SemaDeclAttr.cpp revision 83cad4544f8a89fb6a611f330d71d027c238375e
1//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements decl-related attribute processing.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TargetAttributesSema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/Expr.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/DelayedDiagnostic.h"
25#include "clang/Sema/Lookup.h"
26#include "llvm/ADT/StringExtras.h"
27using namespace clang;
28using namespace sema;
29
30/// These constants match the enumerated choices of
31/// warn_attribute_wrong_decl_type and err_attribute_wrong_decl_type.
32enum AttributeDeclKind {
33  ExpectedFunction,
34  ExpectedUnion,
35  ExpectedVariableOrFunction,
36  ExpectedFunctionOrMethod,
37  ExpectedParameter,
38  ExpectedFunctionMethodOrBlock,
39  ExpectedFunctionMethodOrParameter,
40  ExpectedClass,
41  ExpectedVariable,
42  ExpectedMethod,
43  ExpectedVariableFunctionOrLabel,
44  ExpectedFieldOrGlobalVar,
45  ExpectedStruct
46};
47
48//===----------------------------------------------------------------------===//
49//  Helper functions
50//===----------------------------------------------------------------------===//
51
52static const FunctionType *getFunctionType(const Decl *D,
53                                           bool blocksToo = true) {
54  QualType Ty;
55  if (const ValueDecl *decl = dyn_cast<ValueDecl>(D))
56    Ty = decl->getType();
57  else if (const FieldDecl *decl = dyn_cast<FieldDecl>(D))
58    Ty = decl->getType();
59  else if (const TypedefNameDecl* decl = dyn_cast<TypedefNameDecl>(D))
60    Ty = decl->getUnderlyingType();
61  else
62    return 0;
63
64  if (Ty->isFunctionPointerType())
65    Ty = Ty->getAs<PointerType>()->getPointeeType();
66  else if (blocksToo && Ty->isBlockPointerType())
67    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
68
69  return Ty->getAs<FunctionType>();
70}
71
72// FIXME: We should provide an abstraction around a method or function
73// to provide the following bits of information.
74
75/// isFunction - Return true if the given decl has function
76/// type (function or function-typed variable).
77static bool isFunction(const Decl *D) {
78  return getFunctionType(D, false) != NULL;
79}
80
81/// isFunctionOrMethod - Return true if the given decl has function
82/// type (function or function-typed variable) or an Objective-C
83/// method.
84static bool isFunctionOrMethod(const Decl *D) {
85  return isFunction(D)|| isa<ObjCMethodDecl>(D);
86}
87
88/// isFunctionOrMethodOrBlock - Return true if the given decl has function
89/// type (function or function-typed variable) or an Objective-C
90/// method or a block.
91static bool isFunctionOrMethodOrBlock(const Decl *D) {
92  if (isFunctionOrMethod(D))
93    return true;
94  // check for block is more involved.
95  if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
96    QualType Ty = V->getType();
97    return Ty->isBlockPointerType();
98  }
99  return isa<BlockDecl>(D);
100}
101
102/// Return true if the given decl has a declarator that should have
103/// been processed by Sema::GetTypeForDeclarator.
104static bool hasDeclarator(const Decl *D) {
105  // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
106  return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
107         isa<ObjCPropertyDecl>(D);
108}
109
110/// hasFunctionProto - Return true if the given decl has a argument
111/// information. This decl should have already passed
112/// isFunctionOrMethod or isFunctionOrMethodOrBlock.
113static bool hasFunctionProto(const Decl *D) {
114  if (const FunctionType *FnTy = getFunctionType(D))
115    return isa<FunctionProtoType>(FnTy);
116  else {
117    assert(isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D));
118    return true;
119  }
120}
121
122/// getFunctionOrMethodNumArgs - Return number of function or method
123/// arguments. It is an error to call this on a K&R function (use
124/// hasFunctionProto first).
125static unsigned getFunctionOrMethodNumArgs(const Decl *D) {
126  if (const FunctionType *FnTy = getFunctionType(D))
127    return cast<FunctionProtoType>(FnTy)->getNumArgs();
128  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
129    return BD->getNumParams();
130  return cast<ObjCMethodDecl>(D)->param_size();
131}
132
133static QualType getFunctionOrMethodArgType(const Decl *D, unsigned Idx) {
134  if (const FunctionType *FnTy = getFunctionType(D))
135    return cast<FunctionProtoType>(FnTy)->getArgType(Idx);
136  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
137    return BD->getParamDecl(Idx)->getType();
138
139  return cast<ObjCMethodDecl>(D)->param_begin()[Idx]->getType();
140}
141
142static QualType getFunctionOrMethodResultType(const Decl *D) {
143  if (const FunctionType *FnTy = getFunctionType(D))
144    return cast<FunctionProtoType>(FnTy)->getResultType();
145  return cast<ObjCMethodDecl>(D)->getResultType();
146}
147
148static bool isFunctionOrMethodVariadic(const Decl *D) {
149  if (const FunctionType *FnTy = getFunctionType(D)) {
150    const FunctionProtoType *proto = cast<FunctionProtoType>(FnTy);
151    return proto->isVariadic();
152  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
153    return BD->isVariadic();
154  else {
155    return cast<ObjCMethodDecl>(D)->isVariadic();
156  }
157}
158
159static bool isInstanceMethod(const Decl *D) {
160  if (const CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D))
161    return MethodDecl->isInstance();
162  return false;
163}
164
165static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
166  const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
167  if (!PT)
168    return false;
169
170  ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
171  if (!Cls)
172    return false;
173
174  IdentifierInfo* ClsName = Cls->getIdentifier();
175
176  // FIXME: Should we walk the chain of classes?
177  return ClsName == &Ctx.Idents.get("NSString") ||
178         ClsName == &Ctx.Idents.get("NSMutableString");
179}
180
181static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
182  const PointerType *PT = T->getAs<PointerType>();
183  if (!PT)
184    return false;
185
186  const RecordType *RT = PT->getPointeeType()->getAs<RecordType>();
187  if (!RT)
188    return false;
189
190  const RecordDecl *RD = RT->getDecl();
191  if (RD->getTagKind() != TTK_Struct)
192    return false;
193
194  return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
195}
196
197/// \brief Check if the attribute has exactly as many args as Num. May
198/// output an error.
199static bool checkAttributeNumArgs(Sema &S, const AttributeList &Attr,
200                                  unsigned int Num) {
201  if (Attr.getNumArgs() != Num) {
202    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Num;
203    return false;
204  }
205
206  return true;
207}
208
209
210/// \brief Check if the attribute has at least as many args as Num. May
211/// output an error.
212static bool checkAttributeAtLeastNumArgs(Sema &S, const AttributeList &Attr,
213                                  unsigned int Num) {
214  if (Attr.getNumArgs() < Num) {
215    S.Diag(Attr.getLoc(), diag::err_attribute_too_few_arguments) << Num;
216    return false;
217  }
218
219  return true;
220}
221
222///
223/// \brief Check if passed in Decl is a field or potentially shared global var
224/// \return true if the Decl is a field or potentially shared global variable
225///
226static bool mayBeSharedVariable(const Decl *D) {
227  if (isa<FieldDecl>(D))
228    return true;
229  if (const VarDecl *vd = dyn_cast<VarDecl>(D))
230    return (vd->hasGlobalStorage() && !(vd->isThreadSpecified()));
231
232  return false;
233}
234
235/// \brief Check if the passed-in expression is of type int or bool.
236static bool isIntOrBool(Expr *Exp) {
237  QualType QT = Exp->getType();
238  return QT->isBooleanType() || QT->isIntegerType();
239}
240
241///
242/// \brief Check if passed in Decl is a pointer type.
243/// Note that this function may produce an error message.
244/// \return true if the Decl is a pointer type; false otherwise
245///
246static bool checkIsPointer(Sema &S, const Decl *D, const AttributeList &Attr) {
247  if (const ValueDecl *vd = dyn_cast<ValueDecl>(D)) {
248    QualType QT = vd->getType();
249    if (QT->isAnyPointerType())
250      return true;
251    S.Diag(Attr.getLoc(), diag::warn_pointer_attribute_wrong_type)
252      << Attr.getName()->getName() << QT;
253  } else {
254    S.Diag(Attr.getLoc(), diag::err_attribute_can_be_applied_only_to_value_decl)
255      << Attr.getName();
256  }
257  return false;
258}
259
260/// \brief Checks that the passed in QualType either is of RecordType or points
261/// to RecordType. Returns the relevant RecordType, null if it does not exit.
262static const RecordType *getRecordType(QualType QT) {
263  if (const RecordType *RT = QT->getAs<RecordType>())
264    return RT;
265
266  // Now check if we point to record type.
267  if (const PointerType *PT = QT->getAs<PointerType>())
268    return PT->getPointeeType()->getAs<RecordType>();
269
270  return 0;
271}
272
273/// \brief Thread Safety Analysis: Checks that the passed in RecordType
274/// resolves to a lockable object. May flag an error.
275static void checkForLockableRecord(Sema &S, Decl *D, const AttributeList &Attr,
276                                   QualType Ty) {
277  const RecordType *RT = getRecordType(Ty);
278
279  // Warn if could not get record type for this argument.
280  if (!RT) {
281    S.Diag(Attr.getLoc(), diag::warn_attribute_argument_not_class)
282      << Attr.getName() << Ty.getAsString();
283    return;
284  }
285  // Don't check for lockable if the class hasn't been defined yet.
286  if (RT->isIncompleteType())
287    return;
288  // Warn if the type is not lockable.
289  if (!RT->getDecl()->getAttr<LockableAttr>()) {
290    S.Diag(Attr.getLoc(), diag::warn_attribute_argument_not_lockable)
291      << Attr.getName() << Ty.getAsString();
292    return;
293  }
294}
295
296/// \brief Thread Safety Analysis: Checks that all attribute arguments, starting
297/// from Sidx, resolve to a lockable object. May flag an error.
298/// \param Sidx The attribute argument index to start checking with.
299/// \param ParamIdxOk Whether an argument can be indexing into a function
300/// parameter list.
301static bool checkAttrArgsAreLockableObjs(Sema &S, Decl *D,
302                                         const AttributeList &Attr,
303                                         SmallVectorImpl<Expr*> &Args,
304                                         int Sidx = 0,
305                                         bool ParamIdxOk = false) {
306  for(unsigned Idx = Sidx; Idx < Attr.getNumArgs(); ++Idx) {
307    Expr *ArgExp = Attr.getArg(Idx);
308
309    if (ArgExp->isTypeDependent()) {
310      // FIXME -- need to processs this again on template instantiation
311      Args.push_back(ArgExp);
312      continue;
313    }
314
315    QualType ArgTy = ArgExp->getType();
316
317    // First see if we can just cast to record type, or point to record type.
318    const RecordType *RT = getRecordType(ArgTy);
319
320    // Now check if we index into a record type function param.
321    if(!RT && ParamIdxOk) {
322      FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
323      IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ArgExp);
324      if(FD && IL) {
325        unsigned int NumParams = FD->getNumParams();
326        llvm::APInt ArgValue = IL->getValue();
327        uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
328        uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
329        if(!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
330          S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_range)
331            << Attr.getName() << Idx + 1 << NumParams;
332          return false;
333        }
334        ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
335      }
336    }
337
338    checkForLockableRecord(S, D, Attr, ArgTy);
339
340    Args.push_back(ArgExp);
341  }
342  return true;
343}
344
345//===----------------------------------------------------------------------===//
346// Attribute Implementations
347//===----------------------------------------------------------------------===//
348
349// FIXME: All this manual attribute parsing code is gross. At the
350// least add some helper functions to check most argument patterns (#
351// and types of args).
352
353static void handleGuardedVarAttr(Sema &S, Decl *D, const AttributeList &Attr,
354                                 bool pointer = false) {
355  assert(!Attr.isInvalid());
356
357  if (!checkAttributeNumArgs(S, Attr, 0))
358    return;
359
360  // D must be either a member field or global (potentially shared) variable.
361  if (!mayBeSharedVariable(D)) {
362    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
363      << Attr.getName() << ExpectedFieldOrGlobalVar;
364    return;
365  }
366
367  if (pointer && !checkIsPointer(S, D, Attr))
368    return;
369
370  if (pointer)
371    D->addAttr(::new (S.Context) PtGuardedVarAttr(Attr.getRange(), S.Context));
372  else
373    D->addAttr(::new (S.Context) GuardedVarAttr(Attr.getRange(), S.Context));
374}
375
376static void handleGuardedByAttr(Sema &S, Decl *D, const AttributeList &Attr,
377                                bool pointer = false) {
378  assert(!Attr.isInvalid());
379
380  if (!checkAttributeNumArgs(S, Attr, 1))
381    return;
382
383  Expr *Arg = Attr.getArg(0);
384
385  // D must be either a member field or global (potentially shared) variable.
386  if (!mayBeSharedVariable(D)) {
387    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
388      << Attr.getName() << ExpectedFieldOrGlobalVar;
389    return;
390  }
391
392  if (pointer && !checkIsPointer(S, D, Attr))
393    return;
394
395  if (!Arg->isTypeDependent()) {
396    checkForLockableRecord(S, D, Attr, Arg->getType());
397  }
398
399  if (pointer)
400    D->addAttr(::new (S.Context) PtGuardedByAttr(Attr.getRange(),
401                                                 S.Context, Arg));
402  else
403    D->addAttr(::new (S.Context) GuardedByAttr(Attr.getRange(), S.Context, Arg));
404}
405
406
407static void handleLockableAttr(Sema &S, Decl *D, const AttributeList &Attr,
408                               bool scoped = false) {
409  assert(!Attr.isInvalid());
410
411  if (!checkAttributeNumArgs(S, Attr, 0))
412    return;
413
414  // FIXME: Lockable structs for C code.
415  if (!isa<CXXRecordDecl>(D)) {
416    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
417      << Attr.getName() << ExpectedClass;
418    return;
419  }
420
421  if (scoped)
422    D->addAttr(::new (S.Context) ScopedLockableAttr(Attr.getRange(), S.Context));
423  else
424    D->addAttr(::new (S.Context) LockableAttr(Attr.getRange(), S.Context));
425}
426
427static void handleNoThreadSafetyAttr(Sema &S, Decl *D,
428                                     const AttributeList &Attr) {
429  assert(!Attr.isInvalid());
430
431  if (!checkAttributeNumArgs(S, Attr, 0))
432    return;
433
434  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
435    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
436      << Attr.getName() << ExpectedFunctionOrMethod;
437    return;
438  }
439
440  D->addAttr(::new (S.Context) NoThreadSafetyAnalysisAttr(Attr.getRange(),
441                                                          S.Context));
442}
443
444static void handleNoAddressSafetyAttr(Sema &S, Decl *D,
445                                     const AttributeList &Attr) {
446  assert(!Attr.isInvalid());
447
448  if (!checkAttributeNumArgs(S, Attr, 0))
449    return;
450
451  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
452    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
453      << Attr.getName() << ExpectedFunctionOrMethod;
454    return;
455  }
456
457  D->addAttr(::new (S.Context) NoAddressSafetyAnalysisAttr(Attr.getRange(),
458                                                          S.Context));
459}
460
461static void handleAcquireOrderAttr(Sema &S, Decl *D, const AttributeList &Attr,
462                                   bool before) {
463  assert(!Attr.isInvalid());
464
465  if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
466    return;
467
468  // D must be either a member field or global (potentially shared) variable.
