SemaDeclAttr.cpp revision 420efd83934ee78f04d73880e2ed1b7fdef3328c
1//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements decl-related attribute processing.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TargetAttributesSema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/Expr.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Sema/DeclSpec.h"
25#include "clang/Sema/DelayedDiagnostic.h"
26#include "clang/Sema/Lookup.h"
27#include "llvm/ADT/StringExtras.h"
28using namespace clang;
29using namespace sema;
30
31/// These constants match the enumerated choices of
32/// warn_attribute_wrong_decl_type and err_attribute_wrong_decl_type.
33enum AttributeDeclKind {
34  ExpectedFunction,
35  ExpectedUnion,
36  ExpectedVariableOrFunction,
37  ExpectedFunctionOrMethod,
38  ExpectedParameter,
39  ExpectedFunctionMethodOrBlock,
40  ExpectedFunctionMethodOrParameter,
41  ExpectedClass,
42  ExpectedVariable,
43  ExpectedMethod,
44  ExpectedVariableFunctionOrLabel,
45  ExpectedFieldOrGlobalVar,
46  ExpectedStruct
47};
48
49//===----------------------------------------------------------------------===//
50//  Helper functions
51//===----------------------------------------------------------------------===//
52
53static const FunctionType *getFunctionType(const Decl *D,
54                                           bool blocksToo = true) {
55  QualType Ty;
56  if (const ValueDecl *decl = dyn_cast<ValueDecl>(D))
57    Ty = decl->getType();
58  else if (const FieldDecl *decl = dyn_cast<FieldDecl>(D))
59    Ty = decl->getType();
60  else if (const TypedefNameDecl* decl = dyn_cast<TypedefNameDecl>(D))
61    Ty = decl->getUnderlyingType();
62  else
63    return 0;
64
65  if (Ty->isFunctionPointerType())
66    Ty = Ty->getAs<PointerType>()->getPointeeType();
67  else if (blocksToo && Ty->isBlockPointerType())
68    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
69
70  return Ty->getAs<FunctionType>();
71}
72
73// FIXME: We should provide an abstraction around a method or function
74// to provide the following bits of information.
75
76/// isFunction - Return true if the given decl has function
77/// type (function or function-typed variable).
78static bool isFunction(const Decl *D) {
79  return getFunctionType(D, false) != NULL;
80}
81
82/// isFunctionOrMethod - Return true if the given decl has function
83/// type (function or function-typed variable) or an Objective-C
84/// method.
85static bool isFunctionOrMethod(const Decl *D) {
86  return isFunction(D)|| isa<ObjCMethodDecl>(D);
87}
88
89/// isFunctionOrMethodOrBlock - Return true if the given decl has function
90/// type (function or function-typed variable) or an Objective-C
91/// method or a block.
92static bool isFunctionOrMethodOrBlock(const Decl *D) {
93  if (isFunctionOrMethod(D))
94    return true;
95  // check for block is more involved.
96  if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
97    QualType Ty = V->getType();
98    return Ty->isBlockPointerType();
99  }
100  return isa<BlockDecl>(D);
101}
102
103/// Return true if the given decl has a declarator that should have
104/// been processed by Sema::GetTypeForDeclarator.
105static bool hasDeclarator(const Decl *D) {
106  // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
107  return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
108         isa<ObjCPropertyDecl>(D);
109}
110
111/// hasFunctionProto - Return true if the given decl has a argument
112/// information. This decl should have already passed
113/// isFunctionOrMethod or isFunctionOrMethodOrBlock.
114static bool hasFunctionProto(const Decl *D) {
115  if (const FunctionType *FnTy = getFunctionType(D))
116    return isa<FunctionProtoType>(FnTy);
117  else {
118    assert(isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D));
119    return true;
120  }
121}
122
123/// getFunctionOrMethodNumArgs - Return number of function or method
124/// arguments. It is an error to call this on a K&R function (use
125/// hasFunctionProto first).
126static unsigned getFunctionOrMethodNumArgs(const Decl *D) {
127  if (const FunctionType *FnTy = getFunctionType(D))
128    return cast<FunctionProtoType>(FnTy)->getNumArgs();
129  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
130    return BD->getNumParams();
131  return cast<ObjCMethodDecl>(D)->param_size();
132}
133
134static QualType getFunctionOrMethodArgType(const Decl *D, unsigned Idx) {
135  if (const FunctionType *FnTy = getFunctionType(D))
136    return cast<FunctionProtoType>(FnTy)->getArgType(Idx);
137  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
138    return BD->getParamDecl(Idx)->getType();
139
140  return cast<ObjCMethodDecl>(D)->param_begin()[Idx]->getType();
141}
142
143static QualType getFunctionOrMethodResultType(const Decl *D) {
144  if (const FunctionType *FnTy = getFunctionType(D))
145    return cast<FunctionProtoType>(FnTy)->getResultType();
146  return cast<ObjCMethodDecl>(D)->getResultType();
147}
148
149static bool isFunctionOrMethodVariadic(const Decl *D) {
150  if (const FunctionType *FnTy = getFunctionType(D)) {
151    const FunctionProtoType *proto = cast<FunctionProtoType>(FnTy);
152    return proto->isVariadic();
153  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
154    return BD->isVariadic();
155  else {
156    return cast<ObjCMethodDecl>(D)->isVariadic();
157  }
158}
159
160static bool isInstanceMethod(const Decl *D) {
161  if (const CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D))
162    return MethodDecl->isInstance();
163  return false;
164}
165
166static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
167  const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
168  if (!PT)
169    return false;
170
171  ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
172  if (!Cls)
173    return false;
174
175  IdentifierInfo* ClsName = Cls->getIdentifier();
176
177  // FIXME: Should we walk the chain of classes?
178  return ClsName == &Ctx.Idents.get("NSString") ||
179         ClsName == &Ctx.Idents.get("NSMutableString");
180}
181
182static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
183  const PointerType *PT = T->getAs<PointerType>();
184  if (!PT)
185    return false;
186
187  const RecordType *RT = PT->getPointeeType()->getAs<RecordType>();
188  if (!RT)
189    return false;
190
191  const RecordDecl *RD = RT->getDecl();
192  if (RD->getTagKind() != TTK_Struct)
193    return false;
194
195  return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
196}
197
198/// \brief Check if the attribute has exactly as many args as Num. May
199/// output an error.
200static bool checkAttributeNumArgs(Sema &S, const AttributeList &Attr,
201                                  unsigned int Num) {
202  if (Attr.getNumArgs() != Num) {
203    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Num;
204    return false;
205  }
206
207  return true;
208}
209
210
211/// \brief Check if the attribute has at least as many args as Num. May
212/// output an error.
213static bool checkAttributeAtLeastNumArgs(Sema &S, const AttributeList &Attr,
214                                  unsigned int Num) {
215  if (Attr.getNumArgs() < Num) {
216    S.Diag(Attr.getLoc(), diag::err_attribute_too_few_arguments) << Num;
217    return false;
218  }
219
220  return true;
221}
222
223///
224/// \brief Check if passed in Decl is a field or potentially shared global var
225/// \return true if the Decl is a field or potentially shared global variable
226///
227static bool mayBeSharedVariable(const Decl *D) {
228  if (isa<FieldDecl>(D))
229    return true;
230  if (const VarDecl *vd = dyn_cast<VarDecl>(D))
231    return (vd->hasGlobalStorage() && !(vd->isThreadSpecified()));
232
233  return false;
234}
235
236/// \brief Check if the passed-in expression is of type int or bool.
237static bool isIntOrBool(Expr *Exp) {
238  QualType QT = Exp->getType();
239  return QT->isBooleanType() || QT->isIntegerType();
240}
241
242
243// Check to see if the type is a smart pointer of some kind.  We assume
244// it's a smart pointer if it defines both operator-> and operator*.
245static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
246  DeclContextLookupConstResult Res1 = RT->getDecl()->lookup(
247    S.Context.DeclarationNames.getCXXOperatorName(OO_Star));
248  if (Res1.first == Res1.second)
249    return false;
250
251  DeclContextLookupConstResult Res2 = RT->getDecl()->lookup(
252    S.Context.DeclarationNames.getCXXOperatorName(OO_Arrow));
253  if (Res2.first == Res2.second)
254    return false;
255
256  return true;
257}
258
259/// \brief Check if passed in Decl is a pointer type.
260/// Note that this function may produce an error message.
261/// \return true if the Decl is a pointer type; false otherwise
262static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
263                                       const AttributeList &Attr) {
264  if (const ValueDecl *vd = dyn_cast<ValueDecl>(D)) {
265    QualType QT = vd->getType();
266    if (QT->isAnyPointerType())
267      return true;
268
269    if (const RecordType *RT = QT->getAs<RecordType>()) {
270      // If it's an incomplete type, it could be a smart pointer; skip it.
271      // (We don't want to force template instantiation if we can avoid it,
272      // since that would alter the order in which templates are instantiated.)
273      if (RT->isIncompleteType())
274        return true;
275
276      if (threadSafetyCheckIsSmartPointer(S, RT))
277        return true;
278    }
279
280    S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_pointer)
281      << Attr.getName()->getName() << QT;
282  } else {
283    S.Diag(Attr.getLoc(), diag::err_attribute_can_be_applied_only_to_value_decl)
284      << Attr.getName();
285  }
286  return false;
287}
288
289/// \brief Checks that the passed in QualType either is of RecordType or points
290/// to RecordType. Returns the relevant RecordType, null if it does not exit.
291static const RecordType *getRecordType(QualType QT) {
292  if (const RecordType *RT = QT->getAs<RecordType>())
293    return RT;
294
295  // Now check if we point to record type.
296  if (const PointerType *PT = QT->getAs<PointerType>())
297    return PT->getPointeeType()->getAs<RecordType>();
298
299  return 0;
300}
301
302
303static bool checkBaseClassIsLockableCallback(const CXXBaseSpecifier *Specifier,
304                                             CXXBasePath &Path, void *Unused) {
305  const RecordType *RT = Specifier->getType()->getAs<RecordType>();
306  if (RT->getDecl()->getAttr<LockableAttr>())
307    return true;
308  return false;
309}
310
311
312/// \brief Thread Safety Analysis: Checks that the passed in RecordType
313/// resolves to a lockable object.
314static void checkForLockableRecord(Sema &S, Decl *D, const AttributeList &Attr,
315                                   QualType Ty) {
316  const RecordType *RT = getRecordType(Ty);
317
318  // Warn if could not get record type for this argument.
319  if (!RT) {
320    S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_class)
321      << Attr.getName() << Ty.getAsString();
322    return;
323  }
324
325  // Don't check for lockable if the class hasn't been defined yet.
326  if (RT->isIncompleteType())
327    return;
328
329  // Allow smart pointers to be used as lockable objects.
330  // FIXME -- Check the type that the smart pointer points to.
331  if (threadSafetyCheckIsSmartPointer(S, RT))
332    return;
333
334  // Check if the type is lockable.
335  RecordDecl *RD = RT->getDecl();
336  if (RD->getAttr<LockableAttr>())
337    return;
338
339  // Else check if any base classes are lockable.
340  if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
341    CXXBasePaths BPaths(false, false);
342    if (CRD->lookupInBases(checkBaseClassIsLockableCallback, 0, BPaths))
343      return;
344  }
345
346  S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
347    << Attr.getName() << Ty.getAsString();
348}
349
350/// \brief Thread Safety Analysis: Checks that all attribute arguments, starting
351/// from Sidx, resolve to a lockable object.
352/// \param Sidx The attribute argument index to start checking with.
353/// \param ParamIdxOk Whether an argument can be indexing into a function
354/// parameter list.
355static void checkAttrArgsAreLockableObjs(Sema &S, Decl *D,
356                                         const AttributeList &Attr,
357                                         SmallVectorImpl<Expr*> &Args,
358                                         int Sidx = 0,
359                                         bool ParamIdxOk = false) {
360  for(unsigned Idx = Sidx; Idx < Attr.getNumArgs(); ++Idx) {
361    Expr *ArgExp = Attr.getArg(Idx);
362
363    if (ArgExp->isTypeDependent()) {
364      // FIXME -- need to check this again on template instantiation
365      Args.push_back(ArgExp);
366      continue;
367    }
368
369    if (StringLiteral *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
370      // Ignore empty strings without warnings
371      if (StrLit->getLength() == 0)
372        continue;
373
374      // We allow constant strings to be used as a placeholder for expressions
375      // that are not valid C++ syntax, but warn that they are ignored.
376      S.Diag(Attr.getLoc(), diag::warn_thread_attribute_ignored) <<
377        Attr.getName();
378      continue;
379    }
380
381    QualType ArgTy = ArgExp->getType();
382
383    // A pointer to member expression of the form  &MyClass::mu is treated
384    // specially -- we need to look at the type of the member.
385    if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(ArgExp))
386      if (UOp->getOpcode() == UO_AddrOf)
387        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
388          if (DRE->getDecl()->isCXXInstanceMember())
389            ArgTy = DRE->getDecl()->getType();
390
391    // First see if we can just cast to record type, or point to record type.
392    const RecordType *RT = getRecordType(ArgTy);
393
394    // Now check if we index into a record type function param.
395    if(!RT && ParamIdxOk) {
396      FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
397      IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ArgExp);
398      if(FD && IL) {
399        unsigned int NumParams = FD->getNumParams();
400        llvm::APInt ArgValue = IL->getValue();
401        uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
402        uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
403        if(!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
404          S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_range)
405            << Attr.getName() << Idx + 1 << NumParams;
406          continue;
407        }
408        ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
409      }
410    }
411
412    checkForLockableRecord(S, D, Attr, ArgTy);
413
414    Args.push_back(ArgExp);
415  }
416}
417
418//===----------------------------------------------------------------------===//
419// Attribute Implementations
420//===----------------------------------------------------------------------===//
421
422// FIXME: All this manual attribute parsing code is gross. At the
423// least add some helper functions to check most argument patterns (#
424// and types of args).
425
426static void handleGuardedVarAttr(Sema &S, Decl *D, const AttributeList &Attr,
427                                 bool pointer = false) {
428  assert(!Attr.isInvalid());
429
430  if (!checkAttributeNumArgs(S, Attr, 0))
431    return;
432
433  // D must be either a member field or global (potentially shared) variable.
434  if (!mayBeSharedVariable(D)) {
435    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
436      << Attr.getName() << ExpectedFieldOrGlobalVar;
437    return;
438  }
439
440  if (pointer && !threadSafetyCheckIsPointer(S, D, Attr))
441    return;
442
443  if (pointer)
444    D->addAttr(::new (S.Context) PtGuardedVarAttr(Attr.getRange(), S.Context));
445  else
446    D->addAttr(::new (S.Context) GuardedVarAttr(Attr.getRange(), S.Context));
447}
448
449static void handleGuardedByAttr(Sema &S, Decl *D, const AttributeList &Attr,
450                                bool pointer = false) {
451  assert(!Attr.isInvalid());
452
453  if (!checkAttributeNumArgs(S, Attr, 1))
454    return;
455
456  // D must be either a member field or global (potentially shared) variable.
457  if (!mayBeSharedVariable(D)) {
458    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
459      << Attr.getName() << ExpectedFieldOrGlobalVar;
460    return;
461  }
462
463  if (pointer && !threadSafetyCheckIsPointer(S, D, Attr))
464    return;
465
466  SmallVector<Expr*, 1> Args;
467  // check that all arguments are lockable objects
468  checkAttrArgsAreLockableObjs(S, D, Attr, Args);
469  unsigned Size = Args.size();
470  if (Size != 1)
471    return;
472  Expr *Arg = Args[0];
473
474  if (pointer)
475    D->addAttr(::new (S.Context) PtGuardedByAttr(Attr.getRange(),
476                                                 S.Context, Arg));
477  else
478    D->addAttr(::new (S.Context) GuardedByAttr(Attr.getRange(), S.Context, Arg));
479}
480
481
482static void handleLockableAttr(Sema &S, Decl *D, const AttributeList &Attr,
483                               bool scoped = false) {
484  assert(!Attr.isInvalid());
485
486  if (!checkAttributeNumArgs(S, Attr, 0))
487    return;
488
489  // FIXME: Lockable structs for C code.
490  if (!isa<CXXRecordDecl>(D)) {
491    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
492      << Attr.getName() << ExpectedClass;
493    return;
494  }
495
496  if (scoped)
497    D->addAttr(::new (S.Context) ScopedLockableAttr(Attr.getRange(), S.Context));
498  else
499    D->addAttr(::new (S.Context) LockableAttr(Attr.getRange(), S.Context));
500}
501
502static void handleNoThreadSafetyAttr(Sema &S, Decl *D,
503                                     const AttributeList &Attr) {
504  assert(!Attr.isInvalid());
505
506  if (!checkAttributeNumArgs(S, Attr, 0))
507    return;
508
509  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
510    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
511      << Attr.getName() << ExpectedFunctionOrMethod;
512    return;
513  }
514
515  D->addAttr(::new (S.Context) NoThreadSafetyAnalysisAttr(Attr.getRange(),
516                                                          S.Context));
517}
518
519static void handleNoAddressSafetyAttr(Sema &S, Decl *D,
520                                      const AttributeList &Attr) {
521  assert(!Attr.isInvalid());
522
523  if (!checkAttributeNumArgs(S, Attr, 0))
524    return;
525
526  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
527    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
528      << Attr.getName() << ExpectedFunctionOrMethod;
529    return;
530  }
531
532  D->addAttr(::new (S.Context) NoAddressSafetyAnalysisAttr(Attr.getRange(),
533                                                          S.Context));
534}
535
536static void handleAcquireOrderAttr(Sema &S, Decl *D, const AttributeList &Attr,
537                                   bool before) {
538  assert(!Attr.isInvalid());
539
540  if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
541    return;
542
543  // D must be either a member field or global (potentially shared) variable.
544  ValueDecl *VD = dyn_cast<ValueDecl>(D);
545  if (!VD || !mayBeSharedVariable(D)) {
546    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
547      << Attr.getName() << ExpectedFieldOrGlobalVar;
548    return;
549  }
550
551  // Check that this attribute only applies to lockable types.
552  QualType QT = VD->getType();
553  if (!QT->isDependentType()) {
554    const RecordType *RT = getRecordType(QT);
555    if (!RT || !RT->getDecl()->getAttr<LockableAttr>()) {
556      S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_lockable)
557              << Attr.getName();
558      return;
559    }
560  }
561
562  SmallVector<Expr*, 1> Args;
563  // Check that all arguments are lockable objects.
