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2687    D.setInvalidType();
2688    SC = VarDecl::None;
2689  }
2690  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2691  VarDecl::StorageClass SCAsWritten
2692    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2693
2694  IdentifierInfo *II = Name.getAsIdentifierInfo();
2695  if (!II) {
2696    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2697      << Name.getAsString();
2698    return 0;
2699  }
2700
2701  DiagnoseFunctionSpecifiers(D);
2702
2703  if (!DC->isRecord() && S->getFnParent() == 0) {
2704    // C99 6.9p2: The storage-class specifiers auto and register shall not
2705    // appear in the declaration specifiers in an external declaration.
2706    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2707
2708      // If this is a register variable with an asm label specified, then this
2709      // is a GNU extension.
2710      if (SC == VarDecl::Register && D.getAsmLabel())
2711        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2712      else
2713        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2714      D.setInvalidType();
2715    }
2716  }
2717  if (DC->isRecord() && !CurContext->isRecord()) {
2718    // This is an out-of-line definition of a static data member.
2719    if (SC == VarDecl::Static) {
2720      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2721           diag::err_static_out_of_line)
2722        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2723    } else if (SC == VarDecl::None)
2724      SC = VarDecl::Static;
2725  }
2726  if (SC == VarDecl::Static) {
2727    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2728      if (RD->isLocalClass())
2729        Diag(D.getIdentifierLoc(),
2730             diag::err_static_data_member_not_allowed_in_local_class)
2731          << Name << RD->getDeclName();
2732    }
2733  }
2734
2735  // Match up the template parameter lists with the scope specifier, then
2736  // determine whether we have a template or a template specialization.
2737  bool isExplicitSpecialization = false;
2738  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2739  bool Invalid = false;
2740  if (TemplateParameterList *TemplateParams
2741        = MatchTemplateParametersToScopeSpecifier(
2742                                  D.getDeclSpec().getSourceRange().getBegin(),
2743                                                  D.getCXXScopeSpec(),
2744                        (TemplateParameterList**)TemplateParamLists.get(),
2745                                                   TemplateParamLists.size(),
2746                                                  /*never a friend*/ false,
2747                                                  isExplicitSpecialization,
2748                                                  Invalid)) {
2749    // All but one template parameter lists have been matching.
2750    --NumMatchedTemplateParamLists;
2751
2752    if (TemplateParams->size() > 0) {
2753      // There is no such thing as a variable template.
2754      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2755        << II
2756        << SourceRange(TemplateParams->getTemplateLoc(),
2757                       TemplateParams->getRAngleLoc());
2758      return 0;
2759    } else {
2760      // There is an extraneous 'template<>' for this variable. Complain
2761      // about it, but allow the declaration of the variable.
2762      Diag(TemplateParams->getTemplateLoc(),
2763           diag::err_template_variable_noparams)
2764        << II
2765        << SourceRange(TemplateParams->getTemplateLoc(),
2766                       TemplateParams->getRAngleLoc());
2767
2768      isExplicitSpecialization = true;
2769    }
2770  }
2771
2772  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2773                                   II, R, TInfo, SC, SCAsWritten);
2774
2775  if (D.isInvalidType() || Invalid)
2776    NewVD->setInvalidDecl();
2777
2778  SetNestedNameSpecifier(NewVD, D);
2779
2780  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2781    NewVD->setTemplateParameterListsInfo(Context,
2782                                         NumMatchedTemplateParamLists,
2783                        (TemplateParameterList**)TemplateParamLists.release());
2784  }
2785
2786  if (D.getDeclSpec().isThreadSpecified()) {
2787    if (NewVD->hasLocalStorage())
2788      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2789    else if (!Context.Target.isTLSSupported())
2790      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2791    else
2792      NewVD->setThreadSpecified(true);
2793  }
2794
2795  // Set the lexical context. If the declarator has a C++ scope specifier, the
2796  // lexical context will be different from the semantic context.
2797  NewVD->setLexicalDeclContext(CurContext);
2798
2799  // Handle attributes prior to checking for duplicates in MergeVarDecl
2800  ProcessDeclAttributes(S, NewVD, D);
2801
2802  // Handle GNU asm-label extension (encoded as an attribute).
2803  if (Expr *E = (Expr*) D.getAsmLabel()) {
2804    // The parser guarantees this is a string.
2805    StringLiteral *SE = cast<StringLiteral>(E);
2806    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2807                                                Context, SE->getString()));
2808  }
2809
2810  // Diagnose shadowed variables before filtering for scope.
2811  if (!D.getCXXScopeSpec().isSet())
2812    CheckShadow(S, NewVD, Previous);
2813
2814  // Don't consider existing declarations that are in a different
2815  // scope and are out-of-semantic-context declarations (if the new
2816  // declaration has linkage).
2817  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2818
2819  // Merge the decl with the existing one if appropriate.
2820  if (!Previous.empty()) {
2821    if (Previous.isSingleResult() &&
2822        isa<FieldDecl>(Previous.getFoundDecl()) &&
2823        D.getCXXScopeSpec().isSet()) {
2824      // The user tried to define a non-static data member
2825      // out-of-line (C++ [dcl.meaning]p1).
2826      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2827        << D.getCXXScopeSpec().getRange();
2828      Previous.clear();
2829      NewVD->setInvalidDecl();
2830    }
2831  } else if (D.getCXXScopeSpec().isSet()) {
2832    // No previous declaration in the qualifying scope.
2833    Diag(D.getIdentifierLoc(), diag::err_no_member)
2834      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2835      << D.getCXXScopeSpec().getRange();
2836    NewVD->setInvalidDecl();
2837  }
2838
2839  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2840
2841  // This is an explicit specialization of a static data member. Check it.
2842  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2843      CheckMemberSpecialization(NewVD, Previous))
2844    NewVD->setInvalidDecl();
2845
2846  // attributes declared post-definition are currently ignored
2847  // FIXME: This should be handled in attribute merging, not
2848  // here.
2849  if (Previous.isSingleResult()) {
2850    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2851    if (Def && (Def = Def->getDefinition()) &&
2852        Def != NewVD && D.hasAttributes()) {
2853      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2854      Diag(Def->getLocation(), diag::note_previous_definition);
2855    }
2856  }
2857
2858  // If this is a locally-scoped extern C variable, update the map of
2859  // such variables.
2860  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2861      !NewVD->isInvalidDecl())
2862    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2863
2864  // If there's a #pragma GCC visibility in scope, and this isn't a class
2865  // member, set the visibility of this variable.
2866  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2867    AddPushedVisibilityAttribute(NewVD);
2868
2869  MarkUnusedFileScopedDecl(NewVD);
2870
2871  return NewVD;
2872}
2873
2874/// \brief Diagnose variable or built-in function shadowing.  Implements
2875/// -Wshadow.
2876///
2877/// This method is called whenever a VarDecl is added to a "useful"
2878/// scope.
2879///
2880/// \param S the scope in which the shadowing name is being declared
2881/// \param R the lookup of the name
2882///
2883void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2884  // Return if warning is ignored.
2885  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2886    return;
2887
2888  // Don't diagnose declarations at file scope.  The scope might not
2889  // have a DeclContext if (e.g.) we're parsing a function prototype.
2890  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2891  if (NewDC && NewDC->isFileContext())
2892    return;
2893
2894  // Only diagnose if we're shadowing an unambiguous field or variable.
2895  if (R.getResultKind() != LookupResult::Found)
2896    return;
2897
2898  NamedDecl* ShadowedDecl = R.getFoundDecl();
2899  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2900    return;
2901
2902  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2903
2904  // Only warn about certain kinds of shadowing for class members.
2905  if (NewDC && NewDC->isRecord()) {
2906    // In particular, don't warn about shadowing non-class members.
2907    if (!OldDC->isRecord())
2908      return;
2909
2910    // TODO: should we warn about static data members shadowing
2911    // static data members from base classes?
2912
2913    // TODO: don't diagnose for inaccessible shadowed members.
2914    // This is hard to do perfectly because we might friend the
2915    // shadowing context, but that's just a false negative.
2916  }
2917
2918  // Determine what kind of declaration we're shadowing.
2919  unsigned Kind;
2920  if (isa<RecordDecl>(OldDC)) {
2921    if (isa<FieldDecl>(ShadowedDecl))
2922      Kind = 3; // field
2923    else
2924      Kind = 2; // static data member
2925  } else if (OldDC->isFileContext())
2926    Kind = 1; // global
2927  else
2928    Kind = 0; // local
2929
2930  DeclarationName Name = R.getLookupName();
2931
2932  // Emit warning and note.
2933  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2934  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2935}
2936
2937/// \brief Check -Wshadow without the advantage of a previous lookup.
2938void Sema::CheckShadow(Scope *S, VarDecl *D) {
2939  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2940                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2941  LookupName(R, S);
2942  CheckShadow(S, D, R);
2943}
2944
2945/// \brief Perform semantic checking on a newly-created variable
2946/// declaration.
2947///
2948/// This routine performs all of the type-checking required for a
2949/// variable declaration once it has been built. It is used both to
2950/// check variables after they have been parsed and their declarators
2951/// have been translated into a declaration, and to check variables
2952/// that have been instantiated from a template.
2953///
2954/// Sets NewVD->isInvalidDecl() if an error was encountered.
2955void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2956                                    LookupResult &Previous,
2957                                    bool &Redeclaration) {
2958  // If the decl is already known invalid, don't check it.
2959  if (NewVD->isInvalidDecl())
2960    return;
2961
2962  QualType T = NewVD->getType();
2963
2964  if (T->isObjCObjectType()) {
2965    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2966    return NewVD->setInvalidDecl();
2967  }
2968
2969  // Emit an error if an address space was applied to decl with local storage.
2970  // This includes arrays of objects with address space qualifiers, but not
2971  // automatic variables that point to other address spaces.
2972  // ISO/IEC TR 18037 S5.1.2
2973  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2974    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2975    return NewVD->setInvalidDecl();
2976  }
2977
2978  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2979      && !NewVD->hasAttr<BlocksAttr>())
2980    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2981
2982  bool isVM = T->isVariablyModifiedType();
2983  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2984      NewVD->hasAttr<BlocksAttr>())
2985    setFunctionHasBranchProtectedScope();
2986
2987  if ((isVM && NewVD->hasLinkage()) ||
2988      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2989    bool SizeIsNegative;
2990    llvm::APSInt Oversized;
2991    QualType FixedTy =
2992        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2993                                            Oversized);
2994
2995    if (FixedTy.isNull() && T->isVariableArrayType()) {
2996      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2997      // FIXME: This won't give the correct result for
2998      // int a[10][n];
2999      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3000
3001      if (NewVD->isFileVarDecl())
3002        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3003        << SizeRange;
3004      else if (NewVD->getStorageClass() == VarDecl::Static)
3005        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3006        << SizeRange;
3007      else
3008        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3009        << SizeRange;
3010      return NewVD->setInvalidDecl();
3011    }
3012
3013    if (FixedTy.isNull()) {
3014      if (NewVD->isFileVarDecl())
3015        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3016      else
3017        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3018      return NewVD->setInvalidDecl();
3019    }
3020
3021    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3022    NewVD->setType(FixedTy);
3023  }
3024
3025  if (Previous.empty() && NewVD->isExternC()) {
3026    // Since we did not find anything by this name and we're declaring
3027    // an extern "C" variable, look for a non-visible extern "C"
3028    // declaration with the same name.
3029    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3030      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3031    if (Pos != LocallyScopedExternalDecls.end())
3032      Previous.addDecl(Pos->second);
3033  }
3034
3035  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3036    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3037      << T;
3038    return NewVD->setInvalidDecl();
3039  }
3040
3041  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3042    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3043    return NewVD->setInvalidDecl();
3044  }
3045
3046  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3047    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3048    return NewVD->setInvalidDecl();
3049  }
3050
3051  // Function pointers and references cannot have qualified function type, only
3052  // function pointer-to-members can do that.
3053  QualType Pointee;
3054  unsigned PtrOrRef = 0;
3055  if (const PointerType *Ptr = T->getAs<PointerType>())
3056    Pointee = Ptr->getPointeeType();
3057  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3058    Pointee = Ref->getPointeeType();
3059    PtrOrRef = 1;
3060  }
3061  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3062      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3063    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3064        << PtrOrRef;
3065    return NewVD->setInvalidDecl();
3066  }
3067
3068  if (!Previous.empty()) {
3069    Redeclaration = true;
3070    MergeVarDecl(NewVD, Previous);
3071  }
3072}
3073
3074/// \brief Data used with FindOverriddenMethod
3075struct FindOverriddenMethodData {
3076  Sema *S;
3077  CXXMethodDecl *Method;
3078};
3079
3080/// \brief Member lookup function that determines whether a given C++
3081/// method overrides a method in a base class, to be used with
3082/// CXXRecordDecl::lookupInBases().
3083static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3084                                 CXXBasePath &Path,
3085                                 void *UserData) {
3086  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3087
3088  FindOverriddenMethodData *Data
3089    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3090
3091  DeclarationName Name = Data->Method->getDeclName();
3092
3093  // FIXME: Do we care about other names here too?
3094  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3095    // We really want to find the base class destructor here.
3096    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3097    CanQualType CT = Data->S->Context.getCanonicalType(T);
3098
3099    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3100  }
3101
3102  for (Path.Decls = BaseRecord->lookup(Name);
3103       Path.Decls.first != Path.Decls.second;
3104       ++Path.Decls.first) {
3105    NamedDecl *D = *Path.Decls.first;
3106    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3107      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3108        return true;
3109    }
3110  }
3111
3112  return false;
3113}
3114
3115/// AddOverriddenMethods - See if a method overrides any in the base classes,
3116/// and if so, check that it's a valid override and remember it.
3117void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3118  // Look for virtual methods in base classes that this method might override.
3119  CXXBasePaths Paths;
3120  FindOverriddenMethodData Data;
3121  Data.Method = MD;
3122  Data.S = this;
3123  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3124    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3125         E = Paths.found_decls_end(); I != E; ++I) {
3126      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3127        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3128            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3129            !CheckOverridingFunctionAttributes(MD, OldMD))
3130          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3131      }
3132    }
3133  }
3134}
3135
3136NamedDecl*
3137Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3138                              QualType R, TypeSourceInfo *TInfo,
3139                              LookupResult &Previous,
3140                              MultiTemplateParamsArg TemplateParamLists,
3141                              bool IsFunctionDefinition, bool &Redeclaration) {
3142  assert(R.getTypePtr()->isFunctionType());
3143
3144  // TODO: consider using NameInfo for diagnostic.
3145  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3146  DeclarationName Name = NameInfo.getName();
3147  FunctionDecl::StorageClass SC = FunctionDecl::None;
3148  switch (D.getDeclSpec().getStorageClassSpec()) {
3149  default: assert(0 && "Unknown storage class!");
3150  case DeclSpec::SCS_auto:
3151  case DeclSpec::SCS_register:
3152  case DeclSpec::SCS_mutable:
3153    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3154         diag::err_typecheck_sclass_func);
3155    D.setInvalidType();
3156    break;
3157  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
3158  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
3159  case DeclSpec::SCS_static: {
3160    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
3161      // C99 6.7.1p5:
3162      //   The declaration of an identifier for a function that has
3163      //   block scope shall have no explicit storage-class specifier
3164      //   other than extern
3165      // See also (C++ [dcl.stc]p4).
3166      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3167           diag::err_static_block_func);
3168      SC = FunctionDecl::None;
3169    } else
3170      SC = FunctionDecl::Static;
3171    break;
3172  }
3173  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
3174  }
3175
3176  if (D.getDeclSpec().isThreadSpecified())
3177    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3178
3179  bool isFriend = D.getDeclSpec().isFriendSpecified();
3180  bool isInline = D.getDeclSpec().isInlineSpecified();
3181  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3182  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3183
3184  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3185  FunctionDecl::StorageClass SCAsWritten
3186    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3187
3188  // Check that the return type is not an abstract class type.
3189  // For record types, this is done by the AbstractClassUsageDiagnoser once
3190  // the class has been completely parsed.
3191  if (!DC->isRecord() &&
3192      RequireNonAbstractType(D.getIdentifierLoc(),
3193                             R->getAs<FunctionType>()->getResultType(),
3194                             diag::err_abstract_type_in_decl,
3195                             AbstractReturnType))
3196    D.setInvalidType();
3197
3198  // Do not allow returning a objc interface by-value.
3199  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3200    Diag(D.getIdentifierLoc(),
3201         diag::err_object_cannot_be_passed_returned_by_value) << 0
3202      << R->getAs<FunctionType>()->getResultType();
3203    D.setInvalidType();
3204  }
3205
3206  bool isVirtualOkay = false;
3207  FunctionDecl *NewFD;
3208
3209  if (isFriend) {
3210    // C++ [class.friend]p5
3211    //   A function can be defined in a friend declaration of a
3212    //   class . . . . Such a function is implicitly inline.
3213    isInline |= IsFunctionDefinition;
3214  }
3215
3216  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3217    // This is a C++ constructor declaration.
3218    assert(DC->isRecord() &&
3219           "Constructors can only be declared in a member context");
3220
3221    R = CheckConstructorDeclarator(D, R, SC);
3222
3223    // Create the new declaration
3224    NewFD = CXXConstructorDecl::Create(Context,
3225                                       cast<CXXRecordDecl>(DC),
3226                                       NameInfo, R, TInfo,
3227                                       isExplicit, isInline,
3228                                       /*isImplicitlyDeclared=*/false);
3229  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3230    // This is a C++ destructor declaration.
3231    if (DC->isRecord()) {
3232      R = CheckDestructorDeclarator(D, R, SC);
3233
3234      NewFD = CXXDestructorDecl::Create(Context,
3235                                        cast<CXXRecordDecl>(DC),
3236                                        NameInfo, R,
3237                                        isInline,
3238                                        /*isImplicitlyDeclared=*/false);
3239      NewFD->setTypeSourceInfo(TInfo);
3240
3241      isVirtualOkay = true;
3242    } else {
3243      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3244
3245      // Create a FunctionDecl to satisfy the function definition parsing
3246      // code path.
3247      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3248                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3249                                   /*hasPrototype=*/true);
3250      D.setInvalidType();
3251    }
3252  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3253    if (!DC->isRecord()) {
3254      Diag(D.getIdentifierLoc(),
3255           diag::err_conv_function_not_member);
3256      return 0;
3257    }
3258
3259    CheckConversionDeclarator(D, R, SC);
3260    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3261                                      NameInfo, R, TInfo,
3262                                      isInline, isExplicit);
3263
3264    isVirtualOkay = true;
3265  } else if (DC->isRecord()) {
3266    // If the of the function is the same as the name of the record, then this
3267    // must be an invalid constructor that has a return type.