469  ValueDecl *VD = dyn_cast<ValueDecl>(D);
470  if (!VD || !mayBeSharedVariable(D)) {
471    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
472      << Attr.getName() << ExpectedFieldOrGlobalVar;
473    return;
474  }
475
476  // Check that this attribute only applies to lockable types
477  QualType QT = VD->getType();
478  if (!QT->isDependentType()) {
479    const RecordType *RT = getRecordType(QT);
480    if (!RT || !RT->getDecl()->getAttr<LockableAttr>()) {
481      S.Diag(Attr.getLoc(), diag::warn_attribute_decl_not_lockable)
482              << Attr.getName();
483      return;
484    }
485  }
486
487  SmallVector<Expr*, 1> Args;
488  // check that all arguments are lockable objects
489  if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args))
490    return;
491
492  unsigned Size = Args.size();
493  assert(Size == Attr.getNumArgs());
494  Expr **StartArg = Size == 0 ? 0 : &Args[0];
495
496  if (before)
497    D->addAttr(::new (S.Context) AcquiredBeforeAttr(Attr.getRange(), S.Context,
498                                                    StartArg, Size));
499  else
500    D->addAttr(::new (S.Context) AcquiredAfterAttr(Attr.getRange(), S.Context,
501                                                   StartArg, Size));
502}
503
504static void handleLockFunAttr(Sema &S, Decl *D, const AttributeList &Attr,
505                              bool exclusive = false) {
506  assert(!Attr.isInvalid());
507
508  // zero or more arguments ok
509
510  // check that the attribute is applied to a function
511  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
512    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
513      << Attr.getName() << ExpectedFunctionOrMethod;
514    return;
515  }
516
517  // check that all arguments are lockable objects
518  SmallVector<Expr*, 1> Args;
519  if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true))
520    return;
521
522  unsigned Size = Args.size();
523  assert(Size == Attr.getNumArgs());
524  Expr **StartArg = Size == 0 ? 0 : &Args[0];
525
526  if (exclusive)
527    D->addAttr(::new (S.Context) ExclusiveLockFunctionAttr(Attr.getRange(),
528                                                           S.Context, StartArg,
529                                                           Size));
530  else
531    D->addAttr(::new (S.Context) SharedLockFunctionAttr(Attr.getRange(),
532                                                        S.Context, StartArg,
533                                                        Size));
534}
535
536static void handleTrylockFunAttr(Sema &S, Decl *D, const AttributeList &Attr,
537                                 bool exclusive = false) {
538  assert(!Attr.isInvalid());
539
540  if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
541    return;
542
543
544  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
545    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
546      << Attr.getName() << ExpectedFunctionOrMethod;
547    return;
548  }
549
550  if (!isIntOrBool(Attr.getArg(0))) {
551    S.Diag(Attr.getLoc(), diag::err_attribute_first_argument_not_int_or_bool)
552        << Attr.getName();
553    return;
554  }
555
556  SmallVector<Expr*, 2> Args;
557  // check that all arguments are lockable objects
558  if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args, 1))
559    return;
560
561  unsigned Size = Args.size();
562  Expr **StartArg = Size == 0 ? 0 : &Args[0];
563
564  if (exclusive)
565    D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(Attr.getRange(),
566                                                              S.Context,
567                                                              Attr.getArg(0),
568                                                              StartArg, Size));
569  else
570    D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(Attr.getRange(),
571                                                           S.Context,
572                                                           Attr.getArg(0),
573                                                           StartArg, Size));
574}
575
576static void handleLocksRequiredAttr(Sema &S, Decl *D, const AttributeList &Attr,
577                                    bool exclusive = false) {
578  assert(!Attr.isInvalid());
579
580  if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
581    return;
582
583  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
584    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
585      << Attr.getName() << ExpectedFunctionOrMethod;
586    return;
587  }
588
589  // check that all arguments are lockable objects
590  SmallVector<Expr*, 1> Args;
591  if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args))
592    return;
593
594  unsigned Size = Args.size();
595  assert(Size == Attr.getNumArgs());
596  Expr **StartArg = Size == 0 ? 0 : &Args[0];
597
598  if (exclusive)
599    D->addAttr(::new (S.Context) ExclusiveLocksRequiredAttr(Attr.getRange(),
600                                                            S.Context, StartArg,
601                                                            Size));
602  else
603    D->addAttr(::new (S.Context) SharedLocksRequiredAttr(Attr.getRange(),
604                                                         S.Context, StartArg,
605                                                         Size));
606}
607
608static void handleUnlockFunAttr(Sema &S, Decl *D,
609                                const AttributeList &Attr) {
610  assert(!Attr.isInvalid());
611
612  // zero or more arguments ok
613
614  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
615    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
616      << Attr.getName() << ExpectedFunctionOrMethod;
617    return;
618  }
619
620  // check that all arguments are lockable objects
621  SmallVector<Expr*, 1> Args;
622  if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true))
623    return;
624
625  unsigned Size = Args.size();
626  assert(Size == Attr.getNumArgs());
627  Expr **StartArg = Size == 0 ? 0 : &Args[0];
628
629  D->addAttr(::new (S.Context) UnlockFunctionAttr(Attr.getRange(), S.Context,
630                                                  StartArg, Size));
631}
632
633static void handleLockReturnedAttr(Sema &S, Decl *D,
634                                   const AttributeList &Attr) {
635  assert(!Attr.isInvalid());
636
637  if (!checkAttributeNumArgs(S, Attr, 1))
638    return;
639  Expr *Arg = Attr.getArg(0);
640
641  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
642    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
643      << Attr.getName() << ExpectedFunctionOrMethod;
644    return;
645  }
646
647  if (Arg->isTypeDependent())
648    return;
649
650  // check that the argument is lockable object
651  checkForLockableRecord(S, D, Attr, Arg->getType());
652
653  D->addAttr(::new (S.Context) LockReturnedAttr(Attr.getRange(), S.Context, Arg));
654}
655
656static void handleLocksExcludedAttr(Sema &S, Decl *D,
657                                    const AttributeList &Attr) {
658  assert(!Attr.isInvalid());
659
660  if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
661    return;
662
663  if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
664    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
665      << Attr.getName() << ExpectedFunctionOrMethod;
666    return;
667  }
668
669  // check that all arguments are lockable objects
670  SmallVector<Expr*, 1> Args;
671  if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args))
672    return;
673
674  unsigned Size = Args.size();
675  assert(Size == Attr.getNumArgs());
676  Expr **StartArg = Size == 0 ? 0 : &Args[0];
677
678  D->addAttr(::new (S.Context) LocksExcludedAttr(Attr.getRange(), S.Context,
679                                                 StartArg, Size));
680}
681
682
683static void handleExtVectorTypeAttr(Sema &S, Scope *scope, Decl *D,
684                                    const AttributeList &Attr) {
685  TypedefNameDecl *tDecl = dyn_cast<TypedefNameDecl>(D);
686  if (tDecl == 0) {
687    S.Diag(Attr.getLoc(), diag::err_typecheck_ext_vector_not_typedef);
688    return;
689  }
690
691  QualType curType = tDecl->getUnderlyingType();
692
693  Expr *sizeExpr;
694
695  // Special case where the argument is a template id.
696  if (Attr.getParameterName()) {
697    CXXScopeSpec SS;
698    SourceLocation TemplateKWLoc;
699    UnqualifiedId id;
700    id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
701
702    ExprResult Size = S.ActOnIdExpression(scope, SS, TemplateKWLoc, id,
703                                          false, false);
704    if (Size.isInvalid())
705      return;
706
707    sizeExpr = Size.get();
708  } else {
709    // check the attribute arguments.
710    if (!checkAttributeNumArgs(S, Attr, 1))
711      return;
712
713    sizeExpr = Attr.getArg(0);
714  }
715
716  // Instantiate/Install the vector type, and let Sema build the type for us.
717  // This will run the reguired checks.
718  QualType T = S.BuildExtVectorType(curType, sizeExpr, Attr.getLoc());
719  if (!T.isNull()) {
720    // FIXME: preserve the old source info.
721    tDecl->setTypeSourceInfo(S.Context.getTrivialTypeSourceInfo(T));
722
723    // Remember this typedef decl, we will need it later for diagnostics.
724    S.ExtVectorDecls.push_back(tDecl);
725  }
726}
727
728static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
729  // check the attribute arguments.
730  if (!checkAttributeNumArgs(S, Attr, 0))
731    return;
732
733  if (TagDecl *TD = dyn_cast<TagDecl>(D))
734    TD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context));
735  else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
736    // If the alignment is less than or equal to 8 bits, the packed attribute
737    // has no effect.
738    if (!FD->getType()->isIncompleteType() &&
739        S.Context.getTypeAlign(FD->getType()) <= 8)
740      S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
741        << Attr.getName() << FD->getType();
742    else
743      FD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context));
744  } else
745    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
746}
747
748static void handleMsStructAttr(Sema &S, Decl *D, const AttributeList &Attr) {
749  if (TagDecl *TD = dyn_cast<TagDecl>(D))
750    TD->addAttr(::new (S.Context) MsStructAttr(Attr.getRange(), S.Context));
751  else
752    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
753}
754
755static void handleIBAction(Sema &S, Decl *D, const AttributeList &Attr) {
756  // check the attribute arguments.
757  if (!checkAttributeNumArgs(S, Attr, 0))
758    return;
759
760  // The IBAction attributes only apply to instance methods.
761  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
762    if (MD->isInstanceMethod()) {
763      D->addAttr(::new (S.Context) IBActionAttr(Attr.getRange(), S.Context));
764      return;
765    }
766
767  S.Diag(Attr.getLoc(), diag::warn_attribute_ibaction) << Attr.getName();
768}
769
770static bool checkIBOutletCommon(Sema &S, Decl *D, const AttributeList &Attr) {
771  // The IBOutlet/IBOutletCollection attributes only apply to instance
772  // variables or properties of Objective-C classes.  The outlet must also
773  // have an object reference type.
774  if (const ObjCIvarDecl *VD = dyn_cast<ObjCIvarDecl>(D)) {
775    if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
776      S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
777        << Attr.getName() << VD->getType() << 0;
778      return false;
779    }
780  }
781  else if (const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
782    if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
783      S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
784        << Attr.getName() << PD->getType() << 1;
785      return false;
786    }
787  }
788  else {
789    S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName();
790    return false;
791  }
792
793  return true;
794}
795
796static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &Attr) {
797  // check the attribute arguments.
798  if (!checkAttributeNumArgs(S, Attr, 0))
799    return;
800
801  if (!checkIBOutletCommon(S, D, Attr))
802    return;
803
804  D->addAttr(::new (S.Context) IBOutletAttr(Attr.getRange(), S.Context));
805}
806
807static void handleIBOutletCollection(Sema &S, Decl *D,
808                                     const AttributeList &Attr) {
809
810  // The iboutletcollection attribute can have zero or one arguments.
811  if (Attr.getParameterName() && Attr.getNumArgs() > 0) {
812    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
813    return;
814  }
815
816  if (!checkIBOutletCommon(S, D, Attr))
817    return;
818
819  IdentifierInfo *II = Attr.getParameterName();
820  if (!II)
821    II = &S.Context.Idents.get("NSObject");
822
823  ParsedType TypeRep = S.getTypeName(*II, Attr.getLoc(),
824                        S.getScopeForContext(D->getDeclContext()->getParent()));
825  if (!TypeRep) {
826    S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II;
827    return;
828  }
829  QualType QT = TypeRep.get();
830  // Diagnose use of non-object type in iboutletcollection attribute.
831  // FIXME. Gnu attribute extension ignores use of builtin types in
832  // attributes. So, __attribute__((iboutletcollection(char))) will be
833  // treated as __attribute__((iboutletcollection())).
834  if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
835    S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II;
836    return;
837  }
838  D->addAttr(::new (S.Context) IBOutletCollectionAttr(Attr.getRange(),S.Context,
839                                                   QT, Attr.getParameterLoc()));
840}
841
842static void possibleTransparentUnionPointerType(QualType &T) {
843  if (const RecordType *UT = T->getAsUnionType())
844    if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
845      RecordDecl *UD = UT->getDecl();
846      for (RecordDecl::field_iterator it = UD->field_begin(),
847           itend = UD->field_end(); it != itend; ++it) {
848        QualType QT = it->getType();
849        if (QT->isAnyPointerType() || QT->isBlockPointerType()) {
850          T = QT;
851          return;
852        }
853      }
854    }
855}
856
857static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &Attr) {
858  // GCC ignores the nonnull attribute on K&R style function prototypes, so we
859  // ignore it as well
860  if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
861    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
862      << Attr.getName() << ExpectedFunction;
863    return;
864  }
865
866  // In C++ the implicit 'this' function parameter also counts, and they are
867  // counted from one.
868  bool HasImplicitThisParam = isInstanceMethod(D);
869  unsigned NumArgs  = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
870
871  // The nonnull attribute only applies to pointers.
872  SmallVector<unsigned, 10> NonNullArgs;
873
874  for (AttributeList::arg_iterator I=Attr.arg_begin(),
875                                   E=Attr.arg_end(); I!=E; ++I) {
876
877
878    // The argument must be an integer constant expression.
879    Expr *Ex = *I;
880    llvm::APSInt ArgNum(32);
881    if (Ex->isTypeDependent() || Ex->isValueDependent() ||
882        !Ex->isIntegerConstantExpr(ArgNum, S.Context)) {
883      S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
884        << "nonnull" << Ex->getSourceRange();
885      return;
886    }
887
888    unsigned x = (unsigned) ArgNum.getZExtValue();
889
890    if (x < 1 || x > NumArgs) {
891      S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
892       << "nonnull" << I.getArgNum() << Ex->getSourceRange();
893      return;
894    }
895
896    --x;
897    if (HasImplicitThisParam) {
898      if (x == 0) {
899        S.Diag(Attr.getLoc(),
900               diag::err_attribute_invalid_implicit_this_argument)
901          << "nonnull" << Ex->getSourceRange();
902        return;
903      }
904      --x;
905    }
906
907    // Is the function argument a pointer type?
908    QualType T = getFunctionOrMethodArgType(D, x).getNonReferenceType();
909    possibleTransparentUnionPointerType(T);
910
911    if (!T->isAnyPointerType() && !T->isBlockPointerType()) {
912      // FIXME: Should also highlight argument in decl.
913      S.Diag(Attr.getLoc(), diag::warn_nonnull_pointers_only)
914        << "nonnull" << Ex->getSourceRange();
915      continue;
916    }
917
918    NonNullArgs.push_back(x);
919  }
920
921  // If no arguments were specified to __attribute__((nonnull)) then all pointer
922  // arguments have a nonnull attribute.
923  if (NonNullArgs.empty()) {
924    for (unsigned I = 0, E = getFunctionOrMethodNumArgs(D); I != E; ++I) {
925      QualType T = getFunctionOrMethodArgType(D, I).getNonReferenceType();
926      possibleTransparentUnionPointerType(T);
927      if (T->isAnyPointerType() || T->isBlockPointerType())
928        NonNullArgs.push_back(I);
929    }
930
931    // No pointer arguments?
932    if (NonNullArgs.empty()) {
933      // Warn the trivial case only if attribute is not coming from a
934      // macro instantiation.
935      if (Attr.getLoc().isFileID())
936        S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers);
937      return;
938    }
939  }
940
941  unsigned* start = &NonNullArgs[0];
942  unsigned size = NonNullArgs.size();
943  llvm::array_pod_sort(start, start + size);
944  D->addAttr(::new (S.Context) NonNullAttr(Attr.getRange(), S.Context, start,
945                                           size));
946}
947
948static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) {
949  // This attribute must be applied to a function declaration.
950  // The first argument to the attribute must be a string,
951  // the name of the resource, for example "malloc".
952  // The following arguments must be argument indexes, the arguments must be
953  // of integer type for Returns, otherwise of pointer type.
954  // The difference between Holds and Takes is that a pointer may still be used
955  // after being held.  free() should be __attribute((ownership_takes)), whereas
956  // a list append function may well be __attribute((ownership_holds)).
957
958  if (!AL.getParameterName()) {
959    S.Diag(AL.getLoc(), diag::err_attribute_argument_n_not_string)
960        << AL.getName()->getName() << 1;
961    return;
962  }
963  // Figure out our Kind, and check arguments while we're at it.
964  OwnershipAttr::OwnershipKind K;
965  switch (AL.getKind()) {
966  case AttributeList::AT_ownership_takes:
967    K = OwnershipAttr::Takes;
968    if (AL.getNumArgs() < 1) {
969      S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
970      return;
971    }
972    break;
973  case AttributeList::AT_ownership_holds:
974    K = OwnershipAttr::Holds;
975    if (AL.getNumArgs() < 1) {
976      S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
977      return;
978    }
979    break;
980  case AttributeList::AT_ownership_returns:
981    K = OwnershipAttr::Returns;
982    if (AL.getNumArgs() > 1) {
983      S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
984          << AL.getNumArgs() + 1;
985      return;
986    }
987    break;
988  default:
989    // This should never happen given how we are called.
990    llvm_unreachable("Unknown ownership attribute");
991  }
992
993  if (!isFunction(D) || !hasFunctionProto(D)) {
994    S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
995      << AL.getName() << ExpectedFunction;
996    return;
997  }
998
999  // In C++ the implicit 'this' function parameter also counts, and they are
1000  // counted from one.
1001  bool HasImplicitThisParam = isInstanceMethod(D);
1002  unsigned NumArgs  = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
1003
1004  StringRef Module = AL.getParameterName()->getName();
1005
1006  // Normalize the argument, __foo__ becomes foo.
1007  if (Module.startswith("__") && Module.endswith("__"))
1008    Module = Module.substr(2, Module.size() - 4);
1009
1010  SmallVector<unsigned, 10> OwnershipArgs;
1011
1012  for (AttributeList::arg_iterator I = AL.arg_begin(), E = AL.arg_end(); I != E;
1013       ++I) {
1014
1015    Expr *IdxExpr = *I;
1016    llvm::APSInt ArgNum(32);
1017    if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent()
1018        || !IdxExpr->isIntegerConstantExpr(ArgNum, S.Context)) {
1019      S.Diag(AL.getLoc(), diag::err_attribute_argument_not_int)
1020          << AL.getName()->getName() << IdxExpr->getSourceRange();
1021      continue;
1022    }
1023
1024    unsigned x = (unsigned) ArgNum.getZExtValue();
1025
1026    if (x > NumArgs || x < 1) {
1027      S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
1028          << AL.getName()->getName() << x << IdxExpr->getSourceRange();
1029      continue;
1030    }
1031    --x;
1032    if (HasImplicitThisParam) {
1033      if (x == 0) {
1034        S.Diag(AL.getLoc(), diag::err_attribute_invalid_implicit_this_argument)
1035          << "ownership" << IdxExpr->getSourceRange();
1036        return;
1037      }
1038      --x;
1039    }
1040
1041    switch (K) {
1042    case OwnershipAttr::Takes:
1043    case OwnershipAttr::Holds: {
1044      // Is the function argument a pointer type?
1045      QualType T = getFunctionOrMethodArgType(D, x);
1046      if (!T->isAnyPointerType() && !T->isBlockPointerType()) {
1047        // FIXME: Should also highlight argument in decl.
1048        S.Diag(AL.getLoc(), diag::err_ownership_type)
1049            << ((K==OwnershipAttr::Takes)?"ownership_takes":"ownership_holds")
1050            << "pointer"
1051            << IdxExpr->getSourceRange();
1052        continue;
1053      }
1054      break;
1055    }
1056    case OwnershipAttr::Returns: {
1057      if (AL.getNumArgs() > 1) {
1058          // Is the function argument an integer type?
1059          Expr *IdxExpr = AL.getArg(0);
1060          llvm::APSInt ArgNum(32);
1061          if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent()
1062              || !IdxExpr->isIntegerConstantExpr(ArgNum, S.Context)) {
1063            S.Diag(AL.getLoc(), diag::err_ownership_type)
1064                << "ownership_returns" << "integer"
1065                << IdxExpr->getSourceRange();
1066            return;
1067          }
1068      }
1069      break;
1070    }
1071    } // switch
1072
1073    // Check we don't have a conflict with another ownership attribute.
1074    for (specific_attr_iterator<OwnershipAttr>
1075          i = D->specific_attr_begin<OwnershipAttr>(),
1076          e = D->specific_attr_end<OwnershipAttr>();
1077        i != e; ++i) {
1078      if ((*i)->getOwnKind() != K) {
1079        for (const unsigned *I = (*i)->args_begin(), *E = (*i)->args_end();
1080             I!=E; ++I) {
1081          if (x == *I) {
1082            S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
1083                << AL.getName()->getName() << "ownership_*";
1084          }
1085        }
1086      }
1087    }
1088    OwnershipArgs.push_back(x);
1089  }
1090
1091  unsigned* start = OwnershipArgs.data();
1092  unsigned size = OwnershipArgs.size();
1093  llvm::array_pod_sort(start, start + size);
1094
1095  if (K != OwnershipAttr::Returns && OwnershipArgs.empty()) {
1096    S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
1097    return;
1098  }
1099
1100  D->addAttr(::new (S.Context) OwnershipAttr(AL.getLoc(), S.Context, K, Module,
1101                                             start, size));
1102}
1103
1104/// Whether this declaration has internal linkage for the purposes of
1105/// things that want to complain about things not have internal linkage.
1106static bool hasEffectivelyInternalLinkage(NamedDecl *D) {
1107  switch (D->getLinkage()) {
1108  case NoLinkage:
1109  case InternalLinkage:
1110    return true;
1111
1112  // Template instantiations that go from external to unique-external
1113  // shouldn't get diagnosed.
1114  case UniqueExternalLinkage:
1115    return true;
1116
1117  case ExternalLinkage:
1118    return false;
1119  }
1120  llvm_unreachable("unknown linkage kind!");
1121}
1122
1123static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1124  // Check the attribute arguments.
