SemaDeclCXX.cpp revision 089c2602ebaccdda271beaabdd32575b354d4d09
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  if (CheckEquivalentExceptionSpec(
262          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
263          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
264    Invalid = true;
265  }
266
267  return Invalid;
268}
269
270/// CheckCXXDefaultArguments - Verify that the default arguments for a
271/// function declaration are well-formed according to C++
272/// [dcl.fct.default].
273void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
274  unsigned NumParams = FD->getNumParams();
275  unsigned p;
276
277  // Find first parameter with a default argument
278  for (p = 0; p < NumParams; ++p) {
279    ParmVarDecl *Param = FD->getParamDecl(p);
280    if (Param->getDefaultArg())
281      break;
282  }
283
284  // C++ [dcl.fct.default]p4:
285  //   In a given function declaration, all parameters
286  //   subsequent to a parameter with a default argument shall
287  //   have default arguments supplied in this or previous
288  //   declarations. A default argument shall not be redefined
289  //   by a later declaration (not even to the same value).
290  unsigned LastMissingDefaultArg = 0;
291  for(; p < NumParams; ++p) {
292    ParmVarDecl *Param = FD->getParamDecl(p);
293    if (!Param->getDefaultArg()) {
294      if (Param->isInvalidDecl())
295        /* We already complained about this parameter. */;
296      else if (Param->getIdentifier())
297        Diag(Param->getLocation(),
298             diag::err_param_default_argument_missing_name)
299          << Param->getIdentifier();
300      else
301        Diag(Param->getLocation(),
302             diag::err_param_default_argument_missing);
303
304      LastMissingDefaultArg = p;
305    }
306  }
307
308  if (LastMissingDefaultArg > 0) {
309    // Some default arguments were missing. Clear out all of the
310    // default arguments up to (and including) the last missing
311    // default argument, so that we leave the function parameters
312    // in a semantically valid state.
313    for (p = 0; p <= LastMissingDefaultArg; ++p) {
314      ParmVarDecl *Param = FD->getParamDecl(p);
315      if (Param->hasDefaultArg()) {
316        if (!Param->hasUnparsedDefaultArg())
317          Param->getDefaultArg()->Destroy(Context);
318        Param->setDefaultArg(0);
319      }
320    }
321  }
322}
323
324/// isCurrentClassName - Determine whether the identifier II is the
325/// name of the class type currently being defined. In the case of
326/// nested classes, this will only return true if II is the name of
327/// the innermost class.
328bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
329                              const CXXScopeSpec *SS) {
330  CXXRecordDecl *CurDecl;
331  if (SS && SS->isSet() && !SS->isInvalid()) {
332    DeclContext *DC = computeDeclContext(*SS);
333    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
334  } else
335    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
336
337  if (CurDecl)
338    return &II == CurDecl->getIdentifier();
339  else
340    return false;
341}
342
343/// \brief Check the validity of a C++ base class specifier.
344///
345/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
346/// and returns NULL otherwise.
347CXXBaseSpecifier *
348Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
349                         SourceRange SpecifierRange,
350                         bool Virtual, AccessSpecifier Access,
351                         QualType BaseType,
352                         SourceLocation BaseLoc) {
353  // C++ [class.union]p1:
354  //   A union shall not have base classes.
355  if (Class->isUnion()) {
356    Diag(Class->getLocation(), diag::err_base_clause_on_union)
357      << SpecifierRange;
358    return 0;
359  }
360
361  if (BaseType->isDependentType())
362    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
363                                Class->getTagKind() == RecordDecl::TK_class,
364                                Access, BaseType);
365
366  // Base specifiers must be record types.
367  if (!BaseType->isRecordType()) {
368    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
369    return 0;
370  }
371
372  // C++ [class.union]p1:
373  //   A union shall not be used as a base class.
374  if (BaseType->isUnionType()) {
375    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
376    return 0;
377  }
378
379  // C++ [class.derived]p2:
380  //   The class-name in a base-specifier shall not be an incompletely
381  //   defined class.
382  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
383                          SpecifierRange))
384    return 0;
385
386  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
387  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
388  assert(BaseDecl && "Record type has no declaration");
389  BaseDecl = BaseDecl->getDefinition(Context);
390  assert(BaseDecl && "Base type is not incomplete, but has no definition");
391  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
392  assert(CXXBaseDecl && "Base type is not a C++ type");
393  if (!CXXBaseDecl->isEmpty())
394    Class->setEmpty(false);
395  if (CXXBaseDecl->isPolymorphic())
396    Class->setPolymorphic(true);
397
398  // C++ [dcl.init.aggr]p1:
399  //   An aggregate is [...] a class with [...] no base classes [...].
400  Class->setAggregate(false);
401  Class->setPOD(false);
402
403  if (Virtual) {
404    // C++ [class.ctor]p5:
405    //   A constructor is trivial if its class has no virtual base classes.
406    Class->setHasTrivialConstructor(false);
407
408    // C++ [class.copy]p6:
409    //   A copy constructor is trivial if its class has no virtual base classes.
410    Class->setHasTrivialCopyConstructor(false);
411
412    // C++ [class.copy]p11:
413    //   A copy assignment operator is trivial if its class has no virtual
414    //   base classes.
415    Class->setHasTrivialCopyAssignment(false);
416
417    // C++0x [meta.unary.prop] is_empty:
418    //    T is a class type, but not a union type, with ... no virtual base
419    //    classes
420    Class->setEmpty(false);
421  } else {
422    // C++ [class.ctor]p5:
423    //   A constructor is trivial if all the direct base classes of its
424    //   class have trivial constructors.
425    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
426      Class->setHasTrivialConstructor(false);
427
428    // C++ [class.copy]p6:
429    //   A copy constructor is trivial if all the direct base classes of its
430    //   class have trivial copy constructors.
431    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
432      Class->setHasTrivialCopyConstructor(false);
433
434    // C++ [class.copy]p11:
435    //   A copy assignment operator is trivial if all the direct base classes
436    //   of its class have trivial copy assignment operators.
437    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
438      Class->setHasTrivialCopyAssignment(false);
439  }
440
441  // C++ [class.ctor]p3:
442  //   A destructor is trivial if all the direct base classes of its class
443  //   have trivial destructors.
444  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
445    Class->setHasTrivialDestructor(false);
446
447  // Create the base specifier.
448  // FIXME: Allocate via ASTContext?
449  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
450                              Class->getTagKind() == RecordDecl::TK_class,
451                              Access, BaseType);
452}
453
454/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
455/// one entry in the base class list of a class specifier, for
456/// example:
457///    class foo : public bar, virtual private baz {
458/// 'public bar' and 'virtual private baz' are each base-specifiers.
459Sema::BaseResult
460Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
461                         bool Virtual, AccessSpecifier Access,
462                         TypeTy *basetype, SourceLocation BaseLoc) {
463  if (!classdecl)
464    return true;
465
466  AdjustDeclIfTemplate(classdecl);
467  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
468  QualType BaseType = QualType::getFromOpaquePtr(basetype);
469  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
470                                                      Virtual, Access,
471                                                      BaseType, BaseLoc))
472    return BaseSpec;
473
474  return true;
475}
476
477/// \brief Performs the actual work of attaching the given base class
478/// specifiers to a C++ class.
479bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
480                                unsigned NumBases) {
481 if (NumBases == 0)
482    return false;
483
484  // Used to keep track of which base types we have already seen, so
485  // that we can properly diagnose redundant direct base types. Note
486  // that the key is always the unqualified canonical type of the base
487  // class.
488  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
489
490  // Copy non-redundant base specifiers into permanent storage.
491  unsigned NumGoodBases = 0;
492  bool Invalid = false;
493  for (unsigned idx = 0; idx < NumBases; ++idx) {
494    QualType NewBaseType
495      = Context.getCanonicalType(Bases[idx]->getType());
496    NewBaseType = NewBaseType.getUnqualifiedType();
497
498    if (KnownBaseTypes[NewBaseType]) {
499      // C++ [class.mi]p3:
500      //   A class shall not be specified as a direct base class of a
501      //   derived class more than once.
502      Diag(Bases[idx]->getSourceRange().getBegin(),
503           diag::err_duplicate_base_class)
504        << KnownBaseTypes[NewBaseType]->getType()
505        << Bases[idx]->getSourceRange();
506
507      // Delete the duplicate base class specifier; we're going to
508      // overwrite its pointer later.
509      Context.Deallocate(Bases[idx]);
510
511      Invalid = true;
512    } else {
513      // Okay, add this new base class.
514      KnownBaseTypes[NewBaseType] = Bases[idx];
515      Bases[NumGoodBases++] = Bases[idx];
516    }
517  }
518
519  // Attach the remaining base class specifiers to the derived class.
520  Class->setBases(Context, Bases, NumGoodBases);
521
522  // Delete the remaining (good) base class specifiers, since their
523  // data has been copied into the CXXRecordDecl.
524  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
525    Context.Deallocate(Bases[idx]);
526
527  return Invalid;
528}
529
530/// ActOnBaseSpecifiers - Attach the given base specifiers to the
531/// class, after checking whether there are any duplicate base
532/// classes.
533void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
534                               unsigned NumBases) {
535  if (!ClassDecl || !Bases || !NumBases)
536    return;
537
538  AdjustDeclIfTemplate(ClassDecl);
539  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
540                       (CXXBaseSpecifier**)(Bases), NumBases);
541}
542
543//===----------------------------------------------------------------------===//
544// C++ class member Handling
545//===----------------------------------------------------------------------===//
546
547/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
548/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
549/// bitfield width if there is one and 'InitExpr' specifies the initializer if
550/// any.
551Sema::DeclPtrTy
552Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
553                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
554  const DeclSpec &DS = D.getDeclSpec();
555  DeclarationName Name = GetNameForDeclarator(D);
556  Expr *BitWidth = static_cast<Expr*>(BW);
557  Expr *Init = static_cast<Expr*>(InitExpr);
558  SourceLocation Loc = D.getIdentifierLoc();
559
560  bool isFunc = D.isFunctionDeclarator();
561
562  assert(!DS.isFriendSpecified());
563
564  // C++ 9.2p6: A member shall not be declared to have automatic storage
565  // duration (auto, register) or with the extern storage-class-specifier.
566  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
567  // data members and cannot be applied to names declared const or static,
568  // and cannot be applied to reference members.
569  switch (DS.getStorageClassSpec()) {
570    case DeclSpec::SCS_unspecified:
571    case DeclSpec::SCS_typedef:
572    case DeclSpec::SCS_static:
573      // FALL THROUGH.
574      break;
575    case DeclSpec::SCS_mutable:
576      if (isFunc) {
577        if (DS.getStorageClassSpecLoc().isValid())
578          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
579        else
580          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
581
582        // FIXME: It would be nicer if the keyword was ignored only for this
583        // declarator. Otherwise we could get follow-up errors.
584        D.getMutableDeclSpec().ClearStorageClassSpecs();
585      } else {
586        QualType T = GetTypeForDeclarator(D, S);
587        diag::kind err = static_cast<diag::kind>(0);
588        if (T->isReferenceType())
589          err = diag::err_mutable_reference;
590        else if (T.isConstQualified())
591          err = diag::err_mutable_const;
592        if (err != 0) {
593          if (DS.getStorageClassSpecLoc().isValid())
594            Diag(DS.getStorageClassSpecLoc(), err);
595          else
596            Diag(DS.getThreadSpecLoc(), err);
597          // FIXME: It would be nicer if the keyword was ignored only for this
598          // declarator. Otherwise we could get follow-up errors.
599          D.getMutableDeclSpec().ClearStorageClassSpecs();
600        }
601      }
602      break;
603    default:
604      if (DS.getStorageClassSpecLoc().isValid())
605        Diag(DS.getStorageClassSpecLoc(),
606             diag::err_storageclass_invalid_for_member);
607      else
608        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
609      D.getMutableDeclSpec().ClearStorageClassSpecs();
610  }
611
612  if (!isFunc &&
613      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
614      D.getNumTypeObjects() == 0) {
615    // Check also for this case:
616    //
617    // typedef int f();
618    // f a;
619    //
620    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
621    isFunc = TDType->isFunctionType();
622  }
623
624  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
625                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
626                      !isFunc);
627
628  Decl *Member;
629  if (isInstField) {
630    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
631                         AS);
632    assert(Member && "HandleField never returns null");
633  } else {
634    Member = ActOnDeclarator(S, D).getAs<Decl>();
635    if (!Member) {
636      if (BitWidth) DeleteExpr(BitWidth);
637      return DeclPtrTy();
638    }
639
640    // Non-instance-fields can't have a bitfield.
641    if (BitWidth) {
642      if (Member->isInvalidDecl()) {
643        // don't emit another diagnostic.
644      } else if (isa<VarDecl>(Member)) {
645        // C++ 9.6p3: A bit-field shall not be a static member.
646        // "static member 'A' cannot be a bit-field"
647        Diag(Loc, diag::err_static_not_bitfield)
648          << Name << BitWidth->getSourceRange();
649      } else if (isa<TypedefDecl>(Member)) {
650        // "typedef member 'x' cannot be a bit-field"
651        Diag(Loc, diag::err_typedef_not_bitfield)
652          << Name << BitWidth->getSourceRange();
653      } else {
654        // A function typedef ("typedef int f(); f a;").
655        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
656        Diag(Loc, diag::err_not_integral_type_bitfield)
657          << Name << cast<ValueDecl>(Member)->getType()
658          << BitWidth->getSourceRange();
659      }
660
661      DeleteExpr(BitWidth);
662      BitWidth = 0;
663      Member->setInvalidDecl();
664    }
665
666    Member->setAccess(AS);
667  }
668
669  assert((Name || isInstField) && "No identifier for non-field ?");
670
671  if (Init)
672    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
673  if (Deleted) // FIXME: Source location is not very good.
674    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
675
676  if (isInstField) {
677    FieldCollector->Add(cast<FieldDecl>(Member));
678    return DeclPtrTy();
679  }
680  return DeclPtrTy::make(Member);
681}
682
683/// ActOnMemInitializer - Handle a C++ member initializer.
684Sema::MemInitResult
685Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
686                          Scope *S,
687                          const CXXScopeSpec &SS,
688                          IdentifierInfo *MemberOrBase,
689                          TypeTy *TemplateTypeTy,
690                          SourceLocation IdLoc,
691                          SourceLocation LParenLoc,
692                          ExprTy **Args, unsigned NumArgs,
693                          SourceLocation *CommaLocs,
694                          SourceLocation RParenLoc) {
695  if (!ConstructorD)
696    return true;
697
698  CXXConstructorDecl *Constructor
699    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
700  if (!Constructor) {
701    // The user wrote a constructor initializer on a function that is
702    // not a C++ constructor. Ignore the error for now, because we may
703    // have more member initializers coming; we'll diagnose it just
704    // once in ActOnMemInitializers.
