SemaDecl.cpp revision fbcf0405b7da1c8606e4223b4f91835643ecd5b4
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Sema/DelayedDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid) : AllowInvalidDecl(AllowInvalid) {
64    WantExpressionKeywords = false;
65    WantCXXNamedCasts = false;
66    WantRemainingKeywords = false;
67  }
68
69  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
70    if (NamedDecl *ND = candidate.getCorrectionDecl())
71      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
72          (AllowInvalidDecl || !ND->isInvalidDecl());
73    else
74      return candidate.isKeyword();
75  }
76
77 private:
78  bool AllowInvalidDecl;
79};
80
81}
82
83/// \brief If the identifier refers to a type name within this scope,
84/// return the declaration of that type.
85///
86/// This routine performs ordinary name lookup of the identifier II
87/// within the given scope, with optional C++ scope specifier SS, to
88/// determine whether the name refers to a type. If so, returns an
89/// opaque pointer (actually a QualType) corresponding to that
90/// type. Otherwise, returns NULL.
91///
92/// If name lookup results in an ambiguity, this routine will complain
93/// and then return NULL.
94ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
95                             Scope *S, CXXScopeSpec *SS,
96                             bool isClassName, bool HasTrailingDot,
97                             ParsedType ObjectTypePtr,
98                             bool IsCtorOrDtorName,
99                             bool WantNontrivialTypeSourceInfo,
100                             IdentifierInfo **CorrectedII) {
101  // Determine where we will perform name lookup.
102  DeclContext *LookupCtx = 0;
103  if (ObjectTypePtr) {
104    QualType ObjectType = ObjectTypePtr.get();
105    if (ObjectType->isRecordType())
106      LookupCtx = computeDeclContext(ObjectType);
107  } else if (SS && SS->isNotEmpty()) {
108    LookupCtx = computeDeclContext(*SS, false);
109
110    if (!LookupCtx) {
111      if (isDependentScopeSpecifier(*SS)) {
112        // C++ [temp.res]p3:
113        //   A qualified-id that refers to a type and in which the
114        //   nested-name-specifier depends on a template-parameter (14.6.2)
115        //   shall be prefixed by the keyword typename to indicate that the
116        //   qualified-id denotes a type, forming an
117        //   elaborated-type-specifier (7.1.5.3).
118        //
119        // We therefore do not perform any name lookup if the result would
120        // refer to a member of an unknown specialization.
121        if (!isClassName)
122          return ParsedType();
123
124        // We know from the grammar that this name refers to a type,
125        // so build a dependent node to describe the type.
126        if (WantNontrivialTypeSourceInfo)
127          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
128
129        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
130        QualType T =
131          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
132                            II, NameLoc);
133
134          return ParsedType::make(T);
135      }
136
137      return ParsedType();
138    }
139
140    if (!LookupCtx->isDependentContext() &&
141        RequireCompleteDeclContext(*SS, LookupCtx))
142      return ParsedType();
143  }
144
145  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
146  // lookup for class-names.
147  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
148                                      LookupOrdinaryName;
149  LookupResult Result(*this, &II, NameLoc, Kind);
150  if (LookupCtx) {
151    // Perform "qualified" name lookup into the declaration context we
152    // computed, which is either the type of the base of a member access
153    // expression or the declaration context associated with a prior
154    // nested-name-specifier.
155    LookupQualifiedName(Result, LookupCtx);
156
157    if (ObjectTypePtr && Result.empty()) {
158      // C++ [basic.lookup.classref]p3:
159      //   If the unqualified-id is ~type-name, the type-name is looked up
160      //   in the context of the entire postfix-expression. If the type T of
161      //   the object expression is of a class type C, the type-name is also
162      //   looked up in the scope of class C. At least one of the lookups shall
163      //   find a name that refers to (possibly cv-qualified) T.
164      LookupName(Result, S);
165    }
166  } else {
167    // Perform unqualified name lookup.
168    LookupName(Result, S);
169  }
170
171  NamedDecl *IIDecl = 0;
172  switch (Result.getResultKind()) {
173  case LookupResult::NotFound:
174  case LookupResult::NotFoundInCurrentInstantiation:
175    if (CorrectedII) {
176      TypeNameValidatorCCC Validator(true);
177      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
178                                              Kind, S, SS, Validator);
179      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
180      TemplateTy Template;
181      bool MemberOfUnknownSpecialization;
182      UnqualifiedId TemplateName;
183      TemplateName.setIdentifier(NewII, NameLoc);
184      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
185      CXXScopeSpec NewSS, *NewSSPtr = SS;
186      if (SS && NNS) {
187        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
188        NewSSPtr = &NewSS;
189      }
190      if (Correction && (NNS || NewII != &II) &&
191          // Ignore a correction to a template type as the to-be-corrected
192          // identifier is not a template (typo correction for template names
193          // is handled elsewhere).
194          !(getLangOptions().CPlusPlus && NewSSPtr &&
195            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
196                           false, Template, MemberOfUnknownSpecialization))) {
197        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
198                                    isClassName, HasTrailingDot, ObjectTypePtr,
199                                    IsCtorOrDtorName,
200                                    WantNontrivialTypeSourceInfo);
201        if (Ty) {
202          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
203          std::string CorrectedQuotedStr(
204              Correction.getQuoted(getLangOptions()));
205          Diag(NameLoc, diag::err_unknown_typename_suggest)
206              << Result.getLookupName() << CorrectedQuotedStr
207              << FixItHint::CreateReplacement(SourceRange(NameLoc),
208                                              CorrectedStr);
209          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
210            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
211              << CorrectedQuotedStr;
212
213          if (SS && NNS)
214            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
215          *CorrectedII = NewII;
216          return Ty;
217        }
218      }
219    }
220    // If typo correction failed or was not performed, fall through
221  case LookupResult::FoundOverloaded:
222  case LookupResult::FoundUnresolvedValue:
223    Result.suppressDiagnostics();
224    return ParsedType();
225
226  case LookupResult::Ambiguous:
227    // Recover from type-hiding ambiguities by hiding the type.  We'll
228    // do the lookup again when looking for an object, and we can
229    // diagnose the error then.  If we don't do this, then the error
230    // about hiding the type will be immediately followed by an error
231    // that only makes sense if the identifier was treated like a type.
232    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
233      Result.suppressDiagnostics();
234      return ParsedType();
235    }
236
237    // Look to see if we have a type anywhere in the list of results.
238    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
239         Res != ResEnd; ++Res) {
240      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
241        if (!IIDecl ||
242            (*Res)->getLocation().getRawEncoding() <
243              IIDecl->getLocation().getRawEncoding())
244          IIDecl = *Res;
245      }
246    }
247
248    if (!IIDecl) {
249      // None of the entities we found is a type, so there is no way
250      // to even assume that the result is a type. In this case, don't
251      // complain about the ambiguity. The parser will either try to
252      // perform this lookup again (e.g., as an object name), which
253      // will produce the ambiguity, or will complain that it expected
254      // a type name.
255      Result.suppressDiagnostics();
256      return ParsedType();
257    }
258
259    // We found a type within the ambiguous lookup; diagnose the
260    // ambiguity and then return that type. This might be the right
261    // answer, or it might not be, but it suppresses any attempt to
262    // perform the name lookup again.
263    break;
264
265  case LookupResult::Found:
266    IIDecl = Result.getFoundDecl();
267    break;
268  }
269
270  assert(IIDecl && "Didn't find decl");
271
272  QualType T;
273  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
274    DiagnoseUseOfDecl(IIDecl, NameLoc);
275
276    if (T.isNull())
277      T = Context.getTypeDeclType(TD);
278
279    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
280    // constructor or destructor name (in such a case, the scope specifier
281    // will be attached to the enclosing Expr or Decl node).
282    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
283      if (WantNontrivialTypeSourceInfo) {
284        // Construct a type with type-source information.
285        TypeLocBuilder Builder;
286        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
287
288        T = getElaboratedType(ETK_None, *SS, T);
289        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
290        ElabTL.setElaboratedKeywordLoc(SourceLocation());
291        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
292        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
293      } else {
294        T = getElaboratedType(ETK_None, *SS, T);
295      }
296    }
297  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
298    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
299    if (!HasTrailingDot)
300      T = Context.getObjCInterfaceType(IDecl);
301  }
302
303  if (T.isNull()) {
304    // If it's not plausibly a type, suppress diagnostics.
305    Result.suppressDiagnostics();
306    return ParsedType();
307  }
308  return ParsedType::make(T);
309}
310
311/// isTagName() - This method is called *for error recovery purposes only*
312/// to determine if the specified name is a valid tag name ("struct foo").  If
313/// so, this returns the TST for the tag corresponding to it (TST_enum,
314/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
315/// where the user forgot to specify the tag.
316DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
317  // Do a tag name lookup in this scope.
318  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
319  LookupName(R, S, false);
320  R.suppressDiagnostics();
321  if (R.getResultKind() == LookupResult::Found)
322    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
323      switch (TD->getTagKind()) {
324      case TTK_Struct: return DeclSpec::TST_struct;
325      case TTK_Union:  return DeclSpec::TST_union;
326      case TTK_Class:  return DeclSpec::TST_class;
327      case TTK_Enum:   return DeclSpec::TST_enum;
328      }
329    }
330
331  return DeclSpec::TST_unspecified;
332}
333
334/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
335/// if a CXXScopeSpec's type is equal to the type of one of the base classes
336/// then downgrade the missing typename error to a warning.
337/// This is needed for MSVC compatibility; Example:
338/// @code
339/// template<class T> class A {
340/// public:
341///   typedef int TYPE;
342/// };
343/// template<class T> class B : public A<T> {
344/// public:
345///   A<T>::TYPE a; // no typename required because A<T> is a base class.
346/// };
347/// @endcode
348bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
349  if (CurContext->isRecord()) {
350    const Type *Ty = SS->getScopeRep()->getAsType();
351
352    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
353    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
354          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
355      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
356        return true;
357    return S->isFunctionPrototypeScope();
358  }
359  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
360}
361
362bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
363                                   SourceLocation IILoc,
364                                   Scope *S,
365                                   CXXScopeSpec *SS,
366                                   ParsedType &SuggestedType) {
367  // We don't have anything to suggest (yet).
368  SuggestedType = ParsedType();
369
370  // There may have been a typo in the name of the type. Look up typo
371  // results, in case we have something that we can suggest.
372  TypeNameValidatorCCC Validator(false);
373  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
374                                             LookupOrdinaryName, S, SS,
375                                             Validator)) {
376    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
377    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
378
379    if (Corrected.isKeyword()) {
380      // We corrected to a keyword.
381      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
382      Diag(IILoc, diag::err_unknown_typename_suggest)
383        << &II << CorrectedQuotedStr;
384    } else {
385      NamedDecl *Result = Corrected.getCorrectionDecl();
386      // We found a similarly-named type or interface; suggest that.
387      if (!SS || !SS->isSet())
388        Diag(IILoc, diag::err_unknown_typename_suggest)
389          << &II << CorrectedQuotedStr
390          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
391      else if (DeclContext *DC = computeDeclContext(*SS, false))
392        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
393          << &II << DC << CorrectedQuotedStr << SS->getRange()
394          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
395      else
396        llvm_unreachable("could not have corrected a typo here");
397
398      Diag(Result->getLocation(), diag::note_previous_decl)
399        << CorrectedQuotedStr;
400
401      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
402                                  false, false, ParsedType(),
403                                  /*IsCtorOrDtorName=*/false,
404                                  /*NonTrivialTypeSourceInfo=*/true);
405    }
406    return true;
407  }
408
409  if (getLangOptions().CPlusPlus) {
410    // See if II is a class template that the user forgot to pass arguments to.
411    UnqualifiedId Name;
412    Name.setIdentifier(&II, IILoc);
413    CXXScopeSpec EmptySS;
414    TemplateTy TemplateResult;
415    bool MemberOfUnknownSpecialization;
416    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
417                       Name, ParsedType(), true, TemplateResult,
418                       MemberOfUnknownSpecialization) == TNK_Type_template) {
419      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
420      Diag(IILoc, diag::err_template_missing_args) << TplName;
421      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
422        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
423          << TplDecl->getTemplateParameters()->getSourceRange();
424      }
425      return true;
426    }
427  }
428
429  // FIXME: Should we move the logic that tries to recover from a missing tag
430  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
431
432  if (!SS || (!SS->isSet() && !SS->isInvalid()))
433    Diag(IILoc, diag::err_unknown_typename) << &II;
434  else if (DeclContext *DC = computeDeclContext(*SS, false))
435    Diag(IILoc, diag::err_typename_nested_not_found)
436      << &II << DC << SS->getRange();
437  else if (isDependentScopeSpecifier(*SS)) {
438    unsigned DiagID = diag::err_typename_missing;
439    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
440      DiagID = diag::warn_typename_missing;
441
442    Diag(SS->getRange().getBegin(), DiagID)
443      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
444      << SourceRange(SS->getRange().getBegin(), IILoc)
445      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
446    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
447                                                                         .get();
448  } else {
449    assert(SS && SS->isInvalid() &&
450           "Invalid scope specifier has already been diagnosed");
451  }
452
453  return true;
454}
455
456/// \brief Determine whether the given result set contains either a type name
457/// or
458static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
459  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
460                       NextToken.is(tok::less);
461
462  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
463    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
464      return true;
465
466    if (CheckTemplate && isa<TemplateDecl>(*I))
467      return true;
468  }
469
470  return false;
471}
472
473Sema::NameClassification Sema::ClassifyName(Scope *S,
474                                            CXXScopeSpec &SS,
475                                            IdentifierInfo *&Name,
476                                            SourceLocation NameLoc,
477                                            const Token &NextToken) {
478  DeclarationNameInfo NameInfo(Name, NameLoc);
479  ObjCMethodDecl *CurMethod = getCurMethodDecl();
480
481  if (NextToken.is(tok::coloncolon)) {
482    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
483                                QualType(), false, SS, 0, false);
484
485  }
486
487  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
488  LookupParsedName(Result, S, &SS, !CurMethod);
489
490  // Perform lookup for Objective-C instance variables (including automatically
491  // synthesized instance variables), if we're in an Objective-C method.
492  // FIXME: This lookup really, really needs to be folded in to the normal
493  // unqualified lookup mechanism.
494  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
495    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
496    if (E.get() || E.isInvalid())
497      return E;
498  }
499
500  bool SecondTry = false;
501  bool IsFilteredTemplateName = false;
502
503Corrected:
504  switch (Result.getResultKind()) {
505  case LookupResult::NotFound:
506    // If an unqualified-id is followed by a '(', then we have a function
507    // call.
508    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
509      // In C++, this is an ADL-only call.
510      // FIXME: Reference?
511      if (getLangOptions().CPlusPlus)
512        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
513
514      // C90 6.3.2.2:
515      //   If the expression that precedes the parenthesized argument list in a
516      //   function call consists solely of an identifier, and if no
517      //   declaration is visible for this identifier, the identifier is
518      //   implicitly declared exactly as if, in the innermost block containing
519      //   the function call, the declaration
520      //
521      //     extern int identifier ();
522      //
523      //   appeared.
524      //
525      // We also allow this in C99 as an extension.
526      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
527        Result.addDecl(D);
528        Result.resolveKind();
529        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
530      }
531    }
532
533    // In C, we first see whether there is a tag type by the same name, in
534    // which case it's likely that the user just forget to write "enum",
535    // "struct", or "union".
536    if (!getLangOptions().CPlusPlus && !SecondTry) {
537      Result.clear(LookupTagName);
538      LookupParsedName(Result, S, &SS);
539      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
540        const char *TagName = 0;
541        const char *FixItTagName = 0;
542        switch (Tag->getTagKind()) {
543          case TTK_Class:
544            TagName = "class";
545            FixItTagName = "class ";
546            break;
547
548          case TTK_Enum:
549            TagName = "enum";
550            FixItTagName = "enum ";
551            break;
552
553          case TTK_Struct:
554            TagName = "struct";
555            FixItTagName = "struct ";
556            break;
557
558          case TTK_Union:
559            TagName = "union";
560            FixItTagName = "union ";
561            break;
562        }
563
564        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
565          << Name << TagName << getLangOptions().CPlusPlus
566          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
567        break;
568      }
569
570      Result.clear(LookupOrdinaryName);
571    }
572
573    // Perform typo correction to determine if there is another name that is
574    // close to this name.
575    if (!SecondTry) {
576      SecondTry = true;
577      CorrectionCandidateCallback DefaultValidator;
578      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
579                                                 Result.getLookupKind(), S,
580                                                 &SS, DefaultValidator)) {
581        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
582        unsigned QualifiedDiag = diag::err_no_member_suggest;
583        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
584        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
585
586        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
587        NamedDecl *UnderlyingFirstDecl
588          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
589        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
590            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
591          UnqualifiedDiag = diag::err_no_template_suggest;
592          QualifiedDiag = diag::err_no_member_template_suggest;
593        } else if (UnderlyingFirstDecl &&
594                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
595                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
596                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
597           UnqualifiedDiag = diag::err_unknown_typename_suggest;
598           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
599         }
600
601        if (SS.isEmpty())
602          Diag(NameLoc, UnqualifiedDiag)
603            << Name << CorrectedQuotedStr
604            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
605        else
606          Diag(NameLoc, QualifiedDiag)
607            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
608            << SS.getRange()
609            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
610
611        // Update the name, so that the caller has the new name.
612        Name = Corrected.getCorrectionAsIdentifierInfo();
613
614        // Typo correction corrected to a keyword.
615        if (Corrected.isKeyword())
616          return Corrected.getCorrectionAsIdentifierInfo();
617
618        // Also update the LookupResult...
619        // FIXME: This should probably go away at some point
620        Result.clear();
621        Result.setLookupName(Corrected.getCorrection());
622        if (FirstDecl) {
623          Result.addDecl(FirstDecl);
624          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
625            << CorrectedQuotedStr;
626        }
627
628        // If we found an Objective-C instance variable, let
629        // LookupInObjCMethod build the appropriate expression to
630        // reference the ivar.
631        // FIXME: This is a gross hack.
632        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
633          Result.clear();
634          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
635          return move(E);
636        }
637
638        goto Corrected;
639      }
640    }
641
642    // We failed to correct; just fall through and let the parser deal with it.
643    Result.suppressDiagnostics();
644    return NameClassification::Unknown();
645
646  case LookupResult::NotFoundInCurrentInstantiation: {
647    // We performed name lookup into the current instantiation, and there were
648    // dependent bases, so we treat this result the same way as any other
649    // dependent nested-name-specifier.
650
651    // C++ [temp.res]p2:
652    //   A name used in a template declaration or definition and that is
653    //   dependent on a template-parameter is assumed not to name a type
654    //   unless the applicable name lookup finds a type name or the name is
655    //   qualified by the keyword typename.
656    //
657    // FIXME: If the next token is '<', we might want to ask the parser to
658    // perform some heroics to see if we actually have a
659    // template-argument-list, which would indicate a missing 'template'
660    // keyword here.
661    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
662                                     NameInfo, /*TemplateArgs=*/0);
663  }
664
665  case LookupResult::Found:
666  case LookupResult::FoundOverloaded:
667  case LookupResult::FoundUnresolvedValue:
668    break;
669
670  case LookupResult::Ambiguous:
671    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
672        hasAnyAcceptableTemplateNames(Result)) {
673      // C++ [temp.local]p3:
674      //   A lookup that finds an injected-class-name (10.2) can result in an
675      //   ambiguity in certain cases (for example, if it is found in more than
676      //   one base class). If all of the injected-class-names that are found
677      //   refer to specializations of the same class template, and if the name
678      //   is followed by a template-argument-list, the reference refers to the
679      //   class template itself and not a specialization thereof, and is not
680      //   ambiguous.
681      //
682      // This filtering can make an ambiguous result into an unambiguous one,
683      // so try again after filtering out template names.
684      FilterAcceptableTemplateNames(Result);
685      if (!Result.isAmbiguous()) {
686        IsFilteredTemplateName = true;
687        break;
688      }
689    }
690
691    // Diagnose the ambiguity and return an error.
692    return NameClassification::Error();
693  }
694
695  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
696      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
697    // C++ [temp.names]p3:
698    //   After name lookup (3.4) finds that a name is a template-name or that
699    //   an operator-function-id or a literal- operator-id refers to a set of
700    //   overloaded functions any member of which is a function template if
701    //   this is followed by a <, the < is always taken as the delimiter of a
702    //   template-argument-list and never as the less-than operator.
703    if (!IsFilteredTemplateName)
704      FilterAcceptableTemplateNames(Result);
705
706    if (!Result.empty()) {
707      bool IsFunctionTemplate;
708      TemplateName Template;
709      if (Result.end() - Result.begin() > 1) {
710        IsFunctionTemplate = true;
711        Template = Context.getOverloadedTemplateName(Result.begin(),
712                                                     Result.end());
713      } else {
714        TemplateDecl *TD
715          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
716        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
717
718        if (SS.isSet() && !SS.isInvalid())
719          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
720                                                    /*TemplateKeyword=*/false,
721                                                      TD);
722        else
723          Template = TemplateName(TD);
724      }
725
726      if (IsFunctionTemplate) {
727        // Function templates always go through overload resolution, at which
728        // point we'll perform the various checks (e.g., accessibility) we need
729        // to based on which function we selected.
730        Result.suppressDiagnostics();
731
732        return NameClassification::FunctionTemplate(Template);
733      }
734
735      return NameClassification::TypeTemplate(Template);
736    }
737  }
738
739  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
740  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
741    DiagnoseUseOfDecl(Type, NameLoc);
742    QualType T = Context.getTypeDeclType(Type);
743    return ParsedType::make(T);
744  }
745
746  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
747  if (!Class) {
748    // FIXME: It's unfortunate that we don't have a Type node for handling this.
749    if (ObjCCompatibleAliasDecl *Alias
750                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
751      Class = Alias->getClassInterface();
752  }
753
754  if (Class) {
755    DiagnoseUseOfDecl(Class, NameLoc);
756
757    if (NextToken.is(tok::period)) {
758      // Interface. <something> is parsed as a property reference expression.
759      // Just return "unknown" as a fall-through for now.
760      Result.suppressDiagnostics();
761      return NameClassification::Unknown();
762    }
763
764    QualType T = Context.getObjCInterfaceType(Class);
765    return ParsedType::make(T);
766  }
767
768  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
769    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
770
771  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
772  return BuildDeclarationNameExpr(SS, Result, ADL);
773}
774
775// Determines the context to return to after temporarily entering a
776// context.  This depends in an unnecessarily complicated way on the
777// exact ordering of callbacks from the parser.
778DeclContext *Sema::getContainingDC(DeclContext *DC) {
779
780  // Functions defined inline within classes aren't parsed until we've
781  // finished parsing the top-level class, so the top-level class is
782  // the context we'll need to return to.
783  if (isa<FunctionDecl>(DC)) {
784    DC = DC->getLexicalParent();
785
786    // A function not defined within a class will always return to its
787    // lexical context.
788    if (!isa<CXXRecordDecl>(DC))
789      return DC;
790
791    // A C++ inline method/friend is parsed *after* the topmost class
792    // it was declared in is fully parsed ("complete");  the topmost
793    // class is the context we need to return to.
794    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
795      DC = RD;
796
797    // Return the declaration context of the topmost class the inline method is
798    // declared in.
799    return DC;
800  }
801
802  return DC->getLexicalParent();
803}
804
805void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
806  assert(getContainingDC(DC) == CurContext &&
807      "The next DeclContext should be lexically contained in the current one.");
808  CurContext = DC;
809  S->setEntity(DC);
810}
811
812void Sema::PopDeclContext() {
813  assert(CurContext && "DeclContext imbalance!");
814
815  CurContext = getContainingDC(CurContext);
816  assert(CurContext && "Popped translation unit!");
817}
818
819/// EnterDeclaratorContext - Used when we must lookup names in the context
820/// of a declarator's nested name specifier.
821///
822void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
823  // C++0x [basic.lookup.unqual]p13:
824  //   A name used in the definition of a static data member of class
825  //   X (after the qualified-id of the static member) is looked up as
826  //   if the name was used in a member function of X.
827  // C++0x [basic.lookup.unqual]p14:
828  //   If a variable member of a namespace is defined outside of the
829  //   scope of its namespace then any name used in the definition of
830  //   the variable member (after the declarator-id) is looked up as
831  //   if the definition of the variable member occurred in its
832  //   namespace.
833  // Both of these imply that we should push a scope whose context
834  // is the semantic context of the declaration.  We can't use
835  // PushDeclContext here because that context is not necessarily
836  // lexically contained in the current context.  Fortunately,
837  // the containing scope should have the appropriate information.
838
839  assert(!S->getEntity() && "scope already has entity");
840
841#ifndef NDEBUG
842  Scope *Ancestor = S->getParent();
843  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
844  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
845#endif
846
847  CurContext = DC;
848  S->setEntity(DC);
849}
850
851void Sema::ExitDeclaratorContext(Scope *S) {
852  assert(S->getEntity() == CurContext && "Context imbalance!");
853
854  // Switch back to the lexical context.  The safety of this is
855  // enforced by an assert in EnterDeclaratorContext.
856  Scope *Ancestor = S->getParent();
857  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
858  CurContext = (DeclContext*) Ancestor->getEntity();
859
860  // We don't need to do anything with the scope, which is going to
861  // disappear.
862}
863
864
865void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
866  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
867  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
868    // We assume that the caller has already called
869    // ActOnReenterTemplateScope
870    FD = TFD->getTemplatedDecl();
871  }
872  if (!FD)
873    return;
874
875  PushDeclContext(S, FD);
876  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
877    ParmVarDecl *Param = FD->getParamDecl(P);
878    // If the parameter has an identifier, then add it to the scope
879    if (Param->getIdentifier()) {
880      S->AddDecl(Param);
881      IdResolver.AddDecl(Param);
882    }
883  }
884}
885
886
887/// \brief Determine whether we allow overloading of the function
888/// PrevDecl with another declaration.
889///
890/// This routine determines whether overloading is possible, not
891/// whether some new function is actually an overload. It will return
892/// true in C++ (where we can always provide overloads) or, as an
893/// extension, in C when the previous function is already an
894/// overloaded function declaration or has the "overloadable"
895/// attribute.
896static bool AllowOverloadingOfFunction(LookupResult &Previous,
897                                       ASTContext &Context) {
898  if (Context.getLangOptions().CPlusPlus)
899    return true;
900
901  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
902    return true;
903
904  return (Previous.getResultKind() == LookupResult::Found
905          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
906}
907
908/// Add this decl to the scope shadowed decl chains.
909void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
910  // Move up the scope chain until we find the nearest enclosing
911  // non-transparent context. The declaration will be introduced into this
912  // scope.
913  while (S->getEntity() &&
914         ((DeclContext *)S->getEntity())->isTransparentContext())
915    S = S->getParent();
916
917  // Add scoped declarations into their context, so that they can be
918  // found later. Declarations without a context won't be inserted
919  // into any context.
920  if (AddToContext)
921    CurContext->addDecl(D);
922
923  // Out-of-line definitions shouldn't be pushed into scope in C++.
924  // Out-of-line variable and function definitions shouldn't even in C.
925  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
926      D->isOutOfLine() &&
927      !D->getDeclContext()->getRedeclContext()->Equals(
928        D->getLexicalDeclContext()->getRedeclContext()))
929    return;
930
931  // Template instantiations should also not be pushed into scope.
932  if (isa<FunctionDecl>(D) &&
933      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
934    return;
935
936  // If this replaces anything in the current scope,
937  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
938                               IEnd = IdResolver.end();
939  for (; I != IEnd; ++I) {
940    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
941      S->RemoveDecl(*I);
942      IdResolver.RemoveDecl(*I);
943
944      // Should only need to replace one decl.
945      break;
946    }
947  }
948
949  S->AddDecl(D);
950
951  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
952    // Implicitly-generated labels may end up getting generated in an order that
953    // isn't strictly lexical, which breaks name lookup. Be careful to insert
954    // the label at the appropriate place in the identifier chain.
955    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
956      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
957      if (IDC == CurContext) {
958        if (!S->isDeclScope(*I))
959          continue;
960      } else if (IDC->Encloses(CurContext))
961        break;
962    }
963
964    IdResolver.InsertDeclAfter(I, D);
965  } else {
966    IdResolver.AddDecl(D);
967  }
968}
969
970void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
971  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
972    TUScope->AddDecl(D);
973}
974
975bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
976                         bool ExplicitInstantiationOrSpecialization) {
977  return IdResolver.isDeclInScope(D, Ctx, Context, S,
978                                  ExplicitInstantiationOrSpecialization);
979}
980
981Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
982  DeclContext *TargetDC = DC->getPrimaryContext();
983  do {
984    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
985      if (ScopeDC->getPrimaryContext() == TargetDC)
986        return S;
987  } while ((S = S->getParent()));
988
989  return 0;
990}
991
992static bool isOutOfScopePreviousDeclaration(NamedDecl *,
993                                            DeclContext*,
994                                            ASTContext&);
995
996/// Filters out lookup results that don't fall within the given scope
997/// as determined by isDeclInScope.
998void Sema::FilterLookupForScope(LookupResult &R,
999                                DeclContext *Ctx, Scope *S,
1000                                bool ConsiderLinkage,
1001                                bool ExplicitInstantiationOrSpecialization) {
1002  LookupResult::Filter F = R.makeFilter();
1003  while (F.hasNext()) {
1004    NamedDecl *D = F.next();
1005
1006    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1007      continue;
1008
1009    if (ConsiderLinkage &&
1010        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1011      continue;
1012
1013    F.erase();
1014  }
1015
1016  F.done();
1017}
1018
1019static bool isUsingDecl(NamedDecl *D) {
1020  return isa<UsingShadowDecl>(D) ||
1021         isa<UnresolvedUsingTypenameDecl>(D) ||
1022         isa<UnresolvedUsingValueDecl>(D);
1023}
1024
1025/// Removes using shadow declarations from the lookup results.
1026static void RemoveUsingDecls(LookupResult &R) {
1027  LookupResult::Filter F = R.makeFilter();
1028  while (F.hasNext())
1029    if (isUsingDecl(F.next()))
1030      F.erase();
1031
1032  F.done();
1033}
1034
1035/// \brief Check for this common pattern:
1036/// @code
1037/// class S {
1038///   S(const S&); // DO NOT IMPLEMENT
1039///   void operator=(const S&); // DO NOT IMPLEMENT
1040/// };
1041/// @endcode
1042static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1043  // FIXME: Should check for private access too but access is set after we get
1044  // the decl here.
1045  if (D->doesThisDeclarationHaveABody())
1046    return false;
1047
1048  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1049    return CD->isCopyConstructor();
1050  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1051    return Method->isCopyAssignmentOperator();
1052  return false;
1053}
1054
1055bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1056  assert(D);
1057
1058  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1059    return false;
1060
1061  // Ignore class templates.
1062  if (D->getDeclContext()->isDependentContext() ||
1063      D->getLexicalDeclContext()->isDependentContext())
1064    return false;
1065
1066  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1067    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1068      return false;
1069
1070    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1071      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1072        return false;
1073    } else {
1074      // 'static inline' functions are used in headers; don't warn.
1075      if (FD->getStorageClass() == SC_Static &&
1076          FD->isInlineSpecified())
1077        return false;
1078    }
1079
1080    if (FD->doesThisDeclarationHaveABody() &&
1081        Context.DeclMustBeEmitted(FD))
1082      return false;
1083  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1084    if (!VD->isFileVarDecl() ||
1085        VD->getType().isConstant(Context) ||
1086        Context.DeclMustBeEmitted(VD))
1087      return false;
1088
1089    if (VD->isStaticDataMember() &&
1090        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1091      return false;
1092
1093  } else {
1094    return false;
1095  }
1096
1097  // Only warn for unused decls internal to the translation unit.
1098  if (D->getLinkage() == ExternalLinkage)
1099    return false;
1100
1101  return true;
1102}
1103
1104void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1105  if (!D)
1106    return;
1107
1108  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1109    const FunctionDecl *First = FD->getFirstDeclaration();
1110    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1111      return; // First should already be in the vector.
1112  }
1113
1114  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1115    const VarDecl *First = VD->getFirstDeclaration();
1116    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1117      return; // First should already be in the vector.
1118  }
1119
1120   if (ShouldWarnIfUnusedFileScopedDecl(D))
1121     UnusedFileScopedDecls.push_back(D);
1122 }
1123
1124static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1125  if (D->isInvalidDecl())
1126    return false;
1127
1128  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1129    return false;
1130
1131  if (isa<LabelDecl>(D))
1132    return true;
1133
1134  // White-list anything that isn't a local variable.
1135  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1136      !D->getDeclContext()->isFunctionOrMethod())
1137    return false;
1138
1139  // Types of valid local variables should be complete, so this should succeed.
1140  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1141
1142    // White-list anything with an __attribute__((unused)) type.
1143    QualType Ty = VD->getType();
1144
1145    // Only look at the outermost level of typedef.
1146    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1147      if (TT->getDecl()->hasAttr<UnusedAttr>())
1148        return false;
1149    }
1150
1151    // If we failed to complete the type for some reason, or if the type is
1152    // dependent, don't diagnose the variable.
1153    if (Ty->isIncompleteType() || Ty->isDependentType())
1154      return false;
1155
1156    if (const TagType *TT = Ty->getAs<TagType>()) {
1157      const TagDecl *Tag = TT->getDecl();
1158      if (Tag->hasAttr<UnusedAttr>())
1159        return false;
1160
1161      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1162        if (!RD->hasTrivialDestructor())
1163          return false;
1164
1165        if (const Expr *Init = VD->getInit()) {
1166          const CXXConstructExpr *Construct =
1167            dyn_cast<CXXConstructExpr>(Init);
1168          if (Construct && !Construct->isElidable()) {
1169            CXXConstructorDecl *CD = Construct->getConstructor();
1170            if (!CD->isTrivial())
1171              return false;
1172          }
1173        }
1174      }
1175    }
1176
1177    // TODO: __attribute__((unused)) templates?
1178  }
1179
1180  return true;
1181}
1182
1183static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1184                                     FixItHint &Hint) {
1185  if (isa<LabelDecl>(D)) {
1186    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1187                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1188    if (AfterColon.isInvalid())
1189      return;
1190    Hint = FixItHint::CreateRemoval(CharSourceRange::
1191                                    getCharRange(D->getLocStart(), AfterColon));
1192  }
1193  return;
1194}
1195
1196/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1197/// unless they are marked attr(unused).
1198void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1199  FixItHint Hint;
1200  if (!ShouldDiagnoseUnusedDecl(D))
1201    return;
1202
1203  GenerateFixForUnusedDecl(D, Context, Hint);
1204
1205  unsigned DiagID;
1206  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1207    DiagID = diag::warn_unused_exception_param;
1208  else if (isa<LabelDecl>(D))
1209    DiagID = diag::warn_unused_label;
1210  else
1211    DiagID = diag::warn_unused_variable;
1212
1213  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1214}
1215
1216static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1217  // Verify that we have no forward references left.  If so, there was a goto
1218  // or address of a label taken, but no definition of it.  Label fwd
1219  // definitions are indicated with a null substmt.
1220  if (L->getStmt() == 0)
1221    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1222}
1223
1224void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1225  if (S->decl_empty()) return;
1226  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1227         "Scope shouldn't contain decls!");
1228
1229  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1230       I != E; ++I) {
1231    Decl *TmpD = (*I);
1232    assert(TmpD && "This decl didn't get pushed??");
1233
1234    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1235    NamedDecl *D = cast<NamedDecl>(TmpD);
1236
1237    if (!D->getDeclName()) continue;
1238
1239    // Diagnose unused variables in this scope.
1240    if (!S->hasErrorOccurred())
1241      DiagnoseUnusedDecl(D);
1242
1243    // If this was a forward reference to a label, verify it was defined.
1244    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1245      CheckPoppedLabel(LD, *this);
1246
1247    // Remove this name from our lexical scope.
1248    IdResolver.RemoveDecl(D);
1249  }
1250}
1251
1252void Sema::ActOnStartFunctionDeclarator() {
1253  InFunctionDeclarator = true;
1254}
1255
1256/// \brief Look for an Objective-C class in the translation unit.
1257///
1258/// \param Id The name of the Objective-C class we're looking for. If
1259/// typo-correction fixes this name, the Id will be updated
1260/// to the fixed name.
1261///
1262/// \param IdLoc The location of the name in the translation unit.
1263///
1264/// \param TypoCorrection If true, this routine will attempt typo correction
1265/// if there is no class with the given name.
1266///
1267/// \returns The declaration of the named Objective-C class, or NULL if the
1268/// class could not be found.
1269ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1270                                              SourceLocation IdLoc,
1271                                              bool DoTypoCorrection) {
1272  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1273  // creation from this context.
1274  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1275
1276  if (!IDecl && DoTypoCorrection) {
1277    // Perform typo correction at the given location, but only if we
1278    // find an Objective-C class name.
1279    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1280    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1281                                       LookupOrdinaryName, TUScope, NULL,
1282                                       Validator)) {
1283      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1284      Diag(IdLoc, diag::err_undef_interface_suggest)
1285        << Id << IDecl->getDeclName()
1286        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1287      Diag(IDecl->getLocation(), diag::note_previous_decl)
1288        << IDecl->getDeclName();
1289
1290      Id = IDecl->getIdentifier();
1291    }
1292  }
1293  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1294  // This routine must always return a class definition, if any.
1295  if (Def && Def->getDefinition())
1296      Def = Def->getDefinition();
1297  return Def;
1298}
1299
1300/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1301/// from S, where a non-field would be declared. This routine copes
1302/// with the difference between C and C++ scoping rules in structs and
1303/// unions. For example, the following code is well-formed in C but
1304/// ill-formed in C++:
1305/// @code
1306/// struct S6 {
1307///   enum { BAR } e;
1308/// };
1309///
1310/// void test_S6() {
1311///   struct S6 a;
1312///   a.e = BAR;
1313/// }
1314/// @endcode
1315/// For the declaration of BAR, this routine will return a different
1316/// scope. The scope S will be the scope of the unnamed enumeration
1317/// within S6. In C++, this routine will return the scope associated
1318/// with S6, because the enumeration's scope is a transparent
1319/// context but structures can contain non-field names. In C, this
1320/// routine will return the translation unit scope, since the
1321/// enumeration's scope is a transparent context and structures cannot
1322/// contain non-field names.
1323Scope *Sema::getNonFieldDeclScope(Scope *S) {
1324  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1325         (S->getEntity() &&
1326          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1327         (S->isClassScope() && !getLangOptions().CPlusPlus))
1328    S = S->getParent();
1329  return S;
1330}
1331
1332/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1333/// file scope.  lazily create a decl for it. ForRedeclaration is true
1334/// if we're creating this built-in in anticipation of redeclaring the
1335/// built-in.
1336NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1337                                     Scope *S, bool ForRedeclaration,
1338                                     SourceLocation Loc) {
1339  Builtin::ID BID = (Builtin::ID)bid;
1340
1341  ASTContext::GetBuiltinTypeError Error;
1342  QualType R = Context.GetBuiltinType(BID, Error);
1343  switch (Error) {
1344  case ASTContext::GE_None:
1345    // Okay
1346    break;
1347
1348  case ASTContext::GE_Missing_stdio:
1349    if (ForRedeclaration)
1350      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1351        << Context.BuiltinInfo.GetName(BID);
1352    return 0;
1353
1354  case ASTContext::GE_Missing_setjmp:
1355    if (ForRedeclaration)
1356      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1357        << Context.BuiltinInfo.GetName(BID);
1358    return 0;
1359
1360  case ASTContext::GE_Missing_ucontext:
1361    if (ForRedeclaration)
1362      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1363        << Context.BuiltinInfo.GetName(BID);
1364    return 0;
1365  }
1366
1367  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1368    Diag(Loc, diag::ext_implicit_lib_function_decl)
1369      << Context.BuiltinInfo.GetName(BID)
1370      << R;
1371    if (Context.BuiltinInfo.getHeaderName(BID) &&
1372        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1373          != DiagnosticsEngine::Ignored)
1374      Diag(Loc, diag::note_please_include_header)
1375        << Context.BuiltinInfo.getHeaderName(BID)
1376        << Context.BuiltinInfo.GetName(BID);
1377  }
1378
1379  FunctionDecl *New = FunctionDecl::Create(Context,
1380                                           Context.getTranslationUnitDecl(),
1381                                           Loc, Loc, II, R, /*TInfo=*/0,
1382                                           SC_Extern,
1383                                           SC_None, false,
1384                                           /*hasPrototype=*/true);
1385  New->setImplicit();
1386
1387  // Create Decl objects for each parameter, adding them to the
1388  // FunctionDecl.
1389  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1390    SmallVector<ParmVarDecl*, 16> Params;
1391    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1392      ParmVarDecl *parm =
1393        ParmVarDecl::Create(Context, New, SourceLocation(),
1394                            SourceLocation(), 0,
1395                            FT->getArgType(i), /*TInfo=*/0,
1396                            SC_None, SC_None, 0);
1397      parm->setScopeInfo(0, i);
1398      Params.push_back(parm);
1399    }
1400    New->setParams(Params);
1401  }
1402
1403  AddKnownFunctionAttributes(New);
1404
1405  // TUScope is the translation-unit scope to insert this function into.
1406  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1407  // relate Scopes to DeclContexts, and probably eliminate CurContext
1408  // entirely, but we're not there yet.
1409  DeclContext *SavedContext = CurContext;
1410  CurContext = Context.getTranslationUnitDecl();
1411  PushOnScopeChains(New, TUScope);
1412  CurContext = SavedContext;
1413  return New;
1414}
1415
1416bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1417  QualType OldType;
1418  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1419    OldType = OldTypedef->getUnderlyingType();
1420  else
1421    OldType = Context.getTypeDeclType(Old);
1422  QualType NewType = New->getUnderlyingType();
1423
1424  if (NewType->isVariablyModifiedType()) {
1425    // Must not redefine a typedef with a variably-modified type.
