SemaDecl.cpp revision ffed163be5e1e6304f738da90c6047c393e38565
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// \brief If the identifier refers to a type name within this scope,
34/// return the declaration of that type.
35///
36/// This routine performs ordinary name lookup of the identifier II
37/// within the given scope, with optional C++ scope specifier SS, to
38/// determine whether the name refers to a type. If so, returns an
39/// opaque pointer (actually a QualType) corresponding to that
40/// type. Otherwise, returns NULL.
41///
42/// If name lookup results in an ambiguity, this routine will complain
43/// and then return NULL.
44Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
45                                Scope *S, const CXXScopeSpec *SS) {
46  Decl *IIDecl = 0;
47  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
48                                         false, false);
49  switch (Result.getKind()) {
50    case LookupResult::NotFound:
51    case LookupResult::FoundOverloaded:
52      return 0;
53
54    case LookupResult::AmbiguousBaseSubobjectTypes:
55    case LookupResult::AmbiguousBaseSubobjects:
56    case LookupResult::AmbiguousReference:
57      DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
58      return 0;
59
60    case LookupResult::Found:
61      IIDecl = Result.getAsDecl();
62      break;
63  }
64
65  if (IIDecl) {
66    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl))
67      return Context.getTypeDeclType(TD).getAsOpaquePtr();
68    else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl))
69      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
70  }
71  return 0;
72}
73
74DeclContext *Sema::getContainingDC(DeclContext *DC) {
75  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
76    // A C++ out-of-line method will return to the file declaration context.
77    if (MD->isOutOfLineDefinition())
78      return MD->getLexicalDeclContext();
79
80    // A C++ inline method is parsed *after* the topmost class it was declared
81    // in is fully parsed (it's "complete").
82    // The parsing of a C++ inline method happens at the declaration context of
83    // the topmost (non-nested) class it is lexically declared in.
84    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
85    DC = MD->getParent();
86    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
87      DC = RD;
88
89    // Return the declaration context of the topmost class the inline method is
90    // declared in.
91    return DC;
92  }
93
94  if (isa<ObjCMethodDecl>(DC))
95    return Context.getTranslationUnitDecl();
96
97  if (Decl *D = dyn_cast<Decl>(DC))
98    return D->getLexicalDeclContext();
99
100  return DC->getLexicalParent();
101}
102
103void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
104  assert(getContainingDC(DC) == CurContext &&
105      "The next DeclContext should be lexically contained in the current one.");
106  CurContext = DC;
107  S->setEntity(DC);
108}
109
110void Sema::PopDeclContext() {
111  assert(CurContext && "DeclContext imbalance!");
112
113  CurContext = getContainingDC(CurContext);
114}
115
116/// \brief Determine whether we allow overloading of the function
117/// PrevDecl with another declaration.
118///
119/// This routine determines whether overloading is possible, not
120/// whether some new function is actually an overload. It will return
121/// true in C++ (where we can always provide overloads) or, as an
122/// extension, in C when the previous function is already an
123/// overloaded function declaration or has the "overloadable"
124/// attribute.
125static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
126  if (Context.getLangOptions().CPlusPlus)
127    return true;
128
129  if (isa<OverloadedFunctionDecl>(PrevDecl))
130    return true;
131
132  return PrevDecl->getAttr<OverloadableAttr>() != 0;
133}
134
135/// Add this decl to the scope shadowed decl chains.
136void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
137  // Move up the scope chain until we find the nearest enclosing
138  // non-transparent context. The declaration will be introduced into this
139  // scope.
140  while (S->getEntity() &&
141         ((DeclContext *)S->getEntity())->isTransparentContext())
142    S = S->getParent();
143
144  S->AddDecl(D);
145
146  // Add scoped declarations into their context, so that they can be
147  // found later. Declarations without a context won't be inserted
148  // into any context.
149  CurContext->addDecl(D);
150
151  // C++ [basic.scope]p4:
152  //   -- exactly one declaration shall declare a class name or
153  //   enumeration name that is not a typedef name and the other
154  //   declarations shall all refer to the same object or
155  //   enumerator, or all refer to functions and function templates;
156  //   in this case the class name or enumeration name is hidden.
157  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
158    // We are pushing the name of a tag (enum or class).
159    if (CurContext->getLookupContext()
160          == TD->getDeclContext()->getLookupContext()) {
161      // We're pushing the tag into the current context, which might
162      // require some reshuffling in the identifier resolver.
163      IdentifierResolver::iterator
164        I = IdResolver.begin(TD->getDeclName()),
165        IEnd = IdResolver.end();
166      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
167        NamedDecl *PrevDecl = *I;
168        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
169             PrevDecl = *I, ++I) {
170          if (TD->declarationReplaces(*I)) {
171            // This is a redeclaration. Remove it from the chain and
172            // break out, so that we'll add in the shadowed
173            // declaration.
174            S->RemoveDecl(*I);
175            if (PrevDecl == *I) {
176              IdResolver.RemoveDecl(*I);
177              IdResolver.AddDecl(TD);
178              return;
179            } else {
180              IdResolver.RemoveDecl(*I);
181              break;
182            }
183          }
184        }
185
186        // There is already a declaration with the same name in the same
187        // scope, which is not a tag declaration. It must be found
188        // before we find the new declaration, so insert the new
189        // declaration at the end of the chain.
190        IdResolver.AddShadowedDecl(TD, PrevDecl);
191
192        return;
193      }
194    }
195  } else if (isa<FunctionDecl>(D) &&
196             AllowOverloadingOfFunction(D, Context)) {
197    // We are pushing the name of a function, which might be an
198    // overloaded name.
199    FunctionDecl *FD = cast<FunctionDecl>(D);
200    IdentifierResolver::iterator Redecl
201      = std::find_if(IdResolver.begin(FD->getDeclName()),
202                     IdResolver.end(),
203                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
204                                  FD));
205    if (Redecl != IdResolver.end()) {
206      // There is already a declaration of a function on our
207      // IdResolver chain. Replace it with this declaration.
208      S->RemoveDecl(*Redecl);
209      IdResolver.RemoveDecl(*Redecl);
210    }
211  }
212
213  IdResolver.AddDecl(D);
214}
215
216void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
217  if (S->decl_empty()) return;
218  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
219	 "Scope shouldn't contain decls!");
220
221  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
222       I != E; ++I) {
223    Decl *TmpD = static_cast<Decl*>(*I);
224    assert(TmpD && "This decl didn't get pushed??");
225
226    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
227    NamedDecl *D = cast<NamedDecl>(TmpD);
228
229    if (!D->getDeclName()) continue;
230
231    // Remove this name from our lexical scope.
232    IdResolver.RemoveDecl(D);
233  }
234}
235
236/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
237/// return 0 if one not found.
238ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
239  // The third "scope" argument is 0 since we aren't enabling lazy built-in
240  // creation from this context.
241  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
242
243  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
244}
245
246/// getNonFieldDeclScope - Retrieves the innermost scope, starting
247/// from S, where a non-field would be declared. This routine copes
248/// with the difference between C and C++ scoping rules in structs and
249/// unions. For example, the following code is well-formed in C but
250/// ill-formed in C++:
251/// @code
252/// struct S6 {
253///   enum { BAR } e;
254/// };
255///
256/// void test_S6() {
257///   struct S6 a;
258///   a.e = BAR;
259/// }
260/// @endcode
261/// For the declaration of BAR, this routine will return a different
262/// scope. The scope S will be the scope of the unnamed enumeration
263/// within S6. In C++, this routine will return the scope associated
264/// with S6, because the enumeration's scope is a transparent
265/// context but structures can contain non-field names. In C, this
266/// routine will return the translation unit scope, since the
267/// enumeration's scope is a transparent context and structures cannot
268/// contain non-field names.
269Scope *Sema::getNonFieldDeclScope(Scope *S) {
270  while (((S->getFlags() & Scope::DeclScope) == 0) ||
271         (S->getEntity() &&
272          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
273         (S->isClassScope() && !getLangOptions().CPlusPlus))
274    S = S->getParent();
275  return S;
276}
277
278void Sema::InitBuiltinVaListType() {
279  if (!Context.getBuiltinVaListType().isNull())
280    return;
281
282  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
283  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
284  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
285  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
286}
287
288/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
289/// file scope.  lazily create a decl for it. ForRedeclaration is true
290/// if we're creating this built-in in anticipation of redeclaring the
291/// built-in.
292NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
293                                     Scope *S, bool ForRedeclaration,
294                                     SourceLocation Loc) {
295  Builtin::ID BID = (Builtin::ID)bid;
296
297  if (Context.BuiltinInfo.hasVAListUse(BID))
298    InitBuiltinVaListType();
299
300  Builtin::Context::GetBuiltinTypeError Error;
301  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
302  switch (Error) {
303  case Builtin::Context::GE_None:
304    // Okay
305    break;
306
307  case Builtin::Context::GE_Missing_FILE:
308    if (ForRedeclaration)
309      Diag(Loc, diag::err_implicit_decl_requires_stdio)
310        << Context.BuiltinInfo.GetName(BID);
311    return 0;
312  }
313
314  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
315    Diag(Loc, diag::ext_implicit_lib_function_decl)
316      << Context.BuiltinInfo.GetName(BID)
317      << R;
318    if (!Context.BuiltinInfo.getHeaderName(BID).empty() &&
319        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
320          != diag::MAP_IGNORE)
321      Diag(Loc, diag::note_please_include_header)
322        << Context.BuiltinInfo.getHeaderName(BID)
323        << Context.BuiltinInfo.GetName(BID);
324  }
325
326  FunctionDecl *New = FunctionDecl::Create(Context,
327                                           Context.getTranslationUnitDecl(),
328                                           Loc, II, R,
329                                           FunctionDecl::Extern, false);
330  New->setImplicit();
331
332  // Create Decl objects for each parameter, adding them to the
333  // FunctionDecl.
334  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
335    llvm::SmallVector<ParmVarDecl*, 16> Params;
336    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
337      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
338                                           FT->getArgType(i), VarDecl::None, 0));
339    New->setParams(Context, &Params[0], Params.size());
340  }
341
342  AddKnownFunctionAttributes(New);
343
344  // TUScope is the translation-unit scope to insert this function into.
345  // FIXME: This is hideous. We need to teach PushOnScopeChains to
346  // relate Scopes to DeclContexts, and probably eliminate CurContext
347  // entirely, but we're not there yet.
348  DeclContext *SavedContext = CurContext;
349  CurContext = Context.getTranslationUnitDecl();
350  PushOnScopeChains(New, TUScope);
351  CurContext = SavedContext;
352  return New;
353}
354
355/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
356/// everything from the standard library is defined.
357NamespaceDecl *Sema::GetStdNamespace() {
358  if (!StdNamespace) {
359    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
360    DeclContext *Global = Context.getTranslationUnitDecl();
361    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
362    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
363  }
364  return StdNamespace;
365}
366
367/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
368/// same name and scope as a previous declaration 'Old'.  Figure out
369/// how to resolve this situation, merging decls or emitting
370/// diagnostics as appropriate. Returns true if there was an error,
371/// false otherwise.
372///
373bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
374  bool objc_types = false;
375  // Allow multiple definitions for ObjC built-in typedefs.
376  // FIXME: Verify the underlying types are equivalent!
377  if (getLangOptions().ObjC1) {
378    const IdentifierInfo *TypeID = New->getIdentifier();
379    switch (TypeID->getLength()) {
380    default: break;
381    case 2:
382      if (!TypeID->isStr("id"))
383        break;
384      Context.setObjCIdType(New);
385      objc_types = true;
386      break;
387    case 5:
388      if (!TypeID->isStr("Class"))
389        break;
390      Context.setObjCClassType(New);
391      objc_types = true;
392      return false;
393    case 3:
394      if (!TypeID->isStr("SEL"))
395        break;
396      Context.setObjCSelType(New);
397      objc_types = true;
398      return false;
399    case 8:
400      if (!TypeID->isStr("Protocol"))
401        break;
402      Context.setObjCProtoType(New->getUnderlyingType());
403      objc_types = true;
404      return false;
405    }
406    // Fall through - the typedef name was not a builtin type.
407  }
408  // Verify the old decl was also a type.
409  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
410  if (!Old) {
411    Diag(New->getLocation(), diag::err_redefinition_different_kind)
412      << New->getDeclName();
413    if (!objc_types)
414      Diag(OldD->getLocation(), diag::note_previous_definition);
415    return true;
416  }
417
418  // Determine the "old" type we'll use for checking and diagnostics.
419  QualType OldType;
420  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
421    OldType = OldTypedef->getUnderlyingType();
422  else
423    OldType = Context.getTypeDeclType(Old);
424
425  // If the typedef types are not identical, reject them in all languages and
426  // with any extensions enabled.
427
428  if (OldType != New->getUnderlyingType() &&
429      Context.getCanonicalType(OldType) !=
430      Context.getCanonicalType(New->getUnderlyingType())) {
431    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
432      << New->getUnderlyingType() << OldType;
433    if (!objc_types)
434      Diag(Old->getLocation(), diag::note_previous_definition);
435    return true;
436  }
437  if (objc_types) return false;
438  if (getLangOptions().Microsoft) return false;
439
440  // C++ [dcl.typedef]p2:
441  //   In a given non-class scope, a typedef specifier can be used to
442  //   redefine the name of any type declared in that scope to refer
443  //   to the type to which it already refers.
444  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
445    return false;
446
447  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
448  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
449  // *either* declaration is in a system header. The code below implements
450  // this adhoc compatibility rule. FIXME: The following code will not
451  // work properly when compiling ".i" files (containing preprocessed output).
452  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
453    SourceManager &SrcMgr = Context.getSourceManager();
454    if (SrcMgr.isInSystemHeader(Old->getLocation()))
455      return false;
456    if (SrcMgr.isInSystemHeader(New->getLocation()))
457      return false;
458  }
459
460  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
461  Diag(Old->getLocation(), diag::note_previous_definition);
462  return true;
463}
464
465/// DeclhasAttr - returns true if decl Declaration already has the target
466/// attribute.
467static bool DeclHasAttr(const Decl *decl, const Attr *target) {
468  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
469    if (attr->getKind() == target->getKind())
470      return true;
471
472  return false;
473}
474
475/// MergeAttributes - append attributes from the Old decl to the New one.
476static void MergeAttributes(Decl *New, Decl *Old) {
477  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
478
479  while (attr) {
480    tmp = attr;
481    attr = attr->getNext();
482
483    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
484      tmp->setInherited(true);
485      New->addAttr(tmp);
486    } else {
487      tmp->setNext(0);
488      delete(tmp);
489    }
490  }
491
492  Old->invalidateAttrs();
493}
494
495/// MergeFunctionDecl - We just parsed a function 'New' from
496/// declarator D which has the same name and scope as a previous
497/// declaration 'Old'.  Figure out how to resolve this situation,
498/// merging decls or emitting diagnostics as appropriate.
499///
500/// In C++, New and Old must be declarations that are not
501/// overloaded. Use IsOverload to determine whether New and Old are
502/// overloaded, and to select the Old declaration that New should be
503/// merged with.
504///
505/// Returns true if there was an error, false otherwise.
506bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
507  assert(!isa<OverloadedFunctionDecl>(OldD) &&
508         "Cannot merge with an overloaded function declaration");
509
510  // Verify the old decl was also a function.
511  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
512  if (!Old) {
513    Diag(New->getLocation(), diag::err_redefinition_different_kind)
514      << New->getDeclName();
515    Diag(OldD->getLocation(), diag::note_previous_definition);
516    return true;
517  }
518
519  // Determine whether the previous declaration was a definition,
520  // implicit declaration, or a declaration.
521  diag::kind PrevDiag;
522  if (Old->isThisDeclarationADefinition())
523    PrevDiag = diag::note_previous_definition;
524  else if (Old->isImplicit())
525    PrevDiag = diag::note_previous_implicit_declaration;
526  else
527    PrevDiag = diag::note_previous_declaration;
528
529  QualType OldQType = Context.getCanonicalType(Old->getType());
530  QualType NewQType = Context.getCanonicalType(New->getType());
531
532  if (getLangOptions().CPlusPlus) {
533    // (C++98 13.1p2):
534    //   Certain function declarations cannot be overloaded:
535    //     -- Function declarations that differ only in the return type
536    //        cannot be overloaded.
