SemaDeclCXX.cpp revision 096ebfda90b35a5cd6e399920fca7d9b5b0859f3
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Parse/DeclSpec.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/Compiler.h"
26#include <algorithm> // for std::equal
27#include <map>
28#include <set>
29
30using namespace clang;
31
32//===----------------------------------------------------------------------===//
33// CheckDefaultArgumentVisitor
34//===----------------------------------------------------------------------===//
35
36namespace {
37  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
38  /// the default argument of a parameter to determine whether it
39  /// contains any ill-formed subexpressions. For example, this will
40  /// diagnose the use of local variables or parameters within the
41  /// default argument expression.
42  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
43    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
44    Expr *DefaultArg;
45    Sema *S;
46
47  public:
48    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
49      : DefaultArg(defarg), S(s) {}
50
51    bool VisitExpr(Expr *Node);
52    bool VisitDeclRefExpr(DeclRefExpr *DRE);
53    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
54  };
55
56  /// VisitExpr - Visit all of the children of this expression.
57  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
58    bool IsInvalid = false;
59    for (Stmt::child_iterator I = Node->child_begin(),
60         E = Node->child_end(); I != E; ++I)
61      IsInvalid |= Visit(*I);
62    return IsInvalid;
63  }
64
65  /// VisitDeclRefExpr - Visit a reference to a declaration, to
66  /// determine whether this declaration can be used in the default
67  /// argument expression.
68  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
69    NamedDecl *Decl = DRE->getDecl();
70    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
71      // C++ [dcl.fct.default]p9
72      //   Default arguments are evaluated each time the function is
73      //   called. The order of evaluation of function arguments is
74      //   unspecified. Consequently, parameters of a function shall not
75      //   be used in default argument expressions, even if they are not
76      //   evaluated. Parameters of a function declared before a default
77      //   argument expression are in scope and can hide namespace and
78      //   class member names.
79      return S->Diag(DRE->getSourceRange().getBegin(),
80                     diag::err_param_default_argument_references_param)
81         << Param->getDeclName() << DefaultArg->getSourceRange();
82    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
83      // C++ [dcl.fct.default]p7
84      //   Local variables shall not be used in default argument
85      //   expressions.
86      if (VDecl->isBlockVarDecl())
87        return S->Diag(DRE->getSourceRange().getBegin(),
88                       diag::err_param_default_argument_references_local)
89          << VDecl->getDeclName() << DefaultArg->getSourceRange();
90    }
91
92    return false;
93  }
94
95  /// VisitCXXThisExpr - Visit a C++ "this" expression.
96  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
97    // C++ [dcl.fct.default]p8:
98    //   The keyword this shall not be used in a default argument of a
99    //   member function.
100    return S->Diag(ThisE->getSourceRange().getBegin(),
101                   diag::err_param_default_argument_references_this)
102               << ThisE->getSourceRange();
103  }
104}
105
106bool
107Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
108                              SourceLocation EqualLoc) {
109  QualType ParamType = Param->getType();
110
111  if (RequireCompleteType(Param->getLocation(), Param->getType(),
112                          diag::err_typecheck_decl_incomplete_type)) {
113    Param->setInvalidDecl();
114    return true;
115  }
116
117  Expr *Arg = (Expr *)DefaultArg.get();
118
119  // C++ [dcl.fct.default]p5
120  //   A default argument expression is implicitly converted (clause
121  //   4) to the parameter type. The default argument expression has
122  //   the same semantic constraints as the initializer expression in
123  //   a declaration of a variable of the parameter type, using the
124  //   copy-initialization semantics (8.5).
125  if (CheckInitializerTypes(Arg, ParamType, EqualLoc,
126                            Param->getDeclName(), /*DirectInit=*/false))
127    return true;
128
129  Arg = MaybeCreateCXXExprWithTemporaries(Arg, /*DestroyTemps=*/false);
130
131  // Okay: add the default argument to the parameter
132  Param->setDefaultArg(Arg);
133
134  DefaultArg.release();
135
136  return false;
137}
138
139/// ActOnParamDefaultArgument - Check whether the default argument
140/// provided for a function parameter is well-formed. If so, attach it
141/// to the parameter declaration.
142void
143Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
144                                ExprArg defarg) {
145  if (!param || !defarg.get())
146    return;
147
148  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
149  UnparsedDefaultArgLocs.erase(Param);
150
151  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
152  QualType ParamType = Param->getType();
153
154  // Default arguments are only permitted in C++
155  if (!getLangOptions().CPlusPlus) {
156    Diag(EqualLoc, diag::err_param_default_argument)
157      << DefaultArg->getSourceRange();
158    Param->setInvalidDecl();
159    return;
160  }
161
162  // Check that the default argument is well-formed
163  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
164  if (DefaultArgChecker.Visit(DefaultArg.get())) {
165    Param->setInvalidDecl();
166    return;
167  }
168
169  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
170}
171
172/// ActOnParamUnparsedDefaultArgument - We've seen a default
173/// argument for a function parameter, but we can't parse it yet
174/// because we're inside a class definition. Note that this default
175/// argument will be parsed later.
176void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
177                                             SourceLocation EqualLoc,
178                                             SourceLocation ArgLoc) {
179  if (!param)
180    return;
181
182  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
183  if (Param)
184    Param->setUnparsedDefaultArg();
185
186  UnparsedDefaultArgLocs[Param] = ArgLoc;
187}
188
189/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
190/// the default argument for the parameter param failed.
191void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
192  if (!param)
193    return;
194
195  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
196
197  Param->setInvalidDecl();
198
199  UnparsedDefaultArgLocs.erase(Param);
200}
201
202/// CheckExtraCXXDefaultArguments - Check for any extra default
203/// arguments in the declarator, which is not a function declaration
204/// or definition and therefore is not permitted to have default
205/// arguments. This routine should be invoked for every declarator
206/// that is not a function declaration or definition.
207void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
208  // C++ [dcl.fct.default]p3
209  //   A default argument expression shall be specified only in the
210  //   parameter-declaration-clause of a function declaration or in a
211  //   template-parameter (14.1). It shall not be specified for a
212  //   parameter pack. If it is specified in a
213  //   parameter-declaration-clause, it shall not occur within a
214  //   declarator or abstract-declarator of a parameter-declaration.
215  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
216    DeclaratorChunk &chunk = D.getTypeObject(i);
217    if (chunk.Kind == DeclaratorChunk::Function) {
218      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
219        ParmVarDecl *Param =
220          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
221        if (Param->hasUnparsedDefaultArg()) {
222          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
223          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
224            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
225          delete Toks;
226          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
227        } else if (Param->getDefaultArg()) {
228          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
229            << Param->getDefaultArg()->getSourceRange();
230          Param->setDefaultArg(0);
231        }
232      }
233    }
234  }
235}
236
237// MergeCXXFunctionDecl - Merge two declarations of the same C++
238// function, once we already know that they have the same
239// type. Subroutine of MergeFunctionDecl. Returns true if there was an
240// error, false otherwise.
241bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
242  bool Invalid = false;
243
244  // C++ [dcl.fct.default]p4:
245  //   For non-template functions, default arguments can be added in
246  //   later declarations of a function in the same
247  //   scope. Declarations in different scopes have completely
248  //   distinct sets of default arguments. That is, declarations in
249  //   inner scopes do not acquire default arguments from
250  //   declarations in outer scopes, and vice versa. In a given
251  //   function declaration, all parameters subsequent to a
252  //   parameter with a default argument shall have default
253  //   arguments supplied in this or previous declarations. A
254  //   default argument shall not be redefined by a later
255  //   declaration (not even to the same value).
256  //
257  // C++ [dcl.fct.default]p6:
258  //   Except for member functions of class templates, the default arguments
259  //   in a member function definition that appears outside of the class
260  //   definition are added to the set of default arguments provided by the
261  //   member function declaration in the class definition.
262  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
263    ParmVarDecl *OldParam = Old->getParamDecl(p);
264    ParmVarDecl *NewParam = New->getParamDecl(p);
265
266    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
267      Diag(NewParam->getLocation(),
268           diag::err_param_default_argument_redefinition)
269        << NewParam->getDefaultArgRange();
270
271      // Look for the function declaration where the default argument was
272      // actually written, which may be a declaration prior to Old.