3268    // (The parser checks for a return type and makes the declarator a
3269    // constructor if it has no return type).
3270    // must have an invalid constructor that has a return type
3271    if (Name.getAsIdentifierInfo() &&
3272        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3273      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3274        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3275        << SourceRange(D.getIdentifierLoc());
3276      return 0;
3277    }
3278
3279    bool isStatic = SC == FunctionDecl::Static;
3280
3281    // [class.free]p1:
3282    // Any allocation function for a class T is a static member
3283    // (even if not explicitly declared static).
3284    if (Name.getCXXOverloadedOperator() == OO_New ||
3285        Name.getCXXOverloadedOperator() == OO_Array_New)
3286      isStatic = true;
3287
3288    // [class.free]p6 Any deallocation function for a class X is a static member
3289    // (even if not explicitly declared static).
3290    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3291        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3292      isStatic = true;
3293
3294    // This is a C++ method declaration.
3295    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3296                                  NameInfo, R, TInfo,
3297                                  isStatic, SCAsWritten, isInline);
3298
3299    isVirtualOkay = !isStatic;
3300  } else {
3301    // Determine whether the function was written with a
3302    // prototype. This true when:
3303    //   - we're in C++ (where every function has a prototype),
3304    //   - there is a prototype in the declarator, or
3305    //   - the type R of the function is some kind of typedef or other reference
3306    //     to a type name (which eventually refers to a function type).
3307    bool HasPrototype =
3308       getLangOptions().CPlusPlus ||
3309       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3310       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3311
3312    NewFD = FunctionDecl::Create(Context, DC,
3313                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3314                                 HasPrototype);
3315  }
3316
3317  if (D.isInvalidType())
3318    NewFD->setInvalidDecl();
3319
3320  SetNestedNameSpecifier(NewFD, D);
3321
3322  // Set the lexical context. If the declarator has a C++
3323  // scope specifier, or is the object of a friend declaration, the
3324  // lexical context will be different from the semantic context.
3325  NewFD->setLexicalDeclContext(CurContext);
3326
3327  // Match up the template parameter lists with the scope specifier, then
3328  // determine whether we have a template or a template specialization.
3329  FunctionTemplateDecl *FunctionTemplate = 0;
3330  bool isExplicitSpecialization = false;
3331  bool isFunctionTemplateSpecialization = false;
3332  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3333  bool Invalid = false;
3334  if (TemplateParameterList *TemplateParams
3335        = MatchTemplateParametersToScopeSpecifier(
3336                                  D.getDeclSpec().getSourceRange().getBegin(),
3337                                  D.getCXXScopeSpec(),
3338                           (TemplateParameterList**)TemplateParamLists.get(),
3339                                                  TemplateParamLists.size(),
3340                                                  isFriend,
3341                                                  isExplicitSpecialization,
3342                                                  Invalid)) {
3343    // All but one template parameter lists have been matching.
3344    --NumMatchedTemplateParamLists;
3345
3346    if (TemplateParams->size() > 0) {
3347      // This is a function template
3348
3349      // Check that we can declare a template here.
3350      if (CheckTemplateDeclScope(S, TemplateParams))
3351        return 0;
3352
3353      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3354                                                      NewFD->getLocation(),
3355                                                      Name, TemplateParams,
3356                                                      NewFD);
3357      FunctionTemplate->setLexicalDeclContext(CurContext);
3358      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3359    } else {
3360      // This is a function template specialization.
3361      isFunctionTemplateSpecialization = true;
3362
3363      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3364      if (isFriend && isFunctionTemplateSpecialization) {
3365        // We want to remove the "template<>", found here.
3366        SourceRange RemoveRange = TemplateParams->getSourceRange();
3367
3368        // If we remove the template<> and the name is not a
3369        // template-id, we're actually silently creating a problem:
3370        // the friend declaration will refer to an untemplated decl,
3371        // and clearly the user wants a template specialization.  So
3372        // we need to insert '<>' after the name.
3373        SourceLocation InsertLoc;
3374        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3375          InsertLoc = D.getName().getSourceRange().getEnd();
3376          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3377        }
3378
3379        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3380          << Name << RemoveRange
3381          << FixItHint::CreateRemoval(RemoveRange)
3382          << FixItHint::CreateInsertion(InsertLoc, "<>");
3383      }
3384    }
3385  }
3386
3387  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3388    NewFD->setTemplateParameterListsInfo(Context,
3389                                         NumMatchedTemplateParamLists,
3390                        (TemplateParameterList**)TemplateParamLists.release());
3391  }
3392
3393  if (Invalid) {
3394    NewFD->setInvalidDecl();
3395    if (FunctionTemplate)
3396      FunctionTemplate->setInvalidDecl();
3397  }
3398
3399  // C++ [dcl.fct.spec]p5:
3400  //   The virtual specifier shall only be used in declarations of
3401  //   nonstatic class member functions that appear within a
3402  //   member-specification of a class declaration; see 10.3.
3403  //
3404  if (isVirtual && !NewFD->isInvalidDecl()) {
3405    if (!isVirtualOkay) {
3406       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3407           diag::err_virtual_non_function);
3408    } else if (!CurContext->isRecord()) {
3409      // 'virtual' was specified outside of the class.
3410      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3411        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3412    } else {
3413      // Okay: Add virtual to the method.
3414      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3415      CurClass->setMethodAsVirtual(NewFD);
3416    }
3417  }
3418
3419  // C++ [dcl.fct.spec]p3:
3420  //  The inline specifier shall not appear on a block scope function declaration.
3421  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3422    if (CurContext->isFunctionOrMethod()) {
3423      // 'inline' is not allowed on block scope function declaration.
3424      Diag(D.getDeclSpec().getInlineSpecLoc(),
3425           diag::err_inline_declaration_block_scope) << Name
3426        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3427    }
3428  }
3429
3430  // C++ [dcl.fct.spec]p6:
3431  //  The explicit specifier shall be used only in the declaration of a
3432  //  constructor or conversion function within its class definition; see 12.3.1
3433  //  and 12.3.2.
3434  if (isExplicit && !NewFD->isInvalidDecl()) {
3435    if (!CurContext->isRecord()) {
3436      // 'explicit' was specified outside of the class.
3437      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3438           diag::err_explicit_out_of_class)
3439        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3440    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3441               !isa<CXXConversionDecl>(NewFD)) {
3442      // 'explicit' was specified on a function that wasn't a constructor
3443      // or conversion function.
3444      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3445           diag::err_explicit_non_ctor_or_conv_function)
3446        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3447    }
3448  }
3449
3450  // Filter out previous declarations that don't match the scope.
3451  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3452
3453  if (isFriend) {
3454    // DC is the namespace in which the function is being declared.
3455    assert((DC->isFileContext() || !Previous.empty()) &&
3456           "previously-undeclared friend function being created "
3457           "in a non-namespace context");
3458
3459    // For now, claim that the objects have no previous declaration.
3460    if (FunctionTemplate) {
3461      FunctionTemplate->setObjectOfFriendDecl(false);
3462      FunctionTemplate->setAccess(AS_public);
3463    }
3464    NewFD->setObjectOfFriendDecl(false);
3465    NewFD->setAccess(AS_public);
3466  }
3467
3468  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3469      !CurContext->isRecord()) {
3470    // C++ [class.static]p1:
3471    //   A data or function member of a class may be declared static
3472    //   in a class definition, in which case it is a static member of
3473    //   the class.
3474
3475    // Complain about the 'static' specifier if it's on an out-of-line
3476    // member function definition.
3477    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3478         diag::err_static_out_of_line)
3479      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3480  }
3481
3482  // Handle GNU asm-label extension (encoded as an attribute).
3483  if (Expr *E = (Expr*) D.getAsmLabel()) {
3484    // The parser guarantees this is a string.
3485    StringLiteral *SE = cast<StringLiteral>(E);
3486    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3487                                                SE->getString()));
3488  }
3489
3490  // Copy the parameter declarations from the declarator D to the function
3491  // declaration NewFD, if they are available.  First scavenge them into Params.
3492  llvm::SmallVector<ParmVarDecl*, 16> Params;
3493  if (D.getNumTypeObjects() > 0) {
3494    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3495
3496    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3497    // function that takes no arguments, not a function that takes a
3498    // single void argument.
3499    // We let through "const void" here because Sema::GetTypeForDeclarator
3500    // already checks for that case.
3501    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3502        FTI.ArgInfo[0].Param &&
3503        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3504      // Empty arg list, don't push any params.
3505      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3506
3507      // In C++, the empty parameter-type-list must be spelled "void"; a
3508      // typedef of void is not permitted.
3509      if (getLangOptions().CPlusPlus &&
3510          Param->getType().getUnqualifiedType() != Context.VoidTy)
3511        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3512      // FIXME: Leaks decl?
3513    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3514      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3515        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3516        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3517        Param->setDeclContext(NewFD);
3518        Params.push_back(Param);
3519
3520        if (Param->isInvalidDecl())
3521          NewFD->setInvalidDecl();
3522      }
3523    }
3524
3525  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3526    // When we're declaring a function with a typedef, typeof, etc as in the
3527    // following example, we'll need to synthesize (unnamed)
3528    // parameters for use in the declaration.
3529    //
3530    // @code
3531    // typedef void fn(int);
3532    // fn f;
3533    // @endcode
3534
3535    // Synthesize a parameter for each argument type.
3536    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3537         AE = FT->arg_type_end(); AI != AE; ++AI) {
3538      ParmVarDecl *Param =
3539        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3540      Params.push_back(Param);
3541    }
3542  } else {
3543    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3544           "Should not need args for typedef of non-prototype fn");
3545  }
3546  // Finally, we know we have the right number of parameters, install them.
3547  NewFD->setParams(Params.data(), Params.size());
3548
3549  // If the declarator is a template-id, translate the parser's template
3550  // argument list into our AST format.
3551  bool HasExplicitTemplateArgs = false;
3552  TemplateArgumentListInfo TemplateArgs;
3553  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3554    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3555    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3556    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3557    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3558                                       TemplateId->getTemplateArgs(),
3559                                       TemplateId->NumArgs);
3560    translateTemplateArguments(TemplateArgsPtr,
3561                               TemplateArgs);
3562    TemplateArgsPtr.release();
3563
3564    HasExplicitTemplateArgs = true;
3565
3566    if (FunctionTemplate) {
3567      // FIXME: Diagnose function template with explicit template
3568      // arguments.
3569      HasExplicitTemplateArgs = false;
3570    } else if (!isFunctionTemplateSpecialization &&
3571               !D.getDeclSpec().isFriendSpecified()) {
3572      // We have encountered something that the user meant to be a
3573      // specialization (because it has explicitly-specified template
3574      // arguments) but that was not introduced with a "template<>" (or had
3575      // too few of them).
3576      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3577        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3578        << FixItHint::CreateInsertion(
3579                                   D.getDeclSpec().getSourceRange().getBegin(),
3580                                                 "template<> ");
3581      isFunctionTemplateSpecialization = true;
3582    } else {
3583      // "friend void foo<>(int);" is an implicit specialization decl.
3584      isFunctionTemplateSpecialization = true;
3585    }
3586  } else if (isFriend && isFunctionTemplateSpecialization) {
3587    // This combination is only possible in a recovery case;  the user
3588    // wrote something like:
3589    //   template <> friend void foo(int);
3590    // which we're recovering from as if the user had written:
3591    //   friend void foo<>(int);
3592    // Go ahead and fake up a template id.
3593    HasExplicitTemplateArgs = true;
3594    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3595    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3596  }
3597
3598  // If it's a friend (and only if it's a friend), it's possible
3599  // that either the specialized function type or the specialized
3600  // template is dependent, and therefore matching will fail.  In
3601  // this case, don't check the specialization yet.
3602  if (isFunctionTemplateSpecialization && isFriend &&
3603      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3604    assert(HasExplicitTemplateArgs &&
3605           "friend function specialization without template args");
3606    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3607                                                     Previous))
3608      NewFD->setInvalidDecl();
3609  } else if (isFunctionTemplateSpecialization) {
3610    if (CheckFunctionTemplateSpecialization(NewFD,
3611                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3612                                            Previous))
3613      NewFD->setInvalidDecl();
3614  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3615    if (CheckMemberSpecialization(NewFD, Previous))
3616      NewFD->setInvalidDecl();
3617  }
3618
3619  // Perform semantic checking on the function declaration.
3620  bool OverloadableAttrRequired = false; // FIXME: HACK!
3621  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3622                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3623
3624  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3625          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3626         "previous declaration set still overloaded");
3627
3628  NamedDecl *PrincipalDecl = (FunctionTemplate
3629                              ? cast<NamedDecl>(FunctionTemplate)
3630                              : NewFD);
3631
3632  if (isFriend && Redeclaration) {
3633    AccessSpecifier Access = AS_public;
3634    if (!NewFD->isInvalidDecl())
3635      Access = NewFD->getPreviousDeclaration()->getAccess();
3636
3637    NewFD->setAccess(Access);
3638    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3639
3640    PrincipalDecl->setObjectOfFriendDecl(true);
3641  }
3642
3643  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3644      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3645    PrincipalDecl->setNonMemberOperator();
3646
3647  // If we have a function template, check the template parameter
3648  // list. This will check and merge default template arguments.
3649  if (FunctionTemplate) {
3650    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3651    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3652                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3653             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3654                                                : TPC_FunctionTemplate);
3655  }
3656
3657  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3658    // Fake up an access specifier if it's supposed to be a class member.
3659    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3660      NewFD->setAccess(AS_public);
3661
3662    // An out-of-line member function declaration must also be a
3663    // definition (C++ [dcl.meaning]p1).
3664    // Note that this is not the case for explicit specializations of
3665    // function templates or member functions of class templates, per
3666    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3667    // for compatibility with old SWIG code which likes to generate them.
3668    if (!IsFunctionDefinition && !isFriend &&
3669        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3670      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3671        << D.getCXXScopeSpec().getRange();
3672    }
3673    if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3674      // The user tried to provide an out-of-line definition for a
3675      // function that is a member of a class or namespace, but there
3676      // was no such member function declared (C++ [class.mfct]p2,
3677      // C++ [namespace.memdef]p2). For example:
3678      //
3679      // class X {
3680      //   void f() const;
3681      // };
3682      //
3683      // void X::f() { } // ill-formed
3684      //
3685      // Complain about this problem, and attempt to suggest close
3686      // matches (e.g., those that differ only in cv-qualifiers and
3687      // whether the parameter types are references).
3688      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3689        << Name << DC << D.getCXXScopeSpec().getRange();
3690      NewFD->setInvalidDecl();
3691
3692      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3693                        ForRedeclaration);
3694      LookupQualifiedName(Prev, DC);
3695      assert(!Prev.isAmbiguous() &&
3696             "Cannot have an ambiguity in previous-declaration lookup");
3697      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3698           Func != FuncEnd; ++Func) {
3699        if (isa<FunctionDecl>(*Func) &&
3700            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3701          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3702      }
3703    }
3704  }
3705
3706  // Handle attributes. We need to have merged decls when handling attributes
3707  // (for example to check for conflicts, etc).
3708  // FIXME: This needs to happen before we merge declarations. Then,
3709  // let attribute merging cope with attribute conflicts.
3710  ProcessDeclAttributes(S, NewFD, D);
3711
3712  // attributes declared post-definition are currently ignored
3713  // FIXME: This should happen during attribute merging
3714  if (Redeclaration && Previous.isSingleResult()) {
3715    const FunctionDecl *Def;
3716    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3717    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3718      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3719      Diag(Def->getLocation(), diag::note_previous_definition);
3720    }
3721  }
3722
3723  AddKnownFunctionAttributes(NewFD);
3724
3725  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
3726    // If a function name is overloadable in C, then every function
3727    // with that name must be marked "overloadable".
3728    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3729      << Redeclaration << NewFD;
3730    if (!Previous.empty())
3731      Diag(Previous.getRepresentativeDecl()->getLocation(),
3732           diag::note_attribute_overloadable_prev_overload);
3733    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
3734  }
3735
3736  if (NewFD->hasAttr<OverloadableAttr>() &&
3737      !NewFD->getType()->getAs<FunctionProtoType>()) {
3738    Diag(NewFD->getLocation(),
3739         diag::err_attribute_overloadable_no_prototype)
3740      << NewFD;
3741
3742    // Turn this into a variadic function with no parameters.
3743    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3744    QualType R = Context.getFunctionType(FT->getResultType(),
3745                                         0, 0, true, 0, false, false, 0, 0,
3746                                         FT->getExtInfo());
3747    NewFD->setType(R);
3748  }
3749
3750  // If there's a #pragma GCC visibility in scope, and this isn't a class
3751  // member, set the visibility of this function.
3752  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3753    AddPushedVisibilityAttribute(NewFD);
3754
3755  // If this is a locally-scoped extern C function, update the
3756  // map of such names.
3757  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3758      && !NewFD->isInvalidDecl())
3759    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3760
3761  // Set this FunctionDecl's range up to the right paren.
3762  NewFD->setLocEnd(D.getSourceRange().getEnd());
3763
3764  if (FunctionTemplate && NewFD->isInvalidDecl())
3765    FunctionTemplate->setInvalidDecl();
3766
3767  if (FunctionTemplate)
3768    return FunctionTemplate;
3769
3770  MarkUnusedFileScopedDecl(NewFD);
3771
3772  return NewFD;
3773}
3774
3775/// \brief Perform semantic checking of a new function declaration.
3776///
3777/// Performs semantic analysis of the new function declaration
3778/// NewFD. This routine performs all semantic checking that does not
3779/// require the actual declarator involved in the declaration, and is
3780/// used both for the declaration of functions as they are parsed
3781/// (called via ActOnDeclarator) and for the declaration of functions
3782/// that have been instantiated via C++ template instantiation (called
3783/// via InstantiateDecl).
3784///
3785/// \param IsExplicitSpecialiation whether this new function declaration is
3786/// an explicit specialization of the previous declaration.
3787///
3788/// This sets NewFD->isInvalidDecl() to true if there was an error.
3789void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3790                                    LookupResult &Previous,
3791                                    bool IsExplicitSpecialization,
3792                                    bool &Redeclaration,
3793                                    bool &OverloadableAttrRequired) {
3794  // If NewFD is already known erroneous, don't do any of this checking.
3795  if (NewFD->isInvalidDecl()) {
3796    // If this is a class member, mark the class invalid immediately.