1125  if (Attr.getNumArgs() > 1) {
1126    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1127    return;
1128  }
1129
1130  if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) {
1131    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1132      << Attr.getName() << ExpectedVariableOrFunction;
1133    return;
1134  }
1135
1136  NamedDecl *nd = cast<NamedDecl>(D);
1137
1138  // gcc rejects
1139  // class c {
1140  //   static int a __attribute__((weakref ("v2")));
1141  //   static int b() __attribute__((weakref ("f3")));
1142  // };
1143  // and ignores the attributes of
1144  // void f(void) {
1145  //   static int a __attribute__((weakref ("v2")));
1146  // }
1147  // we reject them
1148  const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1149  if (!Ctx->isFileContext()) {
1150    S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_global_context) <<
1151        nd->getNameAsString();
1152    return;
1153  }
1154
1155  // The GCC manual says
1156  //
1157  // At present, a declaration to which `weakref' is attached can only
1158  // be `static'.
1159  //
1160  // It also says
1161  //
1162  // Without a TARGET,
1163  // given as an argument to `weakref' or to `alias', `weakref' is
1164  // equivalent to `weak'.
1165  //
1166  // gcc 4.4.1 will accept
1167  // int a7 __attribute__((weakref));
1168  // as
1169  // int a7 __attribute__((weak));
1170  // This looks like a bug in gcc. We reject that for now. We should revisit
1171  // it if this behaviour is actually used.
1172
1173  if (!hasEffectivelyInternalLinkage(nd)) {
1174    S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_static);
1175    return;
1176  }
1177
1178  // GCC rejects
1179  // static ((alias ("y"), weakref)).
1180  // Should we? How to check that weakref is before or after alias?
1181
1182  if (Attr.getNumArgs() == 1) {
1183    Expr *Arg = Attr.getArg(0);
1184    Arg = Arg->IgnoreParenCasts();
1185    StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
1186
1187    if (!Str || !Str->isAscii()) {
1188      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1189          << "weakref" << 1;
1190      return;
1191    }
1192    // GCC will accept anything as the argument of weakref. Should we
1193    // check for an existing decl?
1194    D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context,
1195                                           Str->getString()));
1196  }
1197
1198  D->addAttr(::new (S.Context) WeakRefAttr(Attr.getRange(), S.Context));
1199}
1200
1201static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1202  // check the attribute arguments.
1203  if (Attr.getNumArgs() != 1) {
1204    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1205    return;
1206  }
1207
1208  Expr *Arg = Attr.getArg(0);
1209  Arg = Arg->IgnoreParenCasts();
1210  StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
1211
1212  if (!Str || !Str->isAscii()) {
1213    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1214      << "alias" << 1;
1215    return;
1216  }
1217
1218  if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
1219    S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_darwin);
1220    return;
1221  }
1222
1223  // FIXME: check if target symbol exists in current file
1224
1225  D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context,
1226                                         Str->getString()));
1227}
1228
1229static void handleNakedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1230  // Check the attribute arguments.
1231  if (!checkAttributeNumArgs(S, Attr, 0))
1232    return;
1233
1234  if (!isa<FunctionDecl>(D)) {
1235    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1236      << Attr.getName() << ExpectedFunction;
1237    return;
1238  }
1239
1240  D->addAttr(::new (S.Context) NakedAttr(Attr.getRange(), S.Context));
1241}
1242
1243static void handleAlwaysInlineAttr(Sema &S, Decl *D,
1244                                   const AttributeList &Attr) {
1245  // Check the attribute arguments.
1246  if (Attr.hasParameterOrArguments()) {
1247    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1248    return;
1249  }
1250
1251  if (!isa<FunctionDecl>(D)) {
1252    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1253      << Attr.getName() << ExpectedFunction;
1254    return;
1255  }
1256
1257  D->addAttr(::new (S.Context) AlwaysInlineAttr(Attr.getRange(), S.Context));
1258}
1259
1260static void handleMallocAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1261  // Check the attribute arguments.
1262  if (Attr.hasParameterOrArguments()) {
1263    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1264    return;
1265  }
1266
1267  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1268    QualType RetTy = FD->getResultType();
1269    if (RetTy->isAnyPointerType() || RetTy->isBlockPointerType()) {
1270      D->addAttr(::new (S.Context) MallocAttr(Attr.getRange(), S.Context));
1271      return;
1272    }
1273  }
1274
1275  S.Diag(Attr.getLoc(), diag::warn_attribute_malloc_pointer_only);
1276}
1277
1278static void handleMayAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1279  // check the attribute arguments.
1280  if (!checkAttributeNumArgs(S, Attr, 0))
1281    return;
1282
1283  D->addAttr(::new (S.Context) MayAliasAttr(Attr.getRange(), S.Context));
1284}
1285
1286static void handleNoCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1287  assert(!Attr.isInvalid());
1288  if (isa<VarDecl>(D))
1289    D->addAttr(::new (S.Context) NoCommonAttr(Attr.getRange(), S.Context));
1290  else
1291    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1292      << Attr.getName() << ExpectedVariable;
1293}
1294
1295static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1296  assert(!Attr.isInvalid());
1297  if (isa<VarDecl>(D))
1298    D->addAttr(::new (S.Context) CommonAttr(Attr.getRange(), S.Context));
1299  else
1300    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1301      << Attr.getName() << ExpectedVariable;
1302}
1303
1304static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &attr) {
1305  if (hasDeclarator(D)) return;
1306
1307  if (S.CheckNoReturnAttr(attr)) return;
1308
1309  if (!isa<ObjCMethodDecl>(D)) {
1310    S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1311      << attr.getName() << ExpectedFunctionOrMethod;
1312    return;
1313  }
1314
1315  D->addAttr(::new (S.Context) NoReturnAttr(attr.getRange(), S.Context));
1316}
1317
1318bool Sema::CheckNoReturnAttr(const AttributeList &attr) {
1319  if (attr.hasParameterOrArguments()) {
1320    Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1321    attr.setInvalid();
1322    return true;
1323  }
1324
1325  return false;
1326}
1327
1328static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D,
1329                                       const AttributeList &Attr) {
1330
1331  // The checking path for 'noreturn' and 'analyzer_noreturn' are different
1332  // because 'analyzer_noreturn' does not impact the type.
1333
1334  if(!checkAttributeNumArgs(S, Attr, 0))
1335      return;
1336
1337  if (!isFunctionOrMethod(D) && !isa<BlockDecl>(D)) {
1338    ValueDecl *VD = dyn_cast<ValueDecl>(D);
1339    if (VD == 0 || (!VD->getType()->isBlockPointerType()
1340                    && !VD->getType()->isFunctionPointerType())) {
1341      S.Diag(Attr.getLoc(),
1342             Attr.isCXX0XAttribute() ? diag::err_attribute_wrong_decl_type
1343             : diag::warn_attribute_wrong_decl_type)
1344        << Attr.getName() << ExpectedFunctionMethodOrBlock;
1345      return;
1346    }
1347  }
1348
1349  D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(Attr.getRange(), S.Context));
1350}
1351
1352// PS3 PPU-specific.
1353static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1354/*
1355  Returning a Vector Class in Registers
1356
1357  According to the PPU ABI specifications, a class with a single member of
1358  vector type is returned in memory when used as the return value of a function.
1359  This results in inefficient code when implementing vector classes. To return
1360  the value in a single vector register, add the vecreturn attribute to the
1361  class definition. This attribute is also applicable to struct types.
1362
1363  Example:
1364
1365  struct Vector
1366  {
1367    __vector float xyzw;
1368  } __attribute__((vecreturn));
1369
1370  Vector Add(Vector lhs, Vector rhs)
1371  {
1372    Vector result;
1373    result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
1374    return result; // This will be returned in a register
1375  }
1376*/
1377  if (!isa<RecordDecl>(D)) {
1378    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1379      << Attr.getName() << ExpectedClass;
1380    return;
1381  }
1382
1383  if (D->getAttr<VecReturnAttr>()) {
1384    S.Diag(Attr.getLoc(), diag::err_repeat_attribute) << "vecreturn";
1385    return;
1386  }
1387
1388  RecordDecl *record = cast<RecordDecl>(D);
1389  int count = 0;
1390
1391  if (!isa<CXXRecordDecl>(record)) {
1392    S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
1393    return;
1394  }
1395
1396  if (!cast<CXXRecordDecl>(record)->isPOD()) {
1397    S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
1398    return;
1399  }
1400
1401  for (RecordDecl::field_iterator iter = record->field_begin();
1402       iter != record->field_end(); iter++) {
1403    if ((count == 1) || !iter->getType()->isVectorType()) {
1404      S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
1405      return;
1406    }
1407    count++;
1408  }
1409
1410  D->addAttr(::new (S.Context) VecReturnAttr(Attr.getRange(), S.Context));
1411}
1412
1413static void handleDependencyAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1414  if (!isFunctionOrMethod(D) && !isa<ParmVarDecl>(D)) {
1415    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1416      << Attr.getName() << ExpectedFunctionMethodOrParameter;
1417    return;
1418  }
1419  // FIXME: Actually store the attribute on the declaration
1420}
1421
1422static void handleUnusedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1423  // check the attribute arguments.
1424  if (Attr.hasParameterOrArguments()) {
1425    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1426    return;
1427  }
1428
1429  if (!isa<VarDecl>(D) && !isa<ObjCIvarDecl>(D) && !isFunctionOrMethod(D) &&
1430      !isa<TypeDecl>(D) && !isa<LabelDecl>(D)) {
1431    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1432      << Attr.getName() << ExpectedVariableFunctionOrLabel;
1433    return;
1434  }
1435
1436  D->addAttr(::new (S.Context) UnusedAttr(Attr.getRange(), S.Context));
1437}
1438
1439static void handleReturnsTwiceAttr(Sema &S, Decl *D,
1440                                   const AttributeList &Attr) {
1441  // check the attribute arguments.
1442  if (Attr.hasParameterOrArguments()) {
1443    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1444    return;
1445  }
1446
1447  if (!isa<FunctionDecl>(D)) {
1448    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1449      << Attr.getName() << ExpectedFunction;
1450    return;
1451  }
1452
1453  D->addAttr(::new (S.Context) ReturnsTwiceAttr(Attr.getRange(), S.Context));
1454}
1455
1456static void handleUsedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1457  // check the attribute arguments.
1458  if (Attr.hasParameterOrArguments()) {
1459    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1460    return;
1461  }
1462
1463  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1464    if (VD->hasLocalStorage() || VD->hasExternalStorage()) {
1465      S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "used";
1466      return;
1467    }
1468  } else if (!isFunctionOrMethod(D)) {
1469    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1470      << Attr.getName() << ExpectedVariableOrFunction;
1471    return;
1472  }
1473
1474  D->addAttr(::new (S.Context) UsedAttr(Attr.getRange(), S.Context));
1475}
1476
1477static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1478  // check the attribute arguments.
1479  if (Attr.getNumArgs() > 1) {
1480    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
1481    return;
1482  }
1483
1484  int priority = 65535; // FIXME: Do not hardcode such constants.
1485  if (Attr.getNumArgs() > 0) {
1486    Expr *E = Attr.getArg(0);
1487    llvm::APSInt Idx(32);
1488    if (E->isTypeDependent() || E->isValueDependent() ||
1489        !E->isIntegerConstantExpr(Idx, S.Context)) {
1490      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
1491        << "constructor" << 1 << E->getSourceRange();
1492      return;
1493    }
1494    priority = Idx.getZExtValue();
1495  }
1496
1497  if (!isa<FunctionDecl>(D)) {
1498    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1499      << Attr.getName() << ExpectedFunction;
1500    return;
1501  }
1502
1503  D->addAttr(::new (S.Context) ConstructorAttr(Attr.getRange(), S.Context,
1504                                               priority));
1505}
1506
1507static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1508  // check the attribute arguments.
1509  if (Attr.getNumArgs() > 1) {
1510    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
1511    return;
1512  }
1513
1514  int priority = 65535; // FIXME: Do not hardcode such constants.
1515  if (Attr.getNumArgs() > 0) {
1516    Expr *E = Attr.getArg(0);
1517    llvm::APSInt Idx(32);
1518    if (E->isTypeDependent() || E->isValueDependent() ||
1519        !E->isIntegerConstantExpr(Idx, S.Context)) {
1520      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
1521        << "destructor" << 1 << E->getSourceRange();
1522      return;
1523    }
1524    priority = Idx.getZExtValue();
1525  }
1526
1527  if (!isa<FunctionDecl>(D)) {
1528    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1529      << Attr.getName() << ExpectedFunction;
1530    return;
1531  }
1532
1533  D->addAttr(::new (S.Context) DestructorAttr(Attr.getRange(), S.Context,
1534                                              priority));
1535}
1536
1537static void handleDeprecatedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1538  unsigned NumArgs = Attr.getNumArgs();
1539  if (NumArgs > 1) {
1540    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
1541    return;
1542  }
1543
1544  // Handle the case where deprecated attribute has a text message.
1545  StringRef Str;
1546  if (NumArgs == 1) {
1547    StringLiteral *SE = dyn_cast<StringLiteral>(Attr.getArg(0));
1548    if (!SE) {
1549      S.Diag(Attr.getArg(0)->getLocStart(), diag::err_attribute_not_string)
1550        << "deprecated";
1551      return;
1552    }
1553    Str = SE->getString();
1554  }
1555
1556  D->addAttr(::new (S.Context) DeprecatedAttr(Attr.getRange(), S.Context, Str));
1557}
1558
1559static void handleUnavailableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1560  unsigned NumArgs = Attr.getNumArgs();
1561  if (NumArgs > 1) {
1562    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
1563    return;
1564  }
1565
1566  // Handle the case where unavailable attribute has a text message.
1567  StringRef Str;
1568  if (NumArgs == 1) {
1569    StringLiteral *SE = dyn_cast<StringLiteral>(Attr.getArg(0));
1570    if (!SE) {
1571      S.Diag(Attr.getArg(0)->getLocStart(),
1572             diag::err_attribute_not_string) << "unavailable";
1573      return;
1574    }
1575    Str = SE->getString();
1576  }
1577  D->addAttr(::new (S.Context) UnavailableAttr(Attr.getRange(), S.Context, Str));
1578}
1579
1580static void handleArcWeakrefUnavailableAttr(Sema &S, Decl *D,
1581                                            const AttributeList &Attr) {
1582  unsigned NumArgs = Attr.getNumArgs();
1583  if (NumArgs > 0) {
1584    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0;
1585    return;
1586  }
1587
1588  D->addAttr(::new (S.Context) ArcWeakrefUnavailableAttr(
1589                                          Attr.getRange(), S.Context));
1590}
1591
1592static void handleObjCRootClassAttr(Sema &S, Decl *D,
1593                                    const AttributeList &Attr) {
1594  if (!isa<ObjCInterfaceDecl>(D)) {
1595    S.Diag(Attr.getLoc(), diag::err_attribute_requires_objc_interface);
1596    return;
1597  }
1598
1599  unsigned NumArgs = Attr.getNumArgs();
1600  if (NumArgs > 0) {
1601    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0;
1602    return;
1603  }
1604
1605  D->addAttr(::new (S.Context) ObjCRootClassAttr(Attr.getRange(), S.Context));
1606}
1607
1608static void handleObjCRequiresPropertyDefsAttr(Sema &S, Decl *D,
1609                                            const AttributeList &Attr) {
1610  if (!isa<ObjCInterfaceDecl>(D)) {
1611    S.Diag(Attr.getLoc(), diag::err_suppress_autosynthesis);
1612    return;
1613  }
1614
1615  unsigned NumArgs = Attr.getNumArgs();
1616  if (NumArgs > 0) {
1617    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0;
1618    return;
1619  }
1620
1621  D->addAttr(::new (S.Context) ObjCRequiresPropertyDefsAttr(
1622                                 Attr.getRange(), S.Context));
1623}
1624
1625static void handleAvailabilityAttr(Sema &S, Decl *D,
1626                                   const AttributeList &Attr) {
1627  IdentifierInfo *Platform = Attr.getParameterName();
1628  SourceLocation PlatformLoc = Attr.getParameterLoc();
1629
1630  StringRef PlatformName
1631    = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
1632  if (PlatformName.empty()) {
1633    S.Diag(PlatformLoc, diag::warn_availability_unknown_platform)
1634      << Platform;
1635
1636    PlatformName = Platform->getName();
1637  }
1638
1639  AvailabilityChange Introduced = Attr.getAvailabilityIntroduced();
1640  AvailabilityChange Deprecated = Attr.getAvailabilityDeprecated();
1641  AvailabilityChange Obsoleted = Attr.getAvailabilityObsoleted();
1642  bool IsUnavailable = Attr.getUnavailableLoc().isValid();
1643
1644  // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
1645  // of these steps are needed).
1646  if (Introduced.isValid() && Deprecated.isValid() &&
1647      !(Introduced.Version <= Deprecated.Version)) {
1648    S.Diag(Introduced.KeywordLoc, diag::warn_availability_version_ordering)
1649      << 1 << PlatformName << Deprecated.Version.getAsString()
1650      << 0 << Introduced.Version.getAsString();
1651    return;
1652  }
1653
1654  if (Introduced.isValid() && Obsoleted.isValid() &&
1655      !(Introduced.Version <= Obsoleted.Version)) {
1656    S.Diag(Introduced.KeywordLoc, diag::warn_availability_version_ordering)
1657      << 2 << PlatformName << Obsoleted.Version.getAsString()
1658      << 0 << Introduced.Version.getAsString();
1659    return;
1660  }
1661
1662  if (Deprecated.isValid() && Obsoleted.isValid() &&
1663      !(Deprecated.Version <= Obsoleted.Version)) {
1664    S.Diag(Deprecated.KeywordLoc, diag::warn_availability_version_ordering)
1665      << 2 << PlatformName << Obsoleted.Version.getAsString()
1666      << 1 << Deprecated.Version.getAsString();
1667    return;
1668  }
1669
1670  StringRef Str;
1671  const StringLiteral *SE =
1672    dyn_cast_or_null<const StringLiteral>(Attr.getMessageExpr());
1673  if (SE)
1674    Str = SE->getString();
1675
1676  D->addAttr(::new (S.Context) AvailabilityAttr(Attr.getRange(), S.Context,
1677                                                Platform,
1678                                                Introduced.Version,
1679                                                Deprecated.Version,
1680                                                Obsoleted.Version,
1681                                                IsUnavailable,
1682                                                Str));
1683}
1684
1685static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1686  // check the attribute arguments.