564  checkAttrArgsAreLockableObjs(S, D, Attr, Args);
565  unsigned Size = Args.size();
566  if (Size == 0)
567    return;
568  Expr **StartArg = &Args[0];
569
570  if (before)
571    D->addAttr(::new (S.Context) AcquiredBeforeAttr(Attr.getRange(), S.Context,
572                                                    StartArg, Size));
573  else
574    D->addAttr(::new (S.Context) AcquiredAfterAttr(Attr.getRange(), S.Context,
575                                                   StartArg, Size));
576}
577
578static void handleLockFunAttr(Sema &S, Decl *D, const AttributeList &Attr,
579                              bool exclusive = false) {
580  assert(!Attr.isInvalid());
581
582  // zero or more arguments ok
583
584  // check that the attribute is applied to a function
585  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
586    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
587      << Attr.getName() << ExpectedFunctionOrMethod;
588    return;
589  }
590
591  // check that all arguments are lockable objects
592  SmallVector<Expr*, 1> Args;
593  checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true);
594  unsigned Size = Args.size();
595  Expr **StartArg = Size == 0 ? 0 : &Args[0];
596
597  if (exclusive)
598    D->addAttr(::new (S.Context) ExclusiveLockFunctionAttr(Attr.getRange(),
599                                                           S.Context, StartArg,
600                                                           Size));
601  else
602    D->addAttr(::new (S.Context) SharedLockFunctionAttr(Attr.getRange(),
603                                                        S.Context, StartArg,
604                                                        Size));
605}
606
607static void handleTrylockFunAttr(Sema &S, Decl *D, const AttributeList &Attr,
608                                 bool exclusive = false) {
609  assert(!Attr.isInvalid());
610
611  if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
612    return;
613
614  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
615    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
616      << Attr.getName() << ExpectedFunctionOrMethod;
617    return;
618  }
619
620  if (!isIntOrBool(Attr.getArg(0))) {
621    S.Diag(Attr.getLoc(), diag::err_attribute_first_argument_not_int_or_bool)
622        << Attr.getName();
623    return;
624  }
625
626  SmallVector<Expr*, 2> Args;
627  // check that all arguments are lockable objects
628  checkAttrArgsAreLockableObjs(S, D, Attr, Args, 1);
629  unsigned Size = Args.size();
630  Expr **StartArg = Size == 0 ? 0 : &Args[0];
631
632  if (exclusive)
633    D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(Attr.getRange(),
634                                                              S.Context,
635                                                              Attr.getArg(0),
636                                                              StartArg, Size));
637  else
638    D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(Attr.getRange(),
639                                                           S.Context,
640                                                           Attr.getArg(0),
641                                                           StartArg, Size));
642}
643
644static void handleLocksRequiredAttr(Sema &S, Decl *D, const AttributeList &Attr,
645                                    bool exclusive = false) {
646  assert(!Attr.isInvalid());
647
648  if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
649    return;
650
651  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
652    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
653      << Attr.getName() << ExpectedFunctionOrMethod;
654    return;
655  }
656
657  // check that all arguments are lockable objects
658  SmallVector<Expr*, 1> Args;
659  checkAttrArgsAreLockableObjs(S, D, Attr, Args);
660  unsigned Size = Args.size();
661  if (Size == 0)
662    return;
663  Expr **StartArg = &Args[0];
664
665  if (exclusive)
666    D->addAttr(::new (S.Context) ExclusiveLocksRequiredAttr(Attr.getRange(),
667                                                            S.Context, StartArg,
668                                                            Size));
669  else
670    D->addAttr(::new (S.Context) SharedLocksRequiredAttr(Attr.getRange(),
671                                                         S.Context, StartArg,
672                                                         Size));
673}
674
675static void handleUnlockFunAttr(Sema &S, Decl *D,
676                                const AttributeList &Attr) {
677  assert(!Attr.isInvalid());
678
679  // zero or more arguments ok
680
681  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
682    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
683      << Attr.getName() << ExpectedFunctionOrMethod;
684    return;
685  }
686
687  // check that all arguments are lockable objects
688  SmallVector<Expr*, 1> Args;
689  checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true);
690  unsigned Size = Args.size();
691  Expr **StartArg = Size == 0 ? 0 : &Args[0];
692
693  D->addAttr(::new (S.Context) UnlockFunctionAttr(Attr.getRange(), S.Context,
694                                                  StartArg, Size));
695}
696
697static void handleLockReturnedAttr(Sema &S, Decl *D,
698                                   const AttributeList &Attr) {
699  assert(!Attr.isInvalid());
700
701  if (!checkAttributeNumArgs(S, Attr, 1))
702    return;
703  Expr *Arg = Attr.getArg(0);
704
705  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
706    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
707      << Attr.getName() << ExpectedFunctionOrMethod;
708    return;
709  }
710
711  if (Arg->isTypeDependent())
712    return;
713
714  // check that the argument is lockable object
715  SmallVector<Expr*, 1> Args;
716  checkAttrArgsAreLockableObjs(S, D, Attr, Args);
717  unsigned Size = Args.size();
718  if (Size == 0)
719    return;
720
721  D->addAttr(::new (S.Context) LockReturnedAttr(Attr.getRange(), S.Context,
722                                                Args[0]));
723}
724
725static void handleLocksExcludedAttr(Sema &S, Decl *D,
726                                    const AttributeList &Attr) {
727  assert(!Attr.isInvalid());
728
729  if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
730    return;
731
732  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
733    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
734      << Attr.getName() << ExpectedFunctionOrMethod;
735    return;
736  }
737
738  // check that all arguments are lockable objects
739  SmallVector<Expr*, 1> Args;
740  checkAttrArgsAreLockableObjs(S, D, Attr, Args);
741  unsigned Size = Args.size();
742  if (Size == 0)
743    return;
744  Expr **StartArg = &Args[0];
745
746  D->addAttr(::new (S.Context) LocksExcludedAttr(Attr.getRange(), S.Context,
747                                                 StartArg, Size));
748}
749
750
751static void handleExtVectorTypeAttr(Sema &S, Scope *scope, Decl *D,
752                                    const AttributeList &Attr) {
753  TypedefNameDecl *tDecl = dyn_cast<TypedefNameDecl>(D);
754  if (tDecl == 0) {
755    S.Diag(Attr.getLoc(), diag::err_typecheck_ext_vector_not_typedef);
756    return;
757  }
758
759  QualType curType = tDecl->getUnderlyingType();
760
761  Expr *sizeExpr;
762
763  // Special case where the argument is a template id.
764  if (Attr.getParameterName()) {
765    CXXScopeSpec SS;
766    SourceLocation TemplateKWLoc;
767    UnqualifiedId id;
768    id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
769
770    ExprResult Size = S.ActOnIdExpression(scope, SS, TemplateKWLoc, id,
771                                          false, false);
772    if (Size.isInvalid())
773      return;
774
775    sizeExpr = Size.get();
776  } else {
777    // check the attribute arguments.
778    if (!checkAttributeNumArgs(S, Attr, 1))
779      return;
780
781    sizeExpr = Attr.getArg(0);
782  }
783
784  // Instantiate/Install the vector type, and let Sema build the type for us.
785  // This will run the reguired checks.
786  QualType T = S.BuildExtVectorType(curType, sizeExpr, Attr.getLoc());
787  if (!T.isNull()) {
788    // FIXME: preserve the old source info.
789    tDecl->setTypeSourceInfo(S.Context.getTrivialTypeSourceInfo(T));
790
791    // Remember this typedef decl, we will need it later for diagnostics.
792    S.ExtVectorDecls.push_back(tDecl);
793  }
794}
795
796static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
797  // check the attribute arguments.
798  if (!checkAttributeNumArgs(S, Attr, 0))
799    return;
800
801  if (TagDecl *TD = dyn_cast<TagDecl>(D))
802    TD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context));
803  else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
804    // If the alignment is less than or equal to 8 bits, the packed attribute
805    // has no effect.
806    if (!FD->getType()->isIncompleteType() &&
807        S.Context.getTypeAlign(FD->getType()) <= 8)
808      S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
809        << Attr.getName() << FD->getType();
810    else
811      FD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context));
812  } else
813    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
814}
815
816static void handleMsStructAttr(Sema &S, Decl *D, const AttributeList &Attr) {
817  if (TagDecl *TD = dyn_cast<TagDecl>(D))
818    TD->addAttr(::new (S.Context) MsStructAttr(Attr.getRange(), S.Context));
819  else
820    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
821}
822
823static void handleIBAction(Sema &S, Decl *D, const AttributeList &Attr) {
824  // check the attribute arguments.
825  if (!checkAttributeNumArgs(S, Attr, 0))
826    return;
827
828  // The IBAction attributes only apply to instance methods.
829  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
830    if (MD->isInstanceMethod()) {
831      D->addAttr(::new (S.Context) IBActionAttr(Attr.getRange(), S.Context));
832      return;
833    }
834
835  S.Diag(Attr.getLoc(), diag::warn_attribute_ibaction) << Attr.getName();
836}
837
838static bool checkIBOutletCommon(Sema &S, Decl *D, const AttributeList &Attr) {
839  // The IBOutlet/IBOutletCollection attributes only apply to instance
840  // variables or properties of Objective-C classes.  The outlet must also
841  // have an object reference type.
842  if (const ObjCIvarDecl *VD = dyn_cast<ObjCIvarDecl>(D)) {
843    if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
844      S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
845        << Attr.getName() << VD->getType() << 0;
846      return false;
847    }
848  }
849  else if (const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
850    if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
851      S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
852        << Attr.getName() << PD->getType() << 1;
853      return false;
854    }
855  }
856  else {
857    S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName();
858    return false;
859  }
860
861  return true;
862}
863
864static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &Attr) {
865  // check the attribute arguments.
866  if (!checkAttributeNumArgs(S, Attr, 0))
867    return;
868
869  if (!checkIBOutletCommon(S, D, Attr))
870    return;
871
872  D->addAttr(::new (S.Context) IBOutletAttr(Attr.getRange(), S.Context));
873}
874
875static void handleIBOutletCollection(Sema &S, Decl *D,
876                                     const AttributeList &Attr) {
877
878  // The iboutletcollection attribute can have zero or one arguments.
879  if (Attr.getParameterName() && Attr.getNumArgs() > 0) {
880    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
881    return;
882  }
883
884  if (!checkIBOutletCommon(S, D, Attr))
885    return;
886
887  IdentifierInfo *II = Attr.getParameterName();
888  if (!II)
889    II = &S.Context.Idents.get("NSObject");
890
891  ParsedType TypeRep = S.getTypeName(*II, Attr.getLoc(),
892                        S.getScopeForContext(D->getDeclContext()->getParent()));
893  if (!TypeRep) {
894    S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II;
895    return;
896  }
897  QualType QT = TypeRep.get();
898  // Diagnose use of non-object type in iboutletcollection attribute.
899  // FIXME. Gnu attribute extension ignores use of builtin types in
900  // attributes. So, __attribute__((iboutletcollection(char))) will be
901  // treated as __attribute__((iboutletcollection())).
902  if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
903    S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II;
904    return;
905  }
906  D->addAttr(::new (S.Context) IBOutletCollectionAttr(Attr.getRange(),S.Context,
907                                                   QT, Attr.getParameterLoc()));
908}
909
910static void possibleTransparentUnionPointerType(QualType &T) {
911  if (const RecordType *UT = T->getAsUnionType())
912    if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
913      RecordDecl *UD = UT->getDecl();
914      for (RecordDecl::field_iterator it = UD->field_begin(),
915           itend = UD->field_end(); it != itend; ++it) {
916        QualType QT = it->getType();
917        if (QT->isAnyPointerType() || QT->isBlockPointerType()) {
918          T = QT;
919          return;
920        }
921      }
922    }
923}
924
925static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &Attr) {
926  // GCC ignores the nonnull attribute on K&R style function prototypes, so we
927  // ignore it as well
928  if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
929    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
930      << Attr.getName() << ExpectedFunction;
931    return;
932  }
933
934  // In C++ the implicit 'this' function parameter also counts, and they are
935  // counted from one.
936  bool HasImplicitThisParam = isInstanceMethod(D);
937  unsigned NumArgs  = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
938
939  // The nonnull attribute only applies to pointers.
940  SmallVector<unsigned, 10> NonNullArgs;
941
942  for (AttributeList::arg_iterator I=Attr.arg_begin(),
943                                   E=Attr.arg_end(); I!=E; ++I) {
944
945
946    // The argument must be an integer constant expression.
947    Expr *Ex = *I;
948    llvm::APSInt ArgNum(32);
949    if (Ex->isTypeDependent() || Ex->isValueDependent() ||
950        !Ex->isIntegerConstantExpr(ArgNum, S.Context)) {
951      S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
952        << "nonnull" << Ex->getSourceRange();
953      return;
954    }
955
956    unsigned x = (unsigned) ArgNum.getZExtValue();
957
958    if (x < 1 || x > NumArgs) {
959      S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
960       << "nonnull" << I.getArgNum() << Ex->getSourceRange();
961      return;
962    }
963
964    --x;
965    if (HasImplicitThisParam) {
966      if (x == 0) {
967        S.Diag(Attr.getLoc(),
968               diag::err_attribute_invalid_implicit_this_argument)
969          << "nonnull" << Ex->getSourceRange();
970        return;
971      }
972      --x;
973    }
974
975    // Is the function argument a pointer type?
976    QualType T = getFunctionOrMethodArgType(D, x).getNonReferenceType();
977    possibleTransparentUnionPointerType(T);
978
979    if (!T->isAnyPointerType() && !T->isBlockPointerType()) {
980      // FIXME: Should also highlight argument in decl.
981      S.Diag(Attr.getLoc(), diag::warn_nonnull_pointers_only)
982        << "nonnull" << Ex->getSourceRange();
983      continue;
984    }
985
986    NonNullArgs.push_back(x);
987  }
988
989  // If no arguments were specified to __attribute__((nonnull)) then all pointer
990  // arguments have a nonnull attribute.
991  if (NonNullArgs.empty()) {
992    for (unsigned I = 0, E = getFunctionOrMethodNumArgs(D); I != E; ++I) {
993      QualType T = getFunctionOrMethodArgType(D, I).getNonReferenceType();
994      possibleTransparentUnionPointerType(T);
995      if (T->isAnyPointerType() || T->isBlockPointerType())
996        NonNullArgs.push_back(I);
997    }
998
999    // No pointer arguments?
1000    if (NonNullArgs.empty()) {
1001      // Warn the trivial case only if attribute is not coming from a
1002      // macro instantiation.
1003      if (Attr.getLoc().isFileID())
1004        S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers);
1005      return;
1006    }
1007  }
1008
1009  unsigned* start = &NonNullArgs[0];
1010  unsigned size = NonNullArgs.size();
1011  llvm::array_pod_sort(start, start + size);
1012  D->addAttr(::new (S.Context) NonNullAttr(Attr.getRange(), S.Context, start,
1013                                           size));
1014}
1015
1016static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) {
1017  // This attribute must be applied to a function declaration.
1018  // The first argument to the attribute must be a string,
1019  // the name of the resource, for example "malloc".
1020  // The following arguments must be argument indexes, the arguments must be
1021  // of integer type for Returns, otherwise of pointer type.
1022  // The difference between Holds and Takes is that a pointer may still be used
1023  // after being held.  free() should be __attribute((ownership_takes)), whereas
1024  // a list append function may well be __attribute((ownership_holds)).
1025
1026  if (!AL.getParameterName()) {
1027    S.Diag(AL.getLoc(), diag::err_attribute_argument_n_not_string)
1028        << AL.getName()->getName() << 1;
1029    return;
1030  }
1031  // Figure out our Kind, and check arguments while we're at it.
1032  OwnershipAttr::OwnershipKind K;
1033  switch (AL.getKind()) {
1034  case AttributeList::AT_ownership_takes:
1035    K = OwnershipAttr::Takes;
1036    if (AL.getNumArgs() < 1) {
1037      S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
1038      return;
1039    }
1040    break;
1041  case AttributeList::AT_ownership_holds:
1042    K = OwnershipAttr::Holds;
1043    if (AL.getNumArgs() < 1) {
1044      S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
1045      return;
1046    }
1047    break;
1048  case AttributeList::AT_ownership_returns:
1049    K = OwnershipAttr::Returns;
1050    if (AL.getNumArgs() > 1) {
1051      S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
1052          << AL.getNumArgs() + 1;
1053      return;
1054    }
1055    break;
1056  default:
1057    // This should never happen given how we are called.
1058    llvm_unreachable("Unknown ownership attribute");
1059  }
1060
1061  if (!isFunction(D) || !hasFunctionProto(D)) {
1062    S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
1063      << AL.getName() << ExpectedFunction;
1064    return;
1065  }
1066
1067  // In C++ the implicit 'this' function parameter also counts, and they are
1068  // counted from one.
1069  bool HasImplicitThisParam = isInstanceMethod(D);
1070  unsigned NumArgs  = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
1071
1072  StringRef Module = AL.getParameterName()->getName();
1073
1074  // Normalize the argument, __foo__ becomes foo.
1075  if (Module.startswith("__") && Module.endswith("__"))
1076    Module = Module.substr(2, Module.size() - 4);
1077
1078  SmallVector<unsigned, 10> OwnershipArgs;
1079
1080  for (AttributeList::arg_iterator I = AL.arg_begin(), E = AL.arg_end(); I != E;
1081       ++I) {
1082
1083    Expr *IdxExpr = *I;
1084    llvm::APSInt ArgNum(32);
1085    if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent()
1086        || !IdxExpr->isIntegerConstantExpr(ArgNum, S.Context)) {
1087      S.Diag(AL.getLoc(), diag::err_attribute_argument_not_int)
1088          << AL.getName()->getName() << IdxExpr->getSourceRange();
1089      continue;
1090    }
1091
1092    unsigned x = (unsigned) ArgNum.getZExtValue();
1093
1094    if (x > NumArgs || x < 1) {
1095      S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
1096          << AL.getName()->getName() << x << IdxExpr->getSourceRange();
1097      continue;
1098    }
1099    --x;
1100    if (HasImplicitThisParam) {
1101      if (x == 0) {
1102        S.Diag(AL.getLoc(), diag::err_attribute_invalid_implicit_this_argument)
1103          << "ownership" << IdxExpr->getSourceRange();
1104        return;
1105      }
1106      --x;
1107    }
1108
1109    switch (K) {
1110    case OwnershipAttr::Takes:
1111    case OwnershipAttr::Holds: {
1112      // Is the function argument a pointer type?
1113      QualType T = getFunctionOrMethodArgType(D, x);
1114      if (!T->isAnyPointerType() && !T->isBlockPointerType()) {
1115        // FIXME: Should also highlight argument in decl.
1116        S.Diag(AL.getLoc(), diag::err_ownership_type)
1117            << ((K==OwnershipAttr::Takes)?"ownership_takes":"ownership_holds")
1118            << "pointer"
1119            << IdxExpr->getSourceRange();
1120        continue;
1121      }
1122      break;
1123    }
1124    case OwnershipAttr::Returns: {
1125      if (AL.getNumArgs() > 1) {
1126          // Is the function argument an integer type?
1127          Expr *IdxExpr = AL.getArg(0);
1128          llvm::APSInt ArgNum(32);
1129          if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent()
1130              || !IdxExpr->isIntegerConstantExpr(ArgNum, S.Context)) {
1131            S.Diag(AL.getLoc(), diag::err_ownership_type)
1132                << "ownership_returns" << "integer"
1133                << IdxExpr->getSourceRange();
1134            return;
1135          }
1136      }
1137      break;
1138    }
1139    } // switch
1140
1141    // Check we don't have a conflict with another ownership attribute.
1142    for (specific_attr_iterator<OwnershipAttr>
1143          i = D->specific_attr_begin<OwnershipAttr>(),
1144          e = D->specific_attr_end<OwnershipAttr>();
1145        i != e; ++i) {
1146      if ((*i)->getOwnKind() != K) {
1147        for (const unsigned *I = (*i)->args_begin(), *E = (*i)->args_end();
1148             I!=E; ++I) {
1149          if (x == *I) {
1150            S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
1151                << AL.getName()->getName() << "ownership_*";
1152          }
1153        }
1154      }
1155    }
1156    OwnershipArgs.push_back(x);
1157  }
1158
1159  unsigned* start = OwnershipArgs.data();
1160  unsigned size = OwnershipArgs.size();
1161  llvm::array_pod_sort(start, start + size);
1162
1163  if (K != OwnershipAttr::Returns && OwnershipArgs.empty()) {
1164    S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
1165    return;
1166  }
1167
1168  D->addAttr(::new (S.Context) OwnershipAttr(AL.getLoc(), S.Context, K, Module,
1169                                             start, size));
1170}
1171
1172/// Whether this declaration has internal linkage for the purposes of
1173/// things that want to complain about things not have internal linkage.