705    return true;
706  }
707
708  CXXRecordDecl *ClassDecl = Constructor->getParent();
709
710  // C++ [class.base.init]p2:
711  //   Names in a mem-initializer-id are looked up in the scope of the
712  //   constructor’s class and, if not found in that scope, are looked
713  //   up in the scope containing the constructor’s
714  //   definition. [Note: if the constructor’s class contains a member
715  //   with the same name as a direct or virtual base class of the
716  //   class, a mem-initializer-id naming the member or base class and
717  //   composed of a single identifier refers to the class member. A
718  //   mem-initializer-id for the hidden base class may be specified
719  //   using a qualified name. ]
720  if (!SS.getScopeRep() && !TemplateTypeTy) {
721    // Look for a member, first.
722    FieldDecl *Member = 0;
723    DeclContext::lookup_result Result
724      = ClassDecl->lookup(MemberOrBase);
725    if (Result.first != Result.second)
726      Member = dyn_cast<FieldDecl>(*Result.first);
727
728    // FIXME: Handle members of an anonymous union.
729
730    if (Member)
731      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
732                                    RParenLoc);
733  }
734  // It didn't name a member, so see if it names a class.
735  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
736                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
737  if (!BaseTy)
738    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
739      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
740
741  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
742
743  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
744                              RParenLoc, ClassDecl);
745}
746
747Sema::MemInitResult
748Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
749                             unsigned NumArgs, SourceLocation IdLoc,
750                             SourceLocation RParenLoc) {
751  bool HasDependentArg = false;
752  for (unsigned i = 0; i < NumArgs; i++)
753    HasDependentArg |= Args[i]->isTypeDependent();
754
755  CXXConstructorDecl *C = 0;
756  QualType FieldType = Member->getType();
757  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
758    FieldType = Array->getElementType();
759  if (FieldType->isDependentType()) {
760    // Can't check init for dependent type.
761  } else if (FieldType->getAs<RecordType>()) {
762    if (!HasDependentArg)
763      C = PerformInitializationByConstructor(
764            FieldType, (Expr **)Args, NumArgs, IdLoc,
765            SourceRange(IdLoc, RParenLoc), Member->getDeclName(), IK_Direct);
766  } else if (NumArgs != 1) {
767    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
768                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
769  } else if (!HasDependentArg) {
770    Expr *NewExp = (Expr*)Args[0];
771    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
772      return true;
773    Args[0] = NewExp;
774  }
775  // FIXME: Perform direct initialization of the member.
776  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
777                                                  NumArgs, C, IdLoc);
778}
779
780Sema::MemInitResult
781Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
782                           unsigned NumArgs, SourceLocation IdLoc,
783                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
784  bool HasDependentArg = false;
785  for (unsigned i = 0; i < NumArgs; i++)
786    HasDependentArg |= Args[i]->isTypeDependent();
787
788  if (!BaseType->isDependentType()) {
789    if (!BaseType->isRecordType())
790      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
791        << BaseType << SourceRange(IdLoc, RParenLoc);
792
793    // C++ [class.base.init]p2:
794    //   [...] Unless the mem-initializer-id names a nonstatic data
795    //   member of the constructor’s class or a direct or virtual base
796    //   of that class, the mem-initializer is ill-formed. A
797    //   mem-initializer-list can initialize a base class using any
798    //   name that denotes that base class type.
799
800    // First, check for a direct base class.
801    const CXXBaseSpecifier *DirectBaseSpec = 0;
802    for (CXXRecordDecl::base_class_const_iterator Base =
803         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
804      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
805          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
806        // We found a direct base of this type. That's what we're
807        // initializing.
808        DirectBaseSpec = &*Base;
809        break;
810      }
811    }
812
813    // Check for a virtual base class.
814    // FIXME: We might be able to short-circuit this if we know in advance that
815    // there are no virtual bases.
816    const CXXBaseSpecifier *VirtualBaseSpec = 0;
817    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
818      // We haven't found a base yet; search the class hierarchy for a
819      // virtual base class.
820      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
821                      /*DetectVirtual=*/false);
822      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
823        for (BasePaths::paths_iterator Path = Paths.begin();
824             Path != Paths.end(); ++Path) {
825          if (Path->back().Base->isVirtual()) {
826            VirtualBaseSpec = Path->back().Base;
827            break;
828          }
829        }
830      }
831    }
832
833    // C++ [base.class.init]p2:
834    //   If a mem-initializer-id is ambiguous because it designates both
835    //   a direct non-virtual base class and an inherited virtual base
836    //   class, the mem-initializer is ill-formed.
837    if (DirectBaseSpec && VirtualBaseSpec)
838      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
839        << BaseType << SourceRange(IdLoc, RParenLoc);
840    // C++ [base.class.init]p2:
841    // Unless the mem-initializer-id names a nonstatic data membeer of the
842    // constructor's class ot a direst or virtual base of that class, the
843    // mem-initializer is ill-formed.
844    if (!DirectBaseSpec && !VirtualBaseSpec)
845      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
846      << BaseType << ClassDecl->getNameAsCString()
847      << SourceRange(IdLoc, RParenLoc);
848  }
849
850  CXXConstructorDecl *C = 0;
851  if (!BaseType->isDependentType() && !HasDependentArg) {
852    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
853                                            Context.getCanonicalType(BaseType));
854    C = PerformInitializationByConstructor(BaseType, (Expr **)Args, NumArgs,
855                                           IdLoc, SourceRange(IdLoc, RParenLoc),
856                                           Name, IK_Direct);
857  }
858
859  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
860                                                  NumArgs, C, IdLoc);
861}
862
863void
864Sema::BuildBaseOrMemberInitializers(ASTContext &C,
865                                 CXXConstructorDecl *Constructor,
866                                 CXXBaseOrMemberInitializer **Initializers,
867                                 unsigned NumInitializers
868                                 ) {
869  llvm::SmallVector<CXXBaseSpecifier *, 4>Bases;
870  llvm::SmallVector<FieldDecl *, 4>Members;
871
872  Constructor->setBaseOrMemberInitializers(C,
873                                           Initializers, NumInitializers,
874                                           Bases, Members);
875  for (unsigned int i = 0; i < Bases.size(); i++)
876    Diag(Bases[i]->getSourceRange().getBegin(),
877         diag::err_missing_default_constructor) << 0 << Bases[i]->getType();
878  for (unsigned int i = 0; i < Members.size(); i++)
879    Diag(Members[i]->getLocation(), diag::err_missing_default_constructor)
880          << 1 << Members[i]->getType();
881}
882
883static void *GetKeyForTopLevelField(FieldDecl *Field) {
884  // For anonymous unions, use the class declaration as the key.
885  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
886    if (RT->getDecl()->isAnonymousStructOrUnion())
887      return static_cast<void *>(RT->getDecl());
888  }
889  return static_cast<void *>(Field);
890}
891
892static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
893                             bool MemberMaybeAnon=false) {
894  // For fields injected into the class via declaration of an anonymous union,
895  // use its anonymous union class declaration as the unique key.
896  if (FieldDecl *Field = Member->getMember()) {
897    // After BuildBaseOrMemberInitializers call, Field is the anonymous union
898    // data member of the class. Data member used in the initializer list is
899    // in AnonUnionMember field.
900    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
901      Field = Member->getAnonUnionMember();
902    if (Field->getDeclContext()->isRecord()) {
903      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
904      if (RD->isAnonymousStructOrUnion())
905        return static_cast<void *>(RD);
906    }
907    return static_cast<void *>(Field);
908  }
909  return static_cast<RecordType *>(Member->getBaseClass());
910}
911
912void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
913                                SourceLocation ColonLoc,
914                                MemInitTy **MemInits, unsigned NumMemInits) {
915  if (!ConstructorDecl)
916    return;
917
918  CXXConstructorDecl *Constructor
919    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
920
921  if (!Constructor) {
922    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
923    return;
924  }
925  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
926  bool err = false;
927  for (unsigned i = 0; i < NumMemInits; i++) {
928    CXXBaseOrMemberInitializer *Member =
929      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
930    void *KeyToMember = GetKeyForMember(Member);
931    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
932    if (!PrevMember) {
933      PrevMember = Member;
934      continue;
935    }
936    if (FieldDecl *Field = Member->getMember())
937      Diag(Member->getSourceLocation(),
938           diag::error_multiple_mem_initialization)
939      << Field->getNameAsString();
940    else {
941      Type *BaseClass = Member->getBaseClass();
942      assert(BaseClass && "ActOnMemInitializers - neither field or base");
943      Diag(Member->getSourceLocation(),
944           diag::error_multiple_base_initialization)
945        << BaseClass->getDesugaredType(true);
946    }
947    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
948      << 0;
949    err = true;
950  }
951  if (!err)
952    BuildBaseOrMemberInitializers(Context, Constructor,
953                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
954                      NumMemInits);
955
956  if (!err && (Diags.getDiagnosticLevel(diag::warn_base_initialized)
957               != Diagnostic::Ignored ||
958               Diags.getDiagnosticLevel(diag::warn_field_initialized)
959               != Diagnostic::Ignored)) {
960    // Also issue warning if order of ctor-initializer list does not match order
961    // of 1) base class declarations and 2) order of non-static data members.
962    llvm::SmallVector<const void*, 32> AllBaseOrMembers;
963
964    CXXRecordDecl *ClassDecl
965      = cast<CXXRecordDecl>(Constructor->getDeclContext());
966    // Push virtual bases before others.
967    for (CXXRecordDecl::base_class_iterator VBase =
968         ClassDecl->vbases_begin(),
969         E = ClassDecl->vbases_end(); VBase != E; ++VBase)
970      AllBaseOrMembers.push_back(VBase->getType()->getAs<RecordType>());
971
972    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
973         E = ClassDecl->bases_end(); Base != E; ++Base) {
974      // Virtuals are alread in the virtual base list and are constructed
975      // first.
976      if (Base->isVirtual())
977        continue;
978      AllBaseOrMembers.push_back(Base->getType()->getAs<RecordType>());
979    }
980
981    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
982         E = ClassDecl->field_end(); Field != E; ++Field)
983      AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
984
985    int Last = AllBaseOrMembers.size();
986    int curIndex = 0;
987    CXXBaseOrMemberInitializer *PrevMember = 0;
988    for (unsigned i = 0; i < NumMemInits; i++) {
989      CXXBaseOrMemberInitializer *Member =
990        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
991      void *MemberInCtorList = GetKeyForMember(Member, true);
992
993      for (; curIndex < Last; curIndex++)
994        if (MemberInCtorList == AllBaseOrMembers[curIndex])
995          break;
996      if (curIndex == Last) {
997        assert(PrevMember && "Member not in member list?!");
998        // Initializer as specified in ctor-initializer list is out of order.
999        // Issue a warning diagnostic.
1000        if (PrevMember->isBaseInitializer()) {
1001          // Diagnostics is for an initialized base class.
1002          Type *BaseClass = PrevMember->getBaseClass();
1003          Diag(PrevMember->getSourceLocation(),
1004               diag::warn_base_initialized)
1005                << BaseClass->getDesugaredType(true);
1006        } else {
1007          FieldDecl *Field = PrevMember->getMember();
1008          Diag(PrevMember->getSourceLocation(),
1009               diag::warn_field_initialized)
1010            << Field->getNameAsString();
1011        }
1012        // Also the note!
1013        if (FieldDecl *Field = Member->getMember())
1014          Diag(Member->getSourceLocation(),
1015               diag::note_fieldorbase_initialized_here) << 0
1016            << Field->getNameAsString();
1017        else {
1018          Type *BaseClass = Member->getBaseClass();
1019          Diag(Member->getSourceLocation(),
1020               diag::note_fieldorbase_initialized_here) << 1
1021            << BaseClass->getDesugaredType(true);
1022        }
1023        for (curIndex = 0; curIndex < Last; curIndex++)
1024          if (MemberInCtorList == AllBaseOrMembers[curIndex])
1025            break;
1026      }
1027      PrevMember = Member;
1028    }
1029  }
1030}
1031
1032void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1033  if (!CDtorDecl)
1034    return;
1035
1036  if (CXXConstructorDecl *Constructor
1037      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1038    BuildBaseOrMemberInitializers(Context,
1039                                     Constructor,
1040                                     (CXXBaseOrMemberInitializer **)0, 0);
1041}
1042
1043namespace {
1044  /// PureVirtualMethodCollector - traverses a class and its superclasses
1045  /// and determines if it has any pure virtual methods.
1046  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1047    ASTContext &Context;
1048
1049  public:
1050    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1051
1052  private:
1053    MethodList Methods;
1054
1055    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1056
1057  public:
1058    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1059      : Context(Ctx) {
1060
1061      MethodList List;
1062      Collect(RD, List);
1063
1064      // Copy the temporary list to methods, and make sure to ignore any
1065      // null entries.
1066      for (size_t i = 0, e = List.size(); i != e; ++i) {
1067        if (List[i])
1068          Methods.push_back(List[i]);
1069      }
1070    }
1071
1072    bool empty() const { return Methods.empty(); }
1073
1074    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1075    MethodList::const_iterator methods_end() { return Methods.end(); }
1076  };
1077
1078  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1079                                           MethodList& Methods) {
1080    // First, collect the pure virtual methods for the base classes.
1081    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1082         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1083      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1084        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1085        if (BaseDecl && BaseDecl->isAbstract())
1086          Collect(BaseDecl, Methods);
1087      }
1088    }
1089
1090    // Next, zero out any pure virtual methods that this class overrides.
1091    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1092
1093    MethodSetTy OverriddenMethods;
1094    size_t MethodsSize = Methods.size();
1095
1096    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1097         i != e; ++i) {
1098      // Traverse the record, looking for methods.
1099      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1100        // If the method is pure virtual, add it to the methods vector.
1101        if (MD->isPure()) {
1102          Methods.push_back(MD);
1103          continue;
1104        }
1105
1106        // Otherwise, record all the overridden methods in our set.
1107        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1108             E = MD->end_overridden_methods(); I != E; ++I) {
1109          // Keep track of the overridden methods.
1110          OverriddenMethods.insert(*I);
1111        }
1112      }
1113    }
1114
1115    // Now go through the methods and zero out all the ones we know are
1116    // overridden.
1117    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1118      if (OverriddenMethods.count(Methods[i]))
1119        Methods[i] = 0;
1120    }
1121
1122  }
1123}
1124
1125bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1126                                  unsigned DiagID, AbstractDiagSelID SelID,
1127                                  const CXXRecordDecl *CurrentRD) {
1128
1129  if (!getLangOptions().CPlusPlus)
1130    return false;
1131
1132  if (const ArrayType *AT = Context.getAsArrayType(T))
1133    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1134                                  CurrentRD);
1135
1136  if (const PointerType *PT = T->getAs<PointerType>()) {
1137    // Find the innermost pointer type.