1687  if(!checkAttributeNumArgs(S, Attr, 1))
1688    return;
1689
1690  Expr *Arg = Attr.getArg(0);
1691  Arg = Arg->IgnoreParenCasts();
1692  StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
1693
1694  if (!Str || !Str->isAscii()) {
1695    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1696      << "visibility" << 1;
1697    return;
1698  }
1699
1700  StringRef TypeStr = Str->getString();
1701  VisibilityAttr::VisibilityType type;
1702
1703  if (TypeStr == "default")
1704    type = VisibilityAttr::Default;
1705  else if (TypeStr == "hidden")
1706    type = VisibilityAttr::Hidden;
1707  else if (TypeStr == "internal")
1708    type = VisibilityAttr::Hidden; // FIXME
1709  else if (TypeStr == "protected") {
1710    // Complain about attempts to use protected visibility on targets
1711    // (like Darwin) that don't support it.
1712    if (!S.Context.getTargetInfo().hasProtectedVisibility()) {
1713      S.Diag(Attr.getLoc(), diag::warn_attribute_protected_visibility);
1714      type = VisibilityAttr::Default;
1715    } else {
1716      type = VisibilityAttr::Protected;
1717    }
1718  } else {
1719    S.Diag(Attr.getLoc(), diag::warn_attribute_unknown_visibility) << TypeStr;
1720    return;
1721  }
1722
1723  D->addAttr(::new (S.Context) VisibilityAttr(Attr.getRange(), S.Context, type));
1724}
1725
1726static void handleObjCMethodFamilyAttr(Sema &S, Decl *decl,
1727                                       const AttributeList &Attr) {
1728  ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(decl);
1729  if (!method) {
1730    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1731      << ExpectedMethod;
1732    return;
1733  }
1734
1735  if (Attr.getNumArgs() != 0 || !Attr.getParameterName()) {
1736    if (!Attr.getParameterName() && Attr.getNumArgs() == 1) {
1737      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1738        << "objc_method_family" << 1;
1739    } else {
1740      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1741    }
1742    Attr.setInvalid();
1743    return;
1744  }
1745
1746  StringRef param = Attr.getParameterName()->getName();
1747  ObjCMethodFamilyAttr::FamilyKind family;
1748  if (param == "none")
1749    family = ObjCMethodFamilyAttr::OMF_None;
1750  else if (param == "alloc")
1751    family = ObjCMethodFamilyAttr::OMF_alloc;
1752  else if (param == "copy")
1753    family = ObjCMethodFamilyAttr::OMF_copy;
1754  else if (param == "init")
1755    family = ObjCMethodFamilyAttr::OMF_init;
1756  else if (param == "mutableCopy")
1757    family = ObjCMethodFamilyAttr::OMF_mutableCopy;
1758  else if (param == "new")
1759    family = ObjCMethodFamilyAttr::OMF_new;
1760  else {
1761    // Just warn and ignore it.  This is future-proof against new
1762    // families being used in system headers.
1763    S.Diag(Attr.getParameterLoc(), diag::warn_unknown_method_family);
1764    return;
1765  }
1766
1767  if (family == ObjCMethodFamilyAttr::OMF_init &&
1768      !method->getResultType()->isObjCObjectPointerType()) {
1769    S.Diag(method->getLocation(), diag::err_init_method_bad_return_type)
1770      << method->getResultType();
1771    // Ignore the attribute.
1772    return;
1773  }
1774
1775  method->addAttr(new (S.Context) ObjCMethodFamilyAttr(Attr.getRange(),
1776                                                       S.Context, family));
1777}
1778
1779static void handleObjCExceptionAttr(Sema &S, Decl *D,
1780                                    const AttributeList &Attr) {
1781  if (!checkAttributeNumArgs(S, Attr, 0))
1782    return;
1783
1784  ObjCInterfaceDecl *OCI = dyn_cast<ObjCInterfaceDecl>(D);
1785  if (OCI == 0) {
1786    S.Diag(Attr.getLoc(), diag::err_attribute_requires_objc_interface);
1787    return;
1788  }
1789
1790  D->addAttr(::new (S.Context) ObjCExceptionAttr(Attr.getRange(), S.Context));
1791}
1792
1793static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &Attr) {
1794  if (Attr.getNumArgs() != 0) {
1795    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1796    return;
1797  }
1798  if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
1799    QualType T = TD->getUnderlyingType();
1800    if (!T->isPointerType() ||
1801        !T->getAs<PointerType>()->getPointeeType()->isRecordType()) {
1802      S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
1803      return;
1804    }
1805  }
1806  else if (!isa<ObjCPropertyDecl>(D)) {
1807    // It is okay to include this attribute on properties, e.g.:
1808    //
1809    //  @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
1810    //
1811    // In this case it follows tradition and suppresses an error in the above
1812    // case.
1813    S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
1814  }
1815  D->addAttr(::new (S.Context) ObjCNSObjectAttr(Attr.getRange(), S.Context));
1816}
1817
1818static void
1819handleOverloadableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1820  if (Attr.getNumArgs() != 0) {
1821    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1822    return;
1823  }
1824
1825  if (!isa<FunctionDecl>(D)) {
1826    S.Diag(Attr.getLoc(), diag::err_attribute_overloadable_not_function);
1827    return;
1828  }
1829
1830  D->addAttr(::new (S.Context) OverloadableAttr(Attr.getRange(), S.Context));
1831}
1832
1833static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1834  if (!Attr.getParameterName()) {
1835    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1836      << "blocks" << 1;
1837    return;
1838  }
1839
1840  if (Attr.getNumArgs() != 0) {
1841    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1842    return;
1843  }
1844
1845  BlocksAttr::BlockType type;
1846  if (Attr.getParameterName()->isStr("byref"))
1847    type = BlocksAttr::ByRef;
1848  else {
1849    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1850      << "blocks" << Attr.getParameterName();
1851    return;
1852  }
1853
1854  D->addAttr(::new (S.Context) BlocksAttr(Attr.getRange(), S.Context, type));
1855}
1856
1857static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1858  // check the attribute arguments.
1859  if (Attr.getNumArgs() > 2) {
1860    S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2;
1861    return;
1862  }
1863
1864  unsigned sentinel = 0;
1865  if (Attr.getNumArgs() > 0) {
1866    Expr *E = Attr.getArg(0);
1867    llvm::APSInt Idx(32);
1868    if (E->isTypeDependent() || E->isValueDependent() ||
1869        !E->isIntegerConstantExpr(Idx, S.Context)) {
1870      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
1871       << "sentinel" << 1 << E->getSourceRange();
1872      return;
1873    }
1874
1875    if (Idx.isSigned() && Idx.isNegative()) {
1876      S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero)
1877        << E->getSourceRange();
1878      return;
1879    }
1880
1881    sentinel = Idx.getZExtValue();
1882  }
1883
1884  unsigned nullPos = 0;
1885  if (Attr.getNumArgs() > 1) {
1886    Expr *E = Attr.getArg(1);
1887    llvm::APSInt Idx(32);
1888    if (E->isTypeDependent() || E->isValueDependent() ||
1889        !E->isIntegerConstantExpr(Idx, S.Context)) {
1890      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
1891        << "sentinel" << 2 << E->getSourceRange();
1892      return;
1893    }
1894    nullPos = Idx.getZExtValue();
1895
1896    if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) {
1897      // FIXME: This error message could be improved, it would be nice
1898      // to say what the bounds actually are.
1899      S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
1900        << E->getSourceRange();
1901      return;
1902    }
1903  }
1904
1905  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1906    const FunctionType *FT = FD->getType()->castAs<FunctionType>();
1907    if (isa<FunctionNoProtoType>(FT)) {
1908      S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments);
1909      return;
1910    }
1911
1912    if (!cast<FunctionProtoType>(FT)->isVariadic()) {
1913      S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
1914      return;
1915    }
1916  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1917    if (!MD->isVariadic()) {
1918      S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
1919      return;
1920    }
1921  } else if (BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1922    if (!BD->isVariadic()) {
1923      S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
1924      return;
1925    }
1926  } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
1927    QualType Ty = V->getType();
1928    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
1929      const FunctionType *FT = Ty->isFunctionPointerType() ? getFunctionType(D)
1930       : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
1931      if (!cast<FunctionProtoType>(FT)->isVariadic()) {
1932        int m = Ty->isFunctionPointerType() ? 0 : 1;
1933        S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
1934        return;
1935      }
1936    } else {
1937      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1938        << Attr.getName() << ExpectedFunctionMethodOrBlock;
1939      return;
1940    }
1941  } else {
1942    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1943      << Attr.getName() << ExpectedFunctionMethodOrBlock;
1944    return;
1945  }
1946  D->addAttr(::new (S.Context) SentinelAttr(Attr.getRange(), S.Context, sentinel,
1947                                            nullPos));
1948}
1949
1950static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &Attr) {
1951  // check the attribute arguments.
1952  if (!checkAttributeNumArgs(S, Attr, 0))
1953    return;
1954
1955  if (!isFunction(D) && !isa<ObjCMethodDecl>(D)) {
1956    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1957      << Attr.getName() << ExpectedFunctionOrMethod;
1958    return;
1959  }
1960
1961  if (isFunction(D) && getFunctionType(D)->getResultType()->isVoidType()) {
1962    S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
1963      << Attr.getName() << 0;
1964    return;
1965  }
1966  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
1967    if (MD->getResultType()->isVoidType()) {
1968      S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
1969      << Attr.getName() << 1;
1970      return;
1971    }
1972
1973  D->addAttr(::new (S.Context) WarnUnusedResultAttr(Attr.getRange(), S.Context));
1974}
1975
1976static void handleWeakAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1977  // check the attribute arguments.
1978  if (Attr.hasParameterOrArguments()) {
1979    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1980    return;
1981  }
1982
1983  if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) {
1984    if (isa<CXXRecordDecl>(D)) {
1985      D->addAttr(::new (S.Context) WeakAttr(Attr.getRange(), S.Context));
1986      return;
1987    }
1988    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1989      << Attr.getName() << ExpectedVariableOrFunction;
1990    return;
1991  }
1992
1993  NamedDecl *nd = cast<NamedDecl>(D);
1994
1995  // 'weak' only applies to declarations with external linkage.
1996  if (hasEffectivelyInternalLinkage(nd)) {
1997    S.Diag(Attr.getLoc(), diag::err_attribute_weak_static);
1998    return;
1999  }
2000
2001  nd->addAttr(::new (S.Context) WeakAttr(Attr.getRange(), S.Context));
2002}
2003
2004static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2005  // check the attribute arguments.
2006  if (!checkAttributeNumArgs(S, Attr, 0))
2007    return;
2008
2009
2010  // weak_import only applies to variable & function declarations.
2011  bool isDef = false;
2012  if (!D->canBeWeakImported(isDef)) {
2013    if (isDef)
2014      S.Diag(Attr.getLoc(),
2015             diag::warn_attribute_weak_import_invalid_on_definition)
2016        << "weak_import" << 2 /*variable and function*/;
2017    else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
2018             (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
2019              (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
2020      // Nothing to warn about here.
2021    } else
2022      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2023        << Attr.getName() << ExpectedVariableOrFunction;
2024
2025    return;
2026  }
2027
2028  D->addAttr(::new (S.Context) WeakImportAttr(Attr.getRange(), S.Context));
2029}
2030
2031static void handleReqdWorkGroupSize(Sema &S, Decl *D,
2032                                    const AttributeList &Attr) {
2033  // Attribute has 3 arguments.
2034  if (!checkAttributeNumArgs(S, Attr, 3))
2035    return;
2036
2037  unsigned WGSize[3];
2038  for (unsigned i = 0; i < 3; ++i) {
2039    Expr *E = Attr.getArg(i);
2040    llvm::APSInt ArgNum(32);
2041    if (E->isTypeDependent() || E->isValueDependent() ||
2042        !E->isIntegerConstantExpr(ArgNum, S.Context)) {
2043      S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
2044        << "reqd_work_group_size" << E->getSourceRange();
2045      return;
2046    }
2047    WGSize[i] = (unsigned) ArgNum.getZExtValue();
2048  }
2049  D->addAttr(::new (S.Context) ReqdWorkGroupSizeAttr(Attr.getRange(), S.Context,
2050                                                     WGSize[0], WGSize[1],
2051                                                     WGSize[2]));
2052}
2053
2054static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2055  // Attribute has no arguments.
2056  if (!checkAttributeNumArgs(S, Attr, 1))
2057    return;
2058
2059  // Make sure that there is a string literal as the sections's single
2060  // argument.
2061  Expr *ArgExpr = Attr.getArg(0);
2062  StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr);
2063  if (!SE) {
2064    S.Diag(ArgExpr->getLocStart(), diag::err_attribute_not_string) << "section";
2065    return;
2066  }
2067
2068  // If the target wants to validate the section specifier, make it happen.
2069  std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(SE->getString());
2070  if (!Error.empty()) {
2071    S.Diag(SE->getLocStart(), diag::err_attribute_section_invalid_for_target)
2072    << Error;
2073    return;
2074  }
2075
2076  // This attribute cannot be applied to local variables.
2077  if (isa<VarDecl>(D) && cast<VarDecl>(D)->hasLocalStorage()) {
2078    S.Diag(SE->getLocStart(), diag::err_attribute_section_local_variable);
2079    return;
2080  }
2081
2082  D->addAttr(::new (S.Context) SectionAttr(Attr.getRange(), S.Context,
2083                                           SE->getString()));
2084}
2085
2086
2087static void handleNothrowAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2088  // check the attribute arguments.
2089  if (Attr.hasParameterOrArguments()) {
2090    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
2091    return;
2092  }
2093
2094  if (NoThrowAttr *Existing = D->getAttr<NoThrowAttr>()) {
2095    if (Existing->getLocation().isInvalid())
2096      Existing->setRange(Attr.getRange());
2097  } else {
2098    D->addAttr(::new (S.Context) NoThrowAttr(Attr.getRange(), S.Context));
2099  }
2100}
2101
2102static void handleConstAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2103  // check the attribute arguments.
2104  if (Attr.hasParameterOrArguments()) {
2105    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
2106    return;
2107  }
2108
2109  if (ConstAttr *Existing = D->getAttr<ConstAttr>()) {
2110   if (Existing->getLocation().isInvalid())
2111     Existing->setRange(Attr.getRange());
2112  } else {
2113    D->addAttr(::new (S.Context) ConstAttr(Attr.getRange(), S.Context));
2114  }
2115}
2116
2117static void handlePureAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2118  // check the attribute arguments.
2119  if (!checkAttributeNumArgs(S, Attr, 0))
2120    return;
2121
2122  D->addAttr(::new (S.Context) PureAttr(Attr.getRange(), S.Context));
2123}
2124
2125static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2126  if (!Attr.getParameterName()) {
2127    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2128    return;
2129  }
2130
2131  if (Attr.getNumArgs() != 0) {
2132    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2133    return;
2134  }
2135
2136  VarDecl *VD = dyn_cast<VarDecl>(D);
2137
2138  if (!VD || !VD->hasLocalStorage()) {
2139    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "cleanup";
2140    return;
2141  }
2142
2143  // Look up the function
2144  // FIXME: Lookup probably isn't looking in the right place
2145  NamedDecl *CleanupDecl
2146    = S.LookupSingleName(S.TUScope, Attr.getParameterName(),
2147                         Attr.getParameterLoc(), Sema::LookupOrdinaryName);
2148  if (!CleanupDecl) {
2149    S.Diag(Attr.getParameterLoc(), diag::err_attribute_cleanup_arg_not_found) <<
2150      Attr.getParameterName();
2151    return;
2152  }
2153
2154  FunctionDecl *FD = dyn_cast<FunctionDecl>(CleanupDecl);
2155  if (!FD) {
2156    S.Diag(Attr.getParameterLoc(),
2157           diag::err_attribute_cleanup_arg_not_function)
2158      << Attr.getParameterName();
2159    return;
2160  }
2161
2162  if (FD->getNumParams() != 1) {
2163    S.Diag(Attr.getParameterLoc(),
2164           diag::err_attribute_cleanup_func_must_take_one_arg)
2165      << Attr.getParameterName();
2166    return;
2167  }
2168
2169  // We're currently more strict than GCC about what function types we accept.
2170  // If this ever proves to be a problem it should be easy to fix.
2171  QualType Ty = S.Context.getPointerType(VD->getType());
2172  QualType ParamTy = FD->getParamDecl(0)->getType();
2173  if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
2174                                   ParamTy, Ty) != Sema::Compatible) {
2175    S.Diag(Attr.getParameterLoc(),
2176           diag::err_attribute_cleanup_func_arg_incompatible_type) <<
2177      Attr.getParameterName() << ParamTy << Ty;
2178    return;
2179  }
2180
2181  D->addAttr(::new (S.Context) CleanupAttr(Attr.getRange(), S.Context, FD));
2182  S.MarkFunctionReferenced(Attr.getParameterLoc(), FD);
2183}
2184
2185/// Handle __attribute__((format_arg((idx)))) attribute based on
2186/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
2187static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2188  if (!checkAttributeNumArgs(S, Attr, 1))
2189    return;
2190
2191  if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
2192    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2193      << Attr.getName() << ExpectedFunction;
2194    return;
2195  }
2196
2197  // In C++ the implicit 'this' function parameter also counts, and they are
2198  // counted from one.
2199  bool HasImplicitThisParam = isInstanceMethod(D);
2200  unsigned NumArgs  = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
2201  unsigned FirstIdx = 1;
2202
2203  // checks for the 2nd argument
2204  Expr *IdxExpr = Attr.getArg(0);
2205  llvm::APSInt Idx(32);
2206  if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
2207      !IdxExpr->isIntegerConstantExpr(Idx, S.Context)) {
2208    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
2209    << "format" << 2 << IdxExpr->getSourceRange();
2210    return;
2211  }
2212
2213  if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
2214    S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
2215    << "format" << 2 << IdxExpr->getSourceRange();
2216    return;
2217  }
2218
2219  unsigned ArgIdx = Idx.getZExtValue() - 1;
2220
2221  if (HasImplicitThisParam) {
2222    if (ArgIdx == 0) {
2223      S.Diag(Attr.getLoc(), diag::err_attribute_invalid_implicit_this_argument)
2224        << "format_arg" << IdxExpr->getSourceRange();
2225      return;
2226    }
2227    ArgIdx--;
2228  }
2229
2230  // make sure the format string is really a string
2231  QualType Ty = getFunctionOrMethodArgType(D, ArgIdx);
2232
2233  bool not_nsstring_type = !isNSStringType(Ty, S.Context);
2234  if (not_nsstring_type &&
2235      !isCFStringType(Ty, S.Context) &&
2236      (!Ty->isPointerType() ||
2237       !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
2238    // FIXME: Should highlight the actual expression that has the wrong type.
2239    S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2240    << (not_nsstring_type ? "a string type" : "an NSString")
2241       << IdxExpr->getSourceRange();
2242    return;
2243  }
2244  Ty = getFunctionOrMethodResultType(D);
2245  if (!isNSStringType(Ty, S.Context) &&
2246      !isCFStringType(Ty, S.Context) &&
2247      (!Ty->isPointerType() ||
2248       !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
2249    // FIXME: Should highlight the actual expression that has the wrong type.