273      for (FunctionDecl *Older = Old->getPreviousDeclaration();
274           Older; Older = Older->getPreviousDeclaration()) {
275        if (!Older->getParamDecl(p)->hasDefaultArg())
276          break;
277
278        OldParam = Older->getParamDecl(p);
279      }
280
281      Diag(OldParam->getLocation(), diag::note_previous_definition)
282        << OldParam->getDefaultArgRange();
283      Invalid = true;
284    } else if (OldParam->hasDefaultArg()) {
285      // Merge the old default argument into the new parameter
286      if (OldParam->hasUninstantiatedDefaultArg())
287        NewParam->setUninstantiatedDefaultArg(
288                                      OldParam->getUninstantiatedDefaultArg());
289      else
290        NewParam->setDefaultArg(OldParam->getDefaultArg());
291    } else if (NewParam->hasDefaultArg()) {
292      if (New->getDescribedFunctionTemplate()) {
293        // Paragraph 4, quoted above, only applies to non-template functions.
294        Diag(NewParam->getLocation(),
295             diag::err_param_default_argument_template_redecl)
296          << NewParam->getDefaultArgRange();
297        Diag(Old->getLocation(), diag::note_template_prev_declaration)
298          << false;
299      } else if (New->getTemplateSpecializationKind()
300                   != TSK_ImplicitInstantiation &&
301                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
302        // C++ [temp.expr.spec]p21:
303        //   Default function arguments shall not be specified in a declaration
304        //   or a definition for one of the following explicit specializations:
305        //     - the explicit specialization of a function template;
306        //     — the explicit specialization of a member function template;
307        //     — the explicit specialization of a member function of a class
308        //       template where the class template specialization to which the
309        //       member function specialization belongs is implicitly
310        //       instantiated.
311        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
312          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
313          << New->getDeclName()
314          << NewParam->getDefaultArgRange();
315      } else if (New->getDeclContext()->isDependentContext()) {
316        // C++ [dcl.fct.default]p6 (DR217):
317        //   Default arguments for a member function of a class template shall
318        //   be specified on the initial declaration of the member function
319        //   within the class template.
320        //
321        // Reading the tea leaves a bit in DR217 and its reference to DR205
322        // leads me to the conclusion that one cannot add default function
323        // arguments for an out-of-line definition of a member function of a
324        // dependent type.
325        int WhichKind = 2;
326        if (CXXRecordDecl *Record
327              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
328          if (Record->getDescribedClassTemplate())
329            WhichKind = 0;
330          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
331            WhichKind = 1;
332          else
333            WhichKind = 2;
334        }
335
336        Diag(NewParam->getLocation(),
337             diag::err_param_default_argument_member_template_redecl)
338          << WhichKind
339          << NewParam->getDefaultArgRange();
340      }
341    }
342  }
343
344  if (CheckEquivalentExceptionSpec(
345          Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
346          New->getType()->getAs<FunctionProtoType>(), New->getLocation())) {
347    Invalid = true;
348  }
349
350  return Invalid;
351}
352
353/// CheckCXXDefaultArguments - Verify that the default arguments for a
354/// function declaration are well-formed according to C++
355/// [dcl.fct.default].
356void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
357  unsigned NumParams = FD->getNumParams();
358  unsigned p;
359
360  // Find first parameter with a default argument
361  for (p = 0; p < NumParams; ++p) {
362    ParmVarDecl *Param = FD->getParamDecl(p);
363    if (Param->hasDefaultArg())
364      break;
365  }
366
367  // C++ [dcl.fct.default]p4:
368  //   In a given function declaration, all parameters
369  //   subsequent to a parameter with a default argument shall
370  //   have default arguments supplied in this or previous
371  //   declarations. A default argument shall not be redefined
372  //   by a later declaration (not even to the same value).
373  unsigned LastMissingDefaultArg = 0;
374  for (; p < NumParams; ++p) {
375    ParmVarDecl *Param = FD->getParamDecl(p);
376    if (!Param->hasDefaultArg()) {
377      if (Param->isInvalidDecl())
378        /* We already complained about this parameter. */;
379      else if (Param->getIdentifier())
380        Diag(Param->getLocation(),
381             diag::err_param_default_argument_missing_name)
382          << Param->getIdentifier();
383      else
384        Diag(Param->getLocation(),
385             diag::err_param_default_argument_missing);
386
387      LastMissingDefaultArg = p;
388    }
389  }
390
391  if (LastMissingDefaultArg > 0) {
392    // Some default arguments were missing. Clear out all of the
393    // default arguments up to (and including) the last missing
394    // default argument, so that we leave the function parameters
395    // in a semantically valid state.
396    for (p = 0; p <= LastMissingDefaultArg; ++p) {
397      ParmVarDecl *Param = FD->getParamDecl(p);
398      if (Param->hasDefaultArg()) {
399        if (!Param->hasUnparsedDefaultArg())
400          Param->getDefaultArg()->Destroy(Context);
401        Param->setDefaultArg(0);
402      }
403    }
404  }
405}
406
407/// isCurrentClassName - Determine whether the identifier II is the
408/// name of the class type currently being defined. In the case of
409/// nested classes, this will only return true if II is the name of
410/// the innermost class.
411bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
412                              const CXXScopeSpec *SS) {
413  CXXRecordDecl *CurDecl;
414  if (SS && SS->isSet() && !SS->isInvalid()) {
415    DeclContext *DC = computeDeclContext(*SS, true);
416    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
417  } else
418    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
419
420  if (CurDecl)
421    return &II == CurDecl->getIdentifier();
422  else
423    return false;
424}
425
426/// \brief Check the validity of a C++ base class specifier.
427///
428/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
429/// and returns NULL otherwise.
430CXXBaseSpecifier *
431Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
432                         SourceRange SpecifierRange,
433                         bool Virtual, AccessSpecifier Access,
434                         QualType BaseType,
435                         SourceLocation BaseLoc) {
436  // C++ [class.union]p1:
437  //   A union shall not have base classes.
438  if (Class->isUnion()) {
439    Diag(Class->getLocation(), diag::err_base_clause_on_union)
440      << SpecifierRange;
441    return 0;
442  }
443
444  if (BaseType->isDependentType())
445    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
446                                Class->getTagKind() == RecordDecl::TK_class,
447                                Access, BaseType);
448
449  // Base specifiers must be record types.
450  if (!BaseType->isRecordType()) {
451    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
452    return 0;
453  }
454
455  // C++ [class.union]p1:
456  //   A union shall not be used as a base class.
457  if (BaseType->isUnionType()) {
458    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
459    return 0;
460  }
461
462  // C++ [class.derived]p2:
463  //   The class-name in a base-specifier shall not be an incompletely
464  //   defined class.
465  if (RequireCompleteType(BaseLoc, BaseType,
466                          PDiag(diag::err_incomplete_base_class)
467                            << SpecifierRange))
468    return 0;
469
470  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
471  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
472  assert(BaseDecl && "Record type has no declaration");
473  BaseDecl = BaseDecl->getDefinition(Context);
474  assert(BaseDecl && "Base type is not incomplete, but has no definition");
475  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
476  assert(CXXBaseDecl && "Base type is not a C++ type");
477  if (!CXXBaseDecl->isEmpty())
478    Class->setEmpty(false);
479  if (CXXBaseDecl->isPolymorphic())
480    Class->setPolymorphic(true);
481
482  // C++ [dcl.init.aggr]p1:
483  //   An aggregate is [...] a class with [...] no base classes [...].
484  Class->setAggregate(false);
485  Class->setPOD(false);
486
487  if (Virtual) {
488    // C++ [class.ctor]p5:
489    //   A constructor is trivial if its class has no virtual base classes.
490    Class->setHasTrivialConstructor(false);
491
492    // C++ [class.copy]p6:
493    //   A copy constructor is trivial if its class has no virtual base classes.
494    Class->setHasTrivialCopyConstructor(false);
495
496    // C++ [class.copy]p11:
497    //   A copy assignment operator is trivial if its class has no virtual
498    //   base classes.
499    Class->setHasTrivialCopyAssignment(false);
500
501    // C++0x [meta.unary.prop] is_empty:
502    //    T is a class type, but not a union type, with ... no virtual base
503    //    classes
504    Class->setEmpty(false);
505  } else {
506    // C++ [class.ctor]p5:
507    //   A constructor is trivial if all the direct base classes of its
508    //   class have trivial constructors.