1138    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1139      PT = T;
1140
1141    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1142      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1143                                    CurrentRD);
1144  }
1145
1146  const RecordType *RT = T->getAs<RecordType>();
1147  if (!RT)
1148    return false;
1149
1150  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1151  if (!RD)
1152    return false;
1153
1154  if (CurrentRD && CurrentRD != RD)
1155    return false;
1156
1157  if (!RD->isAbstract())
1158    return false;
1159
1160  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
1161
1162  // Check if we've already emitted the list of pure virtual functions for this
1163  // class.
1164  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1165    return true;
1166
1167  PureVirtualMethodCollector Collector(Context, RD);
1168
1169  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1170       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1171    const CXXMethodDecl *MD = *I;
1172
1173    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1174      MD->getDeclName();
1175  }
1176
1177  if (!PureVirtualClassDiagSet)
1178    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1179  PureVirtualClassDiagSet->insert(RD);
1180
1181  return true;
1182}
1183
1184namespace {
1185  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1186    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1187    Sema &SemaRef;
1188    CXXRecordDecl *AbstractClass;
1189
1190    bool VisitDeclContext(const DeclContext *DC) {
1191      bool Invalid = false;
1192
1193      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1194           E = DC->decls_end(); I != E; ++I)
1195        Invalid |= Visit(*I);
1196
1197      return Invalid;
1198    }
1199
1200  public:
1201    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1202      : SemaRef(SemaRef), AbstractClass(ac) {
1203        Visit(SemaRef.Context.getTranslationUnitDecl());
1204    }
1205
1206    bool VisitFunctionDecl(const FunctionDecl *FD) {
1207      if (FD->isThisDeclarationADefinition()) {
1208        // No need to do the check if we're in a definition, because it requires
1209        // that the return/param types are complete.
1210        // because that requires
1211        return VisitDeclContext(FD);
1212      }
1213
1214      // Check the return type.
1215      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1216      bool Invalid =
1217        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1218                                       diag::err_abstract_type_in_decl,
1219                                       Sema::AbstractReturnType,
1220                                       AbstractClass);
1221
1222      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1223           E = FD->param_end(); I != E; ++I) {
1224        const ParmVarDecl *VD = *I;
1225        Invalid |=
1226          SemaRef.RequireNonAbstractType(VD->getLocation(),
1227                                         VD->getOriginalType(),
1228                                         diag::err_abstract_type_in_decl,
1229                                         Sema::AbstractParamType,
1230                                         AbstractClass);
1231      }
1232
1233      return Invalid;
1234    }
1235
1236    bool VisitDecl(const Decl* D) {
1237      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1238        return VisitDeclContext(DC);
1239
1240      return false;
1241    }
1242  };
1243}
1244
1245void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1246                                             DeclPtrTy TagDecl,
1247                                             SourceLocation LBrac,
1248                                             SourceLocation RBrac) {
1249  if (!TagDecl)
1250    return;
1251
1252  AdjustDeclIfTemplate(TagDecl);
1253  ActOnFields(S, RLoc, TagDecl,
1254              (DeclPtrTy*)FieldCollector->getCurFields(),
1255              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1256
1257  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1258  if (!RD->isAbstract()) {
1259    // Collect all the pure virtual methods and see if this is an abstract
1260    // class after all.
1261    PureVirtualMethodCollector Collector(Context, RD);
1262    if (!Collector.empty())
1263      RD->setAbstract(true);
1264  }
1265
1266  if (RD->isAbstract())
1267    AbstractClassUsageDiagnoser(*this, RD);
1268
1269  if (!RD->isDependentType())
1270    AddImplicitlyDeclaredMembersToClass(RD);
1271}
1272
1273/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1274/// special functions, such as the default constructor, copy
1275/// constructor, or destructor, to the given C++ class (C++
1276/// [special]p1).  This routine can only be executed just before the
1277/// definition of the class is complete.
1278void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1279  CanQualType ClassType
1280    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1281
1282  // FIXME: Implicit declarations have exception specifications, which are
1283  // the union of the specifications of the implicitly called functions.
1284
1285  if (!ClassDecl->hasUserDeclaredConstructor()) {
1286    // C++ [class.ctor]p5:
1287    //   A default constructor for a class X is a constructor of class X
1288    //   that can be called without an argument. If there is no
1289    //   user-declared constructor for class X, a default constructor is
1290    //   implicitly declared. An implicitly-declared default constructor
1291    //   is an inline public member of its class.
1292    DeclarationName Name
1293      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1294    CXXConstructorDecl *DefaultCon =
1295      CXXConstructorDecl::Create(Context, ClassDecl,
1296                                 ClassDecl->getLocation(), Name,
1297                                 Context.getFunctionType(Context.VoidTy,
1298                                                         0, 0, false, 0),
1299                                 /*isExplicit=*/false,
1300                                 /*isInline=*/true,
1301                                 /*isImplicitlyDeclared=*/true);
1302    DefaultCon->setAccess(AS_public);
1303    DefaultCon->setImplicit();
1304    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1305    ClassDecl->addDecl(DefaultCon);
1306  }
1307
1308  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1309    // C++ [class.copy]p4:
1310    //   If the class definition does not explicitly declare a copy
1311    //   constructor, one is declared implicitly.
1312
1313    // C++ [class.copy]p5:
1314    //   The implicitly-declared copy constructor for a class X will
1315    //   have the form
1316    //
1317    //       X::X(const X&)
1318    //
1319    //   if
1320    bool HasConstCopyConstructor = true;
1321
1322    //     -- each direct or virtual base class B of X has a copy
1323    //        constructor whose first parameter is of type const B& or
1324    //        const volatile B&, and
1325    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1326         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1327      const CXXRecordDecl *BaseClassDecl
1328        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1329      HasConstCopyConstructor
1330        = BaseClassDecl->hasConstCopyConstructor(Context);
1331    }
1332
1333    //     -- for all the nonstatic data members of X that are of a
1334    //        class type M (or array thereof), each such class type
1335    //        has a copy constructor whose first parameter is of type
1336    //        const M& or const volatile M&.
1337    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1338         HasConstCopyConstructor && Field != ClassDecl->field_end();
1339         ++Field) {
1340      QualType FieldType = (*Field)->getType();
1341      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1342        FieldType = Array->getElementType();
1343      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1344        const CXXRecordDecl *FieldClassDecl
1345          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1346        HasConstCopyConstructor
1347          = FieldClassDecl->hasConstCopyConstructor(Context);
1348      }
1349    }
1350
1351    //   Otherwise, the implicitly declared copy constructor will have
1352    //   the form
1353    //
1354    //       X::X(X&)
1355    QualType ArgType = ClassType;
1356    if (HasConstCopyConstructor)
1357      ArgType = ArgType.withConst();
1358    ArgType = Context.getLValueReferenceType(ArgType);
1359
1360    //   An implicitly-declared copy constructor is an inline public
1361    //   member of its class.
1362    DeclarationName Name
1363      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1364    CXXConstructorDecl *CopyConstructor
1365      = CXXConstructorDecl::Create(Context, ClassDecl,
1366                                   ClassDecl->getLocation(), Name,
1367                                   Context.getFunctionType(Context.VoidTy,
1368                                                           &ArgType, 1,
1369                                                           false, 0),
1370                                   /*isExplicit=*/false,
1371                                   /*isInline=*/true,
1372                                   /*isImplicitlyDeclared=*/true);
1373    CopyConstructor->setAccess(AS_public);
1374    CopyConstructor->setImplicit();
1375    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1376
1377    // Add the parameter to the constructor.
1378    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1379                                                 ClassDecl->getLocation(),
1380                                                 /*IdentifierInfo=*/0,
1381                                                 ArgType, VarDecl::None, 0);
1382    CopyConstructor->setParams(Context, &FromParam, 1);
1383    ClassDecl->addDecl(CopyConstructor);
1384  }
1385
1386  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1387    // Note: The following rules are largely analoguous to the copy
1388    // constructor rules. Note that virtual bases are not taken into account
1389    // for determining the argument type of the operator. Note also that
1390    // operators taking an object instead of a reference are allowed.
1391    //
1392    // C++ [class.copy]p10:
1393    //   If the class definition does not explicitly declare a copy
1394    //   assignment operator, one is declared implicitly.
1395    //   The implicitly-defined copy assignment operator for a class X
1396    //   will have the form
1397    //
1398    //       X& X::operator=(const X&)
1399    //
1400    //   if
1401    bool HasConstCopyAssignment = true;
1402
1403    //       -- each direct base class B of X has a copy assignment operator
1404    //          whose parameter is of type const B&, const volatile B& or B,
1405    //          and
1406    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1407         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1408      const CXXRecordDecl *BaseClassDecl
1409        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1410      const CXXMethodDecl *MD = 0;
1411      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
1412                                                                     MD);
1413    }
1414
1415    //       -- for all the nonstatic data members of X that are of a class
1416    //          type M (or array thereof), each such class type has a copy
1417    //          assignment operator whose parameter is of type const M&,
1418    //          const volatile M& or M.
1419    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1420         HasConstCopyAssignment && Field != ClassDecl->field_end();
1421         ++Field) {
1422      QualType FieldType = (*Field)->getType();
1423      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1424        FieldType = Array->getElementType();
1425      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1426        const CXXRecordDecl *FieldClassDecl
1427          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1428        const CXXMethodDecl *MD = 0;
1429        HasConstCopyAssignment
1430          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
1431      }
1432    }
1433
1434    //   Otherwise, the implicitly declared copy assignment operator will
1435    //   have the form
1436    //
1437    //       X& X::operator=(X&)
1438    QualType ArgType = ClassType;
1439    QualType RetType = Context.getLValueReferenceType(ArgType);
1440    if (HasConstCopyAssignment)
1441      ArgType = ArgType.withConst();
1442    ArgType = Context.getLValueReferenceType(ArgType);
1443
1444    //   An implicitly-declared copy assignment operator is an inline public
1445    //   member of its class.
1446    DeclarationName Name =
1447      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1448    CXXMethodDecl *CopyAssignment =
1449      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1450                            Context.getFunctionType(RetType, &ArgType, 1,
1451                                                    false, 0),
1452                            /*isStatic=*/false, /*isInline=*/true);
1453    CopyAssignment->setAccess(AS_public);
1454    CopyAssignment->setImplicit();
1455    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
1456    CopyAssignment->setCopyAssignment(true);
1457
1458    // Add the parameter to the operator.
1459    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1460                                                 ClassDecl->getLocation(),
1461                                                 /*IdentifierInfo=*/0,
1462                                                 ArgType, VarDecl::None, 0);
1463    CopyAssignment->setParams(Context, &FromParam, 1);
1464
1465    // Don't call addedAssignmentOperator. There is no way to distinguish an
1466    // implicit from an explicit assignment operator.
1467    ClassDecl->addDecl(CopyAssignment);
1468  }
1469
1470  if (!ClassDecl->hasUserDeclaredDestructor()) {
1471    // C++ [class.dtor]p2:
1472    //   If a class has no user-declared destructor, a destructor is
1473    //   declared implicitly. An implicitly-declared destructor is an
1474    //   inline public member of its class.
1475    DeclarationName Name
1476      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1477    CXXDestructorDecl *Destructor
1478      = CXXDestructorDecl::Create(Context, ClassDecl,
1479                                  ClassDecl->getLocation(), Name,
1480                                  Context.getFunctionType(Context.VoidTy,
1481                                                          0, 0, false, 0),
1482                                  /*isInline=*/true,
1483                                  /*isImplicitlyDeclared=*/true);
1484    Destructor->setAccess(AS_public);
1485    Destructor->setImplicit();
1486    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
1487    ClassDecl->addDecl(Destructor);
1488  }
1489}
1490
1491void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1492  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1493  if (!Template)
1494    return;
1495
1496  TemplateParameterList *Params = Template->getTemplateParameters();
1497  for (TemplateParameterList::iterator Param = Params->begin(),
1498                                    ParamEnd = Params->end();
1499       Param != ParamEnd; ++Param) {
1500    NamedDecl *Named = cast<NamedDecl>(*Param);
1501    if (Named->getDeclName()) {
1502      S->AddDecl(DeclPtrTy::make(Named));
1503      IdResolver.AddDecl(Named);
1504    }
1505  }
1506}
1507
1508/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1509/// parsing a top-level (non-nested) C++ class, and we are now
1510/// parsing those parts of the given Method declaration that could
1511/// not be parsed earlier (C++ [class.mem]p2), such as default
1512/// arguments. This action should enter the scope of the given
1513/// Method declaration as if we had just parsed the qualified method
1514/// name. However, it should not bring the parameters into scope;
1515/// that will be performed by ActOnDelayedCXXMethodParameter.
1516void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1517  if (!MethodD)
1518    return;
1519
1520  CXXScopeSpec SS;
1521  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1522  QualType ClassTy
1523    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1524  SS.setScopeRep(
1525    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1526  ActOnCXXEnterDeclaratorScope(S, SS);
1527}
1528
1529/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1530/// C++ method declaration. We're (re-)introducing the given
1531/// function parameter into scope for use in parsing later parts of
1532/// the method declaration. For example, we could see an
1533/// ActOnParamDefaultArgument event for this parameter.
1534void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1535  if (!ParamD)
1536    return;
1537
1538  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1539
1540  // If this parameter has an unparsed default argument, clear it out
1541  // to make way for the parsed default argument.
1542  if (Param->hasUnparsedDefaultArg())
1543    Param->setDefaultArg(0);
1544
1545  S->AddDecl(DeclPtrTy::make(Param));
1546  if (Param->getDeclName())
1547    IdResolver.AddDecl(Param);
1548}
1549
1550/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1551/// processing the delayed method declaration for Method. The method
1552/// declaration is now considered finished. There may be a separate
1553/// ActOnStartOfFunctionDef action later (not necessarily
1554/// immediately!) for this method, if it was also defined inside the
1555/// class body.
1556void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1557  if (!MethodD)
1558    return;
1559
1560  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1561  CXXScopeSpec SS;
1562  QualType ClassTy
1563    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1564  SS.setScopeRep(
1565    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1566  ActOnCXXExitDeclaratorScope(S, SS);
1567
1568  // Now that we have our default arguments, check the constructor
1569  // again. It could produce additional diagnostics or affect whether
1570  // the class has implicitly-declared destructors, among other
1571  // things.
1572  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1573    CheckConstructor(Constructor);
1574
1575  // Check the default arguments, which we may have added.
1576  if (!Method->isInvalidDecl())
1577    CheckCXXDefaultArguments(Method);
1578}
1579
1580/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1581/// the well-formedness of the constructor declarator @p D with type @p
1582/// R. If there are any errors in the declarator, this routine will
1583/// emit diagnostics and set the invalid bit to true.  In any case, the type
1584/// will be updated to reflect a well-formed type for the constructor and
1585/// returned.
1586QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1587                                          FunctionDecl::StorageClass &SC) {
1588  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1589
1590  // C++ [class.ctor]p3:
1591  //   A constructor shall not be virtual (10.3) or static (9.4). A
1592  //   constructor can be invoked for a const, volatile or const
1593  //   volatile object. A constructor shall not be declared const,
1594  //   volatile, or const volatile (9.3.2).