537    QualType OldReturnType
538      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
539    QualType NewReturnType
540      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
541    if (OldReturnType != NewReturnType) {
542      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
543      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
544      return true;
545    }
546
547    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
548    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
549    if (OldMethod && NewMethod) {
550      //    -- Member function declarations with the same name and the
551      //       same parameter types cannot be overloaded if any of them
552      //       is a static member function declaration.
553      if (OldMethod->isStatic() || NewMethod->isStatic()) {
554        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
555        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
556        return true;
557      }
558
559      // C++ [class.mem]p1:
560      //   [...] A member shall not be declared twice in the
561      //   member-specification, except that a nested class or member
562      //   class template can be declared and then later defined.
563      if (OldMethod->getLexicalDeclContext() ==
564            NewMethod->getLexicalDeclContext()) {
565        unsigned NewDiag;
566        if (isa<CXXConstructorDecl>(OldMethod))
567          NewDiag = diag::err_constructor_redeclared;
568        else if (isa<CXXDestructorDecl>(NewMethod))
569          NewDiag = diag::err_destructor_redeclared;
570        else if (isa<CXXConversionDecl>(NewMethod))
571          NewDiag = diag::err_conv_function_redeclared;
572        else
573          NewDiag = diag::err_member_redeclared;
574
575        Diag(New->getLocation(), NewDiag);
576        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
577      }
578    }
579
580    // (C++98 8.3.5p3):
581    //   All declarations for a function shall agree exactly in both the
582    //   return type and the parameter-type-list.
583    if (OldQType == NewQType) {
584      // We have a redeclaration.
585      MergeAttributes(New, Old);
586      return MergeCXXFunctionDecl(New, Old);
587    }
588
589    // Fall through for conflicting redeclarations and redefinitions.
590  }
591
592  // C: Function types need to be compatible, not identical. This handles
593  // duplicate function decls like "void f(int); void f(enum X);" properly.
594  if (!getLangOptions().CPlusPlus &&
595      Context.typesAreCompatible(OldQType, NewQType)) {
596    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
597    const FunctionTypeProto *OldProto = 0;
598    if (isa<FunctionTypeNoProto>(NewFuncType) &&
599        (OldProto = OldQType->getAsFunctionTypeProto())) {
600      // The old declaration provided a function prototype, but the
601      // new declaration does not. Merge in the prototype.
602      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
603                                                 OldProto->arg_type_end());
604      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
605                                         &ParamTypes[0], ParamTypes.size(),
606                                         OldProto->isVariadic(),
607                                         OldProto->getTypeQuals());
608      New->setType(NewQType);
609      New->setInheritedPrototype();
610    }
611
612    MergeAttributes(New, Old);
613
614    return false;
615  }
616
617  // A function that has already been declared has been redeclared or defined
618  // with a different type- show appropriate diagnostic
619  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
620    // The user has declared a builtin function with an incompatible
621    // signature.
622    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
623      // The function the user is redeclaring is a library-defined
624      // function like 'malloc' or 'printf'. Warn about the
625      // redeclaration, then ignore it.
626      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
627      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
628        << Old << Old->getType();
629      return false;
630    }
631
632    PrevDiag = diag::note_previous_builtin_declaration;
633  }
634
635  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
636  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
637  return true;
638}
639
640/// Predicate for C "tentative" external object definitions (C99 6.9.2).
641static bool isTentativeDefinition(VarDecl *VD) {
642  if (VD->isFileVarDecl())
643    return (!VD->getInit() &&
644            (VD->getStorageClass() == VarDecl::None ||
645             VD->getStorageClass() == VarDecl::Static));
646  return false;
647}
648
649/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
650/// when dealing with C "tentative" external object definitions (C99 6.9.2).
651void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
652  bool VDIsTentative = isTentativeDefinition(VD);
653  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
654
655  // FIXME: I don't think this will actually see all of the
656  // redefinitions. Can't we check this property on-the-fly?
657  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
658                                    E = IdResolver.end();
659       I != E; ++I) {
660    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
661      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
662
663      // Handle the following case:
664      //   int a[10];
665      //   int a[];   - the code below makes sure we set the correct type.
666      //   int a[11]; - this is an error, size isn't 10.
667      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
668          OldDecl->getType()->isConstantArrayType())
669        VD->setType(OldDecl->getType());
670
671      // Check for "tentative" definitions. We can't accomplish this in
672      // MergeVarDecl since the initializer hasn't been attached.
673      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
674        continue;
675
676      // Handle __private_extern__ just like extern.
677      if (OldDecl->getStorageClass() != VarDecl::Extern &&
678          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
679          VD->getStorageClass() != VarDecl::Extern &&
680          VD->getStorageClass() != VarDecl::PrivateExtern) {
681        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
682        Diag(OldDecl->getLocation(), diag::note_previous_definition);
683        // One redefinition error is enough.
684        break;
685      }
686    }
687  }
688}
689
690/// MergeVarDecl - We just parsed a variable 'New' which has the same name
691/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
692/// situation, merging decls or emitting diagnostics as appropriate.
693///
694/// Tentative definition rules (C99 6.9.2p2) are checked by
695/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
696/// definitions here, since the initializer hasn't been attached.
697///
698bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
699  // Verify the old decl was also a variable.
700  VarDecl *Old = dyn_cast<VarDecl>(OldD);
701  if (!Old) {
702    Diag(New->getLocation(), diag::err_redefinition_different_kind)
703      << New->getDeclName();
704    Diag(OldD->getLocation(), diag::note_previous_definition);
705    return true;
706  }
707
708  MergeAttributes(New, Old);
709
710  // Merge the types
711  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
712  if (MergedT.isNull()) {
713    Diag(New->getLocation(), diag::err_redefinition_different_type)
714      << New->getDeclName();
715    Diag(Old->getLocation(), diag::note_previous_definition);
716    return true;
717  }
718  New->setType(MergedT);
719  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
720  if (New->getStorageClass() == VarDecl::Static &&
721      (Old->getStorageClass() == VarDecl::None ||
722       Old->getStorageClass() == VarDecl::Extern)) {
723    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
724    Diag(Old->getLocation(), diag::note_previous_definition);
725    return true;
726  }
727  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
728  if (New->getStorageClass() != VarDecl::Static &&
729      Old->getStorageClass() == VarDecl::Static) {
730    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
731    Diag(Old->getLocation(), diag::note_previous_definition);
732    return true;
733  }
734  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
735  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
736    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
737    Diag(Old->getLocation(), diag::note_previous_definition);
738    return true;
739  }
740  return false;
741}
742
743/// CheckParmsForFunctionDef - Check that the parameters of the given
744/// function are appropriate for the definition of a function. This
745/// takes care of any checks that cannot be performed on the
746/// declaration itself, e.g., that the types of each of the function
747/// parameters are complete.
748bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
749  bool HasInvalidParm = false;
750  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
751    ParmVarDecl *Param = FD->getParamDecl(p);
752
753    // C99 6.7.5.3p4: the parameters in a parameter type list in a
754    // function declarator that is part of a function definition of
755    // that function shall not have incomplete type.
756    if (!Param->isInvalidDecl() &&
757        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
758                               diag::err_typecheck_decl_incomplete_type)) {
759      Param->setInvalidDecl();
760      HasInvalidParm = true;
761    }
762
763    // C99 6.9.1p5: If the declarator includes a parameter type list, the
764    // declaration of each parameter shall include an identifier.
765    if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus)
766      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
767  }
768
769  return HasInvalidParm;
770}
771
772/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
773/// no declarator (e.g. "struct foo;") is parsed.
774Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
775  TagDecl *Tag = 0;
776  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
777      DS.getTypeSpecType() == DeclSpec::TST_struct ||
778      DS.getTypeSpecType() == DeclSpec::TST_union ||
779      DS.getTypeSpecType() == DeclSpec::TST_enum)
780    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
781
782  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
783    if (!Record->getDeclName() && Record->isDefinition() &&
784        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
785      return BuildAnonymousStructOrUnion(S, DS, Record);
786
787    // Microsoft allows unnamed struct/union fields. Don't complain
788    // about them.
789    // FIXME: Should we support Microsoft's extensions in this area?
790    if (Record->getDeclName() && getLangOptions().Microsoft)
791      return Tag;
792  }
793
794  if (!DS.isMissingDeclaratorOk() &&
795      DS.getTypeSpecType() != DeclSpec::TST_error) {
796    // Warn about typedefs of enums without names, since this is an
797    // extension in both Microsoft an GNU.
798    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
799        Tag && isa<EnumDecl>(Tag)) {
800      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
801        << DS.getSourceRange();
802      return Tag;
803    }
804
805    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
806      << DS.getSourceRange();
807    return 0;
808  }
809
810  return Tag;
811}
812
813/// InjectAnonymousStructOrUnionMembers - Inject the members of the
814/// anonymous struct or union AnonRecord into the owning context Owner
815/// and scope S. This routine will be invoked just after we realize
816/// that an unnamed union or struct is actually an anonymous union or
817/// struct, e.g.,
818///
819/// @code
820/// union {
821///   int i;
822///   float f;
823/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
824///    // f into the surrounding scope.x
825/// @endcode
826///
827/// This routine is recursive, injecting the names of nested anonymous
828/// structs/unions into the owning context and scope as well.
829bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
830                                               RecordDecl *AnonRecord) {
831  bool Invalid = false;
832  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
833                               FEnd = AnonRecord->field_end();
834       F != FEnd; ++F) {
835    if ((*F)->getDeclName()) {
836      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
837                                                LookupOrdinaryName, true);
838      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
839        // C++ [class.union]p2:
840        //   The names of the members of an anonymous union shall be
841        //   distinct from the names of any other entity in the
842        //   scope in which the anonymous union is declared.
843        unsigned diagKind
844          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
845                                 : diag::err_anonymous_struct_member_redecl;
846        Diag((*F)->getLocation(), diagKind)
847          << (*F)->getDeclName();
848        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
849        Invalid = true;
850      } else {
851        // C++ [class.union]p2:
852        //   For the purpose of name lookup, after the anonymous union
853        //   definition, the members of the anonymous union are
854        //   considered to have been defined in the scope in which the
855        //   anonymous union is declared.
856        Owner->makeDeclVisibleInContext(*F);
857        S->AddDecl(*F);
858        IdResolver.AddDecl(*F);
859      }
860    } else if (const RecordType *InnerRecordType
861                 = (*F)->getType()->getAsRecordType()) {
862      RecordDecl *InnerRecord = InnerRecordType->getDecl();
863      if (InnerRecord->isAnonymousStructOrUnion())
864        Invalid = Invalid ||
865          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
866    }
867  }
868
869  return Invalid;
870}
871
872/// ActOnAnonymousStructOrUnion - Handle the declaration of an
873/// anonymous structure or union. Anonymous unions are a C++ feature
874/// (C++ [class.union]) and a GNU C extension; anonymous structures
875/// are a GNU C and GNU C++ extension.
876Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
877                                                RecordDecl *Record) {
878  DeclContext *Owner = Record->getDeclContext();
879
880  // Diagnose whether this anonymous struct/union is an extension.
881  if (Record->isUnion() && !getLangOptions().CPlusPlus)
882    Diag(Record->getLocation(), diag::ext_anonymous_union);
883  else if (!Record->isUnion())
884    Diag(Record->getLocation(), diag::ext_anonymous_struct);
885
886  // C and C++ require different kinds of checks for anonymous
887  // structs/unions.
888  bool Invalid = false;
889  if (getLangOptions().CPlusPlus) {
890    const char* PrevSpec = 0;
891    // C++ [class.union]p3:
892    //   Anonymous unions declared in a named namespace or in the
893    //   global namespace shall be declared static.
894    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
895        (isa<TranslationUnitDecl>(Owner) ||
896         (isa<NamespaceDecl>(Owner) &&
897          cast<NamespaceDecl>(Owner)->getDeclName()))) {
898      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
899      Invalid = true;
900
901      // Recover by adding 'static'.
902      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
903    }
904    // C++ [class.union]p3:
905    //   A storage class is not allowed in a declaration of an
906    //   anonymous union in a class scope.
907    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
908             isa<RecordDecl>(Owner)) {
909      Diag(DS.getStorageClassSpecLoc(),
910           diag::err_anonymous_union_with_storage_spec);
911      Invalid = true;
912
913      // Recover by removing the storage specifier.
914      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
915                             PrevSpec);
916    }
917
918    // C++ [class.union]p2:
919    //   The member-specification of an anonymous union shall only
920    //   define non-static data members. [Note: nested types and
921    //   functions cannot be declared within an anonymous union. ]
922    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
923                                 MemEnd = Record->decls_end();
924         Mem != MemEnd; ++Mem) {
925      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
926        // C++ [class.union]p3:
927        //   An anonymous union shall not have private or protected
928        //   members (clause 11).
929        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
930          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
931            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
932          Invalid = true;
933        }
934      } else if ((*Mem)->isImplicit()) {
935        // Any implicit members are fine.
936      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
937        // This is a type that showed up in an
938        // elaborated-type-specifier inside the anonymous struct or
939        // union, but which actually declares a type outside of the
940        // anonymous struct or union. It's okay.
941      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
942        if (!MemRecord->isAnonymousStructOrUnion() &&
943            MemRecord->getDeclName()) {
944          // This is a nested type declaration.
945          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
946            << (int)Record->isUnion();
947          Invalid = true;
948        }
949      } else {
950        // We have something that isn't a non-static data
951        // member. Complain about it.
952        unsigned DK = diag::err_anonymous_record_bad_member;
953        if (isa<TypeDecl>(*Mem))
954          DK = diag::err_anonymous_record_with_type;
955        else if (isa<FunctionDecl>(*Mem))
956          DK = diag::err_anonymous_record_with_function;
957        else if (isa<VarDecl>(*Mem))
958          DK = diag::err_anonymous_record_with_static;
959        Diag((*Mem)->getLocation(), DK)
960            << (int)Record->isUnion();
961          Invalid = true;
962      }
963    }
964  } else {
965    // FIXME: Check GNU C semantics
966    if (Record->isUnion() && !Owner->isRecord()) {
967      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
968        << (int)getLangOptions().CPlusPlus;
969      Invalid = true;
970    }
971  }
972
973  if (!Record->isUnion() && !Owner->isRecord()) {
974    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
975      << (int)getLangOptions().CPlusPlus;
976    Invalid = true;
977  }
978
979  // Create a declaration for this anonymous struct/union.
980  NamedDecl *Anon = 0;
981  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
982    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
983                             /*IdentifierInfo=*/0,
984                             Context.getTypeDeclType(Record),
985                             /*BitWidth=*/0, /*Mutable=*/false);
986    Anon->setAccess(AS_public);
987    if (getLangOptions().CPlusPlus)
988      FieldCollector->Add(cast<FieldDecl>(Anon));
989  } else {
990    VarDecl::StorageClass SC;
991    switch (DS.getStorageClassSpec()) {
992    default: assert(0 && "Unknown storage class!");
993    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
994    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
995    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
996    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
997    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
998    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
999    case DeclSpec::SCS_mutable:
1000      // mutable can only appear on non-static class members, so it's always
1001      // an error here
1002      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1003      Invalid = true;
1004      SC = VarDecl::None;
1005      break;
1006    }
1007
1008    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1009                           /*IdentifierInfo=*/0,
1010                           Context.getTypeDeclType(Record),
1011                           SC, DS.getSourceRange().getBegin());
1012  }
1013  Anon->setImplicit();
1014
1015  // Add the anonymous struct/union object to the current
1016  // context. We'll be referencing this object when we refer to one of
1017  // its members.
1018  Owner->addDecl(Anon);
1019
1020  // Inject the members of the anonymous struct/union into the owning
1021  // context and into the identifier resolver chain for name lookup
1022  // purposes.
1023  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1024    Invalid = true;
1025
1026  // Mark this as an anonymous struct/union type. Note that we do not
1027  // do this until after we have already checked and injected the
1028  // members of this anonymous struct/union type, because otherwise
1029  // the members could be injected twice: once by DeclContext when it
1030  // builds its lookup table, and once by
1031  // InjectAnonymousStructOrUnionMembers.
1032  Record->setAnonymousStructOrUnion(true);
1033
1034  if (Invalid)
1035    Anon->setInvalidDecl();
1036
1037  return Anon;
1038}
1039
1040bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
1041                                  bool DirectInit) {
1042  // Get the type before calling CheckSingleAssignmentConstraints(), since
1043  // it can promote the expression.
1044  QualType InitType = Init->getType();
1045
1046  if (getLangOptions().CPlusPlus) {
1047    // FIXME: I dislike this error message. A lot.