509    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
510      Class->setHasTrivialConstructor(false);
511
512    // C++ [class.copy]p6:
513    //   A copy constructor is trivial if all the direct base classes of its
514    //   class have trivial copy constructors.
515    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
516      Class->setHasTrivialCopyConstructor(false);
517
518    // C++ [class.copy]p11:
519    //   A copy assignment operator is trivial if all the direct base classes
520    //   of its class have trivial copy assignment operators.
521    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
522      Class->setHasTrivialCopyAssignment(false);
523  }
524
525  // C++ [class.ctor]p3:
526  //   A destructor is trivial if all the direct base classes of its class
527  //   have trivial destructors.
528  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
529    Class->setHasTrivialDestructor(false);
530
531  // Create the base specifier.
532  // FIXME: Allocate via ASTContext?
533  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
534                              Class->getTagKind() == RecordDecl::TK_class,
535                              Access, BaseType);
536}
537
538/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
539/// one entry in the base class list of a class specifier, for
540/// example:
541///    class foo : public bar, virtual private baz {
542/// 'public bar' and 'virtual private baz' are each base-specifiers.
543Sema::BaseResult
544Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
545                         bool Virtual, AccessSpecifier Access,
546                         TypeTy *basetype, SourceLocation BaseLoc) {
547  if (!classdecl)
548    return true;
549
550  AdjustDeclIfTemplate(classdecl);
551  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
552  QualType BaseType = GetTypeFromParser(basetype);
553  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
554                                                      Virtual, Access,
555                                                      BaseType, BaseLoc))
556    return BaseSpec;
557
558  return true;
559}
560
561/// \brief Performs the actual work of attaching the given base class
562/// specifiers to a C++ class.
563bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
564                                unsigned NumBases) {
565 if (NumBases == 0)
566    return false;
567
568  // Used to keep track of which base types we have already seen, so
569  // that we can properly diagnose redundant direct base types. Note
570  // that the key is always the unqualified canonical type of the base
571  // class.
572  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
573
574  // Copy non-redundant base specifiers into permanent storage.
575  unsigned NumGoodBases = 0;
576  bool Invalid = false;
577  for (unsigned idx = 0; idx < NumBases; ++idx) {
578    QualType NewBaseType
579      = Context.getCanonicalType(Bases[idx]->getType());
580    NewBaseType = NewBaseType.getUnqualifiedType();
581
582    if (KnownBaseTypes[NewBaseType]) {
583      // C++ [class.mi]p3:
584      //   A class shall not be specified as a direct base class of a
585      //   derived class more than once.
586      Diag(Bases[idx]->getSourceRange().getBegin(),
587           diag::err_duplicate_base_class)
588        << KnownBaseTypes[NewBaseType]->getType()
589        << Bases[idx]->getSourceRange();
590
591      // Delete the duplicate base class specifier; we're going to
592      // overwrite its pointer later.
593      Context.Deallocate(Bases[idx]);
594
595      Invalid = true;
596    } else {
597      // Okay, add this new base class.
598      KnownBaseTypes[NewBaseType] = Bases[idx];
599      Bases[NumGoodBases++] = Bases[idx];
600    }
601  }
602
603  // Attach the remaining base class specifiers to the derived class.
604  Class->setBases(Context, Bases, NumGoodBases);
605
606  // Delete the remaining (good) base class specifiers, since their
607  // data has been copied into the CXXRecordDecl.
608  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
609    Context.Deallocate(Bases[idx]);
610
611  return Invalid;
612}
613
614/// ActOnBaseSpecifiers - Attach the given base specifiers to the
615/// class, after checking whether there are any duplicate base
616/// classes.
617void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
618                               unsigned NumBases) {
619  if (!ClassDecl || !Bases || !NumBases)
620    return;
621
622  AdjustDeclIfTemplate(ClassDecl);
623  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
624                       (CXXBaseSpecifier**)(Bases), NumBases);
625}
626
627/// \brief Determine whether the type \p Derived is a C++ class that is
628/// derived from the type \p Base.
629bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
630  if (!getLangOptions().CPlusPlus)
631    return false;
632
633  const RecordType *DerivedRT = Derived->getAs<RecordType>();
634  if (!DerivedRT)
635    return false;
636
637  const RecordType *BaseRT = Base->getAs<RecordType>();
638  if (!BaseRT)
639    return false;
640
641  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
642  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
643  return DerivedRD->isDerivedFrom(BaseRD);
644}
645
646/// \brief Determine whether the type \p Derived is a C++ class that is
647/// derived from the type \p Base.
648bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
649  if (!getLangOptions().CPlusPlus)
650    return false;
651
652  const RecordType *DerivedRT = Derived->getAs<RecordType>();
653  if (!DerivedRT)
654    return false;
655
656  const RecordType *BaseRT = Base->getAs<RecordType>();
657  if (!BaseRT)
658    return false;
659
660  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
661  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
662  return DerivedRD->isDerivedFrom(BaseRD, Paths);
663}
664
665/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
666/// conversion (where Derived and Base are class types) is
667/// well-formed, meaning that the conversion is unambiguous (and
668/// that all of the base classes are accessible). Returns true
669/// and emits a diagnostic if the code is ill-formed, returns false
670/// otherwise. Loc is the location where this routine should point to
671/// if there is an error, and Range is the source range to highlight
672/// if there is an error.
673bool
674Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
675                                   unsigned InaccessibleBaseID,
676                                   unsigned AmbigiousBaseConvID,
677                                   SourceLocation Loc, SourceRange Range,
678                                   DeclarationName Name) {
679  // First, determine whether the path from Derived to Base is
680  // ambiguous. This is slightly more expensive than checking whether
681  // the Derived to Base conversion exists, because here we need to
682  // explore multiple paths to determine if there is an ambiguity.
683  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
684                     /*DetectVirtual=*/false);
685  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
686  assert(DerivationOkay &&
687         "Can only be used with a derived-to-base conversion");
688  (void)DerivationOkay;
689
690  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
691    // Check that the base class can be accessed.
692    return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc,
693                                Name);
694  }
695
696  // We know that the derived-to-base conversion is ambiguous, and
697  // we're going to produce a diagnostic. Perform the derived-to-base
698  // search just one more time to compute all of the possible paths so
699  // that we can print them out. This is more expensive than any of
700  // the previous derived-to-base checks we've done, but at this point
701  // performance isn't as much of an issue.
702  Paths.clear();
703  Paths.setRecordingPaths(true);
704  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
705  assert(StillOkay && "Can only be used with a derived-to-base conversion");
706  (void)StillOkay;
707
708  // Build up a textual representation of the ambiguous paths, e.g.,
709  // D -> B -> A, that will be used to illustrate the ambiguous
710  // conversions in the diagnostic. We only print one of the paths
711  // to each base class subobject.
712  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
713
714  Diag(Loc, AmbigiousBaseConvID)
715  << Derived << Base << PathDisplayStr << Range << Name;
716  return true;
717}
718
719bool
720Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
721                                   SourceLocation Loc, SourceRange Range) {
722  return CheckDerivedToBaseConversion(Derived, Base,
723                                      diag::err_conv_to_inaccessible_base,
724                                      diag::err_ambiguous_derived_to_base_conv,
725                                      Loc, Range, DeclarationName());
726}
727
728
729/// @brief Builds a string representing ambiguous paths from a
730/// specific derived class to different subobjects of the same base
731/// class.
732///
733/// This function builds a string that can be used in error messages
734/// to show the different paths that one can take through the
735/// inheritance hierarchy to go from the derived class to different
736/// subobjects of a base class. The result looks something like this:
737/// @code
738/// struct D -> struct B -> struct A
739/// struct D -> struct C -> struct A
740/// @endcode
741std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
742  std::string PathDisplayStr;
743  std::set<unsigned> DisplayedPaths;
744  for (CXXBasePaths::paths_iterator Path = Paths.begin();
745       Path != Paths.end(); ++Path) {
746    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
747      // We haven't displayed a path to this particular base
748      // class subobject yet.