1426    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1427    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1428      << Kind << NewType;
1429    if (Old->getLocation().isValid())
1430      Diag(Old->getLocation(), diag::note_previous_definition);
1431    New->setInvalidDecl();
1432    return true;
1433  }
1434
1435  if (OldType != NewType &&
1436      !OldType->isDependentType() &&
1437      !NewType->isDependentType() &&
1438      !Context.hasSameType(OldType, NewType)) {
1439    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1440    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1441      << Kind << NewType << OldType;
1442    if (Old->getLocation().isValid())
1443      Diag(Old->getLocation(), diag::note_previous_definition);
1444    New->setInvalidDecl();
1445    return true;
1446  }
1447  return false;
1448}
1449
1450/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1451/// same name and scope as a previous declaration 'Old'.  Figure out
1452/// how to resolve this situation, merging decls or emitting
1453/// diagnostics as appropriate. If there was an error, set New to be invalid.
1454///
1455void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1456  // If the new decl is known invalid already, don't bother doing any
1457  // merging checks.
1458  if (New->isInvalidDecl()) return;
1459
1460  // Allow multiple definitions for ObjC built-in typedefs.
1461  // FIXME: Verify the underlying types are equivalent!
1462  if (getLangOptions().ObjC1) {
1463    const IdentifierInfo *TypeID = New->getIdentifier();
1464    switch (TypeID->getLength()) {
1465    default: break;
1466    case 2:
1467      if (!TypeID->isStr("id"))
1468        break;
1469      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1470      // Install the built-in type for 'id', ignoring the current definition.
1471      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1472      return;
1473    case 5:
1474      if (!TypeID->isStr("Class"))
1475        break;
1476      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1477      // Install the built-in type for 'Class', ignoring the current definition.
1478      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1479      return;
1480    case 3:
1481      if (!TypeID->isStr("SEL"))
1482        break;
1483      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1484      // Install the built-in type for 'SEL', ignoring the current definition.
1485      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1486      return;
1487    }
1488    // Fall through - the typedef name was not a builtin type.
1489  }
1490
1491  // Verify the old decl was also a type.
1492  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1493  if (!Old) {
1494    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1495      << New->getDeclName();
1496
1497    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1498    if (OldD->getLocation().isValid())
1499      Diag(OldD->getLocation(), diag::note_previous_definition);
1500
1501    return New->setInvalidDecl();
1502  }
1503
1504  // If the old declaration is invalid, just give up here.
1505  if (Old->isInvalidDecl())
1506    return New->setInvalidDecl();
1507
1508  // If the typedef types are not identical, reject them in all languages and
1509  // with any extensions enabled.
1510  if (isIncompatibleTypedef(Old, New))
1511    return;
1512
1513  // The types match.  Link up the redeclaration chain if the old
1514  // declaration was a typedef.
1515  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1516    New->setPreviousDeclaration(Typedef);
1517
1518  if (getLangOptions().MicrosoftExt)
1519    return;
1520
1521  if (getLangOptions().CPlusPlus) {
1522    // C++ [dcl.typedef]p2:
1523    //   In a given non-class scope, a typedef specifier can be used to
1524    //   redefine the name of any type declared in that scope to refer
1525    //   to the type to which it already refers.
1526    if (!isa<CXXRecordDecl>(CurContext))
1527      return;
1528
1529    // C++0x [dcl.typedef]p4:
1530    //   In a given class scope, a typedef specifier can be used to redefine
1531    //   any class-name declared in that scope that is not also a typedef-name
1532    //   to refer to the type to which it already refers.
1533    //
1534    // This wording came in via DR424, which was a correction to the
1535    // wording in DR56, which accidentally banned code like:
1536    //
1537    //   struct S {
1538    //     typedef struct A { } A;
1539    //   };
1540    //
1541    // in the C++03 standard. We implement the C++0x semantics, which
1542    // allow the above but disallow
1543    //
1544    //   struct S {
1545    //     typedef int I;
1546    //     typedef int I;
1547    //   };
1548    //
1549    // since that was the intent of DR56.
1550    if (!isa<TypedefNameDecl>(Old))
1551      return;
1552
1553    Diag(New->getLocation(), diag::err_redefinition)
1554      << New->getDeclName();
1555    Diag(Old->getLocation(), diag::note_previous_definition);
1556    return New->setInvalidDecl();
1557  }
1558
1559  // Modules always permit redefinition of typedefs, as does C11.
1560  if (getLangOptions().Modules || getLangOptions().C11)
1561    return;
1562
1563  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1564  // is normally mapped to an error, but can be controlled with
1565  // -Wtypedef-redefinition.  If either the original or the redefinition is
1566  // in a system header, don't emit this for compatibility with GCC.
1567  if (getDiagnostics().getSuppressSystemWarnings() &&
1568      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1569       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1570    return;
1571
1572  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1573    << New->getDeclName();
1574  Diag(Old->getLocation(), diag::note_previous_definition);
1575  return;
1576}
1577
1578/// DeclhasAttr - returns true if decl Declaration already has the target
1579/// attribute.
1580static bool
1581DeclHasAttr(const Decl *D, const Attr *A) {
1582  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1583  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1584  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1585    if ((*i)->getKind() == A->getKind()) {
1586      if (Ann) {
1587        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1588          return true;
1589        continue;
1590      }
1591      // FIXME: Don't hardcode this check
1592      if (OA && isa<OwnershipAttr>(*i))
1593        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1594      return true;
1595    }
1596
1597  return false;
1598}
1599
1600/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1601void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1602                               bool MergeDeprecation) {
1603  if (!Old->hasAttrs())
1604    return;
1605
1606  bool foundAny = New->hasAttrs();
1607
1608  // Ensure that any moving of objects within the allocated map is done before
1609  // we process them.
1610  if (!foundAny) New->setAttrs(AttrVec());
1611
1612  for (specific_attr_iterator<InheritableAttr>
1613         i = Old->specific_attr_begin<InheritableAttr>(),
1614         e = Old->specific_attr_end<InheritableAttr>();
1615       i != e; ++i) {
1616    // Ignore deprecated/unavailable/availability attributes if requested.
1617    if (!MergeDeprecation &&
1618        (isa<DeprecatedAttr>(*i) ||
1619         isa<UnavailableAttr>(*i) ||
1620         isa<AvailabilityAttr>(*i)))
1621      continue;
1622
1623    if (!DeclHasAttr(New, *i)) {
1624      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(Context));
1625      newAttr->setInherited(true);
1626      New->addAttr(newAttr);
1627      foundAny = true;
1628    }
1629  }
1630
1631  if (!foundAny) New->dropAttrs();
1632}
1633
1634/// mergeParamDeclAttributes - Copy attributes from the old parameter
1635/// to the new one.
1636static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1637                                     const ParmVarDecl *oldDecl,
1638                                     ASTContext &C) {
1639  if (!oldDecl->hasAttrs())
1640    return;
1641
1642  bool foundAny = newDecl->hasAttrs();
1643
1644  // Ensure that any moving of objects within the allocated map is
1645  // done before we process them.
1646  if (!foundAny) newDecl->setAttrs(AttrVec());
1647
1648  for (specific_attr_iterator<InheritableParamAttr>
1649       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1650       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1651    if (!DeclHasAttr(newDecl, *i)) {
1652      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1653      newAttr->setInherited(true);
1654      newDecl->addAttr(newAttr);
1655      foundAny = true;
1656    }
1657  }
1658
1659  if (!foundAny) newDecl->dropAttrs();
1660}
1661
1662namespace {
1663
1664/// Used in MergeFunctionDecl to keep track of function parameters in
1665/// C.
1666struct GNUCompatibleParamWarning {
1667  ParmVarDecl *OldParm;
1668  ParmVarDecl *NewParm;
1669  QualType PromotedType;
1670};
1671
1672}
1673
1674/// getSpecialMember - get the special member enum for a method.
1675Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1676  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1677    if (Ctor->isDefaultConstructor())
1678      return Sema::CXXDefaultConstructor;
1679
1680    if (Ctor->isCopyConstructor())
1681      return Sema::CXXCopyConstructor;
1682
1683    if (Ctor->isMoveConstructor())
1684      return Sema::CXXMoveConstructor;
1685  } else if (isa<CXXDestructorDecl>(MD)) {
1686    return Sema::CXXDestructor;
1687  } else if (MD->isCopyAssignmentOperator()) {
1688    return Sema::CXXCopyAssignment;
1689  } else if (MD->isMoveAssignmentOperator()) {
1690    return Sema::CXXMoveAssignment;
1691  }
1692
1693  return Sema::CXXInvalid;
1694}
1695
1696/// canRedefineFunction - checks if a function can be redefined. Currently,
1697/// only extern inline functions can be redefined, and even then only in
1698/// GNU89 mode.
1699static bool canRedefineFunction(const FunctionDecl *FD,
1700                                const LangOptions& LangOpts) {
1701  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1702          !LangOpts.CPlusPlus &&
1703          FD->isInlineSpecified() &&
1704          FD->getStorageClass() == SC_Extern);
1705}
1706
1707/// MergeFunctionDecl - We just parsed a function 'New' from
1708/// declarator D which has the same name and scope as a previous
1709/// declaration 'Old'.  Figure out how to resolve this situation,
1710/// merging decls or emitting diagnostics as appropriate.
1711///
1712/// In C++, New and Old must be declarations that are not
1713/// overloaded. Use IsOverload to determine whether New and Old are
1714/// overloaded, and to select the Old declaration that New should be
1715/// merged with.
1716///
1717/// Returns true if there was an error, false otherwise.
1718bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1719  // Verify the old decl was also a function.
1720  FunctionDecl *Old = 0;
1721  if (FunctionTemplateDecl *OldFunctionTemplate
1722        = dyn_cast<FunctionTemplateDecl>(OldD))
1723    Old = OldFunctionTemplate->getTemplatedDecl();
1724  else
1725    Old = dyn_cast<FunctionDecl>(OldD);
1726  if (!Old) {
1727    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1728      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1729      Diag(Shadow->getTargetDecl()->getLocation(),
1730           diag::note_using_decl_target);
1731      Diag(Shadow->getUsingDecl()->getLocation(),
1732           diag::note_using_decl) << 0;
1733      return true;
1734    }
1735
1736    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1737      << New->getDeclName();
1738    Diag(OldD->getLocation(), diag::note_previous_definition);
1739    return true;
1740  }
1741
1742  // Determine whether the previous declaration was a definition,
1743  // implicit declaration, or a declaration.
1744  diag::kind PrevDiag;
1745  if (Old->isThisDeclarationADefinition())
1746    PrevDiag = diag::note_previous_definition;
1747  else if (Old->isImplicit())
1748    PrevDiag = diag::note_previous_implicit_declaration;
1749  else
1750    PrevDiag = diag::note_previous_declaration;
1751
1752  QualType OldQType = Context.getCanonicalType(Old->getType());
1753  QualType NewQType = Context.getCanonicalType(New->getType());
1754
1755  // Don't complain about this if we're in GNU89 mode and the old function
1756  // is an extern inline function.
1757  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1758      New->getStorageClass() == SC_Static &&
1759      Old->getStorageClass() != SC_Static &&
1760      !canRedefineFunction(Old, getLangOptions())) {
1761    if (getLangOptions().MicrosoftExt) {
1762      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1763      Diag(Old->getLocation(), PrevDiag);
1764    } else {
1765      Diag(New->getLocation(), diag::err_static_non_static) << New;
1766      Diag(Old->getLocation(), PrevDiag);
1767      return true;
1768    }
1769  }
1770
1771  // If a function is first declared with a calling convention, but is
1772  // later declared or defined without one, the second decl assumes the
1773  // calling convention of the first.
1774  //
1775  // For the new decl, we have to look at the NON-canonical type to tell the
1776  // difference between a function that really doesn't have a calling
1777  // convention and one that is declared cdecl. That's because in
1778  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1779  // because it is the default calling convention.
1780  //
1781  // Note also that we DO NOT return at this point, because we still have
1782  // other tests to run.
1783  const FunctionType *OldType = cast<FunctionType>(OldQType);
1784  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1785  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1786  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1787  bool RequiresAdjustment = false;
1788  if (OldTypeInfo.getCC() != CC_Default &&
1789      NewTypeInfo.getCC() == CC_Default) {
1790    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1791    RequiresAdjustment = true;
1792  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1793                                     NewTypeInfo.getCC())) {
1794    // Calling conventions really aren't compatible, so complain.
1795    Diag(New->getLocation(), diag::err_cconv_change)
1796      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1797      << (OldTypeInfo.getCC() == CC_Default)
1798      << (OldTypeInfo.getCC() == CC_Default ? "" :
1799          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1800    Diag(Old->getLocation(), diag::note_previous_declaration);
1801    return true;
1802  }
1803
1804  // FIXME: diagnose the other way around?
1805  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1806    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1807    RequiresAdjustment = true;
1808  }
1809
1810  // Merge regparm attribute.
1811  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1812      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1813    if (NewTypeInfo.getHasRegParm()) {
1814      Diag(New->getLocation(), diag::err_regparm_mismatch)
1815        << NewType->getRegParmType()
1816        << OldType->getRegParmType();
1817      Diag(Old->getLocation(), diag::note_previous_declaration);
1818      return true;
1819    }
1820
1821    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1822    RequiresAdjustment = true;
1823  }
1824
1825  // Merge ns_returns_retained attribute.
1826  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1827    if (NewTypeInfo.getProducesResult()) {
1828      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1829      Diag(Old->getLocation(), diag::note_previous_declaration);
1830      return true;
1831    }
1832
1833    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1834    RequiresAdjustment = true;
1835  }
1836
1837  if (RequiresAdjustment) {
1838    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1839    New->setType(QualType(NewType, 0));
1840    NewQType = Context.getCanonicalType(New->getType());
1841  }
1842
1843  if (getLangOptions().CPlusPlus) {
1844    // (C++98 13.1p2):
1845    //   Certain function declarations cannot be overloaded:
1846    //     -- Function declarations that differ only in the return type
1847    //        cannot be overloaded.
1848    QualType OldReturnType = OldType->getResultType();
1849    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1850    QualType ResQT;
1851    if (OldReturnType != NewReturnType) {
1852      if (NewReturnType->isObjCObjectPointerType()
1853          && OldReturnType->isObjCObjectPointerType())
1854        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1855      if (ResQT.isNull()) {
1856        if (New->isCXXClassMember() && New->isOutOfLine())
1857          Diag(New->getLocation(),
1858               diag::err_member_def_does_not_match_ret_type) << New;
1859        else
1860          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1861        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1862        return true;
1863      }
1864      else
1865        NewQType = ResQT;
1866    }
1867
1868    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1869    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1870    if (OldMethod && NewMethod) {
1871      // Preserve triviality.
1872      NewMethod->setTrivial(OldMethod->isTrivial());
1873
1874      // MSVC allows explicit template specialization at class scope:
1875      // 2 CXMethodDecls referring to the same function will be injected.
1876      // We don't want a redeclartion error.
1877      bool IsClassScopeExplicitSpecialization =
1878                              OldMethod->isFunctionTemplateSpecialization() &&
1879                              NewMethod->isFunctionTemplateSpecialization();
1880      bool isFriend = NewMethod->getFriendObjectKind();
1881
1882      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1883          !IsClassScopeExplicitSpecialization) {
1884        //    -- Member function declarations with the same name and the
1885        //       same parameter types cannot be overloaded if any of them
1886        //       is a static member function declaration.
1887        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1888          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1889          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1890          return true;
1891        }
1892
1893        // C++ [class.mem]p1:
1894        //   [...] A member shall not be declared twice in the
1895        //   member-specification, except that a nested class or member
1896        //   class template can be declared and then later defined.
1897        unsigned NewDiag;
1898        if (isa<CXXConstructorDecl>(OldMethod))
1899          NewDiag = diag::err_constructor_redeclared;
1900        else if (isa<CXXDestructorDecl>(NewMethod))
1901          NewDiag = diag::err_destructor_redeclared;
1902        else if (isa<CXXConversionDecl>(NewMethod))
1903          NewDiag = diag::err_conv_function_redeclared;
1904        else
1905          NewDiag = diag::err_member_redeclared;
1906
1907        Diag(New->getLocation(), NewDiag);
1908        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1909
1910      // Complain if this is an explicit declaration of a special
1911      // member that was initially declared implicitly.
1912      //
1913      // As an exception, it's okay to befriend such methods in order
1914      // to permit the implicit constructor/destructor/operator calls.
1915      } else if (OldMethod->isImplicit()) {
1916        if (isFriend) {
1917          NewMethod->setImplicit();
1918        } else {
1919          Diag(NewMethod->getLocation(),
1920               diag::err_definition_of_implicitly_declared_member)
1921            << New << getSpecialMember(OldMethod);
1922          return true;
1923        }
1924      } else if (OldMethod->isExplicitlyDefaulted()) {
1925        Diag(NewMethod->getLocation(),
1926             diag::err_definition_of_explicitly_defaulted_member)
1927          << getSpecialMember(OldMethod);
1928        return true;
1929      }
1930    }
1931
1932    // (C++98 8.3.5p3):
1933    //   All declarations for a function shall agree exactly in both the
1934    //   return type and the parameter-type-list.
1935    // We also want to respect all the extended bits except noreturn.
1936
1937    // noreturn should now match unless the old type info didn't have it.
1938    QualType OldQTypeForComparison = OldQType;
1939    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1940      assert(OldQType == QualType(OldType, 0));
1941      const FunctionType *OldTypeForComparison
1942        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1943      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1944      assert(OldQTypeForComparison.isCanonical());
1945    }
1946
1947    if (OldQTypeForComparison == NewQType)
1948      return MergeCompatibleFunctionDecls(New, Old);
1949
1950    // Fall through for conflicting redeclarations and redefinitions.
1951  }
1952
1953  // C: Function types need to be compatible, not identical. This handles
1954  // duplicate function decls like "void f(int); void f(enum X);" properly.
1955  if (!getLangOptions().CPlusPlus &&
1956      Context.typesAreCompatible(OldQType, NewQType)) {
1957    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1958    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1959    const FunctionProtoType *OldProto = 0;
1960    if (isa<FunctionNoProtoType>(NewFuncType) &&
1961        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1962      // The old declaration provided a function prototype, but the
1963      // new declaration does not. Merge in the prototype.
1964      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1965      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1966                                                 OldProto->arg_type_end());
1967      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1968                                         ParamTypes.data(), ParamTypes.size(),
1969                                         OldProto->getExtProtoInfo());
1970      New->setType(NewQType);
1971      New->setHasInheritedPrototype();
1972
1973      // Synthesize a parameter for each argument type.
1974      SmallVector<ParmVarDecl*, 16> Params;
1975      for (FunctionProtoType::arg_type_iterator
1976             ParamType = OldProto->arg_type_begin(),
1977             ParamEnd = OldProto->arg_type_end();
1978           ParamType != ParamEnd; ++ParamType) {
1979        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1980                                                 SourceLocation(),
1981                                                 SourceLocation(), 0,
1982                                                 *ParamType, /*TInfo=*/0,
1983                                                 SC_None, SC_None,
1984                                                 0);
1985        Param->setScopeInfo(0, Params.size());
1986        Param->setImplicit();
1987        Params.push_back(Param);
1988      }
1989
1990      New->setParams(Params);
1991    }
1992
1993    return MergeCompatibleFunctionDecls(New, Old);
1994  }
1995
1996  // GNU C permits a K&R definition to follow a prototype declaration
1997  // if the declared types of the parameters in the K&R definition
1998  // match the types in the prototype declaration, even when the
1999  // promoted types of the parameters from the K&R definition differ
2000  // from the types in the prototype. GCC then keeps the types from
2001  // the prototype.
2002  //
2003  // If a variadic prototype is followed by a non-variadic K&R definition,
2004  // the K&R definition becomes variadic.  This is sort of an edge case, but
2005  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2006  // C99 6.9.1p8.
2007  if (!getLangOptions().CPlusPlus &&
2008      Old->hasPrototype() && !New->hasPrototype() &&
2009      New->getType()->getAs<FunctionProtoType>() &&
2010      Old->getNumParams() == New->getNumParams()) {
2011    SmallVector<QualType, 16> ArgTypes;
2012    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2013    const FunctionProtoType *OldProto
2014      = Old->getType()->getAs<FunctionProtoType>();
2015    const FunctionProtoType *NewProto
2016      = New->getType()->getAs<FunctionProtoType>();
2017
2018    // Determine whether this is the GNU C extension.
2019    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2020                                               NewProto->getResultType());
2021    bool LooseCompatible = !MergedReturn.isNull();
2022    for (unsigned Idx = 0, End = Old->getNumParams();
2023         LooseCompatible && Idx != End; ++Idx) {
2024      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2025      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2026      if (Context.typesAreCompatible(OldParm->getType(),
2027                                     NewProto->getArgType(Idx))) {
2028        ArgTypes.push_back(NewParm->getType());
2029      } else if (Context.typesAreCompatible(OldParm->getType(),
2030                                            NewParm->getType(),
2031                                            /*CompareUnqualified=*/true)) {
2032        GNUCompatibleParamWarning Warn
2033          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2034        Warnings.push_back(Warn);
2035        ArgTypes.push_back(NewParm->getType());
2036      } else
2037        LooseCompatible = false;
2038    }
2039
2040    if (LooseCompatible) {
2041      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2042        Diag(Warnings[Warn].NewParm->getLocation(),
2043             diag::ext_param_promoted_not_compatible_with_prototype)
2044          << Warnings[Warn].PromotedType
2045          << Warnings[Warn].OldParm->getType();
2046        if (Warnings[Warn].OldParm->getLocation().isValid())
2047          Diag(Warnings[Warn].OldParm->getLocation(),
2048               diag::note_previous_declaration);
2049      }
2050
2051      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2052                                           ArgTypes.size(),
2053                                           OldProto->getExtProtoInfo()));
2054      return MergeCompatibleFunctionDecls(New, Old);
2055    }
2056
2057    // Fall through to diagnose conflicting types.
2058  }
2059
2060  // A function that has already been declared has been redeclared or defined
2061  // with a different type- show appropriate diagnostic
2062  if (unsigned BuiltinID = Old->getBuiltinID()) {
2063    // The user has declared a builtin function with an incompatible
2064    // signature.
2065    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2066      // The function the user is redeclaring is a library-defined
2067      // function like 'malloc' or 'printf'. Warn about the
2068      // redeclaration, then pretend that we don't know about this
2069      // library built-in.
2070      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2071      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2072        << Old << Old->getType();
2073      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2074      Old->setInvalidDecl();
2075      return false;
2076    }
2077
2078    PrevDiag = diag::note_previous_builtin_declaration;
2079  }
2080
2081  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2082  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2083  return true;
2084}
2085
2086/// \brief Completes the merge of two function declarations that are
2087/// known to be compatible.
2088///
2089/// This routine handles the merging of attributes and other
2090/// properties of function declarations form the old declaration to
2091/// the new declaration, once we know that New is in fact a
2092/// redeclaration of Old.
2093///
2094/// \returns false
2095bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2096  // Merge the attributes
2097  mergeDeclAttributes(New, Old);
2098
2099  // Merge the storage class.
2100  if (Old->getStorageClass() != SC_Extern &&
2101      Old->getStorageClass() != SC_None)
2102    New->setStorageClass(Old->getStorageClass());
2103
2104  // Merge "pure" flag.
2105  if (Old->isPure())
2106    New->setPure();
2107
2108  // Merge attributes from the parameters.  These can mismatch with K&R
2109  // declarations.
2110  if (New->getNumParams() == Old->getNumParams())
2111    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2112      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2113                               Context);
2114
2115  if (getLangOptions().CPlusPlus)
2116    return MergeCXXFunctionDecl(New, Old);
2117
2118  return false;
2119}
2120
2121
2122void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2123                                ObjCMethodDecl *oldMethod) {
2124  // We don't want to merge unavailable and deprecated attributes
2125  // except from interface to implementation.
2126  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2127
2128  // Merge the attributes.
2129  mergeDeclAttributes(newMethod, oldMethod, mergeDeprecation);
2130
2131  // Merge attributes from the parameters.
2132  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2133  for (ObjCMethodDecl::param_iterator
2134         ni = newMethod->param_begin(), ne = newMethod->param_end();
2135       ni != ne; ++ni, ++oi)
2136    mergeParamDeclAttributes(*ni, *oi, Context);
2137
2138  CheckObjCMethodOverride(newMethod, oldMethod, true);
2139}
2140
2141/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2142/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2143/// emitting diagnostics as appropriate.
2144///
2145/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2146/// to here in AddInitializerToDecl. We can't check them before the initializer
2147/// is attached.
2148void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2149  if (New->isInvalidDecl() || Old->isInvalidDecl())
2150    return;
2151
2152  QualType MergedT;
2153  if (getLangOptions().CPlusPlus) {
2154    AutoType *AT = New->getType()->getContainedAutoType();
2155    if (AT && !AT->isDeduced()) {
2156      // We don't know what the new type is until the initializer is attached.
2157      return;
2158    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2159      // These could still be something that needs exception specs checked.
2160      return MergeVarDeclExceptionSpecs(New, Old);
2161    }
2162    // C++ [basic.link]p10:
2163    //   [...] the types specified by all declarations referring to a given
2164    //   object or function shall be identical, except that declarations for an
2165    //   array object can specify array types that differ by the presence or
2166    //   absence of a major array bound (8.3.4).
2167    else if (Old->getType()->isIncompleteArrayType() &&
2168             New->getType()->isArrayType()) {
2169      CanQual<ArrayType> OldArray
2170        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2171      CanQual<ArrayType> NewArray
2172        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2173      if (OldArray->getElementType() == NewArray->getElementType())
2174        MergedT = New->getType();
2175    } else if (Old->getType()->isArrayType() &&
2176             New->getType()->isIncompleteArrayType()) {
2177      CanQual<ArrayType> OldArray
2178        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2179      CanQual<ArrayType> NewArray
2180        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2181      if (OldArray->getElementType() == NewArray->getElementType())
2182        MergedT = Old->getType();
2183    } else if (New->getType()->isObjCObjectPointerType()
2184               && Old->getType()->isObjCObjectPointerType()) {
2185        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2186                                                        Old->getType());
2187    }
2188  } else {
2189    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2190  }
2191  if (MergedT.isNull()) {
2192    Diag(New->getLocation(), diag::err_redefinition_different_type)
2193      << New->getDeclName();
2194    Diag(Old->getLocation(), diag::note_previous_definition);
2195    return New->setInvalidDecl();
2196  }
2197  New->setType(MergedT);
2198}
2199
2200/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2201/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2202/// situation, merging decls or emitting diagnostics as appropriate.
2203///
2204/// Tentative definition rules (C99 6.9.2p2) are checked by
2205/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2206/// definitions here, since the initializer hasn't been attached.
2207///
2208void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2209  // If the new decl is already invalid, don't do any other checking.
2210  if (New->isInvalidDecl())
2211    return;
2212
2213  // Verify the old decl was also a variable.
2214  VarDecl *Old = 0;
2215  if (!Previous.isSingleResult() ||
2216      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2217    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2218      << New->getDeclName();
2219    Diag(Previous.getRepresentativeDecl()->getLocation(),
2220         diag::note_previous_definition);
2221    return New->setInvalidDecl();
2222  }
2223
2224  // C++ [class.mem]p1:
2225  //   A member shall not be declared twice in the member-specification [...]
2226  //
2227  // Here, we need only consider static data members.
2228  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2229    Diag(New->getLocation(), diag::err_duplicate_member)
2230      << New->getIdentifier();
2231    Diag(Old->getLocation(), diag::note_previous_declaration);
2232    New->setInvalidDecl();
2233  }
2234
2235  mergeDeclAttributes(New, Old);
2236  // Warn if an already-declared variable is made a weak_import in a subsequent
2237  // declaration
2238  if (New->getAttr<WeakImportAttr>() &&
2239      Old->getStorageClass() == SC_None &&
2240      !Old->getAttr<WeakImportAttr>()) {
2241    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2242    Diag(Old->getLocation(), diag::note_previous_definition);
2243    // Remove weak_import attribute on new declaration.
2244    New->dropAttr<WeakImportAttr>();
2245  }
2246
2247  // Merge the types.
2248  MergeVarDeclTypes(New, Old);
2249  if (New->isInvalidDecl())
2250    return;
2251
2252  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2253  if (New->getStorageClass() == SC_Static &&
2254      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2255    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2256    Diag(Old->getLocation(), diag::note_previous_definition);
2257    return New->setInvalidDecl();
2258  }
2259  // C99 6.2.2p4:
2260  //   For an identifier declared with the storage-class specifier
2261  //   extern in a scope in which a prior declaration of that
2262  //   identifier is visible,23) if the prior declaration specifies
2263  //   internal or external linkage, the linkage of the identifier at
2264  //   the later declaration is the same as the linkage specified at
2265  //   the prior declaration. If no prior declaration is visible, or
2266  //   if the prior declaration specifies no linkage, then the
2267  //   identifier has external linkage.
2268  if (New->hasExternalStorage() && Old->hasLinkage())
2269    /* Okay */;
2270  else if (New->getStorageClass() != SC_Static &&
2271           Old->getStorageClass() == SC_Static) {
2272    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2273    Diag(Old->getLocation(), diag::note_previous_definition);
2274    return New->setInvalidDecl();
2275  }
2276
2277  // Check if extern is followed by non-extern and vice-versa.
2278  if (New->hasExternalStorage() &&
2279      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2280    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2281    Diag(Old->getLocation(), diag::note_previous_definition);
2282    return New->setInvalidDecl();
2283  }
2284  if (Old->hasExternalStorage() &&
2285      !New->hasLinkage() && New->isLocalVarDecl()) {
2286    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2287    Diag(Old->getLocation(), diag::note_previous_definition);
2288    return New->setInvalidDecl();
2289  }
2290
2291  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2292
2293  // FIXME: The test for external storage here seems wrong? We still
2294  // need to check for mismatches.
2295  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2296      // Don't complain about out-of-line definitions of static members.
2297      !(Old->getLexicalDeclContext()->isRecord() &&
2298        !New->getLexicalDeclContext()->isRecord())) {
2299    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2300    Diag(Old->getLocation(), diag::note_previous_definition);
2301    return New->setInvalidDecl();
2302  }
2303
2304  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2305    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2306    Diag(Old->getLocation(), diag::note_previous_definition);
2307  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2308    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2309    Diag(Old->getLocation(), diag::note_previous_definition);
2310  }
2311
2312  // C++ doesn't have tentative definitions, so go right ahead and check here.
2313  const VarDecl *Def;
2314  if (getLangOptions().CPlusPlus &&
2315      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2316      (Def = Old->getDefinition())) {
2317    Diag(New->getLocation(), diag::err_redefinition)
2318      << New->getDeclName();
2319    Diag(Def->getLocation(), diag::note_previous_definition);
2320    New->setInvalidDecl();
2321    return;
2322  }
2323  // c99 6.2.2 P4.
2324  // For an identifier declared with the storage-class specifier extern in a
2325  // scope in which a prior declaration of that identifier is visible, if
2326  // the prior declaration specifies internal or external linkage, the linkage
2327  // of the identifier at the later declaration is the same as the linkage
2328  // specified at the prior declaration.
2329  // FIXME. revisit this code.
2330  if (New->hasExternalStorage() &&
2331      Old->getLinkage() == InternalLinkage &&
2332      New->getDeclContext() == Old->getDeclContext())
2333    New->setStorageClass(Old->getStorageClass());
2334
2335  // Keep a chain of previous declarations.
2336  New->setPreviousDeclaration(Old);
2337
2338  // Inherit access appropriately.
2339  New->setAccess(Old->getAccess());
2340}
2341
2342/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2343/// no declarator (e.g. "struct foo;") is parsed.
2344Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2345                                       DeclSpec &DS) {
2346  return ParsedFreeStandingDeclSpec(S, AS, DS,
2347                                    MultiTemplateParamsArg(*this, 0, 0));
2348}
2349
2350/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2351/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2352/// parameters to cope with template friend declarations.
2353Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2354                                       DeclSpec &DS,
2355                                       MultiTemplateParamsArg TemplateParams) {
2356  Decl *TagD = 0;
2357  TagDecl *Tag = 0;
2358  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2359      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2360      DS.getTypeSpecType() == DeclSpec::TST_union ||
2361      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2362    TagD = DS.getRepAsDecl();
2363
2364    if (!TagD) // We probably had an error
2365      return 0;
2366
2367    // Note that the above type specs guarantee that the
2368    // type rep is a Decl, whereas in many of the others
2369    // it's a Type.
2370    if (isa<TagDecl>(TagD))
2371      Tag = cast<TagDecl>(TagD);
2372    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2373      Tag = CTD->getTemplatedDecl();
2374  }
2375
2376  if (Tag)
2377    Tag->setFreeStanding();
2378
2379  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2380    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2381    // or incomplete types shall not be restrict-qualified."
2382    if (TypeQuals & DeclSpec::TQ_restrict)
2383      Diag(DS.getRestrictSpecLoc(),
2384           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2385           << DS.getSourceRange();
2386  }
2387
2388  if (DS.isConstexprSpecified()) {
2389    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2390    // and definitions of functions and variables.
2391    if (Tag)
2392      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2393        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2394            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2395            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2396    else
2397      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2398    // Don't emit warnings after this error.
2399    return TagD;
2400  }
2401
2402  if (DS.isFriendSpecified()) {
2403    // If we're dealing with a decl but not a TagDecl, assume that
2404    // whatever routines created it handled the friendship aspect.
2405    if (TagD && !Tag)
2406      return 0;
2407    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2408  }
2409
2410  // Track whether we warned about the fact that there aren't any
2411  // declarators.
2412  bool emittedWarning = false;
2413
2414  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2415    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2416        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2417      if (getLangOptions().CPlusPlus ||
2418          Record->getDeclContext()->isRecord())
2419        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2420
2421      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2422        << DS.getSourceRange();
2423      emittedWarning = true;
2424    }
2425  }
2426
2427  // Check for Microsoft C extension: anonymous struct.
2428  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2429      CurContext->isRecord() &&
2430      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2431    // Handle 2 kinds of anonymous struct:
2432    //   struct STRUCT;
2433    // and
2434    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2435    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2436    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2437        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2438         DS.getRepAsType().get()->isStructureType())) {
2439      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2440        << DS.getSourceRange();
2441      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2442    }
2443  }
2444
2445  if (getLangOptions().CPlusPlus &&
2446      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2447    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2448      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2449          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2450        Diag(Enum->getLocation(), diag::ext_no_declarators)
2451          << DS.getSourceRange();
2452        emittedWarning = true;
2453      }
2454
2455  // Skip all the checks below if we have a type error.
2456  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2457
2458  if (!DS.isMissingDeclaratorOk()) {
2459    // Warn about typedefs of enums without names, since this is an
2460    // extension in both Microsoft and GNU.
2461    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2462        Tag && isa<EnumDecl>(Tag)) {
2463      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2464        << DS.getSourceRange();
2465      return Tag;
2466    }
2467
2468    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2469      << DS.getSourceRange();
2470    emittedWarning = true;
2471  }
2472
2473  // We're going to complain about a bunch of spurious specifiers;
2474  // only do this if we're declaring a tag, because otherwise we
2475  // should be getting diag::ext_no_declarators.
2476  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2477    return TagD;
2478
2479  // Note that a linkage-specification sets a storage class, but
2480  // 'extern "C" struct foo;' is actually valid and not theoretically
2481  // useless.
2482  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2483    if (!DS.isExternInLinkageSpec())
2484      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2485        << DeclSpec::getSpecifierName(scs);
2486
2487  if (DS.isThreadSpecified())
2488    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2489  if (DS.getTypeQualifiers()) {
2490    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2491      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2492    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2493      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2494    // Restrict is covered above.
2495  }
2496  if (DS.isInlineSpecified())
2497    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2498  if (DS.isVirtualSpecified())
2499    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2500  if (DS.isExplicitSpecified())
2501    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2502
2503  if (DS.isModulePrivateSpecified() &&
2504      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2505    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2506      << Tag->getTagKind()
2507      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2508
2509  // Warn about ignored type attributes, for example:
2510  // __attribute__((aligned)) struct A;
2511  // Attributes should be placed after tag to apply to type declaration.
2512  if (!DS.getAttributes().empty()) {
2513    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2514    if (TypeSpecType == DeclSpec::TST_class ||
2515        TypeSpecType == DeclSpec::TST_struct ||
2516        TypeSpecType == DeclSpec::TST_union ||
2517        TypeSpecType == DeclSpec::TST_enum) {
2518      AttributeList* attrs = DS.getAttributes().getList();
2519      while (attrs) {
2520        Diag(attrs->getScopeLoc(),
2521             diag::warn_declspec_attribute_ignored)
2522        << attrs->getName()
2523        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2524            TypeSpecType == DeclSpec::TST_struct ? 1 :
2525            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2526        attrs = attrs->getNext();
2527      }
2528    }
2529  }
2530
2531  return TagD;
2532}
2533
2534/// We are trying to inject an anonymous member into the given scope;
2535/// check if there's an existing declaration that can't be overloaded.
2536///
2537/// \return true if this is a forbidden redeclaration
2538static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2539                                         Scope *S,
2540                                         DeclContext *Owner,
2541                                         DeclarationName Name,
2542                                         SourceLocation NameLoc,
2543                                         unsigned diagnostic) {
2544  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2545                 Sema::ForRedeclaration);
2546  if (!SemaRef.LookupName(R, S)) return false;
2547
2548  if (R.getAsSingle<TagDecl>())
2549    return false;
2550
2551  // Pick a representative declaration.
2552  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2553  assert(PrevDecl && "Expected a non-null Decl");
2554
2555  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2556    return false;
2557
2558  SemaRef.Diag(NameLoc, diagnostic) << Name;
2559  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2560
2561  return true;
2562}
2563
2564/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2565/// anonymous struct or union AnonRecord into the owning context Owner
2566/// and scope S. This routine will be invoked just after we realize
2567/// that an unnamed union or struct is actually an anonymous union or
2568/// struct, e.g.,
2569///
2570/// @code
2571/// union {
2572///   int i;
2573///   float f;
2574/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2575///    // f into the surrounding scope.x
2576/// @endcode
2577///
2578/// This routine is recursive, injecting the names of nested anonymous
2579/// structs/unions into the owning context and scope as well.
2580static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2581                                                DeclContext *Owner,
2582                                                RecordDecl *AnonRecord,
2583                                                AccessSpecifier AS,
2584                              SmallVector<NamedDecl*, 2> &Chaining,
2585                                                      bool MSAnonStruct) {
2586  unsigned diagKind
2587    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2588                            : diag::err_anonymous_struct_member_redecl;
2589
2590  bool Invalid = false;
2591
2592  // Look every FieldDecl and IndirectFieldDecl with a name.
2593  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2594                               DEnd = AnonRecord->decls_end();
2595       D != DEnd; ++D) {
2596    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2597        cast<NamedDecl>(*D)->getDeclName()) {
2598      ValueDecl *VD = cast<ValueDecl>(*D);
2599      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2600                                       VD->getLocation(), diagKind)) {
2601        // C++ [class.union]p2:
2602        //   The names of the members of an anonymous union shall be
2603        //   distinct from the names of any other entity in the
2604        //   scope in which the anonymous union is declared.
2605        Invalid = true;
2606      } else {
2607        // C++ [class.union]p2:
2608        //   For the purpose of name lookup, after the anonymous union
2609        //   definition, the members of the anonymous union are
2610        //   considered to have been defined in the scope in which the
2611        //   anonymous union is declared.
2612        unsigned OldChainingSize = Chaining.size();
2613        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2614          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2615               PE = IF->chain_end(); PI != PE; ++PI)
2616            Chaining.push_back(*PI);
2617        else
2618          Chaining.push_back(VD);
2619
2620        assert(Chaining.size() >= 2);
2621        NamedDecl **NamedChain =
2622          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2623        for (unsigned i = 0; i < Chaining.size(); i++)
2624          NamedChain[i] = Chaining[i];
2625
2626        IndirectFieldDecl* IndirectField =
2627          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2628                                    VD->getIdentifier(), VD->getType(),
2629                                    NamedChain, Chaining.size());
2630
2631        IndirectField->setAccess(AS);
2632        IndirectField->setImplicit();
2633        SemaRef.PushOnScopeChains(IndirectField, S);
2634
2635        // That includes picking up the appropriate access specifier.
2636        if (AS != AS_none) IndirectField->setAccess(AS);
2637
2638        Chaining.resize(OldChainingSize);
2639      }
2640    }
2641  }
2642
2643  return Invalid;
2644}
2645
2646/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2647/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2648/// illegal input values are mapped to SC_None.
2649static StorageClass
2650StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2651  switch (StorageClassSpec) {
2652  case DeclSpec::SCS_unspecified:    return SC_None;
2653  case DeclSpec::SCS_extern:         return SC_Extern;
2654  case DeclSpec::SCS_static:         return SC_Static;
2655  case DeclSpec::SCS_auto:           return SC_Auto;
2656  case DeclSpec::SCS_register:       return SC_Register;
2657  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2658    // Illegal SCSs map to None: error reporting is up to the caller.
2659  case DeclSpec::SCS_mutable:        // Fall through.
2660  case DeclSpec::SCS_typedef:        return SC_None;
2661  }
2662  llvm_unreachable("unknown storage class specifier");
2663}
2664
2665/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2666/// a StorageClass. Any error reporting is up to the caller:
2667/// illegal input values are mapped to SC_None.
2668static StorageClass
2669StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2670  switch (StorageClassSpec) {
2671  case DeclSpec::SCS_unspecified:    return SC_None;
2672  case DeclSpec::SCS_extern:         return SC_Extern;
2673  case DeclSpec::SCS_static:         return SC_Static;
2674  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2675    // Illegal SCSs map to None: error reporting is up to the caller.
2676  case DeclSpec::SCS_auto:           // Fall through.
2677  case DeclSpec::SCS_mutable:        // Fall through.
2678  case DeclSpec::SCS_register:       // Fall through.
2679  case DeclSpec::SCS_typedef:        return SC_None;
2680  }
2681  llvm_unreachable("unknown storage class specifier");
2682}
2683
2684/// BuildAnonymousStructOrUnion - Handle the declaration of an
2685/// anonymous structure or union. Anonymous unions are a C++ feature
2686/// (C++ [class.union]) and a C11 feature; anonymous structures
2687/// are a C11 feature and GNU C++ extension.
2688Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2689                                             AccessSpecifier AS,
2690                                             RecordDecl *Record) {
2691  DeclContext *Owner = Record->getDeclContext();
2692
2693  // Diagnose whether this anonymous struct/union is an extension.