3797    // This avoids some consistency errors later.
3798    if (isa<CXXMethodDecl>(NewFD))
3799      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3800
3801    return;
3802  }
3803
3804  if (NewFD->getResultType()->isVariablyModifiedType()) {
3805    // Functions returning a variably modified type violate C99 6.7.5.2p2
3806    // because all functions have linkage.
3807    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3808    return NewFD->setInvalidDecl();
3809  }
3810
3811  if (NewFD->isMain())
3812    CheckMain(NewFD);
3813
3814  // Check for a previous declaration of this name.
3815  if (Previous.empty() && NewFD->isExternC()) {
3816    // Since we did not find anything by this name and we're declaring
3817    // an extern "C" function, look for a non-visible extern "C"
3818    // declaration with the same name.
3819    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3820      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3821    if (Pos != LocallyScopedExternalDecls.end())
3822      Previous.addDecl(Pos->second);
3823  }
3824
3825  // Merge or overload the declaration with an existing declaration of
3826  // the same name, if appropriate.
3827  if (!Previous.empty()) {
3828    // Determine whether NewFD is an overload of PrevDecl or
3829    // a declaration that requires merging. If it's an overload,
3830    // there's no more work to do here; we'll just add the new
3831    // function to the scope.
3832
3833    NamedDecl *OldDecl = 0;
3834    if (!AllowOverloadingOfFunction(Previous, Context)) {
3835      Redeclaration = true;
3836      OldDecl = Previous.getFoundDecl();
3837    } else {
3838      if (!getLangOptions().CPlusPlus)
3839        OverloadableAttrRequired = true;
3840
3841      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3842                            /*NewIsUsingDecl*/ false)) {
3843      case Ovl_Match:
3844        Redeclaration = true;
3845        break;
3846
3847      case Ovl_NonFunction:
3848        Redeclaration = true;
3849        break;
3850
3851      case Ovl_Overload:
3852        Redeclaration = false;
3853        break;
3854      }
3855    }
3856
3857    if (Redeclaration) {
3858      // NewFD and OldDecl represent declarations that need to be
3859      // merged.
3860      if (MergeFunctionDecl(NewFD, OldDecl))
3861        return NewFD->setInvalidDecl();
3862
3863      Previous.clear();
3864      Previous.addDecl(OldDecl);
3865
3866      if (FunctionTemplateDecl *OldTemplateDecl
3867                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3868        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3869        FunctionTemplateDecl *NewTemplateDecl
3870          = NewFD->getDescribedFunctionTemplate();
3871        assert(NewTemplateDecl && "Template/non-template mismatch");
3872        if (CXXMethodDecl *Method
3873              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3874          Method->setAccess(OldTemplateDecl->getAccess());
3875          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3876        }
3877
3878        // If this is an explicit specialization of a member that is a function
3879        // template, mark it as a member specialization.
3880        if (IsExplicitSpecialization &&
3881            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3882          NewTemplateDecl->setMemberSpecialization();
3883          assert(OldTemplateDecl->isMemberSpecialization());
3884        }
3885      } else {
3886        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3887          NewFD->setAccess(OldDecl->getAccess());
3888        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3889      }
3890    }
3891  }
3892
3893  // Semantic checking for this function declaration (in isolation).
3894  if (getLangOptions().CPlusPlus) {
3895    // C++-specific checks.
3896    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3897      CheckConstructor(Constructor);
3898    } else if (CXXDestructorDecl *Destructor =
3899                dyn_cast<CXXDestructorDecl>(NewFD)) {
3900      CXXRecordDecl *Record = Destructor->getParent();
3901      QualType ClassType = Context.getTypeDeclType(Record);
3902
3903      // FIXME: Shouldn't we be able to perform this check even when the class
3904      // type is dependent? Both gcc and edg can handle that.
3905      if (!ClassType->isDependentType()) {
3906        DeclarationName Name
3907          = Context.DeclarationNames.getCXXDestructorName(
3908                                        Context.getCanonicalType(ClassType));
3909//         NewFD->getDeclName().dump();
3910//         Name.dump();
3911        if (NewFD->getDeclName() != Name) {
3912          Diag(NewFD->getLocation(), diag::err_destructor_name);
3913          return NewFD->setInvalidDecl();
3914        }
3915      }
3916
3917      Record->setUserDeclaredDestructor(true);
3918      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3919      // user-defined destructor.
3920      Record->setPOD(false);
3921
3922      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3923      // declared destructor.
3924      // FIXME: C++0x: don't do this for "= default" destructors
3925      Record->setHasTrivialDestructor(false);
3926    } else if (CXXConversionDecl *Conversion
3927               = dyn_cast<CXXConversionDecl>(NewFD)) {
3928      ActOnConversionDeclarator(Conversion);
3929    }
3930
3931    // Find any virtual functions that this function overrides.
3932    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3933      if (!Method->isFunctionTemplateSpecialization() &&
3934          !Method->getDescribedFunctionTemplate())
3935        AddOverriddenMethods(Method->getParent(), Method);
3936    }
3937
3938    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3939    if (NewFD->isOverloadedOperator() &&
3940        CheckOverloadedOperatorDeclaration(NewFD))
3941      return NewFD->setInvalidDecl();
3942
3943    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3944    if (NewFD->getLiteralIdentifier() &&
3945        CheckLiteralOperatorDeclaration(NewFD))
3946      return NewFD->setInvalidDecl();
3947
3948    // In C++, check default arguments now that we have merged decls. Unless
3949    // the lexical context is the class, because in this case this is done
3950    // during delayed parsing anyway.
3951    if (!CurContext->isRecord())
3952      CheckCXXDefaultArguments(NewFD);
3953  }
3954}
3955
3956void Sema::CheckMain(FunctionDecl* FD) {
3957  // C++ [basic.start.main]p3:  A program that declares main to be inline
3958  //   or static is ill-formed.
3959  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3960  //   shall not appear in a declaration of main.
3961  // static main is not an error under C99, but we should warn about it.
3962  bool isInline = FD->isInlineSpecified();
3963  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3964  if (isInline || isStatic) {
3965    unsigned diagID = diag::warn_unusual_main_decl;
3966    if (isInline || getLangOptions().CPlusPlus)
3967      diagID = diag::err_unusual_main_decl;
3968
3969    int which = isStatic + (isInline << 1) - 1;
3970    Diag(FD->getLocation(), diagID) << which;
3971  }
3972
3973  QualType T = FD->getType();
3974  assert(T->isFunctionType() && "function decl is not of function type");
3975  const FunctionType* FT = T->getAs<FunctionType>();
3976
3977  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3978    // TODO: add a replacement fixit to turn the return type into 'int'.
3979    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3980    FD->setInvalidDecl(true);
3981  }
3982
3983  // Treat protoless main() as nullary.
3984  if (isa<FunctionNoProtoType>(FT)) return;
3985
3986  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3987  unsigned nparams = FTP->getNumArgs();
3988  assert(FD->getNumParams() == nparams);
3989
3990  bool HasExtraParameters = (nparams > 3);
3991
3992  // Darwin passes an undocumented fourth argument of type char**.  If
3993  // other platforms start sprouting these, the logic below will start
3994  // getting shifty.
3995  if (nparams == 4 &&
3996      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3997    HasExtraParameters = false;
3998
3999  if (HasExtraParameters) {
4000    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4001    FD->setInvalidDecl(true);
4002    nparams = 3;
4003  }
4004
4005  // FIXME: a lot of the following diagnostics would be improved
4006  // if we had some location information about types.
4007
4008  QualType CharPP =
4009    Context.getPointerType(Context.getPointerType(Context.CharTy));
4010  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4011
4012  for (unsigned i = 0; i < nparams; ++i) {
4013    QualType AT = FTP->getArgType(i);
4014
4015    bool mismatch = true;
4016
4017    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4018      mismatch = false;
4019    else if (Expected[i] == CharPP) {
4020      // As an extension, the following forms are okay:
4021      //   char const **
4022      //   char const * const *
4023      //   char * const *
4024
4025      QualifierCollector qs;
4026      const PointerType* PT;
4027      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4028          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4029          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4030        qs.removeConst();
4031        mismatch = !qs.empty();
4032      }
4033    }
4034
4035    if (mismatch) {
4036      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4037      // TODO: suggest replacing given type with expected type
4038      FD->setInvalidDecl(true);
4039    }
4040  }
4041
4042  if (nparams == 1 && !FD->isInvalidDecl()) {
4043    Diag(FD->getLocation(), diag::warn_main_one_arg);
4044  }
4045}
4046
4047bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4048  // FIXME: Need strict checking.  In C89, we need to check for
4049  // any assignment, increment, decrement, function-calls, or
4050  // commas outside of a sizeof.  In C99, it's the same list,
4051  // except that the aforementioned are allowed in unevaluated
4052  // expressions.  Everything else falls under the
4053  // "may accept other forms of constant expressions" exception.
4054  // (We never end up here for C++, so the constant expression
4055  // rules there don't matter.)
4056  if (Init->isConstantInitializer(Context, false))
4057    return false;
4058  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4059    << Init->getSourceRange();
4060  return true;
4061}
4062
4063void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4064  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4065}
4066
4067/// AddInitializerToDecl - Adds the initializer Init to the
4068/// declaration dcl. If DirectInit is true, this is C++ direct
4069/// initialization rather than copy initialization.
4070void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4071  // If there is no declaration, there was an error parsing it.  Just ignore
4072  // the initializer.
4073  if (RealDecl == 0)
4074    return;
4075
4076  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4077    // With declarators parsed the way they are, the parser cannot
4078    // distinguish between a normal initializer and a pure-specifier.
4079    // Thus this grotesque test.
4080    IntegerLiteral *IL;
4081    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4082        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4083      CheckPureMethod(Method, Init->getSourceRange());
4084    else {
4085      Diag(Method->getLocation(), diag::err_member_function_initialization)
4086        << Method->getDeclName() << Init->getSourceRange();
4087      Method->setInvalidDecl();
4088    }
4089    return;
4090  }
4091
4092  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4093  if (!VDecl) {
4094    if (getLangOptions().CPlusPlus &&
4095        RealDecl->getLexicalDeclContext()->isRecord() &&
4096        isa<NamedDecl>(RealDecl))
4097      Diag(RealDecl->getLocation(), diag::err_member_initialization)
4098        << cast<NamedDecl>(RealDecl)->getDeclName();
4099    else
4100      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4101    RealDecl->setInvalidDecl();
4102    return;
4103  }
4104
4105
4106
4107  // A definition must end up with a complete type, which means it must be
4108  // complete with the restriction that an array type might be completed by the
4109  // initializer; note that later code assumes this restriction.
4110  QualType BaseDeclType = VDecl->getType();
4111  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4112    BaseDeclType = Array->getElementType();
4113  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4114                          diag::err_typecheck_decl_incomplete_type)) {
4115    RealDecl->setInvalidDecl();
4116    return;
4117  }
4118
4119  // The variable can not have an abstract class type.
4120  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4121                             diag::err_abstract_type_in_decl,
4122                             AbstractVariableType))
4123    VDecl->setInvalidDecl();
4124
4125  const VarDecl *Def;
4126  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4127    Diag(VDecl->getLocation(), diag::err_redefinition)
4128      << VDecl->getDeclName();
4129    Diag(Def->getLocation(), diag::note_previous_definition);
4130    VDecl->setInvalidDecl();
4131    return;
4132  }
4133
4134  // C++ [class.static.data]p4
4135  //   If a static data member is of const integral or const
4136  //   enumeration type, its declaration in the class definition can
4137  //   specify a constant-initializer which shall be an integral
4138  //   constant expression (5.19). In that case, the member can appear
4139  //   in integral constant expressions. The member shall still be
4140  //   defined in a namespace scope if it is used in the program and the
4141  //   namespace scope definition shall not contain an initializer.
4142  //
4143  // We already performed a redefinition check above, but for static
4144  // data members we also need to check whether there was an in-class
4145  // declaration with an initializer.
4146  const VarDecl* PrevInit = 0;
4147  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4148    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4149    Diag(PrevInit->getLocation(), diag::note_previous_definition);
4150    return;
4151  }
4152
4153  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4154    setFunctionHasBranchProtectedScope();
4155
4156  // Capture the variable that is being initialized and the style of
4157  // initialization.
4158  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4159
4160  // FIXME: Poor source location information.
4161  InitializationKind Kind
4162    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4163                                                   Init->getLocStart(),
4164                                                   Init->getLocEnd())
4165                : InitializationKind::CreateCopy(VDecl->getLocation(),
4166                                                 Init->getLocStart());
4167
4168  // Get the decls type and save a reference for later, since
4169  // CheckInitializerTypes may change it.
4170  QualType DclT = VDecl->getType(), SavT = DclT;
4171  if (VDecl->isBlockVarDecl()) {
4172    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4173      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4174      VDecl->setInvalidDecl();
4175    } else if (!VDecl->isInvalidDecl()) {
4176      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4177      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4178                                                MultiExprArg(*this, &Init, 1),
4179                                                &DclT);
4180      if (Result.isInvalid()) {
4181        VDecl->setInvalidDecl();
4182        return;
4183      }
4184
4185      Init = Result.takeAs<Expr>();
4186
4187      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4188      // Don't check invalid declarations to avoid emitting useless diagnostics.
4189      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4190        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
4191          CheckForConstantInitializer(Init, DclT);
4192      }
4193    }
4194  } else if (VDecl->isStaticDataMember() &&
4195             VDecl->getLexicalDeclContext()->isRecord()) {
4196    // This is an in-class initialization for a static data member, e.g.,
4197    //
4198    // struct S {
4199    //   static const int value = 17;
4200    // };
4201
4202    // Attach the initializer
4203    VDecl->setInit(Init);
4204
4205    // C++ [class.mem]p4:
4206    //   A member-declarator can contain a constant-initializer only
4207    //   if it declares a static member (9.4) of const integral or
4208    //   const enumeration type, see 9.4.2.
4209    QualType T = VDecl->getType();
4210    if (!T->isDependentType() &&
4211        (!Context.getCanonicalType(T).isConstQualified() ||
4212         !T->isIntegralOrEnumerationType())) {
4213      Diag(VDecl->getLocation(), diag::err_member_initialization)
4214        << VDecl->getDeclName() << Init->getSourceRange();
4215      VDecl->setInvalidDecl();
4216    } else {
4217      // C++ [class.static.data]p4:
4218      //   If a static data member is of const integral or const
4219      //   enumeration type, its declaration in the class definition
4220      //   can specify a constant-initializer which shall be an
4221      //   integral constant expression (5.19).
4222      if (!Init->isTypeDependent() &&
4223          !Init->getType()->isIntegralOrEnumerationType()) {
4224        // We have a non-dependent, non-integral or enumeration type.
4225        Diag(Init->getSourceRange().getBegin(),
4226             diag::err_in_class_initializer_non_integral_type)
4227          << Init->getType() << Init->getSourceRange();
4228        VDecl->setInvalidDecl();
4229      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
4230        // Check whether the expression is a constant expression.
4231        llvm::APSInt Value;
4232        SourceLocation Loc;
4233        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4234          Diag(Loc, diag::err_in_class_initializer_non_constant)
4235            << Init->getSourceRange();
4236          VDecl->setInvalidDecl();
4237        } else if (!VDecl->getType()->isDependentType())
4238          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
4239      }
4240    }
4241  } else if (VDecl->isFileVarDecl()) {
4242    if (VDecl->getStorageClass() == VarDecl::Extern &&
4243        (!getLangOptions().CPlusPlus ||
4244         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4245      Diag(VDecl->getLocation(), diag::warn_extern_init);
4246    if (!VDecl->isInvalidDecl()) {
4247      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4248      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4249                                                MultiExprArg(*this, &Init, 1),
4250                                                &DclT);
4251      if (Result.isInvalid()) {
4252        VDecl->setInvalidDecl();
4253        return;
4254      }
4255
4256      Init = Result.takeAs<Expr>();
4257    }
4258
4259    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4260    // Don't check invalid declarations to avoid emitting useless diagnostics.
4261    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4262      // C99 6.7.8p4. All file scoped initializers need to be constant.
4263      CheckForConstantInitializer(Init, DclT);
4264    }
4265  }
4266  // If the type changed, it means we had an incomplete type that was
4267  // completed by the initializer. For example:
4268  //   int ary[] = { 1, 3, 5 };
4269  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4270  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4271    VDecl->setType(DclT);
4272    Init->setType(DclT);
4273  }
4274
4275  Init = MaybeCreateCXXExprWithTemporaries(Init);
4276  // Attach the initializer to the decl.
4277  VDecl->setInit(Init);
4278
4279  if (getLangOptions().CPlusPlus) {
4280    if (!VDecl->isInvalidDecl() &&
4281        !VDecl->getDeclContext()->isDependentContext() &&
4282        VDecl->hasGlobalStorage() &&
4283        !Init->isConstantInitializer(Context,
4284                                     VDecl->getType()->isReferenceType()))
4285      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4286        << Init->getSourceRange();
4287
4288    // Make sure we mark the destructor as used if necessary.
4289    QualType InitType = VDecl->getType();
4290    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4291      InitType = Context.getBaseElementType(Array);
4292    if (const RecordType *Record = InitType->getAs<RecordType>())
4293      FinalizeVarWithDestructor(VDecl, Record);
4294  }
4295
4296  return;
4297}
4298
4299/// ActOnInitializerError - Given that there was an error parsing an
4300/// initializer for the given declaration, try to return to some form
4301/// of sanity.
4302void Sema::ActOnInitializerError(Decl *D) {
4303  // Our main concern here is re-establishing invariants like "a
4304  // variable's type is either dependent or complete".
4305  if (!D || D->isInvalidDecl()) return;
4306
4307  VarDecl *VD = dyn_cast<VarDecl>(D);
4308  if (!VD) return;
4309
4310  QualType Ty = VD->getType();
4311  if (Ty->isDependentType()) return;
4312
4313  // Require a complete type.
4314  if (RequireCompleteType(VD->getLocation(),
4315                          Context.getBaseElementType(Ty),
4316                          diag::err_typecheck_decl_incomplete_type)) {
4317    VD->setInvalidDecl();
4318    return;
4319  }
4320
4321  // Require an abstract type.
4322  if (RequireNonAbstractType(VD->getLocation(), Ty,
4323                             diag::err_abstract_type_in_decl,
4324                             AbstractVariableType)) {
4325    VD->setInvalidDecl();
4326    return;
4327  }
4328
4329  // Don't bother complaining about constructors or destructors,
4330  // though.