1048    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
1049      return Diag(Init->getSourceRange().getBegin(),
1050                  diag::err_typecheck_convert_incompatible)
1051        << DeclType << Init->getType() << "initializing"
1052        << Init->getSourceRange();
1053
1054    return false;
1055  }
1056
1057  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
1058  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
1059                                  InitType, Init, "initializing");
1060}
1061
1062bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
1063  const ArrayType *AT = Context.getAsArrayType(DeclT);
1064
1065  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
1066    // C99 6.7.8p14. We have an array of character type with unknown size
1067    // being initialized to a string literal.
1068    llvm::APSInt ConstVal(32);
1069    ConstVal = strLiteral->getByteLength() + 1;
1070    // Return a new array type (C99 6.7.8p22).
1071    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
1072                                         ArrayType::Normal, 0);
1073  } else {
1074    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
1075    // C99 6.7.8p14. We have an array of character type with known size.
1076    // FIXME: Avoid truncation for 64-bit length strings.
1077    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
1078      Diag(strLiteral->getSourceRange().getBegin(),
1079           diag::warn_initializer_string_for_char_array_too_long)
1080        << strLiteral->getSourceRange();
1081  }
1082  // Set type from "char *" to "constant array of char".
1083  strLiteral->setType(DeclT);
1084  // For now, we always return false (meaning success).
1085  return false;
1086}
1087
1088StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
1089  const ArrayType *AT = Context.getAsArrayType(DeclType);
1090  if (AT && AT->getElementType()->isCharType()) {
1091    return dyn_cast<StringLiteral>(Init->IgnoreParens());
1092  }
1093  return 0;
1094}
1095
1096bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
1097                                 SourceLocation InitLoc,
1098                                 DeclarationName InitEntity,
1099                                 bool DirectInit) {
1100  if (DeclType->isDependentType() || Init->isTypeDependent())
1101    return false;
1102
1103  // C++ [dcl.init.ref]p1:
1104  //   A variable declared to be a T&, that is "reference to type T"
1105  //   (8.3.2), shall be initialized by an object, or function, of
1106  //   type T or by an object that can be converted into a T.
1107  if (DeclType->isReferenceType())
1108    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1109
1110  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1111  // of unknown size ("[]") or an object type that is not a variable array type.
1112  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1113    return Diag(InitLoc,  diag::err_variable_object_no_init)
1114      << VAT->getSizeExpr()->getSourceRange();
1115
1116  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1117  if (!InitList) {
1118    // FIXME: Handle wide strings
1119    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1120      return CheckStringLiteralInit(strLiteral, DeclType);
1121
1122    // C++ [dcl.init]p14:
1123    //   -- If the destination type is a (possibly cv-qualified) class
1124    //      type:
1125    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1126      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1127      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1128
1129      //   -- If the initialization is direct-initialization, or if it is
1130      //      copy-initialization where the cv-unqualified version of the
1131      //      source type is the same class as, or a derived class of, the
1132      //      class of the destination, constructors are considered.
1133      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1134          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1135        CXXConstructorDecl *Constructor
1136          = PerformInitializationByConstructor(DeclType, &Init, 1,
1137                                               InitLoc, Init->getSourceRange(),
1138                                               InitEntity,
1139                                               DirectInit? IK_Direct : IK_Copy);
1140        return Constructor == 0;
1141      }
1142
1143      //   -- Otherwise (i.e., for the remaining copy-initialization
1144      //      cases), user-defined conversion sequences that can
1145      //      convert from the source type to the destination type or
1146      //      (when a conversion function is used) to a derived class
1147      //      thereof are enumerated as described in 13.3.1.4, and the
1148      //      best one is chosen through overload resolution
1149      //      (13.3). If the conversion cannot be done or is
1150      //      ambiguous, the initialization is ill-formed. The
1151      //      function selected is called with the initializer
1152      //      expression as its argument; if the function is a
1153      //      constructor, the call initializes a temporary of the
1154      //      destination type.
1155      // FIXME: We're pretending to do copy elision here; return to
1156      // this when we have ASTs for such things.
1157      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1158        return false;
1159
1160      if (InitEntity)
1161        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1162          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1163          << Init->getType() << Init->getSourceRange();
1164      else
1165        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1166          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1167          << Init->getType() << Init->getSourceRange();
1168    }
1169
1170    // C99 6.7.8p16.
1171    if (DeclType->isArrayType())
1172      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1173        << Init->getSourceRange();
1174
1175    return CheckSingleInitializer(Init, DeclType, DirectInit);
1176  }
1177
1178  bool hadError = CheckInitList(InitList, DeclType);
1179  Init = InitList;
1180  return hadError;
1181}
1182
1183/// GetNameForDeclarator - Determine the full declaration name for the
1184/// given Declarator.
1185DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1186  switch (D.getKind()) {
1187  case Declarator::DK_Abstract:
1188    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1189    return DeclarationName();
1190
1191  case Declarator::DK_Normal:
1192    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1193    return DeclarationName(D.getIdentifier());
1194
1195  case Declarator::DK_Constructor: {
1196    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1197    Ty = Context.getCanonicalType(Ty);
1198    return Context.DeclarationNames.getCXXConstructorName(Ty);
1199  }
1200
1201  case Declarator::DK_Destructor: {
1202    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1203    Ty = Context.getCanonicalType(Ty);
1204    return Context.DeclarationNames.getCXXDestructorName(Ty);
1205  }
1206
1207  case Declarator::DK_Conversion: {
1208    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1209    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1210    Ty = Context.getCanonicalType(Ty);
1211    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1212  }
1213
1214  case Declarator::DK_Operator:
1215    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1216    return Context.DeclarationNames.getCXXOperatorName(
1217                                                D.getOverloadedOperator());
1218  }
1219
1220  assert(false && "Unknown name kind");
1221  return DeclarationName();
1222}
1223
1224/// isNearlyMatchingFunction - Determine whether the C++ functions
1225/// Declaration and Definition are "nearly" matching. This heuristic
1226/// is used to improve diagnostics in the case where an out-of-line
1227/// function definition doesn't match any declaration within
1228/// the class or namespace.
1229static bool isNearlyMatchingFunction(ASTContext &Context,
1230                                     FunctionDecl *Declaration,
1231                                     FunctionDecl *Definition) {
1232  if (Declaration->param_size() != Definition->param_size())
1233    return false;
1234  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1235    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1236    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1237
1238    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1239    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1240    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1241      return false;
1242  }
1243
1244  return true;
1245}
1246
1247Sema::DeclTy *
1248Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1249                      bool IsFunctionDefinition) {
1250  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1251  DeclarationName Name = GetNameForDeclarator(D);
1252
1253  // All of these full declarators require an identifier.  If it doesn't have
1254  // one, the ParsedFreeStandingDeclSpec action should be used.
1255  if (!Name) {
1256    if (!D.getInvalidType())  // Reject this if we think it is valid.
1257      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1258           diag::err_declarator_need_ident)
1259        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1260    return 0;
1261  }
1262
1263  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1264  // we find one that is.
1265  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1266         (S->getFlags() & Scope::TemplateParamScope) != 0)
1267    S = S->getParent();
1268
1269  DeclContext *DC;
1270  NamedDecl *PrevDecl;
1271  NamedDecl *New;
1272  bool InvalidDecl = false;
1273
1274  // See if this is a redefinition of a variable in the same scope.
1275  if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
1276    DC = CurContext;
1277    PrevDecl = LookupName(S, Name, LookupOrdinaryName, true, true,
1278                          D.getIdentifierLoc());
1279  } else { // Something like "int foo::x;"
1280    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1281    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1282
1283    // C++ 7.3.1.2p2:
1284    // Members (including explicit specializations of templates) of a named
1285    // namespace can also be defined outside that namespace by explicit
1286    // qualification of the name being defined, provided that the entity being
1287    // defined was already declared in the namespace and the definition appears
1288    // after the point of declaration in a namespace that encloses the
1289    // declarations namespace.
1290    //
1291    // Note that we only check the context at this point. We don't yet
1292    // have enough information to make sure that PrevDecl is actually
1293    // the declaration we want to match. For example, given:
1294    //
1295    //   class X {
1296    //     void f();
1297    //     void f(float);
1298    //   };
1299    //
1300    //   void X::f(int) { } // ill-formed
1301    //
1302    // In this case, PrevDecl will point to the overload set
1303    // containing the two f's declared in X, but neither of them
1304    // matches.
1305
1306    // First check whether we named the global scope.
1307    if (isa<TranslationUnitDecl>(DC)) {
1308      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1309        << Name << D.getCXXScopeSpec().getRange();
1310    } else if (!CurContext->Encloses(DC)) {
1311      // The qualifying scope doesn't enclose the original declaration.
1312      // Emit diagnostic based on current scope.
1313      SourceLocation L = D.getIdentifierLoc();
1314      SourceRange R = D.getCXXScopeSpec().getRange();
1315      if (isa<FunctionDecl>(CurContext))
1316        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1317      else
1318        Diag(L, diag::err_invalid_declarator_scope)
1319          << Name << cast<NamedDecl>(DC) << R;
1320      InvalidDecl = true;
1321    }
1322  }
1323
1324  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1325    // Maybe we will complain about the shadowed template parameter.
1326    InvalidDecl = InvalidDecl
1327      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1328    // Just pretend that we didn't see the previous declaration.
1329    PrevDecl = 0;
1330  }
1331
1332  // In C++, the previous declaration we find might be a tag type
1333  // (class or enum). In this case, the new declaration will hide the
1334  // tag type. Note that this does does not apply if we're declaring a
1335  // typedef (C++ [dcl.typedef]p4).
1336  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1337      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1338    PrevDecl = 0;
1339
1340  QualType R = GetTypeForDeclarator(D, S);
1341  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1342
1343  bool Redeclaration = false;
1344  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1345    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1346                                 InvalidDecl, Redeclaration);
1347  } else if (R.getTypePtr()->isFunctionType()) {
1348    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1349                                  IsFunctionDefinition, InvalidDecl,
1350                                  Redeclaration);
1351  } else {
1352    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1353                                  InvalidDecl, Redeclaration);
1354  }
1355
1356  if (New == 0)
1357    return 0;
1358
1359  // Set the lexical context. If the declarator has a C++ scope specifier, the
1360  // lexical context will be different from the semantic context.
1361  New->setLexicalDeclContext(CurContext);
1362
1363  // If this has an identifier and is not an invalid redeclaration,
1364  // add it to the scope stack.
1365  if (Name && !(Redeclaration && InvalidDecl))
1366    PushOnScopeChains(New, S);
1367  // If any semantic error occurred, mark the decl as invalid.
1368  if (D.getInvalidType() || InvalidDecl)
1369    New->setInvalidDecl();
1370
1371  return New;
1372}
1373
1374NamedDecl*
1375Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1376                             QualType R, Decl* LastDeclarator,
1377                             Decl* PrevDecl, bool& InvalidDecl,
1378                             bool &Redeclaration) {
1379  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1380  if (D.getCXXScopeSpec().isSet()) {
1381    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1382      << D.getCXXScopeSpec().getRange();
1383    InvalidDecl = true;
1384    // Pretend we didn't see the scope specifier.
1385    DC = 0;
1386  }
1387
1388  // Check that there are no default arguments (C++ only).
1389  if (getLangOptions().CPlusPlus)
1390    CheckExtraCXXDefaultArguments(D);
1391
1392  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1393  if (!NewTD) return 0;
1394
1395  // Handle attributes prior to checking for duplicates in MergeVarDecl
1396  ProcessDeclAttributes(NewTD, D);
1397  // Merge the decl with the existing one if appropriate. If the decl is
1398  // in an outer scope, it isn't the same thing.
1399  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1400    Redeclaration = true;
1401    if (MergeTypeDefDecl(NewTD, PrevDecl))
1402      InvalidDecl = true;
1403  }
1404
1405  if (S->getFnParent() == 0) {
1406    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1407    // then it shall have block scope.
1408    if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1409      if (NewTD->getUnderlyingType()->isVariableArrayType())
1410        Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1411      else
1412        Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1413
1414      InvalidDecl = true;
1415    }
1416  }
1417  return NewTD;
1418}
1419
1420NamedDecl*
1421Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1422                              QualType R, Decl* LastDeclarator,
1423                              Decl* PrevDecl, bool& InvalidDecl,
1424                              bool &Redeclaration) {
1425  DeclarationName Name = GetNameForDeclarator(D);
1426
1427  // Check that there are no default arguments (C++ only).
1428  if (getLangOptions().CPlusPlus)
1429    CheckExtraCXXDefaultArguments(D);
1430
1431  if (R.getTypePtr()->isObjCInterfaceType()) {
1432    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1433      << D.getIdentifier();
1434    InvalidDecl = true;
1435  }
1436
1437  VarDecl *NewVD;
1438  VarDecl::StorageClass SC;
1439  switch (D.getDeclSpec().getStorageClassSpec()) {
1440  default: assert(0 && "Unknown storage class!");
1441  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1442  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1443  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1444  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1445  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1446  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1447  case DeclSpec::SCS_mutable:
1448    // mutable can only appear on non-static class members, so it's always
1449    // an error here
1450    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1451    InvalidDecl = true;
1452    SC = VarDecl::None;
1453    break;
1454  }
1455
1456  IdentifierInfo *II = Name.getAsIdentifierInfo();
1457  if (!II) {
1458    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1459      << Name.getAsString();
1460    return 0;
1461  }
1462
1463  if (DC->isRecord()) {
1464    // This is a static data member for a C++ class.
1465    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1466                                    D.getIdentifierLoc(), II,
1467                                    R);
1468  } else {
1469    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1470    if (S->getFnParent() == 0) {
1471      // C99 6.9p2: The storage-class specifiers auto and register shall not
1472      // appear in the declaration specifiers in an external declaration.
1473      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1474        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1475        InvalidDecl = true;
1476      }
1477    }
1478    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1479                            II, R, SC,
1480                            // FIXME: Move to DeclGroup...
1481                            D.getDeclSpec().getSourceRange().getBegin());
1482    NewVD->setThreadSpecified(ThreadSpecified);
1483  }
1484  NewVD->setNextDeclarator(LastDeclarator);
1485
1486  // Handle attributes prior to checking for duplicates in MergeVarDecl
1487  ProcessDeclAttributes(NewVD, D);
1488
1489  // Handle GNU asm-label extension (encoded as an attribute).
1490  if (Expr *E = (Expr*) D.getAsmLabel()) {
1491    // The parser guarantees this is a string.
1492    StringLiteral *SE = cast<StringLiteral>(E);
1493    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1494                                                SE->getByteLength())));
1495  }
1496
1497  // Emit an error if an address space was applied to decl with local storage.
1498  // This includes arrays of objects with address space qualifiers, but not
1499  // automatic variables that point to other address spaces.
1500  // ISO/IEC TR 18037 S5.1.2
1501  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1502    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1503    InvalidDecl = true;
1504  }
1505  // Merge the decl with the existing one if appropriate. If the decl is
1506  // in an outer scope, it isn't the same thing.
1507  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1508    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1509      // The user tried to define a non-static data member
1510      // out-of-line (C++ [dcl.meaning]p1).
1511      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1512        << D.getCXXScopeSpec().getRange();
1513      NewVD->Destroy(Context);
1514      return 0;
1515    }
1516
1517    Redeclaration = true;
1518    if (MergeVarDecl(NewVD, PrevDecl))
1519      InvalidDecl = true;
1520
1521    if (D.getCXXScopeSpec().isSet()) {
1522      // No previous declaration in the qualifying scope.
1523      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1524        << Name << D.getCXXScopeSpec().getRange();
1525      InvalidDecl = true;
1526    }
1527  }
1528  return NewVD;
1529}
1530
1531NamedDecl*
1532Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1533                              QualType R, Decl *LastDeclarator,
1534                              Decl* PrevDecl, bool IsFunctionDefinition,
1535                              bool& InvalidDecl, bool &Redeclaration) {
1536  assert(R.getTypePtr()->isFunctionType());
1537
1538  DeclarationName Name = GetNameForDeclarator(D);
1539  FunctionDecl::StorageClass SC = FunctionDecl::None;
1540  switch (D.getDeclSpec().getStorageClassSpec()) {
1541  default: assert(0 && "Unknown storage class!");
1542  case DeclSpec::SCS_auto:
1543  case DeclSpec::SCS_register:
1544  case DeclSpec::SCS_mutable:
1545    Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1546    InvalidDecl = true;
1547    break;
1548  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1549  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1550  case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1551  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1552  }
1553
1554  bool isInline = D.getDeclSpec().isInlineSpecified();
1555  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1556  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1557
1558  FunctionDecl *NewFD;
1559  if (D.getKind() == Declarator::DK_Constructor) {
1560    // This is a C++ constructor declaration.