2250    S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not)
2251    << (not_nsstring_type ? "string type" : "NSString")
2252       << IdxExpr->getSourceRange();
2253    return;
2254  }
2255
2256  D->addAttr(::new (S.Context) FormatArgAttr(Attr.getRange(), S.Context,
2257                                             Idx.getZExtValue()));
2258}
2259
2260enum FormatAttrKind {
2261  CFStringFormat,
2262  NSStringFormat,
2263  StrftimeFormat,
2264  SupportedFormat,
2265  IgnoredFormat,
2266  InvalidFormat
2267};
2268
2269/// getFormatAttrKind - Map from format attribute names to supported format
2270/// types.
2271static FormatAttrKind getFormatAttrKind(StringRef Format) {
2272  // Check for formats that get handled specially.
2273  if (Format == "NSString")
2274    return NSStringFormat;
2275  if (Format == "CFString")
2276    return CFStringFormat;
2277  if (Format == "strftime")
2278    return StrftimeFormat;
2279
2280  // Otherwise, check for supported formats.
2281  if (Format == "scanf" || Format == "printf" || Format == "printf0" ||
2282      Format == "strfmon" || Format == "cmn_err" || Format == "vcmn_err" ||
2283      Format == "zcmn_err" ||
2284      Format == "kprintf")  // OpenBSD.
2285    return SupportedFormat;
2286
2287  if (Format == "gcc_diag" || Format == "gcc_cdiag" ||
2288      Format == "gcc_cxxdiag" || Format == "gcc_tdiag")
2289    return IgnoredFormat;
2290
2291  return InvalidFormat;
2292}
2293
2294/// Handle __attribute__((init_priority(priority))) attributes based on
2295/// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
2296static void handleInitPriorityAttr(Sema &S, Decl *D,
2297                                   const AttributeList &Attr) {
2298  if (!S.getLangOpts().CPlusPlus) {
2299    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
2300    return;
2301  }
2302
2303  if (!isa<VarDecl>(D) || S.getCurFunctionOrMethodDecl()) {
2304    S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
2305    Attr.setInvalid();
2306    return;
2307  }
2308  QualType T = dyn_cast<VarDecl>(D)->getType();
2309  if (S.Context.getAsArrayType(T))
2310    T = S.Context.getBaseElementType(T);
2311  if (!T->getAs<RecordType>()) {
2312    S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
2313    Attr.setInvalid();
2314    return;
2315  }
2316
2317  if (Attr.getNumArgs() != 1) {
2318    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2319    Attr.setInvalid();
2320    return;
2321  }
2322  Expr *priorityExpr = Attr.getArg(0);
2323
2324  llvm::APSInt priority(32);
2325  if (priorityExpr->isTypeDependent() || priorityExpr->isValueDependent() ||
2326      !priorityExpr->isIntegerConstantExpr(priority, S.Context)) {
2327    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
2328    << "init_priority" << priorityExpr->getSourceRange();
2329    Attr.setInvalid();
2330    return;
2331  }
2332  unsigned prioritynum = priority.getZExtValue();
2333  if (prioritynum < 101 || prioritynum > 65535) {
2334    S.Diag(Attr.getLoc(), diag::err_attribute_argument_outof_range)
2335    <<  priorityExpr->getSourceRange();
2336    Attr.setInvalid();
2337    return;
2338  }
2339  D->addAttr(::new (S.Context) InitPriorityAttr(Attr.getRange(), S.Context,
2340                                                prioritynum));
2341}
2342
2343/// Handle __attribute__((format(type,idx,firstarg))) attributes based on
2344/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
2345static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2346
2347  if (!Attr.getParameterName()) {
2348    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
2349      << "format" << 1;
2350    return;
2351  }
2352
2353  if (Attr.getNumArgs() != 2) {
2354    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 3;
2355    return;
2356  }
2357
2358  if (!isFunctionOrMethodOrBlock(D) || !hasFunctionProto(D)) {
2359    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2360      << Attr.getName() << ExpectedFunction;
2361    return;
2362  }
2363
2364  // In C++ the implicit 'this' function parameter also counts, and they are
2365  // counted from one.
2366  bool HasImplicitThisParam = isInstanceMethod(D);
2367  unsigned NumArgs  = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
2368  unsigned FirstIdx = 1;
2369
2370  StringRef Format = Attr.getParameterName()->getName();
2371
2372  // Normalize the argument, __foo__ becomes foo.
2373  if (Format.startswith("__") && Format.endswith("__"))
2374    Format = Format.substr(2, Format.size() - 4);
2375
2376  // Check for supported formats.
2377  FormatAttrKind Kind = getFormatAttrKind(Format);
2378
2379  if (Kind == IgnoredFormat)
2380    return;
2381
2382  if (Kind == InvalidFormat) {
2383    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
2384      << "format" << Attr.getParameterName()->getName();
2385    return;
2386  }
2387
2388  // checks for the 2nd argument
2389  Expr *IdxExpr = Attr.getArg(0);
2390  llvm::APSInt Idx(32);
2391  if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
2392      !IdxExpr->isIntegerConstantExpr(Idx, S.Context)) {
2393    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
2394      << "format" << 2 << IdxExpr->getSourceRange();
2395    return;
2396  }
2397
2398  if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
2399    S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
2400      << "format" << 2 << IdxExpr->getSourceRange();
2401    return;
2402  }
2403
2404  // FIXME: Do we need to bounds check?
2405  unsigned ArgIdx = Idx.getZExtValue() - 1;
2406
2407  if (HasImplicitThisParam) {
2408    if (ArgIdx == 0) {
2409      S.Diag(Attr.getLoc(),
2410             diag::err_format_attribute_implicit_this_format_string)
2411        << IdxExpr->getSourceRange();
2412      return;
2413    }
2414    ArgIdx--;
2415  }
2416
2417  // make sure the format string is really a string
2418  QualType Ty = getFunctionOrMethodArgType(D, ArgIdx);
2419
2420  if (Kind == CFStringFormat) {
2421    if (!isCFStringType(Ty, S.Context)) {
2422      S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2423        << "a CFString" << IdxExpr->getSourceRange();
2424      return;
2425    }
2426  } else if (Kind == NSStringFormat) {
2427    // FIXME: do we need to check if the type is NSString*?  What are the
2428    // semantics?
2429    if (!isNSStringType(Ty, S.Context)) {
2430      // FIXME: Should highlight the actual expression that has the wrong type.
2431      S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2432        << "an NSString" << IdxExpr->getSourceRange();
2433      return;
2434    }
2435  } else if (!Ty->isPointerType() ||
2436             !Ty->getAs<PointerType>()->getPointeeType()->isCharType()) {
2437    // FIXME: Should highlight the actual expression that has the wrong type.
2438    S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2439      << "a string type" << IdxExpr->getSourceRange();
2440    return;
2441  }
2442
2443  // check the 3rd argument
2444  Expr *FirstArgExpr = Attr.getArg(1);
2445  llvm::APSInt FirstArg(32);
2446  if (FirstArgExpr->isTypeDependent() || FirstArgExpr->isValueDependent() ||
2447      !FirstArgExpr->isIntegerConstantExpr(FirstArg, S.Context)) {
2448    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
2449      << "format" << 3 << FirstArgExpr->getSourceRange();
2450    return;
2451  }
2452
2453  // check if the function is variadic if the 3rd argument non-zero
2454  if (FirstArg != 0) {
2455    if (isFunctionOrMethodVariadic(D)) {
2456      ++NumArgs; // +1 for ...
2457    } else {
2458      S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
2459      return;
2460    }
2461  }
2462
2463  // strftime requires FirstArg to be 0 because it doesn't read from any
2464  // variable the input is just the current time + the format string.
2465  if (Kind == StrftimeFormat) {
2466    if (FirstArg != 0) {
2467      S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter)
2468        << FirstArgExpr->getSourceRange();
2469      return;
2470    }
2471  // if 0 it disables parameter checking (to use with e.g. va_list)
2472  } else if (FirstArg != 0 && FirstArg != NumArgs) {
2473    S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
2474      << "format" << 3 << FirstArgExpr->getSourceRange();
2475    return;
2476  }
2477
2478  // Check whether we already have an equivalent format attribute.
2479  for (specific_attr_iterator<FormatAttr>
2480         i = D->specific_attr_begin<FormatAttr>(),
2481         e = D->specific_attr_end<FormatAttr>();
2482       i != e ; ++i) {
2483    FormatAttr *f = *i;
2484    if (f->getType() == Format &&
2485        f->getFormatIdx() == (int)Idx.getZExtValue() &&
2486        f->getFirstArg() == (int)FirstArg.getZExtValue()) {
2487      // If we don't have a valid location for this attribute, adopt the
2488      // location.
2489      if (f->getLocation().isInvalid())
2490        f->setRange(Attr.getRange());
2491      return;
2492    }
2493  }
2494
2495  D->addAttr(::new (S.Context) FormatAttr(Attr.getRange(), S.Context, Format,
2496                                          Idx.getZExtValue(),
2497                                          FirstArg.getZExtValue()));
2498}
2499
2500static void handleTransparentUnionAttr(Sema &S, Decl *D,
2501                                       const AttributeList &Attr) {
2502  // check the attribute arguments.
2503  if (!checkAttributeNumArgs(S, Attr, 0))
2504    return;
2505
2506
2507  // Try to find the underlying union declaration.
2508  RecordDecl *RD = 0;
2509  TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
2510  if (TD && TD->getUnderlyingType()->isUnionType())
2511    RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
2512  else
2513    RD = dyn_cast<RecordDecl>(D);
2514
2515  if (!RD || !RD->isUnion()) {
2516    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2517      << Attr.getName() << ExpectedUnion;
2518    return;
2519  }
2520
2521  if (!RD->isCompleteDefinition()) {
2522    S.Diag(Attr.getLoc(),
2523        diag::warn_transparent_union_attribute_not_definition);
2524    return;
2525  }
2526
2527  RecordDecl::field_iterator Field = RD->field_begin(),
2528                          FieldEnd = RD->field_end();
2529  if (Field == FieldEnd) {
2530    S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
2531    return;
2532  }
2533
2534  FieldDecl *FirstField = *Field;
2535  QualType FirstType = FirstField->getType();
2536  if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
2537    S.Diag(FirstField->getLocation(),
2538           diag::warn_transparent_union_attribute_floating)
2539      << FirstType->isVectorType() << FirstType;
2540    return;
2541  }
2542
2543  uint64_t FirstSize = S.Context.getTypeSize(FirstType);
2544  uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
2545  for (; Field != FieldEnd; ++Field) {
2546    QualType FieldType = Field->getType();
2547    if (S.Context.getTypeSize(FieldType) != FirstSize ||
2548        S.Context.getTypeAlign(FieldType) != FirstAlign) {
2549      // Warn if we drop the attribute.
2550      bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
2551      unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
2552                                 : S.Context.getTypeAlign(FieldType);
2553      S.Diag(Field->getLocation(),
2554          diag::warn_transparent_union_attribute_field_size_align)
2555        << isSize << Field->getDeclName() << FieldBits;
2556      unsigned FirstBits = isSize? FirstSize : FirstAlign;
2557      S.Diag(FirstField->getLocation(),
2558             diag::note_transparent_union_first_field_size_align)
2559        << isSize << FirstBits;
2560      return;
2561    }
2562  }
2563
2564  RD->addAttr(::new (S.Context) TransparentUnionAttr(Attr.getRange(), S.Context));
2565}
2566
2567static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2568  // check the attribute arguments.
2569  if (!checkAttributeNumArgs(S, Attr, 1))
2570    return;
2571
2572  Expr *ArgExpr = Attr.getArg(0);
2573  StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr);
2574
2575  // Make sure that there is a string literal as the annotation's single
2576  // argument.
2577  if (!SE) {
2578    S.Diag(ArgExpr->getLocStart(), diag::err_attribute_not_string) <<"annotate";
2579    return;
2580  }
2581
2582  // Don't duplicate annotations that are already set.
2583  for (specific_attr_iterator<AnnotateAttr>
2584       i = D->specific_attr_begin<AnnotateAttr>(),
2585       e = D->specific_attr_end<AnnotateAttr>(); i != e; ++i) {
2586      if ((*i)->getAnnotation() == SE->getString())
2587          return;
2588  }
2589  D->addAttr(::new (S.Context) AnnotateAttr(Attr.getRange(), S.Context,
2590                                            SE->getString()));
2591}
2592
2593static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2594  // check the attribute arguments.
2595  if (Attr.getNumArgs() > 1) {
2596    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2597    return;
2598  }
2599
2600  //FIXME: The C++0x version of this attribute has more limited applicabilty
2601  //       than GNU's, and should error out when it is used to specify a
2602  //       weaker alignment, rather than being silently ignored.
2603
2604  if (Attr.getNumArgs() == 0) {
2605    D->addAttr(::new (S.Context) AlignedAttr(Attr.getRange(), S.Context, true, 0));
2606    return;
2607  }
2608
2609  S.AddAlignedAttr(Attr.getRange(), D, Attr.getArg(0));
2610}
2611
2612void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E) {
2613  // FIXME: Handle pack-expansions here.
2614  if (DiagnoseUnexpandedParameterPack(E))
2615    return;
2616
2617  if (E->isTypeDependent() || E->isValueDependent()) {
2618    // Save dependent expressions in the AST to be instantiated.
2619    D->addAttr(::new (Context) AlignedAttr(AttrRange, Context, true, E));
2620    return;
2621  }
2622
2623  SourceLocation AttrLoc = AttrRange.getBegin();
2624  // FIXME: Cache the number on the Attr object?
2625  llvm::APSInt Alignment(32);
2626  ExprResult ICE =
2627    VerifyIntegerConstantExpression(E, &Alignment,
2628      PDiag(diag::err_attribute_argument_not_int) << "aligned",
2629      /*AllowFold*/ false);
2630  if (ICE.isInvalid())
2631    return;
2632  if (!llvm::isPowerOf2_64(Alignment.getZExtValue())) {
2633    Diag(AttrLoc, diag::err_attribute_aligned_not_power_of_two)
2634      << E->getSourceRange();
2635    return;
2636  }
2637
2638  D->addAttr(::new (Context) AlignedAttr(AttrRange, Context, true, ICE.take()));
2639}
2640
2641void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS) {
2642  // FIXME: Cache the number on the Attr object if non-dependent?
2643  // FIXME: Perform checking of type validity
2644  D->addAttr(::new (Context) AlignedAttr(AttrRange, Context, false, TS));
2645  return;
2646}
2647
2648/// handleModeAttr - This attribute modifies the width of a decl with primitive
2649/// type.
2650///
2651/// Despite what would be logical, the mode attribute is a decl attribute, not a
2652/// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
2653/// HImode, not an intermediate pointer.
2654static void handleModeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2655  // This attribute isn't documented, but glibc uses it.  It changes
2656  // the width of an int or unsigned int to the specified size.
2657
2658  // Check that there aren't any arguments
2659  if (!checkAttributeNumArgs(S, Attr, 0))
2660    return;
2661
2662
2663  IdentifierInfo *Name = Attr.getParameterName();
2664  if (!Name) {
2665    S.Diag(Attr.getLoc(), diag::err_attribute_missing_parameter_name);
2666    return;
2667  }
2668
2669  StringRef Str = Attr.getParameterName()->getName();
2670
2671  // Normalize the attribute name, __foo__ becomes foo.
2672  if (Str.startswith("__") && Str.endswith("__"))
2673    Str = Str.substr(2, Str.size() - 4);
2674
2675  unsigned DestWidth = 0;
2676  bool IntegerMode = true;
2677  bool ComplexMode = false;
2678  switch (Str.size()) {
2679  case 2:
2680    switch (Str[0]) {
2681    case 'Q': DestWidth = 8; break;
2682    case 'H': DestWidth = 16; break;
2683    case 'S': DestWidth = 32; break;
2684    case 'D': DestWidth = 64; break;
2685    case 'X': DestWidth = 96; break;
2686    case 'T': DestWidth = 128; break;
2687    }
2688    if (Str[1] == 'F') {
2689      IntegerMode = false;
2690    } else if (Str[1] == 'C') {
2691      IntegerMode = false;
2692      ComplexMode = true;
2693    } else if (Str[1] != 'I') {
2694      DestWidth = 0;
2695    }
2696    break;
2697  case 4:
2698    // FIXME: glibc uses 'word' to define register_t; this is narrower than a
2699    // pointer on PIC16 and other embedded platforms.
2700    if (Str == "word")
2701      DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
2702    else if (Str == "byte")
2703      DestWidth = S.Context.getTargetInfo().getCharWidth();
2704    break;
2705  case 7:
2706    if (Str == "pointer")
2707      DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
2708    break;
2709  }
2710
2711  QualType OldTy;
2712  if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
2713    OldTy = TD->getUnderlyingType();
2714  else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
2715    OldTy = VD->getType();
2716  else {
2717    S.Diag(D->getLocation(), diag::err_attr_wrong_decl)
2718      << "mode" << Attr.getRange();
2719    return;
2720  }
2721
2722  if (!OldTy->getAs<BuiltinType>() && !OldTy->isComplexType())
2723    S.Diag(Attr.getLoc(), diag::err_mode_not_primitive);
2724  else if (IntegerMode) {
2725    if (!OldTy->isIntegralOrEnumerationType())
2726      S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
2727  } else if (ComplexMode) {
2728    if (!OldTy->isComplexType())
2729      S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
2730  } else {
2731    if (!OldTy->isFloatingType())
2732      S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
2733  }
2734
2735  // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
2736  // and friends, at least with glibc.
2737  // FIXME: Make sure 32/64-bit integers don't get defined to types of the wrong
2738  // width on unusual platforms.