2694  if (Record->isUnion() && !getLangOptions().CPlusPlus && !getLangOptions().C11)
2695    Diag(Record->getLocation(), diag::ext_anonymous_union);
2696  else if (!Record->isUnion() && getLangOptions().CPlusPlus)
2697    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2698  else if (!Record->isUnion() && !getLangOptions().C11)
2699    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2700
2701  // C and C++ require different kinds of checks for anonymous
2702  // structs/unions.
2703  bool Invalid = false;
2704  if (getLangOptions().CPlusPlus) {
2705    const char* PrevSpec = 0;
2706    unsigned DiagID;
2707    if (Record->isUnion()) {
2708      // C++ [class.union]p6:
2709      //   Anonymous unions declared in a named namespace or in the
2710      //   global namespace shall be declared static.
2711      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2712          (isa<TranslationUnitDecl>(Owner) ||
2713           (isa<NamespaceDecl>(Owner) &&
2714            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2715        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2716          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2717
2718        // Recover by adding 'static'.
2719        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2720                               PrevSpec, DiagID);
2721      }
2722      // C++ [class.union]p6:
2723      //   A storage class is not allowed in a declaration of an
2724      //   anonymous union in a class scope.
2725      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2726               isa<RecordDecl>(Owner)) {
2727        Diag(DS.getStorageClassSpecLoc(),
2728             diag::err_anonymous_union_with_storage_spec)
2729          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2730
2731        // Recover by removing the storage specifier.
2732        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2733                               SourceLocation(),
2734                               PrevSpec, DiagID);
2735      }
2736    }
2737
2738    // Ignore const/volatile/restrict qualifiers.
2739    if (DS.getTypeQualifiers()) {
2740      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2741        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2742          << Record->isUnion() << 0
2743          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2744      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2745        Diag(DS.getVolatileSpecLoc(),
2746             diag::ext_anonymous_struct_union_qualified)
2747          << Record->isUnion() << 1
2748          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2749      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2750        Diag(DS.getRestrictSpecLoc(),
2751             diag::ext_anonymous_struct_union_qualified)
2752          << Record->isUnion() << 2
2753          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2754
2755      DS.ClearTypeQualifiers();
2756    }
2757
2758    // C++ [class.union]p2:
2759    //   The member-specification of an anonymous union shall only
2760    //   define non-static data members. [Note: nested types and
2761    //   functions cannot be declared within an anonymous union. ]
2762    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2763                                 MemEnd = Record->decls_end();
2764         Mem != MemEnd; ++Mem) {
2765      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2766        // C++ [class.union]p3:
2767        //   An anonymous union shall not have private or protected
2768        //   members (clause 11).
2769        assert(FD->getAccess() != AS_none);
2770        if (FD->getAccess() != AS_public) {
2771          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2772            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2773          Invalid = true;
2774        }
2775
2776        // C++ [class.union]p1
2777        //   An object of a class with a non-trivial constructor, a non-trivial
2778        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2779        //   assignment operator cannot be a member of a union, nor can an
2780        //   array of such objects.
2781        if (CheckNontrivialField(FD))
2782          Invalid = true;
2783      } else if ((*Mem)->isImplicit()) {
2784        // Any implicit members are fine.
2785      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2786        // This is a type that showed up in an
2787        // elaborated-type-specifier inside the anonymous struct or
2788        // union, but which actually declares a type outside of the
2789        // anonymous struct or union. It's okay.
2790      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2791        if (!MemRecord->isAnonymousStructOrUnion() &&
2792            MemRecord->getDeclName()) {
2793          // Visual C++ allows type definition in anonymous struct or union.
2794          if (getLangOptions().MicrosoftExt)
2795            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2796              << (int)Record->isUnion();
2797          else {
2798            // This is a nested type declaration.
2799            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2800              << (int)Record->isUnion();
2801            Invalid = true;
2802          }
2803        }
2804      } else if (isa<AccessSpecDecl>(*Mem)) {
2805        // Any access specifier is fine.
2806      } else {
2807        // We have something that isn't a non-static data
2808        // member. Complain about it.
2809        unsigned DK = diag::err_anonymous_record_bad_member;
2810        if (isa<TypeDecl>(*Mem))
2811          DK = diag::err_anonymous_record_with_type;
2812        else if (isa<FunctionDecl>(*Mem))
2813          DK = diag::err_anonymous_record_with_function;
2814        else if (isa<VarDecl>(*Mem))
2815          DK = diag::err_anonymous_record_with_static;
2816
2817        // Visual C++ allows type definition in anonymous struct or union.
2818        if (getLangOptions().MicrosoftExt &&
2819            DK == diag::err_anonymous_record_with_type)
2820          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2821            << (int)Record->isUnion();
2822        else {
2823          Diag((*Mem)->getLocation(), DK)
2824              << (int)Record->isUnion();
2825          Invalid = true;
2826        }
2827      }
2828    }
2829  }
2830
2831  if (!Record->isUnion() && !Owner->isRecord()) {
2832    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2833      << (int)getLangOptions().CPlusPlus;
2834    Invalid = true;
2835  }
2836
2837  // Mock up a declarator.
2838  Declarator Dc(DS, Declarator::MemberContext);
2839  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2840  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2841
2842  // Create a declaration for this anonymous struct/union.
2843  NamedDecl *Anon = 0;
2844  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2845    Anon = FieldDecl::Create(Context, OwningClass,
2846                             DS.getSourceRange().getBegin(),
2847                             Record->getLocation(),
2848                             /*IdentifierInfo=*/0,
2849                             Context.getTypeDeclType(Record),
2850                             TInfo,
2851                             /*BitWidth=*/0, /*Mutable=*/false,
2852                             /*HasInit=*/false);
2853    Anon->setAccess(AS);
2854    if (getLangOptions().CPlusPlus)
2855      FieldCollector->Add(cast<FieldDecl>(Anon));
2856  } else {
2857    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2858    assert(SCSpec != DeclSpec::SCS_typedef &&
2859           "Parser allowed 'typedef' as storage class VarDecl.");
2860    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2861    if (SCSpec == DeclSpec::SCS_mutable) {
2862      // mutable can only appear on non-static class members, so it's always
2863      // an error here
2864      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2865      Invalid = true;
2866      SC = SC_None;
2867    }
2868    SCSpec = DS.getStorageClassSpecAsWritten();
2869    VarDecl::StorageClass SCAsWritten
2870      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2871
2872    Anon = VarDecl::Create(Context, Owner,
2873                           DS.getSourceRange().getBegin(),
2874                           Record->getLocation(), /*IdentifierInfo=*/0,
2875                           Context.getTypeDeclType(Record),
2876                           TInfo, SC, SCAsWritten);
2877
2878    // Default-initialize the implicit variable. This initialization will be
2879    // trivial in almost all cases, except if a union member has an in-class
2880    // initializer:
2881    //   union { int n = 0; };
2882    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2883  }
2884  Anon->setImplicit();
2885
2886  // Add the anonymous struct/union object to the current
2887  // context. We'll be referencing this object when we refer to one of
2888  // its members.
2889  Owner->addDecl(Anon);
2890
2891  // Inject the members of the anonymous struct/union into the owning
2892  // context and into the identifier resolver chain for name lookup
2893  // purposes.
2894  SmallVector<NamedDecl*, 2> Chain;
2895  Chain.push_back(Anon);
2896
2897  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2898                                          Chain, false))
2899    Invalid = true;
2900
2901  // Mark this as an anonymous struct/union type. Note that we do not
2902  // do this until after we have already checked and injected the
2903  // members of this anonymous struct/union type, because otherwise
2904  // the members could be injected twice: once by DeclContext when it
2905  // builds its lookup table, and once by
2906  // InjectAnonymousStructOrUnionMembers.
2907  Record->setAnonymousStructOrUnion(true);
2908
2909  if (Invalid)
2910    Anon->setInvalidDecl();
2911
2912  return Anon;
2913}
2914
2915/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2916/// Microsoft C anonymous structure.
2917/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2918/// Example:
2919///
2920/// struct A { int a; };
2921/// struct B { struct A; int b; };
2922///
2923/// void foo() {
2924///   B var;
2925///   var.a = 3;
2926/// }
2927///
2928Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2929                                           RecordDecl *Record) {
2930
2931  // If there is no Record, get the record via the typedef.
2932  if (!Record)
2933    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2934
2935  // Mock up a declarator.
2936  Declarator Dc(DS, Declarator::TypeNameContext);
2937  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2938  assert(TInfo && "couldn't build declarator info for anonymous struct");
2939
2940  // Create a declaration for this anonymous struct.
2941  NamedDecl* Anon = FieldDecl::Create(Context,
2942                             cast<RecordDecl>(CurContext),
2943                             DS.getSourceRange().getBegin(),
2944                             DS.getSourceRange().getBegin(),
2945                             /*IdentifierInfo=*/0,
2946                             Context.getTypeDeclType(Record),
2947                             TInfo,
2948                             /*BitWidth=*/0, /*Mutable=*/false,
2949                             /*HasInit=*/false);
2950  Anon->setImplicit();
2951
2952  // Add the anonymous struct object to the current context.
2953  CurContext->addDecl(Anon);
2954
2955  // Inject the members of the anonymous struct into the current
2956  // context and into the identifier resolver chain for name lookup
2957  // purposes.
2958  SmallVector<NamedDecl*, 2> Chain;
2959  Chain.push_back(Anon);
2960
2961  RecordDecl *RecordDef = Record->getDefinition();
2962  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2963                                                        RecordDef, AS_none,
2964                                                        Chain, true))
2965    Anon->setInvalidDecl();
2966
2967  return Anon;
2968}
2969
2970/// GetNameForDeclarator - Determine the full declaration name for the
2971/// given Declarator.
2972DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2973  return GetNameFromUnqualifiedId(D.getName());
2974}
2975
2976/// \brief Retrieves the declaration name from a parsed unqualified-id.
2977DeclarationNameInfo
2978Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2979  DeclarationNameInfo NameInfo;
2980  NameInfo.setLoc(Name.StartLocation);
2981
2982  switch (Name.getKind()) {
2983
2984  case UnqualifiedId::IK_ImplicitSelfParam:
2985  case UnqualifiedId::IK_Identifier:
2986    NameInfo.setName(Name.Identifier);
2987    NameInfo.setLoc(Name.StartLocation);
2988    return NameInfo;
2989
2990  case UnqualifiedId::IK_OperatorFunctionId:
2991    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2992                                           Name.OperatorFunctionId.Operator));
2993    NameInfo.setLoc(Name.StartLocation);
2994    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2995      = Name.OperatorFunctionId.SymbolLocations[0];
2996    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2997      = Name.EndLocation.getRawEncoding();
2998    return NameInfo;
2999
3000  case UnqualifiedId::IK_LiteralOperatorId:
3001    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3002                                                           Name.Identifier));
3003    NameInfo.setLoc(Name.StartLocation);
3004    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3005    return NameInfo;
3006
3007  case UnqualifiedId::IK_ConversionFunctionId: {
3008    TypeSourceInfo *TInfo;
3009    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3010    if (Ty.isNull())
3011      return DeclarationNameInfo();
3012    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3013                                               Context.getCanonicalType(Ty)));
3014    NameInfo.setLoc(Name.StartLocation);
3015    NameInfo.setNamedTypeInfo(TInfo);
3016    return NameInfo;
3017  }
3018
3019  case UnqualifiedId::IK_ConstructorName: {
3020    TypeSourceInfo *TInfo;
3021    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3022    if (Ty.isNull())
3023      return DeclarationNameInfo();
3024    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3025                                              Context.getCanonicalType(Ty)));
3026    NameInfo.setLoc(Name.StartLocation);
3027    NameInfo.setNamedTypeInfo(TInfo);
3028    return NameInfo;
3029  }
3030
3031  case UnqualifiedId::IK_ConstructorTemplateId: {
3032    // In well-formed code, we can only have a constructor
3033    // template-id that refers to the current context, so go there
3034    // to find the actual type being constructed.
3035    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3036    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3037      return DeclarationNameInfo();
3038
3039    // Determine the type of the class being constructed.
3040    QualType CurClassType = Context.getTypeDeclType(CurClass);
3041
3042    // FIXME: Check two things: that the template-id names the same type as
3043    // CurClassType, and that the template-id does not occur when the name
3044    // was qualified.
3045
3046    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3047                                    Context.getCanonicalType(CurClassType)));
3048    NameInfo.setLoc(Name.StartLocation);
3049    // FIXME: should we retrieve TypeSourceInfo?
3050    NameInfo.setNamedTypeInfo(0);
3051    return NameInfo;
3052  }
3053
3054  case UnqualifiedId::IK_DestructorName: {
3055    TypeSourceInfo *TInfo;
3056    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3057    if (Ty.isNull())
3058      return DeclarationNameInfo();
3059    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3060                                              Context.getCanonicalType(Ty)));
3061    NameInfo.setLoc(Name.StartLocation);
3062    NameInfo.setNamedTypeInfo(TInfo);
3063    return NameInfo;
3064  }
3065
3066  case UnqualifiedId::IK_TemplateId: {
3067    TemplateName TName = Name.TemplateId->Template.get();
3068    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3069    return Context.getNameForTemplate(TName, TNameLoc);
3070  }
3071
3072  } // switch (Name.getKind())
3073
3074  llvm_unreachable("Unknown name kind");
3075}
3076
3077static QualType getCoreType(QualType Ty) {
3078  do {
3079    if (Ty->isPointerType() || Ty->isReferenceType())
3080      Ty = Ty->getPointeeType();
3081    else if (Ty->isArrayType())
3082      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3083    else
3084      return Ty.withoutLocalFastQualifiers();
3085  } while (true);
3086}
3087
3088/// hasSimilarParameters - Determine whether the C++ functions Declaration
3089/// and Definition have "nearly" matching parameters. This heuristic is
3090/// used to improve diagnostics in the case where an out-of-line function
3091/// definition doesn't match any declaration within the class or namespace.
3092/// Also sets Params to the list of indices to the parameters that differ
3093/// between the declaration and the definition. If hasSimilarParameters
3094/// returns true and Params is empty, then all of the parameters match.
3095static bool hasSimilarParameters(ASTContext &Context,
3096                                     FunctionDecl *Declaration,
3097                                     FunctionDecl *Definition,
3098                                     llvm::SmallVectorImpl<unsigned> &Params) {
3099  Params.clear();
3100  if (Declaration->param_size() != Definition->param_size())
3101    return false;
3102  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3103    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3104    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3105
3106    // The parameter types are identical
3107    if (Context.hasSameType(DefParamTy, DeclParamTy))
3108      continue;
3109
3110    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3111    QualType DefParamBaseTy = getCoreType(DefParamTy);
3112    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3113    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3114
3115    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3116        (DeclTyName && DeclTyName == DefTyName))
3117      Params.push_back(Idx);
3118    else  // The two parameters aren't even close
3119      return false;
3120  }
3121
3122  return true;
3123}
3124
3125/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3126/// declarator needs to be rebuilt in the current instantiation.
3127/// Any bits of declarator which appear before the name are valid for
3128/// consideration here.  That's specifically the type in the decl spec
3129/// and the base type in any member-pointer chunks.
3130static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3131                                                    DeclarationName Name) {
3132  // The types we specifically need to rebuild are:
3133  //   - typenames, typeofs, and decltypes
3134  //   - types which will become injected class names
3135  // Of course, we also need to rebuild any type referencing such a
3136  // type.  It's safest to just say "dependent", but we call out a
3137  // few cases here.
3138
3139  DeclSpec &DS = D.getMutableDeclSpec();
3140  switch (DS.getTypeSpecType()) {
3141  case DeclSpec::TST_typename:
3142  case DeclSpec::TST_typeofType:
3143  case DeclSpec::TST_decltype:
3144  case DeclSpec::TST_underlyingType:
3145  case DeclSpec::TST_atomic: {
3146    // Grab the type from the parser.
3147    TypeSourceInfo *TSI = 0;
3148    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3149    if (T.isNull() || !T->isDependentType()) break;
3150
3151    // Make sure there's a type source info.  This isn't really much
3152    // of a waste; most dependent types should have type source info
3153    // attached already.
3154    if (!TSI)
3155      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3156
3157    // Rebuild the type in the current instantiation.
3158    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3159    if (!TSI) return true;
3160
3161    // Store the new type back in the decl spec.
3162    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3163    DS.UpdateTypeRep(LocType);
3164    break;
3165  }
3166
3167  case DeclSpec::TST_typeofExpr: {
3168    Expr *E = DS.getRepAsExpr();
3169    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3170    if (Result.isInvalid()) return true;
3171    DS.UpdateExprRep(Result.get());
3172    break;
3173  }
3174
3175  default:
3176    // Nothing to do for these decl specs.
3177    break;
3178  }
3179
3180  // It doesn't matter what order we do this in.
3181  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3182    DeclaratorChunk &Chunk = D.getTypeObject(I);
3183
3184    // The only type information in the declarator which can come
3185    // before the declaration name is the base type of a member
3186    // pointer.
3187    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3188      continue;
3189
3190    // Rebuild the scope specifier in-place.
3191    CXXScopeSpec &SS = Chunk.Mem.Scope();
3192    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3193      return true;
3194  }
3195
3196  return false;
3197}
3198
3199Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3200  D.setFunctionDefinitionKind(FDK_Declaration);
3201  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3202
3203  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3204      Dcl->getDeclContext()->isFileContext())
3205    Dcl->setTopLevelDeclInObjCContainer();
3206
3207  return Dcl;
3208}
3209
3210/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3211///   If T is the name of a class, then each of the following shall have a
3212///   name different from T:
3213///     - every static data member of class T;
3214///     - every member function of class T
3215///     - every member of class T that is itself a type;
3216/// \returns true if the declaration name violates these rules.
3217bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3218                                   DeclarationNameInfo NameInfo) {
3219  DeclarationName Name = NameInfo.getName();
3220
3221  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3222    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3223      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3224      return true;
3225    }
3226
3227  return false;
3228}
3229
3230Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3231                             MultiTemplateParamsArg TemplateParamLists) {
3232  // TODO: consider using NameInfo for diagnostic.
3233  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3234  DeclarationName Name = NameInfo.getName();
3235
3236  // All of these full declarators require an identifier.  If it doesn't have
3237  // one, the ParsedFreeStandingDeclSpec action should be used.
3238  if (!Name) {
3239    if (!D.isInvalidType())  // Reject this if we think it is valid.
3240      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3241           diag::err_declarator_need_ident)
3242        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3243    return 0;
3244  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3245    return 0;
3246
3247  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3248  // we find one that is.
3249  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3250         (S->getFlags() & Scope::TemplateParamScope) != 0)
3251    S = S->getParent();
3252
3253  DeclContext *DC = CurContext;
3254  if (D.getCXXScopeSpec().isInvalid())
3255    D.setInvalidType();
3256  else if (D.getCXXScopeSpec().isSet()) {
3257    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3258                                        UPPC_DeclarationQualifier))
3259      return 0;
3260
3261    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3262    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3263    if (!DC) {
3264      // If we could not compute the declaration context, it's because the
3265      // declaration context is dependent but does not refer to a class,
3266      // class template, or class template partial specialization. Complain
3267      // and return early, to avoid the coming semantic disaster.
3268      Diag(D.getIdentifierLoc(),
3269           diag::err_template_qualified_declarator_no_match)
3270        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3271        << D.getCXXScopeSpec().getRange();
3272      return 0;
3273    }
3274    bool IsDependentContext = DC->isDependentContext();
3275
3276    if (!IsDependentContext &&
3277        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3278      return 0;
3279
3280    if (isa<CXXRecordDecl>(DC)) {
3281      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3282        Diag(D.getIdentifierLoc(),
3283             diag::err_member_def_undefined_record)
3284          << Name << DC << D.getCXXScopeSpec().getRange();
3285        D.setInvalidType();
3286      } else if (isa<CXXRecordDecl>(CurContext) &&
3287                 !D.getDeclSpec().isFriendSpecified()) {
3288        // The user provided a superfluous scope specifier inside a class
3289        // definition:
3290        //
3291        // class X {
3292        //   void X::f();
3293        // };
3294        if (CurContext->Equals(DC)) {
3295          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3296            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3297        } else {
3298          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3299            << Name << D.getCXXScopeSpec().getRange();
3300
3301          // C++ constructors and destructors with incorrect scopes can break
3302          // our AST invariants by having the wrong underlying types. If
3303          // that's the case, then drop this declaration entirely.
3304          if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3305               Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3306              !Context.hasSameType(Name.getCXXNameType(),
3307                 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))))
3308            return 0;
3309        }
3310
3311        // Pretend that this qualifier was not here.
3312        D.getCXXScopeSpec().clear();
3313      }
3314    }
3315
3316    // Check whether we need to rebuild the type of the given
3317    // declaration in the current instantiation.
3318    if (EnteringContext && IsDependentContext &&
3319        TemplateParamLists.size() != 0) {
3320      ContextRAII SavedContext(*this, DC);
3321      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3322        D.setInvalidType();
3323    }
3324  }
3325
3326  if (DiagnoseClassNameShadow(DC, NameInfo))
3327    // If this is a typedef, we'll end up spewing multiple diagnostics.
3328    // Just return early; it's safer.
3329    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3330      return 0;
3331
3332  NamedDecl *New;
3333
3334  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3335  QualType R = TInfo->getType();
3336
3337  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3338                                      UPPC_DeclarationType))
3339    D.setInvalidType();
3340
3341  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3342                        ForRedeclaration);
3343
3344  // See if this is a redefinition of a variable in the same scope.
3345  if (!D.getCXXScopeSpec().isSet()) {
3346    bool IsLinkageLookup = false;
3347
3348    // If the declaration we're planning to build will be a function
3349    // or object with linkage, then look for another declaration with
3350    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3351    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3352      /* Do nothing*/;
3353    else if (R->isFunctionType()) {
3354      if (CurContext->isFunctionOrMethod() ||
3355          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3356        IsLinkageLookup = true;
3357    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3358      IsLinkageLookup = true;
3359    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3360             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3361      IsLinkageLookup = true;
3362
3363    if (IsLinkageLookup)
3364      Previous.clear(LookupRedeclarationWithLinkage);
3365
3366    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3367  } else { // Something like "int foo::x;"
3368    LookupQualifiedName(Previous, DC);
3369
3370    // Don't consider using declarations as previous declarations for
3371    // out-of-line members.
3372    RemoveUsingDecls(Previous);
3373
3374    // C++ 7.3.1.2p2:
3375    // Members (including explicit specializations of templates) of a named
3376    // namespace can also be defined outside that namespace by explicit
3377    // qualification of the name being defined, provided that the entity being
3378    // defined was already declared in the namespace and the definition appears
3379    // after the point of declaration in a namespace that encloses the
3380    // declarations namespace.
3381    //
3382    // Note that we only check the context at this point. We don't yet
3383    // have enough information to make sure that PrevDecl is actually
3384    // the declaration we want to match. For example, given:
3385    //
3386    //   class X {
3387    //     void f();
3388    //     void f(float);
3389    //   };
3390    //
3391    //   void X::f(int) { } // ill-formed
3392    //
3393    // In this case, PrevDecl will point to the overload set
3394    // containing the two f's declared in X, but neither of them
3395    // matches.
3396
3397    // First check whether we named the global scope.
3398    if (isa<TranslationUnitDecl>(DC)) {
3399      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3400        << Name << D.getCXXScopeSpec().getRange();
3401    } else {
3402      DeclContext *Cur = CurContext;
3403      while (isa<LinkageSpecDecl>(Cur))
3404        Cur = Cur->getParent();
3405      if (!Cur->Encloses(DC)) {
3406        // The qualifying scope doesn't enclose the original declaration.
3407        // Emit diagnostic based on current scope.
3408        SourceLocation L = D.getIdentifierLoc();
3409        SourceRange R = D.getCXXScopeSpec().getRange();
3410        if (isa<FunctionDecl>(Cur))
3411          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3412        else
3413          Diag(L, diag::err_invalid_declarator_scope)
3414            << Name << cast<NamedDecl>(DC) << R;
3415        D.setInvalidType();
3416      }
3417
3418      // C++11 8.3p1:
3419      // ... "The nested-name-specifier of the qualified declarator-id shall
3420      // not begin with a decltype-specifer"
3421      NestedNameSpecifierLoc SpecLoc =
3422            D.getCXXScopeSpec().getWithLocInContext(Context);
3423      assert(SpecLoc && "A non-empty CXXScopeSpec should have a non-empty "
3424                        "NestedNameSpecifierLoc");
3425      while (SpecLoc.getPrefix())
3426        SpecLoc = SpecLoc.getPrefix();
3427      if (dyn_cast_or_null<DecltypeType>(
3428            SpecLoc.getNestedNameSpecifier()->getAsType()))
3429        Diag(SpecLoc.getBeginLoc(), diag::err_decltype_in_declarator)
3430          << SpecLoc.getTypeLoc().getSourceRange();
3431    }
3432  }
3433
3434  if (Previous.isSingleResult() &&
3435      Previous.getFoundDecl()->isTemplateParameter()) {
3436    // Maybe we will complain about the shadowed template parameter.
3437    if (!D.isInvalidType())
3438      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3439                                      Previous.getFoundDecl());
3440
3441    // Just pretend that we didn't see the previous declaration.
3442    Previous.clear();
3443  }
3444
3445  // In C++, the previous declaration we find might be a tag type
3446  // (class or enum). In this case, the new declaration will hide the
3447  // tag type. Note that this does does not apply if we're declaring a
3448  // typedef (C++ [dcl.typedef]p4).
3449  if (Previous.isSingleTagDecl() &&
3450      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3451    Previous.clear();
3452
3453  bool AddToScope = true;
3454  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3455    if (TemplateParamLists.size()) {
3456      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3457      return 0;
3458    }
3459
3460    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3461  } else if (R->isFunctionType()) {
3462    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3463                                  move(TemplateParamLists),
3464                                  AddToScope);
3465  } else {
3466    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3467                                  move(TemplateParamLists));
3468  }
3469
3470  if (New == 0)
3471    return 0;
3472
3473  // If this has an identifier and is not an invalid redeclaration or
3474  // function template specialization, add it to the scope stack.
3475  if (New->getDeclName() && AddToScope &&
3476       !(D.isRedeclaration() && New->isInvalidDecl()))
3477    PushOnScopeChains(New, S);
3478
3479  return New;
3480}
3481
3482/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3483/// types into constant array types in certain situations which would otherwise
3484/// be errors (for GCC compatibility).
3485static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3486                                                    ASTContext &Context,
3487                                                    bool &SizeIsNegative,
3488                                                    llvm::APSInt &Oversized) {
3489  // This method tries to turn a variable array into a constant
3490  // array even when the size isn't an ICE.  This is necessary
3491  // for compatibility with code that depends on gcc's buggy
3492  // constant expression folding, like struct {char x[(int)(char*)2];}
3493  SizeIsNegative = false;
3494  Oversized = 0;
3495
3496  if (T->isDependentType())
3497    return QualType();
3498
3499  QualifierCollector Qs;
3500  const Type *Ty = Qs.strip(T);
3501
3502  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3503    QualType Pointee = PTy->getPointeeType();
3504    QualType FixedType =
3505        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3506                                            Oversized);
3507    if (FixedType.isNull()) return FixedType;
3508    FixedType = Context.getPointerType(FixedType);
3509    return Qs.apply(Context, FixedType);
3510  }
3511  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3512    QualType Inner = PTy->getInnerType();
3513    QualType FixedType =
3514        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3515                                            Oversized);
3516    if (FixedType.isNull()) return FixedType;
3517    FixedType = Context.getParenType(FixedType);
3518    return Qs.apply(Context, FixedType);
3519  }
3520
3521  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3522  if (!VLATy)
3523    return QualType();
3524  // FIXME: We should probably handle this case
3525  if (VLATy->getElementType()->isVariablyModifiedType())
3526    return QualType();
3527
3528  llvm::APSInt Res;
3529  if (!VLATy->getSizeExpr() ||
3530      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3531    return QualType();
3532
3533  // Check whether the array size is negative.
3534  if (Res.isSigned() && Res.isNegative()) {
3535    SizeIsNegative = true;
3536    return QualType();
3537  }
3538
3539  // Check whether the array is too large to be addressed.
3540  unsigned ActiveSizeBits
3541    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3542                                              Res);
3543  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3544    Oversized = Res;
3545    return QualType();
3546  }
3547
3548  return Context.getConstantArrayType(VLATy->getElementType(),
3549                                      Res, ArrayType::Normal, 0);
3550}
3551
3552/// \brief Register the given locally-scoped external C declaration so
3553/// that it can be found later for redeclarations
3554void
3555Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3556                                       const LookupResult &Previous,
3557                                       Scope *S) {
3558  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3559         "Decl is not a locally-scoped decl!");
3560  // Note that we have a locally-scoped external with this name.
3561  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3562
3563  if (!Previous.isSingleResult())
3564    return;
3565
3566  NamedDecl *PrevDecl = Previous.getFoundDecl();
3567
3568  // If there was a previous declaration of this variable, it may be
3569  // in our identifier chain. Update the identifier chain with the new
3570  // declaration.
3571  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3572    // The previous declaration was found on the identifer resolver
3573    // chain, so remove it from its scope.
3574
3575    if (S->isDeclScope(PrevDecl)) {
3576      // Special case for redeclarations in the SAME scope.
3577      // Because this declaration is going to be added to the identifier chain
3578      // later, we should temporarily take it OFF the chain.
3579      IdResolver.RemoveDecl(ND);
3580
3581    } else {
3582      // Find the scope for the original declaration.
3583      while (S && !S->isDeclScope(PrevDecl))
3584        S = S->getParent();
3585    }
3586
3587    if (S)
3588      S->RemoveDecl(PrevDecl);
3589  }
3590}
3591
3592llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3593Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3594  if (ExternalSource) {
3595    // Load locally-scoped external decls from the external source.
3596    SmallVector<NamedDecl *, 4> Decls;
3597    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3598    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3599      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3600        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3601      if (Pos == LocallyScopedExternalDecls.end())
3602        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3603    }
3604  }
3605
3606  return LocallyScopedExternalDecls.find(Name);
3607}
3608
3609/// \brief Diagnose function specifiers on a declaration of an identifier that
3610/// does not identify a function.
3611void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3612  // FIXME: We should probably indicate the identifier in question to avoid
3613  // confusion for constructs like "inline int a(), b;"
3614  if (D.getDeclSpec().isInlineSpecified())
3615    Diag(D.getDeclSpec().getInlineSpecLoc(),
3616         diag::err_inline_non_function);
3617
3618  if (D.getDeclSpec().isVirtualSpecified())
3619    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3620         diag::err_virtual_non_function);
3621
3622  if (D.getDeclSpec().isExplicitSpecified())
3623    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3624         diag::err_explicit_non_function);
3625}
3626
3627NamedDecl*
3628Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3629                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3630  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3631  if (D.getCXXScopeSpec().isSet()) {
3632    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3633      << D.getCXXScopeSpec().getRange();
3634    D.setInvalidType();
3635    // Pretend we didn't see the scope specifier.
3636    DC = CurContext;
3637    Previous.clear();
3638  }
3639
3640  if (getLangOptions().CPlusPlus) {
3641    // Check that there are no default arguments (C++ only).
3642    CheckExtraCXXDefaultArguments(D);
3643  }
3644
3645  DiagnoseFunctionSpecifiers(D);
3646
3647  if (D.getDeclSpec().isThreadSpecified())
3648    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3649  if (D.getDeclSpec().isConstexprSpecified())
3650    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3651      << 1;
3652
3653  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3654    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3655      << D.getName().getSourceRange();
3656    return 0;
3657  }
3658
3659  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3660  if (!NewTD) return 0;
3661
3662  // Handle attributes prior to checking for duplicates in MergeVarDecl
3663  ProcessDeclAttributes(S, NewTD, D);
3664
3665  CheckTypedefForVariablyModifiedType(S, NewTD);
3666
3667  bool Redeclaration = D.isRedeclaration();
3668  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3669  D.setRedeclaration(Redeclaration);
3670  return ND;
3671}
3672
3673void
3674Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3675  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3676  // then it shall have block scope.
3677  // Note that variably modified types must be fixed before merging the decl so
3678  // that redeclarations will match.
3679  QualType T = NewTD->getUnderlyingType();
3680  if (T->isVariablyModifiedType()) {
3681    getCurFunction()->setHasBranchProtectedScope();
3682
3683    if (S->getFnParent() == 0) {
3684      bool SizeIsNegative;
3685      llvm::APSInt Oversized;
3686      QualType FixedTy =
3687          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3688                                              Oversized);
3689      if (!FixedTy.isNull()) {
3690        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3691        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3692      } else {
3693        if (SizeIsNegative)
3694          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3695        else if (T->isVariableArrayType())
3696          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3697        else if (Oversized.getBoolValue())
3698          Diag(NewTD->getLocation(), diag::err_array_too_large)
3699            << Oversized.toString(10);
3700        else
3701          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3702        NewTD->setInvalidDecl();
3703      }
3704    }
3705  }
3706}
3707
3708
3709/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3710/// declares a typedef-name, either using the 'typedef' type specifier or via
3711/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3712NamedDecl*
3713Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3714                           LookupResult &Previous, bool &Redeclaration) {
3715  // Merge the decl with the existing one if appropriate. If the decl is
3716  // in an outer scope, it isn't the same thing.
3717  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3718                       /*ExplicitInstantiationOrSpecialization=*/false);
3719  if (!Previous.empty()) {
3720    Redeclaration = true;
3721    MergeTypedefNameDecl(NewTD, Previous);
3722  }
3723
3724  // If this is the C FILE type, notify the AST context.
3725  if (IdentifierInfo *II = NewTD->getIdentifier())
3726    if (!NewTD->isInvalidDecl() &&
3727        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3728      if (II->isStr("FILE"))
3729        Context.setFILEDecl(NewTD);
3730      else if (II->isStr("jmp_buf"))
3731        Context.setjmp_bufDecl(NewTD);
3732      else if (II->isStr("sigjmp_buf"))
3733        Context.setsigjmp_bufDecl(NewTD);
3734      else if (II->isStr("ucontext_t"))
3735        Context.setucontext_tDecl(NewTD);
3736      else if (II->isStr("__builtin_va_list"))
3737        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3738    }
3739
3740  return NewTD;
3741}
3742
3743/// \brief Determines whether the given declaration is an out-of-scope
3744/// previous declaration.
3745///
3746/// This routine should be invoked when name lookup has found a
3747/// previous declaration (PrevDecl) that is not in the scope where a
3748/// new declaration by the same name is being introduced. If the new
3749/// declaration occurs in a local scope, previous declarations with
3750/// linkage may still be considered previous declarations (C99
3751/// 6.2.2p4-5, C++ [basic.link]p6).
3752///
3753/// \param PrevDecl the previous declaration found by name
3754/// lookup
3755///
3756/// \param DC the context in which the new declaration is being
3757/// declared.
3758///
3759/// \returns true if PrevDecl is an out-of-scope previous declaration
3760/// for a new delcaration with the same name.
3761static bool
3762isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3763                                ASTContext &Context) {
3764  if (!PrevDecl)
3765    return false;
3766
3767  if (!PrevDecl->hasLinkage())
3768    return false;
3769
3770  if (Context.getLangOptions().CPlusPlus) {
3771    // C++ [basic.link]p6:
3772    //   If there is a visible declaration of an entity with linkage
3773    //   having the same name and type, ignoring entities declared
3774    //   outside the innermost enclosing namespace scope, the block
3775    //   scope declaration declares that same entity and receives the
3776    //   linkage of the previous declaration.
3777    DeclContext *OuterContext = DC->getRedeclContext();
3778    if (!OuterContext->isFunctionOrMethod())
3779      // This rule only applies to block-scope declarations.
3780      return false;
3781
3782    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3783    if (PrevOuterContext->isRecord())
3784      // We found a member function: ignore it.
3785      return false;
3786
3787    // Find the innermost enclosing namespace for the new and
3788    // previous declarations.
3789    OuterContext = OuterContext->getEnclosingNamespaceContext();
3790    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3791
3792    // The previous declaration is in a different namespace, so it
3793    // isn't the same function.
3794    if (!OuterContext->Equals(PrevOuterContext))
3795      return false;
3796  }
3797
3798  return true;
3799}
3800
3801static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3802  CXXScopeSpec &SS = D.getCXXScopeSpec();
3803  if (!SS.isSet()) return;
3804  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3805}
3806
3807bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3808  QualType type = decl->getType();
3809  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3810  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3811    // Various kinds of declaration aren't allowed to be __autoreleasing.
3812    unsigned kind = -1U;
3813    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3814      if (var->hasAttr<BlocksAttr>())
3815        kind = 0; // __block
3816      else if (!var->hasLocalStorage())
3817        kind = 1; // global
3818    } else if (isa<ObjCIvarDecl>(decl)) {
3819      kind = 3; // ivar
3820    } else if (isa<FieldDecl>(decl)) {
3821      kind = 2; // field
3822    }
3823
3824    if (kind != -1U) {
3825      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3826        << kind;
3827    }
3828  } else if (lifetime == Qualifiers::OCL_None) {
3829    // Try to infer lifetime.
3830    if (!type->isObjCLifetimeType())
3831      return false;
3832
3833    lifetime = type->getObjCARCImplicitLifetime();
3834    type = Context.getLifetimeQualifiedType(type, lifetime);
3835    decl->setType(type);
3836  }
3837
3838  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3839    // Thread-local variables cannot have lifetime.
3840    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3841        var->isThreadSpecified()) {
3842      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3843        << var->getType();
3844      return true;
3845    }
3846  }
3847
3848  return false;
3849}
3850
3851NamedDecl*
3852Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3853                              TypeSourceInfo *TInfo, LookupResult &Previous,
3854                              MultiTemplateParamsArg TemplateParamLists) {
3855  QualType R = TInfo->getType();
3856  DeclarationName Name = GetNameForDeclarator(D).getName();
3857
3858  // Check that there are no default arguments (C++ only).
3859  if (getLangOptions().CPlusPlus)
3860    CheckExtraCXXDefaultArguments(D);
3861
3862  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3863  assert(SCSpec != DeclSpec::SCS_typedef &&
3864         "Parser allowed 'typedef' as storage class VarDecl.");
3865  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3866  if (SCSpec == DeclSpec::SCS_mutable) {
3867    // mutable can only appear on non-static class members, so it's always
3868    // an error here
3869    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3870    D.setInvalidType();
3871    SC = SC_None;
3872  }
3873  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3874  VarDecl::StorageClass SCAsWritten
3875    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3876
3877  IdentifierInfo *II = Name.getAsIdentifierInfo();
3878  if (!II) {
3879    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3880      << Name;
3881    return 0;
3882  }
3883
3884  DiagnoseFunctionSpecifiers(D);
3885
3886  if (!DC->isRecord() && S->getFnParent() == 0) {
3887    // C99 6.9p2: The storage-class specifiers auto and register shall not
3888    // appear in the declaration specifiers in an external declaration.
3889    if (SC == SC_Auto || SC == SC_Register) {
3890
3891      // If this is a register variable with an asm label specified, then this
3892      // is a GNU extension.
3893      if (SC == SC_Register && D.getAsmLabel())
3894        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3895      else
3896        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3897      D.setInvalidType();
3898    }
3899  }
3900
3901  if (getLangOptions().OpenCL) {
3902    // Set up the special work-group-local storage class for variables in the
3903    // OpenCL __local address space.
3904    if (R.getAddressSpace() == LangAS::opencl_local)
3905      SC = SC_OpenCLWorkGroupLocal;
3906  }
3907
3908  bool isExplicitSpecialization = false;
3909  VarDecl *NewVD;
3910  if (!getLangOptions().CPlusPlus) {
3911    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3912                            D.getIdentifierLoc(), II,
3913                            R, TInfo, SC, SCAsWritten);
3914
3915    if (D.isInvalidType())
3916      NewVD->setInvalidDecl();
3917  } else {
3918    if (DC->isRecord() && !CurContext->isRecord()) {
3919      // This is an out-of-line definition of a static data member.
3920      if (SC == SC_Static) {
3921        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3922             diag::err_static_out_of_line)
3923          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3924      } else if (SC == SC_None)
3925        SC = SC_Static;
3926    }
3927    if (SC == SC_Static && CurContext->isRecord()) {
3928      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3929        if (RD->isLocalClass())
3930          Diag(D.getIdentifierLoc(),
3931               diag::err_static_data_member_not_allowed_in_local_class)
3932            << Name << RD->getDeclName();
3933
3934        // C++98 [class.union]p1: If a union contains a static data member,
3935        // the program is ill-formed. C++11 drops this restriction.
3936        if (RD->isUnion())
3937          Diag(D.getIdentifierLoc(),
3938               getLangOptions().CPlusPlus0x
3939                 ? diag::warn_cxx98_compat_static_data_member_in_union
3940                 : diag::ext_static_data_member_in_union) << Name;
3941        // We conservatively disallow static data members in anonymous structs.
3942        else if (!RD->getDeclName())
3943          Diag(D.getIdentifierLoc(),
3944               diag::err_static_data_member_not_allowed_in_anon_struct)
3945            << Name << RD->isUnion();
3946      }
3947    }
3948
3949    // Match up the template parameter lists with the scope specifier, then
3950    // determine whether we have a template or a template specialization.
3951    isExplicitSpecialization = false;
3952    bool Invalid = false;
3953    if (TemplateParameterList *TemplateParams
3954        = MatchTemplateParametersToScopeSpecifier(
3955                                  D.getDeclSpec().getSourceRange().getBegin(),
3956                                                  D.getIdentifierLoc(),
3957                                                  D.getCXXScopeSpec(),
3958                                                  TemplateParamLists.get(),
3959                                                  TemplateParamLists.size(),
3960                                                  /*never a friend*/ false,
3961                                                  isExplicitSpecialization,
3962                                                  Invalid)) {
3963      if (TemplateParams->size() > 0) {
3964        // There is no such thing as a variable template.
3965        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3966          << II
3967          << SourceRange(TemplateParams->getTemplateLoc(),
3968                         TemplateParams->getRAngleLoc());
3969        return 0;
3970      } else {
3971        // There is an extraneous 'template<>' for this variable. Complain
3972        // about it, but allow the declaration of the variable.