1561    assert(DC->isRecord() &&
1562           "Constructors can only be declared in a member context");
1563
1564    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1565
1566    // Create the new declaration
1567    NewFD = CXXConstructorDecl::Create(Context,
1568                                       cast<CXXRecordDecl>(DC),
1569                                       D.getIdentifierLoc(), Name, R,
1570                                       isExplicit, isInline,
1571                                       /*isImplicitlyDeclared=*/false);
1572
1573    if (InvalidDecl)
1574      NewFD->setInvalidDecl();
1575  } else if (D.getKind() == Declarator::DK_Destructor) {
1576    // This is a C++ destructor declaration.
1577    if (DC->isRecord()) {
1578      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1579
1580      NewFD = CXXDestructorDecl::Create(Context,
1581                                        cast<CXXRecordDecl>(DC),
1582                                        D.getIdentifierLoc(), Name, R,
1583                                        isInline,
1584                                        /*isImplicitlyDeclared=*/false);
1585
1586      if (InvalidDecl)
1587        NewFD->setInvalidDecl();
1588    } else {
1589      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1590
1591      // Create a FunctionDecl to satisfy the function definition parsing
1592      // code path.
1593      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1594                                   Name, R, SC, isInline,
1595                                   // FIXME: Move to DeclGroup...
1596                                   D.getDeclSpec().getSourceRange().getBegin());
1597      InvalidDecl = true;
1598      NewFD->setInvalidDecl();
1599    }
1600  } else if (D.getKind() == Declarator::DK_Conversion) {
1601    if (!DC->isRecord()) {
1602      Diag(D.getIdentifierLoc(),
1603           diag::err_conv_function_not_member);
1604      return 0;
1605    } else {
1606      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1607
1608      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1609                                        D.getIdentifierLoc(), Name, R,
1610                                        isInline, isExplicit);
1611
1612      if (InvalidDecl)
1613        NewFD->setInvalidDecl();
1614    }
1615  } else if (DC->isRecord()) {
1616    // This is a C++ method declaration.
1617    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1618                                  D.getIdentifierLoc(), Name, R,
1619                                  (SC == FunctionDecl::Static), isInline);
1620  } else {
1621    NewFD = FunctionDecl::Create(Context, DC,
1622                                 D.getIdentifierLoc(),
1623                                 Name, R, SC, isInline,
1624                                 // FIXME: Move to DeclGroup...
1625                                 D.getDeclSpec().getSourceRange().getBegin());
1626  }
1627  NewFD->setNextDeclarator(LastDeclarator);
1628
1629  // Set the lexical context. If the declarator has a C++
1630  // scope specifier, the lexical context will be different
1631  // from the semantic context.
1632  NewFD->setLexicalDeclContext(CurContext);
1633
1634  // Handle GNU asm-label extension (encoded as an attribute).
1635  if (Expr *E = (Expr*) D.getAsmLabel()) {
1636    // The parser guarantees this is a string.
1637    StringLiteral *SE = cast<StringLiteral>(E);
1638    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1639                                                SE->getByteLength())));
1640  }
1641
1642  // Copy the parameter declarations from the declarator D to
1643  // the function declaration NewFD, if they are available.
1644  if (D.getNumTypeObjects() > 0) {
1645    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1646
1647    // Create Decl objects for each parameter, adding them to the
1648    // FunctionDecl.
1649    llvm::SmallVector<ParmVarDecl*, 16> Params;
1650
1651    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1652    // function that takes no arguments, not a function that takes a
1653    // single void argument.
1654    // We let through "const void" here because Sema::GetTypeForDeclarator
1655    // already checks for that case.
1656    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1657        FTI.ArgInfo[0].Param &&
1658        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1659      // empty arg list, don't push any params.
1660      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1661
1662      // In C++, the empty parameter-type-list must be spelled "void"; a
1663      // typedef of void is not permitted.
1664      if (getLangOptions().CPlusPlus &&
1665          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1666        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1667      }
1668    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1669      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1670        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1671    }
1672
1673    NewFD->setParams(Context, &Params[0], Params.size());
1674  } else if (R->getAsTypedefType()) {
1675    // When we're declaring a function with a typedef, as in the
1676    // following example, we'll need to synthesize (unnamed)
1677    // parameters for use in the declaration.
1678    //
1679    // @code
1680    // typedef void fn(int);
1681    // fn f;
1682    // @endcode
1683    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1684    if (!FT) {
1685      // This is a typedef of a function with no prototype, so we
1686      // don't need to do anything.
1687    } else if ((FT->getNumArgs() == 0) ||
1688               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1689                FT->getArgType(0)->isVoidType())) {
1690      // This is a zero-argument function. We don't need to do anything.
1691    } else {
1692      // Synthesize a parameter for each argument type.
1693      llvm::SmallVector<ParmVarDecl*, 16> Params;
1694      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1695           ArgType != FT->arg_type_end(); ++ArgType) {
1696        Params.push_back(ParmVarDecl::Create(Context, DC,
1697                                             SourceLocation(), 0,
1698                                             *ArgType, VarDecl::None,
1699                                             0));
1700      }
1701
1702      NewFD->setParams(Context, &Params[0], Params.size());
1703    }
1704  }
1705
1706  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1707    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1708  else if (isa<CXXDestructorDecl>(NewFD)) {
1709    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1710    Record->setUserDeclaredDestructor(true);
1711    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1712    // user-defined destructor.
1713    Record->setPOD(false);
1714  } else if (CXXConversionDecl *Conversion =
1715             dyn_cast<CXXConversionDecl>(NewFD))
1716    ActOnConversionDeclarator(Conversion);
1717
1718  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1719  if (NewFD->isOverloadedOperator() &&
1720      CheckOverloadedOperatorDeclaration(NewFD))
1721    NewFD->setInvalidDecl();
1722
1723  // Merge the decl with the existing one if appropriate. Since C functions
1724  // are in a flat namespace, make sure we consider decls in outer scopes.
1725  bool OverloadableAttrRequired = false;
1726  if (PrevDecl &&
1727      (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1728    // Determine whether NewFD is an overload of PrevDecl or
1729    // a declaration that requires merging. If it's an overload,
1730    // there's no more work to do here; we'll just add the new
1731    // function to the scope.
1732    OverloadedFunctionDecl::function_iterator MatchedDecl;
1733
1734    if (!getLangOptions().CPlusPlus &&
1735        AllowOverloadingOfFunction(PrevDecl, Context))
1736      OverloadableAttrRequired = true;
1737
1738    if (!AllowOverloadingOfFunction(PrevDecl, Context) ||
1739        !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1740      Redeclaration = true;
1741      Decl *OldDecl = PrevDecl;
1742
1743      // If PrevDecl was an overloaded function, extract the
1744      // FunctionDecl that matched.
1745      if (isa<OverloadedFunctionDecl>(PrevDecl))
1746        OldDecl = *MatchedDecl;
1747
1748      // NewFD and PrevDecl represent declarations that need to be
1749      // merged.
1750      if (MergeFunctionDecl(NewFD, OldDecl))
1751        InvalidDecl = true;
1752
1753      if (!InvalidDecl) {
1754        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1755
1756        // An out-of-line member function declaration must also be a
1757        // definition (C++ [dcl.meaning]p1).
1758        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1759            !InvalidDecl) {
1760          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1761            << D.getCXXScopeSpec().getRange();
1762          NewFD->setInvalidDecl();
1763        }
1764      }
1765    }
1766  }
1767
1768  if (D.getCXXScopeSpec().isSet() &&
1769      (!PrevDecl || !Redeclaration)) {
1770    // The user tried to provide an out-of-line definition for a
1771    // function that is a member of a class or namespace, but there
1772    // was no such member function declared (C++ [class.mfct]p2,
1773    // C++ [namespace.memdef]p2). For example:
1774    //
1775    // class X {
1776    //   void f() const;
1777    // };
1778    //
1779    // void X::f() { } // ill-formed
1780    //
1781    // Complain about this problem, and attempt to suggest close
1782    // matches (e.g., those that differ only in cv-qualifiers and
1783    // whether the parameter types are references).
1784    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1785      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
1786    InvalidDecl = true;
1787
1788    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
1789                                            true);
1790    assert(!Prev.isAmbiguous() &&
1791           "Cannot have an ambiguity in previous-declaration lookup");
1792    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
1793         Func != FuncEnd; ++Func) {
1794      if (isa<FunctionDecl>(*Func) &&
1795          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
1796        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1797    }
1798
1799    PrevDecl = 0;
1800  }
1801
1802  // Handle attributes. We need to have merged decls when handling attributes
1803  // (for example to check for conflicts, etc).
1804  ProcessDeclAttributes(NewFD, D);
1805  AddKnownFunctionAttributes(NewFD);
1806
1807  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
1808    // If a function name is overloadable in C, then every function
1809    // with that name must be marked "overloadable".
1810    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
1811      << Redeclaration << NewFD;
1812    if (PrevDecl)
1813      Diag(PrevDecl->getLocation(),
1814           diag::note_attribute_overloadable_prev_overload);
1815    NewFD->addAttr(new OverloadableAttr);
1816  }
1817
1818  if (getLangOptions().CPlusPlus) {
1819    // In C++, check default arguments now that we have merged decls. Unless
1820    // the lexical context is the class, because in this case this is done
1821    // during delayed parsing anyway.
1822    if (!CurContext->isRecord())
1823      CheckCXXDefaultArguments(NewFD);
1824
1825    // An out-of-line member function declaration must also be a
1826    // definition (C++ [dcl.meaning]p1).
1827    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1828      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1829        << D.getCXXScopeSpec().getRange();
1830      InvalidDecl = true;
1831    }
1832  }
1833  return NewFD;
1834}
1835
1836void Sema::InitializerElementNotConstant(const Expr *Init) {
1837  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1838    << Init->getSourceRange();
1839}
1840
1841bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1842  switch (Init->getStmtClass()) {
1843  default:
1844    InitializerElementNotConstant(Init);
1845    return true;
1846  case Expr::ParenExprClass: {
1847    const ParenExpr* PE = cast<ParenExpr>(Init);
1848    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1849  }
1850  case Expr::CompoundLiteralExprClass:
1851    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1852  case Expr::DeclRefExprClass:
1853  case Expr::QualifiedDeclRefExprClass: {
1854    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1855    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1856      if (VD->hasGlobalStorage())
1857        return false;
1858      InitializerElementNotConstant(Init);
1859      return true;
1860    }
1861    if (isa<FunctionDecl>(D))
1862      return false;
1863    InitializerElementNotConstant(Init);
1864    return true;
1865  }
1866  case Expr::MemberExprClass: {
1867    const MemberExpr *M = cast<MemberExpr>(Init);
1868    if (M->isArrow())
1869      return CheckAddressConstantExpression(M->getBase());
1870    return CheckAddressConstantExpressionLValue(M->getBase());
1871  }
1872  case Expr::ArraySubscriptExprClass: {
1873    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1874    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1875    return CheckAddressConstantExpression(ASE->getBase()) ||
1876           CheckArithmeticConstantExpression(ASE->getIdx());
1877  }
1878  case Expr::StringLiteralClass:
1879  case Expr::PredefinedExprClass:
1880    return false;
1881  case Expr::UnaryOperatorClass: {
1882    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1883
1884    // C99 6.6p9
1885    if (Exp->getOpcode() == UnaryOperator::Deref)
1886      return CheckAddressConstantExpression(Exp->getSubExpr());
1887
1888    InitializerElementNotConstant(Init);
1889    return true;
1890  }
1891  }
1892}
1893
1894bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1895  switch (Init->getStmtClass()) {
1896  default:
1897    InitializerElementNotConstant(Init);
1898    return true;
1899  case Expr::ParenExprClass:
1900    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1901  case Expr::StringLiteralClass:
1902  case Expr::ObjCStringLiteralClass:
1903    return false;
1904  case Expr::CallExprClass:
1905  case Expr::CXXOperatorCallExprClass:
1906    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1907    if (cast<CallExpr>(Init)->isBuiltinCall(Context) ==
1908           Builtin::BI__builtin___CFStringMakeConstantString)
1909      return false;
1910
1911    InitializerElementNotConstant(Init);
1912    return true;
1913
1914  case Expr::UnaryOperatorClass: {
1915    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1916
1917    // C99 6.6p9
1918    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1919      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1920
1921    if (Exp->getOpcode() == UnaryOperator::Extension)
1922      return CheckAddressConstantExpression(Exp->getSubExpr());
1923
1924    InitializerElementNotConstant(Init);
1925    return true;
1926  }
1927  case Expr::BinaryOperatorClass: {
1928    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1929    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1930
1931    Expr *PExp = Exp->getLHS();
1932    Expr *IExp = Exp->getRHS();
1933    if (IExp->getType()->isPointerType())
1934      std::swap(PExp, IExp);
1935
1936    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1937    return CheckAddressConstantExpression(PExp) ||
1938           CheckArithmeticConstantExpression(IExp);
1939  }
1940  case Expr::ImplicitCastExprClass:
1941  case Expr::CStyleCastExprClass: {
1942    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1943    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1944      // Check for implicit promotion
1945      if (SubExpr->getType()->isFunctionType() ||
1946          SubExpr->getType()->isArrayType())
1947        return CheckAddressConstantExpressionLValue(SubExpr);
1948    }
1949
1950    // Check for pointer->pointer cast
1951    if (SubExpr->getType()->isPointerType())
1952      return CheckAddressConstantExpression(SubExpr);
1953
1954    if (SubExpr->getType()->isIntegralType()) {
1955      // Check for the special-case of a pointer->int->pointer cast;
1956      // this isn't standard, but some code requires it. See
1957      // PR2720 for an example.
1958      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1959        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1960          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1961          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1962          if (IntWidth >= PointerWidth) {
1963            return CheckAddressConstantExpression(SubCast->getSubExpr());
1964          }
1965        }
1966      }
1967    }
1968    if (SubExpr->getType()->isArithmeticType()) {
1969      return CheckArithmeticConstantExpression(SubExpr);
1970    }
1971
1972    InitializerElementNotConstant(Init);
1973    return true;
1974  }
1975  case Expr::ConditionalOperatorClass: {
1976    // FIXME: Should we pedwarn here?