2739  // FIXME: Make sure floating-point mappings are accurate
2740  // FIXME: Support XF and TF types
2741  QualType NewTy;
2742  switch (DestWidth) {
2743  case 0:
2744    S.Diag(Attr.getLoc(), diag::err_unknown_machine_mode) << Name;
2745    return;
2746  default:
2747    S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
2748    return;
2749  case 8:
2750    if (!IntegerMode) {
2751      S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
2752      return;
2753    }
2754    if (OldTy->isSignedIntegerType())
2755      NewTy = S.Context.SignedCharTy;
2756    else
2757      NewTy = S.Context.UnsignedCharTy;
2758    break;
2759  case 16:
2760    if (!IntegerMode) {
2761      S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
2762      return;
2763    }
2764    if (OldTy->isSignedIntegerType())
2765      NewTy = S.Context.ShortTy;
2766    else
2767      NewTy = S.Context.UnsignedShortTy;
2768    break;
2769  case 32:
2770    if (!IntegerMode)
2771      NewTy = S.Context.FloatTy;
2772    else if (OldTy->isSignedIntegerType())
2773      NewTy = S.Context.IntTy;
2774    else
2775      NewTy = S.Context.UnsignedIntTy;
2776    break;
2777  case 64:
2778    if (!IntegerMode)
2779      NewTy = S.Context.DoubleTy;
2780    else if (OldTy->isSignedIntegerType())
2781      if (S.Context.getTargetInfo().getLongWidth() == 64)
2782        NewTy = S.Context.LongTy;
2783      else
2784        NewTy = S.Context.LongLongTy;
2785    else
2786      if (S.Context.getTargetInfo().getLongWidth() == 64)
2787        NewTy = S.Context.UnsignedLongTy;
2788      else
2789        NewTy = S.Context.UnsignedLongLongTy;
2790    break;
2791  case 96:
2792    NewTy = S.Context.LongDoubleTy;
2793    break;
2794  case 128:
2795    if (!IntegerMode) {
2796      S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
2797      return;
2798    }
2799    if (OldTy->isSignedIntegerType())
2800      NewTy = S.Context.Int128Ty;
2801    else
2802      NewTy = S.Context.UnsignedInt128Ty;
2803    break;
2804  }
2805
2806  if (ComplexMode) {
2807    NewTy = S.Context.getComplexType(NewTy);
2808  }
2809
2810  // Install the new type.
2811  if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
2812    // FIXME: preserve existing source info.
2813    TD->setTypeSourceInfo(S.Context.getTrivialTypeSourceInfo(NewTy));
2814  } else
2815    cast<ValueDecl>(D)->setType(NewTy);
2816}
2817
2818static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2819  // check the attribute arguments.
2820  if (!checkAttributeNumArgs(S, Attr, 0))
2821    return;
2822
2823  if (!isFunctionOrMethod(D)) {
2824    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2825      << Attr.getName() << ExpectedFunction;
2826    return;
2827  }
2828
2829  D->addAttr(::new (S.Context) NoDebugAttr(Attr.getRange(), S.Context));
2830}
2831
2832static void handleNoInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2833  // check the attribute arguments.
2834  if (!checkAttributeNumArgs(S, Attr, 0))
2835    return;
2836
2837
2838  if (!isa<FunctionDecl>(D)) {
2839    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2840      << Attr.getName() << ExpectedFunction;
2841    return;
2842  }
2843
2844  D->addAttr(::new (S.Context) NoInlineAttr(Attr.getRange(), S.Context));
2845}
2846
2847static void handleNoInstrumentFunctionAttr(Sema &S, Decl *D,
2848                                           const AttributeList &Attr) {
2849  // check the attribute arguments.
2850  if (!checkAttributeNumArgs(S, Attr, 0))
2851    return;
2852
2853
2854  if (!isa<FunctionDecl>(D)) {
2855    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2856      << Attr.getName() << ExpectedFunction;
2857    return;
2858  }
2859
2860  D->addAttr(::new (S.Context) NoInstrumentFunctionAttr(Attr.getRange(),
2861                                                        S.Context));
2862}
2863
2864static void handleConstantAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2865  if (S.LangOpts.CUDA) {
2866    // check the attribute arguments.
2867    if (Attr.hasParameterOrArguments()) {
2868      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
2869      return;
2870    }
2871
2872    if (!isa<VarDecl>(D)) {
2873      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2874        << Attr.getName() << ExpectedVariable;
2875      return;
2876    }
2877
2878    D->addAttr(::new (S.Context) CUDAConstantAttr(Attr.getRange(), S.Context));
2879  } else {
2880    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "constant";
2881  }
2882}
2883
2884static void handleDeviceAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2885  if (S.LangOpts.CUDA) {
2886    // check the attribute arguments.
2887    if (Attr.getNumArgs() != 0) {
2888      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
2889      return;
2890    }
2891
2892    if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D)) {
2893      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2894        << Attr.getName() << ExpectedVariableOrFunction;
2895      return;
2896    }
2897
2898    D->addAttr(::new (S.Context) CUDADeviceAttr(Attr.getRange(), S.Context));
2899  } else {
2900    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "device";
2901  }
2902}
2903
2904static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2905  if (S.LangOpts.CUDA) {
2906    // check the attribute arguments.
2907    if (!checkAttributeNumArgs(S, Attr, 0))
2908      return;
2909
2910    if (!isa<FunctionDecl>(D)) {
2911      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2912        << Attr.getName() << ExpectedFunction;
2913      return;
2914    }
2915
2916    FunctionDecl *FD = cast<FunctionDecl>(D);
2917    if (!FD->getResultType()->isVoidType()) {
2918      TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens();
2919      if (FunctionTypeLoc* FTL = dyn_cast<FunctionTypeLoc>(&TL)) {
2920        S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
2921          << FD->getType()
2922          << FixItHint::CreateReplacement(FTL->getResultLoc().getSourceRange(),
2923                                          "void");
2924      } else {
2925        S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
2926          << FD->getType();
2927      }
2928      return;
2929    }
2930
2931    D->addAttr(::new (S.Context) CUDAGlobalAttr(Attr.getRange(), S.Context));
2932  } else {
2933    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "global";
2934  }
2935}
2936
2937static void handleHostAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2938  if (S.LangOpts.CUDA) {
2939    // check the attribute arguments.
2940    if (!checkAttributeNumArgs(S, Attr, 0))
2941      return;
2942
2943
2944    if (!isa<FunctionDecl>(D)) {
2945      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2946        << Attr.getName() << ExpectedFunction;
2947      return;
2948    }
2949
2950    D->addAttr(::new (S.Context) CUDAHostAttr(Attr.getRange(), S.Context));
2951  } else {
2952    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "host";
2953  }
2954}
2955
2956static void handleSharedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2957  if (S.LangOpts.CUDA) {
2958    // check the attribute arguments.
2959    if (!checkAttributeNumArgs(S, Attr, 0))
2960      return;
2961
2962
2963    if (!isa<VarDecl>(D)) {
2964      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2965        << Attr.getName() << ExpectedVariable;
2966      return;
2967    }
2968
2969    D->addAttr(::new (S.Context) CUDASharedAttr(Attr.getRange(), S.Context));
2970  } else {
2971    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "shared";
2972  }
2973}
2974
2975static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2976  // check the attribute arguments.
2977  if (!checkAttributeNumArgs(S, Attr, 0))
2978    return;
2979
2980  FunctionDecl *Fn = dyn_cast<FunctionDecl>(D);
2981  if (Fn == 0) {
2982    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2983      << Attr.getName() << ExpectedFunction;
2984    return;
2985  }
2986
2987  if (!Fn->isInlineSpecified()) {
2988    S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
2989    return;
2990  }
2991
2992  D->addAttr(::new (S.Context) GNUInlineAttr(Attr.getRange(), S.Context));
2993}
2994
2995static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2996  if (hasDeclarator(D)) return;
2997
2998  // Diagnostic is emitted elsewhere: here we store the (valid) Attr
2999  // in the Decl node for syntactic reasoning, e.g., pretty-printing.
3000  CallingConv CC;
3001  if (S.CheckCallingConvAttr(Attr, CC))
3002    return;
3003
3004  if (!isa<ObjCMethodDecl>(D)) {
3005    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3006      << Attr.getName() << ExpectedFunctionOrMethod;
3007    return;
3008  }
3009
3010  switch (Attr.getKind()) {
3011  case AttributeList::AT_fastcall:
3012    D->addAttr(::new (S.Context) FastCallAttr(Attr.getRange(), S.Context));
3013    return;
3014  case AttributeList::AT_stdcall:
3015    D->addAttr(::new (S.Context) StdCallAttr(Attr.getRange(), S.Context));
3016    return;
3017  case AttributeList::AT_thiscall:
3018    D->addAttr(::new (S.Context) ThisCallAttr(Attr.getRange(), S.Context));
3019    return;
3020  case AttributeList::AT_cdecl:
3021    D->addAttr(::new (S.Context) CDeclAttr(Attr.getRange(), S.Context));
3022    return;
3023  case AttributeList::AT_pascal:
3024    D->addAttr(::new (S.Context) PascalAttr(Attr.getRange(), S.Context));
3025    return;
3026  case AttributeList::AT_pcs: {
3027    Expr *Arg = Attr.getArg(0);
3028    StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
3029    if (!Str || !Str->isAscii()) {
3030      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
3031        << "pcs" << 1;
3032      Attr.setInvalid();
3033      return;
3034    }
3035
3036    StringRef StrRef = Str->getString();
3037    PcsAttr::PCSType PCS;
3038    if (StrRef == "aapcs")
3039      PCS = PcsAttr::AAPCS;
3040    else if (StrRef == "aapcs-vfp")
3041      PCS = PcsAttr::AAPCS_VFP;
3042    else {
3043      S.Diag(Attr.getLoc(), diag::err_invalid_pcs);
3044      Attr.setInvalid();
3045      return;
3046    }
3047
3048    D->addAttr(::new (S.Context) PcsAttr(Attr.getRange(), S.Context, PCS));
3049  }
3050  default:
3051    llvm_unreachable("unexpected attribute kind");
3052  }
3053}
3054
3055static void handleOpenCLKernelAttr(Sema &S, Decl *D, const AttributeList &Attr){
3056  assert(!Attr.isInvalid());
3057  D->addAttr(::new (S.Context) OpenCLKernelAttr(Attr.getRange(), S.Context));
3058}
3059
3060bool Sema::CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC) {
3061  if (attr.isInvalid())
3062    return true;
3063
3064  if ((attr.getNumArgs() != 0 &&
3065      !(attr.getKind() == AttributeList::AT_pcs && attr.getNumArgs() == 1)) ||
3066      attr.getParameterName()) {
3067    Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
3068    attr.setInvalid();
3069    return true;
3070  }
3071
3072  // TODO: diagnose uses of these conventions on the wrong target. Or, better
3073  // move to TargetAttributesSema one day.
3074  switch (attr.getKind()) {
3075  case AttributeList::AT_cdecl: CC = CC_C; break;
3076  case AttributeList::AT_fastcall: CC = CC_X86FastCall; break;
3077  case AttributeList::AT_stdcall: CC = CC_X86StdCall; break;
3078  case AttributeList::AT_thiscall: CC = CC_X86ThisCall; break;
3079  case AttributeList::AT_pascal: CC = CC_X86Pascal; break;
3080  case AttributeList::AT_pcs: {
3081    Expr *Arg = attr.getArg(0);
3082    StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
3083    if (!Str || !Str->isAscii()) {
3084      Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
3085        << "pcs" << 1;
3086      attr.setInvalid();
3087      return true;
3088    }
3089
3090    StringRef StrRef = Str->getString();
3091    if (StrRef == "aapcs") {
3092      CC = CC_AAPCS;
3093      break;
3094    } else if (StrRef == "aapcs-vfp") {
3095      CC = CC_AAPCS_VFP;
3096      break;
3097    }
3098    // FALLS THROUGH
3099  }
3100  default: llvm_unreachable("unexpected attribute kind");
3101  }
3102
3103  return false;
3104}
3105
3106static void handleRegparmAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3107  if (hasDeclarator(D)) return;
3108
3109  unsigned numParams;
3110  if (S.CheckRegparmAttr(Attr, numParams))
3111    return;
3112
3113  if (!isa<ObjCMethodDecl>(D)) {
3114    S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3115      << Attr.getName() << ExpectedFunctionOrMethod;
3116    return;
3117  }
3118
3119  D->addAttr(::new (S.Context) RegparmAttr(Attr.getRange(), S.Context, numParams));
3120}
3121
3122/// Checks a regparm attribute, returning true if it is ill-formed and
3123/// otherwise setting numParams to the appropriate value.
3124bool Sema::CheckRegparmAttr(const AttributeList &Attr, unsigned &numParams) {
3125  if (Attr.isInvalid())
3126    return true;
3127
3128  if (Attr.getNumArgs() != 1) {
3129    Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3130    Attr.setInvalid();
3131    return true;
3132  }
3133
3134  Expr *NumParamsExpr = Attr.getArg(0);
3135  llvm::APSInt NumParams(32);
3136  if (NumParamsExpr->isTypeDependent() || NumParamsExpr->isValueDependent() ||
3137      !NumParamsExpr->isIntegerConstantExpr(NumParams, Context)) {
3138    Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3139      << "regparm" << NumParamsExpr->getSourceRange();
3140    Attr.setInvalid();
3141    return true;
3142  }
3143
3144  if (Context.getTargetInfo().getRegParmMax() == 0) {
3145    Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform)
3146      << NumParamsExpr->getSourceRange();
3147    Attr.setInvalid();
3148    return true;
3149  }
3150
3151  numParams = NumParams.getZExtValue();
3152  if (numParams > Context.getTargetInfo().getRegParmMax()) {
3153    Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number)
3154      << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
3155    Attr.setInvalid();
3156    return true;
3157  }
3158
3159  return false;
3160}
3161
3162static void handleLaunchBoundsAttr(Sema &S, Decl *D, const AttributeList &Attr){
3163  if (S.LangOpts.CUDA) {
3164    // check the attribute arguments.
3165    if (Attr.getNumArgs() != 1 && Attr.getNumArgs() != 2) {
3166      // FIXME: 0 is not okay.
3167      S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2;
3168      return;
3169    }
3170
3171    if (!isFunctionOrMethod(D)) {
3172      S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3173        << Attr.getName() << ExpectedFunctionOrMethod;
3174      return;
3175    }
3176
3177    Expr *MaxThreadsExpr = Attr.getArg(0);
3178    llvm::APSInt MaxThreads(32);
3179    if (MaxThreadsExpr->isTypeDependent() ||
3180        MaxThreadsExpr->isValueDependent() ||
3181        !MaxThreadsExpr->isIntegerConstantExpr(MaxThreads, S.Context)) {
3182      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
3183        << "launch_bounds" << 1 << MaxThreadsExpr->getSourceRange();
3184      return;
3185    }
3186
3187    llvm::APSInt MinBlocks(32);
3188    if (Attr.getNumArgs() > 1) {
3189      Expr *MinBlocksExpr = Attr.getArg(1);
3190      if (MinBlocksExpr->isTypeDependent() ||
3191          MinBlocksExpr->isValueDependent() ||
3192          !MinBlocksExpr->isIntegerConstantExpr(MinBlocks, S.Context)) {
3193        S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
3194          << "launch_bounds" << 2 << MinBlocksExpr->getSourceRange();
3195        return;
3196      }
3197    }
3198
3199    D->addAttr(::new (S.Context) CUDALaunchBoundsAttr(Attr.getRange(), S.Context,
3200                                                      MaxThreads.getZExtValue(),
3201                                                     MinBlocks.getZExtValue()));
3202  } else {
3203    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "launch_bounds";
3204  }
3205}
3206
3207//===----------------------------------------------------------------------===//
3208// Checker-specific attribute handlers.
3209//===----------------------------------------------------------------------===//
3210
3211static bool isValidSubjectOfNSAttribute(Sema &S, QualType type) {
3212  return type->isDependentType() ||
3213         type->isObjCObjectPointerType() ||
3214         S.Context.isObjCNSObjectType(type);
3215}
3216static bool isValidSubjectOfCFAttribute(Sema &S, QualType type) {
3217  return type->isDependentType() ||
3218         type->isPointerType() ||
3219         isValidSubjectOfNSAttribute(S, type);
3220}
3221
3222static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3223  ParmVarDecl *param = dyn_cast<ParmVarDecl>(D);
3224  if (!param) {
3225    S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
3226      << Attr.getRange() << Attr.getName() << ExpectedParameter;
3227    return;
3228  }
3229
3230  bool typeOK, cf;
3231  if (Attr.getKind() == AttributeList::AT_ns_consumed) {
3232    typeOK = isValidSubjectOfNSAttribute(S, param->getType());
3233    cf = false;
3234  } else {
3235    typeOK = isValidSubjectOfCFAttribute(S, param->getType());
3236    cf = true;
3237  }
3238
3239  if (!typeOK) {
3240    S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
3241      << Attr.getRange() << Attr.getName() << cf;
3242    return;
3243  }
3244
3245  if (cf)
3246    param->addAttr(::new (S.Context) CFConsumedAttr(Attr.getRange(), S.Context));
3247  else
3248    param->addAttr(::new (S.Context) NSConsumedAttr(Attr.getRange(), S.Context));
3249}
3250
3251static void handleNSConsumesSelfAttr(Sema &S, Decl *D,
3252                                     const AttributeList &Attr) {
3253  if (!isa<ObjCMethodDecl>(D)) {
3254    S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
3255      << Attr.getRange() << Attr.getName() << ExpectedMethod;
3256    return;
3257  }
3258
3259  D->addAttr(::new (S.Context) NSConsumesSelfAttr(Attr.getRange(), S.Context));
3260}
3261
3262static void handleNSReturnsRetainedAttr(Sema &S, Decl *D,
3263                                        const AttributeList &Attr) {
3264
3265  QualType returnType;
3266
3267  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
3268    returnType = MD->getResultType();
3269  else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D))
3270    returnType = PD->getType();
3271  else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
3272           (Attr.getKind() == AttributeList::AT_ns_returns_retained))
3273    return; // ignore: was handled as a type attribute
3274  else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
3275    returnType = FD->getResultType();
3276  else {
3277    S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
3278        << Attr.getRange() << Attr.getName()
3279        << ExpectedFunctionOrMethod;
3280    return;
3281  }
3282
3283  bool typeOK;
3284  bool cf;
3285  switch (Attr.getKind()) {
3286  default: llvm_unreachable("invalid ownership attribute");
3287  case AttributeList::AT_ns_returns_autoreleased:
3288  case AttributeList::AT_ns_returns_retained:
3289  case AttributeList::AT_ns_returns_not_retained:
3290    typeOK = isValidSubjectOfNSAttribute(S, returnType);
3291    cf = false;
3292    break;
3293
3294  case AttributeList::AT_cf_returns_retained:
3295  case AttributeList::AT_cf_returns_not_retained:
3296    typeOK = isValidSubjectOfCFAttribute(S, returnType);
3297    cf = true;
3298    break;
3299  }
3300
3301  if (!typeOK) {
3302    S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
3303      << Attr.getRange() << Attr.getName() << isa<ObjCMethodDecl>(D) << cf;
3304    return;
3305  }
3306
3307  switch (Attr.getKind()) {
3308    default:
3309      llvm_unreachable("invalid ownership attribute");
3310    case AttributeList::AT_ns_returns_autoreleased:
3311      D->addAttr(::new (S.Context) NSReturnsAutoreleasedAttr(Attr.getRange(),
3312                                                             S.Context));
3313      return;
3314    case AttributeList::AT_cf_returns_not_retained:
3315      D->addAttr(::new (S.Context) CFReturnsNotRetainedAttr(Attr.getRange(),
3316                                                            S.Context));
3317      return;
3318    case AttributeList::AT_ns_returns_not_retained:
3319      D->addAttr(::new (S.Context) NSReturnsNotRetainedAttr(Attr.getRange(),
3320                                                            S.Context));
3321      return;
3322    case AttributeList::AT_cf_returns_retained:
3323      D->addAttr(::new (S.Context) CFReturnsRetainedAttr(Attr.getRange(),
3324                                                         S.Context));
3325      return;
3326    case AttributeList::AT_ns_returns_retained:
3327      D->addAttr(::new (S.Context) NSReturnsRetainedAttr(Attr.getRange(),
3328                                                         S.Context));
3329      return;
3330  };
3331}
3332
3333static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
3334                                              const AttributeList &attr) {
3335  SourceLocation loc = attr.getLoc();
3336
3337  ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(D);
3338
3339  if (!isa<ObjCMethodDecl>(method)) {
3340    S.Diag(method->getLocStart(), diag::err_attribute_wrong_decl_type)
3341      << SourceRange(loc, loc) << attr.getName() << ExpectedMethod;
3342    return;
3343  }
3344
3345  // Check that the method returns a normal pointer.