749      PathDisplayStr += "\n    ";
750      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
751      for (CXXBasePath::const_iterator Element = Path->begin();
752           Element != Path->end(); ++Element)
753        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
754    }
755  }
756
757  return PathDisplayStr;
758}
759
760//===----------------------------------------------------------------------===//
761// C++ class member Handling
762//===----------------------------------------------------------------------===//
763
764/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
765/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
766/// bitfield width if there is one and 'InitExpr' specifies the initializer if
767/// any.
768Sema::DeclPtrTy
769Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
770                               MultiTemplateParamsArg TemplateParameterLists,
771                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
772  const DeclSpec &DS = D.getDeclSpec();
773  DeclarationName Name = GetNameForDeclarator(D);
774  Expr *BitWidth = static_cast<Expr*>(BW);
775  Expr *Init = static_cast<Expr*>(InitExpr);
776  SourceLocation Loc = D.getIdentifierLoc();
777
778  bool isFunc = D.isFunctionDeclarator();
779
780  assert(!DS.isFriendSpecified());
781
782  // C++ 9.2p6: A member shall not be declared to have automatic storage
783  // duration (auto, register) or with the extern storage-class-specifier.
784  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
785  // data members and cannot be applied to names declared const or static,
786  // and cannot be applied to reference members.
787  switch (DS.getStorageClassSpec()) {
788    case DeclSpec::SCS_unspecified:
789    case DeclSpec::SCS_typedef:
790    case DeclSpec::SCS_static:
791      // FALL THROUGH.
792      break;
793    case DeclSpec::SCS_mutable:
794      if (isFunc) {
795        if (DS.getStorageClassSpecLoc().isValid())
796          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
797        else
798          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
799
800        // FIXME: It would be nicer if the keyword was ignored only for this
801        // declarator. Otherwise we could get follow-up errors.
802        D.getMutableDeclSpec().ClearStorageClassSpecs();
803      } else {
804        QualType T = GetTypeForDeclarator(D, S);
805        diag::kind err = static_cast<diag::kind>(0);
806        if (T->isReferenceType())
807          err = diag::err_mutable_reference;
808        else if (T.isConstQualified())
809          err = diag::err_mutable_const;
810        if (err != 0) {
811          if (DS.getStorageClassSpecLoc().isValid())
812            Diag(DS.getStorageClassSpecLoc(), err);
813          else
814            Diag(DS.getThreadSpecLoc(), err);
815          // FIXME: It would be nicer if the keyword was ignored only for this
816          // declarator. Otherwise we could get follow-up errors.
817          D.getMutableDeclSpec().ClearStorageClassSpecs();
818        }
819      }
820      break;
821    default:
822      if (DS.getStorageClassSpecLoc().isValid())
823        Diag(DS.getStorageClassSpecLoc(),
824             diag::err_storageclass_invalid_for_member);
825      else
826        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
827      D.getMutableDeclSpec().ClearStorageClassSpecs();
828  }
829
830  if (!isFunc &&
831      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
832      D.getNumTypeObjects() == 0) {
833    // Check also for this case:
834    //
835    // typedef int f();
836    // f a;
837    //
838    QualType TDType = GetTypeFromParser(DS.getTypeRep());
839    isFunc = TDType->isFunctionType();
840  }
841
842  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
843                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
844                      !isFunc);
845
846  Decl *Member;
847  if (isInstField) {
848    // FIXME: Check for template parameters!
849    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
850                         AS);
851    assert(Member && "HandleField never returns null");
852  } else {
853    Member = HandleDeclarator(S, D, move(TemplateParameterLists), false)
854               .getAs<Decl>();
855    if (!Member) {
856      if (BitWidth) DeleteExpr(BitWidth);
857      return DeclPtrTy();
858    }
859
860    // Non-instance-fields can't have a bitfield.
861    if (BitWidth) {
862      if (Member->isInvalidDecl()) {
863        // don't emit another diagnostic.
864      } else if (isa<VarDecl>(Member)) {
865        // C++ 9.6p3: A bit-field shall not be a static member.
866        // "static member 'A' cannot be a bit-field"
867        Diag(Loc, diag::err_static_not_bitfield)
868          << Name << BitWidth->getSourceRange();
869      } else if (isa<TypedefDecl>(Member)) {
870        // "typedef member 'x' cannot be a bit-field"
871        Diag(Loc, diag::err_typedef_not_bitfield)
872          << Name << BitWidth->getSourceRange();
873      } else {
874        // A function typedef ("typedef int f(); f a;").
875        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
876        Diag(Loc, diag::err_not_integral_type_bitfield)
877          << Name << cast<ValueDecl>(Member)->getType()
878          << BitWidth->getSourceRange();
879      }
880
881      DeleteExpr(BitWidth);
882      BitWidth = 0;
883      Member->setInvalidDecl();
884    }
885
886    Member->setAccess(AS);
887
888    // If we have declared a member function template, set the access of the
889    // templated declaration as well.
890    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
891      FunTmpl->getTemplatedDecl()->setAccess(AS);
892  }
893
894  assert((Name || isInstField) && "No identifier for non-field ?");
895
896  if (Init)
897    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
898  if (Deleted) // FIXME: Source location is not very good.
899    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
900
901  if (isInstField) {
902    FieldCollector->Add(cast<FieldDecl>(Member));
903    return DeclPtrTy();
904  }
905  return DeclPtrTy::make(Member);
906}
907
908/// ActOnMemInitializer - Handle a C++ member initializer.
909Sema::MemInitResult
910Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
911                          Scope *S,
912                          const CXXScopeSpec &SS,
913                          IdentifierInfo *MemberOrBase,
914                          TypeTy *TemplateTypeTy,
915                          SourceLocation IdLoc,
916                          SourceLocation LParenLoc,
917                          ExprTy **Args, unsigned NumArgs,
918                          SourceLocation *CommaLocs,
919                          SourceLocation RParenLoc) {
920  if (!ConstructorD)
921    return true;
922
923  AdjustDeclIfTemplate(ConstructorD);
924
925  CXXConstructorDecl *Constructor
926    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
927  if (!Constructor) {
928    // The user wrote a constructor initializer on a function that is
929    // not a C++ constructor. Ignore the error for now, because we may
930    // have more member initializers coming; we'll diagnose it just
931    // once in ActOnMemInitializers.
932    return true;
933  }
934
935  CXXRecordDecl *ClassDecl = Constructor->getParent();
936
937  // C++ [class.base.init]p2:
938  //   Names in a mem-initializer-id are looked up in the scope of the
939  //   constructor’s class and, if not found in that scope, are looked
940  //   up in the scope containing the constructor’s
941  //   definition. [Note: if the constructor’s class contains a member
942  //   with the same name as a direct or virtual base class of the
943  //   class, a mem-initializer-id naming the member or base class and
944  //   composed of a single identifier refers to the class member. A
945  //   mem-initializer-id for the hidden base class may be specified
946  //   using a qualified name. ]
947  if (!SS.getScopeRep() && !TemplateTypeTy) {
948    // Look for a member, first.
949    FieldDecl *Member = 0;
950    DeclContext::lookup_result Result
951      = ClassDecl->lookup(MemberOrBase);
952    if (Result.first != Result.second)
953      Member = dyn_cast<FieldDecl>(*Result.first);
954
955    // FIXME: Handle members of an anonymous union.
956
957    if (Member)
958      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
959                                    RParenLoc);
960  }
961  // It didn't name a member, so see if it names a class.
962  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
963                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
964  if (!BaseTy)
965    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
966      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
967
968  QualType BaseType = GetTypeFromParser(BaseTy);
969
970  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
971                              RParenLoc, ClassDecl);
972}
973
974Sema::MemInitResult
975Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
976                             unsigned NumArgs, SourceLocation IdLoc,
977                             SourceLocation RParenLoc) {
978  bool HasDependentArg = false;
979  for (unsigned i = 0; i < NumArgs; i++)
980    HasDependentArg |= Args[i]->isTypeDependent();
981
982  CXXConstructorDecl *C = 0;
983  QualType FieldType = Member->getType();
984  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
985    FieldType = Array->getElementType();
986  if (FieldType->isDependentType()) {
987    // Can't check init for dependent type.