3973        Diag(TemplateParams->getTemplateLoc(),
3974             diag::err_template_variable_noparams)
3975          << II
3976          << SourceRange(TemplateParams->getTemplateLoc(),
3977                         TemplateParams->getRAngleLoc());
3978      }
3979    }
3980
3981    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3982                            D.getIdentifierLoc(), II,
3983                            R, TInfo, SC, SCAsWritten);
3984
3985    // If this decl has an auto type in need of deduction, make a note of the
3986    // Decl so we can diagnose uses of it in its own initializer.
3987    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3988        R->getContainedAutoType())
3989      ParsingInitForAutoVars.insert(NewVD);
3990
3991    if (D.isInvalidType() || Invalid)
3992      NewVD->setInvalidDecl();
3993
3994    SetNestedNameSpecifier(NewVD, D);
3995
3996    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3997      NewVD->setTemplateParameterListsInfo(Context,
3998                                           TemplateParamLists.size(),
3999                                           TemplateParamLists.release());
4000    }
4001
4002    if (D.getDeclSpec().isConstexprSpecified())
4003      NewVD->setConstexpr(true);
4004  }
4005
4006  // Set the lexical context. If the declarator has a C++ scope specifier, the
4007  // lexical context will be different from the semantic context.
4008  NewVD->setLexicalDeclContext(CurContext);
4009
4010  if (D.getDeclSpec().isThreadSpecified()) {
4011    if (NewVD->hasLocalStorage())
4012      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4013    else if (!Context.getTargetInfo().isTLSSupported())
4014      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4015    else
4016      NewVD->setThreadSpecified(true);
4017  }
4018
4019  if (D.getDeclSpec().isModulePrivateSpecified()) {
4020    if (isExplicitSpecialization)
4021      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4022        << 2
4023        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4024    else if (NewVD->hasLocalStorage())
4025      Diag(NewVD->getLocation(), diag::err_module_private_local)
4026        << 0 << NewVD->getDeclName()
4027        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4028        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4029    else
4030      NewVD->setModulePrivate();
4031  }
4032
4033  // Handle attributes prior to checking for duplicates in MergeVarDecl
4034  ProcessDeclAttributes(S, NewVD, D);
4035
4036  // In auto-retain/release, infer strong retension for variables of
4037  // retainable type.
4038  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4039    NewVD->setInvalidDecl();
4040
4041  // Handle GNU asm-label extension (encoded as an attribute).
4042  if (Expr *E = (Expr*)D.getAsmLabel()) {
4043    // The parser guarantees this is a string.
4044    StringLiteral *SE = cast<StringLiteral>(E);
4045    StringRef Label = SE->getString();
4046    if (S->getFnParent() != 0) {
4047      switch (SC) {
4048      case SC_None:
4049      case SC_Auto:
4050        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4051        break;
4052      case SC_Register:
4053        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4054          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4055        break;
4056      case SC_Static:
4057      case SC_Extern:
4058      case SC_PrivateExtern:
4059      case SC_OpenCLWorkGroupLocal:
4060        break;
4061      }
4062    }
4063
4064    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4065                                                Context, Label));
4066  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4067    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4068      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4069    if (I != ExtnameUndeclaredIdentifiers.end()) {
4070      NewVD->addAttr(I->second);
4071      ExtnameUndeclaredIdentifiers.erase(I);
4072    }
4073  }
4074
4075  // Diagnose shadowed variables before filtering for scope.
4076  if (!D.getCXXScopeSpec().isSet())
4077    CheckShadow(S, NewVD, Previous);
4078
4079  // Don't consider existing declarations that are in a different
4080  // scope and are out-of-semantic-context declarations (if the new
4081  // declaration has linkage).
4082  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4083                       isExplicitSpecialization);
4084
4085  if (!getLangOptions().CPlusPlus) {
4086    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4087  } else {
4088    // Merge the decl with the existing one if appropriate.
4089    if (!Previous.empty()) {
4090      if (Previous.isSingleResult() &&
4091          isa<FieldDecl>(Previous.getFoundDecl()) &&
4092          D.getCXXScopeSpec().isSet()) {
4093        // The user tried to define a non-static data member
4094        // out-of-line (C++ [dcl.meaning]p1).
4095        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4096          << D.getCXXScopeSpec().getRange();
4097        Previous.clear();
4098        NewVD->setInvalidDecl();
4099      }
4100    } else if (D.getCXXScopeSpec().isSet()) {
4101      // No previous declaration in the qualifying scope.
4102      Diag(D.getIdentifierLoc(), diag::err_no_member)
4103        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4104        << D.getCXXScopeSpec().getRange();
4105      NewVD->setInvalidDecl();
4106    }
4107
4108    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4109
4110    // This is an explicit specialization of a static data member. Check it.
4111    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4112        CheckMemberSpecialization(NewVD, Previous))
4113      NewVD->setInvalidDecl();
4114  }
4115
4116  // attributes declared post-definition are currently ignored
4117  // FIXME: This should be handled in attribute merging, not
4118  // here.
4119  if (Previous.isSingleResult()) {
4120    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4121    if (Def && (Def = Def->getDefinition()) &&
4122        Def != NewVD && D.hasAttributes()) {
4123      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4124      Diag(Def->getLocation(), diag::note_previous_definition);
4125    }
4126  }
4127
4128  // If this is a locally-scoped extern C variable, update the map of
4129  // such variables.
4130  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4131      !NewVD->isInvalidDecl())
4132    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4133
4134  // If there's a #pragma GCC visibility in scope, and this isn't a class
4135  // member, set the visibility of this variable.
4136  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4137    AddPushedVisibilityAttribute(NewVD);
4138
4139  MarkUnusedFileScopedDecl(NewVD);
4140
4141  return NewVD;
4142}
4143
4144/// \brief Diagnose variable or built-in function shadowing.  Implements
4145/// -Wshadow.
4146///
4147/// This method is called whenever a VarDecl is added to a "useful"
4148/// scope.
4149///
4150/// \param S the scope in which the shadowing name is being declared
4151/// \param R the lookup of the name
4152///
4153void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4154  // Return if warning is ignored.
4155  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4156        DiagnosticsEngine::Ignored)
4157    return;
4158
4159  // Don't diagnose declarations at file scope.
4160  if (D->hasGlobalStorage())
4161    return;
4162
4163  DeclContext *NewDC = D->getDeclContext();
4164
4165  // Only diagnose if we're shadowing an unambiguous field or variable.
4166  if (R.getResultKind() != LookupResult::Found)
4167    return;
4168
4169  NamedDecl* ShadowedDecl = R.getFoundDecl();
4170  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4171    return;
4172
4173  // Fields are not shadowed by variables in C++ static methods.
4174  if (isa<FieldDecl>(ShadowedDecl))
4175    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4176      if (MD->isStatic())
4177        return;
4178
4179  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4180    if (shadowedVar->isExternC()) {
4181      // For shadowing external vars, make sure that we point to the global
4182      // declaration, not a locally scoped extern declaration.
4183      for (VarDecl::redecl_iterator
4184             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4185           I != E; ++I)
4186        if (I->isFileVarDecl()) {
4187          ShadowedDecl = *I;
4188          break;
4189        }
4190    }
4191
4192  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4193
4194  // Only warn about certain kinds of shadowing for class members.
4195  if (NewDC && NewDC->isRecord()) {
4196    // In particular, don't warn about shadowing non-class members.
4197    if (!OldDC->isRecord())
4198      return;
4199
4200    // TODO: should we warn about static data members shadowing
4201    // static data members from base classes?
4202
4203    // TODO: don't diagnose for inaccessible shadowed members.
4204    // This is hard to do perfectly because we might friend the
4205    // shadowing context, but that's just a false negative.
4206  }
4207
4208  // Determine what kind of declaration we're shadowing.
4209  unsigned Kind;
4210  if (isa<RecordDecl>(OldDC)) {
4211    if (isa<FieldDecl>(ShadowedDecl))
4212      Kind = 3; // field
4213    else
4214      Kind = 2; // static data member
4215  } else if (OldDC->isFileContext())
4216    Kind = 1; // global
4217  else
4218    Kind = 0; // local
4219
4220  DeclarationName Name = R.getLookupName();
4221
4222  // Emit warning and note.
4223  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4224  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4225}
4226
4227/// \brief Check -Wshadow without the advantage of a previous lookup.
4228void Sema::CheckShadow(Scope *S, VarDecl *D) {
4229  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4230        DiagnosticsEngine::Ignored)
4231    return;
4232
4233  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4234                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4235  LookupName(R, S);
4236  CheckShadow(S, D, R);
4237}
4238
4239/// \brief Perform semantic checking on a newly-created variable
4240/// declaration.
4241///
4242/// This routine performs all of the type-checking required for a
4243/// variable declaration once it has been built. It is used both to
4244/// check variables after they have been parsed and their declarators
4245/// have been translated into a declaration, and to check variables
4246/// that have been instantiated from a template.
4247///
4248/// Sets NewVD->isInvalidDecl() if an error was encountered.
4249///
4250/// Returns true if the variable declaration is a redeclaration.
4251bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4252                                    LookupResult &Previous) {
4253  // If the decl is already known invalid, don't check it.
4254  if (NewVD->isInvalidDecl())
4255    return false;
4256
4257  QualType T = NewVD->getType();
4258
4259  if (T->isObjCObjectType()) {
4260    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4261      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4262    T = Context.getObjCObjectPointerType(T);
4263    NewVD->setType(T);
4264  }
4265
4266  // Emit an error if an address space was applied to decl with local storage.
4267  // This includes arrays of objects with address space qualifiers, but not
4268  // automatic variables that point to other address spaces.
4269  // ISO/IEC TR 18037 S5.1.2
4270  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4271    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4272    NewVD->setInvalidDecl();
4273    return false;
4274  }
4275
4276  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4277      && !NewVD->hasAttr<BlocksAttr>()) {
4278    if (getLangOptions().getGC() != LangOptions::NonGC)
4279      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4280    else
4281      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4282  }
4283
4284  bool isVM = T->isVariablyModifiedType();
4285  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4286      NewVD->hasAttr<BlocksAttr>())
4287    getCurFunction()->setHasBranchProtectedScope();
4288
4289  if ((isVM && NewVD->hasLinkage()) ||
4290      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4291    bool SizeIsNegative;
4292    llvm::APSInt Oversized;
4293    QualType FixedTy =
4294        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4295                                            Oversized);
4296
4297    if (FixedTy.isNull() && T->isVariableArrayType()) {
4298      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4299      // FIXME: This won't give the correct result for
4300      // int a[10][n];
4301      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4302
4303      if (NewVD->isFileVarDecl())
4304        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4305        << SizeRange;
4306      else if (NewVD->getStorageClass() == SC_Static)
4307        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4308        << SizeRange;
4309      else
4310        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4311        << SizeRange;
4312      NewVD->setInvalidDecl();
4313      return false;
4314    }
4315
4316    if (FixedTy.isNull()) {
4317      if (NewVD->isFileVarDecl())
4318        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4319      else
4320        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4321      NewVD->setInvalidDecl();
4322      return false;
4323    }
4324
4325    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4326    NewVD->setType(FixedTy);
4327  }
4328
4329  if (Previous.empty() && NewVD->isExternC()) {
4330    // Since we did not find anything by this name and we're declaring
4331    // an extern "C" variable, look for a non-visible extern "C"
4332    // declaration with the same name.
4333    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4334      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4335    if (Pos != LocallyScopedExternalDecls.end())
4336      Previous.addDecl(Pos->second);
4337  }
4338
4339  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4340    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4341      << T;
4342    NewVD->setInvalidDecl();
4343    return false;
4344  }
4345
4346  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4347    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4348    NewVD->setInvalidDecl();
4349    return false;
4350  }
4351
4352  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4353    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4354    NewVD->setInvalidDecl();
4355    return false;
4356  }
4357
4358  if (NewVD->isConstexpr() && !T->isDependentType() &&
4359      RequireLiteralType(NewVD->getLocation(), T,
4360                         PDiag(diag::err_constexpr_var_non_literal))) {
4361    NewVD->setInvalidDecl();
4362    return false;
4363  }
4364
4365  if (!Previous.empty()) {
4366    MergeVarDecl(NewVD, Previous);
4367    return true;
4368  }
4369  return false;
4370}
4371
4372/// \brief Data used with FindOverriddenMethod
4373struct FindOverriddenMethodData {
4374  Sema *S;
4375  CXXMethodDecl *Method;
4376};
4377
4378/// \brief Member lookup function that determines whether a given C++
4379/// method overrides a method in a base class, to be used with
4380/// CXXRecordDecl::lookupInBases().
4381static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4382                                 CXXBasePath &Path,
4383                                 void *UserData) {
4384  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4385
4386  FindOverriddenMethodData *Data
4387    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4388
4389  DeclarationName Name = Data->Method->getDeclName();
4390
4391  // FIXME: Do we care about other names here too?
4392  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4393    // We really want to find the base class destructor here.
4394    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4395    CanQualType CT = Data->S->Context.getCanonicalType(T);
4396
4397    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4398  }
4399
4400  for (Path.Decls = BaseRecord->lookup(Name);
4401       Path.Decls.first != Path.Decls.second;
4402       ++Path.Decls.first) {
4403    NamedDecl *D = *Path.Decls.first;
4404    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4405      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4406        return true;
4407    }
4408  }
4409
4410  return false;
4411}
4412
4413/// AddOverriddenMethods - See if a method overrides any in the base classes,
4414/// and if so, check that it's a valid override and remember it.
4415bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4416  // Look for virtual methods in base classes that this method might override.
4417  CXXBasePaths Paths;
4418  FindOverriddenMethodData Data;
4419  Data.Method = MD;
4420  Data.S = this;
4421  bool AddedAny = false;
4422  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4423    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4424         E = Paths.found_decls_end(); I != E; ++I) {
4425      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4426        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4427        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4428            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4429            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4430          AddedAny = true;
4431        }
4432      }
4433    }
4434  }
4435
4436  return AddedAny;
4437}
4438
4439namespace {
4440  // Struct for holding all of the extra arguments needed by
4441  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4442  struct ActOnFDArgs {
4443    Scope *S;
4444    Declarator &D;
4445    MultiTemplateParamsArg TemplateParamLists;
4446    bool AddToScope;
4447  };
4448}
4449
4450namespace {
4451
4452// Callback to only accept typo corrections that have a non-zero edit distance.
4453// Also only accept corrections that have the same parent decl.
4454class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4455 public:
4456  DifferentNameValidatorCCC(CXXRecordDecl *Parent)
4457      : ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4458
4459  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4460    if (candidate.getEditDistance() == 0)
4461      return false;
4462
4463    if (CXXMethodDecl *MD = candidate.getCorrectionDeclAs<CXXMethodDecl>()) {
4464      CXXRecordDecl *Parent = MD->getParent();
4465      return Parent && Parent->getCanonicalDecl() == ExpectedParent;
4466    }
4467
4468    return !ExpectedParent;
4469  }
4470
4471 private:
4472  CXXRecordDecl *ExpectedParent;
4473};
4474
4475}
4476
4477/// \brief Generate diagnostics for an invalid function redeclaration.
4478///
4479/// This routine handles generating the diagnostic messages for an invalid
4480/// function redeclaration, including finding possible similar declarations
4481/// or performing typo correction if there are no previous declarations with
4482/// the same name.
4483///
4484/// Returns a NamedDecl iff typo correction was performed and substituting in
4485/// the new declaration name does not cause new errors.
4486static NamedDecl* DiagnoseInvalidRedeclaration(
4487    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4488    ActOnFDArgs &ExtraArgs) {
4489  NamedDecl *Result = NULL;
4490  DeclarationName Name = NewFD->getDeclName();
4491  DeclContext *NewDC = NewFD->getDeclContext();
4492  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4493                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4494  llvm::SmallVector<unsigned, 1> MismatchedParams;
4495  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4496  TypoCorrection Correction;
4497  bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
4498                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4499  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4500                                  : diag::err_member_def_does_not_match;
4501
4502  NewFD->setInvalidDecl();
4503  SemaRef.LookupQualifiedName(Prev, NewDC);
4504  assert(!Prev.isAmbiguous() &&
4505         "Cannot have an ambiguity in previous-declaration lookup");
4506  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
4507  DifferentNameValidatorCCC Validator(MD ? MD->getParent() : 0);
4508  if (!Prev.empty()) {
4509    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4510         Func != FuncEnd; ++Func) {
4511      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4512      if (FD &&
4513          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4514        // Add 1 to the index so that 0 can mean the mismatch didn't
4515        // involve a parameter
4516        unsigned ParamNum =
4517            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4518        NearMatches.push_back(std::make_pair(FD, ParamNum));
4519      }
4520    }
4521  // If the qualified name lookup yielded nothing, try typo correction
4522  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4523                                         Prev.getLookupKind(), 0, 0,
4524                                         Validator, NewDC))) {
4525    // Trap errors.
4526    Sema::SFINAETrap Trap(SemaRef);
4527
4528    // Set up everything for the call to ActOnFunctionDeclarator
4529    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4530                              ExtraArgs.D.getIdentifierLoc());
4531    Previous.clear();
4532    Previous.setLookupName(Correction.getCorrection());
4533    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4534                                    CDeclEnd = Correction.end();
4535         CDecl != CDeclEnd; ++CDecl) {
4536      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4537      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4538                                     MismatchedParams)) {
4539        Previous.addDecl(FD);
4540      }
4541    }
4542    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4543    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4544    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4545    // eliminate the need for the parameter pack ExtraArgs.
4546    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4547                                             NewFD->getDeclContext(),
4548                                             NewFD->getTypeSourceInfo(),
4549                                             Previous,
4550                                             ExtraArgs.TemplateParamLists,
4551                                             ExtraArgs.AddToScope);
4552    if (Trap.hasErrorOccurred()) {
4553      // Pretend the typo correction never occurred
4554      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4555                                ExtraArgs.D.getIdentifierLoc());
4556      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4557      Previous.clear();
4558      Previous.setLookupName(Name);
4559      Result = NULL;
4560    } else {
4561      for (LookupResult::iterator Func = Previous.begin(),
4562                               FuncEnd = Previous.end();
4563           Func != FuncEnd; ++Func) {
4564        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4565          NearMatches.push_back(std::make_pair(FD, 0));
4566      }
4567    }
4568    if (NearMatches.empty()) {
4569      // Ignore the correction if it didn't yield any close FunctionDecl matches
4570      Correction = TypoCorrection();
4571    } else {
4572      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4573                             : diag::err_member_def_does_not_match_suggest;
4574    }
4575  }
4576
4577  if (Correction)
4578    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4579        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
4580        << FixItHint::CreateReplacement(
4581            NewFD->getLocation(),
4582            Correction.getAsString(SemaRef.getLangOptions()));
4583  else
4584    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4585        << Name << NewDC << NewFD->getLocation();
4586
4587  bool NewFDisConst = false;
4588  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4589    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4590
4591  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4592       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4593       NearMatch != NearMatchEnd; ++NearMatch) {
4594    FunctionDecl *FD = NearMatch->first;
4595    bool FDisConst = false;
4596    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4597      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4598
4599    if (unsigned Idx = NearMatch->second) {
4600      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4601      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4602             diag::note_member_def_close_param_match)
4603          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4604    } else if (Correction) {
4605      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4606          << Correction.getQuoted(SemaRef.getLangOptions());
4607    } else if (FDisConst != NewFDisConst) {
4608      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4609          << NewFDisConst << FD->getSourceRange().getEnd();
4610    } else
4611      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4612  }
4613  return Result;
4614}
4615
4616static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4617                                                          Declarator &D) {
4618  switch (D.getDeclSpec().getStorageClassSpec()) {
4619  default: llvm_unreachable("Unknown storage class!");
4620  case DeclSpec::SCS_auto:
4621  case DeclSpec::SCS_register:
4622  case DeclSpec::SCS_mutable:
4623    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4624                 diag::err_typecheck_sclass_func);
4625    D.setInvalidType();
4626    break;
4627  case DeclSpec::SCS_unspecified: break;
4628  case DeclSpec::SCS_extern: return SC_Extern;
4629  case DeclSpec::SCS_static: {
4630    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4631      // C99 6.7.1p5:
4632      //   The declaration of an identifier for a function that has
4633      //   block scope shall have no explicit storage-class specifier
4634      //   other than extern
4635      // See also (C++ [dcl.stc]p4).
4636      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4637                   diag::err_static_block_func);
4638      break;
4639    } else
4640      return SC_Static;
4641  }
4642  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4643  }
4644
4645  // No explicit storage class has already been returned
4646  return SC_None;
4647}
4648
4649static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4650                                           DeclContext *DC, QualType &R,
4651                                           TypeSourceInfo *TInfo,
4652                                           FunctionDecl::StorageClass SC,
4653                                           bool &IsVirtualOkay) {
4654  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4655  DeclarationName Name = NameInfo.getName();
4656
4657  FunctionDecl *NewFD = 0;
4658  bool isInline = D.getDeclSpec().isInlineSpecified();
4659  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4660  FunctionDecl::StorageClass SCAsWritten
4661    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4662
4663  if (!SemaRef.getLangOptions().CPlusPlus) {
4664    // Determine whether the function was written with a
4665    // prototype. This true when:
4666    //   - there is a prototype in the declarator, or
4667    //   - the type R of the function is some kind of typedef or other reference
4668    //     to a type name (which eventually refers to a function type).
4669    bool HasPrototype =
4670      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4671      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4672
4673    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4674                                 D.getSourceRange().getBegin(), NameInfo, R,
4675                                 TInfo, SC, SCAsWritten, isInline,
4676                                 HasPrototype);
4677    if (D.isInvalidType())
4678      NewFD->setInvalidDecl();
4679
4680    // Set the lexical context.
4681    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4682
4683    return NewFD;
4684  }
4685
4686  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4687  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4688
4689  // Check that the return type is not an abstract class type.
4690  // For record types, this is done by the AbstractClassUsageDiagnoser once
4691  // the class has been completely parsed.
4692  if (!DC->isRecord() &&
4693      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4694                                     R->getAs<FunctionType>()->getResultType(),
4695                                     diag::err_abstract_type_in_decl,
4696                                     SemaRef.AbstractReturnType))
4697    D.setInvalidType();
4698
4699  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4700    // This is a C++ constructor declaration.
4701    assert(DC->isRecord() &&
4702           "Constructors can only be declared in a member context");
4703
4704    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4705    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4706                                      D.getSourceRange().getBegin(), NameInfo,
4707                                      R, TInfo, isExplicit, isInline,
4708                                      /*isImplicitlyDeclared=*/false,
4709                                      isConstexpr);
4710
4711  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4712    // This is a C++ destructor declaration.
4713    if (DC->isRecord()) {
4714      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4715      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4716      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4717                                        SemaRef.Context, Record,
4718                                        D.getSourceRange().getBegin(),
4719                                        NameInfo, R, TInfo, isInline,
4720                                        /*isImplicitlyDeclared=*/false);
4721
4722      // If the class is complete, then we now create the implicit exception
4723      // specification. If the class is incomplete or dependent, we can't do
4724      // it yet.
4725      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4726          Record->getDefinition() && !Record->isBeingDefined() &&
4727          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4728        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4729      }
4730
4731      IsVirtualOkay = true;
4732      return NewDD;
4733
4734    } else {
4735      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4736      D.setInvalidType();
4737
4738      // Create a FunctionDecl to satisfy the function definition parsing
4739      // code path.
4740      return FunctionDecl::Create(SemaRef.Context, DC,
4741                                  D.getSourceRange().getBegin(),
4742                                  D.getIdentifierLoc(), Name, R, TInfo,
4743                                  SC, SCAsWritten, isInline,
4744                                  /*hasPrototype=*/true, isConstexpr);
4745    }
4746
4747  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4748    if (!DC->isRecord()) {
4749      SemaRef.Diag(D.getIdentifierLoc(),
4750           diag::err_conv_function_not_member);
4751      return 0;
4752    }
4753
4754    SemaRef.CheckConversionDeclarator(D, R, SC);
4755    IsVirtualOkay = true;
4756    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4757                                     D.getSourceRange().getBegin(), NameInfo,
4758                                     R, TInfo, isInline, isExplicit,
4759                                     isConstexpr, SourceLocation());
4760
4761  } else if (DC->isRecord()) {
4762    // If the name of the function is the same as the name of the record,
4763    // then this must be an invalid constructor that has a return type.
4764    // (The parser checks for a return type and makes the declarator a
4765    // constructor if it has no return type).
4766    if (Name.getAsIdentifierInfo() &&
4767        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4768      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4769        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4770        << SourceRange(D.getIdentifierLoc());
4771      return 0;
4772    }
4773
4774    bool isStatic = SC == SC_Static;
4775
4776    // [class.free]p1:
4777    // Any allocation function for a class T is a static member
4778    // (even if not explicitly declared static).
4779    if (Name.getCXXOverloadedOperator() == OO_New ||
4780        Name.getCXXOverloadedOperator() == OO_Array_New)
4781      isStatic = true;
4782
4783    // [class.free]p6 Any deallocation function for a class X is a static member
4784    // (even if not explicitly declared static).
4785    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4786        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4787      isStatic = true;
4788
4789    IsVirtualOkay = !isStatic;
4790
4791    // This is a C++ method declaration.
4792    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4793                                 D.getSourceRange().getBegin(), NameInfo, R,
4794                                 TInfo, isStatic, SCAsWritten, isInline,
4795                                 isConstexpr, SourceLocation());
4796
4797  } else {
4798    // Determine whether the function was written with a
4799    // prototype. This true when:
4800    //   - we're in C++ (where every function has a prototype),
4801    return FunctionDecl::Create(SemaRef.Context, DC,
4802                                D.getSourceRange().getBegin(),
4803                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4804                                true/*HasPrototype*/, isConstexpr);
4805  }
4806}
4807
4808NamedDecl*
4809Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4810                              TypeSourceInfo *TInfo, LookupResult &Previous,
4811                              MultiTemplateParamsArg TemplateParamLists,
4812                              bool &AddToScope) {
4813  QualType R = TInfo->getType();
4814
4815  assert(R.getTypePtr()->isFunctionType());
4816
4817  InFunctionDeclarator = false;
4818
4819  // TODO: consider using NameInfo for diagnostic.
4820  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4821  DeclarationName Name = NameInfo.getName();
4822  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4823
4824  if (D.getDeclSpec().isThreadSpecified())
4825    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4826
4827  // Do not allow returning a objc interface by-value.
4828  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4829    Diag(D.getIdentifierLoc(),
4830         diag::err_object_cannot_be_passed_returned_by_value) << 0
4831    << R->getAs<FunctionType>()->getResultType()
4832    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4833
4834    QualType T = R->getAs<FunctionType>()->getResultType();
4835    T = Context.getObjCObjectPointerType(T);
4836    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4837      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4838      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4839                                  FPT->getNumArgs(), EPI);
4840    }
4841    else if (isa<FunctionNoProtoType>(R))
4842      R = Context.getFunctionNoProtoType(T);
4843  }
4844
4845  bool isFriend = false;
4846  FunctionTemplateDecl *FunctionTemplate = 0;
4847  bool isExplicitSpecialization = false;
4848  bool isFunctionTemplateSpecialization = false;
4849  bool isDependentClassScopeExplicitSpecialization = false;
4850  bool isVirtualOkay = false;
4851
4852  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4853                                              isVirtualOkay);
4854  if (!NewFD) return 0;
4855
4856  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
4857    NewFD->setTopLevelDeclInObjCContainer();
4858
4859  if (getLangOptions().CPlusPlus) {
4860    bool isInline = D.getDeclSpec().isInlineSpecified();
4861    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4862    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4863    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4864    isFriend = D.getDeclSpec().isFriendSpecified();
4865    if (isFriend && !isInline && D.isFunctionDefinition()) {
4866      // C++ [class.friend]p5
4867      //   A function can be defined in a friend declaration of a
4868      //   class . . . . Such a function is implicitly inline.
4869      NewFD->setImplicitlyInline();
4870    }
4871
4872    SetNestedNameSpecifier(NewFD, D);
4873    isExplicitSpecialization = false;
4874    isFunctionTemplateSpecialization = false;
4875    if (D.isInvalidType())
4876      NewFD->setInvalidDecl();
4877
4878    // Set the lexical context. If the declarator has a C++
4879    // scope specifier, or is the object of a friend declaration, the
4880    // lexical context will be different from the semantic context.
4881    NewFD->setLexicalDeclContext(CurContext);
4882
4883    // Match up the template parameter lists with the scope specifier, then
4884    // determine whether we have a template or a template specialization.
4885    bool Invalid = false;
4886    if (TemplateParameterList *TemplateParams
4887          = MatchTemplateParametersToScopeSpecifier(
4888                                  D.getDeclSpec().getSourceRange().getBegin(),
4889                                  D.getIdentifierLoc(),
4890                                  D.getCXXScopeSpec(),
4891                                  TemplateParamLists.get(),
4892                                  TemplateParamLists.size(),
4893                                  isFriend,
4894                                  isExplicitSpecialization,
4895                                  Invalid)) {
4896      if (TemplateParams->size() > 0) {
4897        // This is a function template
4898
4899        // Check that we can declare a template here.
4900        if (CheckTemplateDeclScope(S, TemplateParams))
4901          return 0;
4902
4903        // A destructor cannot be a template.
4904        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4905          Diag(NewFD->getLocation(), diag::err_destructor_template);
4906          return 0;
4907        }
4908
4909        // If we're adding a template to a dependent context, we may need to
4910        // rebuilding some of the types used within the template parameter list,
4911        // now that we know what the current instantiation is.
4912        if (DC->isDependentContext()) {
4913          ContextRAII SavedContext(*this, DC);
4914          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4915            Invalid = true;
4916        }
4917
4918
4919        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4920                                                        NewFD->getLocation(),
4921                                                        Name, TemplateParams,
4922                                                        NewFD);
4923        FunctionTemplate->setLexicalDeclContext(CurContext);
4924        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4925
4926        // For source fidelity, store the other template param lists.
4927        if (TemplateParamLists.size() > 1) {
4928          NewFD->setTemplateParameterListsInfo(Context,
4929                                               TemplateParamLists.size() - 1,
4930                                               TemplateParamLists.release());
4931        }
4932      } else {
4933        // This is a function template specialization.
4934        isFunctionTemplateSpecialization = true;
4935        // For source fidelity, store all the template param lists.
4936        NewFD->setTemplateParameterListsInfo(Context,
4937                                             TemplateParamLists.size(),
4938                                             TemplateParamLists.release());
4939
4940        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4941        if (isFriend) {
4942          // We want to remove the "template<>", found here.
4943          SourceRange RemoveRange = TemplateParams->getSourceRange();
4944
4945          // If we remove the template<> and the name is not a
4946          // template-id, we're actually silently creating a problem:
4947          // the friend declaration will refer to an untemplated decl,
4948          // and clearly the user wants a template specialization.  So
4949          // we need to insert '<>' after the name.
4950          SourceLocation InsertLoc;
4951          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4952            InsertLoc = D.getName().getSourceRange().getEnd();
4953            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4954          }
4955
4956          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4957            << Name << RemoveRange
4958            << FixItHint::CreateRemoval(RemoveRange)
4959            << FixItHint::CreateInsertion(InsertLoc, "<>");
4960        }
4961      }
4962    }
4963    else {
4964      // All template param lists were matched against the scope specifier:
4965      // this is NOT (an explicit specialization of) a template.
4966      if (TemplateParamLists.size() > 0)
4967        // For source fidelity, store all the template param lists.
4968        NewFD->setTemplateParameterListsInfo(Context,
4969                                             TemplateParamLists.size(),
4970                                             TemplateParamLists.release());
4971    }
4972
4973    if (Invalid) {
4974      NewFD->setInvalidDecl();
4975      if (FunctionTemplate)
4976        FunctionTemplate->setInvalidDecl();
4977    }
4978
4979    // If we see "T var();" at block scope, where T is a class type, it is
4980    // probably an attempt to initialize a variable, not a function declaration.
4981    // We don't catch this case earlier, since there is no ambiguity here.
4982    if (!FunctionTemplate && D.getFunctionDefinitionKind() == FDK_Declaration &&
4983        CurContext->isFunctionOrMethod() &&
4984        D.getNumTypeObjects() == 1 && D.isFunctionDeclarator() &&
4985        D.getDeclSpec().getStorageClassSpecAsWritten()
4986          == DeclSpec::SCS_unspecified) {
4987      QualType T = R->getAs<FunctionType>()->getResultType();
4988      DeclaratorChunk &C = D.getTypeObject(0);
4989      if (!T->isVoidType() && C.Fun.NumArgs == 0 && !C.Fun.isVariadic &&
4990          !C.Fun.TrailingReturnType &&
4991          C.Fun.getExceptionSpecType() == EST_None) {
4992        SourceRange ParenRange(C.Loc, C.EndLoc);
4993        Diag(C.Loc, diag::warn_empty_parens_are_function_decl) << ParenRange;
4994
4995        // If the declaration looks like:
4996        //   T var1,
4997        //   f();
4998        // and name lookup finds a function named 'f', then the ',' was
4999        // probably intended to be a ';'.
5000        if (!D.isFirstDeclarator() && D.getIdentifier()) {
5001          FullSourceLoc Comma(D.getCommaLoc(), SourceMgr);
5002          FullSourceLoc Name(D.getIdentifierLoc(), SourceMgr);
5003          if (Comma.getFileID() != Name.getFileID() ||
5004              Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
5005            LookupResult Result(*this, D.getIdentifier(), SourceLocation(),
5006                                LookupOrdinaryName);
5007            if (LookupName(Result, S))
5008              Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
5009                << FixItHint::CreateReplacement(D.getCommaLoc(), ";") << NewFD;
5010          }
5011        }
5012        const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5013        // Empty parens mean value-initialization, and no parens mean default
5014        // initialization. These are equivalent if the default constructor is
5015        // user-provided, or if zero-initialization is a no-op.
5016        if (RD && RD->hasDefinition() &&
5017            (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
5018          Diag(C.Loc, diag::note_empty_parens_default_ctor)
5019            << FixItHint::CreateRemoval(ParenRange);
5020        else if (const char *Init = getFixItZeroInitializerForType(T))
5021          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
5022            << FixItHint::CreateReplacement(ParenRange, Init);
5023        else if (LangOpts.CPlusPlus0x)
5024          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
5025            << FixItHint::CreateReplacement(ParenRange, "{}");
5026      }
5027    }
5028
5029    // C++ [dcl.fct.spec]p5:
5030    //   The virtual specifier shall only be used in declarations of
5031    //   nonstatic class member functions that appear within a
5032    //   member-specification of a class declaration; see 10.3.
5033    //
5034    if (isVirtual && !NewFD->isInvalidDecl()) {
5035      if (!isVirtualOkay) {
5036        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5037             diag::err_virtual_non_function);
5038      } else if (!CurContext->isRecord()) {
5039        // 'virtual' was specified outside of the class.
5040        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5041             diag::err_virtual_out_of_class)
5042          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5043      } else if (NewFD->getDescribedFunctionTemplate()) {
5044        // C++ [temp.mem]p3:
5045        //  A member function template shall not be virtual.
5046        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5047             diag::err_virtual_member_function_template)
5048          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5049      } else {
5050        // Okay: Add virtual to the method.
5051        NewFD->setVirtualAsWritten(true);
5052      }
5053    }
5054
5055    // C++ [dcl.fct.spec]p3:
5056    //  The inline specifier shall not appear on a block scope function
5057    //  declaration.
5058    if (isInline && !NewFD->isInvalidDecl()) {
5059      if (CurContext->isFunctionOrMethod()) {
5060        // 'inline' is not allowed on block scope function declaration.
5061        Diag(D.getDeclSpec().getInlineSpecLoc(),
5062             diag::err_inline_declaration_block_scope) << Name
5063          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5064      }
5065    }
5066
5067    // C++ [dcl.fct.spec]p6:
5068    //  The explicit specifier shall be used only in the declaration of a
5069    //  constructor or conversion function within its class definition;
5070    //  see 12.3.1 and 12.3.2.
5071    if (isExplicit && !NewFD->isInvalidDecl()) {
5072      if (!CurContext->isRecord()) {
5073        // 'explicit' was specified outside of the class.
5074        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5075             diag::err_explicit_out_of_class)
5076          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5077      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5078                 !isa<CXXConversionDecl>(NewFD)) {
5079        // 'explicit' was specified on a function that wasn't a constructor
5080        // or conversion function.
5081        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5082             diag::err_explicit_non_ctor_or_conv_function)
5083          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5084      }
5085    }
5086
5087    if (isConstexpr) {
5088      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5089      // are implicitly inline.
5090      NewFD->setImplicitlyInline();
5091
5092      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5093      // be either constructors or to return a literal type. Therefore,
5094      // destructors cannot be declared constexpr.
5095      if (isa<CXXDestructorDecl>(NewFD))
5096        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5097    }
5098
5099    // If __module_private__ was specified, mark the function accordingly.
5100    if (D.getDeclSpec().isModulePrivateSpecified()) {
5101      if (isFunctionTemplateSpecialization) {
5102        SourceLocation ModulePrivateLoc
5103          = D.getDeclSpec().getModulePrivateSpecLoc();
5104        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5105          << 0
5106          << FixItHint::CreateRemoval(ModulePrivateLoc);
5107      } else {
5108        NewFD->setModulePrivate();
5109        if (FunctionTemplate)
5110          FunctionTemplate->setModulePrivate();
5111      }
5112    }
5113
5114    if (isFriend) {
5115      // For now, claim that the objects have no previous declaration.
5116      if (FunctionTemplate) {
5117        FunctionTemplate->setObjectOfFriendDecl(false);
5118        FunctionTemplate->setAccess(AS_public);
5119      }
5120      NewFD->setObjectOfFriendDecl(false);
5121      NewFD->setAccess(AS_public);
5122    }
5123
5124    // If a function is defined as defaulted or deleted, mark it as such now.
5125    switch (D.getFunctionDefinitionKind()) {
5126      case FDK_Declaration:
5127      case FDK_Definition:
5128        break;
5129
5130      case FDK_Defaulted:
5131        NewFD->setDefaulted();
5132        break;
5133
5134      case FDK_Deleted:
5135        NewFD->setDeletedAsWritten();
5136        break;
5137    }
5138
5139    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5140        D.isFunctionDefinition()) {
5141      // C++ [class.mfct]p2:
5142      //   A member function may be defined (8.4) in its class definition, in
5143      //   which case it is an inline member function (7.1.2)
5144      NewFD->setImplicitlyInline();
5145    }
5146
5147    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5148        !CurContext->isRecord()) {
5149      // C++ [class.static]p1:
5150      //   A data or function member of a class may be declared static
5151      //   in a class definition, in which case it is a static member of
5152      //   the class.
5153
5154      // Complain about the 'static' specifier if it's on an out-of-line
5155      // member function definition.
5156      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5157           diag::err_static_out_of_line)
5158        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5159    }
5160  }
5161
5162  // Filter out previous declarations that don't match the scope.
5163  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5164                       isExplicitSpecialization ||
5165                       isFunctionTemplateSpecialization);
5166
5167  // Handle GNU asm-label extension (encoded as an attribute).
5168  if (Expr *E = (Expr*) D.getAsmLabel()) {
5169    // The parser guarantees this is a string.
5170    StringLiteral *SE = cast<StringLiteral>(E);
5171    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5172                                                SE->getString()));
5173  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5174    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5175      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5176    if (I != ExtnameUndeclaredIdentifiers.end()) {
5177      NewFD->addAttr(I->second);
5178      ExtnameUndeclaredIdentifiers.erase(I);
5179    }
5180  }
5181
5182  // Copy the parameter declarations from the declarator D to the function
5183  // declaration NewFD, if they are available.  First scavenge them into Params.
5184  SmallVector<ParmVarDecl*, 16> Params;
5185  if (D.isFunctionDeclarator()) {
5186    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5187
5188    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5189    // function that takes no arguments, not a function that takes a
5190    // single void argument.
5191    // We let through "const void" here because Sema::GetTypeForDeclarator
5192    // already checks for that case.
5193    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5194        FTI.ArgInfo[0].Param &&
5195        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5196      // Empty arg list, don't push any params.
5197      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5198
5199      // In C++, the empty parameter-type-list must be spelled "void"; a
5200      // typedef of void is not permitted.
5201      if (getLangOptions().CPlusPlus &&
5202          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5203        bool IsTypeAlias = false;
5204        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5205          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5206        else if (const TemplateSpecializationType *TST =
5207                   Param->getType()->getAs<TemplateSpecializationType>())
5208          IsTypeAlias = TST->isTypeAlias();
5209        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5210          << IsTypeAlias;
5211      }
5212    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5213      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5214        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5215        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5216        Param->setDeclContext(NewFD);
5217        Params.push_back(Param);
5218
5219        if (Param->isInvalidDecl())
5220          NewFD->setInvalidDecl();
5221      }
5222    }
5223
5224  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5225    // When we're declaring a function with a typedef, typeof, etc as in the
5226    // following example, we'll need to synthesize (unnamed)
5227    // parameters for use in the declaration.
5228    //
5229    // @code
5230    // typedef void fn(int);
5231    // fn f;
5232    // @endcode
5233
5234    // Synthesize a parameter for each argument type.
5235    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5236         AE = FT->arg_type_end(); AI != AE; ++AI) {
5237      ParmVarDecl *Param =
5238        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5239      Param->setScopeInfo(0, Params.size());
5240      Params.push_back(Param);
5241    }
5242  } else {
5243    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5244           "Should not need args for typedef of non-prototype fn");
5245  }
5246
5247  // Finally, we know we have the right number of parameters, install them.
5248  NewFD->setParams(Params);
5249
5250  // Find all anonymous symbols defined during the declaration of this function
5251  // and add to NewFD. This lets us track decls such 'enum Y' in:
5252  //
5253  //   void f(enum Y {AA} x) {}
5254  //
5255  // which would otherwise incorrectly end up in the translation unit scope.
5256  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5257  DeclsInPrototypeScope.clear();
5258
5259  // Process the non-inheritable attributes on this declaration.
5260  ProcessDeclAttributes(S, NewFD, D,
5261                        /*NonInheritable=*/true, /*Inheritable=*/false);
5262
5263  if (!getLangOptions().CPlusPlus) {
5264    // Perform semantic checking on the function declaration.
5265    bool isExplicitSpecialization=false;
5266    if (!NewFD->isInvalidDecl()) {
5267      if (NewFD->getResultType()->isVariablyModifiedType()) {
5268        // Functions returning a variably modified type violate C99 6.7.5.2p2
5269        // because all functions have linkage.