3346  QualType resultType = method->getResultType();
3347
3348  if (!resultType->isReferenceType() &&
3349      (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
3350    S.Diag(method->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
3351      << SourceRange(loc)
3352      << attr.getName() << /*method*/ 1 << /*non-retainable pointer*/ 2;
3353
3354    // Drop the attribute.
3355    return;
3356  }
3357
3358  method->addAttr(
3359    ::new (S.Context) ObjCReturnsInnerPointerAttr(attr.getRange(), S.Context));
3360}
3361
3362/// Handle cf_audited_transfer and cf_unknown_transfer.
3363static void handleCFTransferAttr(Sema &S, Decl *D, const AttributeList &A) {
3364  if (!isa<FunctionDecl>(D)) {
3365    S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
3366      << A.getRange() << A.getName() << ExpectedFunction;
3367    return;
3368  }
3369
3370  bool IsAudited = (A.getKind() == AttributeList::AT_cf_audited_transfer);
3371
3372  // Check whether there's a conflicting attribute already present.
3373  Attr *Existing;
3374  if (IsAudited) {
3375    Existing = D->getAttr<CFUnknownTransferAttr>();
3376  } else {
3377    Existing = D->getAttr<CFAuditedTransferAttr>();
3378  }
3379  if (Existing) {
3380    S.Diag(D->getLocStart(), diag::err_attributes_are_not_compatible)
3381      << A.getName()
3382      << (IsAudited ? "cf_unknown_transfer" : "cf_audited_transfer")
3383      << A.getRange() << Existing->getRange();
3384    return;
3385  }
3386
3387  // All clear;  add the attribute.
3388  if (IsAudited) {
3389    D->addAttr(
3390      ::new (S.Context) CFAuditedTransferAttr(A.getRange(), S.Context));
3391  } else {
3392    D->addAttr(
3393      ::new (S.Context) CFUnknownTransferAttr(A.getRange(), S.Context));
3394  }
3395}
3396
3397static void handleNSBridgedAttr(Sema &S, Scope *Sc, Decl *D,
3398                                const AttributeList &Attr) {
3399  RecordDecl *RD = dyn_cast<RecordDecl>(D);
3400  if (!RD || RD->isUnion()) {
3401    S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
3402      << Attr.getRange() << Attr.getName() << ExpectedStruct;
3403  }
3404
3405  IdentifierInfo *ParmName = Attr.getParameterName();
3406
3407  // In Objective-C, verify that the type names an Objective-C type.
3408  // We don't want to check this outside of ObjC because people sometimes
3409  // do crazy C declarations of Objective-C types.
3410  if (ParmName && S.getLangOpts().ObjC1) {
3411    // Check for an existing type with this name.
3412    LookupResult R(S, DeclarationName(ParmName), Attr.getParameterLoc(),
3413                   Sema::LookupOrdinaryName);
3414    if (S.LookupName(R, Sc)) {
3415      NamedDecl *Target = R.getFoundDecl();
3416      if (Target && !isa<ObjCInterfaceDecl>(Target)) {
3417        S.Diag(D->getLocStart(), diag::err_ns_bridged_not_interface);
3418        S.Diag(Target->getLocStart(), diag::note_declared_at);
3419      }
3420    }
3421  }
3422
3423  D->addAttr(::new (S.Context) NSBridgedAttr(Attr.getRange(), S.Context,
3424                                             ParmName));
3425}
3426
3427static void handleObjCOwnershipAttr(Sema &S, Decl *D,
3428                                    const AttributeList &Attr) {
3429  if (hasDeclarator(D)) return;
3430
3431  S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
3432    << Attr.getRange() << Attr.getName() << ExpectedVariable;
3433}
3434
3435static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
3436                                          const AttributeList &Attr) {
3437  if (!isa<VarDecl>(D) && !isa<FieldDecl>(D)) {
3438    S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
3439      << Attr.getRange() << Attr.getName() << ExpectedVariable;
3440    return;
3441  }
3442
3443  ValueDecl *vd = cast<ValueDecl>(D);
3444  QualType type = vd->getType();
3445
3446  if (!type->isDependentType() &&
3447      !type->isObjCLifetimeType()) {
3448    S.Diag(Attr.getLoc(), diag::err_objc_precise_lifetime_bad_type)
3449      << type;
3450    return;
3451  }
3452
3453  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3454
3455  // If we have no lifetime yet, check the lifetime we're presumably
3456  // going to infer.
3457  if (lifetime == Qualifiers::OCL_None && !type->isDependentType())
3458    lifetime = type->getObjCARCImplicitLifetime();
3459
3460  switch (lifetime) {
3461  case Qualifiers::OCL_None:
3462    assert(type->isDependentType() &&
3463           "didn't infer lifetime for non-dependent type?");
3464    break;
3465
3466  case Qualifiers::OCL_Weak:   // meaningful
3467  case Qualifiers::OCL_Strong: // meaningful
3468    break;
3469
3470  case Qualifiers::OCL_ExplicitNone:
3471  case Qualifiers::OCL_Autoreleasing:
3472    S.Diag(Attr.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
3473      << (lifetime == Qualifiers::OCL_Autoreleasing);
3474    break;
3475  }
3476
3477  D->addAttr(::new (S.Context)
3478                 ObjCPreciseLifetimeAttr(Attr.getRange(), S.Context));
3479}
3480
3481static bool isKnownDeclSpecAttr(const AttributeList &Attr) {
3482  switch (Attr.getKind()) {
3483  default:
3484    return false;
3485  case AttributeList::AT_dllimport:
3486  case AttributeList::AT_dllexport:
3487  case AttributeList::AT_uuid:
3488  case AttributeList::AT_deprecated:
3489  case AttributeList::AT_noreturn:
3490  case AttributeList::AT_nothrow:
3491  case AttributeList::AT_naked:
3492  case AttributeList::AT_noinline:
3493    return true;
3494  }
3495}
3496
3497//===----------------------------------------------------------------------===//
3498// Microsoft specific attribute handlers.
3499//===----------------------------------------------------------------------===//
3500
3501static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3502  if (S.LangOpts.MicrosoftExt || S.LangOpts.Borland) {
3503    // check the attribute arguments.
3504    if (!checkAttributeNumArgs(S, Attr, 1))
3505      return;
3506
3507    Expr *Arg = Attr.getArg(0);
3508    StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
3509    if (!Str || !Str->isAscii()) {
3510      S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
3511        << "uuid" << 1;
3512      return;
3513    }
3514
3515    StringRef StrRef = Str->getString();
3516
3517    bool IsCurly = StrRef.size() > 1 && StrRef.front() == '{' &&
3518                   StrRef.back() == '}';
3519
3520    // Validate GUID length.
3521    if (IsCurly && StrRef.size() != 38) {
3522      S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
3523      return;
3524    }
3525    if (!IsCurly && StrRef.size() != 36) {
3526      S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
3527      return;
3528    }
3529
3530    // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
3531    // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}"
3532    StringRef::iterator I = StrRef.begin();
3533    if (IsCurly) // Skip the optional '{'
3534       ++I;
3535
3536    for (int i = 0; i < 36; ++i) {
3537      if (i == 8 || i == 13 || i == 18 || i == 23) {
3538        if (*I != '-') {
3539          S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
3540          return;
3541        }
3542      } else if (!isxdigit(*I)) {
3543        S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
3544        return;
3545      }
3546      I++;
3547    }
3548
3549    D->addAttr(::new (S.Context) UuidAttr(Attr.getRange(), S.Context,
3550                                          Str->getString()));
3551  } else
3552    S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "uuid";
3553}
3554
3555//===----------------------------------------------------------------------===//
3556// Top Level Sema Entry Points
3557//===----------------------------------------------------------------------===//
3558
3559static void ProcessNonInheritableDeclAttr(Sema &S, Scope *scope, Decl *D,
3560                                          const AttributeList &Attr) {
3561  switch (Attr.getKind()) {
3562  case AttributeList::AT_device:      handleDeviceAttr      (S, D, Attr); break;
3563  case AttributeList::AT_host:        handleHostAttr        (S, D, Attr); break;
3564  case AttributeList::AT_overloadable:handleOverloadableAttr(S, D, Attr); break;
3565  default:
3566    break;
3567  }
3568}
3569
3570static void ProcessInheritableDeclAttr(Sema &S, Scope *scope, Decl *D,
3571                                       const AttributeList &Attr) {
3572  switch (Attr.getKind()) {
3573    case AttributeList::AT_ibaction:            handleIBAction(S, D, Attr); break;
3574    case AttributeList::AT_iboutlet:          handleIBOutlet(S, D, Attr); break;
3575    case AttributeList::AT_iboutletcollection:
3576      handleIBOutletCollection(S, D, Attr); break;
3577  case AttributeList::AT_address_space:
3578  case AttributeList::AT_opencl_image_access:
3579  case AttributeList::AT_objc_gc:
3580  case AttributeList::AT_vector_size:
3581  case AttributeList::AT_neon_vector_type:
3582  case AttributeList::AT_neon_polyvector_type:
3583    // Ignore these, these are type attributes, handled by
3584    // ProcessTypeAttributes.
3585    break;
3586  case AttributeList::AT_device:
3587  case AttributeList::AT_host:
3588  case AttributeList::AT_overloadable:
3589    // Ignore, this is a non-inheritable attribute, handled
3590    // by ProcessNonInheritableDeclAttr.
3591    break;
3592  case AttributeList::AT_alias:       handleAliasAttr       (S, D, Attr); break;
3593  case AttributeList::AT_aligned:     handleAlignedAttr     (S, D, Attr); break;
3594  case AttributeList::AT_always_inline:
3595    handleAlwaysInlineAttr  (S, D, Attr); break;
3596  case AttributeList::AT_analyzer_noreturn:
3597    handleAnalyzerNoReturnAttr  (S, D, Attr); break;
3598  case AttributeList::AT_annotate:    handleAnnotateAttr    (S, D, Attr); break;
3599  case AttributeList::AT_availability:handleAvailabilityAttr(S, D, Attr); break;
3600  case AttributeList::AT_carries_dependency:
3601                                      handleDependencyAttr  (S, D, Attr); break;
3602  case AttributeList::AT_common:      handleCommonAttr      (S, D, Attr); break;
3603  case AttributeList::AT_constant:    handleConstantAttr    (S, D, Attr); break;
3604  case AttributeList::AT_constructor: handleConstructorAttr (S, D, Attr); break;
3605  case AttributeList::AT_deprecated:  handleDeprecatedAttr  (S, D, Attr); break;
3606  case AttributeList::AT_destructor:  handleDestructorAttr  (S, D, Attr); break;
3607  case AttributeList::AT_ext_vector_type:
3608    handleExtVectorTypeAttr(S, scope, D, Attr);
3609    break;
3610  case AttributeList::AT_format:      handleFormatAttr      (S, D, Attr); break;
3611  case AttributeList::AT_format_arg:  handleFormatArgAttr   (S, D, Attr); break;
3612  case AttributeList::AT_global:      handleGlobalAttr      (S, D, Attr); break;
3613  case AttributeList::AT_gnu_inline:  handleGNUInlineAttr   (S, D, Attr); break;
3614  case AttributeList::AT_launch_bounds:
3615    handleLaunchBoundsAttr(S, D, Attr);
3616    break;
3617  case AttributeList::AT_mode:        handleModeAttr        (S, D, Attr); break;
3618  case AttributeList::AT_malloc:      handleMallocAttr      (S, D, Attr); break;
3619  case AttributeList::AT_may_alias:   handleMayAliasAttr    (S, D, Attr); break;
3620  case AttributeList::AT_nocommon:    handleNoCommonAttr    (S, D, Attr); break;
3621  case AttributeList::AT_nonnull:     handleNonNullAttr     (S, D, Attr); break;
3622  case AttributeList::AT_ownership_returns:
3623  case AttributeList::AT_ownership_takes:
3624  case AttributeList::AT_ownership_holds:
3625      handleOwnershipAttr     (S, D, Attr); break;
3626  case AttributeList::AT_naked:       handleNakedAttr       (S, D, Attr); break;
3627  case AttributeList::AT_noreturn:    handleNoReturnAttr    (S, D, Attr); break;
3628  case AttributeList::AT_nothrow:     handleNothrowAttr     (S, D, Attr); break;
3629  case AttributeList::AT_shared:      handleSharedAttr      (S, D, Attr); break;
3630  case AttributeList::AT_vecreturn:   handleVecReturnAttr   (S, D, Attr); break;
3631
3632  case AttributeList::AT_objc_ownership:
3633    handleObjCOwnershipAttr(S, D, Attr); break;
3634  case AttributeList::AT_objc_precise_lifetime:
3635    handleObjCPreciseLifetimeAttr(S, D, Attr); break;
3636
3637  case AttributeList::AT_objc_returns_inner_pointer:
3638    handleObjCReturnsInnerPointerAttr(S, D, Attr); break;
3639
3640  case AttributeList::AT_ns_bridged:
3641    handleNSBridgedAttr(S, scope, D, Attr); break;
3642
3643  case AttributeList::AT_cf_audited_transfer:
3644  case AttributeList::AT_cf_unknown_transfer:
3645    handleCFTransferAttr(S, D, Attr); break;
3646
3647  // Checker-specific.
3648  case AttributeList::AT_cf_consumed:
3649  case AttributeList::AT_ns_consumed: handleNSConsumedAttr  (S, D, Attr); break;
3650  case AttributeList::AT_ns_consumes_self:
3651    handleNSConsumesSelfAttr(S, D, Attr); break;
3652
3653  case AttributeList::AT_ns_returns_autoreleased:
3654  case AttributeList::AT_ns_returns_not_retained:
3655  case AttributeList::AT_cf_returns_not_retained:
3656  case AttributeList::AT_ns_returns_retained:
3657  case AttributeList::AT_cf_returns_retained:
3658    handleNSReturnsRetainedAttr(S, D, Attr); break;
3659
3660  case AttributeList::AT_reqd_work_group_size:
3661    handleReqdWorkGroupSize(S, D, Attr); break;
3662
3663  case AttributeList::AT_init_priority:
3664      handleInitPriorityAttr(S, D, Attr); break;
3665
3666  case AttributeList::AT_packed:      handlePackedAttr      (S, D, Attr); break;
3667  case AttributeList::AT_ms_struct:    handleMsStructAttr    (S, D, Attr); break;
3668  case AttributeList::AT_section:     handleSectionAttr     (S, D, Attr); break;
3669  case AttributeList::AT_unavailable: handleUnavailableAttr (S, D, Attr); break;
3670  case AttributeList::AT_objc_arc_weak_reference_unavailable:
3671    handleArcWeakrefUnavailableAttr (S, D, Attr);
3672    break;
3673  case AttributeList::AT_objc_root_class:
3674    handleObjCRootClassAttr(S, D, Attr);
3675    break;
3676  case AttributeList::AT_objc_requires_property_definitions:
3677    handleObjCRequiresPropertyDefsAttr (S, D, Attr);
3678    break;
3679  case AttributeList::AT_unused:      handleUnusedAttr      (S, D, Attr); break;
3680  case AttributeList::AT_returns_twice:
3681    handleReturnsTwiceAttr(S, D, Attr);
3682    break;
3683  case AttributeList::AT_used:        handleUsedAttr        (S, D, Attr); break;
3684  case AttributeList::AT_visibility:  handleVisibilityAttr  (S, D, Attr); break;
3685  case AttributeList::AT_warn_unused_result: handleWarnUnusedResult(S, D, Attr);
3686    break;
3687  case AttributeList::AT_weak:        handleWeakAttr        (S, D, Attr); break;
3688  case AttributeList::AT_weakref:     handleWeakRefAttr     (S, D, Attr); break;
3689  case AttributeList::AT_weak_import: handleWeakImportAttr  (S, D, Attr); break;
3690  case AttributeList::AT_transparent_union:
3691    handleTransparentUnionAttr(S, D, Attr);
3692    break;
3693  case AttributeList::AT_objc_exception:
3694    handleObjCExceptionAttr(S, D, Attr);
3695    break;
3696  case AttributeList::AT_objc_method_family:
3697    handleObjCMethodFamilyAttr(S, D, Attr);
3698    break;
3699  case AttributeList::AT_NSObject:    handleObjCNSObject    (S, D, Attr); break;
3700  case AttributeList::AT_blocks:      handleBlocksAttr      (S, D, Attr); break;
3701  case AttributeList::AT_sentinel:    handleSentinelAttr    (S, D, Attr); break;
3702  case AttributeList::AT_const:       handleConstAttr       (S, D, Attr); break;
3703  case AttributeList::AT_pure:        handlePureAttr        (S, D, Attr); break;
3704  case AttributeList::AT_cleanup:     handleCleanupAttr     (S, D, Attr); break;
3705  case AttributeList::AT_nodebug:     handleNoDebugAttr     (S, D, Attr); break;
3706  case AttributeList::AT_noinline:    handleNoInlineAttr    (S, D, Attr); break;
3707  case AttributeList::AT_regparm:     handleRegparmAttr     (S, D, Attr); break;
3708  case AttributeList::IgnoredAttribute:
3709    // Just ignore
3710    break;
3711  case AttributeList::AT_no_instrument_function:  // Interacts with -pg.