988  } else if (FieldType->getAs<RecordType>()) {
989    if (!HasDependentArg) {
990      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
991
992      C = PerformInitializationByConstructor(FieldType,
993                                             MultiExprArg(*this,
994                                                          (void**)Args,
995                                                          NumArgs),
996                                             IdLoc,
997                                             SourceRange(IdLoc, RParenLoc),
998                                             Member->getDeclName(), IK_Direct,
999                                             ConstructorArgs);
1000
1001      if (C) {
1002        // Take over the constructor arguments as our own.
1003        NumArgs = ConstructorArgs.size();
1004        Args = (Expr **)ConstructorArgs.take();
1005      }
1006    }
1007  } else if (NumArgs != 1 && NumArgs != 0) {
1008    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
1009                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
1010  } else if (!HasDependentArg) {
1011    Expr *NewExp;
1012    if (NumArgs == 0) {
1013      if (FieldType->isReferenceType()) {
1014        Diag(IdLoc, diag::err_null_intialized_reference_member)
1015              << Member->getDeclName();
1016        return Diag(Member->getLocation(), diag::note_declared_at);
1017      }
1018      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
1019      NumArgs = 1;
1020    }
1021    else
1022      NewExp = (Expr*)Args[0];
1023    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
1024      return true;
1025    Args[0] = NewExp;
1026  }
1027  // FIXME: Perform direct initialization of the member.
1028  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
1029                                                  NumArgs, C, IdLoc, RParenLoc);
1030}
1031
1032Sema::MemInitResult
1033Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
1034                           unsigned NumArgs, SourceLocation IdLoc,
1035                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
1036  bool HasDependentArg = false;
1037  for (unsigned i = 0; i < NumArgs; i++)
1038    HasDependentArg |= Args[i]->isTypeDependent();
1039
1040  if (!BaseType->isDependentType()) {
1041    if (!BaseType->isRecordType())
1042      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
1043        << BaseType << SourceRange(IdLoc, RParenLoc);
1044
1045    // C++ [class.base.init]p2:
1046    //   [...] Unless the mem-initializer-id names a nonstatic data
1047    //   member of the constructor’s class or a direct or virtual base
1048    //   of that class, the mem-initializer is ill-formed. A
1049    //   mem-initializer-list can initialize a base class using any
1050    //   name that denotes that base class type.
1051
1052    // First, check for a direct base class.
1053    const CXXBaseSpecifier *DirectBaseSpec = 0;
1054    for (CXXRecordDecl::base_class_const_iterator Base =
1055         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
1056      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
1057          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
1058        // We found a direct base of this type. That's what we're
1059        // initializing.
1060        DirectBaseSpec = &*Base;
1061        break;
1062      }
1063    }
1064
1065    // Check for a virtual base class.
1066    // FIXME: We might be able to short-circuit this if we know in advance that
1067    // there are no virtual bases.
1068    const CXXBaseSpecifier *VirtualBaseSpec = 0;
1069    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1070      // We haven't found a base yet; search the class hierarchy for a
1071      // virtual base class.
1072      CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1073                         /*DetectVirtual=*/false);
1074      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
1075        for (CXXBasePaths::paths_iterator Path = Paths.begin();
1076             Path != Paths.end(); ++Path) {
1077          if (Path->back().Base->isVirtual()) {
1078            VirtualBaseSpec = Path->back().Base;
1079            break;
1080          }
1081        }
1082      }
1083    }
1084
1085    // C++ [base.class.init]p2:
1086    //   If a mem-initializer-id is ambiguous because it designates both
1087    //   a direct non-virtual base class and an inherited virtual base
1088    //   class, the mem-initializer is ill-formed.
1089    if (DirectBaseSpec && VirtualBaseSpec)
1090      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
1091        << BaseType << SourceRange(IdLoc, RParenLoc);
1092    // C++ [base.class.init]p2:
1093    // Unless the mem-initializer-id names a nonstatic data membeer of the
1094    // constructor's class ot a direst or virtual base of that class, the
1095    // mem-initializer is ill-formed.
1096    if (!DirectBaseSpec && !VirtualBaseSpec)
1097      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
1098      << BaseType << ClassDecl->getNameAsCString()
1099      << SourceRange(IdLoc, RParenLoc);
1100  }
1101
1102  CXXConstructorDecl *C = 0;
1103  if (!BaseType->isDependentType() && !HasDependentArg) {
1104    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
1105                                            Context.getCanonicalType(BaseType));
1106    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1107
1108    C = PerformInitializationByConstructor(BaseType,
1109                                           MultiExprArg(*this,
1110                                                        (void**)Args, NumArgs),
1111                                           IdLoc, SourceRange(IdLoc, RParenLoc),
1112                                           Name, IK_Direct,
1113                                           ConstructorArgs);
1114    if (C) {
1115      // Take over the constructor arguments as our own.
1116      NumArgs = ConstructorArgs.size();
1117      Args = (Expr **)ConstructorArgs.take();
1118    }
1119  }
1120
1121  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
1122                                                  NumArgs, C, IdLoc, RParenLoc);
1123}
1124
1125void
1126Sema::setBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1127                              CXXBaseOrMemberInitializer **Initializers,
1128                              unsigned NumInitializers,
1129                              llvm::SmallVectorImpl<CXXBaseSpecifier *>& Bases,
1130                              llvm::SmallVectorImpl<FieldDecl *>&Fields) {
1131  // We need to build the initializer AST according to order of construction
1132  // and not what user specified in the Initializers list.
1133  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1134  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1135  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1136  bool HasDependentBaseInit = false;
1137
1138  for (unsigned i = 0; i < NumInitializers; i++) {
1139    CXXBaseOrMemberInitializer *Member = Initializers[i];
1140    if (Member->isBaseInitializer()) {
1141      if (Member->getBaseClass()->isDependentType())
1142        HasDependentBaseInit = true;
1143      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1144    } else {
1145      AllBaseFields[Member->getMember()] = Member;
1146    }
1147  }
1148
1149  if (HasDependentBaseInit) {
1150    // FIXME. This does not preserve the ordering of the initializers.
1151    // Try (with -Wreorder)
1152    // template<class X> struct A {};
1153    // template<class X> struct B : A<X> {
1154    //   B() : x1(10), A<X>() {}
1155    //   int x1;
1156    // };
1157    // B<int> x;
1158    // On seeing one dependent type, we should essentially exit this routine
1159    // while preserving user-declared initializer list. When this routine is
1160    // called during instantiatiation process, this routine will rebuild the
1161    // oderdered initializer list correctly.
1162
1163    // If we have a dependent base initialization, we can't determine the
1164    // association between initializers and bases; just dump the known
1165    // initializers into the list, and don't try to deal with other bases.
1166    for (unsigned i = 0; i < NumInitializers; i++) {
1167      CXXBaseOrMemberInitializer *Member = Initializers[i];
1168      if (Member->isBaseInitializer())
1169        AllToInit.push_back(Member);
1170    }
1171  } else {
1172    // Push virtual bases before others.
1173    for (CXXRecordDecl::base_class_iterator VBase =
1174         ClassDecl->vbases_begin(),
1175         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1176      if (VBase->getType()->isDependentType())
1177        continue;
1178      if (CXXBaseOrMemberInitializer *Value =
1179          AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1180        CXXRecordDecl *BaseDecl =
1181          cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1182        assert(BaseDecl && "setBaseOrMemberInitializers - BaseDecl null");
1183        if (CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context))
1184          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1185        AllToInit.push_back(Value);
1186      }
1187      else {
1188        CXXRecordDecl *VBaseDecl =
1189        cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1190        assert(VBaseDecl && "setBaseOrMemberInitializers - VBaseDecl null");
1191        CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context);
1192        if (!Ctor)
1193          Bases.push_back(VBase);
1194        else
1195          MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1196
1197        CXXBaseOrMemberInitializer *Member =
1198        new (Context) CXXBaseOrMemberInitializer(VBase->getType(), 0, 0,
1199                                    Ctor,
1200                                    SourceLocation(),
1201                                    SourceLocation());
1202        AllToInit.push_back(Member);
1203      }
1204    }
1205
1206    for (CXXRecordDecl::base_class_iterator Base =
1207         ClassDecl->bases_begin(),
1208         E = ClassDecl->bases_end(); Base != E; ++Base) {
1209      // Virtuals are in the virtual base list and already constructed.