1595  if (isVirtual) {
1596    if (!D.isInvalidType())
1597      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1598        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1599        << SourceRange(D.getIdentifierLoc());
1600    D.setInvalidType();
1601  }
1602  if (SC == FunctionDecl::Static) {
1603    if (!D.isInvalidType())
1604      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1605        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1606        << SourceRange(D.getIdentifierLoc());
1607    D.setInvalidType();
1608    SC = FunctionDecl::None;
1609  }
1610
1611  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1612  if (FTI.TypeQuals != 0) {
1613    if (FTI.TypeQuals & QualType::Const)
1614      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1615        << "const" << SourceRange(D.getIdentifierLoc());
1616    if (FTI.TypeQuals & QualType::Volatile)
1617      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1618        << "volatile" << SourceRange(D.getIdentifierLoc());
1619    if (FTI.TypeQuals & QualType::Restrict)
1620      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1621        << "restrict" << SourceRange(D.getIdentifierLoc());
1622  }
1623
1624  // Rebuild the function type "R" without any type qualifiers (in
1625  // case any of the errors above fired) and with "void" as the
1626  // return type, since constructors don't have return types. We
1627  // *always* have to do this, because GetTypeForDeclarator will
1628  // put in a result type of "int" when none was specified.
1629  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1630  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1631                                 Proto->getNumArgs(),
1632                                 Proto->isVariadic(), 0);
1633}
1634
1635/// CheckConstructor - Checks a fully-formed constructor for
1636/// well-formedness, issuing any diagnostics required. Returns true if
1637/// the constructor declarator is invalid.
1638void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1639  CXXRecordDecl *ClassDecl
1640    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1641  if (!ClassDecl)
1642    return Constructor->setInvalidDecl();
1643
1644  // C++ [class.copy]p3:
1645  //   A declaration of a constructor for a class X is ill-formed if
1646  //   its first parameter is of type (optionally cv-qualified) X and
1647  //   either there are no other parameters or else all other
1648  //   parameters have default arguments.
1649  if (!Constructor->isInvalidDecl() &&
1650      ((Constructor->getNumParams() == 1) ||
1651       (Constructor->getNumParams() > 1 &&
1652        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1653    QualType ParamType = Constructor->getParamDecl(0)->getType();
1654    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1655    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1656      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1657      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1658        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1659      Constructor->setInvalidDecl();
1660    }
1661  }
1662
1663  // Notify the class that we've added a constructor.
1664  ClassDecl->addedConstructor(Context, Constructor);
1665}
1666
1667static inline bool
1668FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1669  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1670          FTI.ArgInfo[0].Param &&
1671          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1672}
1673
1674/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1675/// the well-formednes of the destructor declarator @p D with type @p
1676/// R. If there are any errors in the declarator, this routine will
1677/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1678/// will be updated to reflect a well-formed type for the destructor and
1679/// returned.
1680QualType Sema::CheckDestructorDeclarator(Declarator &D,
1681                                         FunctionDecl::StorageClass& SC) {
1682  // C++ [class.dtor]p1:
1683  //   [...] A typedef-name that names a class is a class-name
1684  //   (7.1.3); however, a typedef-name that names a class shall not
1685  //   be used as the identifier in the declarator for a destructor
1686  //   declaration.
1687  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1688  if (isa<TypedefType>(DeclaratorType)) {
1689    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1690      << DeclaratorType;
1691    D.setInvalidType();
1692  }
1693
1694  // C++ [class.dtor]p2:
1695  //   A destructor is used to destroy objects of its class type. A
1696  //   destructor takes no parameters, and no return type can be
1697  //   specified for it (not even void). The address of a destructor
1698  //   shall not be taken. A destructor shall not be static. A
1699  //   destructor can be invoked for a const, volatile or const
1700  //   volatile object. A destructor shall not be declared const,
1701  //   volatile or const volatile (9.3.2).
1702  if (SC == FunctionDecl::Static) {
1703    if (!D.isInvalidType())
1704      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1705        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1706        << SourceRange(D.getIdentifierLoc());
1707    SC = FunctionDecl::None;
1708    D.setInvalidType();
1709  }
1710  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1711    // Destructors don't have return types, but the parser will
1712    // happily parse something like:
1713    //
1714    //   class X {
1715    //     float ~X();
1716    //   };
1717    //
1718    // The return type will be eliminated later.
1719    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1720      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1721      << SourceRange(D.getIdentifierLoc());
1722  }
1723
1724  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1725  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1726    if (FTI.TypeQuals & QualType::Const)
1727      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1728        << "const" << SourceRange(D.getIdentifierLoc());
1729    if (FTI.TypeQuals & QualType::Volatile)
1730      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1731        << "volatile" << SourceRange(D.getIdentifierLoc());
1732    if (FTI.TypeQuals & QualType::Restrict)
1733      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1734        << "restrict" << SourceRange(D.getIdentifierLoc());
1735    D.setInvalidType();
1736  }
1737
1738  // Make sure we don't have any parameters.
1739  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1740    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1741
1742    // Delete the parameters.
1743    FTI.freeArgs();
1744    D.setInvalidType();
1745  }
1746
1747  // Make sure the destructor isn't variadic.
1748  if (FTI.isVariadic) {
1749    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1750    D.setInvalidType();
1751  }
1752
1753  // Rebuild the function type "R" without any type qualifiers or
1754  // parameters (in case any of the errors above fired) and with
1755  // "void" as the return type, since destructors don't have return
1756  // types. We *always* have to do this, because GetTypeForDeclarator
1757  // will put in a result type of "int" when none was specified.
1758  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1759}
1760
1761/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1762/// well-formednes of the conversion function declarator @p D with
1763/// type @p R. If there are any errors in the declarator, this routine
1764/// will emit diagnostics and return true. Otherwise, it will return
1765/// false. Either way, the type @p R will be updated to reflect a
1766/// well-formed type for the conversion operator.
1767void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1768                                     FunctionDecl::StorageClass& SC) {
1769  // C++ [class.conv.fct]p1:
1770  //   Neither parameter types nor return type can be specified. The
1771  //   type of a conversion function (8.3.5) is "function taking no
1772  //   parameter returning conversion-type-id."
1773  if (SC == FunctionDecl::Static) {
1774    if (!D.isInvalidType())
1775      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1776        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1777        << SourceRange(D.getIdentifierLoc());
1778    D.setInvalidType();
1779    SC = FunctionDecl::None;
1780  }
1781  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1782    // Conversion functions don't have return types, but the parser will
1783    // happily parse something like:
1784    //
1785    //   class X {
1786    //     float operator bool();
1787    //   };
1788    //
1789    // The return type will be changed later anyway.
1790    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1791      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1792      << SourceRange(D.getIdentifierLoc());
1793  }
1794
1795  // Make sure we don't have any parameters.
1796  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1797    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1798
1799    // Delete the parameters.
1800    D.getTypeObject(0).Fun.freeArgs();
1801    D.setInvalidType();
1802  }
1803
1804  // Make sure the conversion function isn't variadic.
1805  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1806    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1807    D.setInvalidType();
1808  }
1809
1810  // C++ [class.conv.fct]p4:
1811  //   The conversion-type-id shall not represent a function type nor
1812  //   an array type.
1813  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1814  if (ConvType->isArrayType()) {
1815    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1816    ConvType = Context.getPointerType(ConvType);
1817    D.setInvalidType();
1818  } else if (ConvType->isFunctionType()) {
1819    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1820    ConvType = Context.getPointerType(ConvType);
1821    D.setInvalidType();
1822  }
1823
1824  // Rebuild the function type "R" without any parameters (in case any
1825  // of the errors above fired) and with the conversion type as the
1826  // return type.
1827  R = Context.getFunctionType(ConvType, 0, 0, false,
1828                              R->getAsFunctionProtoType()->getTypeQuals());
1829
1830  // C++0x explicit conversion operators.
1831  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1832    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1833         diag::warn_explicit_conversion_functions)
1834      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1835}
1836
1837/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1838/// the declaration of the given C++ conversion function. This routine
1839/// is responsible for recording the conversion function in the C++
1840/// class, if possible.
1841Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1842  assert(Conversion && "Expected to receive a conversion function declaration");
1843
1844  // Set the lexical context of this conversion function
1845  Conversion->setLexicalDeclContext(CurContext);
1846
1847  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1848
1849  // Make sure we aren't redeclaring the conversion function.
1850  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1851
1852  // C++ [class.conv.fct]p1:
1853  //   [...] A conversion function is never used to convert a
1854  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1855  //   same object type (or a reference to it), to a (possibly
1856  //   cv-qualified) base class of that type (or a reference to it),
1857  //   or to (possibly cv-qualified) void.
1858  // FIXME: Suppress this warning if the conversion function ends up being a
1859  // virtual function that overrides a virtual function in a base class.
1860  QualType ClassType
1861    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1862  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
1863    ConvType = ConvTypeRef->getPointeeType();
1864  if (ConvType->isRecordType()) {
1865    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1866    if (ConvType == ClassType)
1867      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1868        << ClassType;
1869    else if (IsDerivedFrom(ClassType, ConvType))
1870      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1871        <<  ClassType << ConvType;
1872  } else if (ConvType->isVoidType()) {
1873    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1874      << ClassType << ConvType;
1875  }
1876
1877  if (Conversion->getPreviousDeclaration()) {
1878    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1879    for (OverloadedFunctionDecl::function_iterator
1880           Conv = Conversions->function_begin(),
1881           ConvEnd = Conversions->function_end();
1882         Conv != ConvEnd; ++Conv) {
1883      if (*Conv
1884            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1885        *Conv = Conversion;
1886        return DeclPtrTy::make(Conversion);
1887      }
1888    }
1889    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1890  } else
1891    ClassDecl->addConversionFunction(Context, Conversion);
1892
1893  return DeclPtrTy::make(Conversion);
1894}
1895
1896//===----------------------------------------------------------------------===//
1897// Namespace Handling
1898//===----------------------------------------------------------------------===//
1899
1900/// ActOnStartNamespaceDef - This is called at the start of a namespace
1901/// definition.
1902Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1903                                             SourceLocation IdentLoc,
1904                                             IdentifierInfo *II,
1905                                             SourceLocation LBrace) {
1906  NamespaceDecl *Namespc =
1907      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1908  Namespc->setLBracLoc(LBrace);
1909
1910  Scope *DeclRegionScope = NamespcScope->getParent();
1911
1912  if (II) {
1913    // C++ [namespace.def]p2:
1914    // The identifier in an original-namespace-definition shall not have been
1915    // previously defined in the declarative region in which the
1916    // original-namespace-definition appears. The identifier in an
1917    // original-namespace-definition is the name of the namespace. Subsequently
1918    // in that declarative region, it is treated as an original-namespace-name.
1919
1920    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1921                                     true);
1922
1923    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1924      // This is an extended namespace definition.
1925      // Attach this namespace decl to the chain of extended namespace
1926      // definitions.
1927      OrigNS->setNextNamespace(Namespc);
1928      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1929
1930      // Remove the previous declaration from the scope.
1931      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1932        IdResolver.RemoveDecl(OrigNS);
1933        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1934      }
1935    } else if (PrevDecl) {
1936      // This is an invalid name redefinition.
1937      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1938       << Namespc->getDeclName();
1939      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1940      Namespc->setInvalidDecl();
1941      // Continue on to push Namespc as current DeclContext and return it.
1942    }
1943
1944    PushOnScopeChains(Namespc, DeclRegionScope);
1945  } else {
1946    // FIXME: Handle anonymous namespaces
1947  }
1948
1949  // Although we could have an invalid decl (i.e. the namespace name is a
1950  // redefinition), push it as current DeclContext and try to continue parsing.
1951  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1952  // for the namespace has the declarations that showed up in that particular
1953  // namespace definition.
1954  PushDeclContext(NamespcScope, Namespc);
1955  return DeclPtrTy::make(Namespc);
1956}
1957
1958/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1959/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1960void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1961  Decl *Dcl = D.getAs<Decl>();
1962  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1963  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1964  Namespc->setRBracLoc(RBrace);
1965  PopDeclContext();
1966}
1967
1968Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1969                                          SourceLocation UsingLoc,
1970                                          SourceLocation NamespcLoc,
1971                                          const CXXScopeSpec &SS,
1972                                          SourceLocation IdentLoc,
1973                                          IdentifierInfo *NamespcName,
1974                                          AttributeList *AttrList) {
1975  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1976  assert(NamespcName && "Invalid NamespcName.");
1977  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1978  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1979
1980  UsingDirectiveDecl *UDir = 0;
1981
1982  // Lookup namespace name.
1983  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1984                                    LookupNamespaceName, false);
1985  if (R.isAmbiguous()) {
1986    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1987    return DeclPtrTy();
1988  }
1989  if (NamedDecl *NS = R) {
1990    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1991    // C++ [namespace.udir]p1:
1992    //   A using-directive specifies that the names in the nominated
1993    //   namespace can be used in the scope in which the
1994    //   using-directive appears after the using-directive. During
1995    //   unqualified name lookup (3.4.1), the names appear as if they
1996    //   were declared in the nearest enclosing namespace which
1997    //   contains both the using-directive and the nominated
1998    //   namespace. [Note: in this context, "contains" means "contains
1999    //   directly or indirectly". ]
2000
2001    // Find enclosing context containing both using-directive and
2002    // nominated namespace.
2003    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2004    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2005      CommonAncestor = CommonAncestor->getParent();
2006
2007    UDir = UsingDirectiveDecl::Create(Context,
2008                                      CurContext, UsingLoc,
2009                                      NamespcLoc,
2010                                      SS.getRange(),
2011                                      (NestedNameSpecifier *)SS.getScopeRep(),
2012                                      IdentLoc,
2013                                      cast<NamespaceDecl>(NS),
2014                                      CommonAncestor);
2015    PushUsingDirective(S, UDir);
2016  } else {
2017    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2018  }
2019
2020  // FIXME: We ignore attributes for now.
2021  delete AttrList;
2022  return DeclPtrTy::make(UDir);
2023}
2024
2025void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2026  // If scope has associated entity, then using directive is at namespace
2027  // or translation unit scope. We add UsingDirectiveDecls, into
2028  // it's lookup structure.
2029  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2030    Ctx->addDecl(UDir);
2031  else
2032    // Otherwise it is block-sope. using-directives will affect lookup
2033    // only to the end of scope.