1977    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1978    if (!Exp->getCond()->getType()->isArithmeticType()) {
1979      InitializerElementNotConstant(Init);
1980      return true;
1981    }
1982    if (CheckArithmeticConstantExpression(Exp->getCond()))
1983      return true;
1984    if (Exp->getLHS() &&
1985        CheckAddressConstantExpression(Exp->getLHS()))
1986      return true;
1987    return CheckAddressConstantExpression(Exp->getRHS());
1988  }
1989  case Expr::AddrLabelExprClass:
1990    return false;
1991  }
1992}
1993
1994static const Expr* FindExpressionBaseAddress(const Expr* E);
1995
1996static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1997  switch (E->getStmtClass()) {
1998  default:
1999    return E;
2000  case Expr::ParenExprClass: {
2001    const ParenExpr* PE = cast<ParenExpr>(E);
2002    return FindExpressionBaseAddressLValue(PE->getSubExpr());
2003  }
2004  case Expr::MemberExprClass: {
2005    const MemberExpr *M = cast<MemberExpr>(E);
2006    if (M->isArrow())
2007      return FindExpressionBaseAddress(M->getBase());
2008    return FindExpressionBaseAddressLValue(M->getBase());
2009  }
2010  case Expr::ArraySubscriptExprClass: {
2011    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
2012    return FindExpressionBaseAddress(ASE->getBase());
2013  }
2014  case Expr::UnaryOperatorClass: {
2015    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2016
2017    if (Exp->getOpcode() == UnaryOperator::Deref)
2018      return FindExpressionBaseAddress(Exp->getSubExpr());
2019
2020    return E;
2021  }
2022  }
2023}
2024
2025static const Expr* FindExpressionBaseAddress(const Expr* E) {
2026  switch (E->getStmtClass()) {
2027  default:
2028    return E;
2029  case Expr::ParenExprClass: {
2030    const ParenExpr* PE = cast<ParenExpr>(E);
2031    return FindExpressionBaseAddress(PE->getSubExpr());
2032  }
2033  case Expr::UnaryOperatorClass: {
2034    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2035
2036    // C99 6.6p9
2037    if (Exp->getOpcode() == UnaryOperator::AddrOf)
2038      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
2039
2040    if (Exp->getOpcode() == UnaryOperator::Extension)
2041      return FindExpressionBaseAddress(Exp->getSubExpr());
2042
2043    return E;
2044  }
2045  case Expr::BinaryOperatorClass: {
2046    const BinaryOperator *Exp = cast<BinaryOperator>(E);
2047
2048    Expr *PExp = Exp->getLHS();
2049    Expr *IExp = Exp->getRHS();
2050    if (IExp->getType()->isPointerType())
2051      std::swap(PExp, IExp);
2052
2053    return FindExpressionBaseAddress(PExp);
2054  }
2055  case Expr::ImplicitCastExprClass: {
2056    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
2057
2058    // Check for implicit promotion
2059    if (SubExpr->getType()->isFunctionType() ||
2060        SubExpr->getType()->isArrayType())
2061      return FindExpressionBaseAddressLValue(SubExpr);
2062
2063    // Check for pointer->pointer cast
2064    if (SubExpr->getType()->isPointerType())
2065      return FindExpressionBaseAddress(SubExpr);
2066
2067    // We assume that we have an arithmetic expression here;
2068    // if we don't, we'll figure it out later
2069    return 0;
2070  }
2071  case Expr::CStyleCastExprClass: {
2072    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2073
2074    // Check for pointer->pointer cast
2075    if (SubExpr->getType()->isPointerType())
2076      return FindExpressionBaseAddress(SubExpr);
2077
2078    // We assume that we have an arithmetic expression here;
2079    // if we don't, we'll figure it out later
2080    return 0;
2081  }
2082  }
2083}
2084
2085bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
2086  switch (Init->getStmtClass()) {
2087  default:
2088    InitializerElementNotConstant(Init);
2089    return true;
2090  case Expr::ParenExprClass: {
2091    const ParenExpr* PE = cast<ParenExpr>(Init);
2092    return CheckArithmeticConstantExpression(PE->getSubExpr());
2093  }
2094  case Expr::FloatingLiteralClass:
2095  case Expr::IntegerLiteralClass:
2096  case Expr::CharacterLiteralClass:
2097  case Expr::ImaginaryLiteralClass:
2098  case Expr::TypesCompatibleExprClass:
2099  case Expr::CXXBoolLiteralExprClass:
2100    return false;
2101  case Expr::CallExprClass:
2102  case Expr::CXXOperatorCallExprClass: {
2103    const CallExpr *CE = cast<CallExpr>(Init);
2104
2105    // Allow any constant foldable calls to builtins.
2106    if (CE->isBuiltinCall(Context) && CE->isEvaluatable(Context))
2107      return false;
2108
2109    InitializerElementNotConstant(Init);
2110    return true;
2111  }
2112  case Expr::DeclRefExprClass:
2113  case Expr::QualifiedDeclRefExprClass: {
2114    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2115    if (isa<EnumConstantDecl>(D))
2116      return false;
2117    InitializerElementNotConstant(Init);
2118    return true;
2119  }
2120  case Expr::CompoundLiteralExprClass:
2121    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2122    // but vectors are allowed to be magic.
2123    if (Init->getType()->isVectorType())
2124      return false;
2125    InitializerElementNotConstant(Init);
2126    return true;
2127  case Expr::UnaryOperatorClass: {
2128    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2129
2130    switch (Exp->getOpcode()) {
2131    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2132    // See C99 6.6p3.
2133    default:
2134      InitializerElementNotConstant(Init);
2135      return true;
2136    case UnaryOperator::OffsetOf:
2137      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2138        return false;
2139      InitializerElementNotConstant(Init);
2140      return true;
2141    case UnaryOperator::Extension:
2142    case UnaryOperator::LNot:
2143    case UnaryOperator::Plus:
2144    case UnaryOperator::Minus:
2145    case UnaryOperator::Not:
2146      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2147    }
2148  }
2149  case Expr::SizeOfAlignOfExprClass: {
2150    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2151    // Special check for void types, which are allowed as an extension
2152    if (Exp->getTypeOfArgument()->isVoidType())
2153      return false;
2154    // alignof always evaluates to a constant.
2155    // FIXME: is sizeof(int[3.0]) a constant expression?
2156    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2157      InitializerElementNotConstant(Init);
2158      return true;
2159    }
2160    return false;
2161  }
2162  case Expr::BinaryOperatorClass: {
2163    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2164
2165    if (Exp->getLHS()->getType()->isArithmeticType() &&
2166        Exp->getRHS()->getType()->isArithmeticType()) {
2167      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2168             CheckArithmeticConstantExpression(Exp->getRHS());
2169    }
2170
2171    if (Exp->getLHS()->getType()->isPointerType() &&
2172        Exp->getRHS()->getType()->isPointerType()) {
2173      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2174      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2175
2176      // Only allow a null (constant integer) base; we could
2177      // allow some additional cases if necessary, but this
2178      // is sufficient to cover offsetof-like constructs.
2179      if (!LHSBase && !RHSBase) {
2180        return CheckAddressConstantExpression(Exp->getLHS()) ||
2181               CheckAddressConstantExpression(Exp->getRHS());
2182      }
2183    }
2184
2185    InitializerElementNotConstant(Init);
2186    return true;
2187  }
2188  case Expr::ImplicitCastExprClass:
2189  case Expr::CStyleCastExprClass: {
2190    const CastExpr *CE = cast<CastExpr>(Init);
2191    const Expr *SubExpr = CE->getSubExpr();
2192
2193    if (SubExpr->getType()->isArithmeticType())
2194      return CheckArithmeticConstantExpression(SubExpr);
2195
2196    if (SubExpr->getType()->isPointerType()) {
2197      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2198      if (Base) {
2199        // the cast is only valid if done to a wide enough type
2200        if (Context.getTypeSize(CE->getType()) >=
2201            Context.getTypeSize(SubExpr->getType()))
2202          return false;
2203      } else {
2204        // If the pointer has a null base, this is an offsetof-like construct
2205        return CheckAddressConstantExpression(SubExpr);
2206      }
2207    }
2208
2209    InitializerElementNotConstant(Init);
2210    return true;
2211  }
2212  case Expr::ConditionalOperatorClass: {
2213    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2214
2215    // If GNU extensions are disabled, we require all operands to be arithmetic
2216    // constant expressions.
2217    if (getLangOptions().NoExtensions) {
2218      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2219          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2220             CheckArithmeticConstantExpression(Exp->getRHS());
2221    }
2222
2223    // Otherwise, we have to emulate some of the behavior of fold here.
2224    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2225    // because it can constant fold things away.  To retain compatibility with
2226    // GCC code, we see if we can fold the condition to a constant (which we
2227    // should always be able to do in theory).  If so, we only require the
2228    // specified arm of the conditional to be a constant.  This is a horrible
2229    // hack, but is require by real world code that uses __builtin_constant_p.
2230    Expr::EvalResult EvalResult;
2231    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2232        EvalResult.HasSideEffects) {
2233      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2234      // won't be able to either.  Use it to emit the diagnostic though.
2235      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2236      assert(Res && "Evaluate couldn't evaluate this constant?");
2237      return Res;
2238    }
2239
2240    // Verify that the side following the condition is also a constant.
2241    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2242    if (EvalResult.Val.getInt() == 0)
2243      std::swap(TrueSide, FalseSide);
2244
2245    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2246      return true;
2247
2248    // Okay, the evaluated side evaluates to a constant, so we accept this.
2249    // Check to see if the other side is obviously not a constant.  If so,
2250    // emit a warning that this is a GNU extension.
2251    if (FalseSide && !FalseSide->isEvaluatable(Context))
2252      Diag(Init->getExprLoc(),
2253           diag::ext_typecheck_expression_not_constant_but_accepted)
2254        << FalseSide->getSourceRange();
2255    return false;
2256  }
2257  }
2258}
2259
2260bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2261  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2262    Init = DIE->getInit();
2263
2264  Init = Init->IgnoreParens();
2265
2266  if (Init->isEvaluatable(Context))
2267    return false;
2268
2269  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2270  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2271    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2272
2273  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2274    return CheckForConstantInitializer(e->getInitializer(), DclT);
2275
2276  if (isa<ImplicitValueInitExpr>(Init)) {
2277    // FIXME: In C++, check for non-POD types.
2278    return false;
2279  }
2280
2281  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2282    unsigned numInits = Exp->getNumInits();
2283    for (unsigned i = 0; i < numInits; i++) {
2284      // FIXME: Need to get the type of the declaration for C++,
2285      // because it could be a reference?
2286
2287      if (CheckForConstantInitializer(Exp->getInit(i),
2288                                      Exp->getInit(i)->getType()))
2289        return true;
2290    }
2291    return false;
2292  }
2293
2294  // FIXME: We can probably remove some of this code below, now that
2295  // Expr::Evaluate is doing the heavy lifting for scalars.
2296
2297  if (Init->isNullPointerConstant(Context))
2298    return false;
2299  if (Init->getType()->isArithmeticType()) {
2300    QualType InitTy = Context.getCanonicalType(Init->getType())
2301                             .getUnqualifiedType();
2302    if (InitTy == Context.BoolTy) {
2303      // Special handling for pointers implicitly cast to bool;
2304      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2305      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2306        Expr* SubE = ICE->getSubExpr();
2307        if (SubE->getType()->isPointerType() ||
2308            SubE->getType()->isArrayType() ||
2309            SubE->getType()->isFunctionType()) {
2310          return CheckAddressConstantExpression(Init);
2311        }
2312      }
2313    } else if (InitTy->isIntegralType()) {
2314      Expr* SubE = 0;
2315      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2316        SubE = CE->getSubExpr();
2317      // Special check for pointer cast to int; we allow as an extension
2318      // an address constant cast to an integer if the integer
2319      // is of an appropriate width (this sort of code is apparently used
2320      // in some places).
2321      // FIXME: Add pedwarn?
2322      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2323      if (SubE && (SubE->getType()->isPointerType() ||
2324                   SubE->getType()->isArrayType() ||
2325                   SubE->getType()->isFunctionType())) {
2326        unsigned IntWidth = Context.getTypeSize(Init->getType());
2327        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2328        if (IntWidth >= PointerWidth)
2329          return CheckAddressConstantExpression(Init);
2330      }
2331    }
2332
2333    return CheckArithmeticConstantExpression(Init);
2334  }
2335
2336  if (Init->getType()->isPointerType())
2337    return CheckAddressConstantExpression(Init);
2338
2339  // An array type at the top level that isn't an init-list must
2340  // be a string literal
2341  if (Init->getType()->isArrayType())
2342    return false;
2343
2344  if (Init->getType()->isFunctionType())
2345    return false;
2346
2347  // Allow block exprs at top level.
2348  if (Init->getType()->isBlockPointerType())
2349    return false;
2350
2351  // GCC cast to union extension
2352  // note: the validity of the cast expr is checked by CheckCastTypes()
2353  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2354    QualType T = C->getType();
2355    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2356  }
2357
2358  InitializerElementNotConstant(Init);
2359  return true;
2360}
2361
2362void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2363  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2364}
2365
2366/// AddInitializerToDecl - Adds the initializer Init to the
2367/// declaration dcl. If DirectInit is true, this is C++ direct
2368/// initialization rather than copy initialization.
2369void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2370  Decl *RealDecl = static_cast<Decl *>(dcl);
2371  Expr *Init = static_cast<Expr *>(init.release());
2372  assert(Init && "missing initializer");
2373
2374  // If there is no declaration, there was an error parsing it.  Just ignore
2375  // the initializer.
2376  if (RealDecl == 0) {
2377    Init->Destroy(Context);
2378    return;
2379  }
2380
2381  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2382  if (!VDecl) {
2383    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2384    RealDecl->setInvalidDecl();
2385    return;
2386  }
2387  // Get the decls type and save a reference for later, since
2388  // CheckInitializerTypes may change it.
2389  QualType DclT = VDecl->getType(), SavT = DclT;
2390  if (VDecl->isBlockVarDecl()) {
2391    VarDecl::StorageClass SC = VDecl->getStorageClass();
2392    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2393      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2394      VDecl->setInvalidDecl();
2395    } else if (!VDecl->isInvalidDecl()) {
2396      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2397                                VDecl->getDeclName(), DirectInit))
2398        VDecl->setInvalidDecl();
2399
2400      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2401      if (!getLangOptions().CPlusPlus) {
2402        if (SC == VarDecl::Static) // C99 6.7.8p4.
2403          CheckForConstantInitializer(Init, DclT);
2404      }
2405    }
2406  } else if (VDecl->isFileVarDecl()) {
2407    if (VDecl->getStorageClass() == VarDecl::Extern)
2408      Diag(VDecl->getLocation(), diag::warn_extern_init);
2409    if (!VDecl->isInvalidDecl())
2410      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2411                                VDecl->getDeclName(), DirectInit))
2412        VDecl->setInvalidDecl();
2413
2414    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2415    if (!getLangOptions().CPlusPlus) {
2416      // C99 6.7.8p4. All file scoped initializers need to be constant.
2417      CheckForConstantInitializer(Init, DclT);
2418    }
2419  }
2420  // If the type changed, it means we had an incomplete type that was
2421  // completed by the initializer. For example:
2422  //   int ary[] = { 1, 3, 5 };
2423  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2424  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2425    VDecl->setType(DclT);
2426    Init->setType(DclT);
2427  }
2428
2429  // Attach the initializer to the decl.
2430  VDecl->setInit(Init);
2431  return;
2432}
2433
2434void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2435  Decl *RealDecl = static_cast<Decl *>(dcl);
2436
2437  // If there is no declaration, there was an error parsing it. Just ignore it.
2438  if (RealDecl == 0)
2439    return;
2440
2441  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2442    QualType Type = Var->getType();
2443    // C++ [dcl.init.ref]p3:
2444    //   The initializer can be omitted for a reference only in a
2445    //   parameter declaration (8.3.5), in the declaration of a
2446    //   function return type, in the declaration of a class member
2447    //   within its class declaration (9.2), and where the extern
2448    //   specifier is explicitly used.
2449    if (Type->isReferenceType() &&
2450        Var->getStorageClass() != VarDecl::Extern &&
2451        Var->getStorageClass() != VarDecl::PrivateExtern) {
2452      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2453        << Var->getDeclName()
2454        << SourceRange(Var->getLocation(), Var->getLocation());
2455      Var->setInvalidDecl();
2456      return;
2457    }
2458
2459    // C++ [dcl.init]p9:
2460    //
2461    //   If no initializer is specified for an object, and the object
2462    //   is of (possibly cv-qualified) non-POD class type (or array
2463    //   thereof), the object shall be default-initialized; if the
2464    //   object is of const-qualified type, the underlying class type
2465    //   shall have a user-declared default constructor.
2466    if (getLangOptions().CPlusPlus) {
2467      QualType InitType = Type;
2468      if (const ArrayType *Array = Context.getAsArrayType(Type))
2469        InitType = Array->getElementType();
2470      if (Var->getStorageClass() != VarDecl::Extern &&
2471          Var->getStorageClass() != VarDecl::PrivateExtern &&
2472          InitType->isRecordType()) {
2473        const CXXConstructorDecl *Constructor
2474          = PerformInitializationByConstructor(InitType, 0, 0,
2475                                               Var->getLocation(),
2476                                               SourceRange(Var->getLocation(),
2477                                                           Var->getLocation()),
2478                                               Var->getDeclName(),
2479                                               IK_Default);
2480        if (!Constructor)
2481          Var->setInvalidDecl();
2482      }
2483    }
2484
2485#if 0
2486    // FIXME: Temporarily disabled because we are not properly parsing
2487    // linkage specifications on declarations, e.g.,
2488    //
2489    //   extern "C" const CGPoint CGPointerZero;
2490    //
2491    // C++ [dcl.init]p9:
2492    //
2493    //     If no initializer is specified for an object, and the
2494    //     object is of (possibly cv-qualified) non-POD class type (or
2495    //     array thereof), the object shall be default-initialized; if
2496    //     the object is of const-qualified type, the underlying class
2497    //     type shall have a user-declared default
2498    //     constructor. Otherwise, if no initializer is specified for
2499    //     an object, the object and its subobjects, if any, have an
2500    //     indeterminate initial value; if the object or any of its
2501    //     subobjects are of const-qualified type, the program is
2502    //     ill-formed.
2503    //
2504    // This isn't technically an error in C, so we don't diagnose it.