1210      if (Base->isVirtual())
1211        continue;
1212      // Skip dependent types.
1213      if (Base->getType()->isDependentType())
1214        continue;
1215      if (CXXBaseOrMemberInitializer *Value =
1216          AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1217        CXXRecordDecl *BaseDecl =
1218          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1219        assert(BaseDecl && "setBaseOrMemberInitializers - BaseDecl null");
1220        if (CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context))
1221          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1222        AllToInit.push_back(Value);
1223      }
1224      else {
1225        CXXRecordDecl *BaseDecl =
1226          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1227        assert(BaseDecl && "setBaseOrMemberInitializers - BaseDecl null");
1228         CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context);
1229        if (!Ctor)
1230          Bases.push_back(Base);
1231        else
1232          MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1233
1234        CXXBaseOrMemberInitializer *Member =
1235        new (Context) CXXBaseOrMemberInitializer(Base->getType(), 0, 0,
1236                                      BaseDecl->getDefaultConstructor(Context),
1237                                      SourceLocation(),
1238                                      SourceLocation());
1239        AllToInit.push_back(Member);
1240      }
1241    }
1242  }
1243
1244  // non-static data members.
1245  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1246       E = ClassDecl->field_end(); Field != E; ++Field) {
1247    if ((*Field)->isAnonymousStructOrUnion()) {
1248      if (const RecordType *FieldClassType =
1249          Field->getType()->getAs<RecordType>()) {
1250        CXXRecordDecl *FieldClassDecl
1251        = cast<CXXRecordDecl>(FieldClassType->getDecl());
1252        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1253            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1254          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1255            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1256            // set to the anonymous union data member used in the initializer
1257            // list.
1258            Value->setMember(*Field);
1259            Value->setAnonUnionMember(*FA);
1260            AllToInit.push_back(Value);
1261            break;
1262          }
1263        }
1264      }
1265      continue;
1266    }
1267    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1268      QualType FT = (*Field)->getType();
1269      if (const RecordType* RT = FT->getAs<RecordType>()) {
1270        CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RT->getDecl());
1271        assert(FieldRecDecl && "setBaseOrMemberInitializers - BaseDecl null");
1272        if (CXXConstructorDecl *Ctor =
1273              FieldRecDecl->getDefaultConstructor(Context))
1274          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1275      }
1276      AllToInit.push_back(Value);
1277      continue;
1278    }
1279
1280    QualType FT = Context.getBaseElementType((*Field)->getType());
1281    if (const RecordType* RT = FT->getAs<RecordType>()) {
1282      CXXConstructorDecl *Ctor =
1283        cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context);
1284      if (!Ctor && !FT->isDependentType())
1285        Fields.push_back(*Field);
1286      CXXBaseOrMemberInitializer *Member =
1287      new (Context) CXXBaseOrMemberInitializer((*Field), 0, 0,
1288                                         Ctor,
1289                                         SourceLocation(),
1290                                         SourceLocation());
1291      AllToInit.push_back(Member);
1292      if (Ctor)
1293        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1294      if (FT.isConstQualified() && (!Ctor || Ctor->isTrivial())) {
1295        Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1296          << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getDeclName();
1297        Diag((*Field)->getLocation(), diag::note_declared_at);
1298      }
1299    }
1300    else if (FT->isReferenceType()) {
1301      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1302        << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getDeclName();
1303      Diag((*Field)->getLocation(), diag::note_declared_at);
1304    }
1305    else if (FT.isConstQualified()) {
1306      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1307        << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getDeclName();
1308      Diag((*Field)->getLocation(), diag::note_declared_at);
1309    }
1310  }
1311
1312  NumInitializers = AllToInit.size();
1313  if (NumInitializers > 0) {
1314    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1315    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1316      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1317
1318    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1319    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1320      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1321  }
1322}
1323
1324void
1325Sema::BuildBaseOrMemberInitializers(ASTContext &C,
1326                                 CXXConstructorDecl *Constructor,
1327                                 CXXBaseOrMemberInitializer **Initializers,
1328                                 unsigned NumInitializers
1329                                 ) {
1330  llvm::SmallVector<CXXBaseSpecifier *, 4>Bases;
1331  llvm::SmallVector<FieldDecl *, 4>Members;
1332
1333  setBaseOrMemberInitializers(Constructor,
1334                              Initializers, NumInitializers, Bases, Members);
1335  for (unsigned int i = 0; i < Bases.size(); i++)
1336    Diag(Bases[i]->getSourceRange().getBegin(),
1337         diag::err_missing_default_constructor) << 0 << Bases[i]->getType();
1338  for (unsigned int i = 0; i < Members.size(); i++)
1339    Diag(Members[i]->getLocation(), diag::err_missing_default_constructor)
1340          << 1 << Members[i]->getType();
1341}
1342
1343static void *GetKeyForTopLevelField(FieldDecl *Field) {
1344  // For anonymous unions, use the class declaration as the key.
1345  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1346    if (RT->getDecl()->isAnonymousStructOrUnion())
1347      return static_cast<void *>(RT->getDecl());
1348  }
1349  return static_cast<void *>(Field);
1350}
1351
1352static void *GetKeyForBase(QualType BaseType) {
1353  if (const RecordType *RT = BaseType->getAs<RecordType>())
1354    return (void *)RT;
1355
1356  assert(0 && "Unexpected base type!");
1357  return 0;
1358}
1359
1360static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1361                             bool MemberMaybeAnon = false) {
1362  // For fields injected into the class via declaration of an anonymous union,
1363  // use its anonymous union class declaration as the unique key.
1364  if (Member->isMemberInitializer()) {
1365    FieldDecl *Field = Member->getMember();
1366
1367    // After BuildBaseOrMemberInitializers call, Field is the anonymous union
1368    // data member of the class. Data member used in the initializer list is
1369    // in AnonUnionMember field.
1370    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1371      Field = Member->getAnonUnionMember();
1372    if (Field->getDeclContext()->isRecord()) {
1373      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1374      if (RD->isAnonymousStructOrUnion())
1375        return static_cast<void *>(RD);
1376    }
1377    return static_cast<void *>(Field);
1378  }
1379
1380  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1381}
1382
1383void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1384                                SourceLocation ColonLoc,
1385                                MemInitTy **MemInits, unsigned NumMemInits) {
1386  if (!ConstructorDecl)
1387    return;
1388
1389  AdjustDeclIfTemplate(ConstructorDecl);
1390
1391  CXXConstructorDecl *Constructor
1392    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1393
1394  if (!Constructor) {
1395    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1396    return;
1397  }
1398
1399  if (!Constructor->isDependentContext()) {
1400    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1401    bool err = false;
1402    for (unsigned i = 0; i < NumMemInits; i++) {
1403      CXXBaseOrMemberInitializer *Member =
1404        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1405      void *KeyToMember = GetKeyForMember(Member);
1406      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1407      if (!PrevMember) {
1408        PrevMember = Member;
1409        continue;
1410      }
1411      if (FieldDecl *Field = Member->getMember())
1412        Diag(Member->getSourceLocation(),
1413             diag::error_multiple_mem_initialization)
1414        << Field->getNameAsString();
1415      else {
1416        Type *BaseClass = Member->getBaseClass();
1417        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1418        Diag(Member->getSourceLocation(),
1419             diag::error_multiple_base_initialization)
1420          << QualType(BaseClass, 0);
1421      }
1422      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1423        << 0;
1424      err = true;
1425    }
1426
1427    if (err)
1428      return;
1429  }
1430
1431  BuildBaseOrMemberInitializers(Context, Constructor,
1432                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1433                      NumMemInits);
1434
1435  if (Constructor->isDependentContext())
1436    return;
1437
1438  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1439      Diagnostic::Ignored &&
1440      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1441      Diagnostic::Ignored)
1442    return;
1443
1444  // Also issue warning if order of ctor-initializer list does not match order
1445  // of 1) base class declarations and 2) order of non-static data members.
1446  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1447
1448  CXXRecordDecl *ClassDecl
1449    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1450  // Push virtual bases before others.
1451  for (CXXRecordDecl::base_class_iterator VBase =
1452       ClassDecl->vbases_begin(),
1453       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1454    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1455
1456  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1457       E = ClassDecl->bases_end(); Base != E; ++Base) {
1458    // Virtuals are alread in the virtual base list and are constructed
1459    // first.