2034    S->PushUsingDirective(DeclPtrTy::make(UDir));
2035}
2036
2037
2038Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2039                                          SourceLocation UsingLoc,
2040                                          const CXXScopeSpec &SS,
2041                                          SourceLocation IdentLoc,
2042                                          IdentifierInfo *TargetName,
2043                                          OverloadedOperatorKind Op,
2044                                          AttributeList *AttrList,
2045                                          bool IsTypeName) {
2046  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2047  assert((TargetName || Op) && "Invalid TargetName.");
2048  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2049  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2050
2051  UsingDecl *UsingAlias = 0;
2052
2053  DeclarationName Name;
2054  if (TargetName)
2055    Name = TargetName;
2056  else
2057    Name = Context.DeclarationNames.getCXXOperatorName(Op);
2058
2059  // Lookup target name.
2060  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
2061
2062  if (NamedDecl *NS = R) {
2063    if (IsTypeName && !isa<TypeDecl>(NS)) {
2064      Diag(IdentLoc, diag::err_using_typename_non_type);
2065    }
2066    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2067        NS->getLocation(), UsingLoc, NS,
2068        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
2069        IsTypeName);
2070    PushOnScopeChains(UsingAlias, S);
2071  } else {
2072    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
2073  }
2074
2075  // FIXME: We ignore attributes for now.
2076  delete AttrList;
2077  return DeclPtrTy::make(UsingAlias);
2078}
2079
2080/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2081/// is a namespace alias, returns the namespace it points to.
2082static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2083  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2084    return AD->getNamespace();
2085  return dyn_cast_or_null<NamespaceDecl>(D);
2086}
2087
2088Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2089                                             SourceLocation NamespaceLoc,
2090                                             SourceLocation AliasLoc,
2091                                             IdentifierInfo *Alias,
2092                                             const CXXScopeSpec &SS,
2093                                             SourceLocation IdentLoc,
2094                                             IdentifierInfo *Ident) {
2095
2096  // Lookup the namespace name.
2097  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
2098
2099  // Check if we have a previous declaration with the same name.
2100  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
2101    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2102      // We already have an alias with the same name that points to the same
2103      // namespace, so don't create a new one.
2104      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
2105        return DeclPtrTy();
2106    }
2107
2108    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2109      diag::err_redefinition_different_kind;
2110    Diag(AliasLoc, DiagID) << Alias;
2111    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2112    return DeclPtrTy();
2113  }
2114
2115  if (R.isAmbiguous()) {
2116    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2117    return DeclPtrTy();
2118  }
2119
2120  if (!R) {
2121    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2122    return DeclPtrTy();
2123  }
2124
2125  NamespaceAliasDecl *AliasDecl =
2126    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2127                               Alias, SS.getRange(),
2128                               (NestedNameSpecifier *)SS.getScopeRep(),
2129                               IdentLoc, R);
2130
2131  CurContext->addDecl(AliasDecl);
2132  return DeclPtrTy::make(AliasDecl);
2133}
2134
2135void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2136                                            CXXConstructorDecl *Constructor) {
2137  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2138          !Constructor->isUsed()) &&
2139    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2140
2141  CXXRecordDecl *ClassDecl
2142    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2143  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2144  // Before the implicitly-declared default constructor for a class is
2145  // implicitly defined, all the implicitly-declared default constructors
2146  // for its base class and its non-static data members shall have been
2147  // implicitly defined.
2148  bool err = false;
2149  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2150       E = ClassDecl->bases_end(); Base != E; ++Base) {
2151    CXXRecordDecl *BaseClassDecl
2152      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2153    if (!BaseClassDecl->hasTrivialConstructor()) {
2154      if (CXXConstructorDecl *BaseCtor =
2155            BaseClassDecl->getDefaultConstructor(Context))
2156        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2157      else {
2158        Diag(CurrentLocation, diag::err_defining_default_ctor)
2159          << Context.getTagDeclType(ClassDecl) << 1
2160          << Context.getTagDeclType(BaseClassDecl);
2161        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2162              << Context.getTagDeclType(BaseClassDecl);
2163        err = true;
2164      }
2165    }
2166  }
2167  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2168       E = ClassDecl->field_end(); Field != E; ++Field) {
2169    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2170    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2171      FieldType = Array->getElementType();
2172    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2173      CXXRecordDecl *FieldClassDecl
2174        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2175      if (!FieldClassDecl->hasTrivialConstructor()) {
2176        if (CXXConstructorDecl *FieldCtor =
2177            FieldClassDecl->getDefaultConstructor(Context))
2178          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2179        else {
2180          Diag(CurrentLocation, diag::err_defining_default_ctor)
2181          << Context.getTagDeclType(ClassDecl) << 0 <<
2182              Context.getTagDeclType(FieldClassDecl);
2183          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2184          << Context.getTagDeclType(FieldClassDecl);
2185          err = true;
2186        }
2187      }
2188    } else if (FieldType->isReferenceType()) {
2189      Diag(CurrentLocation, diag::err_unintialized_member)
2190        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2191      Diag((*Field)->getLocation(), diag::note_declared_at);
2192      err = true;
2193    } else if (FieldType.isConstQualified()) {
2194      Diag(CurrentLocation, diag::err_unintialized_member)
2195        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2196       Diag((*Field)->getLocation(), diag::note_declared_at);
2197      err = true;
2198    }
2199  }
2200  if (!err)
2201    Constructor->setUsed();
2202  else
2203    Constructor->setInvalidDecl();
2204}
2205
2206void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2207                                            CXXDestructorDecl *Destructor) {
2208  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2209         "DefineImplicitDestructor - call it for implicit default dtor");
2210
2211  CXXRecordDecl *ClassDecl
2212  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2213  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2214  // C++ [class.dtor] p5
2215  // Before the implicitly-declared default destructor for a class is
2216  // implicitly defined, all the implicitly-declared default destructors
2217  // for its base class and its non-static data members shall have been
2218  // implicitly defined.
2219  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2220       E = ClassDecl->bases_end(); Base != E; ++Base) {
2221    CXXRecordDecl *BaseClassDecl
2222      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2223    if (!BaseClassDecl->hasTrivialDestructor()) {
2224      if (CXXDestructorDecl *BaseDtor =
2225          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2226        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2227      else
2228        assert(false &&
2229               "DefineImplicitDestructor - missing dtor in a base class");
2230    }
2231  }
2232
2233  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2234       E = ClassDecl->field_end(); Field != E; ++Field) {
2235    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2236    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2237      FieldType = Array->getElementType();
2238    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2239      CXXRecordDecl *FieldClassDecl
2240        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2241      if (!FieldClassDecl->hasTrivialDestructor()) {
2242        if (CXXDestructorDecl *FieldDtor =
2243            const_cast<CXXDestructorDecl*>(
2244                                        FieldClassDecl->getDestructor(Context)))
2245          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2246        else
2247          assert(false &&
2248          "DefineImplicitDestructor - missing dtor in class of a data member");
2249      }
2250    }
2251  }
2252  Destructor->setUsed();
2253}
2254
2255void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2256                                          CXXMethodDecl *MethodDecl) {
2257  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2258          MethodDecl->getOverloadedOperator() == OO_Equal &&
2259          !MethodDecl->isUsed()) &&
2260         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2261
2262  CXXRecordDecl *ClassDecl
2263    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2264
2265  // C++[class.copy] p12
2266  // Before the implicitly-declared copy assignment operator for a class is
2267  // implicitly defined, all implicitly-declared copy assignment operators
2268  // for its direct base classes and its nonstatic data members shall have
2269  // been implicitly defined.
2270  bool err = false;
2271  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2272       E = ClassDecl->bases_end(); Base != E; ++Base) {
2273    CXXRecordDecl *BaseClassDecl
2274      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2275    if (CXXMethodDecl *BaseAssignOpMethod =
2276          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2277      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2278  }
2279  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2280       E = ClassDecl->field_end(); Field != E; ++Field) {
2281    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2282    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2283      FieldType = Array->getElementType();
2284    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2285      CXXRecordDecl *FieldClassDecl
2286        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2287      if (CXXMethodDecl *FieldAssignOpMethod =
2288          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2289        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2290    } else if (FieldType->isReferenceType()) {
2291      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2292      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2293      Diag(Field->getLocation(), diag::note_declared_at);
2294      Diag(CurrentLocation, diag::note_first_required_here);
2295      err = true;
2296    } else if (FieldType.isConstQualified()) {
2297      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2298      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2299      Diag(Field->getLocation(), diag::note_declared_at);
2300      Diag(CurrentLocation, diag::note_first_required_here);
2301      err = true;
2302    }
2303  }
2304  if (!err)
2305    MethodDecl->setUsed();
2306}
2307
2308CXXMethodDecl *
2309Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2310                              CXXRecordDecl *ClassDecl) {
2311  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2312  QualType RHSType(LHSType);
2313  // If class's assignment operator argument is const/volatile qualified,
2314  // look for operator = (const/volatile B&). Otherwise, look for
2315  // operator = (B&).
2316  if (ParmDecl->getType().isConstQualified())
2317    RHSType.addConst();
2318  if (ParmDecl->getType().isVolatileQualified())
2319    RHSType.addVolatile();
2320  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2321                                                          LHSType,
2322                                                          SourceLocation()));
2323  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2324                                                          RHSType,
2325                                                          SourceLocation()));
2326  Expr *Args[2] = { &*LHS, &*RHS };
2327  OverloadCandidateSet CandidateSet;
2328  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2329                              CandidateSet);
2330  OverloadCandidateSet::iterator Best;
2331  if (BestViableFunction(CandidateSet,
2332                         ClassDecl->getLocation(), Best) == OR_Success)
2333    return cast<CXXMethodDecl>(Best->Function);
2334  assert(false &&
2335         "getAssignOperatorMethod - copy assignment operator method not found");
2336  return 0;
2337}
2338
2339void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2340                                   CXXConstructorDecl *CopyConstructor,
2341                                   unsigned TypeQuals) {
2342  assert((CopyConstructor->isImplicit() &&
2343          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2344          !CopyConstructor->isUsed()) &&
2345         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2346
2347  CXXRecordDecl *ClassDecl
2348    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2349  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2350  // C++ [class.copy] p209
2351  // Before the implicitly-declared copy constructor for a class is
2352  // implicitly defined, all the implicitly-declared copy constructors
2353  // for its base class and its non-static data members shall have been
2354  // implicitly defined.
2355  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2356       Base != ClassDecl->bases_end(); ++Base) {
2357    CXXRecordDecl *BaseClassDecl
2358      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2359    if (CXXConstructorDecl *BaseCopyCtor =
2360        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2361      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2362  }
2363  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2364                                  FieldEnd = ClassDecl->field_end();
2365       Field != FieldEnd; ++Field) {
2366    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2367    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2368      FieldType = Array->getElementType();
2369    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2370      CXXRecordDecl *FieldClassDecl
2371        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2372      if (CXXConstructorDecl *FieldCopyCtor =
2373          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2374        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2375    }
2376  }
2377  CopyConstructor->setUsed();
2378}
2379
2380/// BuildCXXConstructExpr - Creates a complete call to a constructor,
2381/// including handling of its default argument expressions.
2382Expr *Sema::BuildCXXConstructExpr(QualType DeclInitType,
2383                                  CXXConstructorDecl *Constructor,
2384                                  bool Elidable,
2385                                  Expr **Exprs, unsigned NumExprs) {
2386  CXXConstructExpr *Temp = CXXConstructExpr::Create(Context, DeclInitType,
2387                                                    Constructor,
2388                                                    Elidable, Exprs, NumExprs);
2389  // default arguments must be added to constructor call expression.
2390  FunctionDecl *FDecl = cast<FunctionDecl>(Constructor);
2391  unsigned NumArgsInProto = FDecl->param_size();
2392  for (unsigned j = NumExprs; j != NumArgsInProto; j++) {
2393    Expr *DefaultExpr = FDecl->getParamDecl(j)->getDefaultArg();
2394
2395    // If the default expression creates temporaries, we need to
2396    // push them to the current stack of expression temporaries so they'll
2397    // be properly destroyed.
2398    if (CXXExprWithTemporaries *E
2399        = dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
2400      assert(!E->shouldDestroyTemporaries() &&
2401             "Can't destroy temporaries in a default argument expr!");
2402      for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
2403        ExprTemporaries.push_back(E->getTemporary(I));
2404    }
2405    Expr *Arg = CXXDefaultArgExpr::Create(Context, FDecl->getParamDecl(j));
2406    Temp->setArg(j, Arg);
2407  }
2408  return Temp;
2409}
2410
2411void Sema::InitializeVarWithConstructor(VarDecl *VD,
2412                                        CXXConstructorDecl *Constructor,
2413                                        QualType DeclInitType,
2414                                        Expr **Exprs, unsigned NumExprs) {
2415  Expr *Temp = BuildCXXConstructExpr(DeclInitType, Constructor,
2416                                     false, Exprs, NumExprs);
2417  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2418  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
2419  VD->setInit(Context, Temp);
2420}
2421
2422void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType)
2423{
2424  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2425                                  DeclInitType->getAs<RecordType>()->getDecl());
2426  if (!ClassDecl->hasTrivialDestructor())
2427    if (CXXDestructorDecl *Destructor =
2428        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2429      MarkDeclarationReferenced(VD->getLocation(), Destructor);
2430}
2431
2432/// AddCXXDirectInitializerToDecl - This action is called immediately after
2433/// ActOnDeclarator, when a C++ direct initializer is present.
2434/// e.g: "int x(1);"
2435void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2436                                         SourceLocation LParenLoc,
2437                                         MultiExprArg Exprs,
2438                                         SourceLocation *CommaLocs,
2439                                         SourceLocation RParenLoc) {
2440  unsigned NumExprs = Exprs.size();
2441  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2442  Decl *RealDecl = Dcl.getAs<Decl>();
2443
2444  // If there is no declaration, there was an error parsing it.  Just ignore
2445  // the initializer.
2446  if (RealDecl == 0)
2447    return;
2448
2449  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2450  if (!VDecl) {
2451    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2452    RealDecl->setInvalidDecl();
2453    return;
2454  }
2455
2456  // FIXME: Need to handle dependent types and expressions here.
2457
2458  // We will treat direct-initialization as a copy-initialization:
2459  //    int x(1);  -as-> int x = 1;
2460  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2461  //
2462  // Clients that want to distinguish between the two forms, can check for
2463  // direct initializer using VarDecl::hasCXXDirectInitializer().
2464  // A major benefit is that clients that don't particularly care about which
2465  // exactly form was it (like the CodeGen) can handle both cases without
2466  // special case code.
2467
2468  // C++ 8.5p11:
2469  // The form of initialization (using parentheses or '=') is generally
2470  // insignificant, but does matter when the entity being initialized has a
2471  // class type.
2472  QualType DeclInitType = VDecl->getType();
2473  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2474    DeclInitType = Array->getElementType();
2475
2476  // FIXME: This isn't the right place to complete the type.