1174static bool hasEffectivelyInternalLinkage(NamedDecl *D) {
1175  switch (D->getLinkage()) {
1176  case NoLinkage:
1177  case InternalLinkage:
1178    return true;
1179
1180  // Template instantiations that go from external to unique-external
1181  // shouldn't get diagnosed.
1182  case UniqueExternalLinkage:
1183    return true;
1184
1185  case ExternalLinkage:
1186    return false;
1187  }
1188  llvm_unreachable("unknown linkage kind!");
1189}
1190
1191static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1192  // Check the attribute arguments.
1193  if (Attr.getNumArgs() > 1) {
1194    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1195    return;
1196  }
1197
1198  if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) {
1199    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1200      << Attr.getName() << ExpectedVariableOrFunction;
1201    return;
1202  }
1203
1204  NamedDecl *nd = cast<NamedDecl>(D);
1205
1206  // gcc rejects
1207  // class c {
1208  //   static int a __attribute__((weakref ("v2")));
1209  //   static int b() __attribute__((weakref ("f3")));
1210  // };
1211  // and ignores the attributes of
1212  // void f(void) {
1213  //   static int a __attribute__((weakref ("v2")));
1214  // }
1215  // we reject them
1216  const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1217  if (!Ctx->isFileContext()) {
1218    S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_global_context) <<
1219        nd->getNameAsString();
1220    return;
1221  }
1222
1223  // The GCC manual says
1224  //
1225  // At present, a declaration to which `weakref' is attached can only
1226  // be `static'.
1227  //
1228  // It also says
1229  //
1230  // Without a TARGET,
1231  // given as an argument to `weakref' or to `alias', `weakref' is
1232  // equivalent to `weak'.
1233  //
1234  // gcc 4.4.1 will accept
1235  // int a7 __attribute__((weakref));
1236  // as
1237  // int a7 __attribute__((weak));
1238  // This looks like a bug in gcc. We reject that for now. We should revisit
1239  // it if this behaviour is actually used.
1240
1241  if (!hasEffectivelyInternalLinkage(nd)) {
1242    S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_static);
1243    return;
1244  }
1245
1246  // GCC rejects
1247  // static ((alias ("y"), weakref)).
1248  // Should we? How to check that weakref is before or after alias?
1249
1250  if (Attr.getNumArgs() == 1) {
1251    Expr *Arg = Attr.getArg(0);
1252    Arg = Arg->IgnoreParenCasts();
1253    StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
1254
1255    if (!Str || !Str->isAscii()) {
1256      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1257          << "weakref" << 1;
1258      return;
1259    }
1260    // GCC will accept anything as the argument of weakref. Should we
1261    // check for an existing decl?
1262    D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context,
1263                                           Str->getString()));
1264  }
1265
1266  D->addAttr(::new (S.Context) WeakRefAttr(Attr.getRange(), S.Context));
1267}
1268
1269static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1270  // check the attribute arguments.
1271  if (Attr.getNumArgs() != 1) {
1272    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1273    return;
1274  }
1275
1276  Expr *Arg = Attr.getArg(0);
1277  Arg = Arg->IgnoreParenCasts();
1278  StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
1279
1280  if (!Str || !Str->isAscii()) {
1281    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1282      << "alias" << 1;
1283    return;
1284  }
1285
1286  if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
1287    S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_darwin);
1288    return;
1289  }
1290
1291  // FIXME: check if target symbol exists in current file
1292
1293  D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context,
1294                                         Str->getString()));
1295}
1296
1297static void handleColdAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1298  // Check the attribute arguments.
1299  if (!checkAttributeNumArgs(S, Attr, 0))
1300    return;
1301
1302  if (!isa<FunctionDecl>(D)) {
1303    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1304      << Attr.getName() << ExpectedFunction;
1305    return;
1306  }
1307
1308  if (D->hasAttr<HotAttr>()) {
1309    S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
1310      << Attr.getName() << "hot";
1311    return;
1312  }
1313
1314  D->addAttr(::new (S.Context) ColdAttr(Attr.getRange(), S.Context));
1315}
1316
1317static void handleHotAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1318  // Check the attribute arguments.
1319  if (!checkAttributeNumArgs(S, Attr, 0))
1320    return;
1321
1322  if (!isa<FunctionDecl>(D)) {
1323    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1324      << Attr.getName() << ExpectedFunction;
1325    return;
1326  }
1327
1328  if (D->hasAttr<ColdAttr>()) {
1329    S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
1330      << Attr.getName() << "cold";
1331    return;
1332  }
1333
1334  D->addAttr(::new (S.Context) HotAttr(Attr.getRange(), S.Context));
1335}
1336
1337static void handleNakedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1338  // Check the attribute arguments.
1339  if (!checkAttributeNumArgs(S, Attr, 0))
1340    return;
1341
1342  if (!isa<FunctionDecl>(D)) {
1343    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1344      << Attr.getName() << ExpectedFunction;
1345    return;
1346  }
1347
1348  D->addAttr(::new (S.Context) NakedAttr(Attr.getRange(), S.Context));
1349}
1350
1351static void handleAlwaysInlineAttr(Sema &S, Decl *D,
1352                                   const AttributeList &Attr) {
1353  // Check the attribute arguments.
1354  if (Attr.hasParameterOrArguments()) {
1355    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1356    return;
1357  }
1358
1359  if (!isa<FunctionDecl>(D)) {
1360    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1361      << Attr.getName() << ExpectedFunction;
1362    return;
1363  }
1364
1365  D->addAttr(::new (S.Context) AlwaysInlineAttr(Attr.getRange(), S.Context));
1366}
1367
1368static void handleMallocAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1369  // Check the attribute arguments.
1370  if (Attr.hasParameterOrArguments()) {
1371    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1372    return;
1373  }
1374
1375  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1376    QualType RetTy = FD->getResultType();
1377    if (RetTy->isAnyPointerType() || RetTy->isBlockPointerType()) {
1378      D->addAttr(::new (S.Context) MallocAttr(Attr.getRange(), S.Context));
1379      return;
1380    }
1381  }
1382
1383  S.Diag(Attr.getLoc(), diag::warn_attribute_malloc_pointer_only);
1384}
1385
1386static void handleMayAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1387  // check the attribute arguments.
1388  if (!checkAttributeNumArgs(S, Attr, 0))
1389    return;
1390
1391  D->addAttr(::new (S.Context) MayAliasAttr(Attr.getRange(), S.Context));
1392}
1393
1394static void handleNoCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1395  assert(!Attr.isInvalid());
1396  if (isa<VarDecl>(D))
1397    D->addAttr(::new (S.Context) NoCommonAttr(Attr.getRange(), S.Context));
1398  else
1399    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1400      << Attr.getName() << ExpectedVariable;
1401}
1402
1403static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1404  assert(!Attr.isInvalid());
1405  if (isa<VarDecl>(D))
1406    D->addAttr(::new (S.Context) CommonAttr(Attr.getRange(), S.Context));
1407  else
1408    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1409      << Attr.getName() << ExpectedVariable;
1410}
1411
1412static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &attr) {
1413  if (hasDeclarator(D)) return;
1414
1415  if (S.CheckNoReturnAttr(attr)) return;
1416
1417  if (!isa<ObjCMethodDecl>(D)) {
1418    S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1419      << attr.getName() << ExpectedFunctionOrMethod;
1420    return;
1421  }
1422
1423  D->addAttr(::new (S.Context) NoReturnAttr(attr.getRange(), S.Context));
1424}
1425
1426bool Sema::CheckNoReturnAttr(const AttributeList &attr) {
1427  if (attr.hasParameterOrArguments()) {
1428    Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1429    attr.setInvalid();
1430    return true;
1431  }
1432
1433  return false;
1434}
1435
1436static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D,
1437                                       const AttributeList &Attr) {
1438
1439  // The checking path for 'noreturn' and 'analyzer_noreturn' are different
1440  // because 'analyzer_noreturn' does not impact the type.
1441
1442  if(!checkAttributeNumArgs(S, Attr, 0))
1443      return;
1444
1445  if (!isFunctionOrMethod(D) && !isa<BlockDecl>(D)) {
1446    ValueDecl *VD = dyn_cast<ValueDecl>(D);
1447    if (VD == 0 || (!VD->getType()->isBlockPointerType()
1448                    && !VD->getType()->isFunctionPointerType())) {
1449      S.Diag(Attr.getLoc(),
1450             Attr.isCXX0XAttribute() ? diag::err_attribute_wrong_decl_type
1451             : diag::warn_attribute_wrong_decl_type)
1452        << Attr.getName() << ExpectedFunctionMethodOrBlock;
1453      return;
1454    }
1455  }
1456
1457  D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(Attr.getRange(), S.Context));
1458}
1459
1460// PS3 PPU-specific.
1461static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1462/*
1463  Returning a Vector Class in Registers
1464
1465  According to the PPU ABI specifications, a class with a single member of
1466  vector type is returned in memory when used as the return value of a function.
1467  This results in inefficient code when implementing vector classes. To return
1468  the value in a single vector register, add the vecreturn attribute to the
1469  class definition. This attribute is also applicable to struct types.
1470
1471  Example:
1472
1473  struct Vector
1474  {
1475    __vector float xyzw;
1476  } __attribute__((vecreturn));
1477
1478  Vector Add(Vector lhs, Vector rhs)
1479  {
1480    Vector result;
1481    result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
1482    return result; // This will be returned in a register
1483  }
1484*/
1485  if (!isa<RecordDecl>(D)) {
1486    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1487      << Attr.getName() << ExpectedClass;
1488    return;
1489  }
1490
1491  if (D->getAttr<VecReturnAttr>()) {
1492    S.Diag(Attr.getLoc(), diag::err_repeat_attribute) << "vecreturn";
1493    return;
1494  }
1495
1496  RecordDecl *record = cast<RecordDecl>(D);
1497  int count = 0;
1498
1499  if (!isa<CXXRecordDecl>(record)) {
1500    S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
1501    return;
1502  }
1503
1504  if (!cast<CXXRecordDecl>(record)->isPOD()) {
1505    S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
1506    return;
1507  }
1508
1509  for (RecordDecl::field_iterator iter = record->field_begin();
1510       iter != record->field_end(); iter++) {
1511    if ((count == 1) || !iter->getType()->isVectorType()) {
1512      S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
1513      return;
1514    }
1515    count++;
1516  }
1517
1518  D->addAttr(::new (S.Context) VecReturnAttr(Attr.getRange(), S.Context));
1519}
1520
1521static void handleDependencyAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1522  if (!isFunctionOrMethod(D) && !isa<ParmVarDecl>(D)) {
1523    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1524      << Attr.getName() << ExpectedFunctionMethodOrParameter;
1525    return;
1526  }
1527  // FIXME: Actually store the attribute on the declaration
1528}
1529
1530static void handleUnusedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1531  // check the attribute arguments.
1532  if (Attr.hasParameterOrArguments()) {
1533    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1534    return;
1535  }
1536
1537  if (!isa<VarDecl>(D) && !isa<ObjCIvarDecl>(D) && !isFunctionOrMethod(D) &&
1538      !isa<TypeDecl>(D) && !isa<LabelDecl>(D)) {
1539    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1540      << Attr.getName() << ExpectedVariableFunctionOrLabel;
1541    return;
1542  }
1543
1544  D->addAttr(::new (S.Context) UnusedAttr(Attr.getRange(), S.Context));
1545}
1546
1547static void handleReturnsTwiceAttr(Sema &S, Decl *D,
1548                                   const AttributeList &Attr) {
1549  // check the attribute arguments.
1550  if (Attr.hasParameterOrArguments()) {
1551    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1552    return;
1553  }
1554
1555  if (!isa<FunctionDecl>(D)) {
1556    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1557      << Attr.getName() << ExpectedFunction;
1558    return;
1559  }
1560
1561  D->addAttr(::new (S.Context) ReturnsTwiceAttr(Attr.getRange(), S.Context));
1562}
1563
1564static void handleUsedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1565  // check the attribute arguments.
1566  if (Attr.hasParameterOrArguments()) {
1567    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1568    return;
1569  }
1570
1571  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1572    if (VD->hasLocalStorage() || VD->hasExternalStorage()) {
1573      S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "used";
1574      return;
1575    }
1576  } else if (!isFunctionOrMethod(D)) {
1577    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1578      << Attr.getName() << ExpectedVariableOrFunction;
1579    return;
1580  }
1581
1582  D->addAttr(::new (S.Context) UsedAttr(Attr.getRange(), S.Context));
1583}
1584
1585static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1586  // check the attribute arguments.
1587  if (Attr.getNumArgs() > 1) {
1588    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
1589    return;
1590  }
1591
1592  int priority = 65535; // FIXME: Do not hardcode such constants.
1593  if (Attr.getNumArgs() > 0) {
1594    Expr *E = Attr.getArg(0);
1595    llvm::APSInt Idx(32);
1596    if (E->isTypeDependent() || E->isValueDependent() ||
1597        !E->isIntegerConstantExpr(Idx, S.Context)) {
1598      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
1599        << "constructor" << 1 << E->getSourceRange();
1600      return;
1601    }
1602    priority = Idx.getZExtValue();
1603  }
1604
1605  if (!isa<FunctionDecl>(D)) {
1606    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1607      << Attr.getName() << ExpectedFunction;
1608    return;
1609  }
1610
1611  D->addAttr(::new (S.Context) ConstructorAttr(Attr.getRange(), S.Context,
1612                                               priority));
1613}
1614
1615static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1616  // check the attribute arguments.
1617  if (Attr.getNumArgs() > 1) {
1618    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
1619    return;
1620  }
1621
1622  int priority = 65535; // FIXME: Do not hardcode such constants.
1623  if (Attr.getNumArgs() > 0) {
1624    Expr *E = Attr.getArg(0);
1625    llvm::APSInt Idx(32);
1626    if (E->isTypeDependent() || E->isValueDependent() ||
1627        !E->isIntegerConstantExpr(Idx, S.Context)) {
1628      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
1629        << "destructor" << 1 << E->getSourceRange();
1630      return;
1631    }
1632    priority = Idx.getZExtValue();
1633  }
1634
1635  if (!isa<FunctionDecl>(D)) {
1636    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1637      << Attr.getName() << ExpectedFunction;
1638    return;
1639  }
1640
1641  D->addAttr(::new (S.Context) DestructorAttr(Attr.getRange(), S.Context,
1642                                              priority));
1643}
1644
1645static void handleDeprecatedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1646  unsigned NumArgs = Attr.getNumArgs();
1647  if (NumArgs > 1) {
1648    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
1649    return;
1650  }
1651
1652  // Handle the case where deprecated attribute has a text message.
1653  StringRef Str;
1654  if (NumArgs == 1) {
1655    StringLiteral *SE = dyn_cast<StringLiteral>(Attr.getArg(0));
1656    if (!SE) {
1657      S.Diag(Attr.getArg(0)->getLocStart(), diag::err_attribute_not_string)
1658        << "deprecated";
1659      return;
1660    }
1661    Str = SE->getString();
1662  }
1663
1664  D->addAttr(::new (S.Context) DeprecatedAttr(Attr.getRange(), S.Context, Str));
1665}
1666
1667static void handleUnavailableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1668  unsigned NumArgs = Attr.getNumArgs();
1669  if (NumArgs > 1) {
1670    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
1671    return;
1672  }
1673
1674  // Handle the case where unavailable attribute has a text message.
1675  StringRef Str;
1676  if (NumArgs == 1) {
1677    StringLiteral *SE = dyn_cast<StringLiteral>(Attr.getArg(0));
1678    if (!SE) {
1679      S.Diag(Attr.getArg(0)->getLocStart(),
1680             diag::err_attribute_not_string) << "unavailable";
1681      return;
1682    }
1683    Str = SE->getString();
1684  }
1685  D->addAttr(::new (S.Context) UnavailableAttr(Attr.getRange(), S.Context, Str));
1686}
1687
1688static void handleArcWeakrefUnavailableAttr(Sema &S, Decl *D,
1689                                            const AttributeList &Attr) {
1690  unsigned NumArgs = Attr.getNumArgs();
1691  if (NumArgs > 0) {
1692    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0;
1693    return;
1694  }
1695
1696  D->addAttr(::new (S.Context) ArcWeakrefUnavailableAttr(
1697                                          Attr.getRange(), S.Context));
1698}
1699
1700static void handleObjCRootClassAttr(Sema &S, Decl *D,
1701                                    const AttributeList &Attr) {
1702  if (!isa<ObjCInterfaceDecl>(D)) {
1703    S.Diag(Attr.getLoc(), diag::err_attribute_requires_objc_interface);
1704    return;
1705  }
1706
1707  unsigned NumArgs = Attr.getNumArgs();
1708  if (NumArgs > 0) {
1709    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0;
1710    return;
1711  }
1712
1713  D->addAttr(::new (S.Context) ObjCRootClassAttr(Attr.getRange(), S.Context));
1714}
1715
1716static void handleObjCRequiresPropertyDefsAttr(Sema &S, Decl *D,
1717                                            const AttributeList &Attr) {
1718  if (!isa<ObjCInterfaceDecl>(D)) {
1719    S.Diag(Attr.getLoc(), diag::err_suppress_autosynthesis);
1720    return;
1721  }
1722
1723  unsigned NumArgs = Attr.getNumArgs();
1724  if (NumArgs > 0) {
1725    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0;
1726    return;
1727  }
1728
1729  D->addAttr(::new (S.Context) ObjCRequiresPropertyDefsAttr(
1730                                 Attr.getRange(), S.Context));
1731}
1732
1733static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
1734                                  IdentifierInfo *Platform,
1735                                  VersionTuple Introduced,
1736                                  VersionTuple Deprecated,
1737                                  VersionTuple Obsoleted) {
1738  StringRef PlatformName
1739    = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
1740  if (PlatformName.empty())
1741    PlatformName = Platform->getName();
1742
1743  // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
1744  // of these steps are needed).