5270        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5271        NewFD->setInvalidDecl();
5272      } else {
5273        if (NewFD->isMain())
5274          CheckMain(NewFD, D.getDeclSpec());
5275        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5276                                                    isExplicitSpecialization));
5277      }
5278    }
5279    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5280            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5281           "previous declaration set still overloaded");
5282  } else {
5283    // If the declarator is a template-id, translate the parser's template
5284    // argument list into our AST format.
5285    bool HasExplicitTemplateArgs = false;
5286    TemplateArgumentListInfo TemplateArgs;
5287    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5288      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5289      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5290      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5291      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5292                                         TemplateId->getTemplateArgs(),
5293                                         TemplateId->NumArgs);
5294      translateTemplateArguments(TemplateArgsPtr,
5295                                 TemplateArgs);
5296      TemplateArgsPtr.release();
5297
5298      HasExplicitTemplateArgs = true;
5299
5300      if (NewFD->isInvalidDecl()) {
5301        HasExplicitTemplateArgs = false;
5302      } else if (FunctionTemplate) {
5303        // Function template with explicit template arguments.
5304        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5305          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5306
5307        HasExplicitTemplateArgs = false;
5308      } else if (!isFunctionTemplateSpecialization &&
5309                 !D.getDeclSpec().isFriendSpecified()) {
5310        // We have encountered something that the user meant to be a
5311        // specialization (because it has explicitly-specified template
5312        // arguments) but that was not introduced with a "template<>" (or had
5313        // too few of them).
5314        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5315          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5316          << FixItHint::CreateInsertion(
5317                                    D.getDeclSpec().getSourceRange().getBegin(),
5318                                        "template<> ");
5319        isFunctionTemplateSpecialization = true;
5320      } else {
5321        // "friend void foo<>(int);" is an implicit specialization decl.
5322        isFunctionTemplateSpecialization = true;
5323      }
5324    } else if (isFriend && isFunctionTemplateSpecialization) {
5325      // This combination is only possible in a recovery case;  the user
5326      // wrote something like:
5327      //   template <> friend void foo(int);
5328      // which we're recovering from as if the user had written:
5329      //   friend void foo<>(int);
5330      // Go ahead and fake up a template id.
5331      HasExplicitTemplateArgs = true;
5332        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5333      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5334    }
5335
5336    // If it's a friend (and only if it's a friend), it's possible
5337    // that either the specialized function type or the specialized
5338    // template is dependent, and therefore matching will fail.  In
5339    // this case, don't check the specialization yet.
5340    bool InstantiationDependent = false;
5341    if (isFunctionTemplateSpecialization && isFriend &&
5342        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5343         TemplateSpecializationType::anyDependentTemplateArguments(
5344            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5345            InstantiationDependent))) {
5346      assert(HasExplicitTemplateArgs &&
5347             "friend function specialization without template args");
5348      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5349                                                       Previous))
5350        NewFD->setInvalidDecl();
5351    } else if (isFunctionTemplateSpecialization) {
5352      if (CurContext->isDependentContext() && CurContext->isRecord()
5353          && !isFriend) {
5354        isDependentClassScopeExplicitSpecialization = true;
5355        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5356          diag::ext_function_specialization_in_class :
5357          diag::err_function_specialization_in_class)
5358          << NewFD->getDeclName();
5359      } else if (CheckFunctionTemplateSpecialization(NewFD,
5360                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5361                                                     Previous))
5362        NewFD->setInvalidDecl();
5363
5364      // C++ [dcl.stc]p1:
5365      //   A storage-class-specifier shall not be specified in an explicit
5366      //   specialization (14.7.3)
5367      if (SC != SC_None) {
5368        if (SC != NewFD->getStorageClass())
5369          Diag(NewFD->getLocation(),
5370               diag::err_explicit_specialization_inconsistent_storage_class)
5371            << SC
5372            << FixItHint::CreateRemoval(
5373                                      D.getDeclSpec().getStorageClassSpecLoc());
5374
5375        else
5376          Diag(NewFD->getLocation(),
5377               diag::ext_explicit_specialization_storage_class)
5378            << FixItHint::CreateRemoval(
5379                                      D.getDeclSpec().getStorageClassSpecLoc());
5380      }
5381
5382    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5383      if (CheckMemberSpecialization(NewFD, Previous))
5384          NewFD->setInvalidDecl();
5385    }
5386
5387    // Perform semantic checking on the function declaration.
5388    if (!isDependentClassScopeExplicitSpecialization) {
5389      if (NewFD->isInvalidDecl()) {
5390        // If this is a class member, mark the class invalid immediately.
5391        // This avoids some consistency errors later.
5392        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5393          methodDecl->getParent()->setInvalidDecl();
5394      } else {
5395        if (NewFD->isMain())
5396          CheckMain(NewFD, D.getDeclSpec());
5397        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5398                                                    isExplicitSpecialization));
5399      }
5400    }
5401
5402    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5403            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5404           "previous declaration set still overloaded");
5405
5406    NamedDecl *PrincipalDecl = (FunctionTemplate
5407                                ? cast<NamedDecl>(FunctionTemplate)
5408                                : NewFD);
5409
5410    if (isFriend && D.isRedeclaration()) {
5411      AccessSpecifier Access = AS_public;
5412      if (!NewFD->isInvalidDecl())
5413        Access = NewFD->getPreviousDecl()->getAccess();
5414
5415      NewFD->setAccess(Access);
5416      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5417
5418      PrincipalDecl->setObjectOfFriendDecl(true);
5419    }
5420
5421    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5422        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5423      PrincipalDecl->setNonMemberOperator();
5424
5425    // If we have a function template, check the template parameter
5426    // list. This will check and merge default template arguments.
5427    if (FunctionTemplate) {
5428      FunctionTemplateDecl *PrevTemplate =
5429                                     FunctionTemplate->getPreviousDecl();
5430      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5431                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5432                            D.getDeclSpec().isFriendSpecified()
5433                              ? (D.isFunctionDefinition()
5434                                   ? TPC_FriendFunctionTemplateDefinition
5435                                   : TPC_FriendFunctionTemplate)
5436                              : (D.getCXXScopeSpec().isSet() &&
5437                                 DC && DC->isRecord() &&
5438                                 DC->isDependentContext())
5439                                  ? TPC_ClassTemplateMember
5440                                  : TPC_FunctionTemplate);
5441    }
5442
5443    if (NewFD->isInvalidDecl()) {
5444      // Ignore all the rest of this.
5445    } else if (!D.isRedeclaration()) {
5446      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5447                                       AddToScope };
5448      // Fake up an access specifier if it's supposed to be a class member.
5449      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5450        NewFD->setAccess(AS_public);
5451
5452      // Qualified decls generally require a previous declaration.
5453      if (D.getCXXScopeSpec().isSet()) {
5454        // ...with the major exception of templated-scope or
5455        // dependent-scope friend declarations.
5456
5457        // TODO: we currently also suppress this check in dependent
5458        // contexts because (1) the parameter depth will be off when
5459        // matching friend templates and (2) we might actually be
5460        // selecting a friend based on a dependent factor.  But there
5461        // are situations where these conditions don't apply and we
5462        // can actually do this check immediately.
5463        if (isFriend &&
5464            (TemplateParamLists.size() ||
5465             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5466             CurContext->isDependentContext())) {
5467          // ignore these
5468        } else {
5469          // The user tried to provide an out-of-line definition for a
5470          // function that is a member of a class or namespace, but there
5471          // was no such member function declared (C++ [class.mfct]p2,
5472          // C++ [namespace.memdef]p2). For example:
5473          //
5474          // class X {
5475          //   void f() const;
5476          // };
5477          //
5478          // void X::f() { } // ill-formed
5479          //
5480          // Complain about this problem, and attempt to suggest close
5481          // matches (e.g., those that differ only in cv-qualifiers and
5482          // whether the parameter types are references).
5483
5484          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5485                                                               NewFD,
5486                                                               ExtraArgs)) {
5487            AddToScope = ExtraArgs.AddToScope;
5488            return Result;
5489          }
5490        }
5491
5492        // Unqualified local friend declarations are required to resolve
5493        // to something.
5494      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5495        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5496                                                             NewFD,
5497                                                             ExtraArgs)) {
5498          AddToScope = ExtraArgs.AddToScope;
5499          return Result;
5500        }
5501      }
5502
5503    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5504               !isFriend && !isFunctionTemplateSpecialization &&
5505               !isExplicitSpecialization) {
5506      // An out-of-line member function declaration must also be a
5507      // definition (C++ [dcl.meaning]p1).
5508      // Note that this is not the case for explicit specializations of
5509      // function templates or member functions of class templates, per
5510      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5511      // extension for compatibility with old SWIG code which likes to
5512      // generate them.
5513      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5514        << D.getCXXScopeSpec().getRange();
5515    }
5516  }
5517
5518
5519  // Handle attributes. We need to have merged decls when handling attributes
5520  // (for example to check for conflicts, etc).
5521  // FIXME: This needs to happen before we merge declarations. Then,
5522  // let attribute merging cope with attribute conflicts.
5523  ProcessDeclAttributes(S, NewFD, D,
5524                        /*NonInheritable=*/false, /*Inheritable=*/true);
5525
5526  // attributes declared post-definition are currently ignored
5527  // FIXME: This should happen during attribute merging
5528  if (D.isRedeclaration() && Previous.isSingleResult()) {
5529    const FunctionDecl *Def;
5530    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5531    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5532      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5533      Diag(Def->getLocation(), diag::note_previous_definition);
5534    }
5535  }
5536
5537  AddKnownFunctionAttributes(NewFD);
5538
5539  if (NewFD->hasAttr<OverloadableAttr>() &&
5540      !NewFD->getType()->getAs<FunctionProtoType>()) {
5541    Diag(NewFD->getLocation(),
5542         diag::err_attribute_overloadable_no_prototype)
5543      << NewFD;
5544
5545    // Turn this into a variadic function with no parameters.
5546    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5547    FunctionProtoType::ExtProtoInfo EPI;
5548    EPI.Variadic = true;
5549    EPI.ExtInfo = FT->getExtInfo();
5550
5551    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5552    NewFD->setType(R);
5553  }
5554
5555  // If there's a #pragma GCC visibility in scope, and this isn't a class
5556  // member, set the visibility of this function.
5557  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5558    AddPushedVisibilityAttribute(NewFD);
5559
5560  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5561  // marking the function.
5562  AddCFAuditedAttribute(NewFD);
5563
5564  // If this is a locally-scoped extern C function, update the
5565  // map of such names.
5566  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5567      && !NewFD->isInvalidDecl())
5568    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5569
5570  // Set this FunctionDecl's range up to the right paren.
5571  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5572
5573  if (getLangOptions().CPlusPlus) {
5574    if (FunctionTemplate) {
5575      if (NewFD->isInvalidDecl())
5576        FunctionTemplate->setInvalidDecl();
5577      return FunctionTemplate;
5578    }
5579  }
5580
5581  MarkUnusedFileScopedDecl(NewFD);
5582
5583  if (getLangOptions().CUDA)
5584    if (IdentifierInfo *II = NewFD->getIdentifier())
5585      if (!NewFD->isInvalidDecl() &&
5586          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5587        if (II->isStr("cudaConfigureCall")) {
5588          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5589            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5590
5591          Context.setcudaConfigureCallDecl(NewFD);
5592        }
5593      }
5594
5595  // Here we have an function template explicit specialization at class scope.
5596  // The actually specialization will be postponed to template instatiation
5597  // time via the ClassScopeFunctionSpecializationDecl node.
5598  if (isDependentClassScopeExplicitSpecialization) {
5599    ClassScopeFunctionSpecializationDecl *NewSpec =
5600                         ClassScopeFunctionSpecializationDecl::Create(
5601                                Context, CurContext,  SourceLocation(),
5602                                cast<CXXMethodDecl>(NewFD));
5603    CurContext->addDecl(NewSpec);
5604    AddToScope = false;
5605  }
5606
5607  return NewFD;
5608}
5609
5610/// \brief Perform semantic checking of a new function declaration.
5611///
5612/// Performs semantic analysis of the new function declaration
5613/// NewFD. This routine performs all semantic checking that does not
5614/// require the actual declarator involved in the declaration, and is
5615/// used both for the declaration of functions as they are parsed
5616/// (called via ActOnDeclarator) and for the declaration of functions
5617/// that have been instantiated via C++ template instantiation (called
5618/// via InstantiateDecl).
5619///
5620/// \param IsExplicitSpecialiation whether this new function declaration is
5621/// an explicit specialization of the previous declaration.
5622///
5623/// This sets NewFD->isInvalidDecl() to true if there was an error.
5624///
5625/// Returns true if the function declaration is a redeclaration.
5626bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5627                                    LookupResult &Previous,
5628                                    bool IsExplicitSpecialization) {
5629  assert(!NewFD->getResultType()->isVariablyModifiedType()
5630         && "Variably modified return types are not handled here");
5631
5632  // Check for a previous declaration of this name.
5633  if (Previous.empty() && NewFD->isExternC()) {
5634    // Since we did not find anything by this name and we're declaring
5635    // an extern "C" function, look for a non-visible extern "C"
5636    // declaration with the same name.
5637    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5638      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5639    if (Pos != LocallyScopedExternalDecls.end())
5640      Previous.addDecl(Pos->second);
5641  }
5642
5643  bool Redeclaration = false;
5644
5645  // Merge or overload the declaration with an existing declaration of
5646  // the same name, if appropriate.
5647  if (!Previous.empty()) {
5648    // Determine whether NewFD is an overload of PrevDecl or
5649    // a declaration that requires merging. If it's an overload,
5650    // there's no more work to do here; we'll just add the new
5651    // function to the scope.
5652
5653    NamedDecl *OldDecl = 0;
5654    if (!AllowOverloadingOfFunction(Previous, Context)) {
5655      Redeclaration = true;
5656      OldDecl = Previous.getFoundDecl();
5657    } else {
5658      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5659                            /*NewIsUsingDecl*/ false)) {
5660      case Ovl_Match:
5661        Redeclaration = true;
5662        break;
5663
5664      case Ovl_NonFunction:
5665        Redeclaration = true;
5666        break;
5667
5668      case Ovl_Overload:
5669        Redeclaration = false;
5670        break;
5671      }
5672
5673      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5674        // If a function name is overloadable in C, then every function
5675        // with that name must be marked "overloadable".
5676        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5677          << Redeclaration << NewFD;
5678        NamedDecl *OverloadedDecl = 0;
5679        if (Redeclaration)
5680          OverloadedDecl = OldDecl;
5681        else if (!Previous.empty())
5682          OverloadedDecl = Previous.getRepresentativeDecl();
5683        if (OverloadedDecl)
5684          Diag(OverloadedDecl->getLocation(),
5685               diag::note_attribute_overloadable_prev_overload);
5686        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5687                                                        Context));
5688      }
5689    }
5690
5691    if (Redeclaration) {
5692      // NewFD and OldDecl represent declarations that need to be
5693      // merged.
5694      if (MergeFunctionDecl(NewFD, OldDecl)) {
5695        NewFD->setInvalidDecl();
5696        return Redeclaration;
5697      }
5698
5699      Previous.clear();
5700      Previous.addDecl(OldDecl);
5701
5702      if (FunctionTemplateDecl *OldTemplateDecl
5703                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5704        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5705        FunctionTemplateDecl *NewTemplateDecl
5706          = NewFD->getDescribedFunctionTemplate();
5707        assert(NewTemplateDecl && "Template/non-template mismatch");
5708        if (CXXMethodDecl *Method
5709              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5710          Method->setAccess(OldTemplateDecl->getAccess());
5711          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5712        }
5713
5714        // If this is an explicit specialization of a member that is a function
5715        // template, mark it as a member specialization.
5716        if (IsExplicitSpecialization &&
5717            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5718          NewTemplateDecl->setMemberSpecialization();
5719          assert(OldTemplateDecl->isMemberSpecialization());
5720        }
5721
5722      } else {
5723        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5724          NewFD->setAccess(OldDecl->getAccess());
5725        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5726      }
5727    }
5728  }
5729
5730  // Semantic checking for this function declaration (in isolation).
5731  if (getLangOptions().CPlusPlus) {
5732    // C++-specific checks.
5733    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5734      CheckConstructor(Constructor);
5735    } else if (CXXDestructorDecl *Destructor =
5736                dyn_cast<CXXDestructorDecl>(NewFD)) {
5737      CXXRecordDecl *Record = Destructor->getParent();
5738      QualType ClassType = Context.getTypeDeclType(Record);
5739
5740      // FIXME: Shouldn't we be able to perform this check even when the class
5741      // type is dependent? Both gcc and edg can handle that.
5742      if (!ClassType->isDependentType()) {
5743        DeclarationName Name
5744          = Context.DeclarationNames.getCXXDestructorName(
5745                                        Context.getCanonicalType(ClassType));
5746        if (NewFD->getDeclName() != Name) {
5747          Diag(NewFD->getLocation(), diag::err_destructor_name);
5748          NewFD->setInvalidDecl();
5749          return Redeclaration;
5750        }
5751      }
5752    } else if (CXXConversionDecl *Conversion
5753               = dyn_cast<CXXConversionDecl>(NewFD)) {
5754      ActOnConversionDeclarator(Conversion);
5755    }
5756
5757    // Find any virtual functions that this function overrides.
5758    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5759      if (!Method->isFunctionTemplateSpecialization() &&
5760          !Method->getDescribedFunctionTemplate()) {
5761        if (AddOverriddenMethods(Method->getParent(), Method)) {
5762          // If the function was marked as "static", we have a problem.
5763          if (NewFD->getStorageClass() == SC_Static) {
5764            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5765              << NewFD->getDeclName();
5766            for (CXXMethodDecl::method_iterator
5767                      Overridden = Method->begin_overridden_methods(),
5768                   OverriddenEnd = Method->end_overridden_methods();
5769                 Overridden != OverriddenEnd;
5770                 ++Overridden) {
5771              Diag((*Overridden)->getLocation(),
5772                   diag::note_overridden_virtual_function);
5773            }
5774          }
5775        }
5776      }
5777    }
5778
5779    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5780    if (NewFD->isOverloadedOperator() &&
5781        CheckOverloadedOperatorDeclaration(NewFD)) {
5782      NewFD->setInvalidDecl();
5783      return Redeclaration;
5784    }
5785
5786    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5787    if (NewFD->getLiteralIdentifier() &&
5788        CheckLiteralOperatorDeclaration(NewFD)) {
5789      NewFD->setInvalidDecl();
5790      return Redeclaration;
5791    }
5792
5793    // In C++, check default arguments now that we have merged decls. Unless
5794    // the lexical context is the class, because in this case this is done
5795    // during delayed parsing anyway.
5796    if (!CurContext->isRecord())
5797      CheckCXXDefaultArguments(NewFD);
5798
5799    // If this function declares a builtin function, check the type of this
5800    // declaration against the expected type for the builtin.
5801    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5802      ASTContext::GetBuiltinTypeError Error;
5803      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5804      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5805        // The type of this function differs from the type of the builtin,
5806        // so forget about the builtin entirely.
5807        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5808      }
5809    }
5810
5811    // If this function is declared as being extern "C", then check to see if
5812    // the function returns a UDT (class, struct, or union type) that is not C
5813    // compatible, and if it does, warn the user.
5814    if (NewFD->isExternC()) {
5815      QualType R = NewFD->getResultType();
5816      if (!R.isPODType(Context) &&
5817          !R->isVoidType())
5818        Diag( NewFD->getLocation(), diag::warn_return_value_udt )
5819          << NewFD << R;
5820    }
5821  }
5822  return Redeclaration;
5823}
5824
5825void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5826  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
5827  //   static or constexpr is ill-formed.
5828  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5829  //   shall not appear in a declaration of main.
5830  // static main is not an error under C99, but we should warn about it.
5831  if (FD->getStorageClass() == SC_Static)
5832    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5833         ? diag::err_static_main : diag::warn_static_main)
5834      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5835  if (FD->isInlineSpecified())
5836    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5837      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5838  if (FD->isConstexpr()) {
5839    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
5840      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
5841    FD->setConstexpr(false);
5842  }
5843
5844  QualType T = FD->getType();
5845  assert(T->isFunctionType() && "function decl is not of function type");
5846  const FunctionType* FT = T->castAs<FunctionType>();
5847
5848  // All the standards say that main() should should return 'int'.
5849  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5850    // In C and C++, main magically returns 0 if you fall off the end;
5851    // set the flag which tells us that.
5852    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5853    FD->setHasImplicitReturnZero(true);
5854
5855  // In C with GNU extensions we allow main() to have non-integer return
5856  // type, but we should warn about the extension, and we disable the
5857  // implicit-return-zero rule.
5858  } else if (getLangOptions().GNUMode && !getLangOptions().CPlusPlus) {
5859    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
5860
5861  // Otherwise, this is just a flat-out error.
5862  } else {
5863    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5864    FD->setInvalidDecl(true);
5865  }
5866
5867  // Treat protoless main() as nullary.
5868  if (isa<FunctionNoProtoType>(FT)) return;
5869
5870  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5871  unsigned nparams = FTP->getNumArgs();
5872  assert(FD->getNumParams() == nparams);
5873
5874  bool HasExtraParameters = (nparams > 3);
5875
5876  // Darwin passes an undocumented fourth argument of type char**.  If
5877  // other platforms start sprouting these, the logic below will start
5878  // getting shifty.
5879  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5880    HasExtraParameters = false;
5881
5882  if (HasExtraParameters) {
5883    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5884    FD->setInvalidDecl(true);
5885    nparams = 3;
5886  }
5887
5888  // FIXME: a lot of the following diagnostics would be improved
5889  // if we had some location information about types.
5890
5891  QualType CharPP =
5892    Context.getPointerType(Context.getPointerType(Context.CharTy));
5893  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5894
5895  for (unsigned i = 0; i < nparams; ++i) {
5896    QualType AT = FTP->getArgType(i);
5897
5898    bool mismatch = true;
5899
5900    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5901      mismatch = false;
5902    else if (Expected[i] == CharPP) {
5903      // As an extension, the following forms are okay:
5904      //   char const **
5905      //   char const * const *
5906      //   char * const *
5907
5908      QualifierCollector qs;
5909      const PointerType* PT;
5910      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5911          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5912          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5913        qs.removeConst();
5914        mismatch = !qs.empty();
5915      }
5916    }
5917
5918    if (mismatch) {
5919      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5920      // TODO: suggest replacing given type with expected type
5921      FD->setInvalidDecl(true);
5922    }
5923  }
5924
5925  if (nparams == 1 && !FD->isInvalidDecl()) {
5926    Diag(FD->getLocation(), diag::warn_main_one_arg);
5927  }
5928
5929  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5930    Diag(FD->getLocation(), diag::err_main_template_decl);
5931    FD->setInvalidDecl();
5932  }
5933}
5934
5935bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5936  // FIXME: Need strict checking.  In C89, we need to check for
5937  // any assignment, increment, decrement, function-calls, or
5938  // commas outside of a sizeof.  In C99, it's the same list,
5939  // except that the aforementioned are allowed in unevaluated
5940  // expressions.  Everything else falls under the
5941  // "may accept other forms of constant expressions" exception.
5942  // (We never end up here for C++, so the constant expression
5943  // rules there don't matter.)
5944  if (Init->isConstantInitializer(Context, false))
5945    return false;
5946  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5947    << Init->getSourceRange();
5948  return true;
5949}
5950
5951namespace {
5952  // Visits an initialization expression to see if OrigDecl is evaluated in
5953  // its own initialization and throws a warning if it does.
5954  class SelfReferenceChecker
5955      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5956    Sema &S;
5957    Decl *OrigDecl;
5958    bool isRecordType;
5959    bool isPODType;
5960
5961  public:
5962    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5963
5964    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5965                                                    S(S), OrigDecl(OrigDecl) {
5966      isPODType = false;
5967      isRecordType = false;
5968      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5969        isPODType = VD->getType().isPODType(S.Context);
5970        isRecordType = VD->getType()->isRecordType();
5971      }
5972    }
5973
5974    void VisitExpr(Expr *E) {
5975      if (isa<ObjCMessageExpr>(*E)) return;
5976      if (isRecordType) {
5977        Expr *expr = E;
5978        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5979          ValueDecl *VD = ME->getMemberDecl();
5980          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5981          expr = ME->getBase();
5982        }
5983        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5984          HandleDeclRefExpr(DRE);
5985          return;
5986        }
5987      }
5988      Inherited::VisitExpr(E);
5989    }
5990
5991    void VisitMemberExpr(MemberExpr *E) {
5992      if (E->getType()->canDecayToPointerType()) return;
5993      if (isa<FieldDecl>(E->getMemberDecl()))
5994        if (DeclRefExpr *DRE
5995              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5996          HandleDeclRefExpr(DRE);
5997          return;
5998        }
5999      Inherited::VisitMemberExpr(E);
6000    }
6001
6002    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6003      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
6004          (isRecordType && E->getCastKind() == CK_NoOp)) {
6005        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
6006        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
6007          SubExpr = ME->getBase()->IgnoreParenImpCasts();
6008        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
6009          HandleDeclRefExpr(DRE);
6010          return;
6011        }
6012      }
6013      Inherited::VisitImplicitCastExpr(E);
6014    }
6015
6016    void VisitUnaryOperator(UnaryOperator *E) {
6017      // For POD record types, addresses of its own members are well-defined.
6018      if (isRecordType && isPODType) return;
6019      Inherited::VisitUnaryOperator(E);
6020    }
6021
6022    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6023      Decl* ReferenceDecl = DRE->getDecl();
6024      if (OrigDecl != ReferenceDecl) return;
6025      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
6026                          Sema::NotForRedeclaration);
6027      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6028                            S.PDiag(diag::warn_uninit_self_reference_in_init)
6029                              << Result.getLookupName()
6030                              << OrigDecl->getLocation()
6031                              << DRE->getSourceRange());
6032    }
6033  };
6034}
6035
6036/// CheckSelfReference - Warns if OrigDecl is used in expression E.
6037void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
6038  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
6039}
6040
6041/// AddInitializerToDecl - Adds the initializer Init to the
6042/// declaration dcl. If DirectInit is true, this is C++ direct
6043/// initialization rather than copy initialization.
6044void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6045                                bool DirectInit, bool TypeMayContainAuto) {
6046  // If there is no declaration, there was an error parsing it.  Just ignore
6047  // the initializer.
6048  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6049    return;
6050
6051  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6052    // With declarators parsed the way they are, the parser cannot
6053    // distinguish between a normal initializer and a pure-specifier.
6054    // Thus this grotesque test.
6055    IntegerLiteral *IL;
6056    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6057        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6058      CheckPureMethod(Method, Init->getSourceRange());
6059    else {
6060      Diag(Method->getLocation(), diag::err_member_function_initialization)
6061        << Method->getDeclName() << Init->getSourceRange();
6062      Method->setInvalidDecl();
6063    }
6064    return;
6065  }
6066
6067  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6068  if (!VDecl) {
6069    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6070    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6071    RealDecl->setInvalidDecl();
6072    return;
6073  }
6074
6075  // Check for self-references within variable initializers.
6076  // Variables declared within a function/method body are handled
6077  // by a dataflow analysis.
6078  if (!VDecl->hasLocalStorage() && !VDecl->isStaticLocal())
6079    CheckSelfReference(RealDecl, Init);
6080
6081  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6082
6083  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6084  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6085    Expr *DeduceInit = Init;
6086    // Initializer could be a C++ direct-initializer. Deduction only works if it
6087    // contains exactly one expression.
6088    if (CXXDirectInit) {
6089      if (CXXDirectInit->getNumExprs() == 0) {
6090        // It isn't possible to write this directly, but it is possible to
6091        // end up in this situation with "auto x(some_pack...);"
6092        Diag(CXXDirectInit->getSourceRange().getBegin(),
6093             diag::err_auto_var_init_no_expression)
6094          << VDecl->getDeclName() << VDecl->getType()
6095          << VDecl->getSourceRange();
6096        RealDecl->setInvalidDecl();
6097        return;
6098      } else if (CXXDirectInit->getNumExprs() > 1) {
6099        Diag(CXXDirectInit->getExpr(1)->getSourceRange().getBegin(),
6100             diag::err_auto_var_init_multiple_expressions)
6101          << VDecl->getDeclName() << VDecl->getType()
6102          << VDecl->getSourceRange();
6103        RealDecl->setInvalidDecl();
6104        return;
6105      } else {
6106        DeduceInit = CXXDirectInit->getExpr(0);
6107      }
6108    }
6109    TypeSourceInfo *DeducedType = 0;
6110    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6111            DAR_Failed)
6112      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6113    if (!DeducedType) {
6114      RealDecl->setInvalidDecl();
6115      return;
6116    }
6117    VDecl->setTypeSourceInfo(DeducedType);
6118    VDecl->setType(DeducedType->getType());
6119    VDecl->ClearLinkageCache();
6120
6121    // In ARC, infer lifetime.
6122    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6123      VDecl->setInvalidDecl();
6124
6125    // If this is a redeclaration, check that the type we just deduced matches
6126    // the previously declared type.
6127    if (VarDecl *Old = VDecl->getPreviousDecl())
6128      MergeVarDeclTypes(VDecl, Old);
6129  }
6130
6131  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6132    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6133    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6134    VDecl->setInvalidDecl();
6135    return;
6136  }
6137
6138  if (!VDecl->getType()->isDependentType()) {
6139    // A definition must end up with a complete type, which means it must be
6140    // complete with the restriction that an array type might be completed by
6141    // the initializer; note that later code assumes this restriction.
6142    QualType BaseDeclType = VDecl->getType();
6143    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6144      BaseDeclType = Array->getElementType();
6145    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6146                            diag::err_typecheck_decl_incomplete_type)) {
6147      RealDecl->setInvalidDecl();
6148      return;
6149    }
6150
6151    // The variable can not have an abstract class type.
6152    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6153                               diag::err_abstract_type_in_decl,
6154                               AbstractVariableType))
6155      VDecl->setInvalidDecl();
6156  }
6157
6158  const VarDecl *Def;
6159  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6160    Diag(VDecl->getLocation(), diag::err_redefinition)
6161      << VDecl->getDeclName();
6162    Diag(Def->getLocation(), diag::note_previous_definition);
6163    VDecl->setInvalidDecl();
6164    return;
6165  }
6166
6167  const VarDecl* PrevInit = 0;
6168  if (getLangOptions().CPlusPlus) {
6169    // C++ [class.static.data]p4
6170    //   If a static data member is of const integral or const
6171    //   enumeration type, its declaration in the class definition can
6172    //   specify a constant-initializer which shall be an integral
6173    //   constant expression (5.19). In that case, the member can appear
6174    //   in integral constant expressions. The member shall still be
6175    //   defined in a namespace scope if it is used in the program and the
6176    //   namespace scope definition shall not contain an initializer.
6177    //
6178    // We already performed a redefinition check above, but for static
6179    // data members we also need to check whether there was an in-class
6180    // declaration with an initializer.
6181    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6182      Diag(VDecl->getLocation(), diag::err_redefinition)
6183        << VDecl->getDeclName();
6184      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6185      return;
6186    }
6187
6188    if (VDecl->hasLocalStorage())
6189      getCurFunction()->setHasBranchProtectedScope();
6190
6191    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6192      VDecl->setInvalidDecl();
6193      return;
6194    }
6195  }
6196
6197  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6198  // a kernel function cannot be initialized."
6199  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6200    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6201    VDecl->setInvalidDecl();
6202    return;
6203  }
6204
6205  // Get the decls type and save a reference for later, since
6206  // CheckInitializerTypes may change it.
6207  QualType DclT = VDecl->getType(), SavT = DclT;
6208
6209  // Perform the initialization.
6210  if (!VDecl->isInvalidDecl()) {
6211    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6212    InitializationKind Kind
6213      = DirectInit ?
6214          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6215                                                           Init->getLocStart(),
6216                                                           Init->getLocEnd())
6217                        : InitializationKind::CreateDirectList(
6218                                                          VDecl->getLocation())
6219                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6220                                                    Init->getLocStart());
6221
6222    Expr **Args = &Init;
6223    unsigned NumArgs = 1;
6224    if (CXXDirectInit) {
6225      Args = CXXDirectInit->getExprs();
6226      NumArgs = CXXDirectInit->getNumExprs();
6227    }
6228    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6229    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6230                                              MultiExprArg(*this, Args,NumArgs),
6231                                              &DclT);
6232    if (Result.isInvalid()) {
6233      VDecl->setInvalidDecl();
6234      return;
6235    }
6236
6237    Init = Result.takeAs<Expr>();
6238  }
6239
6240  // If the type changed, it means we had an incomplete type that was
6241  // completed by the initializer. For example:
6242  //   int ary[] = { 1, 3, 5 };
6243  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6244  if (!VDecl->isInvalidDecl() && (DclT != SavT))
6245    VDecl->setType(DclT);
6246
6247  // Check any implicit conversions within the expression.
6248  CheckImplicitConversions(Init, VDecl->getLocation());
6249
6250  if (!VDecl->isInvalidDecl())
6251    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6252
6253  Init = MaybeCreateExprWithCleanups(Init);
6254  // Attach the initializer to the decl.
6255  VDecl->setInit(Init);
6256
6257  if (VDecl->isLocalVarDecl()) {
6258    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6259    // static storage duration shall be constant expressions or string literals.
6260    // C++ does not have this restriction.
6261    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl() &&
6262        VDecl->getStorageClass() == SC_Static)
6263      CheckForConstantInitializer(Init, DclT);
6264  } else if (VDecl->isStaticDataMember() &&
6265             VDecl->getLexicalDeclContext()->isRecord()) {
6266    // This is an in-class initialization for a static data member, e.g.,
6267    //
6268    // struct S {
6269    //   static const int value = 17;
6270    // };
6271
6272    // C++ [class.mem]p4:
6273    //   A member-declarator can contain a constant-initializer only
6274    //   if it declares a static member (9.4) of const integral or
6275    //   const enumeration type, see 9.4.2.
6276    //
6277    // C++11 [class.static.data]p3:
6278    //   If a non-volatile const static data member is of integral or
6279    //   enumeration type, its declaration in the class definition can
6280    //   specify a brace-or-equal-initializer in which every initalizer-clause
6281    //   that is an assignment-expression is a constant expression. A static
6282    //   data member of literal type can be declared in the class definition
6283    //   with the constexpr specifier; if so, its declaration shall specify a
6284    //   brace-or-equal-initializer in which every initializer-clause that is
6285    //   an assignment-expression is a constant expression.
6286
6287    // Do nothing on dependent types.
6288    if (DclT->isDependentType()) {
6289
6290    // Allow any 'static constexpr' members, whether or not they are of literal
6291    // type. We separately check that every constexpr variable is of literal
6292    // type.
6293    } else if (VDecl->isConstexpr()) {
6294
6295    // Require constness.
6296    } else if (!DclT.isConstQualified()) {
6297      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6298        << Init->getSourceRange();
6299      VDecl->setInvalidDecl();
6300
6301    // We allow integer constant expressions in all cases.
6302    } else if (DclT->isIntegralOrEnumerationType()) {
6303      // Check whether the expression is a constant expression.
6304      SourceLocation Loc;
6305      if (getLangOptions().CPlusPlus0x && DclT.isVolatileQualified())
6306        // In C++11, a non-constexpr const static data member with an
6307        // in-class initializer cannot be volatile.
6308        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6309      else if (Init->isValueDependent())
6310        ; // Nothing to check.
6311      else if (Init->isIntegerConstantExpr(Context, &Loc))
6312        ; // Ok, it's an ICE!
6313      else if (Init->isEvaluatable(Context)) {
6314        // If we can constant fold the initializer through heroics, accept it,
6315        // but report this as a use of an extension for -pedantic.
6316        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6317          << Init->getSourceRange();
6318      } else {
6319        // Otherwise, this is some crazy unknown case.  Report the issue at the
6320        // location provided by the isIntegerConstantExpr failed check.
6321        Diag(Loc, diag::err_in_class_initializer_non_constant)
6322          << Init->getSourceRange();
6323        VDecl->setInvalidDecl();
6324      }
6325
6326    // We allow foldable floating-point constants as an extension.
6327    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6328      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6329        << DclT << Init->getSourceRange();
6330      if (getLangOptions().CPlusPlus0x)
6331        Diag(VDecl->getLocation(),
6332             diag::note_in_class_initializer_float_type_constexpr)
6333          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6334
6335      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6336        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6337          << Init->getSourceRange();
6338        VDecl->setInvalidDecl();
6339      }
6340
6341    // Suggest adding 'constexpr' in C++11 for literal types.
6342    } else if (getLangOptions().CPlusPlus0x && DclT->isLiteralType()) {
6343      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6344        << DclT << Init->getSourceRange()
6345        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6346      VDecl->setConstexpr(true);
6347
6348    } else {
6349      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6350        << DclT << Init->getSourceRange();
6351      VDecl->setInvalidDecl();
6352    }
6353  } else if (VDecl->isFileVarDecl()) {
6354    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6355        (!getLangOptions().CPlusPlus ||
6356         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6357      Diag(VDecl->getLocation(), diag::warn_extern_init);
6358
6359    // C99 6.7.8p4. All file scoped initializers need to be constant.
6360    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl())
6361      CheckForConstantInitializer(Init, DclT);
6362  }
6363
6364  // We will represent direct-initialization similarly to copy-initialization:
6365  //    int x(1);  -as-> int x = 1;
6366  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6367  //
6368  // Clients that want to distinguish between the two forms, can check for
6369  // direct initializer using VarDecl::getInitStyle().
6370  // A major benefit is that clients that don't particularly care about which
6371  // exactly form was it (like the CodeGen) can handle both cases without
6372  // special case code.
6373
6374  // C++ 8.5p11:
6375  // The form of initialization (using parentheses or '=') is generally
6376  // insignificant, but does matter when the entity being initialized has a
6377  // class type.
6378  if (CXXDirectInit) {
6379    assert(DirectInit && "Call-style initializer must be direct init.");
6380    VDecl->setInitStyle(VarDecl::CallInit);
6381  } else if (DirectInit) {
6382    // This must be list-initialization. No other way is direct-initialization.
6383    VDecl->setInitStyle(VarDecl::ListInit);
6384  }
6385
6386  CheckCompleteVariableDeclaration(VDecl);
6387}
6388
6389/// ActOnInitializerError - Given that there was an error parsing an
6390/// initializer for the given declaration, try to return to some form
6391/// of sanity.
6392void Sema::ActOnInitializerError(Decl *D) {
6393  // Our main concern here is re-establishing invariants like "a
6394  // variable's type is either dependent or complete".
6395  if (!D || D->isInvalidDecl()) return;
6396
6397  VarDecl *VD = dyn_cast<VarDecl>(D);
6398  if (!VD) return;
6399
6400  // Auto types are meaningless if we can't make sense of the initializer.
6401  if (ParsingInitForAutoVars.count(D)) {
6402    D->setInvalidDecl();
6403    return;
6404  }
6405
6406  QualType Ty = VD->getType();
6407  if (Ty->isDependentType()) return;
6408
6409  // Require a complete type.
6410  if (RequireCompleteType(VD->getLocation(),
6411                          Context.getBaseElementType(Ty),
6412                          diag::err_typecheck_decl_incomplete_type)) {
6413    VD->setInvalidDecl();
6414    return;
6415  }
6416
6417  // Require an abstract type.
6418  if (RequireNonAbstractType(VD->getLocation(), Ty,
6419                             diag::err_abstract_type_in_decl,
6420                             AbstractVariableType)) {
6421    VD->setInvalidDecl();
6422    return;
6423  }
6424
6425  // Don't bother complaining about constructors or destructors,
6426  // though.
6427}
6428
6429void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6430                                  bool TypeMayContainAuto) {
6431  // If there is no declaration, there was an error parsing it. Just ignore it.
6432  if (RealDecl == 0)
6433    return;
6434
6435  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6436    QualType Type = Var->getType();
6437
6438    // C++11 [dcl.spec.auto]p3
6439    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6440      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6441        << Var->getDeclName() << Type;
6442      Var->setInvalidDecl();
6443      return;
6444    }
6445
6446    // C++11 [class.static.data]p3: A static data member can be declared with
6447    // the constexpr specifier; if so, its declaration shall specify
6448    // a brace-or-equal-initializer.
6449    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6450    // the definition of a variable [...] or the declaration of a static data
6451    // member.
6452    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6453      if (Var->isStaticDataMember())
6454        Diag(Var->getLocation(),
6455             diag::err_constexpr_static_mem_var_requires_init)
6456          << Var->getDeclName();
6457      else
6458        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6459      Var->setInvalidDecl();
6460      return;
6461    }
6462
6463    switch (Var->isThisDeclarationADefinition()) {
6464    case VarDecl::Definition:
6465      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6466        break;
6467
6468      // We have an out-of-line definition of a static data member
6469      // that has an in-class initializer, so we type-check this like
6470      // a declaration.
6471      //
6472      // Fall through
6473
6474    case VarDecl::DeclarationOnly:
6475      // It's only a declaration.
6476
6477      // Block scope. C99 6.7p7: If an identifier for an object is
6478      // declared with no linkage (C99 6.2.2p6), the type for the
6479      // object shall be complete.
6480      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6481          !Var->getLinkage() && !Var->isInvalidDecl() &&
6482          RequireCompleteType(Var->getLocation(), Type,
6483                              diag::err_typecheck_decl_incomplete_type))
6484        Var->setInvalidDecl();
6485
6486      // Make sure that the type is not abstract.
6487      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6488          RequireNonAbstractType(Var->getLocation(), Type,
6489                                 diag::err_abstract_type_in_decl,
6490                                 AbstractVariableType))
6491        Var->setInvalidDecl();
6492      return;
6493
6494    case VarDecl::TentativeDefinition:
6495      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6496      // object that has file scope without an initializer, and without a
6497      // storage-class specifier or with the storage-class specifier "static",
6498      // constitutes a tentative definition. Note: A tentative definition with
6499      // external linkage is valid (C99 6.2.2p5).
6500      if (!Var->isInvalidDecl()) {
6501        if (const IncompleteArrayType *ArrayT
6502                                    = Context.getAsIncompleteArrayType(Type)) {
6503          if (RequireCompleteType(Var->getLocation(),
6504                                  ArrayT->getElementType(),
6505                                  diag::err_illegal_decl_array_incomplete_type))
6506            Var->setInvalidDecl();
6507        } else if (Var->getStorageClass() == SC_Static) {
6508          // C99 6.9.2p3: If the declaration of an identifier for an object is
6509          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6510          // declared type shall not be an incomplete type.