2477  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2478                          diag::err_typecheck_decl_incomplete_type)) {
2479    VDecl->setInvalidDecl();
2480    return;
2481  }
2482
2483  if (VDecl->getType()->isRecordType()) {
2484    CXXConstructorDecl *Constructor
2485      = PerformInitializationByConstructor(DeclInitType,
2486                                           (Expr **)Exprs.get(), NumExprs,
2487                                           VDecl->getLocation(),
2488                                           SourceRange(VDecl->getLocation(),
2489                                                       RParenLoc),
2490                                           VDecl->getDeclName(),
2491                                           IK_Direct);
2492    if (!Constructor)
2493      RealDecl->setInvalidDecl();
2494    else {
2495      VDecl->setCXXDirectInitializer(true);
2496      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2497                                   (Expr**)Exprs.release(), NumExprs);
2498      FinalizeVarWithDestructor(VDecl, DeclInitType);
2499    }
2500    return;
2501  }
2502
2503  if (NumExprs > 1) {
2504    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2505      << SourceRange(VDecl->getLocation(), RParenLoc);
2506    RealDecl->setInvalidDecl();
2507    return;
2508  }
2509
2510  // Let clients know that initialization was done with a direct initializer.
2511  VDecl->setCXXDirectInitializer(true);
2512
2513  assert(NumExprs == 1 && "Expected 1 expression");
2514  // Set the init expression, handles conversions.
2515  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2516                       /*DirectInit=*/true);
2517}
2518
2519/// PerformInitializationByConstructor - Perform initialization by
2520/// constructor (C++ [dcl.init]p14), which may occur as part of
2521/// direct-initialization or copy-initialization. We are initializing
2522/// an object of type @p ClassType with the given arguments @p
2523/// Args. @p Loc is the location in the source code where the
2524/// initializer occurs (e.g., a declaration, member initializer,
2525/// functional cast, etc.) while @p Range covers the whole
2526/// initialization. @p InitEntity is the entity being initialized,
2527/// which may by the name of a declaration or a type. @p Kind is the
2528/// kind of initialization we're performing, which affects whether
2529/// explicit constructors will be considered. When successful, returns
2530/// the constructor that will be used to perform the initialization;
2531/// when the initialization fails, emits a diagnostic and returns
2532/// null.
2533CXXConstructorDecl *
2534Sema::PerformInitializationByConstructor(QualType ClassType,
2535                                         Expr **Args, unsigned NumArgs,
2536                                         SourceLocation Loc, SourceRange Range,
2537                                         DeclarationName InitEntity,
2538                                         InitializationKind Kind) {
2539  const RecordType *ClassRec = ClassType->getAs<RecordType>();
2540  assert(ClassRec && "Can only initialize a class type here");
2541
2542  // C++ [dcl.init]p14:
2543  //
2544  //   If the initialization is direct-initialization, or if it is
2545  //   copy-initialization where the cv-unqualified version of the
2546  //   source type is the same class as, or a derived class of, the
2547  //   class of the destination, constructors are considered. The
2548  //   applicable constructors are enumerated (13.3.1.3), and the
2549  //   best one is chosen through overload resolution (13.3). The
2550  //   constructor so selected is called to initialize the object,
2551  //   with the initializer expression(s) as its argument(s). If no
2552  //   constructor applies, or the overload resolution is ambiguous,
2553  //   the initialization is ill-formed.
2554  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2555  OverloadCandidateSet CandidateSet;
2556
2557  // Add constructors to the overload set.
2558  DeclarationName ConstructorName
2559    = Context.DeclarationNames.getCXXConstructorName(
2560                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2561  DeclContext::lookup_const_iterator Con, ConEnd;
2562  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2563       Con != ConEnd; ++Con) {
2564    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2565    if ((Kind == IK_Direct) ||
2566        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2567        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2568      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2569  }
2570
2571  // FIXME: When we decide not to synthesize the implicitly-declared
2572  // constructors, we'll need to make them appear here.
2573
2574  OverloadCandidateSet::iterator Best;
2575  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2576  case OR_Success:
2577    // We found a constructor. Return it.
2578    return cast<CXXConstructorDecl>(Best->Function);
2579
2580  case OR_No_Viable_Function:
2581    if (InitEntity)
2582      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2583        << InitEntity << Range;
2584    else
2585      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2586        << ClassType << Range;
2587    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2588    return 0;
2589
2590  case OR_Ambiguous:
2591    if (InitEntity)
2592      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2593    else
2594      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2595    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2596    return 0;
2597
2598  case OR_Deleted:
2599    if (InitEntity)
2600      Diag(Loc, diag::err_ovl_deleted_init)
2601        << Best->Function->isDeleted()
2602        << InitEntity << Range;
2603    else
2604      Diag(Loc, diag::err_ovl_deleted_init)
2605        << Best->Function->isDeleted()
2606        << InitEntity << Range;
2607    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2608    return 0;
2609  }
2610
2611  return 0;
2612}
2613
2614/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2615/// determine whether they are reference-related,
2616/// reference-compatible, reference-compatible with added
2617/// qualification, or incompatible, for use in C++ initialization by
2618/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2619/// type, and the first type (T1) is the pointee type of the reference
2620/// type being initialized.
2621Sema::ReferenceCompareResult
2622Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2623                                   bool& DerivedToBase) {
2624  assert(!T1->isReferenceType() &&
2625    "T1 must be the pointee type of the reference type");
2626  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2627
2628  T1 = Context.getCanonicalType(T1);
2629  T2 = Context.getCanonicalType(T2);
2630  QualType UnqualT1 = T1.getUnqualifiedType();
2631  QualType UnqualT2 = T2.getUnqualifiedType();
2632
2633  // C++ [dcl.init.ref]p4:
2634  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2635  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2636  //   T1 is a base class of T2.
2637  if (UnqualT1 == UnqualT2)
2638    DerivedToBase = false;
2639  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2640    DerivedToBase = true;
2641  else
2642    return Ref_Incompatible;
2643
2644  // At this point, we know that T1 and T2 are reference-related (at
2645  // least).
2646
2647  // C++ [dcl.init.ref]p4:
2648  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2649  //   reference-related to T2 and cv1 is the same cv-qualification
2650  //   as, or greater cv-qualification than, cv2. For purposes of
2651  //   overload resolution, cases for which cv1 is greater
2652  //   cv-qualification than cv2 are identified as
2653  //   reference-compatible with added qualification (see 13.3.3.2).
2654  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2655    return Ref_Compatible;
2656  else if (T1.isMoreQualifiedThan(T2))
2657    return Ref_Compatible_With_Added_Qualification;
2658  else
2659    return Ref_Related;
2660}
2661
2662/// CheckReferenceInit - Check the initialization of a reference
2663/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2664/// the initializer (either a simple initializer or an initializer
2665/// list), and DeclType is the type of the declaration. When ICS is
2666/// non-null, this routine will compute the implicit conversion
2667/// sequence according to C++ [over.ics.ref] and will not produce any
2668/// diagnostics; when ICS is null, it will emit diagnostics when any
2669/// errors are found. Either way, a return value of true indicates
2670/// that there was a failure, a return value of false indicates that
2671/// the reference initialization succeeded.
2672///
2673/// When @p SuppressUserConversions, user-defined conversions are
2674/// suppressed.
2675/// When @p AllowExplicit, we also permit explicit user-defined
2676/// conversion functions.
2677/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2678bool
2679Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2680                         ImplicitConversionSequence *ICS,
2681                         bool SuppressUserConversions,
2682                         bool AllowExplicit, bool ForceRValue) {
2683  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2684
2685  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2686  QualType T2 = Init->getType();
2687
2688  // If the initializer is the address of an overloaded function, try
2689  // to resolve the overloaded function. If all goes well, T2 is the
2690  // type of the resulting function.
2691  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2692    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2693                                                          ICS != 0);
2694    if (Fn) {
2695      // Since we're performing this reference-initialization for
2696      // real, update the initializer with the resulting function.
2697      if (!ICS) {
2698        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2699          return true;
2700
2701        FixOverloadedFunctionReference(Init, Fn);
2702      }
2703
2704      T2 = Fn->getType();
2705    }
2706  }
2707
2708  // Compute some basic properties of the types and the initializer.
2709  bool isRValRef = DeclType->isRValueReferenceType();
2710  bool DerivedToBase = false;
2711  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2712                                                  Init->isLvalue(Context);
2713  ReferenceCompareResult RefRelationship
2714    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2715
2716  // Most paths end in a failed conversion.
2717  if (ICS)
2718    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2719
2720  // C++ [dcl.init.ref]p5:
2721  //   A reference to type "cv1 T1" is initialized by an expression
2722  //   of type "cv2 T2" as follows:
2723
2724  //     -- If the initializer expression
2725
2726  // Rvalue references cannot bind to lvalues (N2812).
2727  // There is absolutely no situation where they can. In particular, note that
2728  // this is ill-formed, even if B has a user-defined conversion to A&&:
2729  //   B b;
2730  //   A&& r = b;
2731  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2732    if (!ICS)
2733      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2734        << Init->getSourceRange();
2735    return true;
2736  }
2737
2738  bool BindsDirectly = false;
2739  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2740  //          reference-compatible with "cv2 T2," or
2741  //
2742  // Note that the bit-field check is skipped if we are just computing
2743  // the implicit conversion sequence (C++ [over.best.ics]p2).
2744  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2745      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2746    BindsDirectly = true;
2747
2748    if (ICS) {
2749      // C++ [over.ics.ref]p1:
2750      //   When a parameter of reference type binds directly (8.5.3)
2751      //   to an argument expression, the implicit conversion sequence
2752      //   is the identity conversion, unless the argument expression
2753      //   has a type that is a derived class of the parameter type,
2754      //   in which case the implicit conversion sequence is a
2755      //   derived-to-base Conversion (13.3.3.1).
2756      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2757      ICS->Standard.First = ICK_Identity;
2758      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2759      ICS->Standard.Third = ICK_Identity;
2760      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2761      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2762      ICS->Standard.ReferenceBinding = true;
2763      ICS->Standard.DirectBinding = true;
2764      ICS->Standard.RRefBinding = false;
2765      ICS->Standard.CopyConstructor = 0;
2766
2767      // Nothing more to do: the inaccessibility/ambiguity check for
2768      // derived-to-base conversions is suppressed when we're
2769      // computing the implicit conversion sequence (C++
2770      // [over.best.ics]p2).
2771      return false;
2772    } else {
2773      // Perform the conversion.
2774      // FIXME: Binding to a subobject of the lvalue is going to require more
2775      // AST annotation than this.
2776      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
2777    }
2778  }
2779
2780  //       -- has a class type (i.e., T2 is a class type) and can be
2781  //          implicitly converted to an lvalue of type "cv3 T3,"
2782  //          where "cv1 T1" is reference-compatible with "cv3 T3"
2783  //          92) (this conversion is selected by enumerating the
2784  //          applicable conversion functions (13.3.1.6) and choosing
2785  //          the best one through overload resolution (13.3)),
2786  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2787    // FIXME: Look for conversions in base classes!
2788    CXXRecordDecl *T2RecordDecl
2789      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2790
2791    OverloadCandidateSet CandidateSet;
2792    OverloadedFunctionDecl *Conversions
2793      = T2RecordDecl->getConversionFunctions();
2794    for (OverloadedFunctionDecl::function_iterator Func
2795           = Conversions->function_begin();
2796         Func != Conversions->function_end(); ++Func) {
2797      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2798
2799      // If the conversion function doesn't return a reference type,
2800      // it can't be considered for this conversion.
2801      if (Conv->getConversionType()->isLValueReferenceType() &&
2802          (AllowExplicit || !Conv->isExplicit()))
2803        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2804    }
2805
2806    OverloadCandidateSet::iterator Best;
2807    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2808    case OR_Success:
2809      // This is a direct binding.
2810      BindsDirectly = true;
2811
2812      if (ICS) {
2813        // C++ [over.ics.ref]p1:
2814        //
2815        //   [...] If the parameter binds directly to the result of
2816        //   applying a conversion function to the argument
2817        //   expression, the implicit conversion sequence is a
2818        //   user-defined conversion sequence (13.3.3.1.2), with the
2819        //   second standard conversion sequence either an identity
2820        //   conversion or, if the conversion function returns an
2821        //   entity of a type that is a derived class of the parameter
2822        //   type, a derived-to-base Conversion.
2823        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2824        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2825        ICS->UserDefined.After = Best->FinalConversion;
2826        ICS->UserDefined.ConversionFunction = Best->Function;
2827        assert(ICS->UserDefined.After.ReferenceBinding &&
2828               ICS->UserDefined.After.DirectBinding &&
2829               "Expected a direct reference binding!");
2830        return false;
2831      } else {
2832        // Perform the conversion.
2833        // FIXME: Binding to a subobject of the lvalue is going to require more
2834        // AST annotation than this.
2835        ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
2836      }
2837      break;
2838
2839    case OR_Ambiguous:
2840      assert(false && "Ambiguous reference binding conversions not implemented.");
2841      return true;
2842
2843    case OR_No_Viable_Function:
2844    case OR_Deleted:
2845      // There was no suitable conversion, or we found a deleted
2846      // conversion; continue with other checks.
2847      break;
2848    }
2849  }
2850
2851  if (BindsDirectly) {
2852    // C++ [dcl.init.ref]p4:
2853    //   [...] In all cases where the reference-related or
2854    //   reference-compatible relationship of two types is used to
2855    //   establish the validity of a reference binding, and T1 is a
2856    //   base class of T2, a program that necessitates such a binding
2857    //   is ill-formed if T1 is an inaccessible (clause 11) or
2858    //   ambiguous (10.2) base class of T2.
2859    //
2860    // Note that we only check this condition when we're allowed to
2861    // complain about errors, because we should not be checking for
2862    // ambiguity (or inaccessibility) unless the reference binding
2863    // actually happens.
2864    if (DerivedToBase)
2865      return CheckDerivedToBaseConversion(T2, T1,
2866                                          Init->getSourceRange().getBegin(),
2867                                          Init->getSourceRange());
2868    else
2869      return false;
2870  }
2871
2872  //     -- Otherwise, the reference shall be to a non-volatile const
2873  //        type (i.e., cv1 shall be const), or the reference shall be an
2874  //        rvalue reference and the initializer expression shall be an rvalue.
2875  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2876    if (!ICS)
2877      Diag(Init->getSourceRange().getBegin(),
2878           diag::err_not_reference_to_const_init)
2879        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2880        << T2 << Init->getSourceRange();
2881    return true;
2882  }
2883
2884  //       -- If the initializer expression is an rvalue, with T2 a
2885  //          class type, and "cv1 T1" is reference-compatible with
2886  //          "cv2 T2," the reference is bound in one of the
2887  //          following ways (the choice is implementation-defined):
2888  //
2889  //          -- The reference is bound to the object represented by
2890  //             the rvalue (see 3.10) or to a sub-object within that
2891  //             object.
2892  //
2893  //          -- A temporary of type "cv1 T2" [sic] is created, and
2894  //             a constructor is called to copy the entire rvalue
2895  //             object into the temporary. The reference is bound to
2896  //             the temporary or to a sub-object within the
2897  //             temporary.