1745  if (!Introduced.empty() && !Deprecated.empty() &&
1746      !(Introduced <= Deprecated)) {
1747    S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
1748      << 1 << PlatformName << Deprecated.getAsString()
1749      << 0 << Introduced.getAsString();
1750    return true;
1751  }
1752
1753  if (!Introduced.empty() && !Obsoleted.empty() &&
1754      !(Introduced <= Obsoleted)) {
1755    S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
1756      << 2 << PlatformName << Obsoleted.getAsString()
1757      << 0 << Introduced.getAsString();
1758    return true;
1759  }
1760
1761  if (!Deprecated.empty() && !Obsoleted.empty() &&
1762      !(Deprecated <= Obsoleted)) {
1763    S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
1764      << 2 << PlatformName << Obsoleted.getAsString()
1765      << 1 << Deprecated.getAsString();
1766    return true;
1767  }
1768
1769  return false;
1770}
1771
1772bool Sema::mergeAvailabilityAttr(Decl *D, SourceRange Range,
1773                                 bool Inherited,
1774                                 IdentifierInfo *Platform,
1775                                 VersionTuple Introduced,
1776                                 VersionTuple Deprecated,
1777                                 VersionTuple Obsoleted,
1778                                 bool IsUnavailable,
1779                                 StringRef Message) {
1780  VersionTuple MergedIntroduced = Introduced;
1781  VersionTuple MergedDeprecated = Deprecated;
1782  VersionTuple MergedObsoleted = Obsoleted;
1783  bool FoundAny = false;
1784
1785  if (D->hasAttrs()) {
1786    AttrVec &Attrs = D->getAttrs();
1787    for (unsigned i = 0, e = Attrs.size(); i != e;) {
1788      const AvailabilityAttr *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
1789      if (!OldAA) {
1790        ++i;
1791        continue;
1792      }
1793
1794      IdentifierInfo *OldPlatform = OldAA->getPlatform();
1795      if (OldPlatform != Platform) {
1796        ++i;
1797        continue;
1798      }
1799
1800      FoundAny = true;
1801      VersionTuple OldIntroduced = OldAA->getIntroduced();
1802      VersionTuple OldDeprecated = OldAA->getDeprecated();
1803      VersionTuple OldObsoleted = OldAA->getObsoleted();
1804      bool OldIsUnavailable = OldAA->getUnavailable();
1805      StringRef OldMessage = OldAA->getMessage();
1806
1807      if ((!OldIntroduced.empty() && !Introduced.empty() &&
1808           OldIntroduced != Introduced) ||
1809          (!OldDeprecated.empty() && !Deprecated.empty() &&
1810           OldDeprecated != Deprecated) ||
1811          (!OldObsoleted.empty() && !Obsoleted.empty() &&
1812           OldObsoleted != Obsoleted) ||
1813          (OldIsUnavailable != IsUnavailable) ||
1814          (OldMessage != Message)) {
1815        Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
1816        Diag(Range.getBegin(), diag::note_previous_attribute);
1817        Attrs.erase(Attrs.begin() + i);
1818        --e;
1819        continue;
1820      }
1821
1822      VersionTuple MergedIntroduced2 = MergedIntroduced;
1823      VersionTuple MergedDeprecated2 = MergedDeprecated;
1824      VersionTuple MergedObsoleted2 = MergedObsoleted;
1825
1826      if (MergedIntroduced2.empty())
1827        MergedIntroduced2 = OldIntroduced;
1828      if (MergedDeprecated2.empty())
1829        MergedDeprecated2 = OldDeprecated;
1830      if (MergedObsoleted2.empty())
1831        MergedObsoleted2 = OldObsoleted;
1832
1833      if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
1834                                MergedIntroduced2, MergedDeprecated2,
1835                                MergedObsoleted2)) {
1836        Attrs.erase(Attrs.begin() + i);
1837        --e;
1838        continue;
1839      }
1840
1841      MergedIntroduced = MergedIntroduced2;
1842      MergedDeprecated = MergedDeprecated2;
1843      MergedObsoleted = MergedObsoleted2;
1844      ++i;
1845    }
1846  }
1847
1848  if (FoundAny &&
1849      MergedIntroduced == Introduced &&
1850      MergedDeprecated == Deprecated &&
1851      MergedObsoleted == Obsoleted)
1852    return false;
1853
1854  if (!checkAvailabilityAttr(*this, Range, Platform, MergedIntroduced,
1855                             MergedDeprecated, MergedObsoleted)) {
1856    AvailabilityAttr *Attr =
1857      ::new (Context) AvailabilityAttr(Range, Context, Platform,
1858                                       Introduced, Deprecated,
1859                                       Obsoleted, IsUnavailable, Message);
1860
1861    if (Inherited)
1862      Attr->setInherited(true);
1863    D->addAttr(Attr);
1864    return true;
1865  }
1866  return false;
1867}
1868
1869static void handleAvailabilityAttr(Sema &S, Decl *D,
1870                                   const AttributeList &Attr) {
1871  IdentifierInfo *Platform = Attr.getParameterName();
1872  SourceLocation PlatformLoc = Attr.getParameterLoc();
1873
1874  if (AvailabilityAttr::getPrettyPlatformName(Platform->getName()).empty())
1875    S.Diag(PlatformLoc, diag::warn_availability_unknown_platform)
1876      << Platform;
1877
1878  AvailabilityChange Introduced = Attr.getAvailabilityIntroduced();
1879  AvailabilityChange Deprecated = Attr.getAvailabilityDeprecated();
1880  AvailabilityChange Obsoleted = Attr.getAvailabilityObsoleted();
1881  bool IsUnavailable = Attr.getUnavailableLoc().isValid();
1882  StringRef Str;
1883  const StringLiteral *SE =
1884    dyn_cast_or_null<const StringLiteral>(Attr.getMessageExpr());
1885  if (SE)
1886    Str = SE->getString();
1887
1888  S.mergeAvailabilityAttr(D, Attr.getRange(),
1889                          false, Platform,
1890                          Introduced.Version,
1891                          Deprecated.Version,
1892                          Obsoleted.Version,
1893                          IsUnavailable,
1894                          Str);
1895}
1896
1897bool Sema::mergeVisibilityAttr(Decl *D, SourceRange Range,
1898                               bool Inherited,
1899                               VisibilityAttr::VisibilityType Vis) {
1900  if (isa<TypedefNameDecl>(D)) {
1901    Diag(Range.getBegin(), diag::warn_attribute_ignored) << "visibility";
1902    return false;
1903  }
1904  VisibilityAttr *ExistingAttr = D->getAttr<VisibilityAttr>();
1905  if (ExistingAttr) {
1906    VisibilityAttr::VisibilityType ExistingVis = ExistingAttr->getVisibility();
1907    if (ExistingVis == Vis)
1908      return false;
1909    Diag(ExistingAttr->getLocation(), diag::err_mismatched_visibility);
1910    Diag(Range.getBegin(), diag::note_previous_attribute);
1911    D->dropAttr<VisibilityAttr>();
1912  }
1913  VisibilityAttr *Attr = ::new (Context) VisibilityAttr(Range, Context, Vis);
1914  if (Inherited)
1915    Attr->setInherited(true);
1916  D->addAttr(Attr);
1917  return true;
1918}
1919
1920static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1921  // check the attribute arguments.
1922  if(!checkAttributeNumArgs(S, Attr, 1))
1923    return;
1924
1925  Expr *Arg = Attr.getArg(0);
1926  Arg = Arg->IgnoreParenCasts();
1927  StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
1928
1929  if (!Str || !Str->isAscii()) {
1930    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1931      << "visibility" << 1;
1932    return;
1933  }
1934
1935  StringRef TypeStr = Str->getString();
1936  VisibilityAttr::VisibilityType type;
1937
1938  if (TypeStr == "default")
1939    type = VisibilityAttr::Default;
1940  else if (TypeStr == "hidden")
1941    type = VisibilityAttr::Hidden;
1942  else if (TypeStr == "internal")
1943    type = VisibilityAttr::Hidden; // FIXME
1944  else if (TypeStr == "protected") {
1945    // Complain about attempts to use protected visibility on targets
1946    // (like Darwin) that don't support it.
1947    if (!S.Context.getTargetInfo().hasProtectedVisibility()) {
1948      S.Diag(Attr.getLoc(), diag::warn_attribute_protected_visibility);
1949      type = VisibilityAttr::Default;
1950    } else {
1951      type = VisibilityAttr::Protected;
1952    }
1953  } else {
1954    S.Diag(Attr.getLoc(), diag::warn_attribute_unknown_visibility) << TypeStr;
1955    return;
1956  }
1957
1958  S.mergeVisibilityAttr(D, Attr.getRange(), false, type);
1959}
1960
1961static void handleObjCMethodFamilyAttr(Sema &S, Decl *decl,
1962                                       const AttributeList &Attr) {
1963  ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(decl);
1964  if (!method) {
1965    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1966      << ExpectedMethod;
1967    return;
1968  }
1969
1970  if (Attr.getNumArgs() != 0 || !Attr.getParameterName()) {
1971    if (!Attr.getParameterName() && Attr.getNumArgs() == 1) {
1972      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1973        << "objc_method_family" << 1;
1974    } else {
1975      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1976    }
1977    Attr.setInvalid();
1978    return;
1979  }
1980
1981  StringRef param = Attr.getParameterName()->getName();
1982  ObjCMethodFamilyAttr::FamilyKind family;
1983  if (param == "none")
1984    family = ObjCMethodFamilyAttr::OMF_None;
1985  else if (param == "alloc")
1986    family = ObjCMethodFamilyAttr::OMF_alloc;
1987  else if (param == "copy")
1988    family = ObjCMethodFamilyAttr::OMF_copy;
1989  else if (param == "init")
1990    family = ObjCMethodFamilyAttr::OMF_init;
1991  else if (param == "mutableCopy")
1992    family = ObjCMethodFamilyAttr::OMF_mutableCopy;
1993  else if (param == "new")
1994    family = ObjCMethodFamilyAttr::OMF_new;
1995  else {
1996    // Just warn and ignore it.  This is future-proof against new
1997    // families being used in system headers.
1998    S.Diag(Attr.getParameterLoc(), diag::warn_unknown_method_family);
1999    return;
2000  }
2001
2002  if (family == ObjCMethodFamilyAttr::OMF_init &&
2003      !method->getResultType()->isObjCObjectPointerType()) {
2004    S.Diag(method->getLocation(), diag::err_init_method_bad_return_type)
2005      << method->getResultType();
2006    // Ignore the attribute.
2007    return;
2008  }
2009
2010  method->addAttr(new (S.Context) ObjCMethodFamilyAttr(Attr.getRange(),
2011                                                       S.Context, family));
2012}
2013
2014static void handleObjCExceptionAttr(Sema &S, Decl *D,
2015                                    const AttributeList &Attr) {
2016  if (!checkAttributeNumArgs(S, Attr, 0))
2017    return;
2018
2019  ObjCInterfaceDecl *OCI = dyn_cast<ObjCInterfaceDecl>(D);
2020  if (OCI == 0) {
2021    S.Diag(Attr.getLoc(), diag::err_attribute_requires_objc_interface);
2022    return;
2023  }
2024
2025  D->addAttr(::new (S.Context) ObjCExceptionAttr(Attr.getRange(), S.Context));
2026}
2027
2028static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &Attr) {
2029  if (Attr.getNumArgs() != 0) {
2030    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2031    return;
2032  }
2033  if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
2034    QualType T = TD->getUnderlyingType();
2035    if (!T->isPointerType() ||
2036        !T->getAs<PointerType>()->getPointeeType()->isRecordType()) {
2037      S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
2038      return;
2039    }
2040  }
2041  else if (!isa<ObjCPropertyDecl>(D)) {
2042    // It is okay to include this attribute on properties, e.g.:
2043    //
2044    //  @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
2045    //
2046    // In this case it follows tradition and suppresses an error in the above
2047    // case.
2048    S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
2049  }
2050  D->addAttr(::new (S.Context) ObjCNSObjectAttr(Attr.getRange(), S.Context));
2051}
2052
2053static void
2054handleOverloadableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2055  if (Attr.getNumArgs() != 0) {
2056    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2057    return;
2058  }
2059
2060  if (!isa<FunctionDecl>(D)) {
2061    S.Diag(Attr.getLoc(), diag::err_attribute_overloadable_not_function);
2062    return;
2063  }
2064
2065  D->addAttr(::new (S.Context) OverloadableAttr(Attr.getRange(), S.Context));
2066}
2067
2068static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2069  if (!Attr.getParameterName()) {
2070    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
2071      << "blocks" << 1;
2072    return;
2073  }
2074
2075  if (Attr.getNumArgs() != 0) {
2076    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2077    return;
2078  }
2079
2080  BlocksAttr::BlockType type;
2081  if (Attr.getParameterName()->isStr("byref"))
2082    type = BlocksAttr::ByRef;
2083  else {
2084    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
2085      << "blocks" << Attr.getParameterName();
2086    return;
2087  }
2088
2089  D->addAttr(::new (S.Context) BlocksAttr(Attr.getRange(), S.Context, type));
2090}
2091
2092static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2093  // check the attribute arguments.
2094  if (Attr.getNumArgs() > 2) {
2095    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2;
2096    return;
2097  }
2098
2099  unsigned sentinel = 0;
2100  if (Attr.getNumArgs() > 0) {
2101    Expr *E = Attr.getArg(0);
2102    llvm::APSInt Idx(32);
2103    if (E->isTypeDependent() || E->isValueDependent() ||
2104        !E->isIntegerConstantExpr(Idx, S.Context)) {
2105      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
2106       << "sentinel" << 1 << E->getSourceRange();
2107      return;
2108    }
2109
2110    if (Idx.isSigned() && Idx.isNegative()) {
2111      S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero)
2112        << E->getSourceRange();
2113      return;
2114    }
2115
2116    sentinel = Idx.getZExtValue();
2117  }
2118
2119  unsigned nullPos = 0;
2120  if (Attr.getNumArgs() > 1) {
2121    Expr *E = Attr.getArg(1);
2122    llvm::APSInt Idx(32);
2123    if (E->isTypeDependent() || E->isValueDependent() ||
2124        !E->isIntegerConstantExpr(Idx, S.Context)) {
2125      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
2126        << "sentinel" << 2 << E->getSourceRange();
2127      return;
2128    }
2129    nullPos = Idx.getZExtValue();
2130
2131    if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) {
2132      // FIXME: This error message could be improved, it would be nice
2133      // to say what the bounds actually are.
2134      S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
2135        << E->getSourceRange();
2136      return;
2137    }
2138  }
2139
2140  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2141    const FunctionType *FT = FD->getType()->castAs<FunctionType>();
2142    if (isa<FunctionNoProtoType>(FT)) {
2143      S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments);
2144      return;
2145    }
2146
2147    if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2148      S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2149      return;
2150    }
2151  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
2152    if (!MD->isVariadic()) {
2153      S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2154      return;
2155    }
2156  } else if (BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
2157    if (!BD->isVariadic()) {
2158      S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
2159      return;
2160    }
2161  } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
2162    QualType Ty = V->getType();
2163    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
2164      const FunctionType *FT = Ty->isFunctionPointerType() ? getFunctionType(D)
2165       : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
2166      if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2167        int m = Ty->isFunctionPointerType() ? 0 : 1;
2168        S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
2169        return;
2170      }
2171    } else {
2172      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2173        << Attr.getName() << ExpectedFunctionMethodOrBlock;
2174      return;
2175    }
2176  } else {
2177    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2178      << Attr.getName() << ExpectedFunctionMethodOrBlock;
2179    return;
2180  }
2181  D->addAttr(::new (S.Context) SentinelAttr(Attr.getRange(), S.Context, sentinel,
2182                                            nullPos));
2183}
2184
2185static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &Attr) {
2186  // check the attribute arguments.
2187  if (!checkAttributeNumArgs(S, Attr, 0))
2188    return;
2189
2190  if (!isFunction(D) && !isa<ObjCMethodDecl>(D)) {
2191    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2192      << Attr.getName() << ExpectedFunctionOrMethod;
2193    return;
2194  }
2195
2196  if (isFunction(D) && getFunctionType(D)->getResultType()->isVoidType()) {
2197    S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
2198      << Attr.getName() << 0;
2199    return;
2200  }
2201  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
2202    if (MD->getResultType()->isVoidType()) {
2203      S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
2204      << Attr.getName() << 1;
2205      return;
2206    }
2207
2208  D->addAttr(::new (S.Context) WarnUnusedResultAttr(Attr.getRange(), S.Context));
2209}
2210
2211static void handleWeakAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2212  // check the attribute arguments.
2213  if (Attr.hasParameterOrArguments()) {
2214    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
2215    return;
2216  }
2217
2218  if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) {
2219    if (isa<CXXRecordDecl>(D)) {
2220      D->addAttr(::new (S.Context) WeakAttr(Attr.getRange(), S.Context));
2221      return;
2222    }
2223    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2224      << Attr.getName() << ExpectedVariableOrFunction;
2225    return;
2226  }
2227
2228  NamedDecl *nd = cast<NamedDecl>(D);
2229
2230  // 'weak' only applies to declarations with external linkage.
2231  if (hasEffectivelyInternalLinkage(nd)) {
2232    S.Diag(Attr.getLoc(), diag::err_attribute_weak_static);
2233    return;
2234  }
2235
2236  nd->addAttr(::new (S.Context) WeakAttr(Attr.getRange(), S.Context));
2237}
2238
2239static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2240  // check the attribute arguments.
2241  if (!checkAttributeNumArgs(S, Attr, 0))
2242    return;
2243
2244
2245  // weak_import only applies to variable & function declarations.
2246  bool isDef = false;
2247  if (!D->canBeWeakImported(isDef)) {
2248    if (isDef)
2249      S.Diag(Attr.getLoc(),
2250             diag::warn_attribute_weak_import_invalid_on_definition)
2251        << "weak_import" << 2 /*variable and function*/;
2252    else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
2253             (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
2254              (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
2255      // Nothing to warn about here.
2256    } else
2257      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2258        << Attr.getName() << ExpectedVariableOrFunction;
2259
2260    return;
2261  }
2262
2263  D->addAttr(::new (S.Context) WeakImportAttr(Attr.getRange(), S.Context));
2264}
2265
2266static void handleReqdWorkGroupSize(Sema &S, Decl *D,
2267                                    const AttributeList &Attr) {
2268  // Attribute has 3 arguments.
2269  if (!checkAttributeNumArgs(S, Attr, 3))
2270    return;
2271
2272  unsigned WGSize[3];
2273  for (unsigned i = 0; i < 3; ++i) {
2274    Expr *E = Attr.getArg(i);
2275    llvm::APSInt ArgNum(32);
2276    if (E->isTypeDependent() || E->isValueDependent() ||
2277        !E->isIntegerConstantExpr(ArgNum, S.Context)) {
2278      S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
2279        << "reqd_work_group_size" << E->getSourceRange();
2280      return;
2281    }
2282    WGSize[i] = (unsigned) ArgNum.getZExtValue();
2283  }
2284  D->addAttr(::new (S.Context) ReqdWorkGroupSizeAttr(Attr.getRange(), S.Context,
2285                                                     WGSize[0], WGSize[1],
2286                                                     WGSize[2]));
2287}
2288
2289bool Sema::mergeSectionAttr(Decl *D, SourceRange Range, bool Inherited,
2290                            StringRef Name) {
2291  if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
2292    if (ExistingAttr->getName() == Name)
2293      return false;
2294    Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section);
2295    Diag(Range.getBegin(), diag::note_previous_attribute);
2296    return false;
2297  }
2298  SectionAttr *Attr = ::new (Context) SectionAttr(Range, Context, Name);
2299  if (Inherited)
2300    Attr->setInherited(true);
2301  D->addAttr(Attr);
2302  return true;
2303}
2304
2305static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2306  // Attribute has no arguments.
2307  if (!checkAttributeNumArgs(S, Attr, 1))
2308    return;
2309
2310  // Make sure that there is a string literal as the sections's single
2311  // argument.
2312  Expr *ArgExpr = Attr.getArg(0);
2313  StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr);
2314  if (!SE) {
2315    S.Diag(ArgExpr->getLocStart(), diag::err_attribute_not_string) << "section";
2316    return;
2317  }
2318
2319  // If the target wants to validate the section specifier, make it happen.
2320  std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(SE->getString());
2321  if (!Error.empty()) {
2322    S.Diag(SE->getLocStart(), diag::err_attribute_section_invalid_for_target)
2323    << Error;
2324    return;
2325  }
2326
2327  // This attribute cannot be applied to local variables.
2328  if (isa<VarDecl>(D) && cast<VarDecl>(D)->hasLocalStorage()) {
2329    S.Diag(SE->getLocStart(), diag::err_attribute_section_local_variable);
2330    return;
2331  }
2332  S.mergeSectionAttr(D, Attr.getRange(), false, SE->getString());
2333}
2334
2335
2336static void handleNothrowAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2337  // check the attribute arguments.
2338  if (Attr.hasParameterOrArguments()) {
2339    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
2340    return;
2341  }
2342
2343  if (NoThrowAttr *Existing = D->getAttr<NoThrowAttr>()) {
2344    if (Existing->getLocation().isInvalid())
2345      Existing->setRange(Attr.getRange());
2346  } else {
2347    D->addAttr(::new (S.Context) NoThrowAttr(Attr.getRange(), S.Context));
2348  }
2349}
2350
2351static void handleConstAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2352  // check the attribute arguments.