2505    //
2506    // FIXME: Actually perform the POD/user-defined default
2507    // constructor check.
2508    if (getLangOptions().CPlusPlus &&
2509        Context.getCanonicalType(Type).isConstQualified() &&
2510        Var->getStorageClass() != VarDecl::Extern)
2511      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2512        << Var->getName()
2513        << SourceRange(Var->getLocation(), Var->getLocation());
2514#endif
2515  }
2516}
2517
2518/// The declarators are chained together backwards, reverse the list.
2519Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2520  // Often we have single declarators, handle them quickly.
2521  Decl *GroupDecl = static_cast<Decl*>(group);
2522  if (GroupDecl == 0)
2523    return 0;
2524
2525  Decl *Group = dyn_cast<Decl>(GroupDecl);
2526  Decl *NewGroup = 0;
2527  if (Group->getNextDeclarator() == 0)
2528    NewGroup = Group;
2529  else { // reverse the list.
2530    while (Group) {
2531      Decl *Next = Group->getNextDeclarator();
2532      Group->setNextDeclarator(NewGroup);
2533      NewGroup = Group;
2534      Group = Next;
2535    }
2536  }
2537  // Perform semantic analysis that depends on having fully processed both
2538  // the declarator and initializer.
2539  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2540    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2541    if (!IDecl)
2542      continue;
2543    QualType T = IDecl->getType();
2544
2545    if (T->isVariableArrayType()) {
2546      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2547
2548      // FIXME: This won't give the correct result for
2549      // int a[10][n];
2550      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2551      if (IDecl->isFileVarDecl()) {
2552        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2553          SizeRange;
2554
2555        IDecl->setInvalidDecl();
2556      } else {
2557        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2558        // static storage duration, it shall not have a variable length array.
2559        if (IDecl->getStorageClass() == VarDecl::Static) {
2560          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2561            << SizeRange;
2562          IDecl->setInvalidDecl();
2563        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2564          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2565            << SizeRange;
2566          IDecl->setInvalidDecl();
2567        }
2568      }
2569    } else if (T->isVariablyModifiedType()) {
2570      if (IDecl->isFileVarDecl()) {
2571        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2572        IDecl->setInvalidDecl();
2573      } else {
2574        if (IDecl->getStorageClass() == VarDecl::Extern) {
2575          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2576          IDecl->setInvalidDecl();
2577        }
2578      }
2579    }
2580
2581    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2582    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2583    if (IDecl->isBlockVarDecl() &&
2584        IDecl->getStorageClass() != VarDecl::Extern) {
2585      if (!IDecl->isInvalidDecl() &&
2586          DiagnoseIncompleteType(IDecl->getLocation(), T,
2587                                 diag::err_typecheck_decl_incomplete_type))
2588        IDecl->setInvalidDecl();
2589    }
2590    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2591    // object that has file scope without an initializer, and without a
2592    // storage-class specifier or with the storage-class specifier "static",
2593    // constitutes a tentative definition. Note: A tentative definition with
2594    // external linkage is valid (C99 6.2.2p5).
2595    if (isTentativeDefinition(IDecl)) {
2596      if (T->isIncompleteArrayType()) {
2597        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2598        // array to be completed. Don't issue a diagnostic.
2599      } else if (!IDecl->isInvalidDecl() &&
2600                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2601                                        diag::err_typecheck_decl_incomplete_type))
2602        // C99 6.9.2p3: If the declaration of an identifier for an object is
2603        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2604        // declared type shall not be an incomplete type.
2605        IDecl->setInvalidDecl();
2606    }
2607    if (IDecl->isFileVarDecl())
2608      CheckForFileScopedRedefinitions(S, IDecl);
2609  }
2610  return NewGroup;
2611}
2612
2613/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2614/// to introduce parameters into function prototype scope.
2615Sema::DeclTy *
2616Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2617  const DeclSpec &DS = D.getDeclSpec();
2618
2619  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2620  VarDecl::StorageClass StorageClass = VarDecl::None;
2621  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2622    StorageClass = VarDecl::Register;
2623  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2624    Diag(DS.getStorageClassSpecLoc(),
2625         diag::err_invalid_storage_class_in_func_decl);
2626    D.getMutableDeclSpec().ClearStorageClassSpecs();
2627  }
2628  if (DS.isThreadSpecified()) {
2629    Diag(DS.getThreadSpecLoc(),
2630         diag::err_invalid_storage_class_in_func_decl);
2631    D.getMutableDeclSpec().ClearStorageClassSpecs();
2632  }
2633
2634  // Check that there are no default arguments inside the type of this
2635  // parameter (C++ only).
2636  if (getLangOptions().CPlusPlus)
2637    CheckExtraCXXDefaultArguments(D);
2638
2639  // In this context, we *do not* check D.getInvalidType(). If the declarator
2640  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2641  // though it will not reflect the user specified type.
2642  QualType parmDeclType = GetTypeForDeclarator(D, S);
2643
2644  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2645
2646  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2647  // Can this happen for params?  We already checked that they don't conflict
2648  // among each other.  Here they can only shadow globals, which is ok.
2649  IdentifierInfo *II = D.getIdentifier();
2650  if (II) {
2651    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2652      if (PrevDecl->isTemplateParameter()) {
2653        // Maybe we will complain about the shadowed template parameter.
2654        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2655        // Just pretend that we didn't see the previous declaration.
2656        PrevDecl = 0;
2657      } else if (S->isDeclScope(PrevDecl)) {
2658        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2659
2660        // Recover by removing the name
2661        II = 0;
2662        D.SetIdentifier(0, D.getIdentifierLoc());
2663      }
2664    }
2665  }
2666
2667  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2668  // Doing the promotion here has a win and a loss. The win is the type for
2669  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2670  // code generator). The loss is the orginal type isn't preserved. For example:
2671  //
2672  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2673  //    int blockvardecl[5];
2674  //    sizeof(parmvardecl);  // size == 4
2675  //    sizeof(blockvardecl); // size == 20
2676  // }
2677  //
2678  // For expressions, all implicit conversions are captured using the
2679  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2680  //
2681  // FIXME: If a source translation tool needs to see the original type, then
2682  // we need to consider storing both types (in ParmVarDecl)...
2683  //
2684  if (parmDeclType->isArrayType()) {
2685    // int x[restrict 4] ->  int *restrict
2686    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2687  } else if (parmDeclType->isFunctionType())
2688    parmDeclType = Context.getPointerType(parmDeclType);
2689
2690  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2691                                         D.getIdentifierLoc(), II,
2692                                         parmDeclType, StorageClass,
2693                                         0);
2694
2695  if (D.getInvalidType())
2696    New->setInvalidDecl();
2697
2698  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2699  if (D.getCXXScopeSpec().isSet()) {
2700    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2701      << D.getCXXScopeSpec().getRange();
2702    New->setInvalidDecl();
2703  }
2704
2705  // Add the parameter declaration into this scope.
2706  S->AddDecl(New);
2707  if (II)
2708    IdResolver.AddDecl(New);
2709
2710  ProcessDeclAttributes(New, D);
2711  return New;
2712
2713}
2714
2715void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2716  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2717         "Not a function declarator!");
2718  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2719
2720  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2721  // for a K&R function.
2722  if (!FTI.hasPrototype) {
2723    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2724      if (FTI.ArgInfo[i].Param == 0) {
2725        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2726          << FTI.ArgInfo[i].Ident;
2727        // Implicitly declare the argument as type 'int' for lack of a better
2728        // type.
2729        DeclSpec DS;
2730        const char* PrevSpec; // unused
2731        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2732                           PrevSpec);
2733        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2734        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2735        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2736      }
2737    }
2738  }
2739}
2740
2741Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2742  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2743  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2744         "Not a function declarator!");
2745  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2746
2747  if (FTI.hasPrototype) {
2748    // FIXME: Diagnose arguments without names in C.
2749  }
2750
2751  Scope *ParentScope = FnBodyScope->getParent();
2752
2753  return ActOnStartOfFunctionDef(FnBodyScope,
2754                                 ActOnDeclarator(ParentScope, D, 0,
2755                                                 /*IsFunctionDefinition=*/true));
2756}
2757
2758Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2759  Decl *decl = static_cast<Decl*>(D);
2760  FunctionDecl *FD = cast<FunctionDecl>(decl);
2761
2762  // See if this is a redefinition.
2763  const FunctionDecl *Definition;
2764  if (FD->getBody(Definition)) {
2765    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2766    Diag(Definition->getLocation(), diag::note_previous_definition);
2767  }
2768
2769  // Builtin functions cannot be defined.
2770  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2771    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2772      Diag(FD->getLocation(), diag::err_builtin_lib_definition) << FD;
2773      Diag(FD->getLocation(), diag::note_builtin_lib_def_freestanding);
2774    } else
2775      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2776    FD->setInvalidDecl();
2777  }
2778
2779  PushDeclContext(FnBodyScope, FD);
2780
2781  // Check the validity of our function parameters
2782  CheckParmsForFunctionDef(FD);
2783
2784  // Introduce our parameters into the function scope
2785  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2786    ParmVarDecl *Param = FD->getParamDecl(p);
2787    Param->setOwningFunction(FD);
2788
2789    // If this has an identifier, add it to the scope stack.
2790    if (Param->getIdentifier())
2791      PushOnScopeChains(Param, FnBodyScope);
2792  }
2793
2794  // Checking attributes of current function definition
2795  // dllimport attribute.
2796  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2797    // dllimport attribute cannot be applied to definition.
2798    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2799      Diag(FD->getLocation(),
2800           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2801        << "dllimport";
2802      FD->setInvalidDecl();
2803      return FD;
2804    } else {
2805      // If a symbol previously declared dllimport is later defined, the
2806      // attribute is ignored in subsequent references, and a warning is
2807      // emitted.
2808      Diag(FD->getLocation(),
2809           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2810        << FD->getNameAsCString() << "dllimport";
2811    }
2812  }
2813  return FD;
2814}
2815
2816Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2817  Decl *dcl = static_cast<Decl *>(D);
2818  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2819  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2820    FD->setBody(Body);
2821    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2822  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2823    assert(MD == getCurMethodDecl() && "Method parsing confused");
2824    MD->setBody((Stmt*)Body);
2825  } else {
2826    Body->Destroy(Context);
2827    return 0;
2828  }
2829  PopDeclContext();
2830  // Verify and clean out per-function state.
2831
2832  // Check goto/label use.
2833  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2834       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2835    // Verify that we have no forward references left.  If so, there was a goto
2836    // or address of a label taken, but no definition of it.  Label fwd
2837    // definitions are indicated with a null substmt.
2838    if (I->second->getSubStmt() == 0) {
2839      LabelStmt *L = I->second;
2840      // Emit error.
2841      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2842
2843      // At this point, we have gotos that use the bogus label.  Stitch it into
2844      // the function body so that they aren't leaked and that the AST is well
2845      // formed.
2846      if (Body) {
2847#if 0
2848        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2849        // and the AST is malformed anyway.  We should just blow away 'L'.
2850        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2851        cast<CompoundStmt>(Body)->push_back(L);
2852#else
2853        L->Destroy(Context);
2854#endif
2855      } else {
2856        // The whole function wasn't parsed correctly, just delete this.
2857        L->Destroy(Context);
2858      }
2859    }
2860  }
2861  LabelMap.clear();
2862
2863  return D;
2864}
2865
2866/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2867/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2868NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2869                                          IdentifierInfo &II, Scope *S) {
2870  // Extension in C99.  Legal in C90, but warn about it.
2871  if (getLangOptions().C99)
2872    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2873  else
2874    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2875
2876  // FIXME: handle stuff like:
2877  // void foo() { extern float X(); }
2878  // void bar() { X(); }  <-- implicit decl for X in another scope.
2879
2880  // Set a Declarator for the implicit definition: int foo();
2881  const char *Dummy;
2882  DeclSpec DS;
2883  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2884  Error = Error; // Silence warning.
2885  assert(!Error && "Error setting up implicit decl!");
2886  Declarator D(DS, Declarator::BlockContext);
2887  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc, D),
2888                SourceLocation());
2889  D.SetIdentifier(&II, Loc);
2890
2891  // Insert this function into translation-unit scope.
2892
2893  DeclContext *PrevDC = CurContext;
2894  CurContext = Context.getTranslationUnitDecl();
2895
2896  FunctionDecl *FD =
2897    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2898  FD->setImplicit();
2899
2900  CurContext = PrevDC;
2901
2902  AddKnownFunctionAttributes(FD);
2903
2904  return FD;
2905}
2906
2907/// \brief Adds any function attributes that we know a priori based on
2908/// the declaration of this function.
2909///
2910/// These attributes can apply both to implicitly-declared builtins
2911/// (like __builtin___printf_chk) or to library-declared functions
2912/// like NSLog or printf.
2913void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2914  if (FD->isInvalidDecl())
2915    return;
2916
2917  // If this is a built-in function, map its builtin attributes to
2918  // actual attributes.
2919  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2920    // Handle printf-formatting attributes.
2921    unsigned FormatIdx;
2922    bool HasVAListArg;
2923    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
2924      if (!FD->getAttr<FormatAttr>())
2925        FD->addAttr(new FormatAttr("printf", FormatIdx + 1, FormatIdx + 2));
2926    }
2927  }
2928
2929  IdentifierInfo *Name = FD->getIdentifier();
2930  if (!Name)
2931    return;
2932  if ((!getLangOptions().CPlusPlus &&
2933       FD->getDeclContext()->isTranslationUnit()) ||
2934      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
2935       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
2936       LinkageSpecDecl::lang_c)) {
2937    // Okay: this could be a libc/libm/Objective-C function we know
2938    // about.
2939  } else
2940    return;
2941
2942  unsigned KnownID;
2943  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
2944    if (KnownFunctionIDs[KnownID] == Name)
2945      break;
2946
2947  switch (KnownID) {
2948  case id_NSLog:
2949  case id_NSLogv:
2950    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
2951      // FIXME: We known better than our headers.
2952      const_cast<FormatAttr *>(Format)->setType("printf");
2953    } else
2954      FD->addAttr(new FormatAttr("printf", 1, 2));
2955    break;
2956
2957  case id_asprintf:
2958  case id_vasprintf:
2959    if (!FD->getAttr<FormatAttr>())
2960      FD->addAttr(new FormatAttr("printf", 2, 3));
2961    break;
2962
2963  default:
2964    // Unknown function or known function without any attributes to
2965    // add. Do nothing.
2966    break;
2967  }
2968}
2969
2970TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2971                                    Decl *LastDeclarator) {
2972  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2973  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2974
2975  // Scope manipulation handled by caller.
2976  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2977                                           D.getIdentifierLoc(),
2978                                           D.getIdentifier(),
2979                                           T);
2980  NewTD->setNextDeclarator(LastDeclarator);
2981  if (D.getInvalidType())
2982    NewTD->setInvalidDecl();
2983  return NewTD;
2984}
2985
2986/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2987/// former case, Name will be non-null.  In the later case, Name will be null.
2988/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2989/// reference/declaration/definition of a tag.
2990Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2991                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2992                             IdentifierInfo *Name, SourceLocation NameLoc,
2993                             AttributeList *Attr) {
2994  // If this is not a definition, it must have a name.
2995  assert((Name != 0 || TK == TK_Definition) &&
2996         "Nameless record must be a definition!");
2997
2998  TagDecl::TagKind Kind;
2999  switch (TagSpec) {
3000  default: assert(0 && "Unknown tag type!");
3001  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3002  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3003  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3004  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3005  }
3006
3007  DeclContext *SearchDC = CurContext;
3008  DeclContext *DC = CurContext;
3009  NamedDecl *PrevDecl = 0;
3010
3011  bool Invalid = false;
3012
3013  if (Name && SS.isNotEmpty()) {
3014    // We have a nested-name tag ('struct foo::bar').
3015
3016    // Check for invalid 'foo::'.
3017    if (SS.isInvalid()) {
3018      Name = 0;
3019      goto CreateNewDecl;
3020    }
3021
3022    DC = static_cast<DeclContext*>(SS.getScopeRep());
3023    SearchDC = DC;
3024    // Look-up name inside 'foo::'.
3025    PrevDecl = dyn_cast_or_null<TagDecl>(
3026                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3027
3028    // A tag 'foo::bar' must already exist.
3029    if (PrevDecl == 0) {
3030      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3031      Name = 0;
3032      goto CreateNewDecl;
3033    }
3034  } else if (Name) {
3035    // If this is a named struct, check to see if there was a previous forward
3036    // declaration or definition.