6511          // NOTE: code such as the following
6512          //     static struct s;
6513          //     struct s { int a; };
6514          // is accepted by gcc. Hence here we issue a warning instead of
6515          // an error and we do not invalidate the static declaration.
6516          // NOTE: to avoid multiple warnings, only check the first declaration.
6517          if (Var->getPreviousDecl() == 0)
6518            RequireCompleteType(Var->getLocation(), Type,
6519                                diag::ext_typecheck_decl_incomplete_type);
6520        }
6521      }
6522
6523      // Record the tentative definition; we're done.
6524      if (!Var->isInvalidDecl())
6525        TentativeDefinitions.push_back(Var);
6526      return;
6527    }
6528
6529    // Provide a specific diagnostic for uninitialized variable
6530    // definitions with incomplete array type.
6531    if (Type->isIncompleteArrayType()) {
6532      Diag(Var->getLocation(),
6533           diag::err_typecheck_incomplete_array_needs_initializer);
6534      Var->setInvalidDecl();
6535      return;
6536    }
6537
6538    // Provide a specific diagnostic for uninitialized variable
6539    // definitions with reference type.
6540    if (Type->isReferenceType()) {
6541      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6542        << Var->getDeclName()
6543        << SourceRange(Var->getLocation(), Var->getLocation());
6544      Var->setInvalidDecl();
6545      return;
6546    }
6547
6548    // Do not attempt to type-check the default initializer for a
6549    // variable with dependent type.
6550    if (Type->isDependentType())
6551      return;
6552
6553    if (Var->isInvalidDecl())
6554      return;
6555
6556    if (RequireCompleteType(Var->getLocation(),
6557                            Context.getBaseElementType(Type),
6558                            diag::err_typecheck_decl_incomplete_type)) {
6559      Var->setInvalidDecl();
6560      return;
6561    }
6562
6563    // The variable can not have an abstract class type.
6564    if (RequireNonAbstractType(Var->getLocation(), Type,
6565                               diag::err_abstract_type_in_decl,
6566                               AbstractVariableType)) {
6567      Var->setInvalidDecl();
6568      return;
6569    }
6570
6571    // Check for jumps past the implicit initializer.  C++0x
6572    // clarifies that this applies to a "variable with automatic
6573    // storage duration", not a "local variable".
6574    // C++11 [stmt.dcl]p3
6575    //   A program that jumps from a point where a variable with automatic
6576    //   storage duration is not in scope to a point where it is in scope is
6577    //   ill-formed unless the variable has scalar type, class type with a
6578    //   trivial default constructor and a trivial destructor, a cv-qualified
6579    //   version of one of these types, or an array of one of the preceding
6580    //   types and is declared without an initializer.
6581    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6582      if (const RecordType *Record
6583            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6584        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6585        // Mark the function for further checking even if the looser rules of
6586        // C++11 do not require such checks, so that we can diagnose
6587        // incompatibilities with C++98.
6588        if (!CXXRecord->isPOD())
6589          getCurFunction()->setHasBranchProtectedScope();
6590      }
6591    }
6592
6593    // C++03 [dcl.init]p9:
6594    //   If no initializer is specified for an object, and the
6595    //   object is of (possibly cv-qualified) non-POD class type (or
6596    //   array thereof), the object shall be default-initialized; if
6597    //   the object is of const-qualified type, the underlying class
6598    //   type shall have a user-declared default
6599    //   constructor. Otherwise, if no initializer is specified for
6600    //   a non- static object, the object and its subobjects, if
6601    //   any, have an indeterminate initial value); if the object
6602    //   or any of its subobjects are of const-qualified type, the
6603    //   program is ill-formed.
6604    // C++0x [dcl.init]p11:
6605    //   If no initializer is specified for an object, the object is
6606    //   default-initialized; [...].
6607    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6608    InitializationKind Kind
6609      = InitializationKind::CreateDefault(Var->getLocation());
6610
6611    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6612    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6613                                      MultiExprArg(*this, 0, 0));
6614    if (Init.isInvalid())
6615      Var->setInvalidDecl();
6616    else if (Init.get()) {
6617      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6618      // This is important for template substitution.
6619      Var->setInitStyle(VarDecl::CallInit);
6620    }
6621
6622    CheckCompleteVariableDeclaration(Var);
6623  }
6624}
6625
6626void Sema::ActOnCXXForRangeDecl(Decl *D) {
6627  VarDecl *VD = dyn_cast<VarDecl>(D);
6628  if (!VD) {
6629    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6630    D->setInvalidDecl();
6631    return;
6632  }
6633
6634  VD->setCXXForRangeDecl(true);
6635
6636  // for-range-declaration cannot be given a storage class specifier.
6637  int Error = -1;
6638  switch (VD->getStorageClassAsWritten()) {
6639  case SC_None:
6640    break;
6641  case SC_Extern:
6642    Error = 0;
6643    break;
6644  case SC_Static:
6645    Error = 1;
6646    break;
6647  case SC_PrivateExtern:
6648    Error = 2;
6649    break;
6650  case SC_Auto:
6651    Error = 3;
6652    break;
6653  case SC_Register:
6654    Error = 4;
6655    break;
6656  case SC_OpenCLWorkGroupLocal:
6657    llvm_unreachable("Unexpected storage class");
6658  }
6659  if (VD->isConstexpr())
6660    Error = 5;
6661  if (Error != -1) {
6662    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6663      << VD->getDeclName() << Error;
6664    D->setInvalidDecl();
6665  }
6666}
6667
6668void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6669  if (var->isInvalidDecl()) return;
6670
6671  // In ARC, don't allow jumps past the implicit initialization of a
6672  // local retaining variable.
6673  if (getLangOptions().ObjCAutoRefCount &&
6674      var->hasLocalStorage()) {
6675    switch (var->getType().getObjCLifetime()) {
6676    case Qualifiers::OCL_None:
6677    case Qualifiers::OCL_ExplicitNone:
6678    case Qualifiers::OCL_Autoreleasing:
6679      break;
6680
6681    case Qualifiers::OCL_Weak:
6682    case Qualifiers::OCL_Strong:
6683      getCurFunction()->setHasBranchProtectedScope();
6684      break;
6685    }
6686  }
6687
6688  // All the following checks are C++ only.
6689  if (!getLangOptions().CPlusPlus) return;
6690
6691  QualType baseType = Context.getBaseElementType(var->getType());
6692  if (baseType->isDependentType()) return;
6693
6694  // __block variables might require us to capture a copy-initializer.
6695  if (var->hasAttr<BlocksAttr>()) {
6696    // It's currently invalid to ever have a __block variable with an
6697    // array type; should we diagnose that here?
6698
6699    // Regardless, we don't want to ignore array nesting when
6700    // constructing this copy.
6701    QualType type = var->getType();
6702
6703    if (type->isStructureOrClassType()) {
6704      SourceLocation poi = var->getLocation();
6705      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6706      ExprResult result =
6707        PerformCopyInitialization(
6708                        InitializedEntity::InitializeBlock(poi, type, false),
6709                                  poi, Owned(varRef));
6710      if (!result.isInvalid()) {
6711        result = MaybeCreateExprWithCleanups(result);
6712        Expr *init = result.takeAs<Expr>();
6713        Context.setBlockVarCopyInits(var, init);
6714      }
6715    }
6716  }
6717
6718  Expr *Init = var->getInit();
6719  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6720
6721  if (!var->getDeclContext()->isDependentContext() && Init) {
6722    if (IsGlobal && !var->isConstexpr() &&
6723        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6724                                            var->getLocation())
6725          != DiagnosticsEngine::Ignored &&
6726        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
6727      Diag(var->getLocation(), diag::warn_global_constructor)
6728        << Init->getSourceRange();
6729
6730    if (var->isConstexpr()) {
6731      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
6732      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
6733        SourceLocation DiagLoc = var->getLocation();
6734        // If the note doesn't add any useful information other than a source
6735        // location, fold it into the primary diagnostic.
6736        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6737              diag::note_invalid_subexpr_in_const_expr) {
6738          DiagLoc = Notes[0].first;
6739          Notes.clear();
6740        }
6741        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
6742          << var << Init->getSourceRange();
6743        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6744          Diag(Notes[I].first, Notes[I].second);
6745      }
6746    } else if (var->isUsableInConstantExpressions()) {
6747      // Check whether the initializer of a const variable of integral or
6748      // enumeration type is an ICE now, since we can't tell whether it was
6749      // initialized by a constant expression if we check later.
6750      var->checkInitIsICE();
6751    }
6752  }
6753
6754  // Require the destructor.
6755  if (const RecordType *recordType = baseType->getAs<RecordType>())
6756    FinalizeVarWithDestructor(var, recordType);
6757}
6758
6759/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6760/// any semantic actions necessary after any initializer has been attached.
6761void
6762Sema::FinalizeDeclaration(Decl *ThisDecl) {
6763  // Note that we are no longer parsing the initializer for this declaration.
6764  ParsingInitForAutoVars.erase(ThisDecl);
6765}
6766
6767Sema::DeclGroupPtrTy
6768Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6769                              Decl **Group, unsigned NumDecls) {
6770  SmallVector<Decl*, 8> Decls;
6771
6772  if (DS.isTypeSpecOwned())
6773    Decls.push_back(DS.getRepAsDecl());
6774
6775  for (unsigned i = 0; i != NumDecls; ++i)
6776    if (Decl *D = Group[i])
6777      Decls.push_back(D);
6778
6779  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6780                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6781}
6782
6783/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6784/// group, performing any necessary semantic checking.
6785Sema::DeclGroupPtrTy
6786Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6787                           bool TypeMayContainAuto) {
6788  // C++0x [dcl.spec.auto]p7:
6789  //   If the type deduced for the template parameter U is not the same in each
6790  //   deduction, the program is ill-formed.
6791  // FIXME: When initializer-list support is added, a distinction is needed
6792  // between the deduced type U and the deduced type which 'auto' stands for.
6793  //   auto a = 0, b = { 1, 2, 3 };
6794  // is legal because the deduced type U is 'int' in both cases.
6795  if (TypeMayContainAuto && NumDecls > 1) {
6796    QualType Deduced;
6797    CanQualType DeducedCanon;
6798    VarDecl *DeducedDecl = 0;
6799    for (unsigned i = 0; i != NumDecls; ++i) {
6800      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6801        AutoType *AT = D->getType()->getContainedAutoType();
6802        // Don't reissue diagnostics when instantiating a template.
6803        if (AT && D->isInvalidDecl())
6804          break;
6805        if (AT && AT->isDeduced()) {
6806          QualType U = AT->getDeducedType();
6807          CanQualType UCanon = Context.getCanonicalType(U);
6808          if (Deduced.isNull()) {
6809            Deduced = U;
6810            DeducedCanon = UCanon;
6811            DeducedDecl = D;
6812          } else if (DeducedCanon != UCanon) {
6813            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6814                 diag::err_auto_different_deductions)
6815              << Deduced << DeducedDecl->getDeclName()
6816              << U << D->getDeclName()
6817              << DeducedDecl->getInit()->getSourceRange()
6818              << D->getInit()->getSourceRange();
6819            D->setInvalidDecl();
6820            break;
6821          }
6822        }
6823      }
6824    }
6825  }
6826
6827  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6828}
6829
6830
6831/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6832/// to introduce parameters into function prototype scope.
6833Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6834  const DeclSpec &DS = D.getDeclSpec();
6835
6836  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6837  // C++03 [dcl.stc]p2 also permits 'auto'.
6838  VarDecl::StorageClass StorageClass = SC_None;
6839  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6840  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6841    StorageClass = SC_Register;
6842    StorageClassAsWritten = SC_Register;
6843  } else if (getLangOptions().CPlusPlus &&
6844             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
6845    StorageClass = SC_Auto;
6846    StorageClassAsWritten = SC_Auto;
6847  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6848    Diag(DS.getStorageClassSpecLoc(),
6849         diag::err_invalid_storage_class_in_func_decl);
6850    D.getMutableDeclSpec().ClearStorageClassSpecs();
6851  }
6852
6853  if (D.getDeclSpec().isThreadSpecified())
6854    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6855  if (D.getDeclSpec().isConstexprSpecified())
6856    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6857      << 0;
6858
6859  DiagnoseFunctionSpecifiers(D);
6860
6861  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6862  QualType parmDeclType = TInfo->getType();
6863
6864  if (getLangOptions().CPlusPlus) {
6865    // Check that there are no default arguments inside the type of this
6866    // parameter.
6867    CheckExtraCXXDefaultArguments(D);
6868
6869    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6870    if (D.getCXXScopeSpec().isSet()) {
6871      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6872        << D.getCXXScopeSpec().getRange();
6873      D.getCXXScopeSpec().clear();
6874    }
6875  }
6876
6877  // Ensure we have a valid name
6878  IdentifierInfo *II = 0;
6879  if (D.hasName()) {
6880    II = D.getIdentifier();
6881    if (!II) {
6882      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6883        << GetNameForDeclarator(D).getName().getAsString();
6884      D.setInvalidType(true);
6885    }
6886  }
6887
6888  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6889  if (II) {
6890    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6891                   ForRedeclaration);
6892    LookupName(R, S);
6893    if (R.isSingleResult()) {
6894      NamedDecl *PrevDecl = R.getFoundDecl();
6895      if (PrevDecl->isTemplateParameter()) {
6896        // Maybe we will complain about the shadowed template parameter.
6897        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6898        // Just pretend that we didn't see the previous declaration.
6899        PrevDecl = 0;
6900      } else if (S->isDeclScope(PrevDecl)) {
6901        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6902        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6903
6904        // Recover by removing the name
6905        II = 0;
6906        D.SetIdentifier(0, D.getIdentifierLoc());
6907        D.setInvalidType(true);
6908      }
6909    }
6910  }
6911
6912  // Temporarily put parameter variables in the translation unit, not
6913  // the enclosing context.  This prevents them from accidentally
6914  // looking like class members in C++.
6915  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6916                                    D.getSourceRange().getBegin(),
6917                                    D.getIdentifierLoc(), II,
6918                                    parmDeclType, TInfo,
6919                                    StorageClass, StorageClassAsWritten);
6920
6921  if (D.isInvalidType())
6922    New->setInvalidDecl();
6923
6924  assert(S->isFunctionPrototypeScope());
6925  assert(S->getFunctionPrototypeDepth() >= 1);
6926  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6927                    S->getNextFunctionPrototypeIndex());
6928
6929  // Add the parameter declaration into this scope.
6930  S->AddDecl(New);
6931  if (II)
6932    IdResolver.AddDecl(New);
6933
6934  ProcessDeclAttributes(S, New, D);
6935
6936  if (D.getDeclSpec().isModulePrivateSpecified())
6937    Diag(New->getLocation(), diag::err_module_private_local)
6938      << 1 << New->getDeclName()
6939      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6940      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6941
6942  if (New->hasAttr<BlocksAttr>()) {
6943    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6944  }
6945  return New;
6946}
6947
6948/// \brief Synthesizes a variable for a parameter arising from a
6949/// typedef.
6950ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6951                                              SourceLocation Loc,
6952                                              QualType T) {
6953  /* FIXME: setting StartLoc == Loc.
6954     Would it be worth to modify callers so as to provide proper source
6955     location for the unnamed parameters, embedding the parameter's type? */
6956  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6957                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6958                                           SC_None, SC_None, 0);
6959  Param->setImplicit();
6960  return Param;
6961}
6962
6963void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6964                                    ParmVarDecl * const *ParamEnd) {
6965  // Don't diagnose unused-parameter errors in template instantiations; we
6966  // will already have done so in the template itself.
6967  if (!ActiveTemplateInstantiations.empty())
6968    return;
6969
6970  for (; Param != ParamEnd; ++Param) {
6971    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
6972        !(*Param)->hasAttr<UnusedAttr>()) {
6973      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6974        << (*Param)->getDeclName();
6975    }
6976  }
6977}
6978
6979void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6980                                                  ParmVarDecl * const *ParamEnd,
6981                                                  QualType ReturnTy,
6982                                                  NamedDecl *D) {
6983  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6984    return;
6985
6986  // Warn if the return value is pass-by-value and larger than the specified
6987  // threshold.
6988  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
6989    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6990    if (Size > LangOpts.NumLargeByValueCopy)
6991      Diag(D->getLocation(), diag::warn_return_value_size)
6992          << D->getDeclName() << Size;
6993  }
6994
6995  // Warn if any parameter is pass-by-value and larger than the specified
6996  // threshold.
6997  for (; Param != ParamEnd; ++Param) {
6998    QualType T = (*Param)->getType();
6999    if (T->isDependentType() || !T.isPODType(Context))
7000      continue;
7001    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7002    if (Size > LangOpts.NumLargeByValueCopy)
7003      Diag((*Param)->getLocation(), diag::warn_parameter_size)
7004          << (*Param)->getDeclName() << Size;
7005  }
7006}
7007
7008ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7009                                  SourceLocation NameLoc, IdentifierInfo *Name,
7010                                  QualType T, TypeSourceInfo *TSInfo,
7011                                  VarDecl::StorageClass StorageClass,
7012                                  VarDecl::StorageClass StorageClassAsWritten) {
7013  // In ARC, infer a lifetime qualifier for appropriate parameter types.
7014  if (getLangOptions().ObjCAutoRefCount &&
7015      T.getObjCLifetime() == Qualifiers::OCL_None &&
7016      T->isObjCLifetimeType()) {
7017
7018    Qualifiers::ObjCLifetime lifetime;
7019
7020    // Special cases for arrays:
7021    //   - if it's const, use __unsafe_unretained
7022    //   - otherwise, it's an error
7023    if (T->isArrayType()) {
7024      if (!T.isConstQualified()) {
7025        DelayedDiagnostics.add(
7026            sema::DelayedDiagnostic::makeForbiddenType(
7027            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7028      }
7029      lifetime = Qualifiers::OCL_ExplicitNone;
7030    } else {
7031      lifetime = T->getObjCARCImplicitLifetime();
7032    }
7033    T = Context.getLifetimeQualifiedType(T, lifetime);
7034  }
7035
7036  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7037                                         Context.getAdjustedParameterType(T),
7038                                         TSInfo,
7039                                         StorageClass, StorageClassAsWritten,
7040                                         0);
7041
7042  // Parameters can not be abstract class types.
7043  // For record types, this is done by the AbstractClassUsageDiagnoser once
7044  // the class has been completely parsed.
7045  if (!CurContext->isRecord() &&
7046      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7047                             AbstractParamType))
7048    New->setInvalidDecl();
7049
7050  // Parameter declarators cannot be interface types. All ObjC objects are
7051  // passed by reference.
7052  if (T->isObjCObjectType()) {
7053    Diag(NameLoc,
7054         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7055      << FixItHint::CreateInsertion(NameLoc, "*");
7056    T = Context.getObjCObjectPointerType(T);
7057    New->setType(T);
7058  }
7059
7060  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7061  // duration shall not be qualified by an address-space qualifier."
7062  // Since all parameters have automatic store duration, they can not have
7063  // an address space.
7064  if (T.getAddressSpace() != 0) {
7065    Diag(NameLoc, diag::err_arg_with_address_space);
7066    New->setInvalidDecl();
7067  }
7068
7069  return New;
7070}
7071
7072void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7073                                           SourceLocation LocAfterDecls) {
7074  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7075
7076  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7077  // for a K&R function.
7078  if (!FTI.hasPrototype) {
7079    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7080      --i;
7081      if (FTI.ArgInfo[i].Param == 0) {
7082        SmallString<256> Code;
7083        llvm::raw_svector_ostream(Code) << "  int "
7084                                        << FTI.ArgInfo[i].Ident->getName()
7085                                        << ";\n";
7086        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7087          << FTI.ArgInfo[i].Ident
7088          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7089
7090        // Implicitly declare the argument as type 'int' for lack of a better
7091        // type.
7092        AttributeFactory attrs;
7093        DeclSpec DS(attrs);
7094        const char* PrevSpec; // unused
7095        unsigned DiagID; // unused
7096        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7097                           PrevSpec, DiagID);
7098        Declarator ParamD(DS, Declarator::KNRTypeListContext);
7099        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7100        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7101      }
7102    }
7103  }
7104}
7105
7106Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
7107                                         Declarator &D) {
7108  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7109  assert(D.isFunctionDeclarator() && "Not a function declarator!");
7110  Scope *ParentScope = FnBodyScope->getParent();
7111
7112  D.setFunctionDefinitionKind(FDK_Definition);
7113  Decl *DP = HandleDeclarator(ParentScope, D,
7114                              MultiTemplateParamsArg(*this));
7115  return ActOnStartOfFunctionDef(FnBodyScope, DP);
7116}
7117
7118static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7119  // Don't warn about invalid declarations.
7120  if (FD->isInvalidDecl())
7121    return false;
7122
7123  // Or declarations that aren't global.
7124  if (!FD->isGlobal())
7125    return false;
7126
7127  // Don't warn about C++ member functions.
7128  if (isa<CXXMethodDecl>(FD))
7129    return false;
7130
7131  // Don't warn about 'main'.
7132  if (FD->isMain())
7133    return false;
7134
7135  // Don't warn about inline functions.
7136  if (FD->isInlined())
7137    return false;
7138
7139  // Don't warn about function templates.
7140  if (FD->getDescribedFunctionTemplate())
7141    return false;
7142
7143  // Don't warn about function template specializations.
7144  if (FD->isFunctionTemplateSpecialization())
7145    return false;
7146
7147  bool MissingPrototype = true;
7148  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7149       Prev; Prev = Prev->getPreviousDecl()) {
7150    // Ignore any declarations that occur in function or method
7151    // scope, because they aren't visible from the header.
7152    if (Prev->getDeclContext()->isFunctionOrMethod())
7153      continue;
7154
7155    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7156    break;
7157  }
7158
7159  return MissingPrototype;
7160}
7161
7162void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7163  // Don't complain if we're in GNU89 mode and the previous definition
7164  // was an extern inline function.
7165  const FunctionDecl *Definition;
7166  if (FD->isDefined(Definition) &&
7167      !canRedefineFunction(Definition, getLangOptions())) {
7168    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
7169        Definition->getStorageClass() == SC_Extern)
7170      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7171        << FD->getDeclName() << getLangOptions().CPlusPlus;
7172    else
7173      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7174    Diag(Definition->getLocation(), diag::note_previous_definition);
7175  }
7176}
7177
7178Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7179  // Clear the last template instantiation error context.
7180  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7181
7182  if (!D)
7183    return D;
7184  FunctionDecl *FD = 0;
7185
7186  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7187    FD = FunTmpl->getTemplatedDecl();
7188  else
7189    FD = cast<FunctionDecl>(D);
7190
7191  // Enter a new function scope
7192  PushFunctionScope();
7193
7194  // See if this is a redefinition.
7195  if (!FD->isLateTemplateParsed())
7196    CheckForFunctionRedefinition(FD);
7197
7198  // Builtin functions cannot be defined.
7199  if (unsigned BuiltinID = FD->getBuiltinID()) {
7200    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7201      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7202      FD->setInvalidDecl();
7203    }
7204  }
7205
7206  // The return type of a function definition must be complete
7207  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7208  QualType ResultType = FD->getResultType();
7209  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7210      !FD->isInvalidDecl() &&
7211      RequireCompleteType(FD->getLocation(), ResultType,
7212                          diag::err_func_def_incomplete_result))
7213    FD->setInvalidDecl();
7214
7215  // GNU warning -Wmissing-prototypes:
7216  //   Warn if a global function is defined without a previous
7217  //   prototype declaration. This warning is issued even if the
7218  //   definition itself provides a prototype. The aim is to detect
7219  //   global functions that fail to be declared in header files.
7220  if (ShouldWarnAboutMissingPrototype(FD))
7221    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7222
7223  if (FnBodyScope)
7224    PushDeclContext(FnBodyScope, FD);
7225
7226  // Check the validity of our function parameters
7227  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7228                           /*CheckParameterNames=*/true);
7229
7230  // Introduce our parameters into the function scope
7231  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7232    ParmVarDecl *Param = FD->getParamDecl(p);
7233    Param->setOwningFunction(FD);
7234
7235    // If this has an identifier, add it to the scope stack.
7236    if (Param->getIdentifier() && FnBodyScope) {
7237      CheckShadow(FnBodyScope, Param);
7238
7239      PushOnScopeChains(Param, FnBodyScope);
7240    }
7241  }
7242
7243  // If we had any tags defined in the function prototype,
7244  // introduce them into the function scope.
7245  if (FnBodyScope) {
7246    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
7247           E = FD->getDeclsInPrototypeScope().end(); I != E; ++E) {
7248      NamedDecl *D = *I;
7249
7250      // Some of these decls (like enums) may have been pinned to the translation unit
7251      // for lack of a real context earlier. If so, remove from the translation unit
7252      // and reattach to the current context.
7253      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
7254        // Is the decl actually in the context?
7255        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
7256               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
7257          if (*DI == D) {
7258            Context.getTranslationUnitDecl()->removeDecl(D);
7259            break;
7260          }
7261        }
7262        // Either way, reassign the lexical decl context to our FunctionDecl.
7263        D->setLexicalDeclContext(CurContext);
7264      }
7265
7266      // If the decl has a non-null name, make accessible in the current scope.
7267      if (!D->getName().empty())
7268        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
7269
7270      // Similarly, dive into enums and fish their constants out, making them
7271      // accessible in this scope.
7272      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
7273        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
7274               EE = ED->enumerator_end(); EI != EE; ++EI)
7275          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
7276      }
7277    }
7278  }
7279
7280  // Checking attributes of current function definition
7281  // dllimport attribute.
7282  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7283  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7284    // dllimport attribute cannot be directly applied to definition.
7285    // Microsoft accepts dllimport for functions defined within class scope.
7286    if (!DA->isInherited() &&
7287        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7288      Diag(FD->getLocation(),
7289           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7290        << "dllimport";
7291      FD->setInvalidDecl();
7292      return FD;
7293    }
7294
7295    // Visual C++ appears to not think this is an issue, so only issue
7296    // a warning when Microsoft extensions are disabled.
7297    if (!LangOpts.MicrosoftExt) {
7298      // If a symbol previously declared dllimport is later defined, the
7299      // attribute is ignored in subsequent references, and a warning is
7300      // emitted.
7301      Diag(FD->getLocation(),
7302           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7303        << FD->getName() << "dllimport";
7304    }
7305  }
7306  return FD;
7307}
7308
7309/// \brief Given the set of return statements within a function body,
7310/// compute the variables that are subject to the named return value
7311/// optimization.
7312///
7313/// Each of the variables that is subject to the named return value
7314/// optimization will be marked as NRVO variables in the AST, and any
7315/// return statement that has a marked NRVO variable as its NRVO candidate can
7316/// use the named return value optimization.
7317///
7318/// This function applies a very simplistic algorithm for NRVO: if every return
7319/// statement in the function has the same NRVO candidate, that candidate is
7320/// the NRVO variable.
7321///
7322/// FIXME: Employ a smarter algorithm that accounts for multiple return
7323/// statements and the lifetimes of the NRVO candidates. We should be able to
7324/// find a maximal set of NRVO variables.
7325void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7326  ReturnStmt **Returns = Scope->Returns.data();
7327
7328  const VarDecl *NRVOCandidate = 0;
7329  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7330    if (!Returns[I]->getNRVOCandidate())
7331      return;
7332
7333    if (!NRVOCandidate)
7334      NRVOCandidate = Returns[I]->getNRVOCandidate();
7335    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7336      return;
7337  }
7338
7339  if (NRVOCandidate)
7340    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7341}
7342
7343Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7344  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7345}
7346
7347Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7348                                    bool IsInstantiation) {
7349  FunctionDecl *FD = 0;
7350  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7351  if (FunTmpl)
7352    FD = FunTmpl->getTemplatedDecl();
7353  else
7354    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7355
7356  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7357  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7358
7359  if (FD) {
7360    FD->setBody(Body);
7361
7362    // If the function implicitly returns zero (like 'main') or is naked,
7363    // don't complain about missing return statements.
7364    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
7365      WP.disableCheckFallThrough();
7366
7367    // MSVC permits the use of pure specifier (=0) on function definition,
7368    // defined at class scope, warn about this non standard construct.
7369    if (getLangOptions().MicrosoftExt && FD->isPure())
7370      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7371
7372    if (!FD->isInvalidDecl()) {
7373      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7374      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7375                                             FD->getResultType(), FD);
7376
7377      // If this is a constructor, we need a vtable.
7378      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7379        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7380
7381      computeNRVO(Body, getCurFunction());
7382    }
7383
7384    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
7385           "Function parsing confused");
7386  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7387    assert(MD == getCurMethodDecl() && "Method parsing confused");
7388    MD->setBody(Body);
7389    if (Body)
7390      MD->setEndLoc(Body->getLocEnd());
7391    if (!MD->isInvalidDecl()) {
7392      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7393      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7394                                             MD->getResultType(), MD);
7395
7396      if (Body)
7397        computeNRVO(Body, getCurFunction());
7398    }
7399    if (ObjCShouldCallSuperDealloc) {
7400      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7401      ObjCShouldCallSuperDealloc = false;
7402    }
7403    if (ObjCShouldCallSuperFinalize) {
7404      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7405      ObjCShouldCallSuperFinalize = false;
7406    }
7407  } else {
7408    return 0;
7409  }
7410
7411  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7412         "ObjC methods, which should have been handled in the block above.");
7413  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7414         "ObjC methods, which should have been handled in the block above.");
7415
7416  // Verify and clean out per-function state.
7417  if (Body) {
7418    // C++ constructors that have function-try-blocks can't have return
7419    // statements in the handlers of that block. (C++ [except.handle]p14)
7420    // Verify this.
7421    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7422      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7423
7424    // Verify that gotos and switch cases don't jump into scopes illegally.
7425    if (getCurFunction()->NeedsScopeChecking() &&
7426        !dcl->isInvalidDecl() &&
7427        !hasAnyUnrecoverableErrorsInThisFunction())
7428      DiagnoseInvalidJumps(Body);
7429
7430    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7431      if (!Destructor->getParent()->isDependentType())
7432        CheckDestructor(Destructor);
7433
7434      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7435                                             Destructor->getParent());
7436    }
7437
7438    // If any errors have occurred, clear out any temporaries that may have
7439    // been leftover. This ensures that these temporaries won't be picked up for
7440    // deletion in some later function.
7441    if (PP.getDiagnostics().hasErrorOccurred() ||
7442        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7443      DiscardCleanupsInEvaluationContext();
7444    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7445      // Since the body is valid, issue any analysis-based warnings that are
7446      // enabled.
7447      ActivePolicy = &WP;
7448    }
7449
7450    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7451        (!CheckConstexprFunctionDecl(FD) ||
7452         !CheckConstexprFunctionBody(FD, Body)))
7453      FD->setInvalidDecl();
7454
7455    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7456    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7457    assert(MaybeODRUseExprs.empty() &&
7458           "Leftover expressions for odr-use checking");
7459  }
7460
7461  if (!IsInstantiation)
7462    PopDeclContext();
7463
7464  PopFunctionScopeInfo(ActivePolicy, dcl);
7465
7466  // If any errors have occurred, clear out any temporaries that may have
7467  // been leftover. This ensures that these temporaries won't be picked up for
7468  // deletion in some later function.
7469  if (getDiagnostics().hasErrorOccurred()) {
7470    DiscardCleanupsInEvaluationContext();
7471  }
7472
7473  return dcl;
7474}
7475
7476
7477/// When we finish delayed parsing of an attribute, we must attach it to the
7478/// relevant Decl.
7479void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7480                                       ParsedAttributes &Attrs) {
7481  // Always attach attributes to the underlying decl.
7482  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7483    D = TD->getTemplatedDecl();
7484  ProcessDeclAttributeList(S, D, Attrs.getList());
7485}
7486
7487
7488/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7489/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7490NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7491                                          IdentifierInfo &II, Scope *S) {
7492  // Before we produce a declaration for an implicitly defined
7493  // function, see whether there was a locally-scoped declaration of
7494  // this name as a function or variable. If so, use that
7495  // (non-visible) declaration, and complain about it.
7496  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7497    = findLocallyScopedExternalDecl(&II);
7498  if (Pos != LocallyScopedExternalDecls.end()) {
7499    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7500    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7501    return Pos->second;
7502  }
7503
7504  // Extension in C99.  Legal in C90, but warn about it.
7505  unsigned diag_id;
7506  if (II.getName().startswith("__builtin_"))
7507    diag_id = diag::warn_builtin_unknown;
7508  else if (getLangOptions().C99)
7509    diag_id = diag::ext_implicit_function_decl;
7510  else
7511    diag_id = diag::warn_implicit_function_decl;
7512  Diag(Loc, diag_id) << &II;
7513
7514  // Because typo correction is expensive, only do it if the implicit
7515  // function declaration is going to be treated as an error.
7516  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7517    TypoCorrection Corrected;
7518    DeclFilterCCC<FunctionDecl> Validator;
7519    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7520                                      LookupOrdinaryName, S, 0, Validator))) {
7521      std::string CorrectedStr = Corrected.getAsString(getLangOptions());
7522      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOptions());
7523      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7524
7525      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7526          << FixItHint::CreateReplacement(Loc, CorrectedStr);
7527
7528      if (Func->getLocation().isValid()
7529          && !II.getName().startswith("__builtin_"))
7530        Diag(Func->getLocation(), diag::note_previous_decl)
7531            << CorrectedQuotedStr;
7532    }
7533  }
7534
7535  // Set a Declarator for the implicit definition: int foo();
7536  const char *Dummy;
7537  AttributeFactory attrFactory;
7538  DeclSpec DS(attrFactory);
7539  unsigned DiagID;
7540  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7541  (void)Error; // Silence warning.
7542  assert(!Error && "Error setting up implicit decl!");
7543  Declarator D(DS, Declarator::BlockContext);
7544  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7545                                             0, 0, true, SourceLocation(),
7546                                             SourceLocation(), SourceLocation(),
7547                                             SourceLocation(),
7548                                             EST_None, SourceLocation(),
7549                                             0, 0, 0, 0, Loc, Loc, D),
7550                DS.getAttributes(),
7551                SourceLocation());
7552  D.SetIdentifier(&II, Loc);
7553
7554  // Insert this function into translation-unit scope.
7555
7556  DeclContext *PrevDC = CurContext;
7557  CurContext = Context.getTranslationUnitDecl();
7558
7559  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7560  FD->setImplicit();
7561
7562  CurContext = PrevDC;
7563
7564  AddKnownFunctionAttributes(FD);
7565
7566  return FD;
7567}
7568
7569/// \brief Adds any function attributes that we know a priori based on
7570/// the declaration of this function.
7571///
7572/// These attributes can apply both to implicitly-declared builtins
7573/// (like __builtin___printf_chk) or to library-declared functions
7574/// like NSLog or printf.
7575///
7576/// We need to check for duplicate attributes both here and where user-written
7577/// attributes are applied to declarations.
7578void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7579  if (FD->isInvalidDecl())
7580    return;
7581
7582  // If this is a built-in function, map its builtin attributes to
7583  // actual attributes.
7584  if (unsigned BuiltinID = FD->getBuiltinID()) {
7585    // Handle printf-formatting attributes.
7586    unsigned FormatIdx;
7587    bool HasVAListArg;
7588    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7589      if (!FD->getAttr<FormatAttr>()) {
7590        const char *fmt = "printf";
7591        unsigned int NumParams = FD->getNumParams();
7592        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
7593            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
7594          fmt = "NSString";
7595        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7596                                               fmt, FormatIdx+1,
7597                                               HasVAListArg ? 0 : FormatIdx+2));
7598      }
7599    }
7600    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7601                                             HasVAListArg)) {
7602     if (!FD->getAttr<FormatAttr>())
7603       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7604                                              "scanf", FormatIdx+1,
7605                                              HasVAListArg ? 0 : FormatIdx+2));
7606    }
7607
7608    // Mark const if we don't care about errno and that is the only
7609    // thing preventing the function from being const. This allows
7610    // IRgen to use LLVM intrinsics for such functions.
7611    if (!getLangOptions().MathErrno &&
7612        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7613      if (!FD->getAttr<ConstAttr>())
7614        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7615    }
7616
7617    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7618        !FD->getAttr<ReturnsTwiceAttr>())
7619      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7620    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7621      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7622    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7623      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7624  }
7625
7626  IdentifierInfo *Name = FD->getIdentifier();
7627  if (!Name)
7628    return;
7629  if ((!getLangOptions().CPlusPlus &&
7630       FD->getDeclContext()->isTranslationUnit()) ||
7631      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7632       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7633       LinkageSpecDecl::lang_c)) {
7634    // Okay: this could be a libc/libm/Objective-C function we know
7635    // about.
7636  } else
7637    return;
7638
7639  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7640    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7641    // target-specific builtins, perhaps?
7642    if (!FD->getAttr<FormatAttr>())
7643      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7644                                             "printf", 2,
7645                                             Name->isStr("vasprintf") ? 0 : 3));
7646  }
7647}
7648
7649TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7650                                    TypeSourceInfo *TInfo) {
7651  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7652  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7653
7654  if (!TInfo) {
7655    assert(D.isInvalidType() && "no declarator info for valid type");
7656    TInfo = Context.getTrivialTypeSourceInfo(T);
7657  }
7658
7659  // Scope manipulation handled by caller.
7660  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7661                                           D.getSourceRange().getBegin(),
7662                                           D.getIdentifierLoc(),
7663                                           D.getIdentifier(),
7664                                           TInfo);
7665
7666  // Bail out immediately if we have an invalid declaration.
7667  if (D.isInvalidType()) {
7668    NewTD->setInvalidDecl();
7669    return NewTD;
7670  }
7671
7672  if (D.getDeclSpec().isModulePrivateSpecified()) {
7673    if (CurContext->isFunctionOrMethod())
7674      Diag(NewTD->getLocation(), diag::err_module_private_local)
7675        << 2 << NewTD->getDeclName()
7676        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7677        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7678    else
7679      NewTD->setModulePrivate();
7680  }
7681
7682  // C++ [dcl.typedef]p8:
7683  //   If the typedef declaration defines an unnamed class (or
7684  //   enum), the first typedef-name declared by the declaration
7685  //   to be that class type (or enum type) is used to denote the
7686  //   class type (or enum type) for linkage purposes only.
7687  // We need to check whether the type was declared in the declaration.
7688  switch (D.getDeclSpec().getTypeSpecType()) {
7689  case TST_enum:
7690  case TST_struct:
7691  case TST_union:
7692  case TST_class: {
7693    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7694
7695    // Do nothing if the tag is not anonymous or already has an
7696    // associated typedef (from an earlier typedef in this decl group).
7697    if (tagFromDeclSpec->getIdentifier()) break;
7698    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7699
7700    // A well-formed anonymous tag must always be a TUK_Definition.
7701    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7702
7703    // The type must match the tag exactly;  no qualifiers allowed.
7704    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7705      break;
7706
7707    // Otherwise, set this is the anon-decl typedef for the tag.
7708    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7709    break;
7710  }
7711
7712  default:
7713    break;
7714  }
7715
7716  return NewTD;
7717}
7718
7719
7720/// \brief Determine whether a tag with a given kind is acceptable
7721/// as a redeclaration of the given tag declaration.
7722///
7723/// \returns true if the new tag kind is acceptable, false otherwise.
7724bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7725                                        TagTypeKind NewTag, bool isDefinition,
7726                                        SourceLocation NewTagLoc,
7727                                        const IdentifierInfo &Name) {
7728  // C++ [dcl.type.elab]p3:
7729  //   The class-key or enum keyword present in the
7730  //   elaborated-type-specifier shall agree in kind with the
7731  //   declaration to which the name in the elaborated-type-specifier
7732  //   refers. This rule also applies to the form of
7733  //   elaborated-type-specifier that declares a class-name or
7734  //   friend class since it can be construed as referring to the
7735  //   definition of the class. Thus, in any
7736  //   elaborated-type-specifier, the enum keyword shall be used to
7737  //   refer to an enumeration (7.2), the union class-key shall be
7738  //   used to refer to a union (clause 9), and either the class or
7739  //   struct class-key shall be used to refer to a class (clause 9)
7740  //   declared using the class or struct class-key.
7741  TagTypeKind OldTag = Previous->getTagKind();
7742  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7743    if (OldTag == NewTag)
7744      return true;
7745
7746  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7747      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7748    // Warn about the struct/class tag mismatch.
7749    bool isTemplate = false;
7750    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7751      isTemplate = Record->getDescribedClassTemplate();
7752
7753    if (!ActiveTemplateInstantiations.empty()) {
7754      // In a template instantiation, do not offer fix-its for tag mismatches
7755      // since they usually mess up the template instead of fixing the problem.
7756      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7757        << (NewTag == TTK_Class) << isTemplate << &Name;
7758      return true;
7759    }
7760
7761    if (isDefinition) {
7762      // On definitions, check previous tags and issue a fix-it for each
7763      // one that doesn't match the current tag.
7764      if (Previous->getDefinition()) {
7765        // Don't suggest fix-its for redefinitions.
7766        return true;
7767      }
7768
7769      bool previousMismatch = false;
7770      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7771           E(Previous->redecls_end()); I != E; ++I) {
7772        if (I->getTagKind() != NewTag) {
7773          if (!previousMismatch) {
7774            previousMismatch = true;
7775            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7776              << (NewTag == TTK_Class) << isTemplate << &Name;
7777          }
7778          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7779            << (NewTag == TTK_Class)
7780            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7781                                            NewTag == TTK_Class?
7782                                            "class" : "struct");
7783        }
7784      }
7785      return true;
7786    }
7787
7788    // Check for a previous definition.  If current tag and definition
7789    // are same type, do nothing.  If no definition, but disagree with
7790    // with previous tag type, give a warning, but no fix-it.
7791    const TagDecl *Redecl = Previous->getDefinition() ?
7792                            Previous->getDefinition() : Previous;
7793    if (Redecl->getTagKind() == NewTag) {
7794      return true;
7795    }
7796
7797    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7798      << (NewTag == TTK_Class)
7799      << isTemplate << &Name;
7800    Diag(Redecl->getLocation(), diag::note_previous_use);
7801
7802    // If there is a previous defintion, suggest a fix-it.