4331}
4332
4333void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4334                                  bool TypeContainsUndeducedAuto) {
4335  // If there is no declaration, there was an error parsing it. Just ignore it.
4336  if (RealDecl == 0)
4337    return;
4338
4339  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4340    QualType Type = Var->getType();
4341
4342    // C++0x [dcl.spec.auto]p3
4343    if (TypeContainsUndeducedAuto) {
4344      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4345        << Var->getDeclName() << Type;
4346      Var->setInvalidDecl();
4347      return;
4348    }
4349
4350    switch (Var->isThisDeclarationADefinition()) {
4351    case VarDecl::Definition:
4352      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4353        break;
4354
4355      // We have an out-of-line definition of a static data member
4356      // that has an in-class initializer, so we type-check this like
4357      // a declaration.
4358      //
4359      // Fall through
4360
4361    case VarDecl::DeclarationOnly:
4362      // It's only a declaration.
4363
4364      // Block scope. C99 6.7p7: If an identifier for an object is
4365      // declared with no linkage (C99 6.2.2p6), the type for the
4366      // object shall be complete.
4367      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4368          !Var->getLinkage() && !Var->isInvalidDecl() &&
4369          RequireCompleteType(Var->getLocation(), Type,
4370                              diag::err_typecheck_decl_incomplete_type))
4371        Var->setInvalidDecl();
4372
4373      // Make sure that the type is not abstract.
4374      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4375          RequireNonAbstractType(Var->getLocation(), Type,
4376                                 diag::err_abstract_type_in_decl,
4377                                 AbstractVariableType))
4378        Var->setInvalidDecl();
4379      return;
4380
4381    case VarDecl::TentativeDefinition:
4382      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4383      // object that has file scope without an initializer, and without a
4384      // storage-class specifier or with the storage-class specifier "static",
4385      // constitutes a tentative definition. Note: A tentative definition with
4386      // external linkage is valid (C99 6.2.2p5).
4387      if (!Var->isInvalidDecl()) {
4388        if (const IncompleteArrayType *ArrayT
4389                                    = Context.getAsIncompleteArrayType(Type)) {
4390          if (RequireCompleteType(Var->getLocation(),
4391                                  ArrayT->getElementType(),
4392                                  diag::err_illegal_decl_array_incomplete_type))
4393            Var->setInvalidDecl();
4394        } else if (Var->getStorageClass() == VarDecl::Static) {
4395          // C99 6.9.2p3: If the declaration of an identifier for an object is
4396          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4397          // declared type shall not be an incomplete type.
4398          // NOTE: code such as the following
4399          //     static struct s;
4400          //     struct s { int a; };
4401          // is accepted by gcc. Hence here we issue a warning instead of
4402          // an error and we do not invalidate the static declaration.
4403          // NOTE: to avoid multiple warnings, only check the first declaration.
4404          if (Var->getPreviousDeclaration() == 0)
4405            RequireCompleteType(Var->getLocation(), Type,
4406                                diag::ext_typecheck_decl_incomplete_type);
4407        }
4408      }
4409
4410      // Record the tentative definition; we're done.
4411      if (!Var->isInvalidDecl())
4412        TentativeDefinitions.push_back(Var);
4413      return;
4414    }
4415
4416    // Provide a specific diagnostic for uninitialized variable
4417    // definitions with incomplete array type.
4418    if (Type->isIncompleteArrayType()) {
4419      Diag(Var->getLocation(),
4420           diag::err_typecheck_incomplete_array_needs_initializer);
4421      Var->setInvalidDecl();
4422      return;
4423    }
4424
4425    // Provide a specific diagnostic for uninitialized variable
4426    // definitions with reference type.
4427    if (Type->isReferenceType()) {
4428      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4429        << Var->getDeclName()
4430        << SourceRange(Var->getLocation(), Var->getLocation());
4431      Var->setInvalidDecl();
4432      return;
4433    }
4434
4435    // Do not attempt to type-check the default initializer for a
4436    // variable with dependent type.
4437    if (Type->isDependentType())
4438      return;
4439
4440    if (Var->isInvalidDecl())
4441      return;
4442
4443    if (RequireCompleteType(Var->getLocation(),
4444                            Context.getBaseElementType(Type),
4445                            diag::err_typecheck_decl_incomplete_type)) {
4446      Var->setInvalidDecl();
4447      return;
4448    }
4449
4450    // The variable can not have an abstract class type.
4451    if (RequireNonAbstractType(Var->getLocation(), Type,
4452                               diag::err_abstract_type_in_decl,
4453                               AbstractVariableType)) {
4454      Var->setInvalidDecl();
4455      return;
4456    }
4457
4458    const RecordType *Record
4459      = Context.getBaseElementType(Type)->getAs<RecordType>();
4460    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4461        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4462      // C++03 [dcl.init]p9:
4463      //   If no initializer is specified for an object, and the
4464      //   object is of (possibly cv-qualified) non-POD class type (or
4465      //   array thereof), the object shall be default-initialized; if
4466      //   the object is of const-qualified type, the underlying class
4467      //   type shall have a user-declared default
4468      //   constructor. Otherwise, if no initializer is specified for
4469      //   a non- static object, the object and its subobjects, if
4470      //   any, have an indeterminate initial value); if the object
4471      //   or any of its subobjects are of const-qualified type, the
4472      //   program is ill-formed.
4473      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4474    } else {
4475      // Check for jumps past the implicit initializer.  C++0x
4476      // clarifies that this applies to a "variable with automatic
4477      // storage duration", not a "local variable".
4478      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4479        setFunctionHasBranchProtectedScope();
4480
4481      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4482      InitializationKind Kind
4483        = InitializationKind::CreateDefault(Var->getLocation());
4484
4485      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4486      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4487                                        MultiExprArg(*this, 0, 0));
4488      if (Init.isInvalid())
4489        Var->setInvalidDecl();
4490      else if (Init.get()) {
4491        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4492
4493        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4494            Var->hasGlobalStorage() &&
4495            !Var->getDeclContext()->isDependentContext() &&
4496            !Var->getInit()->isConstantInitializer(Context, false))
4497          Diag(Var->getLocation(), diag::warn_global_constructor);
4498      }
4499    }
4500
4501    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4502      FinalizeVarWithDestructor(Var, Record);
4503  }
4504}
4505
4506Sema::DeclGroupPtrTy
4507Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4508                              Decl **Group, unsigned NumDecls) {
4509  llvm::SmallVector<Decl*, 8> Decls;
4510
4511  if (DS.isTypeSpecOwned())
4512    Decls.push_back(DS.getRepAsDecl());
4513
4514  for (unsigned i = 0; i != NumDecls; ++i)
4515    if (Decl *D = Group[i])
4516      Decls.push_back(D);
4517
4518  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4519                                                   Decls.data(), Decls.size()));
4520}
4521
4522
4523/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4524/// to introduce parameters into function prototype scope.
4525Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4526  const DeclSpec &DS = D.getDeclSpec();
4527
4528  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4529  VarDecl::StorageClass StorageClass = VarDecl::None;
4530  VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
4531  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4532    StorageClass = VarDecl::Register;
4533    StorageClassAsWritten = VarDecl::Register;
4534  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4535    Diag(DS.getStorageClassSpecLoc(),
4536         diag::err_invalid_storage_class_in_func_decl);
4537    D.getMutableDeclSpec().ClearStorageClassSpecs();
4538  }
4539
4540  if (D.getDeclSpec().isThreadSpecified())
4541    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4542
4543  DiagnoseFunctionSpecifiers(D);
4544
4545  // Check that there are no default arguments inside the type of this
4546  // parameter (C++ only).
4547  if (getLangOptions().CPlusPlus)
4548    CheckExtraCXXDefaultArguments(D);
4549
4550  TagDecl *OwnedDecl = 0;
4551  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4552  QualType parmDeclType = TInfo->getType();
4553
4554  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4555    // C++ [dcl.fct]p6:
4556    //   Types shall not be defined in return or parameter types.
4557    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4558      << Context.getTypeDeclType(OwnedDecl);
4559  }
4560
4561  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4562  IdentifierInfo *II = D.getIdentifier();
4563  if (II) {
4564    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4565                   ForRedeclaration);
4566    LookupName(R, S);
4567    if (R.isSingleResult()) {
4568      NamedDecl *PrevDecl = R.getFoundDecl();
4569      if (PrevDecl->isTemplateParameter()) {
4570        // Maybe we will complain about the shadowed template parameter.
4571        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4572        // Just pretend that we didn't see the previous declaration.
4573        PrevDecl = 0;
4574      } else if (S->isDeclScope(PrevDecl)) {
4575        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4576        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4577
4578        // Recover by removing the name
4579        II = 0;
4580        D.SetIdentifier(0, D.getIdentifierLoc());
4581        D.setInvalidType(true);
4582      }
4583    }
4584  }
4585
4586  // Temporarily put parameter variables in the translation unit, not
4587  // the enclosing context.  This prevents them from accidentally
4588  // looking like class members in C++.
4589  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4590                                    TInfo, parmDeclType, II,
4591                                    D.getIdentifierLoc(),
4592                                    StorageClass, StorageClassAsWritten);
4593
4594  if (D.isInvalidType())
4595    New->setInvalidDecl();
4596
4597  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4598  if (D.getCXXScopeSpec().isSet()) {
4599    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4600      << D.getCXXScopeSpec().getRange();
4601    New->setInvalidDecl();
4602  }
4603
4604  // Add the parameter declaration into this scope.
4605  S->AddDecl(New);
4606  if (II)
4607    IdResolver.AddDecl(New);
4608
4609  ProcessDeclAttributes(S, New, D);
4610
4611  if (New->hasAttr<BlocksAttr>()) {
4612    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4613  }
4614  return New;
4615}
4616
4617/// \brief Synthesizes a variable for a parameter arising from a
4618/// typedef.
4619ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4620                                              SourceLocation Loc,
4621                                              QualType T) {
4622  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4623                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4624                                           VarDecl::None, VarDecl::None, 0);
4625  Param->setImplicit();
4626  return Param;
4627}
4628
4629void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
4630                                    ParmVarDecl * const *ParamEnd) {
4631  if (Diags.getDiagnosticLevel(diag::warn_unused_parameter) ==
4632        Diagnostic::Ignored)
4633    return;
4634
4635  // Don't diagnose unused-parameter errors in template instantiations; we
4636  // will already have done so in the template itself.
4637  if (!ActiveTemplateInstantiations.empty())
4638    return;
4639
4640  for (; Param != ParamEnd; ++Param) {
4641    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
4642        !(*Param)->hasAttr<UnusedAttr>()) {
4643      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
4644        << (*Param)->getDeclName();
4645    }
4646  }
4647}
4648
4649ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4650                                  TypeSourceInfo *TSInfo, QualType T,
4651                                  IdentifierInfo *Name,
4652                                  SourceLocation NameLoc,
4653                                  VarDecl::StorageClass StorageClass,
4654                                  VarDecl::StorageClass StorageClassAsWritten) {
4655  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4656                                         adjustParameterType(T), TSInfo,
4657                                         StorageClass, StorageClassAsWritten,
4658                                         0);
4659
4660  // Parameters can not be abstract class types.
4661  // For record types, this is done by the AbstractClassUsageDiagnoser once
4662  // the class has been completely parsed.
4663  if (!CurContext->isRecord() &&
4664      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4665                             AbstractParamType))
4666    New->setInvalidDecl();
4667
4668  // Parameter declarators cannot be interface types. All ObjC objects are
4669  // passed by reference.
4670  if (T->isObjCObjectType()) {
4671    Diag(NameLoc,
4672         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4673    New->setInvalidDecl();
4674  }
4675
4676  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4677  // duration shall not be qualified by an address-space qualifier."
4678  // Since all parameters have automatic store duration, they can not have
4679  // an address space.
4680  if (T.getAddressSpace() != 0) {
4681    Diag(NameLoc, diag::err_arg_with_address_space);
4682    New->setInvalidDecl();
4683  }
4684
4685  return New;
4686}
4687
4688void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4689                                           SourceLocation LocAfterDecls) {
4690  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4691         "Not a function declarator!");
4692  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4693
4694  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4695  // for a K&R function.
4696  if (!FTI.hasPrototype) {
4697    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4698      --i;
4699      if (FTI.ArgInfo[i].Param == 0) {
4700        llvm::SmallString<256> Code;
4701        llvm::raw_svector_ostream(Code) << "  int "
4702                                        << FTI.ArgInfo[i].Ident->getName()
4703                                        << ";\n";
4704        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4705          << FTI.ArgInfo[i].Ident
4706          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4707
4708        // Implicitly declare the argument as type 'int' for lack of a better
4709        // type.
4710        DeclSpec DS;
4711        const char* PrevSpec; // unused
4712        unsigned DiagID; // unused
4713        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4714                           PrevSpec, DiagID);
4715        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4716        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4717        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4718      }
4719    }
4720  }
4721}
4722
4723Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4724                                         Declarator &D) {
4725  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4726  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4727         "Not a function declarator!");
4728  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4729
4730  if (FTI.hasPrototype) {
4731    // FIXME: Diagnose arguments without names in C.
4732  }
4733
4734  Scope *ParentScope = FnBodyScope->getParent();
4735
4736  Decl *DP = HandleDeclarator(ParentScope, D,
4737                              MultiTemplateParamsArg(*this),
4738                              /*IsFunctionDefinition=*/true);
4739  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4740}
4741
4742static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4743  // Don't warn about invalid declarations.
4744  if (FD->isInvalidDecl())
4745    return false;
4746
4747  // Or declarations that aren't global.
4748  if (!FD->isGlobal())
4749    return false;
4750
4751  // Don't warn about C++ member functions.
4752  if (isa<CXXMethodDecl>(FD))
4753    return false;
4754
4755  // Don't warn about 'main'.
4756  if (FD->isMain())
4757    return false;
4758
4759  // Don't warn about inline functions.
4760  if (FD->isInlineSpecified())
4761    return false;
4762
4763  // Don't warn about function templates.
4764  if (FD->getDescribedFunctionTemplate())
4765    return false;
4766
4767  // Don't warn about function template specializations.
4768  if (FD->isFunctionTemplateSpecialization())
4769    return false;
4770
4771  bool MissingPrototype = true;
4772  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4773       Prev; Prev = Prev->getPreviousDeclaration()) {
4774    // Ignore any declarations that occur in function or method
4775    // scope, because they aren't visible from the header.
4776    if (Prev->getDeclContext()->isFunctionOrMethod())
4777      continue;
4778
4779    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4780    break;
4781  }
4782
4783  return MissingPrototype;
4784}
4785
4786Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
4787  // Clear the last template instantiation error context.
4788  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4789
4790  if (!D)
4791    return D;
4792  FunctionDecl *FD = 0;
4793
4794  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
4795    FD = FunTmpl->getTemplatedDecl();
4796  else
4797    FD = cast<FunctionDecl>(D);
4798
4799  // Enter a new function scope
4800  PushFunctionScope();
4801
4802  // See if this is a redefinition.
4803  // But don't complain if we're in GNU89 mode and the previous definition
4804  // was an extern inline function.
4805  const FunctionDecl *Definition;
4806  if (FD->hasBody(Definition) &&
4807      !canRedefineFunction(Definition, getLangOptions())) {
4808    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4809    Diag(Definition->getLocation(), diag::note_previous_definition);
4810  }
4811
4812  // Builtin functions cannot be defined.
4813  if (unsigned BuiltinID = FD->getBuiltinID()) {
4814    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4815      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4816      FD->setInvalidDecl();
4817    }
4818  }
4819
4820  // The return type of a function definition must be complete
4821  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4822  QualType ResultType = FD->getResultType();
4823  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4824      !FD->isInvalidDecl() &&
4825      RequireCompleteType(FD->getLocation(), ResultType,
4826                          diag::err_func_def_incomplete_result))
4827    FD->setInvalidDecl();
4828
4829  // GNU warning -Wmissing-prototypes:
4830  //   Warn if a global function is defined without a previous
4831  //   prototype declaration. This warning is issued even if the
4832  //   definition itself provides a prototype. The aim is to detect
4833  //   global functions that fail to be declared in header files.
4834  if (ShouldWarnAboutMissingPrototype(FD))
4835    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4836
4837  if (FnBodyScope)
4838    PushDeclContext(FnBodyScope, FD);
4839
4840  // Check the validity of our function parameters
4841  CheckParmsForFunctionDef(FD);
4842
4843  bool ShouldCheckShadow =
4844    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4845
4846  // Introduce our parameters into the function scope
4847  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4848    ParmVarDecl *Param = FD->getParamDecl(p);
4849    Param->setOwningFunction(FD);
4850
4851    // If this has an identifier, add it to the scope stack.
4852    if (Param->getIdentifier() && FnBodyScope) {
4853      if (ShouldCheckShadow)
4854        CheckShadow(FnBodyScope, Param);
4855
4856      PushOnScopeChains(Param, FnBodyScope);
4857    }
4858  }
4859
4860  // Checking attributes of current function definition
4861  // dllimport attribute.
4862  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
4863  if (DA && (!FD->getAttr<DLLExportAttr>())) {
4864    // dllimport attribute cannot be directly applied to definition.
4865    if (!DA->isInherited()) {
4866      Diag(FD->getLocation(),
4867           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4868        << "dllimport";
4869      FD->setInvalidDecl();
4870      return FD;
4871    }
4872
4873    // Visual C++ appears to not think this is an issue, so only issue
4874    // a warning when Microsoft extensions are disabled.
4875    if (!LangOpts.Microsoft) {
4876      // If a symbol previously declared dllimport is later defined, the
4877      // attribute is ignored in subsequent references, and a warning is
4878      // emitted.
4879      Diag(FD->getLocation(),
4880           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4881        << FD->getName() << "dllimport";
4882    }
4883  }
4884  return FD;
4885}
4886
4887/// \brief Given the set of return statements within a function body,
4888/// compute the variables that are subject to the named return value
4889/// optimization.
4890///
4891/// Each of the variables that is subject to the named return value
4892/// optimization will be marked as NRVO variables in the AST, and any
4893/// return statement that has a marked NRVO variable as its NRVO candidate can
4894/// use the named return value optimization.
4895///
4896/// This function applies a very simplistic algorithm for NRVO: if every return
4897/// statement in the function has the same NRVO candidate, that candidate is
4898/// the NRVO variable.
4899///
4900/// FIXME: Employ a smarter algorithm that accounts for multiple return
4901/// statements and the lifetimes of the NRVO candidates. We should be able to
4902/// find a maximal set of NRVO variables.