2353  if (Attr.hasParameterOrArguments()) {
2354    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
2355    return;
2356  }
2357
2358  if (ConstAttr *Existing = D->getAttr<ConstAttr>()) {
2359   if (Existing->getLocation().isInvalid())
2360     Existing->setRange(Attr.getRange());
2361  } else {
2362    D->addAttr(::new (S.Context) ConstAttr(Attr.getRange(), S.Context));
2363  }
2364}
2365
2366static void handlePureAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2367  // check the attribute arguments.
2368  if (!checkAttributeNumArgs(S, Attr, 0))
2369    return;
2370
2371  D->addAttr(::new (S.Context) PureAttr(Attr.getRange(), S.Context));
2372}
2373
2374static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2375  if (!Attr.getParameterName()) {
2376    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2377    return;
2378  }
2379
2380  if (Attr.getNumArgs() != 0) {
2381    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2382    return;
2383  }
2384
2385  VarDecl *VD = dyn_cast<VarDecl>(D);
2386
2387  if (!VD || !VD->hasLocalStorage()) {
2388    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "cleanup";
2389    return;
2390  }
2391
2392  // Look up the function
2393  // FIXME: Lookup probably isn't looking in the right place
2394  NamedDecl *CleanupDecl
2395    = S.LookupSingleName(S.TUScope, Attr.getParameterName(),
2396                         Attr.getParameterLoc(), Sema::LookupOrdinaryName);
2397  if (!CleanupDecl) {
2398    S.Diag(Attr.getParameterLoc(), diag::err_attribute_cleanup_arg_not_found) <<
2399      Attr.getParameterName();
2400    return;
2401  }
2402
2403  FunctionDecl *FD = dyn_cast<FunctionDecl>(CleanupDecl);
2404  if (!FD) {
2405    S.Diag(Attr.getParameterLoc(),
2406           diag::err_attribute_cleanup_arg_not_function)
2407      << Attr.getParameterName();
2408    return;
2409  }
2410
2411  if (FD->getNumParams() != 1) {
2412    S.Diag(Attr.getParameterLoc(),
2413           diag::err_attribute_cleanup_func_must_take_one_arg)
2414      << Attr.getParameterName();
2415    return;
2416  }
2417
2418  // We're currently more strict than GCC about what function types we accept.
2419  // If this ever proves to be a problem it should be easy to fix.
2420  QualType Ty = S.Context.getPointerType(VD->getType());
2421  QualType ParamTy = FD->getParamDecl(0)->getType();
2422  if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
2423                                   ParamTy, Ty) != Sema::Compatible) {
2424    S.Diag(Attr.getParameterLoc(),
2425           diag::err_attribute_cleanup_func_arg_incompatible_type) <<
2426      Attr.getParameterName() << ParamTy << Ty;
2427    return;
2428  }
2429
2430  D->addAttr(::new (S.Context) CleanupAttr(Attr.getRange(), S.Context, FD));
2431  S.MarkFunctionReferenced(Attr.getParameterLoc(), FD);
2432}
2433
2434/// Handle __attribute__((format_arg((idx)))) attribute based on
2435/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
2436static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2437  if (!checkAttributeNumArgs(S, Attr, 1))
2438    return;
2439
2440  if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
2441    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2442      << Attr.getName() << ExpectedFunction;
2443    return;
2444  }
2445
2446  // In C++ the implicit 'this' function parameter also counts, and they are
2447  // counted from one.
2448  bool HasImplicitThisParam = isInstanceMethod(D);
2449  unsigned NumArgs  = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
2450  unsigned FirstIdx = 1;
2451
2452  // checks for the 2nd argument
2453  Expr *IdxExpr = Attr.getArg(0);
2454  llvm::APSInt Idx(32);
2455  if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
2456      !IdxExpr->isIntegerConstantExpr(Idx, S.Context)) {
2457    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
2458    << "format" << 2 << IdxExpr->getSourceRange();
2459    return;
2460  }
2461
2462  if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
2463    S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
2464    << "format" << 2 << IdxExpr->getSourceRange();
2465    return;
2466  }
2467
2468  unsigned ArgIdx = Idx.getZExtValue() - 1;
2469
2470  if (HasImplicitThisParam) {
2471    if (ArgIdx == 0) {
2472      S.Diag(Attr.getLoc(), diag::err_attribute_invalid_implicit_this_argument)
2473        << "format_arg" << IdxExpr->getSourceRange();
2474      return;
2475    }
2476    ArgIdx--;
2477  }
2478
2479  // make sure the format string is really a string
2480  QualType Ty = getFunctionOrMethodArgType(D, ArgIdx);
2481
2482  bool not_nsstring_type = !isNSStringType(Ty, S.Context);
2483  if (not_nsstring_type &&
2484      !isCFStringType(Ty, S.Context) &&
2485      (!Ty->isPointerType() ||
2486       !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
2487    // FIXME: Should highlight the actual expression that has the wrong type.
2488    S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2489    << (not_nsstring_type ? "a string type" : "an NSString")
2490       << IdxExpr->getSourceRange();
2491    return;
2492  }
2493  Ty = getFunctionOrMethodResultType(D);
2494  if (!isNSStringType(Ty, S.Context) &&
2495      !isCFStringType(Ty, S.Context) &&
2496      (!Ty->isPointerType() ||
2497       !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
2498    // FIXME: Should highlight the actual expression that has the wrong type.
2499    S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not)
2500    << (not_nsstring_type ? "string type" : "NSString")
2501       << IdxExpr->getSourceRange();
2502    return;
2503  }
2504
2505  D->addAttr(::new (S.Context) FormatArgAttr(Attr.getRange(), S.Context,
2506                                             Idx.getZExtValue()));
2507}
2508
2509enum FormatAttrKind {
2510  CFStringFormat,
2511  NSStringFormat,
2512  StrftimeFormat,
2513  SupportedFormat,
2514  IgnoredFormat,
2515  InvalidFormat
2516};
2517
2518/// getFormatAttrKind - Map from format attribute names to supported format
2519/// types.
2520static FormatAttrKind getFormatAttrKind(StringRef Format) {
2521  // Check for formats that get handled specially.
2522  if (Format == "NSString")
2523    return NSStringFormat;
2524  if (Format == "CFString")
2525    return CFStringFormat;
2526  if (Format == "strftime")
2527    return StrftimeFormat;
2528
2529  // Otherwise, check for supported formats.
2530  if (Format == "scanf" || Format == "printf" || Format == "printf0" ||
2531      Format == "strfmon" || Format == "cmn_err" || Format == "vcmn_err" ||
2532      Format == "zcmn_err" ||
2533      Format == "kprintf")  // OpenBSD.
2534    return SupportedFormat;
2535
2536  if (Format == "gcc_diag" || Format == "gcc_cdiag" ||
2537      Format == "gcc_cxxdiag" || Format == "gcc_tdiag")
2538    return IgnoredFormat;
2539
2540  return InvalidFormat;
2541}
2542
2543/// Handle __attribute__((init_priority(priority))) attributes based on
2544/// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
2545static void handleInitPriorityAttr(Sema &S, Decl *D,
2546                                   const AttributeList &Attr) {
2547  if (!S.getLangOpts().CPlusPlus) {
2548    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
2549    return;
2550  }
2551
2552  if (!isa<VarDecl>(D) || S.getCurFunctionOrMethodDecl()) {
2553    S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
2554    Attr.setInvalid();
2555    return;
2556  }
2557  QualType T = dyn_cast<VarDecl>(D)->getType();
2558  if (S.Context.getAsArrayType(T))
2559    T = S.Context.getBaseElementType(T);
2560  if (!T->getAs<RecordType>()) {
2561    S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
2562    Attr.setInvalid();
2563    return;
2564  }
2565
2566  if (Attr.getNumArgs() != 1) {
2567    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2568    Attr.setInvalid();
2569    return;
2570  }
2571  Expr *priorityExpr = Attr.getArg(0);
2572
2573  llvm::APSInt priority(32);
2574  if (priorityExpr->isTypeDependent() || priorityExpr->isValueDependent() ||
2575      !priorityExpr->isIntegerConstantExpr(priority, S.Context)) {
2576    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
2577    << "init_priority" << priorityExpr->getSourceRange();
2578    Attr.setInvalid();
2579    return;
2580  }
2581  unsigned prioritynum = priority.getZExtValue();
2582  if (prioritynum < 101 || prioritynum > 65535) {
2583    S.Diag(Attr.getLoc(), diag::err_attribute_argument_outof_range)
2584    <<  priorityExpr->getSourceRange();
2585    Attr.setInvalid();
2586    return;
2587  }
2588  D->addAttr(::new (S.Context) InitPriorityAttr(Attr.getRange(), S.Context,
2589                                                prioritynum));
2590}
2591
2592bool Sema::mergeFormatAttr(Decl *D, SourceRange Range, bool Inherited,
2593                           StringRef Format, int FormatIdx, int FirstArg) {
2594  // Check whether we already have an equivalent format attribute.
2595  for (specific_attr_iterator<FormatAttr>
2596         i = D->specific_attr_begin<FormatAttr>(),
2597         e = D->specific_attr_end<FormatAttr>();
2598       i != e ; ++i) {
2599    FormatAttr *f = *i;
2600    if (f->getType() == Format &&
2601        f->getFormatIdx() == FormatIdx &&
2602        f->getFirstArg() == FirstArg) {
2603      // If we don't have a valid location for this attribute, adopt the
2604      // location.
2605      if (f->getLocation().isInvalid())
2606        f->setRange(Range);
2607      return false;
2608    }
2609  }
2610
2611  FormatAttr *Attr = ::new (Context) FormatAttr(Range, Context, Format,
2612                                               FormatIdx, FirstArg);
2613  D->addAttr(Attr);
2614  return true;
2615}
2616
2617/// Handle __attribute__((format(type,idx,firstarg))) attributes based on
2618/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
2619static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2620
2621  if (!Attr.getParameterName()) {
2622    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
2623      << "format" << 1;
2624    return;
2625  }
2626
2627  if (Attr.getNumArgs() != 2) {
2628    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 3;
2629    return;
2630  }
2631
2632  if (!isFunctionOrMethodOrBlock(D) || !hasFunctionProto(D)) {
2633    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2634      << Attr.getName() << ExpectedFunction;
2635    return;
2636  }
2637
2638  // In C++ the implicit 'this' function parameter also counts, and they are
2639  // counted from one.
2640  bool HasImplicitThisParam = isInstanceMethod(D);
2641  unsigned NumArgs  = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
2642  unsigned FirstIdx = 1;
2643
2644  StringRef Format = Attr.getParameterName()->getName();
2645
2646  // Normalize the argument, __foo__ becomes foo.
2647  if (Format.startswith("__") && Format.endswith("__"))
2648    Format = Format.substr(2, Format.size() - 4);
2649
2650  // Check for supported formats.
2651  FormatAttrKind Kind = getFormatAttrKind(Format);
2652
2653  if (Kind == IgnoredFormat)
2654    return;
2655
2656  if (Kind == InvalidFormat) {
2657    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
2658      << "format" << Attr.getParameterName()->getName();
2659    return;
2660  }
2661
2662  // checks for the 2nd argument
2663  Expr *IdxExpr = Attr.getArg(0);
2664  llvm::APSInt Idx(32);
2665  if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
2666      !IdxExpr->isIntegerConstantExpr(Idx, S.Context)) {
2667    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
2668      << "format" << 2 << IdxExpr->getSourceRange();
2669    return;
2670  }
2671
2672  if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
2673    S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
2674      << "format" << 2 << IdxExpr->getSourceRange();
2675    return;
2676  }
2677
2678  // FIXME: Do we need to bounds check?
2679  unsigned ArgIdx = Idx.getZExtValue() - 1;
2680
2681  if (HasImplicitThisParam) {
2682    if (ArgIdx == 0) {
2683      S.Diag(Attr.getLoc(),
2684             diag::err_format_attribute_implicit_this_format_string)
2685        << IdxExpr->getSourceRange();
2686      return;
2687    }
2688    ArgIdx--;
2689  }
2690
2691  // make sure the format string is really a string
2692  QualType Ty = getFunctionOrMethodArgType(D, ArgIdx);
2693
2694  if (Kind == CFStringFormat) {
2695    if (!isCFStringType(Ty, S.Context)) {
2696      S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2697        << "a CFString" << IdxExpr->getSourceRange();
2698      return;
2699    }
2700  } else if (Kind == NSStringFormat) {
2701    // FIXME: do we need to check if the type is NSString*?  What are the
2702    // semantics?
2703    if (!isNSStringType(Ty, S.Context)) {
2704      // FIXME: Should highlight the actual expression that has the wrong type.
2705      S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2706        << "an NSString" << IdxExpr->getSourceRange();
2707      return;
2708    }
2709  } else if (!Ty->isPointerType() ||
2710             !Ty->getAs<PointerType>()->getPointeeType()->isCharType()) {
2711    // FIXME: Should highlight the actual expression that has the wrong type.
2712    S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2713      << "a string type" << IdxExpr->getSourceRange();
2714    return;
2715  }
2716
2717  // check the 3rd argument
2718  Expr *FirstArgExpr = Attr.getArg(1);
2719  llvm::APSInt FirstArg(32);
2720  if (FirstArgExpr->isTypeDependent() || FirstArgExpr->isValueDependent() ||
2721      !FirstArgExpr->isIntegerConstantExpr(FirstArg, S.Context)) {
2722    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
2723      << "format" << 3 << FirstArgExpr->getSourceRange();
2724    return;
2725  }
2726
2727  // check if the function is variadic if the 3rd argument non-zero
2728  if (FirstArg != 0) {
2729    if (isFunctionOrMethodVariadic(D)) {
2730      ++NumArgs; // +1 for ...
2731    } else {
2732      S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
2733      return;
2734    }
2735  }
2736
2737  // strftime requires FirstArg to be 0 because it doesn't read from any
2738  // variable the input is just the current time + the format string.
2739  if (Kind == StrftimeFormat) {
2740    if (FirstArg != 0) {
2741      S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter)
2742        << FirstArgExpr->getSourceRange();
2743      return;
2744    }
2745  // if 0 it disables parameter checking (to use with e.g. va_list)
2746  } else if (FirstArg != 0 && FirstArg != NumArgs) {
2747    S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
2748      << "format" << 3 << FirstArgExpr->getSourceRange();
2749    return;
2750  }
2751
2752  S.mergeFormatAttr(D, Attr.getRange(), false, Format, Idx.getZExtValue(),
2753                    FirstArg.getZExtValue());
2754}
2755
2756static void handleTransparentUnionAttr(Sema &S, Decl *D,
2757                                       const AttributeList &Attr) {
2758  // check the attribute arguments.
2759  if (!checkAttributeNumArgs(S, Attr, 0))
2760    return;
2761
2762
2763  // Try to find the underlying union declaration.
2764  RecordDecl *RD = 0;
2765  TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
2766  if (TD && TD->getUnderlyingType()->isUnionType())
2767    RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
2768  else
2769    RD = dyn_cast<RecordDecl>(D);
2770
2771  if (!RD || !RD->isUnion()) {
2772    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2773      << Attr.getName() << ExpectedUnion;
2774    return;
2775  }
2776
2777  if (!RD->isCompleteDefinition()) {
2778    S.Diag(Attr.getLoc(),
2779        diag::warn_transparent_union_attribute_not_definition);
2780    return;
2781  }
2782
2783  RecordDecl::field_iterator Field = RD->field_begin(),
2784                          FieldEnd = RD->field_end();
2785  if (Field == FieldEnd) {
2786    S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
2787    return;
2788  }
2789
2790  FieldDecl *FirstField = &*Field;
2791  QualType FirstType = FirstField->getType();
2792  if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
2793    S.Diag(FirstField->getLocation(),
2794           diag::warn_transparent_union_attribute_floating)
2795      << FirstType->isVectorType() << FirstType;
2796    return;
2797  }
2798
2799  uint64_t FirstSize = S.Context.getTypeSize(FirstType);
2800  uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
2801  for (; Field != FieldEnd; ++Field) {
2802    QualType FieldType = Field->getType();
2803    if (S.Context.getTypeSize(FieldType) != FirstSize ||
2804        S.Context.getTypeAlign(FieldType) != FirstAlign) {
2805      // Warn if we drop the attribute.
2806      bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
2807      unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
2808                                 : S.Context.getTypeAlign(FieldType);
2809      S.Diag(Field->getLocation(),
2810          diag::warn_transparent_union_attribute_field_size_align)
2811        << isSize << Field->getDeclName() << FieldBits;
2812      unsigned FirstBits = isSize? FirstSize : FirstAlign;
2813      S.Diag(FirstField->getLocation(),
2814             diag::note_transparent_union_first_field_size_align)
2815        << isSize << FirstBits;
2816      return;
2817    }
2818  }
2819
2820  RD->addAttr(::new (S.Context) TransparentUnionAttr(Attr.getRange(), S.Context));
2821}
2822
2823static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2824  // check the attribute arguments.
2825  if (!checkAttributeNumArgs(S, Attr, 1))
2826    return;
2827
2828  Expr *ArgExpr = Attr.getArg(0);
2829  StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr);
2830
2831  // Make sure that there is a string literal as the annotation's single
2832  // argument.
2833  if (!SE) {
2834    S.Diag(ArgExpr->getLocStart(), diag::err_attribute_not_string) <<"annotate";
2835    return;
2836  }
2837
2838  // Don't duplicate annotations that are already set.
2839  for (specific_attr_iterator<AnnotateAttr>
2840       i = D->specific_attr_begin<AnnotateAttr>(),
2841       e = D->specific_attr_end<AnnotateAttr>(); i != e; ++i) {
2842      if ((*i)->getAnnotation() == SE->getString())
2843          return;
2844  }
2845  D->addAttr(::new (S.Context) AnnotateAttr(Attr.getRange(), S.Context,
2846                                            SE->getString()));
2847}
2848
2849static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2850  // check the attribute arguments.
2851  if (Attr.getNumArgs() > 1) {
2852    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2853    return;
2854  }
2855
2856  //FIXME: The C++0x version of this attribute has more limited applicabilty
2857  //       than GNU's, and should error out when it is used to specify a
2858  //       weaker alignment, rather than being silently ignored.
2859
2860  if (Attr.getNumArgs() == 0) {
2861    D->addAttr(::new (S.Context) AlignedAttr(Attr.getRange(), S.Context, true, 0));
2862    return;
2863  }
2864
2865  S.AddAlignedAttr(Attr.getRange(), D, Attr.getArg(0));
2866}
2867
2868void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E) {
2869  // FIXME: Handle pack-expansions here.
2870  if (DiagnoseUnexpandedParameterPack(E))
2871    return;
2872
2873  if (E->isTypeDependent() || E->isValueDependent()) {
2874    // Save dependent expressions in the AST to be instantiated.
2875    D->addAttr(::new (Context) AlignedAttr(AttrRange, Context, true, E));
2876    return;
2877  }
2878
2879  SourceLocation AttrLoc = AttrRange.getBegin();
2880  // FIXME: Cache the number on the Attr object?
2881  llvm::APSInt Alignment(32);
2882  ExprResult ICE
2883    = VerifyIntegerConstantExpression(E, &Alignment,
2884        diag::err_aligned_attribute_argument_not_int,
2885        /*AllowFold*/ false);
2886  if (ICE.isInvalid())
2887    return;
2888  if (!llvm::isPowerOf2_64(Alignment.getZExtValue())) {
2889    Diag(AttrLoc, diag::err_attribute_aligned_not_power_of_two)
2890      << E->getSourceRange();
2891    return;
2892  }
2893
2894  D->addAttr(::new (Context) AlignedAttr(AttrRange, Context, true, ICE.take()));
2895}
2896
2897void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS) {
2898  // FIXME: Cache the number on the Attr object if non-dependent?
2899  // FIXME: Perform checking of type validity
2900  D->addAttr(::new (Context) AlignedAttr(AttrRange, Context, false, TS));
2901  return;
2902}
2903
2904/// handleModeAttr - This attribute modifies the width of a decl with primitive
2905/// type.