2898  //
2899  //          The constructor that would be used to make the copy
2900  //          shall be callable whether or not the copy is actually
2901  //          done.
2902  //
2903  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2904  // freedom, so we will always take the first option and never build
2905  // a temporary in this case. FIXME: We will, however, have to check
2906  // for the presence of a copy constructor in C++98/03 mode.
2907  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2908      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2909    if (ICS) {
2910      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2911      ICS->Standard.First = ICK_Identity;
2912      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2913      ICS->Standard.Third = ICK_Identity;
2914      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2915      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2916      ICS->Standard.ReferenceBinding = true;
2917      ICS->Standard.DirectBinding = false;
2918      ICS->Standard.RRefBinding = isRValRef;
2919      ICS->Standard.CopyConstructor = 0;
2920    } else {
2921      // FIXME: Binding to a subobject of the rvalue is going to require more
2922      // AST annotation than this.
2923      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/false);
2924    }
2925    return false;
2926  }
2927
2928  //       -- Otherwise, a temporary of type "cv1 T1" is created and
2929  //          initialized from the initializer expression using the
2930  //          rules for a non-reference copy initialization (8.5). The
2931  //          reference is then bound to the temporary. If T1 is
2932  //          reference-related to T2, cv1 must be the same
2933  //          cv-qualification as, or greater cv-qualification than,
2934  //          cv2; otherwise, the program is ill-formed.
2935  if (RefRelationship == Ref_Related) {
2936    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2937    // we would be reference-compatible or reference-compatible with
2938    // added qualification. But that wasn't the case, so the reference
2939    // initialization fails.
2940    if (!ICS)
2941      Diag(Init->getSourceRange().getBegin(),
2942           diag::err_reference_init_drops_quals)
2943        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2944        << T2 << Init->getSourceRange();
2945    return true;
2946  }
2947
2948  // If at least one of the types is a class type, the types are not
2949  // related, and we aren't allowed any user conversions, the
2950  // reference binding fails. This case is important for breaking
2951  // recursion, since TryImplicitConversion below will attempt to
2952  // create a temporary through the use of a copy constructor.
2953  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2954      (T1->isRecordType() || T2->isRecordType())) {
2955    if (!ICS)
2956      Diag(Init->getSourceRange().getBegin(),
2957           diag::err_typecheck_convert_incompatible)
2958        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2959    return true;
2960  }
2961
2962  // Actually try to convert the initializer to T1.
2963  if (ICS) {
2964    // C++ [over.ics.ref]p2:
2965    //
2966    //   When a parameter of reference type is not bound directly to
2967    //   an argument expression, the conversion sequence is the one
2968    //   required to convert the argument expression to the
2969    //   underlying type of the reference according to
2970    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2971    //   to copy-initializing a temporary of the underlying type with
2972    //   the argument expression. Any difference in top-level
2973    //   cv-qualification is subsumed by the initialization itself
2974    //   and does not constitute a conversion.
2975    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2976    // Of course, that's still a reference binding.
2977    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2978      ICS->Standard.ReferenceBinding = true;
2979      ICS->Standard.RRefBinding = isRValRef;
2980    } else if(ICS->ConversionKind ==
2981              ImplicitConversionSequence::UserDefinedConversion) {
2982      ICS->UserDefined.After.ReferenceBinding = true;
2983      ICS->UserDefined.After.RRefBinding = isRValRef;
2984    }
2985    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2986  } else {
2987    return PerformImplicitConversion(Init, T1, "initializing");
2988  }
2989}
2990
2991/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2992/// of this overloaded operator is well-formed. If so, returns false;
2993/// otherwise, emits appropriate diagnostics and returns true.
2994bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2995  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2996         "Expected an overloaded operator declaration");
2997
2998  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2999
3000  // C++ [over.oper]p5:
3001  //   The allocation and deallocation functions, operator new,
3002  //   operator new[], operator delete and operator delete[], are
3003  //   described completely in 3.7.3. The attributes and restrictions
3004  //   found in the rest of this subclause do not apply to them unless
3005  //   explicitly stated in 3.7.3.
3006  // FIXME: Write a separate routine for checking this. For now, just allow it.
3007  if (Op == OO_New || Op == OO_Array_New ||
3008      Op == OO_Delete || Op == OO_Array_Delete)
3009    return false;
3010
3011  // C++ [over.oper]p6:
3012  //   An operator function shall either be a non-static member
3013  //   function or be a non-member function and have at least one
3014  //   parameter whose type is a class, a reference to a class, an
3015  //   enumeration, or a reference to an enumeration.
3016  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
3017    if (MethodDecl->isStatic())
3018      return Diag(FnDecl->getLocation(),
3019                  diag::err_operator_overload_static) << FnDecl->getDeclName();
3020  } else {
3021    bool ClassOrEnumParam = false;
3022    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
3023                                   ParamEnd = FnDecl->param_end();
3024         Param != ParamEnd; ++Param) {
3025      QualType ParamType = (*Param)->getType().getNonReferenceType();
3026      if (ParamType->isDependentType() || ParamType->isRecordType() ||
3027          ParamType->isEnumeralType()) {
3028        ClassOrEnumParam = true;
3029        break;
3030      }
3031    }
3032
3033    if (!ClassOrEnumParam)
3034      return Diag(FnDecl->getLocation(),
3035                  diag::err_operator_overload_needs_class_or_enum)
3036        << FnDecl->getDeclName();
3037  }
3038
3039  // C++ [over.oper]p8:
3040  //   An operator function cannot have default arguments (8.3.6),
3041  //   except where explicitly stated below.
3042  //
3043  // Only the function-call operator allows default arguments
3044  // (C++ [over.call]p1).
3045  if (Op != OO_Call) {
3046    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
3047         Param != FnDecl->param_end(); ++Param) {
3048      if ((*Param)->hasUnparsedDefaultArg())
3049        return Diag((*Param)->getLocation(),
3050                    diag::err_operator_overload_default_arg)
3051          << FnDecl->getDeclName();
3052      else if (Expr *DefArg = (*Param)->getDefaultArg())
3053        return Diag((*Param)->getLocation(),
3054                    diag::err_operator_overload_default_arg)
3055          << FnDecl->getDeclName() << DefArg->getSourceRange();
3056    }
3057  }
3058
3059  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
3060    { false, false, false }
3061#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
3062    , { Unary, Binary, MemberOnly }
3063#include "clang/Basic/OperatorKinds.def"
3064  };
3065
3066  bool CanBeUnaryOperator = OperatorUses[Op][0];
3067  bool CanBeBinaryOperator = OperatorUses[Op][1];
3068  bool MustBeMemberOperator = OperatorUses[Op][2];
3069
3070  // C++ [over.oper]p8:
3071  //   [...] Operator functions cannot have more or fewer parameters
3072  //   than the number required for the corresponding operator, as
3073  //   described in the rest of this subclause.
3074  unsigned NumParams = FnDecl->getNumParams()
3075                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
3076  if (Op != OO_Call &&
3077      ((NumParams == 1 && !CanBeUnaryOperator) ||
3078       (NumParams == 2 && !CanBeBinaryOperator) ||
3079       (NumParams < 1) || (NumParams > 2))) {
3080    // We have the wrong number of parameters.
3081    unsigned ErrorKind;
3082    if (CanBeUnaryOperator && CanBeBinaryOperator) {
3083      ErrorKind = 2;  // 2 -> unary or binary.
3084    } else if (CanBeUnaryOperator) {
3085      ErrorKind = 0;  // 0 -> unary
3086    } else {
3087      assert(CanBeBinaryOperator &&
3088             "All non-call overloaded operators are unary or binary!");
3089      ErrorKind = 1;  // 1 -> binary
3090    }
3091
3092    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
3093      << FnDecl->getDeclName() << NumParams << ErrorKind;
3094  }
3095
3096  // Overloaded operators other than operator() cannot be variadic.
3097  if (Op != OO_Call &&
3098      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
3099    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
3100      << FnDecl->getDeclName();
3101  }
3102
3103  // Some operators must be non-static member functions.
3104  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
3105    return Diag(FnDecl->getLocation(),
3106                diag::err_operator_overload_must_be_member)
3107      << FnDecl->getDeclName();
3108  }
3109
3110  // C++ [over.inc]p1:
3111  //   The user-defined function called operator++ implements the
3112  //   prefix and postfix ++ operator. If this function is a member
3113  //   function with no parameters, or a non-member function with one
3114  //   parameter of class or enumeration type, it defines the prefix
3115  //   increment operator ++ for objects of that type. If the function
3116  //   is a member function with one parameter (which shall be of type
3117  //   int) or a non-member function with two parameters (the second
3118  //   of which shall be of type int), it defines the postfix
3119  //   increment operator ++ for objects of that type.
3120  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
3121    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
3122    bool ParamIsInt = false;
3123    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
3124      ParamIsInt = BT->getKind() == BuiltinType::Int;
3125
3126    if (!ParamIsInt)
3127      return Diag(LastParam->getLocation(),
3128                  diag::err_operator_overload_post_incdec_must_be_int)
3129        << LastParam->getType() << (Op == OO_MinusMinus);
3130  }
3131
3132  // Notify the class if it got an assignment operator.
3133  if (Op == OO_Equal) {
3134    // Would have returned earlier otherwise.
3135    assert(isa<CXXMethodDecl>(FnDecl) &&
3136      "Overloaded = not member, but not filtered.");
3137    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3138    Method->setCopyAssignment(true);
3139    Method->getParent()->addedAssignmentOperator(Context, Method);
3140  }
3141
3142  return false;
3143}
3144
3145/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3146/// linkage specification, including the language and (if present)
3147/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3148/// the location of the language string literal, which is provided
3149/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3150/// the '{' brace. Otherwise, this linkage specification does not
3151/// have any braces.
3152Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3153                                                     SourceLocation ExternLoc,
3154                                                     SourceLocation LangLoc,
3155                                                     const char *Lang,
3156                                                     unsigned StrSize,
3157                                                     SourceLocation LBraceLoc) {
3158  LinkageSpecDecl::LanguageIDs Language;
3159  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3160    Language = LinkageSpecDecl::lang_c;
3161  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3162    Language = LinkageSpecDecl::lang_cxx;
3163  else {
3164    Diag(LangLoc, diag::err_bad_language);
3165    return DeclPtrTy();
3166  }
3167
3168  // FIXME: Add all the various semantics of linkage specifications
3169
3170  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3171                                               LangLoc, Language,
3172                                               LBraceLoc.isValid());
3173  CurContext->addDecl(D);
3174  PushDeclContext(S, D);
3175  return DeclPtrTy::make(D);
3176}
3177
3178/// ActOnFinishLinkageSpecification - Completely the definition of
3179/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3180/// valid, it's the position of the closing '}' brace in a linkage
3181/// specification that uses braces.
3182Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3183                                                      DeclPtrTy LinkageSpec,
3184                                                      SourceLocation RBraceLoc) {
3185  if (LinkageSpec)
3186    PopDeclContext();
3187  return LinkageSpec;
3188}
3189
3190/// \brief Perform semantic analysis for the variable declaration that
3191/// occurs within a C++ catch clause, returning the newly-created
3192/// variable.
3193VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3194                                         IdentifierInfo *Name,
3195                                         SourceLocation Loc,
3196                                         SourceRange Range) {
3197  bool Invalid = false;
3198
3199  // Arrays and functions decay.
3200  if (ExDeclType->isArrayType())
3201    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3202  else if (ExDeclType->isFunctionType())
3203    ExDeclType = Context.getPointerType(ExDeclType);
3204
3205  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3206  // The exception-declaration shall not denote a pointer or reference to an
3207  // incomplete type, other than [cv] void*.
3208  // N2844 forbids rvalue references.
3209  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3210    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3211    Invalid = true;
3212  }
3213
3214  QualType BaseType = ExDeclType;
3215  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3216  unsigned DK = diag::err_catch_incomplete;
3217  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
3218    BaseType = Ptr->getPointeeType();
3219    Mode = 1;
3220    DK = diag::err_catch_incomplete_ptr;
3221  } else if(const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
3222    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3223    BaseType = Ref->getPointeeType();
3224    Mode = 2;
3225    DK = diag::err_catch_incomplete_ref;
3226  }
3227  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3228      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3229    Invalid = true;
3230
3231  if (!Invalid && !ExDeclType->isDependentType() &&
3232      RequireNonAbstractType(Loc, ExDeclType,
3233                             diag::err_abstract_type_in_decl,
3234                             AbstractVariableType))
3235    Invalid = true;
3236
3237  // FIXME: Need to test for ability to copy-construct and destroy the
3238  // exception variable.
3239
3240  // FIXME: Need to check for abstract classes.
3241
3242  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3243                                    Name, ExDeclType, VarDecl::None,
3244                                    Range.getBegin());
3245
3246  if (Invalid)
3247    ExDecl->setInvalidDecl();
3248
3249  return ExDecl;
3250}
3251
3252/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3253/// handler.
3254Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3255  QualType ExDeclType = GetTypeForDeclarator(D, S);
3256
3257  bool Invalid = D.isInvalidType();
3258  IdentifierInfo *II = D.getIdentifier();
3259  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3260    // The scope should be freshly made just for us. There is just no way
3261    // it contains any previous declaration.
3262    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3263    if (PrevDecl->isTemplateParameter()) {
3264      // Maybe we will complain about the shadowed template parameter.
3265      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3266    }
3267  }
3268
3269  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3270    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3271      << D.getCXXScopeSpec().getRange();
3272    Invalid = true;
3273  }
3274
3275  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3276                                              D.getIdentifier(),
3277                                              D.getIdentifierLoc(),
3278                                            D.getDeclSpec().getSourceRange());
3279
3280  if (Invalid)
3281    ExDecl->setInvalidDecl();
3282
3283  // Add the exception declaration into this scope.
3284  if (II)
3285    PushOnScopeChains(ExDecl, S);
3286  else
3287    CurContext->addDecl(ExDecl);
3288
3289  ProcessDeclAttributes(S, ExDecl, D);
3290  return DeclPtrTy::make(ExDecl);
3291}
3292
3293Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3294                                                   ExprArg assertexpr,
3295                                                   ExprArg assertmessageexpr) {
3296  Expr *AssertExpr = (Expr *)assertexpr.get();
3297  StringLiteral *AssertMessage =
3298    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3299
3300  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3301    llvm::APSInt Value(32);
3302    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3303      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3304        AssertExpr->getSourceRange();
3305      return DeclPtrTy();
3306    }
3307
3308    if (Value == 0) {
3309      std::string str(AssertMessage->getStrData(),
3310                      AssertMessage->getByteLength());
3311      Diag(AssertLoc, diag::err_static_assert_failed)
3312        << str << AssertExpr->getSourceRange();
3313    }
3314  }
3315
3316  assertexpr.release();
3317  assertmessageexpr.release();
3318  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3319                                        AssertExpr, AssertMessage);
3320
3321  CurContext->addDecl(Decl);
3322  return DeclPtrTy::make(Decl);
3323}
3324
3325Sema::DeclPtrTy Sema::ActOnFriendDecl(Scope *S,
3326                       llvm::PointerUnion<const DeclSpec*,Declarator*> DU,
3327                                      bool IsDefinition) {
3328  Declarator *D = DU.dyn_cast<Declarator*>();
3329  const DeclSpec &DS = (D ? D->getDeclSpec() : *DU.get<const DeclSpec*>());
3330
3331  assert(DS.isFriendSpecified());
3332  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
3333
3334  // If there's no declarator, then this can only be a friend class
3335  // declaration (or else it's just syntactically invalid).