4903static void ComputeNRVO(Stmt *Body, ReturnStmt **Returns, unsigned NumReturns) {
4904  const VarDecl *NRVOCandidate = 0;
4905  for (unsigned I = 0; I != NumReturns; ++I) {
4906    if (!Returns[I]->getNRVOCandidate())
4907      return;
4908
4909    if (!NRVOCandidate)
4910      NRVOCandidate = Returns[I]->getNRVOCandidate();
4911    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4912      return;
4913  }
4914
4915  if (NRVOCandidate)
4916    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4917}
4918
4919Decl *Sema::ActOnFinishFunctionBody(Decl *D, StmtArg BodyArg) {
4920  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4921}
4922
4923Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
4924                                    bool IsInstantiation) {
4925  FunctionDecl *FD = 0;
4926  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4927  if (FunTmpl)
4928    FD = FunTmpl->getTemplatedDecl();
4929  else
4930    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4931
4932  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4933
4934  if (FD) {
4935    FD->setBody(Body);
4936    if (FD->isMain()) {
4937      // C and C++ allow for main to automagically return 0.
4938      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4939      FD->setHasImplicitReturnZero(true);
4940      WP.disableCheckFallThrough();
4941    }
4942
4943    if (!FD->isInvalidDecl()) {
4944      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4945
4946      // If this is a constructor, we need a vtable.
4947      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
4948        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
4949
4950      ComputeNRVO(Body, FunctionScopes.back()->Returns.data(),
4951                  FunctionScopes.back()->Returns.size());
4952    }
4953
4954    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4955  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4956    assert(MD == getCurMethodDecl() && "Method parsing confused");
4957    MD->setBody(Body);
4958    MD->setEndLoc(Body->getLocEnd());
4959    if (!MD->isInvalidDecl())
4960      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4961  } else {
4962    return 0;
4963  }
4964
4965  // Verify and clean out per-function state.
4966
4967  // Check goto/label use.
4968  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4969       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4970    LabelStmt *L = I->second;
4971
4972    // Verify that we have no forward references left.  If so, there was a goto
4973    // or address of a label taken, but no definition of it.  Label fwd
4974    // definitions are indicated with a null substmt.
4975    if (L->getSubStmt() != 0)
4976      continue;
4977
4978    // Emit error.
4979    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4980
4981    // At this point, we have gotos that use the bogus label.  Stitch it into
4982    // the function body so that they aren't leaked and that the AST is well
4983    // formed.
4984    if (Body == 0) {
4985      // The whole function wasn't parsed correctly.
4986      continue;
4987    }
4988
4989    // Otherwise, the body is valid: we want to stitch the label decl into the
4990    // function somewhere so that it is properly owned and so that the goto
4991    // has a valid target.  Do this by creating a new compound stmt with the
4992    // label in it.
4993
4994    // Give the label a sub-statement.
4995    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4996
4997    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4998                               cast<CXXTryStmt>(Body)->getTryBlock() :
4999                               cast<CompoundStmt>(Body);
5000    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5001                                          Compound->body_end());
5002    Elements.push_back(L);
5003    Compound->setStmts(Context, Elements.data(), Elements.size());
5004  }
5005
5006  if (Body) {
5007    // C++ constructors that have function-try-blocks can't have return
5008    // statements in the handlers of that block. (C++ [except.handle]p14)
5009    // Verify this.
5010    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5011      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5012
5013    // Verify that that gotos and switch cases don't jump into scopes illegally.
5014    // Verify that that gotos and switch cases don't jump into scopes illegally.
5015    if (FunctionNeedsScopeChecking() &&
5016        !dcl->isInvalidDecl() &&
5017        !hasAnyErrorsInThisFunction())
5018      DiagnoseInvalidJumps(Body);
5019
5020    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5021      if (!Destructor->getParent()->isDependentType())
5022        CheckDestructor(Destructor);
5023
5024      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5025                                             Destructor->getParent());
5026    }
5027
5028    // If any errors have occurred, clear out any temporaries that may have
5029    // been leftover. This ensures that these temporaries won't be picked up for
5030    // deletion in some later function.
5031    if (PP.getDiagnostics().hasErrorOccurred())
5032      ExprTemporaries.clear();
5033    else if (!isa<FunctionTemplateDecl>(dcl)) {
5034      // Since the body is valid, issue any analysis-based warnings that are
5035      // enabled.
5036      QualType ResultType;
5037      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5038        ResultType = FD->getResultType();
5039      }
5040      else {
5041        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5042        ResultType = MD->getResultType();
5043      }
5044      AnalysisWarnings.IssueWarnings(WP, dcl);
5045    }
5046
5047    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5048  }
5049
5050  if (!IsInstantiation)
5051    PopDeclContext();
5052
5053  PopFunctionOrBlockScope();
5054
5055  // If any errors have occurred, clear out any temporaries that may have
5056  // been leftover. This ensures that these temporaries won't be picked up for
5057  // deletion in some later function.
5058  if (getDiagnostics().hasErrorOccurred())
5059    ExprTemporaries.clear();
5060
5061  return dcl;
5062}
5063
5064/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5065/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5066NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5067                                          IdentifierInfo &II, Scope *S) {
5068  // Before we produce a declaration for an implicitly defined
5069  // function, see whether there was a locally-scoped declaration of
5070  // this name as a function or variable. If so, use that
5071  // (non-visible) declaration, and complain about it.
5072  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5073    = LocallyScopedExternalDecls.find(&II);
5074  if (Pos != LocallyScopedExternalDecls.end()) {
5075    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5076    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5077    return Pos->second;
5078  }
5079
5080  // Extension in C99.  Legal in C90, but warn about it.
5081  if (II.getName().startswith("__builtin_"))
5082    Diag(Loc, diag::warn_builtin_unknown) << &II;
5083  else if (getLangOptions().C99)
5084    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5085  else
5086    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5087
5088  // Set a Declarator for the implicit definition: int foo();
5089  const char *Dummy;
5090  DeclSpec DS;
5091  unsigned DiagID;
5092  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5093  Error = Error; // Silence warning.
5094  assert(!Error && "Error setting up implicit decl!");
5095  Declarator D(DS, Declarator::BlockContext);
5096  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5097                                             0, 0, false, SourceLocation(),
5098                                             false, 0,0,0, Loc, Loc, D),
5099                SourceLocation());
5100  D.SetIdentifier(&II, Loc);
5101
5102  // Insert this function into translation-unit scope.
5103
5104  DeclContext *PrevDC = CurContext;
5105  CurContext = Context.getTranslationUnitDecl();
5106
5107  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5108  FD->setImplicit();
5109
5110  CurContext = PrevDC;
5111
5112  AddKnownFunctionAttributes(FD);
5113
5114  return FD;
5115}
5116
5117/// \brief Adds any function attributes that we know a priori based on
5118/// the declaration of this function.
5119///
5120/// These attributes can apply both to implicitly-declared builtins
5121/// (like __builtin___printf_chk) or to library-declared functions
5122/// like NSLog or printf.
5123void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5124  if (FD->isInvalidDecl())
5125    return;
5126
5127  // If this is a built-in function, map its builtin attributes to
5128  // actual attributes.
5129  if (unsigned BuiltinID = FD->getBuiltinID()) {
5130    // Handle printf-formatting attributes.
5131    unsigned FormatIdx;
5132    bool HasVAListArg;
5133    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5134      if (!FD->getAttr<FormatAttr>())
5135        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5136                                                "printf", FormatIdx+1,
5137                                               HasVAListArg ? 0 : FormatIdx+2));
5138    }
5139    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5140                                             HasVAListArg)) {
5141     if (!FD->getAttr<FormatAttr>())
5142       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5143                                              "scanf", FormatIdx+1,
5144                                              HasVAListArg ? 0 : FormatIdx+2));
5145    }
5146
5147    // Mark const if we don't care about errno and that is the only
5148    // thing preventing the function from being const. This allows
5149    // IRgen to use LLVM intrinsics for such functions.
5150    if (!getLangOptions().MathErrno &&
5151        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5152      if (!FD->getAttr<ConstAttr>())
5153        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5154    }
5155
5156    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5157      FD->setType(Context.getNoReturnType(FD->getType()));
5158    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5159      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5160    if (Context.BuiltinInfo.isConst(BuiltinID))
5161      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5162  }
5163
5164  IdentifierInfo *Name = FD->getIdentifier();
5165  if (!Name)
5166    return;
5167  if ((!getLangOptions().CPlusPlus &&
5168       FD->getDeclContext()->isTranslationUnit()) ||
5169      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5170       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5171       LinkageSpecDecl::lang_c)) {
5172    // Okay: this could be a libc/libm/Objective-C function we know
5173    // about.
5174  } else
5175    return;
5176
5177  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5178    // FIXME: NSLog and NSLogv should be target specific
5179    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5180      // FIXME: We known better than our headers.
5181      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5182    } else
5183      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5184                                             "printf", 1,
5185                                             Name->isStr("NSLogv") ? 0 : 2));
5186  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5187    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5188    // target-specific builtins, perhaps?
5189    if (!FD->getAttr<FormatAttr>())
5190      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5191                                             "printf", 2,
5192                                             Name->isStr("vasprintf") ? 0 : 3));
5193  }
5194}
5195
5196TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5197                                    TypeSourceInfo *TInfo) {
5198  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5199  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5200
5201  if (!TInfo) {
5202    assert(D.isInvalidType() && "no declarator info for valid type");
5203    TInfo = Context.getTrivialTypeSourceInfo(T);
5204  }
5205
5206  // Scope manipulation handled by caller.
5207  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5208                                           D.getIdentifierLoc(),
5209                                           D.getIdentifier(),
5210                                           TInfo);
5211
5212  if (const TagType *TT = T->getAs<TagType>()) {
5213    TagDecl *TD = TT->getDecl();
5214
5215    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5216    // keep track of the TypedefDecl.
5217    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5218      TD->setTypedefForAnonDecl(NewTD);
5219  }
5220
5221  if (D.isInvalidType())
5222    NewTD->setInvalidDecl();
5223  return NewTD;
5224}
5225
5226
5227/// \brief Determine whether a tag with a given kind is acceptable
5228/// as a redeclaration of the given tag declaration.
5229///
5230/// \returns true if the new tag kind is acceptable, false otherwise.
5231bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5232                                        TagTypeKind NewTag,
5233                                        SourceLocation NewTagLoc,
5234                                        const IdentifierInfo &Name) {
5235  // C++ [dcl.type.elab]p3:
5236  //   The class-key or enum keyword present in the
5237  //   elaborated-type-specifier shall agree in kind with the
5238  //   declaration to which the name in the elaborated-type-specifier
5239  //   refers. This rule also applies to the form of
5240  //   elaborated-type-specifier that declares a class-name or
5241  //   friend class since it can be construed as referring to the
5242  //   definition of the class. Thus, in any
5243  //   elaborated-type-specifier, the enum keyword shall be used to
5244  //   refer to an enumeration (7.2), the union class-key shall be
5245  //   used to refer to a union (clause 9), and either the class or
5246  //   struct class-key shall be used to refer to a class (clause 9)
5247  //   declared using the class or struct class-key.
5248  TagTypeKind OldTag = Previous->getTagKind();
5249  if (OldTag == NewTag)
5250    return true;
5251
5252  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5253      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5254    // Warn about the struct/class tag mismatch.
5255    bool isTemplate = false;
5256    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5257      isTemplate = Record->getDescribedClassTemplate();
5258
5259    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5260      << (NewTag == TTK_Class)
5261      << isTemplate << &Name
5262      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5263                              OldTag == TTK_Class? "class" : "struct");
5264    Diag(Previous->getLocation(), diag::note_previous_use);
5265    return true;
5266  }
5267  return false;
5268}
5269
5270/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5271/// former case, Name will be non-null.  In the later case, Name will be null.
5272/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5273/// reference/declaration/definition of a tag.
5274Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5275                               SourceLocation KWLoc, CXXScopeSpec &SS,
5276                               IdentifierInfo *Name, SourceLocation NameLoc,
5277                               AttributeList *Attr, AccessSpecifier AS,
5278                               MultiTemplateParamsArg TemplateParameterLists,
5279                               bool &OwnedDecl, bool &IsDependent) {
5280  // If this is not a definition, it must have a name.
5281  assert((Name != 0 || TUK == TUK_Definition) &&
5282         "Nameless record must be a definition!");
5283
5284  OwnedDecl = false;
5285  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5286
5287  // FIXME: Check explicit specializations more carefully.
5288  bool isExplicitSpecialization = false;
5289  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5290  bool Invalid = false;
5291  if (TUK != TUK_Reference) {
5292    if (TemplateParameterList *TemplateParams
5293          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5294                        (TemplateParameterList**)TemplateParameterLists.get(),
5295                                              TemplateParameterLists.size(),
5296                                                    TUK == TUK_Friend,
5297                                                    isExplicitSpecialization,
5298                                                    Invalid)) {
5299      // All but one template parameter lists have been matching.
5300      --NumMatchedTemplateParamLists;
5301
5302      if (TemplateParams->size() > 0) {
5303        // This is a declaration or definition of a class template (which may
5304        // be a member of another template).
5305        if (Invalid)
5306          return 0;
5307
5308        OwnedDecl = false;
5309        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5310                                               SS, Name, NameLoc, Attr,
5311                                               TemplateParams,
5312                                               AS);
5313        TemplateParameterLists.release();
5314        return Result.get();
5315      } else {
5316        // The "template<>" header is extraneous.
5317        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5318          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5319        isExplicitSpecialization = true;
5320      }
5321    }
5322  }
5323
5324  DeclContext *SearchDC = CurContext;
5325  DeclContext *DC = CurContext;
5326  bool isStdBadAlloc = false;
5327
5328  RedeclarationKind Redecl = ForRedeclaration;
5329  if (TUK == TUK_Friend || TUK == TUK_Reference)
5330    Redecl = NotForRedeclaration;
5331
5332  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5333
5334  if (Name && SS.isNotEmpty()) {
5335    // We have a nested-name tag ('struct foo::bar').
5336
5337    // Check for invalid 'foo::'.
5338    if (SS.isInvalid()) {
5339      Name = 0;
5340      goto CreateNewDecl;
5341    }
5342
5343    // If this is a friend or a reference to a class in a dependent
5344    // context, don't try to make a decl for it.
5345    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5346      DC = computeDeclContext(SS, false);
5347      if (!DC) {
5348        IsDependent = true;
5349        return 0;
5350      }
5351    } else {
5352      DC = computeDeclContext(SS, true);
5353      if (!DC) {
5354        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5355          << SS.getRange();
5356        return 0;
5357      }
5358    }
5359
5360    if (RequireCompleteDeclContext(SS, DC))
5361      return 0;
5362
5363    SearchDC = DC;
5364    // Look-up name inside 'foo::'.
5365    LookupQualifiedName(Previous, DC);
5366
5367    if (Previous.isAmbiguous())
5368      return 0;
5369
5370    if (Previous.empty()) {
5371      // Name lookup did not find anything. However, if the
5372      // nested-name-specifier refers to the current instantiation,
5373      // and that current instantiation has any dependent base
5374      // classes, we might find something at instantiation time: treat
5375      // this as a dependent elaborated-type-specifier.
5376      if (Previous.wasNotFoundInCurrentInstantiation()) {
5377        IsDependent = true;
5378        return 0;
5379      }
5380
5381      // A tag 'foo::bar' must already exist.
5382      Diag(NameLoc, diag::err_not_tag_in_scope)
5383        << Kind << Name << DC << SS.getRange();
5384      Name = 0;
5385      Invalid = true;
5386      goto CreateNewDecl;
5387    }
5388  } else if (Name) {
5389    // If this is a named struct, check to see if there was a previous forward
5390    // declaration or definition.
5391    // FIXME: We're looking into outer scopes here, even when we
5392    // shouldn't be. Doing so can result in ambiguities that we
5393    // shouldn't be diagnosing.
5394    LookupName(Previous, S);
5395
5396    // Note:  there used to be some attempt at recovery here.
5397    if (Previous.isAmbiguous())
5398      return 0;
5399
5400    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5401      // FIXME: This makes sure that we ignore the contexts associated
5402      // with C structs, unions, and enums when looking for a matching
5403      // tag declaration or definition. See the similar lookup tweak
5404      // in Sema::LookupName; is there a better way to deal with this?
5405      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5406        SearchDC = SearchDC->getParent();
5407    }
5408  }
5409
5410  if (Previous.isSingleResult() &&
5411      Previous.getFoundDecl()->isTemplateParameter()) {
5412    // Maybe we will complain about the shadowed template parameter.
5413    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5414    // Just pretend that we didn't see the previous declaration.
5415    Previous.clear();
5416  }
5417
5418  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5419      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5420    // This is a declaration of or a reference to "std::bad_alloc".
5421    isStdBadAlloc = true;
5422
5423    if (Previous.empty() && StdBadAlloc) {
5424      // std::bad_alloc has been implicitly declared (but made invisible to
5425      // name lookup). Fill in this implicit declaration as the previous
5426      // declaration, so that the declarations get chained appropriately.
5427      Previous.addDecl(getStdBadAlloc());
5428    }
5429  }
5430
5431  // If we didn't find a previous declaration, and this is a reference
5432  // (or friend reference), move to the correct scope.  In C++, we
5433  // also need to do a redeclaration lookup there, just in case
5434  // there's a shadow friend decl.
5435  if (Name && Previous.empty() &&
5436      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5437    if (Invalid) goto CreateNewDecl;
5438    assert(SS.isEmpty());
5439
5440    if (TUK == TUK_Reference) {
5441      // C++ [basic.scope.pdecl]p5:
5442      //   -- for an elaborated-type-specifier of the form
5443      //
5444      //          class-key identifier
5445      //
5446      //      if the elaborated-type-specifier is used in the
5447      //      decl-specifier-seq or parameter-declaration-clause of a
5448      //      function defined in namespace scope, the identifier is
5449      //      declared as a class-name in the namespace that contains
5450      //      the declaration; otherwise, except as a friend
5451      //      declaration, the identifier is declared in the smallest
5452      //      non-class, non-function-prototype scope that contains the
5453      //      declaration.
5454      //
5455      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5456      // C structs and unions.
5457      //
5458      // It is an error in C++ to declare (rather than define) an enum
5459      // type, including via an elaborated type specifier.  We'll
5460      // diagnose that later; for now, declare the enum in the same
5461      // scope as we would have picked for any other tag type.
5462      //
5463      // GNU C also supports this behavior as part of its incomplete
5464      // enum types extension, while GNU C++ does not.