1460    if (Base->isVirtual())
1461      continue;
1462    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1463  }
1464
1465  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1466       E = ClassDecl->field_end(); Field != E; ++Field)
1467    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1468
1469  int Last = AllBaseOrMembers.size();
1470  int curIndex = 0;
1471  CXXBaseOrMemberInitializer *PrevMember = 0;
1472  for (unsigned i = 0; i < NumMemInits; i++) {
1473    CXXBaseOrMemberInitializer *Member =
1474      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1475    void *MemberInCtorList = GetKeyForMember(Member, true);
1476
1477    for (; curIndex < Last; curIndex++)
1478      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1479        break;
1480    if (curIndex == Last) {
1481      assert(PrevMember && "Member not in member list?!");
1482      // Initializer as specified in ctor-initializer list is out of order.
1483      // Issue a warning diagnostic.
1484      if (PrevMember->isBaseInitializer()) {
1485        // Diagnostics is for an initialized base class.
1486        Type *BaseClass = PrevMember->getBaseClass();
1487        Diag(PrevMember->getSourceLocation(),
1488             diag::warn_base_initialized)
1489          << QualType(BaseClass, 0);
1490      } else {
1491        FieldDecl *Field = PrevMember->getMember();
1492        Diag(PrevMember->getSourceLocation(),
1493             diag::warn_field_initialized)
1494          << Field->getNameAsString();
1495      }
1496      // Also the note!
1497      if (FieldDecl *Field = Member->getMember())
1498        Diag(Member->getSourceLocation(),
1499             diag::note_fieldorbase_initialized_here) << 0
1500          << Field->getNameAsString();
1501      else {
1502        Type *BaseClass = Member->getBaseClass();
1503        Diag(Member->getSourceLocation(),
1504             diag::note_fieldorbase_initialized_here) << 1
1505          << QualType(BaseClass, 0);
1506      }
1507      for (curIndex = 0; curIndex < Last; curIndex++)
1508        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1509          break;
1510    }
1511    PrevMember = Member;
1512  }
1513}
1514
1515void
1516Sema::computeBaseOrMembersToDestroy(CXXDestructorDecl *Destructor) {
1517  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Destructor->getDeclContext());
1518  llvm::SmallVector<uintptr_t, 32> AllToDestruct;
1519
1520  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1521       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1522    if (VBase->getType()->isDependentType())
1523      continue;
1524    // Skip over virtual bases which have trivial destructors.
1525    CXXRecordDecl *BaseClassDecl
1526      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1527    if (BaseClassDecl->hasTrivialDestructor())
1528      continue;
1529    if (const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context))
1530      MarkDeclarationReferenced(Destructor->getLocation(),
1531                                const_cast<CXXDestructorDecl*>(Dtor));
1532
1533    uintptr_t Member =
1534    reinterpret_cast<uintptr_t>(VBase->getType().getTypePtr())
1535      | CXXDestructorDecl::VBASE;
1536    AllToDestruct.push_back(Member);
1537  }
1538  for (CXXRecordDecl::base_class_iterator Base =
1539       ClassDecl->bases_begin(),
1540       E = ClassDecl->bases_end(); Base != E; ++Base) {
1541    if (Base->isVirtual())
1542      continue;
1543    if (Base->getType()->isDependentType())
1544      continue;
1545    // Skip over virtual bases which have trivial destructors.
1546    CXXRecordDecl *BaseClassDecl
1547    = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1548    if (BaseClassDecl->hasTrivialDestructor())
1549      continue;
1550    if (const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context))
1551      MarkDeclarationReferenced(Destructor->getLocation(),
1552                                const_cast<CXXDestructorDecl*>(Dtor));
1553    uintptr_t Member =
1554    reinterpret_cast<uintptr_t>(Base->getType().getTypePtr())
1555      | CXXDestructorDecl::DRCTNONVBASE;
1556    AllToDestruct.push_back(Member);
1557  }
1558
1559  // non-static data members.
1560  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1561       E = ClassDecl->field_end(); Field != E; ++Field) {
1562    QualType FieldType = Context.getBaseElementType((*Field)->getType());
1563
1564    if (const RecordType* RT = FieldType->getAs<RecordType>()) {
1565      // Skip over virtual bases which have trivial destructors.
1566      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1567      if (FieldClassDecl->hasTrivialDestructor())
1568        continue;
1569      if (const CXXDestructorDecl *Dtor =
1570            FieldClassDecl->getDestructor(Context))
1571        MarkDeclarationReferenced(Destructor->getLocation(),
1572                                  const_cast<CXXDestructorDecl*>(Dtor));
1573      uintptr_t Member = reinterpret_cast<uintptr_t>(*Field);
1574      AllToDestruct.push_back(Member);
1575    }
1576  }
1577
1578  unsigned NumDestructions = AllToDestruct.size();
1579  if (NumDestructions > 0) {
1580    Destructor->setNumBaseOrMemberDestructions(NumDestructions);
1581    uintptr_t *BaseOrMemberDestructions =
1582      new (Context) uintptr_t [NumDestructions];
1583    // Insert in reverse order.
1584    for (int Idx = NumDestructions-1, i=0 ; Idx >= 0; --Idx)
1585      BaseOrMemberDestructions[i++] = AllToDestruct[Idx];
1586    Destructor->setBaseOrMemberDestructions(BaseOrMemberDestructions);
1587  }
1588}
1589
1590void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1591  if (!CDtorDecl)
1592    return;
1593
1594  AdjustDeclIfTemplate(CDtorDecl);
1595
1596  if (CXXConstructorDecl *Constructor
1597      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1598    BuildBaseOrMemberInitializers(Context,
1599                                     Constructor,
1600                                     (CXXBaseOrMemberInitializer **)0, 0);
1601}
1602
1603namespace {
1604  /// PureVirtualMethodCollector - traverses a class and its superclasses
1605  /// and determines if it has any pure virtual methods.
1606  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1607    ASTContext &Context;
1608
1609  public:
1610    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1611
1612  private:
1613    MethodList Methods;
1614
1615    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1616
1617  public:
1618    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1619      : Context(Ctx) {
1620
1621      MethodList List;
1622      Collect(RD, List);
1623
1624      // Copy the temporary list to methods, and make sure to ignore any
1625      // null entries.
1626      for (size_t i = 0, e = List.size(); i != e; ++i) {
1627        if (List[i])
1628          Methods.push_back(List[i]);
1629      }
1630    }
1631
1632    bool empty() const { return Methods.empty(); }
1633
1634    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1635    MethodList::const_iterator methods_end() { return Methods.end(); }
1636  };
1637
1638  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1639                                           MethodList& Methods) {
1640    // First, collect the pure virtual methods for the base classes.
1641    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1642         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1643      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1644        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1645        if (BaseDecl && BaseDecl->isAbstract())
1646          Collect(BaseDecl, Methods);
1647      }
1648    }
1649
1650    // Next, zero out any pure virtual methods that this class overrides.
1651    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1652
1653    MethodSetTy OverriddenMethods;
1654    size_t MethodsSize = Methods.size();
1655
1656    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1657         i != e; ++i) {
1658      // Traverse the record, looking for methods.
1659      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1660        // If the method is pure virtual, add it to the methods vector.
1661        if (MD->isPure()) {
1662          Methods.push_back(MD);
1663          continue;
1664        }
1665
1666        // Otherwise, record all the overridden methods in our set.
1667        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1668             E = MD->end_overridden_methods(); I != E; ++I) {
1669          // Keep track of the overridden methods.
1670          OverriddenMethods.insert(*I);
1671        }
1672      }
1673    }
1674
1675    // Now go through the methods and zero out all the ones we know are
1676    // overridden.