3336  if (!D) {
3337    SourceLocation Loc = DS.getSourceRange().getBegin();
3338
3339    QualType T;
3340    DeclContext *DC;
3341
3342    // In C++0x, we just accept any old type.
3343    if (getLangOptions().CPlusPlus0x) {
3344      bool invalid = false;
3345      QualType T = ConvertDeclSpecToType(DS, Loc, invalid);
3346      if (invalid)
3347        return DeclPtrTy();
3348
3349      // The semantic context in which to create the decl.  If it's not
3350      // a record decl (or we don't yet know if it is), create it in the
3351      // current context.
3352      DC = CurContext;
3353      if (const RecordType *RT = T->getAs<RecordType>())
3354        DC = RT->getDecl()->getDeclContext();
3355
3356    // The C++98 rules are somewhat more complex.
3357    } else {
3358      // C++ [class.friend]p2:
3359      //   An elaborated-type-specifier shall be used in a friend declaration
3360      //   for a class.*
3361      //   * The class-key of the elaborated-type-specifier is required.
3362      CXXRecordDecl *RD = 0;
3363
3364      switch (DS.getTypeSpecType()) {
3365      case DeclSpec::TST_class:
3366      case DeclSpec::TST_struct:
3367      case DeclSpec::TST_union:
3368        RD = dyn_cast_or_null<CXXRecordDecl>((Decl*) DS.getTypeRep());
3369        if (!RD) return DeclPtrTy();
3370        break;
3371
3372      case DeclSpec::TST_typename:
3373        if (const RecordType *RT =
3374            ((const Type*) DS.getTypeRep())->getAs<RecordType>())
3375          RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
3376        // fallthrough
3377      default:
3378        if (RD) {
3379          Diag(DS.getFriendSpecLoc(), diag::err_unelaborated_friend_type)
3380            << (RD->isUnion())
3381            << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
3382                                         RD->isUnion() ? " union" : " class");
3383          return DeclPtrTy::make(RD);
3384        }
3385
3386        Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
3387          << DS.getSourceRange();
3388        return DeclPtrTy();
3389      }
3390
3391      // The record declaration we get from friend declarations is not
3392      // canonicalized; see ActOnTag.
3393      assert(RD);
3394
3395      // C++ [class.friend]p2: A class shall not be defined inside
3396      //   a friend declaration.
3397      if (RD->isDefinition())
3398        Diag(DS.getFriendSpecLoc(), diag::err_friend_decl_defines_class)
3399          << RD->getSourceRange();
3400
3401      // C++98 [class.friend]p1: A friend of a class is a function
3402      //   or class that is not a member of the class . . .
3403      // But that's a silly restriction which nobody implements for
3404      // inner classes, and C++0x removes it anyway, so we only report
3405      // this (as a warning) if we're being pedantic.
3406      //
3407      // Also, definitions currently get treated in a way that causes
3408      // this error, so only report it if we didn't see a definition.
3409      else if (RD->getDeclContext() == CurContext &&
3410               !getLangOptions().CPlusPlus0x)
3411        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
3412
3413      T = QualType(RD->getTypeForDecl(), 0);
3414      DC = RD->getDeclContext();
3415    }
3416
3417    FriendClassDecl *FCD = FriendClassDecl::Create(Context, DC, Loc, T,
3418                                                   DS.getFriendSpecLoc());
3419    FCD->setLexicalDeclContext(CurContext);
3420
3421    if (CurContext->isDependentContext())
3422      CurContext->addHiddenDecl(FCD);
3423    else
3424      CurContext->addDecl(FCD);
3425
3426    return DeclPtrTy::make(FCD);
3427  }
3428
3429  // We have a declarator.
3430  assert(D);
3431
3432  SourceLocation Loc = D->getIdentifierLoc();
3433  QualType T = GetTypeForDeclarator(*D, S);
3434
3435  // C++ [class.friend]p1
3436  //   A friend of a class is a function or class....
3437  // Note that this sees through typedefs, which is intended.
3438  if (!T->isFunctionType()) {
3439    Diag(Loc, diag::err_unexpected_friend);
3440
3441    // It might be worthwhile to try to recover by creating an
3442    // appropriate declaration.
3443    return DeclPtrTy();
3444  }
3445
3446  // C++ [namespace.memdef]p3
3447  //  - If a friend declaration in a non-local class first declares a
3448  //    class or function, the friend class or function is a member
3449  //    of the innermost enclosing namespace.
3450  //  - The name of the friend is not found by simple name lookup
3451  //    until a matching declaration is provided in that namespace
3452  //    scope (either before or after the class declaration granting
3453  //    friendship).
3454  //  - If a friend function is called, its name may be found by the
3455  //    name lookup that considers functions from namespaces and
3456  //    classes associated with the types of the function arguments.
3457  //  - When looking for a prior declaration of a class or a function
3458  //    declared as a friend, scopes outside the innermost enclosing
3459  //    namespace scope are not considered.
3460
3461  CXXScopeSpec &ScopeQual = D->getCXXScopeSpec();
3462  DeclarationName Name = GetNameForDeclarator(*D);
3463  assert(Name);
3464
3465  // The existing declaration we found.
3466  FunctionDecl *FD = NULL;
3467
3468  // The context we found the declaration in, or in which we should
3469  // create the declaration.
3470  DeclContext *DC;
3471
3472  // FIXME: handle local classes
3473
3474  // Recover from invalid scope qualifiers as if they just weren't there.
3475  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
3476    DC = computeDeclContext(ScopeQual);
3477
3478    // FIXME: handle dependent contexts
3479    if (!DC) return DeclPtrTy();
3480
3481    Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3482
3483    // If searching in that context implicitly found a declaration in
3484    // a different context, treat it like it wasn't found at all.
3485    // TODO: better diagnostics for this case.  Suggesting the right
3486    // qualified scope would be nice...
3487    if (!Dec || Dec->getDeclContext() != DC) {
3488      D->setInvalidType();
3489      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
3490      return DeclPtrTy();
3491    }
3492
3493    // C++ [class.friend]p1: A friend of a class is a function or
3494    //   class that is not a member of the class . . .
3495    if (DC == CurContext)
3496      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3497
3498    FD = cast<FunctionDecl>(Dec);
3499
3500  // Otherwise walk out to the nearest namespace scope looking for matches.
3501  } else {
3502    // TODO: handle local class contexts.
3503
3504    DC = CurContext;
3505    while (true) {
3506      // Skip class contexts.  If someone can cite chapter and verse
3507      // for this behavior, that would be nice --- it's what GCC and
3508      // EDG do, and it seems like a reasonable intent, but the spec
3509      // really only says that checks for unqualified existing
3510      // declarations should stop at the nearest enclosing namespace,
3511      // not that they should only consider the nearest enclosing
3512      // namespace.
3513      while (DC->isRecord()) DC = DC->getParent();
3514
3515      Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3516
3517      // TODO: decide what we think about using declarations.
3518      if (Dec) {
3519        FD = cast<FunctionDecl>(Dec);
3520        break;
3521      }
3522      if (DC->isFileContext()) break;
3523      DC = DC->getParent();
3524    }
3525
3526    // C++ [class.friend]p1: A friend of a class is a function or
3527    //   class that is not a member of the class . . .
3528    // C++0x changes this for both friend types and functions.
3529    // Most C++ 98 compilers do seem to give an error here, so
3530    // we do, too.
3531    if (FD && DC == CurContext && !getLangOptions().CPlusPlus0x)
3532      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3533  }
3534
3535  bool Redeclaration = (FD != 0);
3536
3537  // If we found a match, create a friend function declaration with
3538  // that function as the previous declaration.
3539  if (Redeclaration) {
3540    // Create it in the semantic context of the original declaration.
3541    DC = FD->getDeclContext();
3542
3543  // If we didn't find something matching the type exactly, create
3544  // a declaration.  This declaration should only be findable via
3545  // argument-dependent lookup.
3546  } else {
3547    assert(DC->isFileContext());
3548
3549    // This implies that it has to be an operator or function.
3550    if (D->getKind() == Declarator::DK_Constructor ||
3551        D->getKind() == Declarator::DK_Destructor ||
3552        D->getKind() == Declarator::DK_Conversion) {
3553      Diag(Loc, diag::err_introducing_special_friend) <<
3554        (D->getKind() == Declarator::DK_Constructor ? 0 :
3555         D->getKind() == Declarator::DK_Destructor ? 1 : 2);
3556      return DeclPtrTy();
3557    }
3558  }
3559
3560  NamedDecl *ND = ActOnFunctionDeclarator(S, *D, DC, T,
3561                                          /* PrevDecl = */ FD,
3562                                          MultiTemplateParamsArg(*this),
3563                                          IsDefinition,
3564                                          Redeclaration);
3565  FD = cast_or_null<FriendFunctionDecl>(ND);
3566
3567  // If this is a dependent context, just add the decl to the
3568  // class's decl list and don't both with the lookup tables.  This
3569  // doesn't affect lookup because any call that might find this
3570  // function via ADL necessarily has to involve dependently-typed
3571  // arguments and hence can't be resolved until
3572  // template-instantiation anyway.
3573  if (CurContext->isDependentContext())
3574    CurContext->addHiddenDecl(FD);
3575  else
3576    CurContext->addDecl(FD);
3577
3578  return DeclPtrTy::make(FD);
3579}
3580
3581void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3582  Decl *Dcl = dcl.getAs<Decl>();
3583  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3584  if (!Fn) {
3585    Diag(DelLoc, diag::err_deleted_non_function);
3586    return;
3587  }
3588  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3589    Diag(DelLoc, diag::err_deleted_decl_not_first);
3590    Diag(Prev->getLocation(), diag::note_previous_declaration);
3591    // If the declaration wasn't the first, we delete the function anyway for
3592    // recovery.
3593  }
3594  Fn->setDeleted();
3595}
3596
3597static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3598  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3599       ++CI) {
3600    Stmt *SubStmt = *CI;
3601    if (!SubStmt)
3602      continue;
3603    if (isa<ReturnStmt>(SubStmt))
3604      Self.Diag(SubStmt->getSourceRange().getBegin(),
3605           diag::err_return_in_constructor_handler);
3606    if (!isa<Expr>(SubStmt))
3607      SearchForReturnInStmt(Self, SubStmt);
3608  }
3609}
3610
3611void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3612  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3613    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3614    SearchForReturnInStmt(*this, Handler);
3615  }
3616}
3617
3618bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3619                                             const CXXMethodDecl *Old) {
3620  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3621  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3622
3623  QualType CNewTy = Context.getCanonicalType(NewTy);
3624  QualType COldTy = Context.getCanonicalType(OldTy);
3625
3626  if (CNewTy == COldTy &&
3627      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3628    return false;
3629
3630  // Check if the return types are covariant
3631  QualType NewClassTy, OldClassTy;
3632
3633  /// Both types must be pointers or references to classes.
3634  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3635    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3636      NewClassTy = NewPT->getPointeeType();
3637      OldClassTy = OldPT->getPointeeType();
3638    }
3639  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3640    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3641      NewClassTy = NewRT->getPointeeType();
3642      OldClassTy = OldRT->getPointeeType();
3643    }
3644  }
3645
3646  // The return types aren't either both pointers or references to a class type.
3647  if (NewClassTy.isNull()) {
3648    Diag(New->getLocation(),
3649         diag::err_different_return_type_for_overriding_virtual_function)
3650      << New->getDeclName() << NewTy << OldTy;
3651    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3652
3653    return true;
3654  }
3655
3656  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3657    // Check if the new class derives from the old class.
3658    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3659      Diag(New->getLocation(),
3660           diag::err_covariant_return_not_derived)
3661      << New->getDeclName() << NewTy << OldTy;
3662      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3663      return true;
3664    }
3665
3666    // Check if we the conversion from derived to base is valid.
3667    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3668                      diag::err_covariant_return_inaccessible_base,
3669                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3670                      // FIXME: Should this point to the return type?
3671                      New->getLocation(), SourceRange(), New->getDeclName())) {
3672      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3673      return true;
3674    }
3675  }
3676
3677  // The qualifiers of the return types must be the same.
3678  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3679    Diag(New->getLocation(),
3680         diag::err_covariant_return_type_different_qualifications)
3681    << New->getDeclName() << NewTy << OldTy;
3682    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3683    return true;
3684  };
3685
3686
3687  // The new class type must have the same or less qualifiers as the old type.
3688  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3689    Diag(New->getLocation(),
3690         diag::err_covariant_return_type_class_type_more_qualified)
3691    << New->getDeclName() << NewTy << OldTy;
3692    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3693    return true;
3694  };
3695
3696  return false;
3697}
3698
3699bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
3700                                                const CXXMethodDecl *Old)
3701{
3702  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
3703                                  diag::note_overridden_virtual_function,
3704                                  Old->getType()->getAsFunctionProtoType(),
3705                                  Old->getLocation(),
3706                                  New->getType()->getAsFunctionProtoType(),
3707                                  New->getLocation());
3708}
3709
3710/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3711/// initializer for the declaration 'Dcl'.
3712/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3713/// static data member of class X, names should be looked up in the scope of
3714/// class X.
3715void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3716  Decl *D = Dcl.getAs<Decl>();
3717  // If there is no declaration, there was an error parsing it.
3718  if (D == 0)
3719    return;
3720
3721  // Check whether it is a declaration with a nested name specifier like
3722  // int foo::bar;
3723  if (!D->isOutOfLine())
3724    return;
3725
3726  // C++ [basic.lookup.unqual]p13
3727  //
3728  // A name used in the definition of a static data member of class X
3729  // (after the qualified-id of the static member) is looked up as if the name
3730  // was used in a member function of X.
3731
3732  // Change current context into the context of the initializing declaration.
3733  EnterDeclaratorContext(S, D->getDeclContext());
3734}
3735
3736/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3737/// initializer for the declaration 'Dcl'.
3738void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3739  Decl *D = Dcl.getAs<Decl>();
3740  // If there is no declaration, there was an error parsing it.
3741  if (D == 0)
3742    return;
3743
3744  // Check whether it is a declaration with a nested name specifier like
3745  // int foo::bar;
3746  if (!D->isOutOfLine())
3747    return;
3748
3749  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3750  ExitDeclaratorContext(S);
3751}
3752