5465      //
5466      // Find the context where we'll be declaring the tag.
5467      // FIXME: We would like to maintain the current DeclContext as the
5468      // lexical context,
5469      while (SearchDC->isRecord())
5470        SearchDC = SearchDC->getParent();
5471
5472      // Find the scope where we'll be declaring the tag.
5473      while (S->isClassScope() ||
5474             (getLangOptions().CPlusPlus &&
5475              S->isFunctionPrototypeScope()) ||
5476             ((S->getFlags() & Scope::DeclScope) == 0) ||
5477             (S->getEntity() &&
5478              ((DeclContext *)S->getEntity())->isTransparentContext()))
5479        S = S->getParent();
5480    } else {
5481      assert(TUK == TUK_Friend);
5482      // C++ [namespace.memdef]p3:
5483      //   If a friend declaration in a non-local class first declares a
5484      //   class or function, the friend class or function is a member of
5485      //   the innermost enclosing namespace.
5486      SearchDC = SearchDC->getEnclosingNamespaceContext();
5487    }
5488
5489    // In C++, we need to do a redeclaration lookup to properly
5490    // diagnose some problems.
5491    if (getLangOptions().CPlusPlus) {
5492      Previous.setRedeclarationKind(ForRedeclaration);
5493      LookupQualifiedName(Previous, SearchDC);
5494    }
5495  }
5496
5497  if (!Previous.empty()) {
5498    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5499
5500    // It's okay to have a tag decl in the same scope as a typedef
5501    // which hides a tag decl in the same scope.  Finding this
5502    // insanity with a redeclaration lookup can only actually happen
5503    // in C++.
5504    //
5505    // This is also okay for elaborated-type-specifiers, which is
5506    // technically forbidden by the current standard but which is
5507    // okay according to the likely resolution of an open issue;
5508    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5509    if (getLangOptions().CPlusPlus) {
5510      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5511        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5512          TagDecl *Tag = TT->getDecl();
5513          if (Tag->getDeclName() == Name &&
5514              Tag->getDeclContext()->getLookupContext()
5515                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5516            PrevDecl = Tag;
5517            Previous.clear();
5518            Previous.addDecl(Tag);
5519          }
5520        }
5521      }
5522    }
5523
5524    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5525      // If this is a use of a previous tag, or if the tag is already declared
5526      // in the same scope (so that the definition/declaration completes or
5527      // rementions the tag), reuse the decl.
5528      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5529          isDeclInScope(PrevDecl, SearchDC, S)) {
5530        // Make sure that this wasn't declared as an enum and now used as a
5531        // struct or something similar.
5532        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5533          bool SafeToContinue
5534            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5535               Kind != TTK_Enum);
5536          if (SafeToContinue)
5537            Diag(KWLoc, diag::err_use_with_wrong_tag)
5538              << Name
5539              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5540                                              PrevTagDecl->getKindName());
5541          else
5542            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5543          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5544
5545          if (SafeToContinue)
5546            Kind = PrevTagDecl->getTagKind();
5547          else {
5548            // Recover by making this an anonymous redefinition.
5549            Name = 0;
5550            Previous.clear();
5551            Invalid = true;
5552          }
5553        }
5554
5555        if (!Invalid) {
5556          // If this is a use, just return the declaration we found.
5557
5558          // FIXME: In the future, return a variant or some other clue
5559          // for the consumer of this Decl to know it doesn't own it.
5560          // For our current ASTs this shouldn't be a problem, but will
5561          // need to be changed with DeclGroups.
5562          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5563              TUK == TUK_Friend)
5564            return PrevTagDecl;
5565
5566          // Diagnose attempts to redefine a tag.
5567          if (TUK == TUK_Definition) {
5568            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5569              // If we're defining a specialization and the previous definition
5570              // is from an implicit instantiation, don't emit an error
5571              // here; we'll catch this in the general case below.
5572              if (!isExplicitSpecialization ||
5573                  !isa<CXXRecordDecl>(Def) ||
5574                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5575                                               == TSK_ExplicitSpecialization) {
5576                Diag(NameLoc, diag::err_redefinition) << Name;
5577                Diag(Def->getLocation(), diag::note_previous_definition);
5578                // If this is a redefinition, recover by making this
5579                // struct be anonymous, which will make any later
5580                // references get the previous definition.
5581                Name = 0;
5582                Previous.clear();
5583                Invalid = true;
5584              }
5585            } else {
5586              // If the type is currently being defined, complain
5587              // about a nested redefinition.
5588              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5589              if (Tag->isBeingDefined()) {
5590                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5591                Diag(PrevTagDecl->getLocation(),
5592                     diag::note_previous_definition);
5593                Name = 0;
5594                Previous.clear();
5595                Invalid = true;
5596              }
5597            }
5598
5599            // Okay, this is definition of a previously declared or referenced
5600            // tag PrevDecl. We're going to create a new Decl for it.
5601          }
5602        }
5603        // If we get here we have (another) forward declaration or we
5604        // have a definition.  Just create a new decl.
5605
5606      } else {
5607        // If we get here, this is a definition of a new tag type in a nested
5608        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5609        // new decl/type.  We set PrevDecl to NULL so that the entities
5610        // have distinct types.
5611        Previous.clear();
5612      }
5613      // If we get here, we're going to create a new Decl. If PrevDecl
5614      // is non-NULL, it's a definition of the tag declared by
5615      // PrevDecl. If it's NULL, we have a new definition.
5616
5617
5618    // Otherwise, PrevDecl is not a tag, but was found with tag
5619    // lookup.  This is only actually possible in C++, where a few
5620    // things like templates still live in the tag namespace.
5621    } else {
5622      assert(getLangOptions().CPlusPlus);
5623
5624      // Use a better diagnostic if an elaborated-type-specifier
5625      // found the wrong kind of type on the first
5626      // (non-redeclaration) lookup.
5627      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5628          !Previous.isForRedeclaration()) {
5629        unsigned Kind = 0;
5630        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5631        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5632        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5633        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5634        Invalid = true;
5635
5636      // Otherwise, only diagnose if the declaration is in scope.
5637      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5638        // do nothing
5639
5640      // Diagnose implicit declarations introduced by elaborated types.
5641      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5642        unsigned Kind = 0;
5643        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5644        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5645        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5646        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5647        Invalid = true;
5648
5649      // Otherwise it's a declaration.  Call out a particularly common
5650      // case here.
5651      } else if (isa<TypedefDecl>(PrevDecl)) {
5652        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5653          << Name
5654          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5655        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5656        Invalid = true;
5657
5658      // Otherwise, diagnose.
5659      } else {
5660        // The tag name clashes with something else in the target scope,
5661        // issue an error and recover by making this tag be anonymous.
5662        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5663        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5664        Name = 0;
5665        Invalid = true;
5666      }
5667
5668      // The existing declaration isn't relevant to us; we're in a
5669      // new scope, so clear out the previous declaration.
5670      Previous.clear();
5671    }
5672  }
5673
5674CreateNewDecl:
5675
5676  TagDecl *PrevDecl = 0;
5677  if (Previous.isSingleResult())
5678    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5679
5680  // If there is an identifier, use the location of the identifier as the
5681  // location of the decl, otherwise use the location of the struct/union
5682  // keyword.
5683  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5684
5685  // Otherwise, create a new declaration. If there is a previous
5686  // declaration of the same entity, the two will be linked via
5687  // PrevDecl.
5688  TagDecl *New;
5689
5690  if (Kind == TTK_Enum) {
5691    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5692    // enum X { A, B, C } D;    D should chain to X.
5693    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5694                           cast_or_null<EnumDecl>(PrevDecl));
5695    // If this is an undefined enum, warn.
5696    if (TUK != TUK_Definition && !Invalid) {
5697      TagDecl *Def;
5698      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5699        Diag(Loc, diag::ext_forward_ref_enum_def)
5700          << New;
5701        Diag(Def->getLocation(), diag::note_previous_definition);
5702      } else {
5703        Diag(Loc,
5704             getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5705                                       : diag::ext_forward_ref_enum);
5706      }
5707    }
5708  } else {
5709    // struct/union/class
5710
5711    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5712    // struct X { int A; } D;    D should chain to X.
5713    if (getLangOptions().CPlusPlus) {
5714      // FIXME: Look for a way to use RecordDecl for simple structs.
5715      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5716                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5717
5718      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
5719        StdBadAlloc = cast<CXXRecordDecl>(New);
5720    } else
5721      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5722                               cast_or_null<RecordDecl>(PrevDecl));
5723  }
5724
5725  // Maybe add qualifier info.
5726  if (SS.isNotEmpty()) {
5727    if (SS.isSet()) {
5728      NestedNameSpecifier *NNS
5729        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5730      New->setQualifierInfo(NNS, SS.getRange());
5731      if (NumMatchedTemplateParamLists > 0) {
5732        New->setTemplateParameterListsInfo(Context,
5733                                           NumMatchedTemplateParamLists,
5734                    (TemplateParameterList**) TemplateParameterLists.release());
5735      }
5736    }
5737    else
5738      Invalid = true;
5739  }
5740
5741  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5742    // Add alignment attributes if necessary; these attributes are checked when
5743    // the ASTContext lays out the structure.
5744    //
5745    // It is important for implementing the correct semantics that this
5746    // happen here (in act on tag decl). The #pragma pack stack is
5747    // maintained as a result of parser callbacks which can occur at
5748    // many points during the parsing of a struct declaration (because
5749    // the #pragma tokens are effectively skipped over during the
5750    // parsing of the struct).
5751    AddAlignmentAttributesForRecord(RD);
5752  }
5753
5754  // If this is a specialization of a member class (of a class template),
5755  // check the specialization.
5756  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5757    Invalid = true;
5758
5759  if (Invalid)
5760    New->setInvalidDecl();
5761
5762  if (Attr)
5763    ProcessDeclAttributeList(S, New, Attr);
5764
5765  // If we're declaring or defining a tag in function prototype scope
5766  // in C, note that this type can only be used within the function.
5767  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5768    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5769
5770  // Set the lexical context. If the tag has a C++ scope specifier, the
5771  // lexical context will be different from the semantic context.
5772  New->setLexicalDeclContext(CurContext);
5773
5774  // Mark this as a friend decl if applicable.
5775  if (TUK == TUK_Friend)
5776    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5777
5778  // Set the access specifier.
5779  if (!Invalid && SearchDC->isRecord())
5780    SetMemberAccessSpecifier(New, PrevDecl, AS);
5781
5782  if (TUK == TUK_Definition)
5783    New->startDefinition();
5784
5785  // If this has an identifier, add it to the scope stack.
5786  if (TUK == TUK_Friend) {
5787    // We might be replacing an existing declaration in the lookup tables;
5788    // if so, borrow its access specifier.
5789    if (PrevDecl)
5790      New->setAccess(PrevDecl->getAccess());
5791
5792    DeclContext *DC = New->getDeclContext()->getLookupContext();
5793    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5794    if (Name) // can be null along some error paths
5795      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5796        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5797  } else if (Name) {
5798    S = getNonFieldDeclScope(S);
5799    PushOnScopeChains(New, S);
5800  } else {
5801    CurContext->addDecl(New);
5802  }
5803
5804  // If this is the C FILE type, notify the AST context.
5805  if (IdentifierInfo *II = New->getIdentifier())
5806    if (!New->isInvalidDecl() &&
5807        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5808        II->isStr("FILE"))
5809      Context.setFILEDecl(New);
5810
5811  OwnedDecl = true;
5812  return New;
5813}
5814
5815void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
5816  AdjustDeclIfTemplate(TagD);
5817  TagDecl *Tag = cast<TagDecl>(TagD);
5818
5819  // Enter the tag context.
5820  PushDeclContext(S, Tag);
5821}
5822
5823void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
5824                                           SourceLocation LBraceLoc) {
5825  AdjustDeclIfTemplate(TagD);
5826  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
5827
5828  FieldCollector->StartClass();
5829
5830  if (!Record->getIdentifier())
5831    return;
5832
5833  // C++ [class]p2:
5834  //   [...] The class-name is also inserted into the scope of the
5835  //   class itself; this is known as the injected-class-name. For
5836  //   purposes of access checking, the injected-class-name is treated
5837  //   as if it were a public member name.
5838  CXXRecordDecl *InjectedClassName
5839    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5840                            CurContext, Record->getLocation(),
5841                            Record->getIdentifier(),
5842                            Record->getTagKeywordLoc(),
5843                            Record);
5844  InjectedClassName->setImplicit();
5845  InjectedClassName->setAccess(AS_public);
5846  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5847      InjectedClassName->setDescribedClassTemplate(Template);
5848  PushOnScopeChains(InjectedClassName, S);
5849  assert(InjectedClassName->isInjectedClassName() &&
5850         "Broken injected-class-name");
5851}
5852
5853void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
5854                                    SourceLocation RBraceLoc) {
5855  AdjustDeclIfTemplate(TagD);
5856  TagDecl *Tag = cast<TagDecl>(TagD);
5857  Tag->setRBraceLoc(RBraceLoc);
5858
5859  if (isa<CXXRecordDecl>(Tag))
5860    FieldCollector->FinishClass();
5861
5862  // Exit this scope of this tag's definition.
5863  PopDeclContext();
5864
5865  // Notify the consumer that we've defined a tag.
5866  Consumer.HandleTagDeclDefinition(Tag);
5867}
5868
5869void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
5870  AdjustDeclIfTemplate(TagD);
5871  TagDecl *Tag = cast<TagDecl>(TagD);
5872  Tag->setInvalidDecl();
5873
5874  // We're undoing ActOnTagStartDefinition here, not
5875  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5876  // the FieldCollector.
5877
5878  PopDeclContext();
5879}
5880
5881// Note that FieldName may be null for anonymous bitfields.
5882bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5883                          QualType FieldTy, const Expr *BitWidth,
5884                          bool *ZeroWidth) {
5885  // Default to true; that shouldn't confuse checks for emptiness
5886  if (ZeroWidth)
5887    *ZeroWidth = true;
5888
5889  // C99 6.7.2.1p4 - verify the field type.
5890  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5891  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5892    // Handle incomplete types with specific error.
5893    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5894      return true;
5895    if (FieldName)
5896      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5897        << FieldName << FieldTy << BitWidth->getSourceRange();
5898    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5899      << FieldTy << BitWidth->getSourceRange();
5900  }
5901
5902  // If the bit-width is type- or value-dependent, don't try to check
5903  // it now.
5904  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5905    return false;
5906
5907  llvm::APSInt Value;
5908  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5909    return true;
5910
5911  if (Value != 0 && ZeroWidth)
5912    *ZeroWidth = false;
5913
5914  // Zero-width bitfield is ok for anonymous field.
5915  if (Value == 0 && FieldName)
5916    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5917
5918  if (Value.isSigned() && Value.isNegative()) {
5919    if (FieldName)
5920      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5921               << FieldName << Value.toString(10);
5922    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5923      << Value.toString(10);
5924  }
5925
5926  if (!FieldTy->isDependentType()) {
5927    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5928    if (Value.getZExtValue() > TypeSize) {
5929      if (!getLangOptions().CPlusPlus) {
5930        if (FieldName)
5931          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5932            << FieldName << (unsigned)Value.getZExtValue()
5933            << (unsigned)TypeSize;
5934
5935        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5936          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5937      }
5938
5939      if (FieldName)
5940        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5941          << FieldName << (unsigned)Value.getZExtValue()
5942          << (unsigned)TypeSize;
5943      else
5944        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5945          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5946    }
5947  }
5948
5949  return false;
5950}
5951
5952/// ActOnField - Each field of a struct/union/class is passed into this in order
5953/// to create a FieldDecl object for it.
5954Decl *Sema::ActOnField(Scope *S, Decl *TagD,
5955                                 SourceLocation DeclStart,
5956                                 Declarator &D, ExprTy *BitfieldWidth) {
5957  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
5958                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5959                               AS_public);
5960  return Res;
5961}
5962
5963/// HandleField - Analyze a field of a C struct or a C++ data member.
5964///
5965FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5966                             SourceLocation DeclStart,
5967                             Declarator &D, Expr *BitWidth,
5968                             AccessSpecifier AS) {
5969  IdentifierInfo *II = D.getIdentifier();
5970  SourceLocation Loc = DeclStart;
5971  if (II) Loc = D.getIdentifierLoc();
5972
5973  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5974  QualType T = TInfo->getType();
5975  if (getLangOptions().CPlusPlus)
5976    CheckExtraCXXDefaultArguments(D);
5977
5978  DiagnoseFunctionSpecifiers(D);
5979
5980  if (D.getDeclSpec().isThreadSpecified())
5981    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5982
5983  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5984                                         ForRedeclaration);
5985
5986  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5987    // Maybe we will complain about the shadowed template parameter.
5988    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5989    // Just pretend that we didn't see the previous declaration.
5990    PrevDecl = 0;
5991  }
5992
5993  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5994    PrevDecl = 0;
5995
5996  bool Mutable
5997    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5998  SourceLocation TSSL = D.getSourceRange().getBegin();
5999  FieldDecl *NewFD
6000    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6001                     AS, PrevDecl, &D);
6002
6003  if (NewFD->isInvalidDecl())
6004    Record->setInvalidDecl();
6005
6006  if (NewFD->isInvalidDecl() && PrevDecl) {
6007    // Don't introduce NewFD into scope; there's already something
6008    // with the same name in the same scope.
6009  } else if (II) {
6010    PushOnScopeChains(NewFD, S);
6011  } else
6012    Record->addDecl(NewFD);
6013
6014  return NewFD;
6015}
6016
6017/// \brief Build a new FieldDecl and check its well-formedness.
6018///
6019/// This routine builds a new FieldDecl given the fields name, type,
6020/// record, etc. \p PrevDecl should refer to any previous declaration
6021/// with the same name and in the same scope as the field to be
6022/// created.
6023///
6024/// \returns a new FieldDecl.
6025///
6026/// \todo The Declarator argument is a hack. It will be removed once
6027FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6028                                TypeSourceInfo *TInfo,
6029                                RecordDecl *Record, SourceLocation Loc,
6030                                bool Mutable, Expr *BitWidth,
6031                                SourceLocation TSSL,
6032                                AccessSpecifier AS, NamedDecl *PrevDecl,
6033                                Declarator *D) {
6034  IdentifierInfo *II = Name.getAsIdentifierInfo();
6035  bool InvalidDecl = false;
6036  if (D) InvalidDecl = D->isInvalidType();
6037
6038  // If we receive a broken type, recover by assuming 'int' and
6039  // marking this declaration as invalid.