2906///
2907/// Despite what would be logical, the mode attribute is a decl attribute, not a
2908/// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
2909/// HImode, not an intermediate pointer.
2910static void handleModeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2911  // This attribute isn't documented, but glibc uses it.  It changes
2912  // the width of an int or unsigned int to the specified size.
2913
2914  // Check that there aren't any arguments
2915  if (!checkAttributeNumArgs(S, Attr, 0))
2916    return;
2917
2918
2919  IdentifierInfo *Name = Attr.getParameterName();
2920  if (!Name) {
2921    S.Diag(Attr.getLoc(), diag::err_attribute_missing_parameter_name);
2922    return;
2923  }
2924
2925  StringRef Str = Attr.getParameterName()->getName();
2926
2927  // Normalize the attribute name, __foo__ becomes foo.
2928  if (Str.startswith("__") && Str.endswith("__"))
2929    Str = Str.substr(2, Str.size() - 4);
2930
2931  unsigned DestWidth = 0;
2932  bool IntegerMode = true;
2933  bool ComplexMode = false;
2934  switch (Str.size()) {
2935  case 2:
2936    switch (Str[0]) {
2937    case 'Q': DestWidth = 8; break;
2938    case 'H': DestWidth = 16; break;
2939    case 'S': DestWidth = 32; break;
2940    case 'D': DestWidth = 64; break;
2941    case 'X': DestWidth = 96; break;
2942    case 'T': DestWidth = 128; break;
2943    }
2944    if (Str[1] == 'F') {
2945      IntegerMode = false;
2946    } else if (Str[1] == 'C') {
2947      IntegerMode = false;
2948      ComplexMode = true;
2949    } else if (Str[1] != 'I') {
2950      DestWidth = 0;
2951    }
2952    break;
2953  case 4:
2954    // FIXME: glibc uses 'word' to define register_t; this is narrower than a
2955    // pointer on PIC16 and other embedded platforms.
2956    if (Str == "word")
2957      DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
2958    else if (Str == "byte")
2959      DestWidth = S.Context.getTargetInfo().getCharWidth();
2960    break;
2961  case 7:
2962    if (Str == "pointer")
2963      DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
2964    break;
2965  }
2966
2967  QualType OldTy;
2968  if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
2969    OldTy = TD->getUnderlyingType();
2970  else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
2971    OldTy = VD->getType();
2972  else {
2973    S.Diag(D->getLocation(), diag::err_attr_wrong_decl)
2974      << "mode" << Attr.getRange();
2975    return;
2976  }
2977
2978  if (!OldTy->getAs<BuiltinType>() && !OldTy->isComplexType())
2979    S.Diag(Attr.getLoc(), diag::err_mode_not_primitive);
2980  else if (IntegerMode) {
2981    if (!OldTy->isIntegralOrEnumerationType())
2982      S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
2983  } else if (ComplexMode) {
2984    if (!OldTy->isComplexType())
2985      S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
2986  } else {
2987    if (!OldTy->isFloatingType())
2988      S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
2989  }
2990
2991  // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
2992  // and friends, at least with glibc.
2993  // FIXME: Make sure 32/64-bit integers don't get defined to types of the wrong
2994  // width on unusual platforms.
2995  // FIXME: Make sure floating-point mappings are accurate
2996  // FIXME: Support XF and TF types
2997  QualType NewTy;
2998  switch (DestWidth) {
2999  case 0:
3000    S.Diag(Attr.getLoc(), diag::err_unknown_machine_mode) << Name;
3001    return;
3002  default:
3003    S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
3004    return;
3005  case 8:
3006    if (!IntegerMode) {
3007      S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
3008      return;
3009    }
3010    if (OldTy->isSignedIntegerType())
3011      NewTy = S.Context.SignedCharTy;
3012    else
3013      NewTy = S.Context.UnsignedCharTy;
3014    break;
3015  case 16:
3016    if (!IntegerMode) {
3017      S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
3018      return;
3019    }
3020    if (OldTy->isSignedIntegerType())
3021      NewTy = S.Context.ShortTy;
3022    else
3023      NewTy = S.Context.UnsignedShortTy;
3024    break;
3025  case 32:
3026    if (!IntegerMode)
3027      NewTy = S.Context.FloatTy;
3028    else if (OldTy->isSignedIntegerType())
3029      NewTy = S.Context.IntTy;
3030    else
3031      NewTy = S.Context.UnsignedIntTy;
3032    break;
3033  case 64:
3034    if (!IntegerMode)
3035      NewTy = S.Context.DoubleTy;
3036    else if (OldTy->isSignedIntegerType())
3037      if (S.Context.getTargetInfo().getLongWidth() == 64)
3038        NewTy = S.Context.LongTy;
3039      else
3040        NewTy = S.Context.LongLongTy;
3041    else
3042      if (S.Context.getTargetInfo().getLongWidth() == 64)
3043        NewTy = S.Context.UnsignedLongTy;
3044      else
3045        NewTy = S.Context.UnsignedLongLongTy;
3046    break;
3047  case 96:
3048    NewTy = S.Context.LongDoubleTy;
3049    break;
3050  case 128:
3051    if (!IntegerMode) {
3052      S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
3053      return;
3054    }
3055    if (OldTy->isSignedIntegerType())
3056      NewTy = S.Context.Int128Ty;
3057    else
3058      NewTy = S.Context.UnsignedInt128Ty;
3059    break;
3060  }
3061
3062  if (ComplexMode) {
3063    NewTy = S.Context.getComplexType(NewTy);
3064  }
3065
3066  // Install the new type.
3067  if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
3068    // FIXME: preserve existing source info.
3069    TD->setTypeSourceInfo(S.Context.getTrivialTypeSourceInfo(NewTy));
3070  } else
3071    cast<ValueDecl>(D)->setType(NewTy);
3072}
3073
3074static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3075  // check the attribute arguments.
3076  if (!checkAttributeNumArgs(S, Attr, 0))
3077    return;
3078
3079  if (!isFunctionOrMethod(D)) {
3080    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3081      << Attr.getName() << ExpectedFunction;
3082    return;
3083  }
3084
3085  D->addAttr(::new (S.Context) NoDebugAttr(Attr.getRange(), S.Context));
3086}
3087
3088static void handleNoInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3089  // check the attribute arguments.
3090  if (!checkAttributeNumArgs(S, Attr, 0))
3091    return;
3092
3093
3094  if (!isa<FunctionDecl>(D)) {
3095    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3096      << Attr.getName() << ExpectedFunction;
3097    return;
3098  }
3099
3100  D->addAttr(::new (S.Context) NoInlineAttr(Attr.getRange(), S.Context));
3101}
3102
3103static void handleNoInstrumentFunctionAttr(Sema &S, Decl *D,
3104                                           const AttributeList &Attr) {
3105  // check the attribute arguments.
3106  if (!checkAttributeNumArgs(S, Attr, 0))
3107    return;
3108
3109
3110  if (!isa<FunctionDecl>(D)) {
3111    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3112      << Attr.getName() << ExpectedFunction;
3113    return;
3114  }
3115
3116  D->addAttr(::new (S.Context) NoInstrumentFunctionAttr(Attr.getRange(),
3117                                                        S.Context));
3118}
3119
3120static void handleConstantAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3121  if (S.LangOpts.CUDA) {
3122    // check the attribute arguments.
3123    if (Attr.hasParameterOrArguments()) {
3124      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
3125      return;
3126    }
3127
3128    if (!isa<VarDecl>(D)) {
3129      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3130        << Attr.getName() << ExpectedVariable;
3131      return;
3132    }
3133
3134    D->addAttr(::new (S.Context) CUDAConstantAttr(Attr.getRange(), S.Context));
3135  } else {
3136    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "constant";
3137  }
3138}
3139
3140static void handleDeviceAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3141  if (S.LangOpts.CUDA) {
3142    // check the attribute arguments.
3143    if (Attr.getNumArgs() != 0) {
3144      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
3145      return;
3146    }
3147
3148    if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D)) {
3149      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3150        << Attr.getName() << ExpectedVariableOrFunction;
3151      return;
3152    }
3153
3154    D->addAttr(::new (S.Context) CUDADeviceAttr(Attr.getRange(), S.Context));
3155  } else {
3156    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "device";
3157  }
3158}
3159
3160static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3161  if (S.LangOpts.CUDA) {
3162    // check the attribute arguments.
3163    if (!checkAttributeNumArgs(S, Attr, 0))
3164      return;
3165
3166    if (!isa<FunctionDecl>(D)) {
3167      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3168        << Attr.getName() << ExpectedFunction;
3169      return;
3170    }
3171
3172    FunctionDecl *FD = cast<FunctionDecl>(D);
3173    if (!FD->getResultType()->isVoidType()) {
3174      TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens();
3175      if (FunctionTypeLoc* FTL = dyn_cast<FunctionTypeLoc>(&TL)) {
3176        S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
3177          << FD->getType()
3178          << FixItHint::CreateReplacement(FTL->getResultLoc().getSourceRange(),
3179                                          "void");
3180      } else {
3181        S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
3182          << FD->getType();
3183      }
3184      return;
3185    }
3186
3187    D->addAttr(::new (S.Context) CUDAGlobalAttr(Attr.getRange(), S.Context));
3188  } else {
3189    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "global";
3190  }
3191}
3192
3193static void handleHostAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3194  if (S.LangOpts.CUDA) {
3195    // check the attribute arguments.
3196    if (!checkAttributeNumArgs(S, Attr, 0))
3197      return;
3198
3199
3200    if (!isa<FunctionDecl>(D)) {
3201      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3202        << Attr.getName() << ExpectedFunction;
3203      return;
3204    }
3205
3206    D->addAttr(::new (S.Context) CUDAHostAttr(Attr.getRange(), S.Context));
3207  } else {
3208    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "host";
3209  }
3210}
3211
3212static void handleSharedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3213  if (S.LangOpts.CUDA) {
3214    // check the attribute arguments.
3215    if (!checkAttributeNumArgs(S, Attr, 0))
3216      return;
3217
3218
3219    if (!isa<VarDecl>(D)) {
3220      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3221        << Attr.getName() << ExpectedVariable;
3222      return;
3223    }
3224
3225    D->addAttr(::new (S.Context) CUDASharedAttr(Attr.getRange(), S.Context));
3226  } else {
3227    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "shared";
3228  }
3229}
3230
3231static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3232  // check the attribute arguments.
3233  if (!checkAttributeNumArgs(S, Attr, 0))
3234    return;
3235
3236  FunctionDecl *Fn = dyn_cast<FunctionDecl>(D);
3237  if (Fn == 0) {
3238    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3239      << Attr.getName() << ExpectedFunction;
3240    return;
3241  }
3242
3243  if (!Fn->isInlineSpecified()) {
3244    S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
3245    return;
3246  }
3247
3248  D->addAttr(::new (S.Context) GNUInlineAttr(Attr.getRange(), S.Context));
3249}
3250
3251static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3252  if (hasDeclarator(D)) return;
3253
3254  // Diagnostic is emitted elsewhere: here we store the (valid) Attr
3255  // in the Decl node for syntactic reasoning, e.g., pretty-printing.
3256  CallingConv CC;
3257  if (S.CheckCallingConvAttr(Attr, CC))
3258    return;
3259
3260  if (!isa<ObjCMethodDecl>(D)) {
3261    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3262      << Attr.getName() << ExpectedFunctionOrMethod;
3263    return;
3264  }
3265
3266  switch (Attr.getKind()) {
3267  case AttributeList::AT_fastcall:
3268    D->addAttr(::new (S.Context) FastCallAttr(Attr.getRange(), S.Context));
3269    return;
3270  case AttributeList::AT_stdcall:
3271    D->addAttr(::new (S.Context) StdCallAttr(Attr.getRange(), S.Context));
3272    return;
3273  case AttributeList::AT_thiscall:
3274    D->addAttr(::new (S.Context) ThisCallAttr(Attr.getRange(), S.Context));
3275    return;
3276  case AttributeList::AT_cdecl:
3277    D->addAttr(::new (S.Context) CDeclAttr(Attr.getRange(), S.Context));
3278    return;
3279  case AttributeList::AT_pascal:
3280    D->addAttr(::new (S.Context) PascalAttr(Attr.getRange(), S.Context));
3281    return;
3282  case AttributeList::AT_pcs: {
3283    Expr *Arg = Attr.getArg(0);
3284    StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
3285    if (!Str || !Str->isAscii()) {
3286      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
3287        << "pcs" << 1;
3288      Attr.setInvalid();
3289      return;
3290    }
3291
3292    StringRef StrRef = Str->getString();
3293    PcsAttr::PCSType PCS;
3294    if (StrRef == "aapcs")
3295      PCS = PcsAttr::AAPCS;
3296    else if (StrRef == "aapcs-vfp")
3297      PCS = PcsAttr::AAPCS_VFP;
3298    else {
3299      S.Diag(Attr.getLoc(), diag::err_invalid_pcs);
3300      Attr.setInvalid();
3301      return;
3302    }
3303
3304    D->addAttr(::new (S.Context) PcsAttr(Attr.getRange(), S.Context, PCS));
3305  }
3306  default:
3307    llvm_unreachable("unexpected attribute kind");
3308  }
3309}
3310
3311static void handleOpenCLKernelAttr(Sema &S, Decl *D, const AttributeList &Attr){
3312  assert(!Attr.isInvalid());
3313  D->addAttr(::new (S.Context) OpenCLKernelAttr(Attr.getRange(), S.Context));
3314}
3315
3316bool Sema::CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC) {
3317  if (attr.isInvalid())
3318    return true;
3319
3320  if ((attr.getNumArgs() != 0 &&
3321      !(attr.getKind() == AttributeList::AT_pcs && attr.getNumArgs() == 1)) ||
3322      attr.getParameterName()) {
3323    Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
3324    attr.setInvalid();
3325    return true;
3326  }
3327
3328  // TODO: diagnose uses of these conventions on the wrong target. Or, better
3329  // move to TargetAttributesSema one day.
3330  switch (attr.getKind()) {
3331  case AttributeList::AT_cdecl: CC = CC_C; break;
3332  case AttributeList::AT_fastcall: CC = CC_X86FastCall; break;
3333  case AttributeList::AT_stdcall: CC = CC_X86StdCall; break;
3334  case AttributeList::AT_thiscall: CC = CC_X86ThisCall; break;
3335  case AttributeList::AT_pascal: CC = CC_X86Pascal; break;
3336  case AttributeList::AT_pcs: {
3337    Expr *Arg = attr.getArg(0);
3338    StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
3339    if (!Str || !Str->isAscii()) {
3340      Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
3341        << "pcs" << 1;
3342      attr.setInvalid();
3343      return true;
3344    }
3345
3346    StringRef StrRef = Str->getString();
3347    if (StrRef == "aapcs") {
3348      CC = CC_AAPCS;
3349      break;
3350    } else if (StrRef == "aapcs-vfp") {
3351      CC = CC_AAPCS_VFP;
3352      break;
3353    }
3354    // FALLS THROUGH
3355  }
3356  default: llvm_unreachable("unexpected attribute kind");
3357  }
3358
3359  return false;
3360}
3361
3362static void handleRegparmAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3363  if (hasDeclarator(D)) return;
3364
3365  unsigned numParams;
3366  if (S.CheckRegparmAttr(Attr, numParams))
3367    return;
3368
3369  if (!isa<ObjCMethodDecl>(D)) {
3370    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3371      << Attr.getName() << ExpectedFunctionOrMethod;
3372    return;
3373  }
3374
3375  D->addAttr(::new (S.Context) RegparmAttr(Attr.getRange(), S.Context, numParams));
3376}
3377
3378/// Checks a regparm attribute, returning true if it is ill-formed and
3379/// otherwise setting numParams to the appropriate value.
3380bool Sema::CheckRegparmAttr(const AttributeList &Attr, unsigned &numParams) {
3381  if (Attr.isInvalid())
3382    return true;
3383
3384  if (Attr.getNumArgs() != 1) {
3385    Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3386    Attr.setInvalid();
3387    return true;
3388  }
3389
3390  Expr *NumParamsExpr = Attr.getArg(0);
3391  llvm::APSInt NumParams(32);
3392  if (NumParamsExpr->isTypeDependent() || NumParamsExpr->isValueDependent() ||
3393      !NumParamsExpr->isIntegerConstantExpr(NumParams, Context)) {
3394    Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3395      << "regparm" << NumParamsExpr->getSourceRange();
3396    Attr.setInvalid();
3397    return true;
3398  }
3399
3400  if (Context.getTargetInfo().getRegParmMax() == 0) {
3401    Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform)
3402      << NumParamsExpr->getSourceRange();
3403    Attr.setInvalid();
3404    return true;
3405  }
3406
3407  numParams = NumParams.getZExtValue();
3408  if (numParams > Context.getTargetInfo().getRegParmMax()) {
3409    Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number)
3410      << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
3411    Attr.setInvalid();
3412    return true;
3413  }
3414
3415  return false;
3416}
3417
3418static void handleLaunchBoundsAttr(Sema &S, Decl *D, const AttributeList &Attr){
3419  if (S.LangOpts.CUDA) {
3420    // check the attribute arguments.
3421    if (Attr.getNumArgs() != 1 && Attr.getNumArgs() != 2) {
3422      // FIXME: 0 is not okay.
3423      S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2;
3424      return;
3425    }
3426
3427    if (!isFunctionOrMethod(D)) {
3428      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3429        << Attr.getName() << ExpectedFunctionOrMethod;
3430      return;
3431    }
3432
3433    Expr *MaxThreadsExpr = Attr.getArg(0);
3434    llvm::APSInt MaxThreads(32);
3435    if (MaxThreadsExpr->isTypeDependent() ||
3436        MaxThreadsExpr->isValueDependent() ||
3437        !MaxThreadsExpr->isIntegerConstantExpr(MaxThreads, S.Context)) {
3438      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
3439        << "launch_bounds" << 1 << MaxThreadsExpr->getSourceRange();
3440      return;
3441    }
3442
3443    llvm::APSInt MinBlocks(32);
3444    if (Attr.getNumArgs() > 1) {
3445      Expr *MinBlocksExpr = Attr.getArg(1);
3446      if (MinBlocksExpr->isTypeDependent() ||
3447          MinBlocksExpr->isValueDependent() ||
3448          !MinBlocksExpr->isIntegerConstantExpr(MinBlocks, S.Context)) {
3449        S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
3450          << "launch_bounds" << 2 << MinBlocksExpr->getSourceRange();
3451        return;
3452      }
3453    }
3454
3455    D->addAttr(::new (S.Context) CUDALaunchBoundsAttr(Attr.getRange(), S.Context,
3456                                                      MaxThreads.getZExtValue(),
3457                                                     MinBlocks.getZExtValue()));
3458  } else {
3459    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "launch_bounds";
3460  }
3461}
3462
3463//===----------------------------------------------------------------------===//
3464// Checker-specific attribute handlers.