3037    // FIXME: We're looking into outer scopes here, even when we
3038    // shouldn't be. Doing so can result in ambiguities that we
3039    // shouldn't be diagnosing.
3040    LookupResult R = LookupName(S, Name, LookupTagName,
3041                                /*RedeclarationOnly=*/(TK != TK_Reference));
3042    if (R.isAmbiguous()) {
3043      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3044      // FIXME: This is not best way to recover from case like:
3045      //
3046      // struct S s;
3047      //
3048      // causes needless err_ovl_no_viable_function_in_init latter.
3049      Name = 0;
3050      PrevDecl = 0;
3051      Invalid = true;
3052    }
3053    else
3054      PrevDecl = R;
3055
3056    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3057      // FIXME: This makes sure that we ignore the contexts associated
3058      // with C structs, unions, and enums when looking for a matching
3059      // tag declaration or definition. See the similar lookup tweak
3060      // in Sema::LookupName; is there a better way to deal with this?
3061      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3062        SearchDC = SearchDC->getParent();
3063    }
3064  }
3065
3066  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3067    // Maybe we will complain about the shadowed template parameter.
3068    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3069    // Just pretend that we didn't see the previous declaration.
3070    PrevDecl = 0;
3071  }
3072
3073  if (PrevDecl) {
3074    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3075      // If this is a use of a previous tag, or if the tag is already declared
3076      // in the same scope (so that the definition/declaration completes or
3077      // rementions the tag), reuse the decl.
3078      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3079        // Make sure that this wasn't declared as an enum and now used as a
3080        // struct or something similar.
3081        if (PrevTagDecl->getTagKind() != Kind) {
3082          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3083          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3084          // Recover by making this an anonymous redefinition.
3085          Name = 0;
3086          PrevDecl = 0;
3087          Invalid = true;
3088        } else {
3089          // If this is a use, just return the declaration we found.
3090
3091          // FIXME: In the future, return a variant or some other clue
3092          // for the consumer of this Decl to know it doesn't own it.
3093          // For our current ASTs this shouldn't be a problem, but will
3094          // need to be changed with DeclGroups.
3095          if (TK == TK_Reference)
3096            return PrevDecl;
3097
3098          // Diagnose attempts to redefine a tag.
3099          if (TK == TK_Definition) {
3100            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3101              Diag(NameLoc, diag::err_redefinition) << Name;
3102              Diag(Def->getLocation(), diag::note_previous_definition);
3103              // If this is a redefinition, recover by making this
3104              // struct be anonymous, which will make any later
3105              // references get the previous definition.
3106              Name = 0;
3107              PrevDecl = 0;
3108              Invalid = true;
3109            } else {
3110              // If the type is currently being defined, complain
3111              // about a nested redefinition.
3112              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3113              if (Tag->isBeingDefined()) {
3114                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3115                Diag(PrevTagDecl->getLocation(),
3116                     diag::note_previous_definition);
3117                Name = 0;
3118                PrevDecl = 0;
3119                Invalid = true;
3120              }
3121            }
3122
3123            // Okay, this is definition of a previously declared or referenced
3124            // tag PrevDecl. We're going to create a new Decl for it.
3125          }
3126        }
3127        // If we get here we have (another) forward declaration or we
3128        // have a definition.  Just create a new decl.
3129      } else {
3130        // If we get here, this is a definition of a new tag type in a nested
3131        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3132        // new decl/type.  We set PrevDecl to NULL so that the entities
3133        // have distinct types.
3134        PrevDecl = 0;
3135      }
3136      // If we get here, we're going to create a new Decl. If PrevDecl
3137      // is non-NULL, it's a definition of the tag declared by
3138      // PrevDecl. If it's NULL, we have a new definition.
3139    } else {
3140      // PrevDecl is a namespace, template, or anything else
3141      // that lives in the IDNS_Tag identifier namespace.
3142      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3143        // The tag name clashes with a namespace name, issue an error and
3144        // recover by making this tag be anonymous.
3145        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3146        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3147        Name = 0;
3148        PrevDecl = 0;
3149        Invalid = true;
3150      } else {
3151        // The existing declaration isn't relevant to us; we're in a
3152        // new scope, so clear out the previous declaration.
3153        PrevDecl = 0;
3154      }
3155    }
3156  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3157             (Kind != TagDecl::TK_enum))  {
3158    // C++ [basic.scope.pdecl]p5:
3159    //   -- for an elaborated-type-specifier of the form
3160    //
3161    //          class-key identifier
3162    //
3163    //      if the elaborated-type-specifier is used in the
3164    //      decl-specifier-seq or parameter-declaration-clause of a
3165    //      function defined in namespace scope, the identifier is
3166    //      declared as a class-name in the namespace that contains
3167    //      the declaration; otherwise, except as a friend
3168    //      declaration, the identifier is declared in the smallest
3169    //      non-class, non-function-prototype scope that contains the
3170    //      declaration.
3171    //
3172    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3173    // C structs and unions.
3174
3175    // Find the context where we'll be declaring the tag.
3176    // FIXME: We would like to maintain the current DeclContext as the
3177    // lexical context,
3178    while (SearchDC->isRecord())
3179      SearchDC = SearchDC->getParent();
3180
3181    // Find the scope where we'll be declaring the tag.
3182    while (S->isClassScope() ||
3183           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3184           ((S->getFlags() & Scope::DeclScope) == 0) ||
3185           (S->getEntity() &&
3186            ((DeclContext *)S->getEntity())->isTransparentContext()))
3187      S = S->getParent();
3188  }
3189
3190CreateNewDecl:
3191
3192  // If there is an identifier, use the location of the identifier as the
3193  // location of the decl, otherwise use the location of the struct/union
3194  // keyword.
3195  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3196
3197  // Otherwise, create a new declaration. If there is a previous
3198  // declaration of the same entity, the two will be linked via
3199  // PrevDecl.
3200  TagDecl *New;
3201
3202  if (Kind == TagDecl::TK_enum) {
3203    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3204    // enum X { A, B, C } D;    D should chain to X.
3205    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3206                           cast_or_null<EnumDecl>(PrevDecl));
3207    // If this is an undefined enum, warn.
3208    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3209  } else {
3210    // struct/union/class
3211
3212    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3213    // struct X { int A; } D;    D should chain to X.
3214    if (getLangOptions().CPlusPlus)
3215      // FIXME: Look for a way to use RecordDecl for simple structs.
3216      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3217                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3218    else
3219      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3220                               cast_or_null<RecordDecl>(PrevDecl));
3221  }
3222
3223  if (Kind != TagDecl::TK_enum) {
3224    // Handle #pragma pack: if the #pragma pack stack has non-default
3225    // alignment, make up a packed attribute for this decl. These
3226    // attributes are checked when the ASTContext lays out the
3227    // structure.
3228    //
3229    // It is important for implementing the correct semantics that this
3230    // happen here (in act on tag decl). The #pragma pack stack is
3231    // maintained as a result of parser callbacks which can occur at
3232    // many points during the parsing of a struct declaration (because
3233    // the #pragma tokens are effectively skipped over during the
3234    // parsing of the struct).
3235    if (unsigned Alignment = PackContext.getAlignment())
3236      New->addAttr(new PackedAttr(Alignment * 8));
3237  }
3238
3239  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3240    // C++ [dcl.typedef]p3:
3241    //   [...] Similarly, in a given scope, a class or enumeration
3242    //   shall not be declared with the same name as a typedef-name
3243    //   that is declared in that scope and refers to a type other
3244    //   than the class or enumeration itself.
3245    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3246    TypedefDecl *PrevTypedef = 0;
3247    if (Lookup.getKind() == LookupResult::Found)
3248      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3249
3250    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3251        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3252          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3253      Diag(Loc, diag::err_tag_definition_of_typedef)
3254        << Context.getTypeDeclType(New)
3255        << PrevTypedef->getUnderlyingType();
3256      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3257      Invalid = true;
3258    }
3259  }
3260
3261  if (Invalid)
3262    New->setInvalidDecl();
3263
3264  if (Attr)
3265    ProcessDeclAttributeList(New, Attr);
3266
3267  // If we're declaring or defining a tag in function prototype scope
3268  // in C, note that this type can only be used within the function.
3269  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3270    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3271
3272  // Set the lexical context. If the tag has a C++ scope specifier, the
3273  // lexical context will be different from the semantic context.
3274  New->setLexicalDeclContext(CurContext);
3275
3276  if (TK == TK_Definition)
3277    New->startDefinition();
3278
3279  // If this has an identifier, add it to the scope stack.
3280  if (Name) {
3281    S = getNonFieldDeclScope(S);
3282    PushOnScopeChains(New, S);
3283  } else {
3284    CurContext->addDecl(New);
3285  }
3286
3287  return New;
3288}
3289
3290void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3291  AdjustDeclIfTemplate(TagD);
3292  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3293
3294  // Enter the tag context.
3295  PushDeclContext(S, Tag);
3296
3297  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3298    FieldCollector->StartClass();
3299
3300    if (Record->getIdentifier()) {
3301      // C++ [class]p2:
3302      //   [...] The class-name is also inserted into the scope of the
3303      //   class itself; this is known as the injected-class-name. For
3304      //   purposes of access checking, the injected-class-name is treated
3305      //   as if it were a public member name.
3306      RecordDecl *InjectedClassName
3307        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3308                                CurContext, Record->getLocation(),
3309                                Record->getIdentifier(), Record);
3310      InjectedClassName->setImplicit();
3311      PushOnScopeChains(InjectedClassName, S);
3312    }
3313  }
3314}
3315
3316void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3317  AdjustDeclIfTemplate(TagD);
3318  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3319
3320  if (isa<CXXRecordDecl>(Tag))
3321    FieldCollector->FinishClass();
3322
3323  // Exit this scope of this tag's definition.
3324  PopDeclContext();
3325
3326  // Notify the consumer that we've defined a tag.
3327  Consumer.HandleTagDeclDefinition(Tag);
3328}
3329
3330/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3331/// types into constant array types in certain situations which would otherwise
3332/// be errors (for GCC compatibility).
3333static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3334                                                    ASTContext &Context) {
3335  // This method tries to turn a variable array into a constant
3336  // array even when the size isn't an ICE.  This is necessary
3337  // for compatibility with code that depends on gcc's buggy
3338  // constant expression folding, like struct {char x[(int)(char*)2];}
3339  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3340  if (!VLATy) return QualType();
3341
3342  Expr::EvalResult EvalResult;
3343  if (!VLATy->getSizeExpr() ||
3344      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3345    return QualType();
3346
3347  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3348  llvm::APSInt &Res = EvalResult.Val.getInt();
3349  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3350    return Context.getConstantArrayType(VLATy->getElementType(),
3351                                        Res, ArrayType::Normal, 0);
3352  return QualType();
3353}
3354
3355bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3356                          QualType FieldTy, const Expr *BitWidth) {
3357  // FIXME: 6.7.2.1p4 - verify the field type.
3358
3359  llvm::APSInt Value;
3360  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3361    return true;
3362
3363  // Zero-width bitfield is ok for anonymous field.
3364  if (Value == 0 && FieldName)
3365    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3366
3367  if (Value.isNegative())
3368    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3369
3370  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3371  // FIXME: We won't need the 0 size once we check that the field type is valid.
3372  if (TypeSize && Value.getZExtValue() > TypeSize)
3373    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3374       << FieldName << (unsigned)TypeSize;
3375
3376  return false;
3377}
3378
3379/// ActOnField - Each field of a struct/union/class is passed into this in order
3380/// to create a FieldDecl object for it.
3381Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3382                               SourceLocation DeclStart,
3383                               Declarator &D, ExprTy *BitfieldWidth) {
3384  IdentifierInfo *II = D.getIdentifier();
3385  Expr *BitWidth = (Expr*)BitfieldWidth;
3386  SourceLocation Loc = DeclStart;
3387  RecordDecl *Record = (RecordDecl *)TagD;
3388  if (II) Loc = D.getIdentifierLoc();
3389
3390  // FIXME: Unnamed fields can be handled in various different ways, for
3391  // example, unnamed unions inject all members into the struct namespace!
3392
3393  QualType T = GetTypeForDeclarator(D, S);
3394  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3395  bool InvalidDecl = false;
3396
3397  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3398  // than a variably modified type.
3399  if (T->isVariablyModifiedType()) {
3400    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
3401    if (!FixedTy.isNull()) {
3402      Diag(Loc, diag::warn_illegal_constant_array_size);
3403      T = FixedTy;
3404    } else {
3405      Diag(Loc, diag::err_typecheck_field_variable_size);
3406      T = Context.IntTy;
3407      InvalidDecl = true;
3408    }
3409  }
3410
3411  if (BitWidth) {
3412    if (VerifyBitField(Loc, II, T, BitWidth))
3413      InvalidDecl = true;
3414  } else {
3415    // Not a bitfield.
3416
3417    // validate II.
3418
3419  }
3420
3421  // FIXME: Chain fielddecls together.
3422  FieldDecl *NewFD;
3423
3424  NewFD = FieldDecl::Create(Context, Record,
3425                            Loc, II, T, BitWidth,
3426                            D.getDeclSpec().getStorageClassSpec() ==
3427                              DeclSpec::SCS_mutable);
3428
3429  if (II) {
3430    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3431    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3432        && !isa<TagDecl>(PrevDecl)) {
3433      Diag(Loc, diag::err_duplicate_member) << II;
3434      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3435      NewFD->setInvalidDecl();
3436      Record->setInvalidDecl();
3437    }
3438  }
3439
3440  if (getLangOptions().CPlusPlus) {
3441    CheckExtraCXXDefaultArguments(D);
3442    if (!T->isPODType())
3443      cast<CXXRecordDecl>(Record)->setPOD(false);
3444  }
3445
3446  ProcessDeclAttributes(NewFD, D);
3447
3448  if (D.getInvalidType() || InvalidDecl)
3449    NewFD->setInvalidDecl();
3450
3451  if (II) {
3452    PushOnScopeChains(NewFD, S);
3453  } else
3454    Record->addDecl(NewFD);
3455
3456  return NewFD;
3457}
3458
3459/// TranslateIvarVisibility - Translate visibility from a token ID to an
3460///  AST enum value.
3461static ObjCIvarDecl::AccessControl
3462TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3463  switch (ivarVisibility) {
3464  default: assert(0 && "Unknown visitibility kind");
3465  case tok::objc_private: return ObjCIvarDecl::Private;
3466  case tok::objc_public: return ObjCIvarDecl::Public;
3467  case tok::objc_protected: return ObjCIvarDecl::Protected;
3468  case tok::objc_package: return ObjCIvarDecl::Package;
3469  }
3470}
3471
3472/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3473/// in order to create an IvarDecl object for it.
3474Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3475                              SourceLocation DeclStart,
3476                              Declarator &D, ExprTy *BitfieldWidth,
3477                              tok::ObjCKeywordKind Visibility) {
3478
3479  IdentifierInfo *II = D.getIdentifier();
3480  Expr *BitWidth = (Expr*)BitfieldWidth;
3481  SourceLocation Loc = DeclStart;
3482  if (II) Loc = D.getIdentifierLoc();
3483
3484  // FIXME: Unnamed fields can be handled in various different ways, for
3485  // example, unnamed unions inject all members into the struct namespace!
3486
3487  QualType T = GetTypeForDeclarator(D, S);
3488  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3489  bool InvalidDecl = false;
3490
3491  if (BitWidth) {
3492    // TODO: Validate.
3493    //printf("WARNING: BITFIELDS IGNORED!\n");
3494
3495    // 6.7.2.1p3
3496    // 6.7.2.1p4
3497
3498  } else {
3499    // Not a bitfield.
3500
3501    // validate II.
3502
3503  }
3504
3505  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3506  // than a variably modified type.
3507  if (T->isVariablyModifiedType()) {
3508    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3509    InvalidDecl = true;
3510  }
3511
3512  // Get the visibility (access control) for this ivar.
3513  ObjCIvarDecl::AccessControl ac =
3514    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3515                                        : ObjCIvarDecl::None;
3516
3517  // Construct the decl.
3518  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
3519                                             (Expr *)BitfieldWidth);
3520
3521  if (II) {
3522    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3523    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3524        && !isa<TagDecl>(PrevDecl)) {
3525      Diag(Loc, diag::err_duplicate_member) << II;
3526      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3527      NewID->setInvalidDecl();
3528    }
3529  }
3530
3531  // Process attributes attached to the ivar.