6040  if (T.isNull()) {
6041    InvalidDecl = true;
6042    T = Context.IntTy;
6043  }
6044
6045  QualType EltTy = Context.getBaseElementType(T);
6046  if (!EltTy->isDependentType() &&
6047      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6048    // Fields of incomplete type force their record to be invalid.
6049    Record->setInvalidDecl();
6050    InvalidDecl = true;
6051  }
6052
6053  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6054  // than a variably modified type.
6055  if (!InvalidDecl && T->isVariablyModifiedType()) {
6056    bool SizeIsNegative;
6057    llvm::APSInt Oversized;
6058    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6059                                                           SizeIsNegative,
6060                                                           Oversized);
6061    if (!FixedTy.isNull()) {
6062      Diag(Loc, diag::warn_illegal_constant_array_size);
6063      T = FixedTy;
6064    } else {
6065      if (SizeIsNegative)
6066        Diag(Loc, diag::err_typecheck_negative_array_size);
6067      else if (Oversized.getBoolValue())
6068        Diag(Loc, diag::err_array_too_large)
6069          << Oversized.toString(10);
6070      else
6071        Diag(Loc, diag::err_typecheck_field_variable_size);
6072      InvalidDecl = true;
6073    }
6074  }
6075
6076  // Fields can not have abstract class types
6077  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6078                                             diag::err_abstract_type_in_decl,
6079                                             AbstractFieldType))
6080    InvalidDecl = true;
6081
6082  bool ZeroWidth = false;
6083  // If this is declared as a bit-field, check the bit-field.
6084  if (!InvalidDecl && BitWidth &&
6085      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6086    InvalidDecl = true;
6087    DeleteExpr(BitWidth);
6088    BitWidth = 0;
6089    ZeroWidth = false;
6090  }
6091
6092  // Check that 'mutable' is consistent with the type of the declaration.
6093  if (!InvalidDecl && Mutable) {
6094    unsigned DiagID = 0;
6095    if (T->isReferenceType())
6096      DiagID = diag::err_mutable_reference;
6097    else if (T.isConstQualified())
6098      DiagID = diag::err_mutable_const;
6099
6100    if (DiagID) {
6101      SourceLocation ErrLoc = Loc;
6102      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6103        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6104      Diag(ErrLoc, DiagID);
6105      Mutable = false;
6106      InvalidDecl = true;
6107    }
6108  }
6109
6110  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6111                                       BitWidth, Mutable);
6112  if (InvalidDecl)
6113    NewFD->setInvalidDecl();
6114
6115  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6116    Diag(Loc, diag::err_duplicate_member) << II;
6117    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6118    NewFD->setInvalidDecl();
6119  }
6120
6121  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6122    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
6123
6124    if (!T->isPODType())
6125      CXXRecord->setPOD(false);
6126    if (!ZeroWidth)
6127      CXXRecord->setEmpty(false);
6128
6129    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6130      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6131      if (RDecl->getDefinition()) {
6132        if (!RDecl->hasTrivialConstructor())
6133          CXXRecord->setHasTrivialConstructor(false);
6134        if (!RDecl->hasTrivialCopyConstructor())
6135          CXXRecord->setHasTrivialCopyConstructor(false);
6136        if (!RDecl->hasTrivialCopyAssignment())
6137          CXXRecord->setHasTrivialCopyAssignment(false);
6138        if (!RDecl->hasTrivialDestructor())
6139          CXXRecord->setHasTrivialDestructor(false);
6140
6141        // C++ 9.5p1: An object of a class with a non-trivial
6142        // constructor, a non-trivial copy constructor, a non-trivial
6143        // destructor, or a non-trivial copy assignment operator
6144        // cannot be a member of a union, nor can an array of such
6145        // objects.
6146        // TODO: C++0x alters this restriction significantly.
6147        if (Record->isUnion() && CheckNontrivialField(NewFD))
6148          NewFD->setInvalidDecl();
6149      }
6150    }
6151  }
6152
6153  // FIXME: We need to pass in the attributes given an AST
6154  // representation, not a parser representation.
6155  if (D)
6156    // FIXME: What to pass instead of TUScope?
6157    ProcessDeclAttributes(TUScope, NewFD, *D);
6158
6159  if (T.isObjCGCWeak())
6160    Diag(Loc, diag::warn_attribute_weak_on_field);
6161
6162  NewFD->setAccess(AS);
6163
6164  // C++ [dcl.init.aggr]p1:
6165  //   An aggregate is an array or a class (clause 9) with [...] no
6166  //   private or protected non-static data members (clause 11).
6167  // A POD must be an aggregate.
6168  if (getLangOptions().CPlusPlus &&
6169      (AS == AS_private || AS == AS_protected)) {
6170    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
6171    CXXRecord->setAggregate(false);
6172    CXXRecord->setPOD(false);
6173  }
6174
6175  return NewFD;
6176}
6177
6178bool Sema::CheckNontrivialField(FieldDecl *FD) {
6179  assert(FD);
6180  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6181
6182  if (FD->isInvalidDecl())
6183    return true;
6184
6185  QualType EltTy = Context.getBaseElementType(FD->getType());
6186  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6187    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6188    if (RDecl->getDefinition()) {
6189      // We check for copy constructors before constructors
6190      // because otherwise we'll never get complaints about
6191      // copy constructors.
6192
6193      CXXSpecialMember member = CXXInvalid;
6194      if (!RDecl->hasTrivialCopyConstructor())
6195        member = CXXCopyConstructor;
6196      else if (!RDecl->hasTrivialConstructor())
6197        member = CXXConstructor;
6198      else if (!RDecl->hasTrivialCopyAssignment())
6199        member = CXXCopyAssignment;
6200      else if (!RDecl->hasTrivialDestructor())
6201        member = CXXDestructor;
6202
6203      if (member != CXXInvalid) {
6204        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6205              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6206        DiagnoseNontrivial(RT, member);
6207        return true;
6208      }
6209    }
6210  }
6211
6212  return false;
6213}
6214
6215/// DiagnoseNontrivial - Given that a class has a non-trivial
6216/// special member, figure out why.
6217void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6218  QualType QT(T, 0U);
6219  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6220
6221  // Check whether the member was user-declared.
6222  switch (member) {
6223  case CXXInvalid:
6224    break;
6225
6226  case CXXConstructor:
6227    if (RD->hasUserDeclaredConstructor()) {
6228      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6229      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6230        const FunctionDecl *body = 0;
6231        ci->hasBody(body);
6232        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6233          SourceLocation CtorLoc = ci->getLocation();
6234          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6235          return;
6236        }
6237      }
6238
6239      assert(0 && "found no user-declared constructors");
6240      return;
6241    }
6242    break;
6243
6244  case CXXCopyConstructor:
6245    if (RD->hasUserDeclaredCopyConstructor()) {
6246      SourceLocation CtorLoc =
6247        RD->getCopyConstructor(Context, 0)->getLocation();
6248      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6249      return;
6250    }
6251    break;
6252
6253  case CXXCopyAssignment:
6254    if (RD->hasUserDeclaredCopyAssignment()) {
6255      // FIXME: this should use the location of the copy
6256      // assignment, not the type.
6257      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6258      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6259      return;
6260    }
6261    break;
6262
6263  case CXXDestructor:
6264    if (RD->hasUserDeclaredDestructor()) {
6265      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6266      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6267      return;
6268    }
6269    break;
6270  }
6271
6272  typedef CXXRecordDecl::base_class_iterator base_iter;
6273
6274  // Virtual bases and members inhibit trivial copying/construction,
6275  // but not trivial destruction.
6276  if (member != CXXDestructor) {
6277    // Check for virtual bases.  vbases includes indirect virtual bases,
6278    // so we just iterate through the direct bases.
6279    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6280      if (bi->isVirtual()) {
6281        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6282        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6283        return;
6284      }
6285
6286    // Check for virtual methods.
6287    typedef CXXRecordDecl::method_iterator meth_iter;
6288    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6289         ++mi) {
6290      if (mi->isVirtual()) {
6291        SourceLocation MLoc = mi->getSourceRange().getBegin();
6292        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6293        return;
6294      }
6295    }
6296  }
6297
6298  bool (CXXRecordDecl::*hasTrivial)() const;
6299  switch (member) {
6300  case CXXConstructor:
6301    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6302  case CXXCopyConstructor:
6303    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6304  case CXXCopyAssignment:
6305    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6306  case CXXDestructor:
6307    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6308  default:
6309    assert(0 && "unexpected special member"); return;
6310  }
6311
6312  // Check for nontrivial bases (and recurse).
6313  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6314    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6315    assert(BaseRT && "Don't know how to handle dependent bases");
6316    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6317    if (!(BaseRecTy->*hasTrivial)()) {
6318      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6319      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6320      DiagnoseNontrivial(BaseRT, member);
6321      return;
6322    }
6323  }
6324
6325  // Check for nontrivial members (and recurse).
6326  typedef RecordDecl::field_iterator field_iter;
6327  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6328       ++fi) {
6329    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6330    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6331      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6332
6333      if (!(EltRD->*hasTrivial)()) {
6334        SourceLocation FLoc = (*fi)->getLocation();
6335        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6336        DiagnoseNontrivial(EltRT, member);
6337        return;
6338      }
6339    }
6340  }
6341
6342  assert(0 && "found no explanation for non-trivial member");
6343}
6344
6345/// TranslateIvarVisibility - Translate visibility from a token ID to an
6346///  AST enum value.
6347static ObjCIvarDecl::AccessControl
6348TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6349  switch (ivarVisibility) {
6350  default: assert(0 && "Unknown visitibility kind");
6351  case tok::objc_private: return ObjCIvarDecl::Private;
6352  case tok::objc_public: return ObjCIvarDecl::Public;
6353  case tok::objc_protected: return ObjCIvarDecl::Protected;
6354  case tok::objc_package: return ObjCIvarDecl::Package;
6355  }
6356}
6357
6358/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6359/// in order to create an IvarDecl object for it.
6360Decl *Sema::ActOnIvar(Scope *S,
6361                                SourceLocation DeclStart,
6362                                Decl *IntfDecl,
6363                                Declarator &D, ExprTy *BitfieldWidth,
6364                                tok::ObjCKeywordKind Visibility) {
6365
6366  IdentifierInfo *II = D.getIdentifier();
6367  Expr *BitWidth = (Expr*)BitfieldWidth;
6368  SourceLocation Loc = DeclStart;
6369  if (II) Loc = D.getIdentifierLoc();
6370
6371  // FIXME: Unnamed fields can be handled in various different ways, for
6372  // example, unnamed unions inject all members into the struct namespace!
6373
6374  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6375  QualType T = TInfo->getType();
6376
6377  if (BitWidth) {
6378    // 6.7.2.1p3, 6.7.2.1p4
6379    if (VerifyBitField(Loc, II, T, BitWidth)) {
6380      D.setInvalidType();
6381      DeleteExpr(BitWidth);
6382      BitWidth = 0;
6383    }
6384  } else {
6385    // Not a bitfield.
6386
6387    // validate II.
6388
6389  }
6390  if (T->isReferenceType()) {
6391    Diag(Loc, diag::err_ivar_reference_type);
6392    D.setInvalidType();
6393  }
6394  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6395  // than a variably modified type.
6396  else if (T->isVariablyModifiedType()) {
6397    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6398    D.setInvalidType();
6399  }
6400
6401  // Get the visibility (access control) for this ivar.
6402  ObjCIvarDecl::AccessControl ac =
6403    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6404                                        : ObjCIvarDecl::None;
6405  // Must set ivar's DeclContext to its enclosing interface.
6406  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6407  ObjCContainerDecl *EnclosingContext;
6408  if (ObjCImplementationDecl *IMPDecl =
6409      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6410    if (!LangOpts.ObjCNonFragileABI2) {
6411    // Case of ivar declared in an implementation. Context is that of its class.
6412      EnclosingContext = IMPDecl->getClassInterface();
6413      assert(EnclosingContext && "Implementation has no class interface!");
6414    }
6415    else
6416      EnclosingContext = EnclosingDecl;
6417  } else {
6418    if (ObjCCategoryDecl *CDecl =
6419        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6420      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6421        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6422        return 0;
6423      }
6424    }
6425    EnclosingContext = EnclosingDecl;
6426  }
6427
6428  // Construct the decl.
6429  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6430                                             EnclosingContext, Loc, II, T,
6431                                             TInfo, ac, (Expr *)BitfieldWidth);
6432
6433  if (II) {
6434    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6435                                           ForRedeclaration);
6436    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6437        && !isa<TagDecl>(PrevDecl)) {
6438      Diag(Loc, diag::err_duplicate_member) << II;
6439      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6440      NewID->setInvalidDecl();
6441    }
6442  }
6443
6444  // Process attributes attached to the ivar.
6445  ProcessDeclAttributes(S, NewID, D);
6446
6447  if (D.isInvalidType())
6448    NewID->setInvalidDecl();
6449
6450  if (II) {
6451    // FIXME: When interfaces are DeclContexts, we'll need to add
6452    // these to the interface.
6453    S->AddDecl(NewID);
6454    IdResolver.AddDecl(NewID);
6455  }
6456
6457  return NewID;
6458}
6459
6460/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
6461/// class and class extensions. For every class @interface and class
6462/// extension @interface, if the last ivar is a bitfield of any type,
6463/// then add an implicit `char :0` ivar to the end of that interface.
6464void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
6465                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
6466  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
6467    return;
6468
6469  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
6470  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
6471
6472  if (!Ivar->isBitField())
6473    return;
6474  uint64_t BitFieldSize =
6475    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
6476  if (BitFieldSize == 0)
6477    return;
6478  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
6479  if (!ID) {
6480    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6481      if (!CD->IsClassExtension())
6482        return;
6483    }
6484    // No need to add this to end of @implementation.
6485    else
6486      return;
6487  }
6488  // All conditions are met. Add a new bitfield to the tail end of ivars.
6489  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
6490  Expr * BW =
6491    new (Context) IntegerLiteral(Zero, Context.CharTy, DeclLoc);
6492
6493  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
6494                              DeclLoc, 0,
6495                              Context.CharTy,
6496                              Context.CreateTypeSourceInfo(Context.CharTy),
6497                              ObjCIvarDecl::Private, BW,
6498                              true);
6499  AllIvarDecls.push_back(Ivar);
6500}
6501
6502void Sema::ActOnFields(Scope* S,
6503                       SourceLocation RecLoc, Decl *EnclosingDecl,
6504                       Decl **Fields, unsigned NumFields,
6505                       SourceLocation LBrac, SourceLocation RBrac,
6506                       AttributeList *Attr) {
6507  assert(EnclosingDecl && "missing record or interface decl");
6508
6509  // If the decl this is being inserted into is invalid, then it may be a
6510  // redeclaration or some other bogus case.  Don't try to add fields to it.
6511  if (EnclosingDecl->isInvalidDecl()) {
6512    // FIXME: Deallocate fields?
6513    return;
6514  }
6515
6516
6517  // Verify that all the fields are okay.
6518  unsigned NumNamedMembers = 0;
6519  llvm::SmallVector<FieldDecl*, 32> RecFields;
6520
6521  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6522  for (unsigned i = 0; i != NumFields; ++i) {
6523    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
6524
6525    // Get the type for the field.
6526    Type *FDTy = FD->getType().getTypePtr();
6527
6528    if (!FD->isAnonymousStructOrUnion()) {
6529      // Remember all fields written by the user.
6530      RecFields.push_back(FD);
6531    }
6532
6533    // If the field is already invalid for some reason, don't emit more
6534    // diagnostics about it.
6535    if (FD->isInvalidDecl()) {
6536      EnclosingDecl->setInvalidDecl();
6537      continue;
6538    }
6539
6540    // C99 6.7.2.1p2:
6541    //   A structure or union shall not contain a member with
6542    //   incomplete or function type (hence, a structure shall not
6543    //   contain an instance of itself, but may contain a pointer to
6544    //   an instance of itself), except that the last member of a
6545    //   structure with more than one named member may have incomplete
6546    //   array type; such a structure (and any union containing,
6547    //   possibly recursively, a member that is such a structure)
6548    //   shall not be a member of a structure or an element of an
6549    //   array.
6550    if (FDTy->isFunctionType()) {
6551      // Field declared as a function.
6552      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6553        << FD->getDeclName();
6554      FD->setInvalidDecl();
6555      EnclosingDecl->setInvalidDecl();
6556      continue;
6557    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6558               Record && Record->isStruct()) {
6559      // Flexible array member.
6560      if (NumNamedMembers < 1) {
6561        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6562          << FD->getDeclName();
6563        FD->setInvalidDecl();
6564        EnclosingDecl->setInvalidDecl();
6565        continue;
6566      }
6567      if (!FD->getType()->isDependentType() &&
6568          !Context.getBaseElementType(FD->getType())->isPODType()) {
6569        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6570          << FD->getDeclName() << FD->getType();
6571        FD->setInvalidDecl();
6572        EnclosingDecl->setInvalidDecl();
6573        continue;
6574      }
6575
6576      // Okay, we have a legal flexible array member at the end of the struct.
6577      if (Record)
6578        Record->setHasFlexibleArrayMember(true);
6579    } else if (!FDTy->isDependentType() &&
6580               RequireCompleteType(FD->getLocation(), FD->getType(),
6581                                   diag::err_field_incomplete)) {
6582      // Incomplete type
6583      FD->setInvalidDecl();
6584      EnclosingDecl->setInvalidDecl();
6585      continue;
6586    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6587      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6588        // If this is a member of a union, then entire union becomes "flexible".
6589        if (Record && Record->isUnion()) {
6590          Record->setHasFlexibleArrayMember(true);
6591        } else {
6592          // If this is a struct/class and this is not the last element, reject
6593          // it.  Note that GCC supports variable sized arrays in the middle of
6594          // structures.
6595          if (i != NumFields-1)
6596            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6597              << FD->getDeclName() << FD->getType();
6598          else {
6599            // We support flexible arrays at the end of structs in
6600            // other structs as an extension.
6601            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6602              << FD->getDeclName();
6603            if (Record)
6604              Record->setHasFlexibleArrayMember(true);
6605          }
6606        }
6607      }
6608      if (Record && FDTTy->getDecl()->hasObjectMember())
6609        Record->setHasObjectMember(true);
6610    } else if (FDTy->isObjCObjectType()) {
6611      /// A field cannot be an Objective-c object
6612      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6613      FD->setInvalidDecl();
6614      EnclosingDecl->setInvalidDecl();
6615      continue;
6616    } else if (getLangOptions().ObjC1 &&
6617               getLangOptions().getGCMode() != LangOptions::NonGC &&
6618               Record &&
6619               (FD->getType()->isObjCObjectPointerType() ||
6620                FD->getType().isObjCGCStrong()))
6621      Record->setHasObjectMember(true);
6622    else if (Context.getAsArrayType(FD->getType())) {
6623      QualType BaseType = Context.getBaseElementType(FD->getType());
6624      if (Record && BaseType->isRecordType() &&
6625          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6626        Record->setHasObjectMember(true);
6627    }
6628    // Keep track of the number of named members.