7803    if (Previous->getDefinition()) {
7804        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7805          << (Redecl->getTagKind() == TTK_Class)
7806          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7807                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7808    }
7809
7810    return true;
7811  }
7812  return false;
7813}
7814
7815/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7816/// former case, Name will be non-null.  In the later case, Name will be null.
7817/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7818/// reference/declaration/definition of a tag.
7819Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7820                     SourceLocation KWLoc, CXXScopeSpec &SS,
7821                     IdentifierInfo *Name, SourceLocation NameLoc,
7822                     AttributeList *Attr, AccessSpecifier AS,
7823                     SourceLocation ModulePrivateLoc,
7824                     MultiTemplateParamsArg TemplateParameterLists,
7825                     bool &OwnedDecl, bool &IsDependent,
7826                     SourceLocation ScopedEnumKWLoc,
7827                     bool ScopedEnumUsesClassTag,
7828                     TypeResult UnderlyingType) {
7829  // If this is not a definition, it must have a name.
7830  assert((Name != 0 || TUK == TUK_Definition) &&
7831         "Nameless record must be a definition!");
7832  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7833
7834  OwnedDecl = false;
7835  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7836  bool ScopedEnum = ScopedEnumKWLoc.isValid();
7837
7838  // FIXME: Check explicit specializations more carefully.
7839  bool isExplicitSpecialization = false;
7840  bool Invalid = false;
7841
7842  // We only need to do this matching if we have template parameters
7843  // or a scope specifier, which also conveniently avoids this work
7844  // for non-C++ cases.
7845  if (TemplateParameterLists.size() > 0 ||
7846      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7847    if (TemplateParameterList *TemplateParams
7848          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7849                                                TemplateParameterLists.get(),
7850                                                TemplateParameterLists.size(),
7851                                                    TUK == TUK_Friend,
7852                                                    isExplicitSpecialization,
7853                                                    Invalid)) {
7854      if (TemplateParams->size() > 0) {
7855        // This is a declaration or definition of a class template (which may
7856        // be a member of another template).
7857
7858        if (Invalid)
7859          return 0;
7860
7861        OwnedDecl = false;
7862        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7863                                               SS, Name, NameLoc, Attr,
7864                                               TemplateParams, AS,
7865                                               ModulePrivateLoc,
7866                                           TemplateParameterLists.size() - 1,
7867                 (TemplateParameterList**) TemplateParameterLists.release());
7868        return Result.get();
7869      } else {
7870        // The "template<>" header is extraneous.
7871        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7872          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7873        isExplicitSpecialization = true;
7874      }
7875    }
7876  }
7877
7878  // Figure out the underlying type if this a enum declaration. We need to do
7879  // this early, because it's needed to detect if this is an incompatible
7880  // redeclaration.
7881  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7882
7883  if (Kind == TTK_Enum) {
7884    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7885      // No underlying type explicitly specified, or we failed to parse the
7886      // type, default to int.
7887      EnumUnderlying = Context.IntTy.getTypePtr();
7888    else if (UnderlyingType.get()) {
7889      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7890      // integral type; any cv-qualification is ignored.
7891      TypeSourceInfo *TI = 0;
7892      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7893      EnumUnderlying = TI;
7894
7895      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7896
7897      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7898        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7899          << T;
7900        // Recover by falling back to int.
7901        EnumUnderlying = Context.IntTy.getTypePtr();
7902      }
7903
7904      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7905                                          UPPC_FixedUnderlyingType))
7906        EnumUnderlying = Context.IntTy.getTypePtr();
7907
7908    } else if (getLangOptions().MicrosoftMode)
7909      // Microsoft enums are always of int type.
7910      EnumUnderlying = Context.IntTy.getTypePtr();
7911  }
7912
7913  DeclContext *SearchDC = CurContext;
7914  DeclContext *DC = CurContext;
7915  bool isStdBadAlloc = false;
7916
7917  RedeclarationKind Redecl = ForRedeclaration;
7918  if (TUK == TUK_Friend || TUK == TUK_Reference)
7919    Redecl = NotForRedeclaration;
7920
7921  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7922
7923  if (Name && SS.isNotEmpty()) {
7924    // We have a nested-name tag ('struct foo::bar').
7925
7926    // Check for invalid 'foo::'.
7927    if (SS.isInvalid()) {
7928      Name = 0;
7929      goto CreateNewDecl;
7930    }
7931
7932    // If this is a friend or a reference to a class in a dependent
7933    // context, don't try to make a decl for it.
7934    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7935      DC = computeDeclContext(SS, false);
7936      if (!DC) {
7937        IsDependent = true;
7938        return 0;
7939      }
7940    } else {
7941      DC = computeDeclContext(SS, true);
7942      if (!DC) {
7943        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7944          << SS.getRange();
7945        return 0;
7946      }
7947    }
7948
7949    if (RequireCompleteDeclContext(SS, DC))
7950      return 0;
7951
7952    SearchDC = DC;
7953    // Look-up name inside 'foo::'.
7954    LookupQualifiedName(Previous, DC);
7955
7956    if (Previous.isAmbiguous())
7957      return 0;
7958
7959    if (Previous.empty()) {
7960      // Name lookup did not find anything. However, if the
7961      // nested-name-specifier refers to the current instantiation,
7962      // and that current instantiation has any dependent base
7963      // classes, we might find something at instantiation time: treat
7964      // this as a dependent elaborated-type-specifier.
7965      // But this only makes any sense for reference-like lookups.
7966      if (Previous.wasNotFoundInCurrentInstantiation() &&
7967          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7968        IsDependent = true;
7969        return 0;
7970      }
7971
7972      // A tag 'foo::bar' must already exist.
7973      Diag(NameLoc, diag::err_not_tag_in_scope)
7974        << Kind << Name << DC << SS.getRange();
7975      Name = 0;
7976      Invalid = true;
7977      goto CreateNewDecl;
7978    }
7979  } else if (Name) {
7980    // If this is a named struct, check to see if there was a previous forward
7981    // declaration or definition.
7982    // FIXME: We're looking into outer scopes here, even when we
7983    // shouldn't be. Doing so can result in ambiguities that we
7984    // shouldn't be diagnosing.
7985    LookupName(Previous, S);
7986
7987    if (Previous.isAmbiguous() &&
7988        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7989      LookupResult::Filter F = Previous.makeFilter();
7990      while (F.hasNext()) {
7991        NamedDecl *ND = F.next();
7992        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7993          F.erase();
7994      }
7995      F.done();
7996    }
7997
7998    // Note:  there used to be some attempt at recovery here.
7999    if (Previous.isAmbiguous())
8000      return 0;
8001
8002    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
8003      // FIXME: This makes sure that we ignore the contexts associated
8004      // with C structs, unions, and enums when looking for a matching
8005      // tag declaration or definition. See the similar lookup tweak
8006      // in Sema::LookupName; is there a better way to deal with this?
8007      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
8008        SearchDC = SearchDC->getParent();
8009    }
8010  } else if (S->isFunctionPrototypeScope()) {
8011    // If this is an enum declaration in function prototype scope, set its
8012    // initial context to the translation unit.
8013    SearchDC = Context.getTranslationUnitDecl();
8014  }
8015
8016  if (Previous.isSingleResult() &&
8017      Previous.getFoundDecl()->isTemplateParameter()) {
8018    // Maybe we will complain about the shadowed template parameter.
8019    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
8020    // Just pretend that we didn't see the previous declaration.
8021    Previous.clear();
8022  }
8023
8024  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
8025      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
8026    // This is a declaration of or a reference to "std::bad_alloc".
8027    isStdBadAlloc = true;
8028
8029    if (Previous.empty() && StdBadAlloc) {
8030      // std::bad_alloc has been implicitly declared (but made invisible to
8031      // name lookup). Fill in this implicit declaration as the previous
8032      // declaration, so that the declarations get chained appropriately.
8033      Previous.addDecl(getStdBadAlloc());
8034    }
8035  }
8036
8037  // If we didn't find a previous declaration, and this is a reference
8038  // (or friend reference), move to the correct scope.  In C++, we
8039  // also need to do a redeclaration lookup there, just in case
8040  // there's a shadow friend decl.
8041  if (Name && Previous.empty() &&
8042      (TUK == TUK_Reference || TUK == TUK_Friend)) {
8043    if (Invalid) goto CreateNewDecl;
8044    assert(SS.isEmpty());
8045
8046    if (TUK == TUK_Reference) {
8047      // C++ [basic.scope.pdecl]p5:
8048      //   -- for an elaborated-type-specifier of the form
8049      //
8050      //          class-key identifier
8051      //
8052      //      if the elaborated-type-specifier is used in the
8053      //      decl-specifier-seq or parameter-declaration-clause of a
8054      //      function defined in namespace scope, the identifier is
8055      //      declared as a class-name in the namespace that contains
8056      //      the declaration; otherwise, except as a friend
8057      //      declaration, the identifier is declared in the smallest
8058      //      non-class, non-function-prototype scope that contains the
8059      //      declaration.
8060      //
8061      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8062      // C structs and unions.
8063      //
8064      // It is an error in C++ to declare (rather than define) an enum
8065      // type, including via an elaborated type specifier.  We'll
8066      // diagnose that later; for now, declare the enum in the same
8067      // scope as we would have picked for any other tag type.
8068      //
8069      // GNU C also supports this behavior as part of its incomplete
8070      // enum types extension, while GNU C++ does not.
8071      //
8072      // Find the context where we'll be declaring the tag.
8073      // FIXME: We would like to maintain the current DeclContext as the
8074      // lexical context,
8075      while (SearchDC->isRecord() || SearchDC->isTransparentContext() ||
8076             SearchDC->isObjCContainer())
8077        SearchDC = SearchDC->getParent();
8078
8079      // Find the scope where we'll be declaring the tag.
8080      while (S->isClassScope() ||
8081             (getLangOptions().CPlusPlus &&
8082              S->isFunctionPrototypeScope()) ||
8083             ((S->getFlags() & Scope::DeclScope) == 0) ||
8084             (S->getEntity() &&
8085              ((DeclContext *)S->getEntity())->isTransparentContext()))
8086        S = S->getParent();
8087    } else {
8088      assert(TUK == TUK_Friend);
8089      // C++ [namespace.memdef]p3:
8090      //   If a friend declaration in a non-local class first declares a
8091      //   class or function, the friend class or function is a member of
8092      //   the innermost enclosing namespace.
8093      SearchDC = SearchDC->getEnclosingNamespaceContext();
8094    }
8095
8096    // In C++, we need to do a redeclaration lookup to properly
8097    // diagnose some problems.
8098    if (getLangOptions().CPlusPlus) {
8099      Previous.setRedeclarationKind(ForRedeclaration);
8100      LookupQualifiedName(Previous, SearchDC);
8101    }
8102  }
8103
8104  if (!Previous.empty()) {
8105    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8106
8107    // It's okay to have a tag decl in the same scope as a typedef
8108    // which hides a tag decl in the same scope.  Finding this
8109    // insanity with a redeclaration lookup can only actually happen
8110    // in C++.
8111    //
8112    // This is also okay for elaborated-type-specifiers, which is
8113    // technically forbidden by the current standard but which is
8114    // okay according to the likely resolution of an open issue;
8115    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8116    if (getLangOptions().CPlusPlus) {
8117      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8118        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8119          TagDecl *Tag = TT->getDecl();
8120          if (Tag->getDeclName() == Name &&
8121              Tag->getDeclContext()->getRedeclContext()
8122                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
8123            PrevDecl = Tag;
8124            Previous.clear();
8125            Previous.addDecl(Tag);
8126            Previous.resolveKind();
8127          }
8128        }
8129      }
8130    }
8131
8132    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8133      // If this is a use of a previous tag, or if the tag is already declared
8134      // in the same scope (so that the definition/declaration completes or
8135      // rementions the tag), reuse the decl.
8136      if (TUK == TUK_Reference || TUK == TUK_Friend ||
8137          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8138        // Make sure that this wasn't declared as an enum and now used as a
8139        // struct or something similar.
8140        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8141                                          TUK == TUK_Definition, KWLoc,
8142                                          *Name)) {
8143          bool SafeToContinue
8144            = (PrevTagDecl->getTagKind() != TTK_Enum &&
8145               Kind != TTK_Enum);
8146          if (SafeToContinue)
8147            Diag(KWLoc, diag::err_use_with_wrong_tag)
8148              << Name
8149              << FixItHint::CreateReplacement(SourceRange(KWLoc),
8150                                              PrevTagDecl->getKindName());
8151          else
8152            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8153          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8154
8155          if (SafeToContinue)
8156            Kind = PrevTagDecl->getTagKind();
8157          else {
8158            // Recover by making this an anonymous redefinition.
8159            Name = 0;
8160            Previous.clear();
8161            Invalid = true;
8162          }
8163        }
8164
8165        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8166          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8167
8168          // If this is an elaborated-type-specifier for a scoped enumeration,
8169          // the 'class' keyword is not necessary and not permitted.
8170          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8171            if (ScopedEnum)
8172              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8173                << PrevEnum->isScoped()
8174                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8175            return PrevTagDecl;
8176          }
8177
8178          // All conflicts with previous declarations are recovered by
8179          // returning the previous declaration.
8180          if (ScopedEnum != PrevEnum->isScoped()) {
8181            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
8182              << PrevEnum->isScoped();
8183            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8184            return PrevTagDecl;
8185          }
8186          else if (EnumUnderlying && PrevEnum->isFixed()) {
8187            QualType T;
8188            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8189                T = TI->getType();
8190            else
8191                T = QualType(EnumUnderlying.get<const Type*>(), 0);
8192
8193            if (!Context.hasSameUnqualifiedType(T,
8194                                                PrevEnum->getIntegerType())) {
8195              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
8196                   diag::err_enum_redeclare_type_mismatch)
8197                << T
8198                << PrevEnum->getIntegerType();
8199              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8200              return PrevTagDecl;
8201            }
8202          }
8203          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
8204            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
8205              << PrevEnum->isFixed();
8206            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8207            return PrevTagDecl;
8208          }
8209        }
8210
8211        if (!Invalid) {
8212          // If this is a use, just return the declaration we found.
8213
8214          // FIXME: In the future, return a variant or some other clue
8215          // for the consumer of this Decl to know it doesn't own it.
8216          // For our current ASTs this shouldn't be a problem, but will
8217          // need to be changed with DeclGroups.
8218          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8219               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
8220            return PrevTagDecl;
8221
8222          // Diagnose attempts to redefine a tag.
8223          if (TUK == TUK_Definition) {
8224            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8225              // If we're defining a specialization and the previous definition
8226              // is from an implicit instantiation, don't emit an error
8227              // here; we'll catch this in the general case below.
8228              if (!isExplicitSpecialization ||
8229                  !isa<CXXRecordDecl>(Def) ||
8230                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
8231                                               == TSK_ExplicitSpecialization) {
8232                // A redeclaration in function prototype scope in C isn't
8233                // visible elsewhere, so merely issue a warning.
8234                if (!getLangOptions().CPlusPlus && S->containedInPrototypeScope())
8235                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
8236                else
8237                  Diag(NameLoc, diag::err_redefinition) << Name;
8238                Diag(Def->getLocation(), diag::note_previous_definition);
8239                // If this is a redefinition, recover by making this
8240                // struct be anonymous, which will make any later
8241                // references get the previous definition.
8242                Name = 0;
8243                Previous.clear();
8244                Invalid = true;
8245              }
8246            } else {
8247              // If the type is currently being defined, complain
8248              // about a nested redefinition.
8249              const TagType *Tag
8250                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8251              if (Tag->isBeingDefined()) {
8252                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8253                Diag(PrevTagDecl->getLocation(),
8254                     diag::note_previous_definition);
8255                Name = 0;
8256                Previous.clear();
8257                Invalid = true;
8258              }
8259            }
8260
8261            // Okay, this is definition of a previously declared or referenced
8262            // tag PrevDecl. We're going to create a new Decl for it.
8263          }
8264        }
8265        // If we get here we have (another) forward declaration or we
8266        // have a definition.  Just create a new decl.
8267
8268      } else {
8269        // If we get here, this is a definition of a new tag type in a nested
8270        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8271        // new decl/type.  We set PrevDecl to NULL so that the entities
8272        // have distinct types.
8273        Previous.clear();
8274      }
8275      // If we get here, we're going to create a new Decl. If PrevDecl
8276      // is non-NULL, it's a definition of the tag declared by
8277      // PrevDecl. If it's NULL, we have a new definition.
8278
8279
8280    // Otherwise, PrevDecl is not a tag, but was found with tag
8281    // lookup.  This is only actually possible in C++, where a few
8282    // things like templates still live in the tag namespace.
8283    } else {
8284      // Use a better diagnostic if an elaborated-type-specifier
8285      // found the wrong kind of type on the first
8286      // (non-redeclaration) lookup.
8287      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8288          !Previous.isForRedeclaration()) {
8289        unsigned Kind = 0;
8290        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8291        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8292        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8293        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8294        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8295        Invalid = true;
8296
8297      // Otherwise, only diagnose if the declaration is in scope.
8298      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8299                                isExplicitSpecialization)) {
8300        // do nothing
8301
8302      // Diagnose implicit declarations introduced by elaborated types.
8303      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8304        unsigned Kind = 0;
8305        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8306        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8307        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8308        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8309        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8310        Invalid = true;
8311
8312      // Otherwise it's a declaration.  Call out a particularly common
8313      // case here.
8314      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8315        unsigned Kind = 0;
8316        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8317        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8318          << Name << Kind << TND->getUnderlyingType();
8319        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8320        Invalid = true;
8321
8322      // Otherwise, diagnose.
8323      } else {
8324        // The tag name clashes with something else in the target scope,
8325        // issue an error and recover by making this tag be anonymous.
8326        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8327        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8328        Name = 0;
8329        Invalid = true;
8330      }
8331
8332      // The existing declaration isn't relevant to us; we're in a
8333      // new scope, so clear out the previous declaration.
8334      Previous.clear();
8335    }
8336  }
8337
8338CreateNewDecl:
8339
8340  TagDecl *PrevDecl = 0;
8341  if (Previous.isSingleResult())
8342    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8343
8344  // If there is an identifier, use the location of the identifier as the
8345  // location of the decl, otherwise use the location of the struct/union
8346  // keyword.
8347  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8348
8349  // Otherwise, create a new declaration. If there is a previous
8350  // declaration of the same entity, the two will be linked via
8351  // PrevDecl.
8352  TagDecl *New;
8353
8354  bool IsForwardReference = false;
8355  if (Kind == TTK_Enum) {
8356    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8357    // enum X { A, B, C } D;    D should chain to X.
8358    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8359                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8360                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8361    // If this is an undefined enum, warn.
8362    if (TUK != TUK_Definition && !Invalid) {
8363      TagDecl *Def;
8364      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8365        // C++0x: 7.2p2: opaque-enum-declaration.
8366        // Conflicts are diagnosed above. Do nothing.
8367      }
8368      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8369        Diag(Loc, diag::ext_forward_ref_enum_def)
8370          << New;
8371        Diag(Def->getLocation(), diag::note_previous_definition);
8372      } else {
8373        unsigned DiagID = diag::ext_forward_ref_enum;
8374        if (getLangOptions().MicrosoftMode)
8375          DiagID = diag::ext_ms_forward_ref_enum;
8376        else if (getLangOptions().CPlusPlus)
8377          DiagID = diag::err_forward_ref_enum;
8378        Diag(Loc, DiagID);
8379
8380        // If this is a forward-declared reference to an enumeration, make a
8381        // note of it; we won't actually be introducing the declaration into
8382        // the declaration context.
8383        if (TUK == TUK_Reference)
8384          IsForwardReference = true;
8385      }
8386    }
8387
8388    if (EnumUnderlying) {
8389      EnumDecl *ED = cast<EnumDecl>(New);
8390      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8391        ED->setIntegerTypeSourceInfo(TI);
8392      else
8393        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8394      ED->setPromotionType(ED->getIntegerType());
8395    }
8396
8397  } else {
8398    // struct/union/class
8399
8400    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8401    // struct X { int A; } D;    D should chain to X.
8402    if (getLangOptions().CPlusPlus) {
8403      // FIXME: Look for a way to use RecordDecl for simple structs.
8404      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8405                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8406
8407      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8408        StdBadAlloc = cast<CXXRecordDecl>(New);
8409    } else
8410      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8411                               cast_or_null<RecordDecl>(PrevDecl));
8412  }
8413
8414  // Maybe add qualifier info.
8415  if (SS.isNotEmpty()) {
8416    if (SS.isSet()) {
8417      New->setQualifierInfo(SS.getWithLocInContext(Context));
8418      if (TemplateParameterLists.size() > 0) {
8419        New->setTemplateParameterListsInfo(Context,
8420                                           TemplateParameterLists.size(),
8421                    (TemplateParameterList**) TemplateParameterLists.release());
8422      }
8423    }
8424    else
8425      Invalid = true;
8426  }
8427
8428  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8429    // Add alignment attributes if necessary; these attributes are checked when
8430    // the ASTContext lays out the structure.
8431    //
8432    // It is important for implementing the correct semantics that this
8433    // happen here (in act on tag decl). The #pragma pack stack is
8434    // maintained as a result of parser callbacks which can occur at
8435    // many points during the parsing of a struct declaration (because
8436    // the #pragma tokens are effectively skipped over during the
8437    // parsing of the struct).
8438    AddAlignmentAttributesForRecord(RD);
8439
8440    AddMsStructLayoutForRecord(RD);
8441  }
8442
8443  if (ModulePrivateLoc.isValid()) {
8444    if (isExplicitSpecialization)
8445      Diag(New->getLocation(), diag::err_module_private_specialization)
8446        << 2
8447        << FixItHint::CreateRemoval(ModulePrivateLoc);
8448    // __module_private__ does not apply to local classes. However, we only
8449    // diagnose this as an error when the declaration specifiers are
8450    // freestanding. Here, we just ignore the __module_private__.
8451    else if (!SearchDC->isFunctionOrMethod())
8452      New->setModulePrivate();
8453  }
8454
8455  // If this is a specialization of a member class (of a class template),
8456  // check the specialization.
8457  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8458    Invalid = true;
8459
8460  if (Invalid)
8461    New->setInvalidDecl();
8462
8463  if (Attr)
8464    ProcessDeclAttributeList(S, New, Attr);
8465
8466  // If we're declaring or defining a tag in function prototype scope
8467  // in C, note that this type can only be used within the function.
8468  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8469    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8470
8471  // Set the lexical context. If the tag has a C++ scope specifier, the
8472  // lexical context will be different from the semantic context.
8473  New->setLexicalDeclContext(CurContext);
8474
8475  // Mark this as a friend decl if applicable.
8476  // In Microsoft mode, a friend declaration also acts as a forward
8477  // declaration so we always pass true to setObjectOfFriendDecl to make
8478  // the tag name visible.
8479  if (TUK == TUK_Friend)
8480    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8481                               getLangOptions().MicrosoftExt);
8482
8483  // Set the access specifier.
8484  if (!Invalid && SearchDC->isRecord())
8485    SetMemberAccessSpecifier(New, PrevDecl, AS);
8486
8487  if (TUK == TUK_Definition)
8488    New->startDefinition();
8489
8490  // If this has an identifier, add it to the scope stack.
8491  if (TUK == TUK_Friend) {
8492    // We might be replacing an existing declaration in the lookup tables;
8493    // if so, borrow its access specifier.
8494    if (PrevDecl)
8495      New->setAccess(PrevDecl->getAccess());
8496
8497    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8498    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8499    if (Name) // can be null along some error paths
8500      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8501        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8502  } else if (Name) {
8503    S = getNonFieldDeclScope(S);
8504    PushOnScopeChains(New, S, !IsForwardReference);
8505    if (IsForwardReference)
8506      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8507
8508  } else {
8509    CurContext->addDecl(New);
8510  }
8511
8512  // If this is the C FILE type, notify the AST context.
8513  if (IdentifierInfo *II = New->getIdentifier())
8514    if (!New->isInvalidDecl() &&
8515        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8516        II->isStr("FILE"))
8517      Context.setFILEDecl(New);
8518
8519  // If we were in function prototype scope (and not in C++ mode), add this
8520  // tag to the list of decls to inject into the function definition scope.
8521  if (S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus &&
8522      InFunctionDeclarator && Name)
8523    DeclsInPrototypeScope.push_back(New);
8524
8525  OwnedDecl = true;
8526  return New;
8527}
8528
8529void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8530  AdjustDeclIfTemplate(TagD);
8531  TagDecl *Tag = cast<TagDecl>(TagD);
8532
8533  // Enter the tag context.
8534  PushDeclContext(S, Tag);
8535}
8536
8537Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8538  assert(isa<ObjCContainerDecl>(IDecl) &&
8539         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8540  DeclContext *OCD = cast<DeclContext>(IDecl);
8541  assert(getContainingDC(OCD) == CurContext &&
8542      "The next DeclContext should be lexically contained in the current one.");
8543  CurContext = OCD;
8544  return IDecl;
8545}
8546
8547void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8548                                           SourceLocation FinalLoc,
8549                                           SourceLocation LBraceLoc) {
8550  AdjustDeclIfTemplate(TagD);
8551  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8552
8553  FieldCollector->StartClass();
8554
8555  if (!Record->getIdentifier())
8556    return;
8557
8558  if (FinalLoc.isValid())
8559    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8560
8561  // C++ [class]p2:
8562  //   [...] The class-name is also inserted into the scope of the
8563  //   class itself; this is known as the injected-class-name. For
8564  //   purposes of access checking, the injected-class-name is treated
8565  //   as if it were a public member name.
8566  CXXRecordDecl *InjectedClassName
8567    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8568                            Record->getLocStart(), Record->getLocation(),
8569                            Record->getIdentifier(),
8570                            /*PrevDecl=*/0,
8571                            /*DelayTypeCreation=*/true);
8572  Context.getTypeDeclType(InjectedClassName, Record);
8573  InjectedClassName->setImplicit();
8574  InjectedClassName->setAccess(AS_public);
8575  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8576      InjectedClassName->setDescribedClassTemplate(Template);
8577  PushOnScopeChains(InjectedClassName, S);
8578  assert(InjectedClassName->isInjectedClassName() &&
8579         "Broken injected-class-name");
8580}
8581
8582void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8583                                    SourceLocation RBraceLoc) {
8584  AdjustDeclIfTemplate(TagD);
8585  TagDecl *Tag = cast<TagDecl>(TagD);
8586  Tag->setRBraceLoc(RBraceLoc);
8587
8588  if (isa<CXXRecordDecl>(Tag))
8589    FieldCollector->FinishClass();
8590
8591  // Exit this scope of this tag's definition.
8592  PopDeclContext();
8593
8594  // Notify the consumer that we've defined a tag.
8595  Consumer.HandleTagDeclDefinition(Tag);
8596}
8597
8598void Sema::ActOnObjCContainerFinishDefinition() {
8599  // Exit this scope of this interface definition.
8600  PopDeclContext();
8601}
8602
8603void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8604  assert(DC == CurContext && "Mismatch of container contexts");
8605  OriginalLexicalContext = DC;
8606  ActOnObjCContainerFinishDefinition();
8607}
8608
8609void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8610  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8611  OriginalLexicalContext = 0;
8612}
8613
8614void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8615  AdjustDeclIfTemplate(TagD);
8616  TagDecl *Tag = cast<TagDecl>(TagD);
8617  Tag->setInvalidDecl();
8618
8619  // We're undoing ActOnTagStartDefinition here, not
8620  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8621  // the FieldCollector.
8622
8623  PopDeclContext();
8624}
8625
8626// Note that FieldName may be null for anonymous bitfields.
8627ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
8628                                IdentifierInfo *FieldName,
8629                                QualType FieldTy, Expr *BitWidth,
8630                                bool *ZeroWidth) {
8631  // Default to true; that shouldn't confuse checks for emptiness
8632  if (ZeroWidth)
8633    *ZeroWidth = true;
8634
8635  // C99 6.7.2.1p4 - verify the field type.
8636  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8637  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8638    // Handle incomplete types with specific error.
8639    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8640      return ExprError();
8641    if (FieldName)
8642      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8643        << FieldName << FieldTy << BitWidth->getSourceRange();
8644    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8645      << FieldTy << BitWidth->getSourceRange();
8646  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8647                                             UPPC_BitFieldWidth))
8648    return ExprError();
8649
8650  // If the bit-width is type- or value-dependent, don't try to check
8651  // it now.
8652  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8653    return Owned(BitWidth);
8654
8655  llvm::APSInt Value;
8656  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
8657  if (ICE.isInvalid())
8658    return ICE;
8659  BitWidth = ICE.take();
8660
8661  if (Value != 0 && ZeroWidth)
8662    *ZeroWidth = false;
8663
8664  // Zero-width bitfield is ok for anonymous field.
8665  if (Value == 0 && FieldName)
8666    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8667
8668  if (Value.isSigned() && Value.isNegative()) {
8669    if (FieldName)
8670      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8671               << FieldName << Value.toString(10);
8672    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8673      << Value.toString(10);
8674  }
8675
8676  if (!FieldTy->isDependentType()) {
8677    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8678    if (Value.getZExtValue() > TypeSize) {
8679      if (!getLangOptions().CPlusPlus) {
8680        if (FieldName)
8681          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8682            << FieldName << (unsigned)Value.getZExtValue()
8683            << (unsigned)TypeSize;
8684
8685        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8686          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8687      }
8688
8689      if (FieldName)
8690        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8691          << FieldName << (unsigned)Value.getZExtValue()
8692          << (unsigned)TypeSize;
8693      else
8694        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8695          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8696    }
8697  }
8698
8699  return Owned(BitWidth);
8700}
8701
8702/// ActOnField - Each field of a C struct/union is passed into this in order
8703/// to create a FieldDecl object for it.
8704Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8705                       Declarator &D, Expr *BitfieldWidth) {
8706  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8707                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8708                               /*HasInit=*/false, AS_public);
8709  return Res;
8710}
8711
8712/// HandleField - Analyze a field of a C struct or a C++ data member.
8713///
8714FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8715                             SourceLocation DeclStart,
8716                             Declarator &D, Expr *BitWidth, bool HasInit,
8717                             AccessSpecifier AS) {
8718  IdentifierInfo *II = D.getIdentifier();
8719  SourceLocation Loc = DeclStart;
8720  if (II) Loc = D.getIdentifierLoc();
8721
8722  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8723  QualType T = TInfo->getType();
8724  if (getLangOptions().CPlusPlus) {
8725    CheckExtraCXXDefaultArguments(D);
8726
8727    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8728                                        UPPC_DataMemberType)) {
8729      D.setInvalidType();
8730      T = Context.IntTy;
8731      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8732    }
8733  }
8734
8735  DiagnoseFunctionSpecifiers(D);
8736
8737  if (D.getDeclSpec().isThreadSpecified())
8738    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8739  if (D.getDeclSpec().isConstexprSpecified())
8740    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8741      << 2;
8742
8743  // Check to see if this name was declared as a member previously
8744  NamedDecl *PrevDecl = 0;
8745  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8746  LookupName(Previous, S);
8747  switch (Previous.getResultKind()) {
8748    case LookupResult::Found:
8749    case LookupResult::FoundUnresolvedValue:
8750      PrevDecl = Previous.getAsSingle<NamedDecl>();
8751      break;
8752
8753    case LookupResult::FoundOverloaded:
8754      PrevDecl = Previous.getRepresentativeDecl();
8755      break;
8756
8757    case LookupResult::NotFound:
8758    case LookupResult::NotFoundInCurrentInstantiation:
8759    case LookupResult::Ambiguous:
8760      break;
8761  }
8762  Previous.suppressDiagnostics();
8763
8764  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8765    // Maybe we will complain about the shadowed template parameter.
8766    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8767    // Just pretend that we didn't see the previous declaration.
8768    PrevDecl = 0;
8769  }
8770
8771  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8772    PrevDecl = 0;
8773
8774  bool Mutable
8775    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8776  SourceLocation TSSL = D.getSourceRange().getBegin();
8777  FieldDecl *NewFD
8778    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8779                     TSSL, AS, PrevDecl, &D);
8780
8781  if (NewFD->isInvalidDecl())
8782    Record->setInvalidDecl();
8783
8784  if (D.getDeclSpec().isModulePrivateSpecified())
8785    NewFD->setModulePrivate();
8786
8787  if (NewFD->isInvalidDecl() && PrevDecl) {
8788    // Don't introduce NewFD into scope; there's already something
8789    // with the same name in the same scope.
8790  } else if (II) {
8791    PushOnScopeChains(NewFD, S);
8792  } else
8793    Record->addDecl(NewFD);
8794
8795  return NewFD;
8796}
8797
8798/// \brief Build a new FieldDecl and check its well-formedness.
8799///
8800/// This routine builds a new FieldDecl given the fields name, type,
8801/// record, etc. \p PrevDecl should refer to any previous declaration
8802/// with the same name and in the same scope as the field to be
8803/// created.
8804///
8805/// \returns a new FieldDecl.
8806///
8807/// \todo The Declarator argument is a hack. It will be removed once
8808FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8809                                TypeSourceInfo *TInfo,
8810                                RecordDecl *Record, SourceLocation Loc,
8811                                bool Mutable, Expr *BitWidth, bool HasInit,
8812                                SourceLocation TSSL,
8813                                AccessSpecifier AS, NamedDecl *PrevDecl,
8814                                Declarator *D) {
8815  IdentifierInfo *II = Name.getAsIdentifierInfo();
8816  bool InvalidDecl = false;
8817  if (D) InvalidDecl = D->isInvalidType();
8818
8819  // If we receive a broken type, recover by assuming 'int' and
8820  // marking this declaration as invalid.
8821  if (T.isNull()) {
8822    InvalidDecl = true;
8823    T = Context.IntTy;
8824  }
8825
8826  QualType EltTy = Context.getBaseElementType(T);
8827  if (!EltTy->isDependentType() &&
8828      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8829    // Fields of incomplete type force their record to be invalid.
8830    Record->setInvalidDecl();
8831    InvalidDecl = true;
8832  }
8833
8834  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8835  // than a variably modified type.
8836  if (!InvalidDecl && T->isVariablyModifiedType()) {
8837    bool SizeIsNegative;
8838    llvm::APSInt Oversized;
8839    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8840                                                           SizeIsNegative,
8841                                                           Oversized);
8842    if (!FixedTy.isNull()) {
8843      Diag(Loc, diag::warn_illegal_constant_array_size);
8844      T = FixedTy;
8845    } else {
8846      if (SizeIsNegative)
8847        Diag(Loc, diag::err_typecheck_negative_array_size);
8848      else if (Oversized.getBoolValue())
8849        Diag(Loc, diag::err_array_too_large)
8850          << Oversized.toString(10);
8851      else
8852        Diag(Loc, diag::err_typecheck_field_variable_size);
8853      InvalidDecl = true;
8854    }
8855  }
8856
8857  // Fields can not have abstract class types
8858  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8859                                             diag::err_abstract_type_in_decl,
8860                                             AbstractFieldType))
8861    InvalidDecl = true;
8862
8863  bool ZeroWidth = false;
8864  // If this is declared as a bit-field, check the bit-field.
8865  if (!InvalidDecl && BitWidth) {
8866    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
8867    if (!BitWidth) {
8868      InvalidDecl = true;
8869      BitWidth = 0;
8870      ZeroWidth = false;
8871    }
8872  }
8873
8874  // Check that 'mutable' is consistent with the type of the declaration.
8875  if (!InvalidDecl && Mutable) {
8876    unsigned DiagID = 0;
8877    if (T->isReferenceType())
8878      DiagID = diag::err_mutable_reference;
8879    else if (T.isConstQualified())
8880      DiagID = diag::err_mutable_const;
8881
8882    if (DiagID) {
8883      SourceLocation ErrLoc = Loc;
8884      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8885        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8886      Diag(ErrLoc, DiagID);
8887      Mutable = false;
8888      InvalidDecl = true;
8889    }
8890  }
8891
8892  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8893                                       BitWidth, Mutable, HasInit);
8894  if (InvalidDecl)
8895    NewFD->setInvalidDecl();
8896
8897  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8898    Diag(Loc, diag::err_duplicate_member) << II;
8899    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8900    NewFD->setInvalidDecl();
8901  }
8902
8903  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8904    if (Record->isUnion()) {
8905      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8906        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8907        if (RDecl->getDefinition()) {
8908          // C++ [class.union]p1: An object of a class with a non-trivial
8909          // constructor, a non-trivial copy constructor, a non-trivial
8910          // destructor, or a non-trivial copy assignment operator
8911          // cannot be a member of a union, nor can an array of such
8912          // objects.
8913          if (CheckNontrivialField(NewFD))
8914            NewFD->setInvalidDecl();
8915        }
8916      }
8917
8918      // C++ [class.union]p1: If a union contains a member of reference type,
8919      // the program is ill-formed.
8920      if (EltTy->isReferenceType()) {
8921        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8922          << NewFD->getDeclName() << EltTy;
8923        NewFD->setInvalidDecl();
8924      }
8925    }
8926  }
8927
8928  // FIXME: We need to pass in the attributes given an AST
8929  // representation, not a parser representation.
8930  if (D)
8931    // FIXME: What to pass instead of TUScope?
8932    ProcessDeclAttributes(TUScope, NewFD, *D);
8933
8934  // In auto-retain/release, infer strong retension for fields of
8935  // retainable type.
8936  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8937    NewFD->setInvalidDecl();
8938
8939  if (T.isObjCGCWeak())
8940    Diag(Loc, diag::warn_attribute_weak_on_field);
8941
8942  NewFD->setAccess(AS);
8943  return NewFD;
8944}
8945
8946bool Sema::CheckNontrivialField(FieldDecl *FD) {
8947  assert(FD);
8948  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8949
8950  if (FD->isInvalidDecl())
8951    return true;
8952
8953  QualType EltTy = Context.getBaseElementType(FD->getType());
8954  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8955    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8956    if (RDecl->getDefinition()) {
8957      // We check for copy constructors before constructors
8958      // because otherwise we'll never get complaints about
8959      // copy constructors.
8960
8961      CXXSpecialMember member = CXXInvalid;
8962      if (!RDecl->hasTrivialCopyConstructor())
8963        member = CXXCopyConstructor;
8964      else if (!RDecl->hasTrivialDefaultConstructor())
8965        member = CXXDefaultConstructor;
8966      else if (!RDecl->hasTrivialCopyAssignment())
8967        member = CXXCopyAssignment;
8968      else if (!RDecl->hasTrivialDestructor())
8969        member = CXXDestructor;
8970
8971      if (member != CXXInvalid) {
8972        if (!getLangOptions().CPlusPlus0x &&
8973            getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8974          // Objective-C++ ARC: it is an error to have a non-trivial field of
8975          // a union. However, system headers in Objective-C programs
8976          // occasionally have Objective-C lifetime objects within unions,
8977          // and rather than cause the program to fail, we make those
8978          // members unavailable.
8979          SourceLocation Loc = FD->getLocation();
8980          if (getSourceManager().isInSystemHeader(Loc)) {
8981            if (!FD->hasAttr<UnavailableAttr>())
8982              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8983                                  "this system field has retaining ownership"));
8984            return false;
8985          }
8986        }
8987
8988        Diag(FD->getLocation(), getLangOptions().CPlusPlus0x ?
8989               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
8990               diag::err_illegal_union_or_anon_struct_member)
8991          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8992        DiagnoseNontrivial(RT, member);
8993        return !getLangOptions().CPlusPlus0x;
8994      }
8995    }
8996  }
8997
8998  return false;
8999}
9000
9001/// If the given constructor is user-provided, produce a diagnostic explaining
9002/// that it makes the class non-trivial.
9003static bool DiagnoseNontrivialUserProvidedCtor(Sema &S, QualType QT,
9004                                               CXXConstructorDecl *CD,
9005                                               Sema::CXXSpecialMember CSM) {
9006  if (!CD->isUserProvided())
9007    return false;
9008
9009  SourceLocation CtorLoc = CD->getLocation();
9010  S.Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << CSM;
9011  return true;
9012}
9013
9014/// DiagnoseNontrivial - Given that a class has a non-trivial
9015/// special member, figure out why.
9016void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
9017  QualType QT(T, 0U);
9018  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
9019
9020  // Check whether the member was user-declared.
9021  switch (member) {
9022  case CXXInvalid:
9023    break;
9024
9025  case CXXDefaultConstructor:
9026    if (RD->hasUserDeclaredConstructor()) {
9027      typedef CXXRecordDecl::ctor_iterator ctor_iter;
9028      for (ctor_iter CI = RD->ctor_begin(), CE = RD->ctor_end(); CI != CE; ++CI)
9029        if (DiagnoseNontrivialUserProvidedCtor(*this, QT, *CI, member))
9030          return;
9031
9032      // No user-provided constructors; look for constructor templates.
9033      typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9034          tmpl_iter;
9035      for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end());
9036           TI != TE; ++TI) {
9037        CXXConstructorDecl *CD =
9038            dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl());
9039        if (CD && DiagnoseNontrivialUserProvidedCtor(*this, QT, CD, member))
9040          return;
9041      }
9042    }
9043    break;
9044
9045  case CXXCopyConstructor:
9046    if (RD->hasUserDeclaredCopyConstructor()) {
9047      SourceLocation CtorLoc =
9048        RD->getCopyConstructor(0)->getLocation();
9049      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9050      return;
9051    }
9052    break;
9053
9054  case CXXMoveConstructor:
9055    if (RD->hasUserDeclaredMoveConstructor()) {
9056      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
9057      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9058      return;
9059    }
9060    break;
9061
9062  case CXXCopyAssignment:
9063    if (RD->hasUserDeclaredCopyAssignment()) {
9064      // FIXME: this should use the location of the copy
9065      // assignment, not the type.
9066      SourceLocation TyLoc = RD->getSourceRange().getBegin();
9067      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
9068      return;
9069    }
9070    break;
9071
9072  case CXXMoveAssignment:
9073    if (RD->hasUserDeclaredMoveAssignment()) {
9074      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
9075      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9076      return;
9077    }
9078    break;
9079
9080  case CXXDestructor:
9081    if (RD->hasUserDeclaredDestructor()) {
9082      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
9083      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9084      return;
9085    }
9086    break;
9087  }
9088
9089  typedef CXXRecordDecl::base_class_iterator base_iter;
9090
9091  // Virtual bases and members inhibit trivial copying/construction,
9092  // but not trivial destruction.