3465//===----------------------------------------------------------------------===//
3466
3467static bool isValidSubjectOfNSAttribute(Sema &S, QualType type) {
3468  return type->isDependentType() ||
3469         type->isObjCObjectPointerType() ||
3470         S.Context.isObjCNSObjectType(type);
3471}
3472static bool isValidSubjectOfCFAttribute(Sema &S, QualType type) {
3473  return type->isDependentType() ||
3474         type->isPointerType() ||
3475         isValidSubjectOfNSAttribute(S, type);
3476}
3477
3478static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3479  ParmVarDecl *param = dyn_cast<ParmVarDecl>(D);
3480  if (!param) {
3481    S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
3482      << Attr.getRange() << Attr.getName() << ExpectedParameter;
3483    return;
3484  }
3485
3486  bool typeOK, cf;
3487  if (Attr.getKind() == AttributeList::AT_ns_consumed) {
3488    typeOK = isValidSubjectOfNSAttribute(S, param->getType());
3489    cf = false;
3490  } else {
3491    typeOK = isValidSubjectOfCFAttribute(S, param->getType());
3492    cf = true;
3493  }
3494
3495  if (!typeOK) {
3496    S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
3497      << Attr.getRange() << Attr.getName() << cf;
3498    return;
3499  }
3500
3501  if (cf)
3502    param->addAttr(::new (S.Context) CFConsumedAttr(Attr.getRange(), S.Context));
3503  else
3504    param->addAttr(::new (S.Context) NSConsumedAttr(Attr.getRange(), S.Context));
3505}
3506
3507static void handleNSConsumesSelfAttr(Sema &S, Decl *D,
3508                                     const AttributeList &Attr) {
3509  if (!isa<ObjCMethodDecl>(D)) {
3510    S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
3511      << Attr.getRange() << Attr.getName() << ExpectedMethod;
3512    return;
3513  }
3514
3515  D->addAttr(::new (S.Context) NSConsumesSelfAttr(Attr.getRange(), S.Context));
3516}
3517
3518static void handleNSReturnsRetainedAttr(Sema &S, Decl *D,
3519                                        const AttributeList &Attr) {
3520
3521  QualType returnType;
3522
3523  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
3524    returnType = MD->getResultType();
3525  else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D))
3526    returnType = PD->getType();
3527  else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
3528           (Attr.getKind() == AttributeList::AT_ns_returns_retained))
3529    return; // ignore: was handled as a type attribute
3530  else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
3531    returnType = FD->getResultType();
3532  else {
3533    S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
3534        << Attr.getRange() << Attr.getName()
3535        << ExpectedFunctionOrMethod;
3536    return;
3537  }
3538
3539  bool typeOK;
3540  bool cf;
3541  switch (Attr.getKind()) {
3542  default: llvm_unreachable("invalid ownership attribute");
3543  case AttributeList::AT_ns_returns_autoreleased:
3544  case AttributeList::AT_ns_returns_retained:
3545  case AttributeList::AT_ns_returns_not_retained:
3546    typeOK = isValidSubjectOfNSAttribute(S, returnType);
3547    cf = false;
3548    break;
3549
3550  case AttributeList::AT_cf_returns_retained:
3551  case AttributeList::AT_cf_returns_not_retained:
3552    typeOK = isValidSubjectOfCFAttribute(S, returnType);
3553    cf = true;
3554    break;
3555  }
3556
3557  if (!typeOK) {
3558    S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
3559      << Attr.getRange() << Attr.getName() << isa<ObjCMethodDecl>(D) << cf;
3560    return;
3561  }
3562
3563  switch (Attr.getKind()) {
3564    default:
3565      llvm_unreachable("invalid ownership attribute");
3566    case AttributeList::AT_ns_returns_autoreleased:
3567      D->addAttr(::new (S.Context) NSReturnsAutoreleasedAttr(Attr.getRange(),
3568                                                             S.Context));
3569      return;
3570    case AttributeList::AT_cf_returns_not_retained:
3571      D->addAttr(::new (S.Context) CFReturnsNotRetainedAttr(Attr.getRange(),
3572                                                            S.Context));
3573      return;
3574    case AttributeList::AT_ns_returns_not_retained:
3575      D->addAttr(::new (S.Context) NSReturnsNotRetainedAttr(Attr.getRange(),
3576                                                            S.Context));
3577      return;
3578    case AttributeList::AT_cf_returns_retained:
3579      D->addAttr(::new (S.Context) CFReturnsRetainedAttr(Attr.getRange(),
3580                                                         S.Context));
3581      return;
3582    case AttributeList::AT_ns_returns_retained:
3583      D->addAttr(::new (S.Context) NSReturnsRetainedAttr(Attr.getRange(),
3584                                                         S.Context));
3585      return;
3586  };
3587}
3588
3589static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
3590                                              const AttributeList &attr) {
3591  SourceLocation loc = attr.getLoc();
3592
3593  ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(D);
3594
3595  if (!method) {
3596    S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
3597      << SourceRange(loc, loc) << attr.getName() << ExpectedMethod;
3598    return;
3599  }
3600
3601  // Check that the method returns a normal pointer.
3602  QualType resultType = method->getResultType();
3603
3604  if (!resultType->isReferenceType() &&
3605      (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
3606    S.Diag(method->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
3607      << SourceRange(loc)
3608      << attr.getName() << /*method*/ 1 << /*non-retainable pointer*/ 2;
3609
3610    // Drop the attribute.
3611    return;
3612  }
3613
3614  method->addAttr(
3615    ::new (S.Context) ObjCReturnsInnerPointerAttr(attr.getRange(), S.Context));
3616}
3617
3618/// Handle cf_audited_transfer and cf_unknown_transfer.
3619static void handleCFTransferAttr(Sema &S, Decl *D, const AttributeList &A) {
3620  if (!isa<FunctionDecl>(D)) {
3621    S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
3622      << A.getRange() << A.getName() << ExpectedFunction;
3623    return;
3624  }
3625
3626  bool IsAudited = (A.getKind() == AttributeList::AT_cf_audited_transfer);
3627
3628  // Check whether there's a conflicting attribute already present.
3629  Attr *Existing;
3630  if (IsAudited) {
3631    Existing = D->getAttr<CFUnknownTransferAttr>();
3632  } else {
3633    Existing = D->getAttr<CFAuditedTransferAttr>();
3634  }
3635  if (Existing) {
3636    S.Diag(D->getLocStart(), diag::err_attributes_are_not_compatible)
3637      << A.getName()
3638      << (IsAudited ? "cf_unknown_transfer" : "cf_audited_transfer")
3639      << A.getRange() << Existing->getRange();
3640    return;
3641  }
3642
3643  // All clear;  add the attribute.
3644  if (IsAudited) {
3645    D->addAttr(
3646      ::new (S.Context) CFAuditedTransferAttr(A.getRange(), S.Context));
3647  } else {
3648    D->addAttr(
3649      ::new (S.Context) CFUnknownTransferAttr(A.getRange(), S.Context));
3650  }
3651}
3652
3653static void handleNSBridgedAttr(Sema &S, Scope *Sc, Decl *D,
3654                                const AttributeList &Attr) {
3655  RecordDecl *RD = dyn_cast<RecordDecl>(D);
3656  if (!RD || RD->isUnion()) {
3657    S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
3658      << Attr.getRange() << Attr.getName() << ExpectedStruct;
3659  }
3660
3661  IdentifierInfo *ParmName = Attr.getParameterName();
3662
3663  // In Objective-C, verify that the type names an Objective-C type.
3664  // We don't want to check this outside of ObjC because people sometimes
3665  // do crazy C declarations of Objective-C types.
3666  if (ParmName && S.getLangOpts().ObjC1) {
3667    // Check for an existing type with this name.
3668    LookupResult R(S, DeclarationName(ParmName), Attr.getParameterLoc(),
3669                   Sema::LookupOrdinaryName);
3670    if (S.LookupName(R, Sc)) {
3671      NamedDecl *Target = R.getFoundDecl();
3672      if (Target && !isa<ObjCInterfaceDecl>(Target)) {
3673        S.Diag(D->getLocStart(), diag::err_ns_bridged_not_interface);
3674        S.Diag(Target->getLocStart(), diag::note_declared_at);
3675      }
3676    }
3677  }
3678
3679  D->addAttr(::new (S.Context) NSBridgedAttr(Attr.getRange(), S.Context,
3680                                             ParmName));
3681}
3682
3683static void handleObjCOwnershipAttr(Sema &S, Decl *D,
3684                                    const AttributeList &Attr) {
3685  if (hasDeclarator(D)) return;
3686
3687  S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
3688    << Attr.getRange() << Attr.getName() << ExpectedVariable;
3689}
3690
3691static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
3692                                          const AttributeList &Attr) {
3693  if (!isa<VarDecl>(D) && !isa<FieldDecl>(D)) {
3694    S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
3695      << Attr.getRange() << Attr.getName() << ExpectedVariable;
3696    return;
3697  }
3698
3699  ValueDecl *vd = cast<ValueDecl>(D);
3700  QualType type = vd->getType();
3701
3702  if (!type->isDependentType() &&
3703      !type->isObjCLifetimeType()) {
3704    S.Diag(Attr.getLoc(), diag::err_objc_precise_lifetime_bad_type)
3705      << type;
3706    return;
3707  }
3708
3709  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3710
3711  // If we have no lifetime yet, check the lifetime we're presumably
3712  // going to infer.
3713  if (lifetime == Qualifiers::OCL_None && !type->isDependentType())
3714    lifetime = type->getObjCARCImplicitLifetime();
3715
3716  switch (lifetime) {
3717  case Qualifiers::OCL_None:
3718    assert(type->isDependentType() &&
3719           "didn't infer lifetime for non-dependent type?");
3720    break;
3721
3722  case Qualifiers::OCL_Weak:   // meaningful
3723  case Qualifiers::OCL_Strong: // meaningful
3724    break;
3725
3726  case Qualifiers::OCL_ExplicitNone:
3727  case Qualifiers::OCL_Autoreleasing:
3728    S.Diag(Attr.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
3729      << (lifetime == Qualifiers::OCL_Autoreleasing);
3730    break;
3731  }
3732
3733  D->addAttr(::new (S.Context)
3734                 ObjCPreciseLifetimeAttr(Attr.getRange(), S.Context));
3735}
3736
3737static bool isKnownDeclSpecAttr(const AttributeList &Attr) {
3738  switch (Attr.getKind()) {
3739  default:
3740    return false;
3741  case AttributeList::AT_dllimport:
3742  case AttributeList::AT_dllexport:
3743  case AttributeList::AT_uuid:
3744  case AttributeList::AT_deprecated:
3745  case AttributeList::AT_noreturn:
3746  case AttributeList::AT_nothrow:
3747  case AttributeList::AT_naked:
3748  case AttributeList::AT_noinline:
3749    return true;
3750  }
3751}
3752
3753//===----------------------------------------------------------------------===//
3754// Microsoft specific attribute handlers.
3755//===----------------------------------------------------------------------===//
3756
3757static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3758  if (S.LangOpts.MicrosoftExt || S.LangOpts.Borland) {
3759    // check the attribute arguments.
3760    if (!checkAttributeNumArgs(S, Attr, 1))
3761      return;
3762
3763    Expr *Arg = Attr.getArg(0);
3764    StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
3765    if (!Str || !Str->isAscii()) {
3766      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
3767        << "uuid" << 1;
3768      return;
3769    }
3770
3771    StringRef StrRef = Str->getString();
3772
3773    bool IsCurly = StrRef.size() > 1 && StrRef.front() == '{' &&
3774                   StrRef.back() == '}';
3775
3776    // Validate GUID length.
3777    if (IsCurly && StrRef.size() != 38) {
3778      S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
3779      return;
3780    }
3781    if (!IsCurly && StrRef.size() != 36) {
3782      S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
3783      return;
3784    }
3785
3786    // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
3787    // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}"
3788    StringRef::iterator I = StrRef.begin();
3789    if (IsCurly) // Skip the optional '{'
3790       ++I;
3791
3792    for (int i = 0; i < 36; ++i) {
3793      if (i == 8 || i == 13 || i == 18 || i == 23) {
3794        if (*I != '-') {
3795          S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
3796          return;
3797        }
3798      } else if (!isxdigit(*I)) {
3799        S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
3800        return;
3801      }
3802      I++;
3803    }
3804
3805    D->addAttr(::new (S.Context) UuidAttr(Attr.getRange(), S.Context,
3806                                          Str->getString()));
3807  } else
3808    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "uuid";
3809}
3810
3811//===----------------------------------------------------------------------===//
3812// Top Level Sema Entry Points
3813//===----------------------------------------------------------------------===//
3814
3815static void ProcessNonInheritableDeclAttr(Sema &S, Scope *scope, Decl *D,
3816                                          const AttributeList &Attr) {
3817  switch (Attr.getKind()) {
3818  case AttributeList::AT_device:      handleDeviceAttr      (S, D, Attr); break;
3819  case AttributeList::AT_host:        handleHostAttr        (S, D, Attr); break;
3820  case AttributeList::AT_overloadable:handleOverloadableAttr(S, D, Attr); break;
3821  default:
3822    break;
3823  }
3824}
3825
3826static void ProcessInheritableDeclAttr(Sema &S, Scope *scope, Decl *D,
3827                                       const AttributeList &Attr) {
3828  switch (Attr.getKind()) {
3829    case AttributeList::AT_ibaction:            handleIBAction(S, D, Attr); break;
3830    case AttributeList::AT_iboutlet:          handleIBOutlet(S, D, Attr); break;
3831    case AttributeList::AT_iboutletcollection:
3832      handleIBOutletCollection(S, D, Attr); break;
3833  case AttributeList::AT_address_space:
3834  case AttributeList::AT_opencl_image_access:
3835  case AttributeList::AT_objc_gc:
3836  case AttributeList::AT_vector_size:
3837  case AttributeList::AT_neon_vector_type:
3838  case AttributeList::AT_neon_polyvector_type:
3839    // Ignore these, these are type attributes, handled by
3840    // ProcessTypeAttributes.
3841    break;
3842  case AttributeList::AT_device:
3843  case AttributeList::AT_host:
3844  case AttributeList::AT_overloadable:
3845    // Ignore, this is a non-inheritable attribute, handled
3846    // by ProcessNonInheritableDeclAttr.
3847    break;
3848  case AttributeList::AT_alias:       handleAliasAttr       (S, D, Attr); break;
3849  case AttributeList::AT_aligned:     handleAlignedAttr     (S, D, Attr); break;
3850  case AttributeList::AT_always_inline:
3851    handleAlwaysInlineAttr  (S, D, Attr); break;
3852  case AttributeList::AT_analyzer_noreturn:
3853    handleAnalyzerNoReturnAttr  (S, D, Attr); break;
3854  case AttributeList::AT_annotate:    handleAnnotateAttr    (S, D, Attr); break;
3855  case AttributeList::AT_availability:handleAvailabilityAttr(S, D, Attr); break;
3856  case AttributeList::AT_carries_dependency:
3857                                      handleDependencyAttr  (S, D, Attr); break;
3858  case AttributeList::AT_common:      handleCommonAttr      (S, D, Attr); break;
3859  case AttributeList::AT_constant:    handleConstantAttr    (S, D, Attr); break;
3860  case AttributeList::AT_constructor: handleConstructorAttr (S, D, Attr); break;
3861  case AttributeList::AT_deprecated:  handleDeprecatedAttr  (S, D, Attr); break;
3862  case AttributeList::AT_destructor:  handleDestructorAttr  (S, D, Attr); break;
3863  case AttributeList::AT_ext_vector_type:
3864    handleExtVectorTypeAttr(S, scope, D, Attr);
3865    break;
3866  case AttributeList::AT_format:      handleFormatAttr      (S, D, Attr); break;
3867  case AttributeList::AT_format_arg:  handleFormatArgAttr   (S, D, Attr); break;
3868  case AttributeList::AT_global:      handleGlobalAttr      (S, D, Attr); break;
3869  case AttributeList::AT_gnu_inline:  handleGNUInlineAttr   (S, D, Attr); break;
3870  case AttributeList::AT_launch_bounds:
3871    handleLaunchBoundsAttr(S, D, Attr);
3872    break;
3873  case AttributeList::AT_mode:        handleModeAttr        (S, D, Attr); break;
3874  case AttributeList::AT_malloc:      handleMallocAttr      (S, D, Attr); break;
3875  case AttributeList::AT_may_alias:   handleMayAliasAttr    (S, D, Attr); break;
3876  case AttributeList::AT_nocommon:    handleNoCommonAttr    (S, D, Attr); break;
3877  case AttributeList::AT_nonnull:     handleNonNullAttr     (S, D, Attr); break;
3878  case AttributeList::AT_ownership_returns:
3879  case AttributeList::AT_ownership_takes:
3880  case AttributeList::AT_ownership_holds:
3881      handleOwnershipAttr     (S, D, Attr); break;
3882  case AttributeList::AT_cold:        handleColdAttr        (S, D, Attr); break;
3883  case AttributeList::AT_hot:         handleHotAttr         (S, D, Attr); break;
3884  case AttributeList::AT_naked:       handleNakedAttr       (S, D, Attr); break;
3885  case AttributeList::AT_noreturn:    handleNoReturnAttr    (S, D, Attr); break;
3886  case AttributeList::AT_nothrow:     handleNothrowAttr     (S, D, Attr); break;
3887  case AttributeList::AT_shared:      handleSharedAttr      (S, D, Attr); break;
3888  case AttributeList::AT_vecreturn:   handleVecReturnAttr   (S, D, Attr); break;
3889
3890  case AttributeList::AT_objc_ownership:
3891    handleObjCOwnershipAttr(S, D, Attr); break;
3892  case AttributeList::AT_objc_precise_lifetime:
3893    handleObjCPreciseLifetimeAttr(S, D, Attr); break;
3894
3895  case AttributeList::AT_objc_returns_inner_pointer:
3896    handleObjCReturnsInnerPointerAttr(S, D, Attr); break;
3897
3898  case AttributeList::AT_ns_bridged:
3899    handleNSBridgedAttr(S, scope, D, Attr); break;
3900
3901  case AttributeList::AT_cf_audited_transfer:
3902  case AttributeList::AT_cf_unknown_transfer:
3903    handleCFTransferAttr(S, D, Attr); break;
3904
3905  // Checker-specific.
3906  case AttributeList::AT_cf_consumed:
3907  case AttributeList::AT_ns_consumed: handleNSConsumedAttr  (S, D, Attr); break;
3908  case AttributeList::AT_ns_consumes_self:
3909    handleNSConsumesSelfAttr(S, D, Attr); break;
3910
3911  case AttributeList::AT_ns_returns_autoreleased:
3912  case AttributeList::AT_ns_returns_not_retained:
3913  case AttributeList::AT_cf_returns_not_retained:
3914  case AttributeList::AT_ns_returns_retained:
3915  case AttributeList::AT_cf_returns_retained:
3916    handleNSReturnsRetainedAttr(S, D, Attr); break;
3917
3918  case AttributeList::AT_reqd_work_group_size:
3919    handleReqdWorkGroupSize(S, D, Attr); break;
3920
3921  case AttributeList::AT_init_priority:
3922      handleInitPriorityAttr(S, D, Attr); break;
3923
3924  case AttributeList::AT_packed:      handlePackedAttr      (S, D, Attr); break;
3925  case AttributeList::AT_ms_struct:    handleMsStructAttr    (S, D, Attr); break;
3926  case AttributeList::AT_section:     handleSectionAttr     (S, D, Attr); break;
3927  case AttributeList::AT_unavailable: handleUnavailableAttr (S, D, Attr); break;
3928  case AttributeList::AT_objc_arc_weak_reference_unavailable:
3929    handleArcWeakrefUnavailableAttr (S, D, Attr);
3930    break;
3931  case AttributeList::AT_objc_root_class:
3932    handleObjCRootClassAttr(S, D, Attr);
3933    break;
3934  case AttributeList::AT_objc_requires_property_definitions:
3935    handleObjCRequiresPropertyDefsAttr (S, D, Attr);
3936    break;
3937  case AttributeList::AT_unused:      handleUnusedAttr      (S, D, Attr); break;
3938  case AttributeList::AT_returns_twice:
3939    handleReturnsTwiceAttr(S, D, Attr);
3940    break;
3941  case AttributeList::AT_used:        handleUsedAttr        (S, D, Attr); break;
3942  case AttributeList::AT_visibility:  handleVisibilityAttr  (S, D, Attr); break;
3943  case AttributeList::AT_warn_unused_result: handleWarnUnusedResult(S, D, Attr);
3944    break;
3945  case AttributeList::AT_weak:        handleWeakAttr        (S, D, Attr); break;
3946  case AttributeList::AT_weakref:     handleWeakRefAttr     (S, D, Attr); break;
3947  case AttributeList::AT_weak_import: handleWeakImportAttr  (S, D, Attr); break;
3948  case AttributeList::AT_transparent_union:
3949    handleTransparentUnionAttr(S, D, Attr);
3950    break;
3951  case AttributeList::AT_objc_exception:
3952    handleObjCExceptionAttr(S, D, Attr);
3953    break;
3954  case AttributeList::AT_objc_method_family:
3955    handleObjCMethodFamilyAttr(S, D, Attr);
3956    break;
3957  case AttributeList::AT_NSObject:    handleObjCNSObject    (S, D, Attr); break;
3958  case AttributeList::AT_blocks:      handleBlocksAttr      (S, D, Attr); break;
3959  case AttributeList::AT_sentinel:    handleSentinelAttr    (S, D, Attr); break;
3960  case AttributeList::AT_const:       handleConstAttr       (S, D, Attr); break;
3961  case AttributeList::AT_pure:        handlePureAttr        (S, D, Attr); break;
3962  case AttributeList::AT_cleanup:     handleCleanupAttr     (S, D, Attr); break;
3963  case AttributeList::AT_nodebug:     handleNoDebugAttr     (S, D, Attr); break;
3964  case AttributeList::AT_noinline:    handleNoInlineAttr    (S, D, Attr); break;
3965  case AttributeList::AT_regparm:     handleRegparmAttr     (S, D, Attr); break;
3966  case AttributeList::IgnoredAttribute:
3967    // Just ignore
3968    break;
3969  case AttributeList::AT_no_instrument_function:  // Interacts with -pg.