3532  ProcessDeclAttributes(NewID, D);
3533
3534  if (D.getInvalidType() || InvalidDecl)
3535    NewID->setInvalidDecl();
3536
3537  if (II) {
3538    // FIXME: When interfaces are DeclContexts, we'll need to add
3539    // these to the interface.
3540    S->AddDecl(NewID);
3541    IdResolver.AddDecl(NewID);
3542  }
3543
3544  return NewID;
3545}
3546
3547void Sema::ActOnFields(Scope* S,
3548                       SourceLocation RecLoc, DeclTy *RecDecl,
3549                       DeclTy **Fields, unsigned NumFields,
3550                       SourceLocation LBrac, SourceLocation RBrac,
3551                       AttributeList *Attr) {
3552  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3553  assert(EnclosingDecl && "missing record or interface decl");
3554  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3555
3556  // Verify that all the fields are okay.
3557  unsigned NumNamedMembers = 0;
3558  llvm::SmallVector<FieldDecl*, 32> RecFields;
3559
3560  for (unsigned i = 0; i != NumFields; ++i) {
3561    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3562    assert(FD && "missing field decl");
3563
3564    // Get the type for the field.
3565    Type *FDTy = FD->getType().getTypePtr();
3566
3567    if (!FD->isAnonymousStructOrUnion()) {
3568      // Remember all fields written by the user.
3569      RecFields.push_back(FD);
3570    }
3571
3572    // C99 6.7.2.1p2 - A field may not be a function type.
3573    if (FDTy->isFunctionType()) {
3574      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3575        << FD->getDeclName();
3576      FD->setInvalidDecl();
3577      EnclosingDecl->setInvalidDecl();
3578      continue;
3579    }
3580    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3581    if (FDTy->isIncompleteType()) {
3582      if (!Record) {  // Incomplete ivar type is always an error.
3583        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3584                               diag::err_field_incomplete);
3585        FD->setInvalidDecl();
3586        EnclosingDecl->setInvalidDecl();
3587        continue;
3588      }
3589      if (i != NumFields-1 ||                   // ... that the last member ...
3590          !Record->isStruct() ||  // ... of a structure ...
3591          !FDTy->isArrayType()) {         //... may have incomplete array type.
3592        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3593                               diag::err_field_incomplete);
3594        FD->setInvalidDecl();
3595        EnclosingDecl->setInvalidDecl();
3596        continue;
3597      }
3598      if (NumNamedMembers < 1) {  //... must have more than named member ...
3599        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3600          << FD->getDeclName();
3601        FD->setInvalidDecl();
3602        EnclosingDecl->setInvalidDecl();
3603        continue;
3604      }
3605      // Okay, we have a legal flexible array member at the end of the struct.
3606      if (Record)
3607        Record->setHasFlexibleArrayMember(true);
3608    }
3609    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3610    /// field of another structure or the element of an array.
3611    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3612      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3613        // If this is a member of a union, then entire union becomes "flexible".
3614        if (Record && Record->isUnion()) {
3615          Record->setHasFlexibleArrayMember(true);
3616        } else {
3617          // If this is a struct/class and this is not the last element, reject
3618          // it.  Note that GCC supports variable sized arrays in the middle of
3619          // structures.
3620          if (i != NumFields-1) {
3621            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3622              << FD->getDeclName();
3623            FD->setInvalidDecl();
3624            EnclosingDecl->setInvalidDecl();
3625            continue;
3626          }
3627          // We support flexible arrays at the end of structs in other structs
3628          // as an extension.
3629          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3630            << FD->getDeclName();
3631          if (Record)
3632            Record->setHasFlexibleArrayMember(true);
3633        }
3634      }
3635    }
3636    /// A field cannot be an Objective-c object
3637    if (FDTy->isObjCInterfaceType()) {
3638      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3639        << FD->getDeclName();
3640      FD->setInvalidDecl();
3641      EnclosingDecl->setInvalidDecl();
3642      continue;
3643    }
3644    // Keep track of the number of named members.
3645    if (FD->getIdentifier())
3646      ++NumNamedMembers;
3647  }
3648
3649  // Okay, we successfully defined 'Record'.
3650  if (Record) {
3651    Record->completeDefinition(Context);
3652  } else {
3653    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3654    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3655      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3656      // Must enforce the rule that ivars in the base classes may not be
3657      // duplicates.
3658      if (ID->getSuperClass()) {
3659        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3660             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3661          ObjCIvarDecl* Ivar = (*IVI);
3662          IdentifierInfo *II = Ivar->getIdentifier();
3663          ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II);
3664          if (prevIvar) {
3665            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3666            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3667          }
3668        }
3669      }
3670    }
3671    else if (ObjCImplementationDecl *IMPDecl =
3672               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3673      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3674      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3675      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3676    }
3677  }
3678
3679  if (Attr)
3680    ProcessDeclAttributeList(Record, Attr);
3681}
3682
3683Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3684                                      DeclTy *lastEnumConst,
3685                                      SourceLocation IdLoc, IdentifierInfo *Id,
3686                                      SourceLocation EqualLoc, ExprTy *val) {
3687  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3688  EnumConstantDecl *LastEnumConst =
3689    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3690  Expr *Val = static_cast<Expr*>(val);
3691
3692  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3693  // we find one that is.
3694  S = getNonFieldDeclScope(S);
3695
3696  // Verify that there isn't already something declared with this name in this
3697  // scope.
3698  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3699  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3700    // Maybe we will complain about the shadowed template parameter.
3701    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3702    // Just pretend that we didn't see the previous declaration.
3703    PrevDecl = 0;
3704  }
3705
3706  if (PrevDecl) {
3707    // When in C++, we may get a TagDecl with the same name; in this case the
3708    // enum constant will 'hide' the tag.
3709    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3710           "Received TagDecl when not in C++!");
3711    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3712      if (isa<EnumConstantDecl>(PrevDecl))
3713        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3714      else
3715        Diag(IdLoc, diag::err_redefinition) << Id;
3716      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3717      Val->Destroy(Context);
3718      return 0;
3719    }
3720  }
3721
3722  llvm::APSInt EnumVal(32);
3723  QualType EltTy;
3724  if (Val) {
3725    // Make sure to promote the operand type to int.
3726    UsualUnaryConversions(Val);
3727
3728    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3729    SourceLocation ExpLoc;
3730    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3731      Val->Destroy(Context);
3732      Val = 0;  // Just forget about it.
3733    } else {
3734      EltTy = Val->getType();
3735    }
3736  }
3737
3738  if (!Val) {
3739    if (LastEnumConst) {
3740      // Assign the last value + 1.
3741      EnumVal = LastEnumConst->getInitVal();
3742      ++EnumVal;
3743
3744      // Check for overflow on increment.
3745      if (EnumVal < LastEnumConst->getInitVal())
3746        Diag(IdLoc, diag::warn_enum_value_overflow);
3747
3748      EltTy = LastEnumConst->getType();
3749    } else {
3750      // First value, set to zero.
3751      EltTy = Context.IntTy;
3752      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3753    }
3754  }
3755
3756  EnumConstantDecl *New =
3757    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3758                             Val, EnumVal);
3759
3760  // Register this decl in the current scope stack.
3761  PushOnScopeChains(New, S);
3762
3763  return New;
3764}
3765
3766// FIXME: For consistency with ActOnFields(), we should have the parser
3767// pass in the source location for the left/right braces.
3768void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3769                         DeclTy **Elements, unsigned NumElements) {
3770  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3771  QualType EnumType = Context.getTypeDeclType(Enum);
3772
3773  // TODO: If the result value doesn't fit in an int, it must be a long or long
3774  // long value.  ISO C does not support this, but GCC does as an extension,
3775  // emit a warning.
3776  unsigned IntWidth = Context.Target.getIntWidth();
3777
3778  // Verify that all the values are okay, compute the size of the values, and
3779  // reverse the list.
3780  unsigned NumNegativeBits = 0;
3781  unsigned NumPositiveBits = 0;
3782
3783  // Keep track of whether all elements have type int.
3784  bool AllElementsInt = true;
3785
3786  for (unsigned i = 0; i != NumElements; ++i) {
3787    EnumConstantDecl *ECD =
3788      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3789    if (!ECD) continue;  // Already issued a diagnostic.
3790
3791    // If the enum value doesn't fit in an int, emit an extension warning.
3792    const llvm::APSInt &InitVal = ECD->getInitVal();
3793    assert(InitVal.getBitWidth() >= IntWidth &&
3794           "Should have promoted value to int");
3795    if (InitVal.getBitWidth() > IntWidth) {
3796      llvm::APSInt V(InitVal);
3797      V.trunc(IntWidth);
3798      V.extend(InitVal.getBitWidth());
3799      if (V != InitVal)
3800        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3801          << InitVal.toString(10);
3802    }
3803
3804    // Keep track of the size of positive and negative values.
3805    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3806      NumPositiveBits = std::max(NumPositiveBits,
3807                                 (unsigned)InitVal.getActiveBits());
3808    else
3809      NumNegativeBits = std::max(NumNegativeBits,
3810                                 (unsigned)InitVal.getMinSignedBits());
3811
3812    // Keep track of whether every enum element has type int (very commmon).
3813    if (AllElementsInt)
3814      AllElementsInt = ECD->getType() == Context.IntTy;
3815  }
3816
3817  // Figure out the type that should be used for this enum.
3818  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3819  QualType BestType;
3820  unsigned BestWidth;
3821
3822  if (NumNegativeBits) {
3823    // If there is a negative value, figure out the smallest integer type (of
3824    // int/long/longlong) that fits.
3825    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3826      BestType = Context.IntTy;
3827      BestWidth = IntWidth;
3828    } else {
3829      BestWidth = Context.Target.getLongWidth();
3830
3831      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3832        BestType = Context.LongTy;
3833      else {
3834        BestWidth = Context.Target.getLongLongWidth();
3835
3836        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3837          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3838        BestType = Context.LongLongTy;
3839      }
3840    }
3841  } else {
3842    // If there is no negative value, figure out which of uint, ulong, ulonglong
3843    // fits.
3844    if (NumPositiveBits <= IntWidth) {
3845      BestType = Context.UnsignedIntTy;
3846      BestWidth = IntWidth;
3847    } else if (NumPositiveBits <=
3848               (BestWidth = Context.Target.getLongWidth())) {
3849      BestType = Context.UnsignedLongTy;
3850    } else {
3851      BestWidth = Context.Target.getLongLongWidth();
3852      assert(NumPositiveBits <= BestWidth &&
3853             "How could an initializer get larger than ULL?");
3854      BestType = Context.UnsignedLongLongTy;
3855    }
3856  }
3857
3858  // Loop over all of the enumerator constants, changing their types to match
3859  // the type of the enum if needed.
3860  for (unsigned i = 0; i != NumElements; ++i) {
3861    EnumConstantDecl *ECD =
3862      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3863    if (!ECD) continue;  // Already issued a diagnostic.
3864
3865    // Standard C says the enumerators have int type, but we allow, as an
3866    // extension, the enumerators to be larger than int size.  If each
3867    // enumerator value fits in an int, type it as an int, otherwise type it the
3868    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3869    // that X has type 'int', not 'unsigned'.
3870    if (ECD->getType() == Context.IntTy) {
3871      // Make sure the init value is signed.
3872      llvm::APSInt IV = ECD->getInitVal();
3873      IV.setIsSigned(true);
3874      ECD->setInitVal(IV);
3875
3876      if (getLangOptions().CPlusPlus)
3877        // C++ [dcl.enum]p4: Following the closing brace of an
3878        // enum-specifier, each enumerator has the type of its
3879        // enumeration.
3880        ECD->setType(EnumType);
3881      continue;  // Already int type.
3882    }
3883
3884    // Determine whether the value fits into an int.
3885    llvm::APSInt InitVal = ECD->getInitVal();
3886    bool FitsInInt;
3887    if (InitVal.isUnsigned() || !InitVal.isNegative())
3888      FitsInInt = InitVal.getActiveBits() < IntWidth;
3889    else
3890      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3891
3892    // If it fits into an integer type, force it.  Otherwise force it to match
3893    // the enum decl type.
3894    QualType NewTy;
3895    unsigned NewWidth;
3896    bool NewSign;
3897    if (FitsInInt) {
3898      NewTy = Context.IntTy;
3899      NewWidth = IntWidth;
3900      NewSign = true;
3901    } else if (ECD->getType() == BestType) {
3902      // Already the right type!
3903      if (getLangOptions().CPlusPlus)
3904        // C++ [dcl.enum]p4: Following the closing brace of an
3905        // enum-specifier, each enumerator has the type of its
3906        // enumeration.
3907        ECD->setType(EnumType);
3908      continue;
3909    } else {
3910      NewTy = BestType;
3911      NewWidth = BestWidth;
3912      NewSign = BestType->isSignedIntegerType();
3913    }
3914
3915    // Adjust the APSInt value.
3916    InitVal.extOrTrunc(NewWidth);
3917    InitVal.setIsSigned(NewSign);
3918    ECD->setInitVal(InitVal);
3919
3920    // Adjust the Expr initializer and type.
3921    if (ECD->getInitExpr())
3922      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3923                                                      /*isLvalue=*/false));
3924    if (getLangOptions().CPlusPlus)
3925      // C++ [dcl.enum]p4: Following the closing brace of an
3926      // enum-specifier, each enumerator has the type of its
3927      // enumeration.
3928      ECD->setType(EnumType);
3929    else
3930      ECD->setType(NewTy);
3931  }
3932
3933  Enum->completeDefinition(Context, BestType);
3934}
3935
3936Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3937                                          ExprArg expr) {
3938  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3939
3940  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3941}
3942
3943
3944void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3945                           ExprTy *alignment, SourceLocation PragmaLoc,
3946                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3947  Expr *Alignment = static_cast<Expr *>(alignment);
3948
3949  // If specified then alignment must be a "small" power of two.
3950  unsigned AlignmentVal = 0;
3951  if (Alignment) {
3952    llvm::APSInt Val;
3953    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3954        !Val.isPowerOf2() ||
3955        Val.getZExtValue() > 16) {
3956      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3957      Alignment->Destroy(Context);
3958      return; // Ignore
3959    }
3960
3961    AlignmentVal = (unsigned) Val.getZExtValue();
3962  }
3963
3964  switch (Kind) {
3965  case Action::PPK_Default: // pack([n])
3966    PackContext.setAlignment(AlignmentVal);
3967    break;
3968
3969  case Action::PPK_Show: // pack(show)
3970    // Show the current alignment, making sure to show the right value
3971    // for the default.
3972    AlignmentVal = PackContext.getAlignment();
3973    // FIXME: This should come from the target.
3974    if (AlignmentVal == 0)
3975      AlignmentVal = 8;
3976    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3977    break;
3978
3979  case Action::PPK_Push: // pack(push [, id] [, [n])
3980    PackContext.push(Name);
3981    // Set the new alignment if specified.
3982    if (Alignment)
3983      PackContext.setAlignment(AlignmentVal);
3984    break;
3985
3986  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3987    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3988    // "#pragma pack(pop, identifier, n) is undefined"
3989    if (Alignment && Name)
3990      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3991
3992    // Do the pop.
3993    if (!PackContext.pop(Name)) {
3994      // If a name was specified then failure indicates the name
3995      // wasn't found. Otherwise failure indicates the stack was
3996      // empty.
3997      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3998        << (Name ? "no record matching name" : "stack empty");
3999
4000      // FIXME: Warn about popping named records as MSVC does.
4001    } else {
4002      // Pop succeeded, set the new alignment if specified.
4003      if (Alignment)
4004        PackContext.setAlignment(AlignmentVal);
4005    }
4006    break;
4007
4008  default:
4009    assert(0 && "Invalid #pragma pack kind.");
4010  }
4011}
4012
4013bool PragmaPackStack::pop(IdentifierInfo *Name) {
4014  if (Stack.empty())
4015    return false;
4016
4017  // If name is empty just pop top.
4018  if (!Name) {
4019    Alignment = Stack.back().first;
4020    Stack.pop_back();
4021    return true;
4022  }
4023
4024  // Otherwise, find the named record.
4025  for (unsigned i = Stack.size(); i != 0; ) {
4026    --i;
4027    if (Stack[i].second == Name) {
4028      // Found it, pop up to and including this record.
4029      Alignment = Stack[i].first;
4030      Stack.erase(Stack.begin() + i, Stack.end());
4031      return true;
4032    }
4033  }
4034
4035  return false;
4036}
4037