9093  if (member != CXXDestructor) {
9094    // Check for virtual bases.  vbases includes indirect virtual bases,
9095    // so we just iterate through the direct bases.
9096    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
9097      if (bi->isVirtual()) {
9098        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
9099        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
9100        return;
9101      }
9102
9103    // Check for virtual methods.
9104    typedef CXXRecordDecl::method_iterator meth_iter;
9105    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
9106         ++mi) {
9107      if (mi->isVirtual()) {
9108        SourceLocation MLoc = mi->getSourceRange().getBegin();
9109        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
9110        return;
9111      }
9112    }
9113  }
9114
9115  bool (CXXRecordDecl::*hasTrivial)() const;
9116  switch (member) {
9117  case CXXDefaultConstructor:
9118    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
9119  case CXXCopyConstructor:
9120    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
9121  case CXXCopyAssignment:
9122    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
9123  case CXXDestructor:
9124    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
9125  default:
9126    llvm_unreachable("unexpected special member");
9127  }
9128
9129  // Check for nontrivial bases (and recurse).
9130  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
9131    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
9132    assert(BaseRT && "Don't know how to handle dependent bases");
9133    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
9134    if (!(BaseRecTy->*hasTrivial)()) {
9135      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
9136      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
9137      DiagnoseNontrivial(BaseRT, member);
9138      return;
9139    }
9140  }
9141
9142  // Check for nontrivial members (and recurse).
9143  typedef RecordDecl::field_iterator field_iter;
9144  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
9145       ++fi) {
9146    QualType EltTy = Context.getBaseElementType((*fi)->getType());
9147    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
9148      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
9149
9150      if (!(EltRD->*hasTrivial)()) {
9151        SourceLocation FLoc = (*fi)->getLocation();
9152        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
9153        DiagnoseNontrivial(EltRT, member);
9154        return;
9155      }
9156    }
9157
9158    if (EltTy->isObjCLifetimeType()) {
9159      switch (EltTy.getObjCLifetime()) {
9160      case Qualifiers::OCL_None:
9161      case Qualifiers::OCL_ExplicitNone:
9162        break;
9163
9164      case Qualifiers::OCL_Autoreleasing:
9165      case Qualifiers::OCL_Weak:
9166      case Qualifiers::OCL_Strong:
9167        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
9168          << QT << EltTy.getObjCLifetime();
9169        return;
9170      }
9171    }
9172  }
9173
9174  llvm_unreachable("found no explanation for non-trivial member");
9175}
9176
9177/// TranslateIvarVisibility - Translate visibility from a token ID to an
9178///  AST enum value.
9179static ObjCIvarDecl::AccessControl
9180TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9181  switch (ivarVisibility) {
9182  default: llvm_unreachable("Unknown visitibility kind");
9183  case tok::objc_private: return ObjCIvarDecl::Private;
9184  case tok::objc_public: return ObjCIvarDecl::Public;
9185  case tok::objc_protected: return ObjCIvarDecl::Protected;
9186  case tok::objc_package: return ObjCIvarDecl::Package;
9187  }
9188}
9189
9190/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9191/// in order to create an IvarDecl object for it.
9192Decl *Sema::ActOnIvar(Scope *S,
9193                                SourceLocation DeclStart,
9194                                Declarator &D, Expr *BitfieldWidth,
9195                                tok::ObjCKeywordKind Visibility) {
9196
9197  IdentifierInfo *II = D.getIdentifier();
9198  Expr *BitWidth = (Expr*)BitfieldWidth;
9199  SourceLocation Loc = DeclStart;
9200  if (II) Loc = D.getIdentifierLoc();
9201
9202  // FIXME: Unnamed fields can be handled in various different ways, for
9203  // example, unnamed unions inject all members into the struct namespace!
9204
9205  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9206  QualType T = TInfo->getType();
9207
9208  if (BitWidth) {
9209    // 6.7.2.1p3, 6.7.2.1p4
9210    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9211    if (!BitWidth)
9212      D.setInvalidType();
9213  } else {
9214    // Not a bitfield.
9215
9216    // validate II.
9217
9218  }
9219  if (T->isReferenceType()) {
9220    Diag(Loc, diag::err_ivar_reference_type);
9221    D.setInvalidType();
9222  }
9223  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9224  // than a variably modified type.
9225  else if (T->isVariablyModifiedType()) {
9226    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9227    D.setInvalidType();
9228  }
9229
9230  // Get the visibility (access control) for this ivar.
9231  ObjCIvarDecl::AccessControl ac =
9232    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9233                                        : ObjCIvarDecl::None;
9234  // Must set ivar's DeclContext to its enclosing interface.
9235  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9236  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9237    return 0;
9238  ObjCContainerDecl *EnclosingContext;
9239  if (ObjCImplementationDecl *IMPDecl =
9240      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9241    if (!LangOpts.ObjCNonFragileABI2) {
9242    // Case of ivar declared in an implementation. Context is that of its class.
9243      EnclosingContext = IMPDecl->getClassInterface();
9244      assert(EnclosingContext && "Implementation has no class interface!");
9245    }
9246    else
9247      EnclosingContext = EnclosingDecl;
9248  } else {
9249    if (ObjCCategoryDecl *CDecl =
9250        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9251      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
9252        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9253        return 0;
9254      }
9255    }
9256    EnclosingContext = EnclosingDecl;
9257  }
9258
9259  // Construct the decl.
9260  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9261                                             DeclStart, Loc, II, T,
9262                                             TInfo, ac, (Expr *)BitfieldWidth);
9263
9264  if (II) {
9265    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9266                                           ForRedeclaration);
9267    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9268        && !isa<TagDecl>(PrevDecl)) {
9269      Diag(Loc, diag::err_duplicate_member) << II;
9270      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9271      NewID->setInvalidDecl();
9272    }
9273  }
9274
9275  // Process attributes attached to the ivar.
9276  ProcessDeclAttributes(S, NewID, D);
9277
9278  if (D.isInvalidType())
9279    NewID->setInvalidDecl();
9280
9281  // In ARC, infer 'retaining' for ivars of retainable type.
9282  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9283    NewID->setInvalidDecl();
9284
9285  if (D.getDeclSpec().isModulePrivateSpecified())
9286    NewID->setModulePrivate();
9287
9288  if (II) {
9289    // FIXME: When interfaces are DeclContexts, we'll need to add
9290    // these to the interface.
9291    S->AddDecl(NewID);
9292    IdResolver.AddDecl(NewID);
9293  }
9294
9295  return NewID;
9296}
9297
9298/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9299/// class and class extensions. For every class @interface and class
9300/// extension @interface, if the last ivar is a bitfield of any type,
9301/// then add an implicit `char :0` ivar to the end of that interface.
9302void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9303                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9304  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
9305    return;
9306
9307  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9308  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9309
9310  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9311    return;
9312  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9313  if (!ID) {
9314    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9315      if (!CD->IsClassExtension())
9316        return;
9317    }
9318    // No need to add this to end of @implementation.
9319    else
9320      return;
9321  }
9322  // All conditions are met. Add a new bitfield to the tail end of ivars.
9323  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9324  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9325
9326  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9327                              DeclLoc, DeclLoc, 0,
9328                              Context.CharTy,
9329                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9330                                                               DeclLoc),
9331                              ObjCIvarDecl::Private, BW,
9332                              true);
9333  AllIvarDecls.push_back(Ivar);
9334}
9335
9336void Sema::ActOnFields(Scope* S,
9337                       SourceLocation RecLoc, Decl *EnclosingDecl,
9338                       llvm::ArrayRef<Decl *> Fields,
9339                       SourceLocation LBrac, SourceLocation RBrac,
9340                       AttributeList *Attr) {
9341  assert(EnclosingDecl && "missing record or interface decl");
9342
9343  // If the decl this is being inserted into is invalid, then it may be a
9344  // redeclaration or some other bogus case.  Don't try to add fields to it.
9345  if (EnclosingDecl->isInvalidDecl())
9346    return;
9347
9348  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9349
9350  // Start counting up the number of named members; make sure to include
9351  // members of anonymous structs and unions in the total.
9352  unsigned NumNamedMembers = 0;
9353  if (Record) {
9354    for (RecordDecl::decl_iterator i = Record->decls_begin(),
9355                                   e = Record->decls_end(); i != e; i++) {
9356      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
9357        if (IFD->getDeclName())
9358          ++NumNamedMembers;
9359    }
9360  }
9361
9362  // Verify that all the fields are okay.
9363  SmallVector<FieldDecl*, 32> RecFields;
9364
9365  bool ARCErrReported = false;
9366  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9367       i != end; ++i) {
9368    FieldDecl *FD = cast<FieldDecl>(*i);
9369
9370    // Get the type for the field.
9371    const Type *FDTy = FD->getType().getTypePtr();
9372
9373    if (!FD->isAnonymousStructOrUnion()) {
9374      // Remember all fields written by the user.
9375      RecFields.push_back(FD);
9376    }
9377
9378    // If the field is already invalid for some reason, don't emit more
9379    // diagnostics about it.
9380    if (FD->isInvalidDecl()) {
9381      EnclosingDecl->setInvalidDecl();
9382      continue;
9383    }
9384
9385    // C99 6.7.2.1p2:
9386    //   A structure or union shall not contain a member with
9387    //   incomplete or function type (hence, a structure shall not
9388    //   contain an instance of itself, but may contain a pointer to
9389    //   an instance of itself), except that the last member of a
9390    //   structure with more than one named member may have incomplete
9391    //   array type; such a structure (and any union containing,
9392    //   possibly recursively, a member that is such a structure)
9393    //   shall not be a member of a structure or an element of an
9394    //   array.
9395    if (FDTy->isFunctionType()) {
9396      // Field declared as a function.
9397      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9398        << FD->getDeclName();
9399      FD->setInvalidDecl();
9400      EnclosingDecl->setInvalidDecl();
9401      continue;
9402    } else if (FDTy->isIncompleteArrayType() && Record &&
9403               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9404                ((getLangOptions().MicrosoftExt ||
9405                  getLangOptions().CPlusPlus) &&
9406                 (i + 1 == Fields.end() || Record->isUnion())))) {
9407      // Flexible array member.
9408      // Microsoft and g++ is more permissive regarding flexible array.
9409      // It will accept flexible array in union and also
9410      // as the sole element of a struct/class.
9411      if (getLangOptions().MicrosoftExt) {
9412        if (Record->isUnion())
9413          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9414            << FD->getDeclName();
9415        else if (Fields.size() == 1)
9416          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9417            << FD->getDeclName() << Record->getTagKind();
9418      } else if (getLangOptions().CPlusPlus) {
9419        if (Record->isUnion())
9420          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9421            << FD->getDeclName();
9422        else if (Fields.size() == 1)
9423          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9424            << FD->getDeclName() << Record->getTagKind();
9425      } else if (NumNamedMembers < 1) {
9426        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9427          << FD->getDeclName();
9428        FD->setInvalidDecl();
9429        EnclosingDecl->setInvalidDecl();
9430        continue;
9431      }
9432      if (!FD->getType()->isDependentType() &&
9433          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9434        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9435          << FD->getDeclName() << FD->getType();
9436        FD->setInvalidDecl();
9437        EnclosingDecl->setInvalidDecl();
9438        continue;
9439      }
9440      // Okay, we have a legal flexible array member at the end of the struct.
9441      if (Record)
9442        Record->setHasFlexibleArrayMember(true);
9443    } else if (!FDTy->isDependentType() &&
9444               RequireCompleteType(FD->getLocation(), FD->getType(),
9445                                   diag::err_field_incomplete)) {
9446      // Incomplete type
9447      FD->setInvalidDecl();
9448      EnclosingDecl->setInvalidDecl();
9449      continue;
9450    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9451      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9452        // If this is a member of a union, then entire union becomes "flexible".
9453        if (Record && Record->isUnion()) {
9454          Record->setHasFlexibleArrayMember(true);
9455        } else {
9456          // If this is a struct/class and this is not the last element, reject
9457          // it.  Note that GCC supports variable sized arrays in the middle of
9458          // structures.
9459          if (i + 1 != Fields.end())
9460            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9461              << FD->getDeclName() << FD->getType();
9462          else {
9463            // We support flexible arrays at the end of structs in
9464            // other structs as an extension.
9465            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9466              << FD->getDeclName();
9467            if (Record)
9468              Record->setHasFlexibleArrayMember(true);
9469          }
9470        }
9471      }
9472      if (Record && FDTTy->getDecl()->hasObjectMember())
9473        Record->setHasObjectMember(true);
9474    } else if (FDTy->isObjCObjectType()) {
9475      /// A field cannot be an Objective-c object
9476      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9477        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9478      QualType T = Context.getObjCObjectPointerType(FD->getType());
9479      FD->setType(T);
9480    }
9481    else if (!getLangOptions().CPlusPlus) {
9482      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9483        // It's an error in ARC if a field has lifetime.
9484        // We don't want to report this in a system header, though,
9485        // so we just make the field unavailable.
9486        // FIXME: that's really not sufficient; we need to make the type
9487        // itself invalid to, say, initialize or copy.
9488        QualType T = FD->getType();
9489        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9490        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9491          SourceLocation loc = FD->getLocation();
9492          if (getSourceManager().isInSystemHeader(loc)) {
9493            if (!FD->hasAttr<UnavailableAttr>()) {
9494              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9495                                "this system field has retaining ownership"));
9496            }
9497          } else {
9498            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9499              << T->isBlockPointerType();
9500          }
9501          ARCErrReported = true;
9502        }
9503      }
9504      else if (getLangOptions().ObjC1 &&
9505               getLangOptions().getGC() != LangOptions::NonGC &&
9506               Record && !Record->hasObjectMember()) {
9507        if (FD->getType()->isObjCObjectPointerType() ||
9508            FD->getType().isObjCGCStrong())
9509          Record->setHasObjectMember(true);
9510        else if (Context.getAsArrayType(FD->getType())) {
9511          QualType BaseType = Context.getBaseElementType(FD->getType());
9512          if (BaseType->isRecordType() &&
9513              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9514            Record->setHasObjectMember(true);
9515          else if (BaseType->isObjCObjectPointerType() ||
9516                   BaseType.isObjCGCStrong())
9517                 Record->setHasObjectMember(true);
9518        }
9519      }
9520    }
9521    // Keep track of the number of named members.
9522    if (FD->getIdentifier())
9523      ++NumNamedMembers;
9524  }
9525
9526  // Okay, we successfully defined 'Record'.
9527  if (Record) {
9528    bool Completed = false;
9529    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9530      if (!CXXRecord->isInvalidDecl()) {
9531        // Set access bits correctly on the directly-declared conversions.
9532        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9533        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9534             I != E; ++I)
9535          Convs->setAccess(I, (*I)->getAccess());
9536
9537        if (!CXXRecord->isDependentType()) {
9538          // Objective-C Automatic Reference Counting:
9539          //   If a class has a non-static data member of Objective-C pointer
9540          //   type (or array thereof), it is a non-POD type and its
9541          //   default constructor (if any), copy constructor, copy assignment
9542          //   operator, and destructor are non-trivial.
9543          //
9544          // This rule is also handled by CXXRecordDecl::completeDefinition().
9545          // However, here we check whether this particular class is only
9546          // non-POD because of the presence of an Objective-C pointer member.
9547          // If so, objects of this type cannot be shared between code compiled
9548          // with instant objects and code compiled with manual retain/release.
9549          if (getLangOptions().ObjCAutoRefCount &&
9550              CXXRecord->hasObjectMember() &&
9551              CXXRecord->getLinkage() == ExternalLinkage) {
9552            if (CXXRecord->isPOD()) {
9553              Diag(CXXRecord->getLocation(),
9554                   diag::warn_arc_non_pod_class_with_object_member)
9555               << CXXRecord;
9556            } else {
9557              // FIXME: Fix-Its would be nice here, but finding a good location
9558              // for them is going to be tricky.
9559              if (CXXRecord->hasTrivialCopyConstructor())
9560                Diag(CXXRecord->getLocation(),
9561                     diag::warn_arc_trivial_member_function_with_object_member)
9562                  << CXXRecord << 0;
9563              if (CXXRecord->hasTrivialCopyAssignment())
9564                Diag(CXXRecord->getLocation(),
9565                     diag::warn_arc_trivial_member_function_with_object_member)
9566                << CXXRecord << 1;
9567              if (CXXRecord->hasTrivialDestructor())
9568                Diag(CXXRecord->getLocation(),
9569                     diag::warn_arc_trivial_member_function_with_object_member)
9570                << CXXRecord << 2;
9571            }
9572          }
9573
9574          // Adjust user-defined destructor exception spec.
9575          if (getLangOptions().CPlusPlus0x &&
9576              CXXRecord->hasUserDeclaredDestructor())
9577            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9578
9579          // Add any implicitly-declared members to this class.
9580          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9581
9582          // If we have virtual base classes, we may end up finding multiple
9583          // final overriders for a given virtual function. Check for this
9584          // problem now.
9585          if (CXXRecord->getNumVBases()) {
9586            CXXFinalOverriderMap FinalOverriders;
9587            CXXRecord->getFinalOverriders(FinalOverriders);
9588
9589            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9590                                             MEnd = FinalOverriders.end();
9591                 M != MEnd; ++M) {
9592              for (OverridingMethods::iterator SO = M->second.begin(),
9593                                            SOEnd = M->second.end();
9594                   SO != SOEnd; ++SO) {
9595                assert(SO->second.size() > 0 &&
9596                       "Virtual function without overridding functions?");
9597                if (SO->second.size() == 1)
9598                  continue;
9599
9600                // C++ [class.virtual]p2:
9601                //   In a derived class, if a virtual member function of a base
9602                //   class subobject has more than one final overrider the
9603                //   program is ill-formed.
9604                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9605                  << (NamedDecl *)M->first << Record;
9606                Diag(M->first->getLocation(),
9607                     diag::note_overridden_virtual_function);
9608                for (OverridingMethods::overriding_iterator
9609                          OM = SO->second.begin(),
9610                       OMEnd = SO->second.end();
9611                     OM != OMEnd; ++OM)
9612                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9613                    << (NamedDecl *)M->first << OM->Method->getParent();
9614
9615                Record->setInvalidDecl();
9616              }
9617            }
9618            CXXRecord->completeDefinition(&FinalOverriders);
9619            Completed = true;
9620          }
9621        }
9622      }
9623    }
9624
9625    if (!Completed)
9626      Record->completeDefinition();
9627
9628    // Now that the record is complete, do any delayed exception spec checks
9629    // we were missing.
9630    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9631      const CXXDestructorDecl *Dtor =
9632              DelayedDestructorExceptionSpecChecks.back().first;
9633      if (Dtor->getParent() != Record)
9634        break;
9635
9636      assert(!Dtor->getParent()->isDependentType() &&
9637          "Should not ever add destructors of templates into the list.");
9638      CheckOverridingFunctionExceptionSpec(Dtor,
9639          DelayedDestructorExceptionSpecChecks.back().second);
9640      DelayedDestructorExceptionSpecChecks.pop_back();
9641    }
9642
9643  } else {
9644    ObjCIvarDecl **ClsFields =
9645      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9646    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9647      ID->setEndOfDefinitionLoc(RBrac);
9648      // Add ivar's to class's DeclContext.
9649      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9650        ClsFields[i]->setLexicalDeclContext(ID);
9651        ID->addDecl(ClsFields[i]);
9652      }
9653      // Must enforce the rule that ivars in the base classes may not be
9654      // duplicates.
9655      if (ID->getSuperClass())
9656        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9657    } else if (ObjCImplementationDecl *IMPDecl =
9658                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9659      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9660      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9661        // Ivar declared in @implementation never belongs to the implementation.
9662        // Only it is in implementation's lexical context.
9663        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9664      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9665      IMPDecl->setIvarLBraceLoc(LBrac);
9666      IMPDecl->setIvarRBraceLoc(RBrac);
9667    } else if (ObjCCategoryDecl *CDecl =
9668                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9669      // case of ivars in class extension; all other cases have been
9670      // reported as errors elsewhere.
9671      // FIXME. Class extension does not have a LocEnd field.
9672      // CDecl->setLocEnd(RBrac);
9673      // Add ivar's to class extension's DeclContext.
9674      // Diagnose redeclaration of private ivars.
9675      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
9676      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9677        if (IDecl) {
9678          if (const ObjCIvarDecl *ClsIvar =
9679              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9680            Diag(ClsFields[i]->getLocation(),
9681                 diag::err_duplicate_ivar_declaration);
9682            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
9683            continue;
9684          }
9685          for (const ObjCCategoryDecl *ClsExtDecl =
9686                IDecl->getFirstClassExtension();
9687               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
9688            if (const ObjCIvarDecl *ClsExtIvar =
9689                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9690              Diag(ClsFields[i]->getLocation(),
9691                   diag::err_duplicate_ivar_declaration);
9692              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
9693              continue;
9694            }
9695          }
9696        }
9697        ClsFields[i]->setLexicalDeclContext(CDecl);
9698        CDecl->addDecl(ClsFields[i]);
9699      }
9700      CDecl->setIvarLBraceLoc(LBrac);
9701      CDecl->setIvarRBraceLoc(RBrac);
9702    }
9703  }
9704
9705  if (Attr)
9706    ProcessDeclAttributeList(S, Record, Attr);
9707
9708  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9709  // set the visibility of this record.
9710  if (Record && !Record->getDeclContext()->isRecord())
9711    AddPushedVisibilityAttribute(Record);
9712}
9713
9714/// \brief Determine whether the given integral value is representable within
9715/// the given type T.
9716static bool isRepresentableIntegerValue(ASTContext &Context,
9717                                        llvm::APSInt &Value,
9718                                        QualType T) {
9719  assert(T->isIntegralType(Context) && "Integral type required!");
9720  unsigned BitWidth = Context.getIntWidth(T);
9721
9722  if (Value.isUnsigned() || Value.isNonNegative()) {
9723    if (T->isSignedIntegerOrEnumerationType())
9724      --BitWidth;
9725    return Value.getActiveBits() <= BitWidth;
9726  }
9727  return Value.getMinSignedBits() <= BitWidth;
9728}
9729
9730// \brief Given an integral type, return the next larger integral type
9731// (or a NULL type of no such type exists).
9732static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9733  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9734  // enum checking below.
9735  assert(T->isIntegralType(Context) && "Integral type required!");
9736  const unsigned NumTypes = 4;
9737  QualType SignedIntegralTypes[NumTypes] = {
9738    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9739  };
9740  QualType UnsignedIntegralTypes[NumTypes] = {
9741    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9742    Context.UnsignedLongLongTy
9743  };
9744
9745  unsigned BitWidth = Context.getTypeSize(T);
9746  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9747                                                        : UnsignedIntegralTypes;
9748  for (unsigned I = 0; I != NumTypes; ++I)
9749    if (Context.getTypeSize(Types[I]) > BitWidth)
9750      return Types[I];
9751
9752  return QualType();
9753}
9754
9755EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9756                                          EnumConstantDecl *LastEnumConst,
9757                                          SourceLocation IdLoc,
9758                                          IdentifierInfo *Id,
9759                                          Expr *Val) {
9760  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9761  llvm::APSInt EnumVal(IntWidth);
9762  QualType EltTy;
9763
9764  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9765    Val = 0;
9766
9767  if (Val)
9768    Val = DefaultLvalueConversion(Val).take();
9769
9770  if (Val) {
9771    if (Enum->isDependentType() || Val->isTypeDependent())
9772      EltTy = Context.DependentTy;
9773    else {
9774      SourceLocation ExpLoc;
9775      if (getLangOptions().CPlusPlus0x && Enum->isFixed() &&
9776          !getLangOptions().MicrosoftMode) {
9777        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
9778        // constant-expression in the enumerator-definition shall be a converted
9779        // constant expression of the underlying type.
9780        EltTy = Enum->getIntegerType();
9781        ExprResult Converted =
9782          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
9783                                           CCEK_Enumerator);
9784        if (Converted.isInvalid())
9785          Val = 0;
9786        else
9787          Val = Converted.take();
9788      } else if (!Val->isValueDependent() &&
9789                 !(Val = VerifyIntegerConstantExpression(Val,
9790                                                         &EnumVal).take())) {
9791        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9792      } else {
9793        if (Enum->isFixed()) {
9794          EltTy = Enum->getIntegerType();
9795
9796          // In Obj-C and Microsoft mode, require the enumeration value to be
9797          // representable in the underlying type of the enumeration. In C++11,
9798          // we perform a non-narrowing conversion as part of converted constant
9799          // expression checking.
9800          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9801            if (getLangOptions().MicrosoftMode) {
9802              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9803              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9804            } else
9805              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
9806          } else
9807            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9808        } else if (getLangOptions().CPlusPlus) {
9809          // C++11 [dcl.enum]p5:
9810          //   If the underlying type is not fixed, the type of each enumerator
9811          //   is the type of its initializing value:
9812          //     - If an initializer is specified for an enumerator, the
9813          //       initializing value has the same type as the expression.
9814          EltTy = Val->getType();
9815        } else {
9816          // C99 6.7.2.2p2:
9817          //   The expression that defines the value of an enumeration constant
9818          //   shall be an integer constant expression that has a value
9819          //   representable as an int.
9820
9821          // Complain if the value is not representable in an int.
9822          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9823            Diag(IdLoc, diag::ext_enum_value_not_int)
9824              << EnumVal.toString(10) << Val->getSourceRange()
9825              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9826          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9827            // Force the type of the expression to 'int'.
9828            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9829          }
9830          EltTy = Val->getType();
9831        }
9832      }
9833    }
9834  }
9835
9836  if (!Val) {
9837    if (Enum->isDependentType())
9838      EltTy = Context.DependentTy;
9839    else if (!LastEnumConst) {
9840      // C++0x [dcl.enum]p5:
9841      //   If the underlying type is not fixed, the type of each enumerator
9842      //   is the type of its initializing value:
9843      //     - If no initializer is specified for the first enumerator, the
9844      //       initializing value has an unspecified integral type.
9845      //
9846      // GCC uses 'int' for its unspecified integral type, as does
9847      // C99 6.7.2.2p3.
9848      if (Enum->isFixed()) {
9849        EltTy = Enum->getIntegerType();
9850      }
9851      else {
9852        EltTy = Context.IntTy;
9853      }
9854    } else {
9855      // Assign the last value + 1.
9856      EnumVal = LastEnumConst->getInitVal();
9857      ++EnumVal;
9858      EltTy = LastEnumConst->getType();
9859
9860      // Check for overflow on increment.
9861      if (EnumVal < LastEnumConst->getInitVal()) {
9862        // C++0x [dcl.enum]p5:
9863        //   If the underlying type is not fixed, the type of each enumerator
9864        //   is the type of its initializing value:
9865        //
9866        //     - Otherwise the type of the initializing value is the same as
9867        //       the type of the initializing value of the preceding enumerator
9868        //       unless the incremented value is not representable in that type,
9869        //       in which case the type is an unspecified integral type
9870        //       sufficient to contain the incremented value. If no such type
9871        //       exists, the program is ill-formed.
9872        QualType T = getNextLargerIntegralType(Context, EltTy);
9873        if (T.isNull() || Enum->isFixed()) {
9874          // There is no integral type larger enough to represent this
9875          // value. Complain, then allow the value to wrap around.
9876          EnumVal = LastEnumConst->getInitVal();
9877          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9878          ++EnumVal;
9879          if (Enum->isFixed())
9880            // When the underlying type is fixed, this is ill-formed.
9881            Diag(IdLoc, diag::err_enumerator_wrapped)
9882              << EnumVal.toString(10)
9883              << EltTy;
9884          else
9885            Diag(IdLoc, diag::warn_enumerator_too_large)
9886              << EnumVal.toString(10);
9887        } else {
9888          EltTy = T;
9889        }
9890
9891        // Retrieve the last enumerator's value, extent that type to the
9892        // type that is supposed to be large enough to represent the incremented
9893        // value, then increment.
9894        EnumVal = LastEnumConst->getInitVal();
9895        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9896        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9897        ++EnumVal;
9898
9899        // If we're not in C++, diagnose the overflow of enumerator values,
9900        // which in C99 means that the enumerator value is not representable in
9901        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9902        // permits enumerator values that are representable in some larger
9903        // integral type.
9904        if (!getLangOptions().CPlusPlus && !T.isNull())
9905          Diag(IdLoc, diag::warn_enum_value_overflow);
9906      } else if (!getLangOptions().CPlusPlus &&
9907                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9908        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9909        Diag(IdLoc, diag::ext_enum_value_not_int)
9910          << EnumVal.toString(10) << 1;
9911      }
9912    }
9913  }
9914
9915  if (!EltTy->isDependentType()) {
9916    // Make the enumerator value match the signedness and size of the
9917    // enumerator's type.
9918    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
9919    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9920  }
9921
9922  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9923                                  Val, EnumVal);
9924}
9925
9926
9927Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9928                              SourceLocation IdLoc, IdentifierInfo *Id,
9929                              AttributeList *Attr,
9930                              SourceLocation EqualLoc, Expr *Val) {
9931  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9932  EnumConstantDecl *LastEnumConst =
9933    cast_or_null<EnumConstantDecl>(lastEnumConst);
9934
9935  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9936  // we find one that is.
9937  S = getNonFieldDeclScope(S);
9938
9939  // Verify that there isn't already something declared with this name in this
9940  // scope.
9941  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9942                                         ForRedeclaration);
9943  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9944    // Maybe we will complain about the shadowed template parameter.
9945    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9946    // Just pretend that we didn't see the previous declaration.
9947    PrevDecl = 0;
9948  }
9949
9950  if (PrevDecl) {
9951    // When in C++, we may get a TagDecl with the same name; in this case the
9952    // enum constant will 'hide' the tag.
9953    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9954           "Received TagDecl when not in C++!");
9955    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9956      if (isa<EnumConstantDecl>(PrevDecl))
9957        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9958      else
9959        Diag(IdLoc, diag::err_redefinition) << Id;
9960      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9961      return 0;
9962    }
9963  }
9964
9965  // C++ [class.mem]p13:
9966  //   If T is the name of a class, then each of the following shall have a
9967  //   name different from T:
9968  //     - every enumerator of every member of class T that is an enumerated
9969  //       type
9970  if (CXXRecordDecl *Record
9971                      = dyn_cast<CXXRecordDecl>(
9972                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9973    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9974      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9975
9976  EnumConstantDecl *New =
9977    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9978
9979  if (New) {
9980    // Process attributes.
9981    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9982
9983    // Register this decl in the current scope stack.
9984    New->setAccess(TheEnumDecl->getAccess());
9985    PushOnScopeChains(New, S);
9986  }
9987
9988  return New;
9989}
9990
9991void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9992                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9993                         Decl **Elements, unsigned NumElements,
9994                         Scope *S, AttributeList *Attr) {
9995  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9996  QualType EnumType = Context.getTypeDeclType(Enum);
9997
9998  if (Attr)
9999    ProcessDeclAttributeList(S, Enum, Attr);
10000
10001  if (Enum->isDependentType()) {
10002    for (unsigned i = 0; i != NumElements; ++i) {
10003      EnumConstantDecl *ECD =
10004        cast_or_null<EnumConstantDecl>(Elements[i]);
10005      if (!ECD) continue;
10006
10007      ECD->setType(EnumType);
10008    }
10009
10010    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
10011    return;
10012  }
10013
10014  // TODO: If the result value doesn't fit in an int, it must be a long or long
10015  // long value.  ISO C does not support this, but GCC does as an extension,
10016  // emit a warning.
10017  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10018  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
10019  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
10020
10021  // Verify that all the values are okay, compute the size of the values, and
10022  // reverse the list.
10023  unsigned NumNegativeBits = 0;
10024  unsigned NumPositiveBits = 0;
10025
10026  // Keep track of whether all elements have type int.
10027  bool AllElementsInt = true;
10028
10029  for (unsigned i = 0; i != NumElements; ++i) {
10030    EnumConstantDecl *ECD =
10031      cast_or_null<EnumConstantDecl>(Elements[i]);
10032    if (!ECD) continue;  // Already issued a diagnostic.
10033
10034    const llvm::APSInt &InitVal = ECD->getInitVal();
10035
10036    // Keep track of the size of positive and negative values.
10037    if (InitVal.isUnsigned() || InitVal.isNonNegative())
10038      NumPositiveBits = std::max(NumPositiveBits,
10039                                 (unsigned)InitVal.getActiveBits());
10040    else
10041      NumNegativeBits = std::max(NumNegativeBits,
10042                                 (unsigned)InitVal.getMinSignedBits());
10043
10044    // Keep track of whether every enum element has type int (very commmon).
10045    if (AllElementsInt)
10046      AllElementsInt = ECD->getType() == Context.IntTy;
10047  }
10048
10049  // Figure out the type that should be used for this enum.
10050  QualType BestType;
10051  unsigned BestWidth;
10052
10053  // C++0x N3000 [conv.prom]p3:
10054  //   An rvalue of an unscoped enumeration type whose underlying
10055  //   type is not fixed can be converted to an rvalue of the first
10056  //   of the following types that can represent all the values of
10057  //   the enumeration: int, unsigned int, long int, unsigned long
10058  //   int, long long int, or unsigned long long int.
10059  // C99 6.4.4.3p2:
10060  //   An identifier declared as an enumeration constant has type int.
10061  // The C99 rule is modified by a gcc extension
10062  QualType BestPromotionType;
10063
10064  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
10065  // -fshort-enums is the equivalent to specifying the packed attribute on all
10066  // enum definitions.
10067  if (LangOpts.ShortEnums)
10068    Packed = true;
10069
10070  if (Enum->isFixed()) {
10071    BestType = Enum->getIntegerType();
10072    if (BestType->isPromotableIntegerType())
10073      BestPromotionType = Context.getPromotedIntegerType(BestType);
10074    else
10075      BestPromotionType = BestType;
10076    // We don't need to set BestWidth, because BestType is going to be the type
10077    // of the enumerators, but we do anyway because otherwise some compilers
10078    // warn that it might be used uninitialized.
10079    BestWidth = CharWidth;
10080  }
10081  else if (NumNegativeBits) {
10082    // If there is a negative value, figure out the smallest integer type (of
10083    // int/long/longlong) that fits.
10084    // If it's packed, check also if it fits a char or a short.
10085    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
10086      BestType = Context.SignedCharTy;
10087      BestWidth = CharWidth;
10088    } else if (Packed && NumNegativeBits <= ShortWidth &&
10089               NumPositiveBits < ShortWidth) {
10090      BestType = Context.ShortTy;
10091      BestWidth = ShortWidth;
10092    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
10093      BestType = Context.IntTy;
10094      BestWidth = IntWidth;
10095    } else {
10096      BestWidth = Context.getTargetInfo().getLongWidth();
10097
10098      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
10099        BestType = Context.LongTy;
10100      } else {
10101        BestWidth = Context.getTargetInfo().getLongLongWidth();
10102
10103        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
10104          Diag(Enum->getLocation(), diag::warn_enum_too_large);
10105        BestType = Context.LongLongTy;
10106      }
10107    }
10108    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
10109  } else {
10110    // If there is no negative value, figure out the smallest type that fits
10111    // all of the enumerator values.
10112    // If it's packed, check also if it fits a char or a short.
10113    if (Packed && NumPositiveBits <= CharWidth) {
10114      BestType = Context.UnsignedCharTy;
10115      BestPromotionType = Context.IntTy;
10116      BestWidth = CharWidth;
10117    } else if (Packed && NumPositiveBits <= ShortWidth) {
10118      BestType = Context.UnsignedShortTy;
10119      BestPromotionType = Context.IntTy;
10120      BestWidth = ShortWidth;
10121    } else if (NumPositiveBits <= IntWidth) {
10122      BestType = Context.UnsignedIntTy;
10123      BestWidth = IntWidth;
10124      BestPromotionType
10125        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
10126                           ? Context.UnsignedIntTy : Context.IntTy;
10127    } else if (NumPositiveBits <=
10128               (BestWidth = Context.getTargetInfo().getLongWidth())) {
10129      BestType = Context.UnsignedLongTy;
10130      BestPromotionType
10131        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
10132                           ? Context.UnsignedLongTy : Context.LongTy;
10133    } else {
10134      BestWidth = Context.getTargetInfo().getLongLongWidth();
10135      assert(NumPositiveBits <= BestWidth &&
10136             "How could an initializer get larger than ULL?");
10137      BestType = Context.UnsignedLongLongTy;
10138      BestPromotionType
10139        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
10140                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
10141    }
10142  }
10143
10144  // Loop over all of the enumerator constants, changing their types to match
10145  // the type of the enum if needed.
10146  for (unsigned i = 0; i != NumElements; ++i) {
10147    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10148    if (!ECD) continue;  // Already issued a diagnostic.
10149
10150    // Standard C says the enumerators have int type, but we allow, as an
10151    // extension, the enumerators to be larger than int size.  If each
10152    // enumerator value fits in an int, type it as an int, otherwise type it the
10153    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
10154    // that X has type 'int', not 'unsigned'.
10155
10156    // Determine whether the value fits into an int.
10157    llvm::APSInt InitVal = ECD->getInitVal();
10158
10159    // If it fits into an integer type, force it.  Otherwise force it to match
10160    // the enum decl type.
10161    QualType NewTy;
10162    unsigned NewWidth;
10163    bool NewSign;
10164    if (!getLangOptions().CPlusPlus &&
10165        !Enum->isFixed() &&
10166        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
10167      NewTy = Context.IntTy;
10168      NewWidth = IntWidth;
10169      NewSign = true;
10170    } else if (ECD->getType() == BestType) {
10171      // Already the right type!
10172      if (getLangOptions().CPlusPlus)
10173        // C++ [dcl.enum]p4: Following the closing brace of an
10174        // enum-specifier, each enumerator has the type of its
10175        // enumeration.
10176        ECD->setType(EnumType);
10177      continue;
10178    } else {
10179      NewTy = BestType;
10180      NewWidth = BestWidth;
10181      NewSign = BestType->isSignedIntegerOrEnumerationType();
10182    }
10183
10184    // Adjust the APSInt value.
10185    InitVal = InitVal.extOrTrunc(NewWidth);
10186    InitVal.setIsSigned(NewSign);
10187    ECD->setInitVal(InitVal);
10188
10189    // Adjust the Expr initializer and type.
10190    if (ECD->getInitExpr() &&
10191        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10192      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10193                                                CK_IntegralCast,
10194                                                ECD->getInitExpr(),
10195                                                /*base paths*/ 0,
10196                                                VK_RValue));
10197    if (getLangOptions().CPlusPlus)
10198      // C++ [dcl.enum]p4: Following the closing brace of an
10199      // enum-specifier, each enumerator has the type of its
10200      // enumeration.
10201      ECD->setType(EnumType);
10202    else
10203      ECD->setType(NewTy);
10204  }
10205
10206  Enum->completeDefinition(BestType, BestPromotionType,
10207                           NumPositiveBits, NumNegativeBits);
10208
10209  // If we're declaring a function, ensure this decl isn't forgotten about -
10210  // it needs to go into the function scope.
10211  if (InFunctionDeclarator)
10212    DeclsInPrototypeScope.push_back(Enum);
10213
10214}
10215
10216Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
10217                                  SourceLocation StartLoc,
10218                                  SourceLocation EndLoc) {
10219  StringLiteral *AsmString = cast<StringLiteral>(expr);
10220
10221  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
10222                                                   AsmString, StartLoc,
10223                                                   EndLoc);
10224  CurContext->addDecl(New);
10225  return New;
10226}
10227
10228DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
10229                                   SourceLocation ImportLoc,
10230                                   ModuleIdPath Path) {
10231  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
10232                                                Module::AllVisible,
10233                                                /*IsIncludeDirective=*/false);
10234  if (!Mod)
10235    return true;
10236
10237  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
10238  Module *ModCheck = Mod;
10239  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
10240    // If we've run out of module parents, just drop the remaining identifiers.
10241    // We need the length to be consistent.
10242    if (!ModCheck)
10243      break;
10244    ModCheck = ModCheck->Parent;
10245
10246    IdentifierLocs.push_back(Path[I].second);
10247  }
10248
10249  ImportDecl *Import = ImportDecl::Create(Context,
10250                                          Context.getTranslationUnitDecl(),
10251                                          AtLoc.isValid()? AtLoc : ImportLoc,
10252                                          Mod, IdentifierLocs);
10253  Context.getTranslationUnitDecl()->addDecl(Import);
10254  return Import;
10255}
10256
10257void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
10258                                      IdentifierInfo* AliasName,
10259                                      SourceLocation PragmaLoc,
10260                                      SourceLocation NameLoc,
10261                                      SourceLocation AliasNameLoc) {
10262  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
10263                                    LookupOrdinaryName);
10264  AsmLabelAttr *Attr =
10265     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
10266
10267  if (PrevDecl)
10268    PrevDecl->addAttr(Attr);
10269  else
10270    (void)ExtnameUndeclaredIdentifiers.insert(
10271      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
10272}
10273
10274void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
10275                             SourceLocation PragmaLoc,
10276                             SourceLocation NameLoc) {
10277  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
10278
10279  if (PrevDecl) {
10280    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
10281  } else {
10282    (void)WeakUndeclaredIdentifiers.insert(
10283      std::pair<IdentifierInfo*,WeakInfo>
10284        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
10285  }
10286}
10287
10288void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
10289                                IdentifierInfo* AliasName,
10290                                SourceLocation PragmaLoc,
10291                                SourceLocation NameLoc,
10292                                SourceLocation AliasNameLoc) {
10293  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
10294                                    LookupOrdinaryName);
10295  WeakInfo W = WeakInfo(Name, NameLoc);
10296
10297  if (PrevDecl) {
10298    if (!PrevDecl->hasAttr<AliasAttr>())
10299      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
10300        DeclApplyPragmaWeak(TUScope, ND, W);
10301  } else {
10302    (void)WeakUndeclaredIdentifiers.insert(
10303      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10304  }
10305}
10306
10307Decl *Sema::getObjCDeclContext() const {
10308  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10309}
10310
10311AvailabilityResult Sema::getCurContextAvailability() const {
10312  const Decl *D = cast<Decl>(getCurLexicalContext());
10313  // A category implicitly has the availability of the interface.
10314  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10315    D = CatD->getClassInterface();
10316
10317  return D->getAvailability();
10318}
10319