6629    if (FD->getIdentifier())
6630      ++NumNamedMembers;
6631  }
6632
6633  // Okay, we successfully defined 'Record'.
6634  if (Record) {
6635    Record->completeDefinition();
6636  } else {
6637    ObjCIvarDecl **ClsFields =
6638      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6639    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6640      ID->setLocEnd(RBrac);
6641      // Add ivar's to class's DeclContext.
6642      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6643        ClsFields[i]->setLexicalDeclContext(ID);
6644        ID->addDecl(ClsFields[i]);
6645      }
6646      // Must enforce the rule that ivars in the base classes may not be
6647      // duplicates.
6648      if (ID->getSuperClass())
6649        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6650    } else if (ObjCImplementationDecl *IMPDecl =
6651                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6652      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6653      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6654        // Ivar declared in @implementation never belongs to the implementation.
6655        // Only it is in implementation's lexical context.
6656        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6657      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6658    } else if (ObjCCategoryDecl *CDecl =
6659                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6660      // case of ivars in class extension; all other cases have been
6661      // reported as errors elsewhere.
6662      // FIXME. Class extension does not have a LocEnd field.
6663      // CDecl->setLocEnd(RBrac);
6664      // Add ivar's to class extension's DeclContext.
6665      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6666        ClsFields[i]->setLexicalDeclContext(CDecl);
6667        CDecl->addDecl(ClsFields[i]);
6668      }
6669    }
6670  }
6671
6672  if (Attr)
6673    ProcessDeclAttributeList(S, Record, Attr);
6674
6675  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
6676  // set the visibility of this record.
6677  if (Record && !Record->getDeclContext()->isRecord())
6678    AddPushedVisibilityAttribute(Record);
6679}
6680
6681/// \brief Determine whether the given integral value is representable within
6682/// the given type T.
6683static bool isRepresentableIntegerValue(ASTContext &Context,
6684                                        llvm::APSInt &Value,
6685                                        QualType T) {
6686  assert(T->isIntegralType(Context) && "Integral type required!");
6687  unsigned BitWidth = Context.getIntWidth(T);
6688
6689  if (Value.isUnsigned() || Value.isNonNegative())
6690    return Value.getActiveBits() < BitWidth;
6691
6692  return Value.getMinSignedBits() <= BitWidth;
6693}
6694
6695// \brief Given an integral type, return the next larger integral type
6696// (or a NULL type of no such type exists).
6697static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6698  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6699  // enum checking below.
6700  assert(T->isIntegralType(Context) && "Integral type required!");
6701  const unsigned NumTypes = 4;
6702  QualType SignedIntegralTypes[NumTypes] = {
6703    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6704  };
6705  QualType UnsignedIntegralTypes[NumTypes] = {
6706    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6707    Context.UnsignedLongLongTy
6708  };
6709
6710  unsigned BitWidth = Context.getTypeSize(T);
6711  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6712                                            : UnsignedIntegralTypes;
6713  for (unsigned I = 0; I != NumTypes; ++I)
6714    if (Context.getTypeSize(Types[I]) > BitWidth)
6715      return Types[I];
6716
6717  return QualType();
6718}
6719
6720EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6721                                          EnumConstantDecl *LastEnumConst,
6722                                          SourceLocation IdLoc,
6723                                          IdentifierInfo *Id,
6724                                          Expr *Val) {
6725  unsigned IntWidth = Context.Target.getIntWidth();
6726  llvm::APSInt EnumVal(IntWidth);
6727  QualType EltTy;
6728  if (Val) {
6729    if (Enum->isDependentType() || Val->isTypeDependent())
6730      EltTy = Context.DependentTy;
6731    else {
6732      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6733      SourceLocation ExpLoc;
6734      if (!Val->isValueDependent() &&
6735          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6736        Val = 0;
6737      } else {
6738        if (!getLangOptions().CPlusPlus) {
6739          // C99 6.7.2.2p2:
6740          //   The expression that defines the value of an enumeration constant
6741          //   shall be an integer constant expression that has a value
6742          //   representable as an int.
6743
6744          // Complain if the value is not representable in an int.
6745          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6746            Diag(IdLoc, diag::ext_enum_value_not_int)
6747              << EnumVal.toString(10) << Val->getSourceRange()
6748              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6749          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6750            // Force the type of the expression to 'int'.
6751            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6752          }
6753        }
6754
6755        // C++0x [dcl.enum]p5:
6756        //   If the underlying type is not fixed, the type of each enumerator
6757        //   is the type of its initializing value:
6758        //     - If an initializer is specified for an enumerator, the
6759        //       initializing value has the same type as the expression.
6760        EltTy = Val->getType();
6761      }
6762    }
6763  }
6764
6765  if (!Val) {
6766    if (Enum->isDependentType())
6767      EltTy = Context.DependentTy;
6768    else if (!LastEnumConst) {
6769      // C++0x [dcl.enum]p5:
6770      //   If the underlying type is not fixed, the type of each enumerator
6771      //   is the type of its initializing value:
6772      //     - If no initializer is specified for the first enumerator, the
6773      //       initializing value has an unspecified integral type.
6774      //
6775      // GCC uses 'int' for its unspecified integral type, as does
6776      // C99 6.7.2.2p3.
6777      EltTy = Context.IntTy;
6778    } else {
6779      // Assign the last value + 1.
6780      EnumVal = LastEnumConst->getInitVal();
6781      ++EnumVal;
6782      EltTy = LastEnumConst->getType();
6783
6784      // Check for overflow on increment.
6785      if (EnumVal < LastEnumConst->getInitVal()) {
6786        // C++0x [dcl.enum]p5:
6787        //   If the underlying type is not fixed, the type of each enumerator
6788        //   is the type of its initializing value:
6789        //
6790        //     - Otherwise the type of the initializing value is the same as
6791        //       the type of the initializing value of the preceding enumerator
6792        //       unless the incremented value is not representable in that type,
6793        //       in which case the type is an unspecified integral type
6794        //       sufficient to contain the incremented value. If no such type
6795        //       exists, the program is ill-formed.
6796        QualType T = getNextLargerIntegralType(Context, EltTy);
6797        if (T.isNull()) {
6798          // There is no integral type larger enough to represent this
6799          // value. Complain, then allow the value to wrap around.
6800          EnumVal = LastEnumConst->getInitVal();
6801          EnumVal.zext(EnumVal.getBitWidth() * 2);
6802          Diag(IdLoc, diag::warn_enumerator_too_large)
6803            << EnumVal.toString(10);
6804        } else {
6805          EltTy = T;
6806        }
6807
6808        // Retrieve the last enumerator's value, extent that type to the
6809        // type that is supposed to be large enough to represent the incremented
6810        // value, then increment.
6811        EnumVal = LastEnumConst->getInitVal();
6812        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6813        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6814        ++EnumVal;
6815
6816        // If we're not in C++, diagnose the overflow of enumerator values,
6817        // which in C99 means that the enumerator value is not representable in
6818        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6819        // permits enumerator values that are representable in some larger
6820        // integral type.
6821        if (!getLangOptions().CPlusPlus && !T.isNull())
6822          Diag(IdLoc, diag::warn_enum_value_overflow);
6823      } else if (!getLangOptions().CPlusPlus &&
6824                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6825        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6826        Diag(IdLoc, diag::ext_enum_value_not_int)
6827          << EnumVal.toString(10) << 1;
6828      }
6829    }
6830  }
6831
6832  if (!EltTy->isDependentType()) {
6833    // Make the enumerator value match the signedness and size of the
6834    // enumerator's type.
6835    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6836    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6837  }
6838
6839  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6840                                  Val, EnumVal);
6841}
6842
6843
6844Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl,
6845                                        Decl *lastEnumConst,
6846                                        SourceLocation IdLoc,
6847                                        IdentifierInfo *Id,
6848                                        SourceLocation EqualLoc, ExprTy *val) {
6849  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
6850  EnumConstantDecl *LastEnumConst =
6851    cast_or_null<EnumConstantDecl>(lastEnumConst);
6852  Expr *Val = static_cast<Expr*>(val);
6853
6854  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6855  // we find one that is.
6856  S = getNonFieldDeclScope(S);
6857
6858  // Verify that there isn't already something declared with this name in this
6859  // scope.
6860  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6861                                         ForRedeclaration);
6862  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6863    // Maybe we will complain about the shadowed template parameter.
6864    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6865    // Just pretend that we didn't see the previous declaration.
6866    PrevDecl = 0;
6867  }
6868
6869  if (PrevDecl) {
6870    // When in C++, we may get a TagDecl with the same name; in this case the
6871    // enum constant will 'hide' the tag.
6872    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6873           "Received TagDecl when not in C++!");
6874    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6875      if (isa<EnumConstantDecl>(PrevDecl))
6876        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6877      else
6878        Diag(IdLoc, diag::err_redefinition) << Id;
6879      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6880      return 0;
6881    }
6882  }
6883
6884  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6885                                            IdLoc, Id, Val);
6886
6887  // Register this decl in the current scope stack.
6888  if (New) {
6889    New->setAccess(TheEnumDecl->getAccess());
6890    PushOnScopeChains(New, S);
6891  }
6892
6893  return New;
6894}
6895
6896void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6897                         SourceLocation RBraceLoc, Decl *EnumDeclX,
6898                         Decl **Elements, unsigned NumElements,
6899                         Scope *S, AttributeList *Attr) {
6900  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
6901  QualType EnumType = Context.getTypeDeclType(Enum);
6902
6903  if (Attr)
6904    ProcessDeclAttributeList(S, Enum, Attr);
6905
6906  if (Enum->isDependentType()) {
6907    for (unsigned i = 0; i != NumElements; ++i) {
6908      EnumConstantDecl *ECD =
6909        cast_or_null<EnumConstantDecl>(Elements[i]);
6910      if (!ECD) continue;
6911
6912      ECD->setType(EnumType);
6913    }
6914
6915    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6916    return;
6917  }
6918
6919  // TODO: If the result value doesn't fit in an int, it must be a long or long
6920  // long value.  ISO C does not support this, but GCC does as an extension,
6921  // emit a warning.
6922  unsigned IntWidth = Context.Target.getIntWidth();
6923  unsigned CharWidth = Context.Target.getCharWidth();
6924  unsigned ShortWidth = Context.Target.getShortWidth();
6925
6926  // Verify that all the values are okay, compute the size of the values, and
6927  // reverse the list.
6928  unsigned NumNegativeBits = 0;
6929  unsigned NumPositiveBits = 0;
6930
6931  // Keep track of whether all elements have type int.
6932  bool AllElementsInt = true;
6933
6934  for (unsigned i = 0; i != NumElements; ++i) {
6935    EnumConstantDecl *ECD =
6936      cast_or_null<EnumConstantDecl>(Elements[i]);
6937    if (!ECD) continue;  // Already issued a diagnostic.
6938
6939    const llvm::APSInt &InitVal = ECD->getInitVal();
6940
6941    // Keep track of the size of positive and negative values.
6942    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6943      NumPositiveBits = std::max(NumPositiveBits,
6944                                 (unsigned)InitVal.getActiveBits());
6945    else
6946      NumNegativeBits = std::max(NumNegativeBits,
6947                                 (unsigned)InitVal.getMinSignedBits());
6948
6949    // Keep track of whether every enum element has type int (very commmon).
6950    if (AllElementsInt)
6951      AllElementsInt = ECD->getType() == Context.IntTy;
6952  }
6953
6954  // Figure out the type that should be used for this enum.
6955  // FIXME: Support -fshort-enums.
6956  QualType BestType;
6957  unsigned BestWidth;
6958
6959  // C++0x N3000 [conv.prom]p3:
6960  //   An rvalue of an unscoped enumeration type whose underlying
6961  //   type is not fixed can be converted to an rvalue of the first
6962  //   of the following types that can represent all the values of
6963  //   the enumeration: int, unsigned int, long int, unsigned long
6964  //   int, long long int, or unsigned long long int.
6965  // C99 6.4.4.3p2:
6966  //   An identifier declared as an enumeration constant has type int.
6967  // The C99 rule is modified by a gcc extension
6968  QualType BestPromotionType;
6969
6970  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6971
6972  if (NumNegativeBits) {
6973    // If there is a negative value, figure out the smallest integer type (of
6974    // int/long/longlong) that fits.
6975    // If it's packed, check also if it fits a char or a short.
6976    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6977      BestType = Context.SignedCharTy;
6978      BestWidth = CharWidth;
6979    } else if (Packed && NumNegativeBits <= ShortWidth &&
6980               NumPositiveBits < ShortWidth) {
6981      BestType = Context.ShortTy;
6982      BestWidth = ShortWidth;
6983    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6984      BestType = Context.IntTy;
6985      BestWidth = IntWidth;
6986    } else {
6987      BestWidth = Context.Target.getLongWidth();
6988
6989      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6990        BestType = Context.LongTy;
6991      } else {
6992        BestWidth = Context.Target.getLongLongWidth();
6993
6994        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6995          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6996        BestType = Context.LongLongTy;
6997      }
6998    }
6999    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7000  } else {
7001    // If there is no negative value, figure out the smallest type that fits
7002    // all of the enumerator values.
7003    // If it's packed, check also if it fits a char or a short.
7004    if (Packed && NumPositiveBits <= CharWidth) {
7005      BestType = Context.UnsignedCharTy;
7006      BestPromotionType = Context.IntTy;
7007      BestWidth = CharWidth;
7008    } else if (Packed && NumPositiveBits <= ShortWidth) {
7009      BestType = Context.UnsignedShortTy;
7010      BestPromotionType = Context.IntTy;
7011      BestWidth = ShortWidth;
7012    } else if (NumPositiveBits <= IntWidth) {
7013      BestType = Context.UnsignedIntTy;
7014      BestWidth = IntWidth;
7015      BestPromotionType
7016        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7017                           ? Context.UnsignedIntTy : Context.IntTy;
7018    } else if (NumPositiveBits <=
7019               (BestWidth = Context.Target.getLongWidth())) {
7020      BestType = Context.UnsignedLongTy;
7021      BestPromotionType
7022        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7023                           ? Context.UnsignedLongTy : Context.LongTy;
7024    } else {
7025      BestWidth = Context.Target.getLongLongWidth();
7026      assert(NumPositiveBits <= BestWidth &&
7027             "How could an initializer get larger than ULL?");
7028      BestType = Context.UnsignedLongLongTy;
7029      BestPromotionType
7030        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7031                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7032    }
7033  }
7034
7035  // Loop over all of the enumerator constants, changing their types to match
7036  // the type of the enum if needed.
7037  for (unsigned i = 0; i != NumElements; ++i) {
7038    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7039    if (!ECD) continue;  // Already issued a diagnostic.
7040
7041    // Standard C says the enumerators have int type, but we allow, as an
7042    // extension, the enumerators to be larger than int size.  If each
7043    // enumerator value fits in an int, type it as an int, otherwise type it the
7044    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7045    // that X has type 'int', not 'unsigned'.
7046
7047    // Determine whether the value fits into an int.
7048    llvm::APSInt InitVal = ECD->getInitVal();
7049
7050    // If it fits into an integer type, force it.  Otherwise force it to match
7051    // the enum decl type.
7052    QualType NewTy;
7053    unsigned NewWidth;
7054    bool NewSign;
7055    if (!getLangOptions().CPlusPlus &&
7056        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7057      NewTy = Context.IntTy;
7058      NewWidth = IntWidth;
7059      NewSign = true;
7060    } else if (ECD->getType() == BestType) {
7061      // Already the right type!
7062      if (getLangOptions().CPlusPlus)
7063        // C++ [dcl.enum]p4: Following the closing brace of an
7064        // enum-specifier, each enumerator has the type of its
7065        // enumeration.
7066        ECD->setType(EnumType);
7067      continue;
7068    } else {
7069      NewTy = BestType;
7070      NewWidth = BestWidth;
7071      NewSign = BestType->isSignedIntegerType();
7072    }
7073
7074    // Adjust the APSInt value.
7075    InitVal.extOrTrunc(NewWidth);
7076    InitVal.setIsSigned(NewSign);
7077    ECD->setInitVal(InitVal);
7078
7079    // Adjust the Expr initializer and type.
7080    if (ECD->getInitExpr())
7081      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7082                                                CastExpr::CK_IntegralCast,
7083                                                ECD->getInitExpr(),
7084                                                /*base paths*/ 0,
7085                                                ImplicitCastExpr::RValue));
7086    if (getLangOptions().CPlusPlus)
7087      // C++ [dcl.enum]p4: Following the closing brace of an
7088      // enum-specifier, each enumerator has the type of its
7089      // enumeration.
7090      ECD->setType(EnumType);
7091    else
7092      ECD->setType(NewTy);
7093  }
7094
7095  Enum->completeDefinition(BestType, BestPromotionType,
7096                           NumPositiveBits, NumNegativeBits);
7097}
7098
7099Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7100  StringLiteral *AsmString = cast<StringLiteral>(expr);
7101
7102  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7103                                                   Loc, AsmString);
7104  CurContext->addDecl(New);
7105  return New;
7106}
7107
7108void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7109                             SourceLocation PragmaLoc,
7110                             SourceLocation NameLoc) {
7111  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7112
7113  if (PrevDecl) {
7114    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7115  } else {
7116    (void)WeakUndeclaredIdentifiers.insert(
7117      std::pair<IdentifierInfo*,WeakInfo>
7118        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7119  }
7120}
7121
7122void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7123                                IdentifierInfo* AliasName,
7124                                SourceLocation PragmaLoc,
7125                                SourceLocation NameLoc,
7126                                SourceLocation AliasNameLoc) {
7127  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7128                                    LookupOrdinaryName);
7129  WeakInfo W = WeakInfo(Name, NameLoc);
7130
7131  if (PrevDecl) {
7132    if (!PrevDecl->hasAttr<AliasAttr>())
7133      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7134        DeclApplyPragmaWeak(TUScope, ND, W);
7135  } else {
7136    (void)WeakUndeclaredIdentifiers.insert(
7137      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7138  }
7139}
7140