3970    handleNoInstrumentFunctionAttr(S, D, Attr);
3971    break;
3972  case AttributeList::AT_stdcall:
3973  case AttributeList::AT_cdecl:
3974  case AttributeList::AT_fastcall:
3975  case AttributeList::AT_thiscall:
3976  case AttributeList::AT_pascal:
3977  case AttributeList::AT_pcs:
3978    handleCallConvAttr(S, D, Attr);
3979    break;
3980  case AttributeList::AT_opencl_kernel_function:
3981    handleOpenCLKernelAttr(S, D, Attr);
3982    break;
3983  case AttributeList::AT_uuid:
3984    handleUuidAttr(S, D, Attr);
3985    break;
3986
3987  // Thread safety attributes:
3988  case AttributeList::AT_guarded_var:
3989    handleGuardedVarAttr(S, D, Attr);
3990    break;
3991  case AttributeList::AT_pt_guarded_var:
3992    handleGuardedVarAttr(S, D, Attr, /*pointer = */true);
3993    break;
3994  case AttributeList::AT_scoped_lockable:
3995    handleLockableAttr(S, D, Attr, /*scoped = */true);
3996    break;
3997  case AttributeList::AT_no_address_safety_analysis:
3998    handleNoAddressSafetyAttr(S, D, Attr);
3999    break;
4000  case AttributeList::AT_no_thread_safety_analysis:
4001    handleNoThreadSafetyAttr(S, D, Attr);
4002    break;
4003  case AttributeList::AT_lockable:
4004    handleLockableAttr(S, D, Attr);
4005    break;
4006  case AttributeList::AT_guarded_by:
4007    handleGuardedByAttr(S, D, Attr);
4008    break;
4009  case AttributeList::AT_pt_guarded_by:
4010    handleGuardedByAttr(S, D, Attr, /*pointer = */true);
4011    break;
4012  case AttributeList::AT_exclusive_lock_function:
4013    handleLockFunAttr(S, D, Attr, /*exclusive = */true);
4014    break;
4015  case AttributeList::AT_exclusive_locks_required:
4016    handleLocksRequiredAttr(S, D, Attr, /*exclusive = */true);
4017    break;
4018  case AttributeList::AT_exclusive_trylock_function:
4019    handleTrylockFunAttr(S, D, Attr, /*exclusive = */true);
4020    break;
4021  case AttributeList::AT_lock_returned:
4022    handleLockReturnedAttr(S, D, Attr);
4023    break;
4024  case AttributeList::AT_locks_excluded:
4025    handleLocksExcludedAttr(S, D, Attr);
4026    break;
4027  case AttributeList::AT_shared_lock_function:
4028    handleLockFunAttr(S, D, Attr);
4029    break;
4030  case AttributeList::AT_shared_locks_required:
4031    handleLocksRequiredAttr(S, D, Attr);
4032    break;
4033  case AttributeList::AT_shared_trylock_function:
4034    handleTrylockFunAttr(S, D, Attr);
4035    break;
4036  case AttributeList::AT_unlock_function:
4037    handleUnlockFunAttr(S, D, Attr);
4038    break;
4039  case AttributeList::AT_acquired_before:
4040    handleAcquireOrderAttr(S, D, Attr, /*before = */true);
4041    break;
4042  case AttributeList::AT_acquired_after:
4043    handleAcquireOrderAttr(S, D, Attr, /*before = */false);
4044    break;
4045
4046  default:
4047    // Ask target about the attribute.
4048    const TargetAttributesSema &TargetAttrs = S.getTargetAttributesSema();
4049    if (!TargetAttrs.ProcessDeclAttribute(scope, D, Attr, S))
4050      S.Diag(Attr.getLoc(), diag::warn_unknown_attribute_ignored)
4051        << Attr.getName();
4052    break;
4053  }
4054}
4055
4056/// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
4057/// the attribute applies to decls.  If the attribute is a type attribute, just
4058/// silently ignore it if a GNU attribute. FIXME: Applying a C++0x attribute to
4059/// the wrong thing is illegal (C++0x [dcl.attr.grammar]/4).
4060static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
4061                                 const AttributeList &Attr,
4062                                 bool NonInheritable, bool Inheritable) {
4063  if (Attr.isInvalid())
4064    return;
4065
4066  if (Attr.isDeclspecAttribute() && !isKnownDeclSpecAttr(Attr))
4067    // FIXME: Try to deal with other __declspec attributes!
4068    return;
4069
4070  if (NonInheritable)
4071    ProcessNonInheritableDeclAttr(S, scope, D, Attr);
4072
4073  if (Inheritable)
4074    ProcessInheritableDeclAttr(S, scope, D, Attr);
4075}
4076
4077/// ProcessDeclAttributeList - Apply all the decl attributes in the specified
4078/// attribute list to the specified decl, ignoring any type attributes.
4079void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
4080                                    const AttributeList *AttrList,
4081                                    bool NonInheritable, bool Inheritable) {
4082  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
4083    ProcessDeclAttribute(*this, S, D, *l, NonInheritable, Inheritable);
4084  }
4085
4086  // GCC accepts
4087  // static int a9 __attribute__((weakref));
4088  // but that looks really pointless. We reject it.
4089  if (Inheritable && D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
4090    Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias) <<
4091    dyn_cast<NamedDecl>(D)->getNameAsString();
4092    return;
4093  }
4094}
4095
4096// Annotation attributes are the only attributes allowed after an access
4097// specifier.
4098bool Sema::ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
4099                                          const AttributeList *AttrList) {
4100  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
4101    if (l->getKind() == AttributeList::AT_annotate) {
4102      handleAnnotateAttr(*this, ASDecl, *l);
4103    } else {
4104      Diag(l->getLoc(), diag::err_only_annotate_after_access_spec);
4105      return true;
4106    }
4107  }
4108
4109  return false;
4110}
4111
4112/// checkUnusedDeclAttributes - Check a list of attributes to see if it
4113/// contains any decl attributes that we should warn about.
4114static void checkUnusedDeclAttributes(Sema &S, const AttributeList *A) {
4115  for ( ; A; A = A->getNext()) {
4116    // Only warn if the attribute is an unignored, non-type attribute.
4117    if (A->isUsedAsTypeAttr()) continue;
4118    if (A->getKind() == AttributeList::IgnoredAttribute) continue;
4119
4120    if (A->getKind() == AttributeList::UnknownAttribute) {
4121      S.Diag(A->getLoc(), diag::warn_unknown_attribute_ignored)
4122        << A->getName() << A->getRange();
4123    } else {
4124      S.Diag(A->getLoc(), diag::warn_attribute_not_on_decl)
4125        << A->getName() << A->getRange();
4126    }
4127  }
4128}
4129
4130/// checkUnusedDeclAttributes - Given a declarator which is not being
4131/// used to build a declaration, complain about any decl attributes
4132/// which might be lying around on it.
4133void Sema::checkUnusedDeclAttributes(Declarator &D) {
4134  ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes().getList());
4135  ::checkUnusedDeclAttributes(*this, D.getAttributes());
4136  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
4137    ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
4138}
4139
4140/// DeclClonePragmaWeak - clone existing decl (maybe definition),
4141/// #pragma weak needs a non-definition decl and source may not have one
4142NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
4143                                      SourceLocation Loc) {
4144  assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
4145  NamedDecl *NewD = 0;
4146  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
4147    FunctionDecl *NewFD;
4148    // FIXME: Missing call to CheckFunctionDeclaration().
4149    // FIXME: Mangling?
4150    // FIXME: Is the qualifier info correct?
4151    // FIXME: Is the DeclContext correct?
4152    NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(),
4153                                 Loc, Loc, DeclarationName(II),
4154                                 FD->getType(), FD->getTypeSourceInfo(),
4155                                 SC_None, SC_None,
4156                                 false/*isInlineSpecified*/,
4157                                 FD->hasPrototype(),
4158                                 false/*isConstexprSpecified*/);
4159    NewD = NewFD;
4160
4161    if (FD->getQualifier())
4162      NewFD->setQualifierInfo(FD->getQualifierLoc());
4163
4164    // Fake up parameter variables; they are declared as if this were
4165    // a typedef.
4166    QualType FDTy = FD->getType();
4167    if (const FunctionProtoType *FT = FDTy->getAs<FunctionProtoType>()) {
4168      SmallVector<ParmVarDecl*, 16> Params;
4169      for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4170           AE = FT->arg_type_end(); AI != AE; ++AI) {
4171        ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, *AI);
4172        Param->setScopeInfo(0, Params.size());
4173        Params.push_back(Param);
4174      }
4175      NewFD->setParams(Params);
4176    }
4177  } else if (VarDecl *VD = dyn_cast<VarDecl>(ND)) {
4178    NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
4179                           VD->getInnerLocStart(), VD->getLocation(), II,
4180                           VD->getType(), VD->getTypeSourceInfo(),
4181                           VD->getStorageClass(),
4182                           VD->getStorageClassAsWritten());
4183    if (VD->getQualifier()) {
4184      VarDecl *NewVD = cast<VarDecl>(NewD);
4185      NewVD->setQualifierInfo(VD->getQualifierLoc());
4186    }
4187  }
4188  return NewD;
4189}
4190
4191/// DeclApplyPragmaWeak - A declaration (maybe definition) needs #pragma weak
4192/// applied to it, possibly with an alias.
4193void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
4194  if (W.getUsed()) return; // only do this once
4195  W.setUsed(true);
4196  if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
4197    IdentifierInfo *NDId = ND->getIdentifier();
4198    NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
4199    NewD->addAttr(::new (Context) AliasAttr(W.getLocation(), Context,
4200                                            NDId->getName()));
4201    NewD->addAttr(::new (Context) WeakAttr(W.getLocation(), Context));
4202    WeakTopLevelDecl.push_back(NewD);
4203    // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
4204    // to insert Decl at TU scope, sorry.
4205    DeclContext *SavedContext = CurContext;
4206    CurContext = Context.getTranslationUnitDecl();
4207    PushOnScopeChains(NewD, S);
4208    CurContext = SavedContext;
4209  } else { // just add weak to existing
4210    ND->addAttr(::new (Context) WeakAttr(W.getLocation(), Context));
4211  }
4212}
4213
4214/// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
4215/// it, apply them to D.  This is a bit tricky because PD can have attributes
4216/// specified in many different places, and we need to find and apply them all.
4217void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD,
4218                                 bool NonInheritable, bool Inheritable) {
4219  // It's valid to "forward-declare" #pragma weak, in which case we
4220  // have to do this.
4221  if (Inheritable) {
4222    LoadExternalWeakUndeclaredIdentifiers();
4223    if (!WeakUndeclaredIdentifiers.empty()) {
4224      if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) {
4225        if (IdentifierInfo *Id = ND->getIdentifier()) {
4226          llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator I
4227            = WeakUndeclaredIdentifiers.find(Id);
4228          if (I != WeakUndeclaredIdentifiers.end() && ND->hasLinkage()) {
4229            WeakInfo W = I->second;
4230            DeclApplyPragmaWeak(S, ND, W);
4231            WeakUndeclaredIdentifiers[Id] = W;
4232          }
4233        }
4234      }
4235    }
4236  }
4237
4238  // Apply decl attributes from the DeclSpec if present.
4239  if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList())
4240    ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
4241
4242  // Walk the declarator structure, applying decl attributes that were in a type
4243  // position to the decl itself.  This handles cases like:
4244  //   int *__attr__(x)** D;
4245  // when X is a decl attribute.
4246  for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
4247    if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs())
4248      ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
4249
4250  // Finally, apply any attributes on the decl itself.
4251  if (const AttributeList *Attrs = PD.getAttributes())
4252    ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
4253}
4254
4255/// Is the given declaration allowed to use a forbidden type?
4256static bool isForbiddenTypeAllowed(Sema &S, Decl *decl) {
4257  // Private ivars are always okay.  Unfortunately, people don't
4258  // always properly make their ivars private, even in system headers.
4259  // Plus we need to make fields okay, too.
4260  // Function declarations in sys headers will be marked unavailable.
4261  if (!isa<FieldDecl>(decl) && !isa<ObjCPropertyDecl>(decl) &&
4262      !isa<FunctionDecl>(decl))
4263    return false;
4264
4265  // Require it to be declared in a system header.
4266  return S.Context.getSourceManager().isInSystemHeader(decl->getLocation());
4267}
4268
4269/// Handle a delayed forbidden-type diagnostic.
4270static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &diag,
4271                                       Decl *decl) {
4272  if (decl && isForbiddenTypeAllowed(S, decl)) {
4273    decl->addAttr(new (S.Context) UnavailableAttr(diag.Loc, S.Context,
4274                        "this system declaration uses an unsupported type"));
4275    return;
4276  }
4277  if (S.getLangOpts().ObjCAutoRefCount)
4278    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(decl)) {
4279      // FIXME. we may want to supress diagnostics for all
4280      // kind of forbidden type messages on unavailable functions.
4281      if (FD->hasAttr<UnavailableAttr>() &&
4282          diag.getForbiddenTypeDiagnostic() ==
4283          diag::err_arc_array_param_no_ownership) {
4284        diag.Triggered = true;
4285        return;
4286      }
4287    }
4288
4289  S.Diag(diag.Loc, diag.getForbiddenTypeDiagnostic())
4290    << diag.getForbiddenTypeOperand() << diag.getForbiddenTypeArgument();
4291  diag.Triggered = true;
4292}
4293
4294void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
4295  assert(DelayedDiagnostics.getCurrentPool());
4296  DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
4297  DelayedDiagnostics.popWithoutEmitting(state);
4298
4299  // When delaying diagnostics to run in the context of a parsed
4300  // declaration, we only want to actually emit anything if parsing
4301  // succeeds.
4302  if (!decl) return;
4303
4304  // We emit all the active diagnostics in this pool or any of its
4305  // parents.  In general, we'll get one pool for the decl spec
4306  // and a child pool for each declarator; in a decl group like:
4307  //   deprecated_typedef foo, *bar, baz();
4308  // only the declarator pops will be passed decls.  This is correct;
4309  // we really do need to consider delayed diagnostics from the decl spec
4310  // for each of the different declarations.
4311  const DelayedDiagnosticPool *pool = &poppedPool;
4312  do {
4313    for (DelayedDiagnosticPool::pool_iterator
4314           i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
4315      // This const_cast is a bit lame.  Really, Triggered should be mutable.
4316      DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
4317      if (diag.Triggered)
4318        continue;
4319
4320      switch (diag.Kind) {
4321      case DelayedDiagnostic::Deprecation:
4322        // Don't bother giving deprecation diagnostics if the decl is invalid.
4323        if (!decl->isInvalidDecl())
4324          HandleDelayedDeprecationCheck(diag, decl);
4325        break;
4326
4327      case DelayedDiagnostic::Access:
4328        HandleDelayedAccessCheck(diag, decl);
4329        break;
4330
4331      case DelayedDiagnostic::ForbiddenType:
4332        handleDelayedForbiddenType(*this, diag, decl);
4333        break;
4334      }
4335    }
4336  } while ((pool = pool->getParent()));
4337}
4338
4339/// Given a set of delayed diagnostics, re-emit them as if they had
4340/// been delayed in the current context instead of in the given pool.
4341/// Essentially, this just moves them to the current pool.
4342void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
4343  DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
4344  assert(curPool && "re-emitting in undelayed context not supported");
4345  curPool->steal(pool);
4346}
4347
4348static bool isDeclDeprecated(Decl *D) {
4349  do {
4350    if (D->isDeprecated())
4351      return true;
4352    // A category implicitly has the availability of the interface.
4353    if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
4354      return CatD->getClassInterface()->isDeprecated();
4355  } while ((D = cast_or_null<Decl>(D->getDeclContext())));
4356  return false;
4357}
4358
4359void Sema::HandleDelayedDeprecationCheck(DelayedDiagnostic &DD,
4360                                         Decl *Ctx) {
4361  if (isDeclDeprecated(Ctx))
4362    return;
4363
4364  DD.Triggered = true;
4365  if (!DD.getDeprecationMessage().empty())
4366    Diag(DD.Loc, diag::warn_deprecated_message)
4367      << DD.getDeprecationDecl()->getDeclName()
4368      << DD.getDeprecationMessage();
4369  else if (DD.getUnknownObjCClass()) {
4370    Diag(DD.Loc, diag::warn_deprecated_fwdclass_message)
4371      << DD.getDeprecationDecl()->getDeclName();
4372    Diag(DD.getUnknownObjCClass()->getLocation(), diag::note_forward_class);
4373  }
4374  else
4375    Diag(DD.Loc, diag::warn_deprecated)
4376      << DD.getDeprecationDecl()->getDeclName();
4377}
4378
4379void Sema::EmitDeprecationWarning(NamedDecl *D, StringRef Message,
4380                                  SourceLocation Loc,
4381                                  const ObjCInterfaceDecl *UnknownObjCClass) {
4382  // Delay if we're currently parsing a declaration.
4383  if (DelayedDiagnostics.shouldDelayDiagnostics()) {
4384    DelayedDiagnostics.add(DelayedDiagnostic::makeDeprecation(Loc, D,
4385                                                              UnknownObjCClass,
4386                                                              Message));
4387    return;
4388  }
4389
4390  // Otherwise, don't warn if our current context is deprecated.
4391  if (isDeclDeprecated(cast<Decl>(getCurLexicalContext())))
4392    return;
4393  if (!Message.empty()) {
4394    Diag(Loc, diag::warn_deprecated_message) << D->getDeclName()
4395                                             << Message;
4396    Diag(D->getLocation(),
4397         isa<ObjCMethodDecl>(D) ? diag::note_method_declared_at
4398                                : diag::note_previous_decl) << D->getDeclName();
4399  }
4400  else {
4401    if (!UnknownObjCClass)
4402      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
4403    else {
4404      Diag(Loc, diag::warn_deprecated_fwdclass_message) << D->getDeclName();
4405      Diag(UnknownObjCClass->getLocation(), diag::note_forward_class);
4406    }
4407  }
4408}
4409