3712    handleNoInstrumentFunctionAttr(S, D, Attr);
3713    break;
3714  case AttributeList::AT_stdcall:
3715  case AttributeList::AT_cdecl:
3716  case AttributeList::AT_fastcall:
3717  case AttributeList::AT_thiscall:
3718  case AttributeList::AT_pascal:
3719  case AttributeList::AT_pcs:
3720    handleCallConvAttr(S, D, Attr);
3721    break;
3722  case AttributeList::AT_opencl_kernel_function:
3723    handleOpenCLKernelAttr(S, D, Attr);
3724    break;
3725  case AttributeList::AT_uuid:
3726    handleUuidAttr(S, D, Attr);
3727    break;
3728
3729  // Thread safety attributes:
3730  case AttributeList::AT_guarded_var:
3731    handleGuardedVarAttr(S, D, Attr);
3732    break;
3733  case AttributeList::AT_pt_guarded_var:
3734    handleGuardedVarAttr(S, D, Attr, /*pointer = */true);
3735    break;
3736  case AttributeList::AT_scoped_lockable:
3737    handleLockableAttr(S, D, Attr, /*scoped = */true);
3738    break;
3739  case AttributeList::AT_no_address_safety_analysis:
3740    handleNoAddressSafetyAttr(S, D, Attr);
3741    break;
3742  case AttributeList::AT_no_thread_safety_analysis:
3743    handleNoThreadSafetyAttr(S, D, Attr);
3744    break;
3745  case AttributeList::AT_lockable:
3746    handleLockableAttr(S, D, Attr);
3747    break;
3748  case AttributeList::AT_guarded_by:
3749    handleGuardedByAttr(S, D, Attr);
3750    break;
3751  case AttributeList::AT_pt_guarded_by:
3752    handleGuardedByAttr(S, D, Attr, /*pointer = */true);
3753    break;
3754  case AttributeList::AT_exclusive_lock_function:
3755    handleLockFunAttr(S, D, Attr, /*exclusive = */true);
3756    break;
3757  case AttributeList::AT_exclusive_locks_required:
3758    handleLocksRequiredAttr(S, D, Attr, /*exclusive = */true);
3759    break;
3760  case AttributeList::AT_exclusive_trylock_function:
3761    handleTrylockFunAttr(S, D, Attr, /*exclusive = */true);
3762    break;
3763  case AttributeList::AT_lock_returned:
3764    handleLockReturnedAttr(S, D, Attr);
3765    break;
3766  case AttributeList::AT_locks_excluded:
3767    handleLocksExcludedAttr(S, D, Attr);
3768    break;
3769  case AttributeList::AT_shared_lock_function:
3770    handleLockFunAttr(S, D, Attr);
3771    break;
3772  case AttributeList::AT_shared_locks_required:
3773    handleLocksRequiredAttr(S, D, Attr);
3774    break;
3775  case AttributeList::AT_shared_trylock_function:
3776    handleTrylockFunAttr(S, D, Attr);
3777    break;
3778  case AttributeList::AT_unlock_function:
3779    handleUnlockFunAttr(S, D, Attr);
3780    break;
3781  case AttributeList::AT_acquired_before:
3782    handleAcquireOrderAttr(S, D, Attr, /*before = */true);
3783    break;
3784  case AttributeList::AT_acquired_after:
3785    handleAcquireOrderAttr(S, D, Attr, /*before = */false);
3786    break;
3787
3788  default:
3789    // Ask target about the attribute.
3790    const TargetAttributesSema &TargetAttrs = S.getTargetAttributesSema();
3791    if (!TargetAttrs.ProcessDeclAttribute(scope, D, Attr, S))
3792      S.Diag(Attr.getLoc(), diag::warn_unknown_attribute_ignored)
3793        << Attr.getName();
3794    break;
3795  }
3796}
3797
3798/// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
3799/// the attribute applies to decls.  If the attribute is a type attribute, just
3800/// silently ignore it if a GNU attribute. FIXME: Applying a C++0x attribute to
3801/// the wrong thing is illegal (C++0x [dcl.attr.grammar]/4).
3802static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
3803                                 const AttributeList &Attr,
3804                                 bool NonInheritable, bool Inheritable) {
3805  if (Attr.isInvalid())
3806    return;
3807
3808  if (Attr.isDeclspecAttribute() && !isKnownDeclSpecAttr(Attr))
3809    // FIXME: Try to deal with other __declspec attributes!
3810    return;
3811
3812  if (NonInheritable)
3813    ProcessNonInheritableDeclAttr(S, scope, D, Attr);
3814
3815  if (Inheritable)
3816    ProcessInheritableDeclAttr(S, scope, D, Attr);
3817}
3818
3819/// ProcessDeclAttributeList - Apply all the decl attributes in the specified
3820/// attribute list to the specified decl, ignoring any type attributes.
3821void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
3822                                    const AttributeList *AttrList,
3823                                    bool NonInheritable, bool Inheritable) {
3824  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
3825    ProcessDeclAttribute(*this, S, D, *l, NonInheritable, Inheritable);
3826  }
3827
3828  // GCC accepts
3829  // static int a9 __attribute__((weakref));
3830  // but that looks really pointless. We reject it.
3831  if (Inheritable && D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
3832    Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias) <<
3833    dyn_cast<NamedDecl>(D)->getNameAsString();
3834    return;
3835  }
3836}
3837
3838// Annotation attributes are the only attributes allowed after an access
3839// specifier.
3840bool Sema::ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
3841                                          const AttributeList *AttrList) {
3842  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
3843    if (l->getKind() == AttributeList::AT_annotate) {
3844      handleAnnotateAttr(*this, ASDecl, *l);
3845    } else {
3846      Diag(l->getLoc(), diag::err_only_annotate_after_access_spec);
3847      return true;
3848    }
3849  }
3850
3851  return false;
3852}
3853
3854/// checkUnusedDeclAttributes - Check a list of attributes to see if it
3855/// contains any decl attributes that we should warn about.
3856static void checkUnusedDeclAttributes(Sema &S, const AttributeList *A) {
3857  for ( ; A; A = A->getNext()) {
3858    // Only warn if the attribute is an unignored, non-type attribute.
3859    if (A->isUsedAsTypeAttr()) continue;
3860    if (A->getKind() == AttributeList::IgnoredAttribute) continue;
3861
3862    if (A->getKind() == AttributeList::UnknownAttribute) {
3863      S.Diag(A->getLoc(), diag::warn_unknown_attribute_ignored)
3864        << A->getName() << A->getRange();
3865    } else {
3866      S.Diag(A->getLoc(), diag::warn_attribute_not_on_decl)
3867        << A->getName() << A->getRange();
3868    }
3869  }
3870}
3871
3872/// checkUnusedDeclAttributes - Given a declarator which is not being
3873/// used to build a declaration, complain about any decl attributes
3874/// which might be lying around on it.
3875void Sema::checkUnusedDeclAttributes(Declarator &D) {
3876  ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes().getList());
3877  ::checkUnusedDeclAttributes(*this, D.getAttributes());
3878  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
3879    ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
3880}
3881
3882/// DeclClonePragmaWeak - clone existing decl (maybe definition),
3883/// #pragma weak needs a non-definition decl and source may not have one
3884NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
3885                                      SourceLocation Loc) {
3886  assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
3887  NamedDecl *NewD = 0;
3888  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
3889    FunctionDecl *NewFD;
3890    // FIXME: Missing call to CheckFunctionDeclaration().
3891    // FIXME: Mangling?
3892    // FIXME: Is the qualifier info correct?
3893    // FIXME: Is the DeclContext correct?
3894    NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(),
3895                                 Loc, Loc, DeclarationName(II),
3896                                 FD->getType(), FD->getTypeSourceInfo(),
3897                                 SC_None, SC_None,
3898                                 false/*isInlineSpecified*/,
3899                                 FD->hasPrototype(),
3900                                 false/*isConstexprSpecified*/);
3901    NewD = NewFD;
3902
3903    if (FD->getQualifier())
3904      NewFD->setQualifierInfo(FD->getQualifierLoc());
3905
3906    // Fake up parameter variables; they are declared as if this were
3907    // a typedef.
3908    QualType FDTy = FD->getType();
3909    if (const FunctionProtoType *FT = FDTy->getAs<FunctionProtoType>()) {
3910      SmallVector<ParmVarDecl*, 16> Params;
3911      for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3912           AE = FT->arg_type_end(); AI != AE; ++AI) {
3913        ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, *AI);
3914        Param->setScopeInfo(0, Params.size());
3915        Params.push_back(Param);
3916      }
3917      NewFD->setParams(Params);
3918    }
3919  } else if (VarDecl *VD = dyn_cast<VarDecl>(ND)) {
3920    NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
3921                           VD->getInnerLocStart(), VD->getLocation(), II,
3922                           VD->getType(), VD->getTypeSourceInfo(),
3923                           VD->getStorageClass(),
3924                           VD->getStorageClassAsWritten());
3925    if (VD->getQualifier()) {
3926      VarDecl *NewVD = cast<VarDecl>(NewD);
3927      NewVD->setQualifierInfo(VD->getQualifierLoc());
3928    }
3929  }
3930  return NewD;
3931}
3932
3933/// DeclApplyPragmaWeak - A declaration (maybe definition) needs #pragma weak
3934/// applied to it, possibly with an alias.
3935void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
3936  if (W.getUsed()) return; // only do this once
3937  W.setUsed(true);
3938  if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
3939    IdentifierInfo *NDId = ND->getIdentifier();
3940    NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
3941    NewD->addAttr(::new (Context) AliasAttr(W.getLocation(), Context,
3942                                            NDId->getName()));
3943    NewD->addAttr(::new (Context) WeakAttr(W.getLocation(), Context));
3944    WeakTopLevelDecl.push_back(NewD);
3945    // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
3946    // to insert Decl at TU scope, sorry.
3947    DeclContext *SavedContext = CurContext;
3948    CurContext = Context.getTranslationUnitDecl();
3949    PushOnScopeChains(NewD, S);
3950    CurContext = SavedContext;
3951  } else { // just add weak to existing
3952    ND->addAttr(::new (Context) WeakAttr(W.getLocation(), Context));
3953  }
3954}
3955
3956/// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
3957/// it, apply them to D.  This is a bit tricky because PD can have attributes
3958/// specified in many different places, and we need to find and apply them all.
3959void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD,
3960                                 bool NonInheritable, bool Inheritable) {
3961  // It's valid to "forward-declare" #pragma weak, in which case we
3962  // have to do this.
3963  if (Inheritable) {
3964    LoadExternalWeakUndeclaredIdentifiers();
3965    if (!WeakUndeclaredIdentifiers.empty()) {
3966      if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) {
3967        if (IdentifierInfo *Id = ND->getIdentifier()) {
3968          llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator I
3969            = WeakUndeclaredIdentifiers.find(Id);
3970          if (I != WeakUndeclaredIdentifiers.end() && ND->hasLinkage()) {
3971            WeakInfo W = I->second;
3972            DeclApplyPragmaWeak(S, ND, W);
3973            WeakUndeclaredIdentifiers[Id] = W;
3974          }
3975        }
3976      }
3977    }
3978  }
3979
3980  // Apply decl attributes from the DeclSpec if present.
3981  if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList())
3982    ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
3983
3984  // Walk the declarator structure, applying decl attributes that were in a type
3985  // position to the decl itself.  This handles cases like:
3986  //   int *__attr__(x)** D;
3987  // when X is a decl attribute.
3988  for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
3989    if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs())
3990      ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
3991
3992  // Finally, apply any attributes on the decl itself.
3993  if (const AttributeList *Attrs = PD.getAttributes())
3994    ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
3995}
3996
3997/// Is the given declaration allowed to use a forbidden type?
3998static bool isForbiddenTypeAllowed(Sema &S, Decl *decl) {
3999  // Private ivars are always okay.  Unfortunately, people don't
4000  // always properly make their ivars private, even in system headers.
4001  // Plus we need to make fields okay, too.
4002  // Function declarations in sys headers will be marked unavailable.
4003  if (!isa<FieldDecl>(decl) && !isa<ObjCPropertyDecl>(decl) &&
4004      !isa<FunctionDecl>(decl))
4005    return false;
4006
4007  // Require it to be declared in a system header.
4008  return S.Context.getSourceManager().isInSystemHeader(decl->getLocation());
4009}
4010
4011/// Handle a delayed forbidden-type diagnostic.
4012static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &diag,
4013                                       Decl *decl) {
4014  if (decl && isForbiddenTypeAllowed(S, decl)) {
4015    decl->addAttr(new (S.Context) UnavailableAttr(diag.Loc, S.Context,
4016                        "this system declaration uses an unsupported type"));
4017    return;
4018  }
4019  if (S.getLangOpts().ObjCAutoRefCount)
4020    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(decl)) {
4021      // FIXME. we may want to supress diagnostics for all
4022      // kind of forbidden type messages on unavailable functions.
4023      if (FD->hasAttr<UnavailableAttr>() &&
4024          diag.getForbiddenTypeDiagnostic() ==
4025          diag::err_arc_array_param_no_ownership) {
4026        diag.Triggered = true;
4027        return;
4028      }
4029    }
4030
4031  S.Diag(diag.Loc, diag.getForbiddenTypeDiagnostic())
4032    << diag.getForbiddenTypeOperand() << diag.getForbiddenTypeArgument();
4033  diag.Triggered = true;
4034}
4035
4036// This duplicates a vector push_back but hides the need to know the
4037// size of the type.
4038void Sema::DelayedDiagnostics::add(const DelayedDiagnostic &diag) {
4039  assert(StackSize <= StackCapacity);
4040
4041  // Grow the stack if necessary.
4042  if (StackSize == StackCapacity) {
4043    unsigned newCapacity = 2 * StackCapacity + 2;
4044    char *newBuffer = new char[newCapacity * sizeof(DelayedDiagnostic)];
4045    const char *oldBuffer = (const char*) Stack;
4046
4047    if (StackCapacity)
4048      memcpy(newBuffer, oldBuffer, StackCapacity * sizeof(DelayedDiagnostic));
4049
4050    delete[] oldBuffer;
4051    Stack = reinterpret_cast<sema::DelayedDiagnostic*>(newBuffer);
4052    StackCapacity = newCapacity;
4053  }
4054
4055  assert(StackSize < StackCapacity);
4056  new (&Stack[StackSize++]) DelayedDiagnostic(diag);
4057}
4058
4059void Sema::DelayedDiagnostics::popParsingDecl(Sema &S, ParsingDeclState state,
4060                                              Decl *decl) {
4061  DelayedDiagnostics &DD = S.DelayedDiagnostics;
4062
4063  // Check the invariants.
4064  assert(DD.StackSize >= state.SavedStackSize);
4065  assert(state.SavedStackSize >= DD.ActiveStackBase);
4066  assert(DD.ParsingDepth > 0);
4067
4068  // Drop the parsing depth.
4069  DD.ParsingDepth--;
4070
4071  // If there are no active diagnostics, we're done.
4072  if (DD.StackSize == DD.ActiveStackBase)
4073    return;
4074
4075  // We only want to actually emit delayed diagnostics when we
4076  // successfully parsed a decl.
4077  if (decl) {
4078    // We emit all the active diagnostics, not just those starting
4079    // from the saved state.  The idea is this:  we get one push for a
4080    // decl spec and another for each declarator;  in a decl group like:
4081    //   deprecated_typedef foo, *bar, baz();
4082    // only the declarator pops will be passed decls.  This is correct;
4083    // we really do need to consider delayed diagnostics from the decl spec
4084    // for each of the different declarations.
4085    for (unsigned i = DD.ActiveStackBase, e = DD.StackSize; i != e; ++i) {
4086      DelayedDiagnostic &diag = DD.Stack[i];
4087      if (diag.Triggered)
4088        continue;
4089
4090      switch (diag.Kind) {
4091      case DelayedDiagnostic::Deprecation:
4092        // Don't bother giving deprecation diagnostics if the decl is invalid.
4093        if (!decl->isInvalidDecl())
4094          S.HandleDelayedDeprecationCheck(diag, decl);
4095        break;
4096
4097      case DelayedDiagnostic::Access:
4098        S.HandleDelayedAccessCheck(diag, decl);
4099        break;
4100
4101      case DelayedDiagnostic::ForbiddenType:
4102        handleDelayedForbiddenType(S, diag, decl);
4103        break;
4104      }
4105    }
4106  }
4107
4108  // Destroy all the delayed diagnostics we're about to pop off.
4109  for (unsigned i = state.SavedStackSize, e = DD.StackSize; i != e; ++i)
4110    DD.Stack[i].Destroy();
4111
4112  DD.StackSize = state.SavedStackSize;
4113}
4114
4115static bool isDeclDeprecated(Decl *D) {
4116  do {
4117    if (D->isDeprecated())
4118      return true;
4119    // A category implicitly has the availability of the interface.
4120    if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
4121      return CatD->getClassInterface()->isDeprecated();
4122  } while ((D = cast_or_null<Decl>(D->getDeclContext())));
4123  return false;
4124}
4125
4126void Sema::HandleDelayedDeprecationCheck(DelayedDiagnostic &DD,
4127                                         Decl *Ctx) {
4128  if (isDeclDeprecated(Ctx))
4129    return;
4130
4131  DD.Triggered = true;
4132  if (!DD.getDeprecationMessage().empty())
4133    Diag(DD.Loc, diag::warn_deprecated_message)
4134      << DD.getDeprecationDecl()->getDeclName()
4135      << DD.getDeprecationMessage();
4136  else if (DD.getUnknownObjCClass()) {
4137    Diag(DD.Loc, diag::warn_deprecated_fwdclass_message)
4138      << DD.getDeprecationDecl()->getDeclName();
4139    Diag(DD.getUnknownObjCClass()->getLocation(), diag::note_forward_class);
4140  }
4141  else
4142    Diag(DD.Loc, diag::warn_deprecated)
4143      << DD.getDeprecationDecl()->getDeclName();
4144}
4145
4146void Sema::EmitDeprecationWarning(NamedDecl *D, StringRef Message,
4147                                  SourceLocation Loc,
4148                                  const ObjCInterfaceDecl *UnknownObjCClass) {
4149  // Delay if we're currently parsing a declaration.
4150  if (DelayedDiagnostics.shouldDelayDiagnostics()) {
4151    DelayedDiagnostics.add(DelayedDiagnostic::makeDeprecation(Loc, D,
4152                                                              UnknownObjCClass,
4153                                                              Message));
4154    return;
4155  }
4156
4157  // Otherwise, don't warn if our current context is deprecated.
4158  if (isDeclDeprecated(cast<Decl>(getCurLexicalContext())))
4159    return;
4160  if (!Message.empty())
4161    Diag(Loc, diag::warn_deprecated_message) << D->getDeclName()
4162                                             << Message;
4163  else {
4164    if (!UnknownObjCClass)
4165      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
4166    else {
4167      Diag(Loc, diag::warn_deprecated_fwdclass_message) << D->getDeclName();
4168      Diag(UnknownObjCClass->getLocation(), diag::note_forward_class);
4169    }
4170  }
4171}
4172