1677    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1678      if (OverriddenMethods.count(Methods[i]))
1679        Methods[i] = 0;
1680    }
1681
1682  }
1683}
1684
1685
1686bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1687                                  unsigned DiagID, AbstractDiagSelID SelID,
1688                                  const CXXRecordDecl *CurrentRD) {
1689  if (SelID == -1)
1690    return RequireNonAbstractType(Loc, T,
1691                                  PDiag(DiagID), CurrentRD);
1692  else
1693    return RequireNonAbstractType(Loc, T,
1694                                  PDiag(DiagID) << SelID, CurrentRD);
1695}
1696
1697bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1698                                  const PartialDiagnostic &PD,
1699                                  const CXXRecordDecl *CurrentRD) {
1700  if (!getLangOptions().CPlusPlus)
1701    return false;
1702
1703  if (const ArrayType *AT = Context.getAsArrayType(T))
1704    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1705                                  CurrentRD);
1706
1707  if (const PointerType *PT = T->getAs<PointerType>()) {
1708    // Find the innermost pointer type.
1709    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1710      PT = T;
1711
1712    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1713      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1714  }
1715
1716  const RecordType *RT = T->getAs<RecordType>();
1717  if (!RT)
1718    return false;
1719
1720  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1721  if (!RD)
1722    return false;
1723
1724  if (CurrentRD && CurrentRD != RD)
1725    return false;
1726
1727  if (!RD->isAbstract())
1728    return false;
1729
1730  Diag(Loc, PD) << RD->getDeclName();
1731
1732  // Check if we've already emitted the list of pure virtual functions for this
1733  // class.
1734  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1735    return true;
1736
1737  PureVirtualMethodCollector Collector(Context, RD);
1738
1739  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1740       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1741    const CXXMethodDecl *MD = *I;
1742
1743    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1744      MD->getDeclName();
1745  }
1746
1747  if (!PureVirtualClassDiagSet)
1748    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1749  PureVirtualClassDiagSet->insert(RD);
1750
1751  return true;
1752}
1753
1754namespace {
1755  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1756    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1757    Sema &SemaRef;
1758    CXXRecordDecl *AbstractClass;
1759
1760    bool VisitDeclContext(const DeclContext *DC) {
1761      bool Invalid = false;
1762
1763      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1764           E = DC->decls_end(); I != E; ++I)
1765        Invalid |= Visit(*I);
1766
1767      return Invalid;
1768    }
1769
1770  public:
1771    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1772      : SemaRef(SemaRef), AbstractClass(ac) {
1773        Visit(SemaRef.Context.getTranslationUnitDecl());
1774    }
1775
1776    bool VisitFunctionDecl(const FunctionDecl *FD) {
1777      if (FD->isThisDeclarationADefinition()) {
1778        // No need to do the check if we're in a definition, because it requires
1779        // that the return/param types are complete.
1780        // because that requires
1781        return VisitDeclContext(FD);
1782      }
1783
1784      // Check the return type.
1785      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
1786      bool Invalid =
1787        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1788                                       diag::err_abstract_type_in_decl,
1789                                       Sema::AbstractReturnType,
1790                                       AbstractClass);
1791
1792      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1793           E = FD->param_end(); I != E; ++I) {
1794        const ParmVarDecl *VD = *I;
1795        Invalid |=
1796          SemaRef.RequireNonAbstractType(VD->getLocation(),
1797                                         VD->getOriginalType(),
1798                                         diag::err_abstract_type_in_decl,
1799                                         Sema::AbstractParamType,
1800                                         AbstractClass);
1801      }
1802
1803      return Invalid;
1804    }
1805
1806    bool VisitDecl(const Decl* D) {
1807      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1808        return VisitDeclContext(DC);
1809
1810      return false;
1811    }
1812  };
1813}
1814
1815void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1816                                             DeclPtrTy TagDecl,
1817                                             SourceLocation LBrac,
1818                                             SourceLocation RBrac) {
1819  if (!TagDecl)
1820    return;
1821
1822  AdjustDeclIfTemplate(TagDecl);
1823  ActOnFields(S, RLoc, TagDecl,
1824              (DeclPtrTy*)FieldCollector->getCurFields(),
1825              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1826
1827  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1828  if (!RD->isAbstract()) {
1829    // Collect all the pure virtual methods and see if this is an abstract
1830    // class after all.
1831    PureVirtualMethodCollector Collector(Context, RD);
1832    if (!Collector.empty())
1833      RD->setAbstract(true);
1834  }
1835
1836  if (RD->isAbstract())
1837    AbstractClassUsageDiagnoser(*this, RD);
1838
1839  if (!RD->isDependentType())
1840    AddImplicitlyDeclaredMembersToClass(RD);
1841}
1842
1843/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1844/// special functions, such as the default constructor, copy
1845/// constructor, or destructor, to the given C++ class (C++
1846/// [special]p1).  This routine can only be executed just before the
1847/// definition of the class is complete.
1848void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1849  CanQualType ClassType
1850    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1851
1852  // FIXME: Implicit declarations have exception specifications, which are
1853  // the union of the specifications of the implicitly called functions.
1854
1855  if (!ClassDecl->hasUserDeclaredConstructor()) {
1856    // C++ [class.ctor]p5:
1857    //   A default constructor for a class X is a constructor of class X
1858    //   that can be called without an argument. If there is no
1859    //   user-declared constructor for class X, a default constructor is
1860    //   implicitly declared. An implicitly-declared default constructor
1861    //   is an inline public member of its class.
1862    DeclarationName Name
1863      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1864    CXXConstructorDecl *DefaultCon =
1865      CXXConstructorDecl::Create(Context, ClassDecl,
1866                                 ClassDecl->getLocation(), Name,
1867                                 Context.getFunctionType(Context.VoidTy,
1868                                                         0, 0, false, 0),
1869                                 /*DInfo=*/0,
1870                                 /*isExplicit=*/false,
1871                                 /*isInline=*/true,
1872                                 /*isImplicitlyDeclared=*/true);
1873    DefaultCon->setAccess(AS_public);
1874    DefaultCon->setImplicit();
1875    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1876    ClassDecl->addDecl(DefaultCon);
1877  }
1878
1879  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1880    // C++ [class.copy]p4:
1881    //   If the class definition does not explicitly declare a copy
1882    //   constructor, one is declared implicitly.
1883
1884    // C++ [class.copy]p5:
1885    //   The implicitly-declared copy constructor for a class X will
1886    //   have the form
1887    //
1888    //       X::X(const X&)
1889    //
1890    //   if
1891    bool HasConstCopyConstructor = true;
1892
1893    //     -- each direct or virtual base class B of X has a copy
1894    //        constructor whose first parameter is of type const B& or
1895    //        const volatile B&, and
1896    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1897         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1898      const CXXRecordDecl *BaseClassDecl
1899        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1900      HasConstCopyConstructor
1901        = BaseClassDecl->hasConstCopyConstructor(Context);
1902    }
1903
1904    //     -- for all the nonstatic data members of X that are of a
1905    //        class type M (or array thereof), each such class type
1906    //        has a copy constructor whose first parameter is of type
1907    //        const M& or const volatile M&.
1908    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1909         HasConstCopyConstructor && Field != ClassDecl->field_end();
1910         ++Field) {
1911      QualType FieldType = (*Field)->getType();
1912      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1913        FieldType = Array->getElementType();
1914      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1915        const CXXRecordDecl *FieldClassDecl
1916          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1917        HasConstCopyConstructor
1918          = FieldClassDecl->hasConstCopyConstructor(Context);
1919      }
1920    }
1921
1922    //   Otherwise, the implicitly declared copy constructor will have
1923    //   the form
1924    //
1925    //       X::X(X&)
1926    QualType ArgType = ClassType;
1927    if (HasConstCopyConstructor)
1928      ArgType = ArgType.withConst();
1929    ArgType = Context.getLValueReferenceType(ArgType);
1930
1931    //   An implicitly-declared copy constructor is an inline public
1932    //   member of its class.
1933    DeclarationName Name
1934      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1935    CXXConstructorDecl *CopyConstructor
1936      = CXXConstructorDecl::Create(Context, ClassDecl,
1937                                   ClassDecl->getLocation(), Name,
1938                                   Context.getFunctionType(Context.VoidTy,
1939                                                           &ArgType, 1,
1940                                                           false, 0),
1941                                   /*DInfo=*/0,
1942                                   /*isExplicit=*/false,
1943                                   /*isInline=*/true,
1944                                   /*isImplicitlyDeclared=*/true);
1945    CopyConstructor->setAccess(AS_public);
1946    CopyConstructor->setImplicit();
1947    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1948
1949    // Add the parameter to the constructor.
1950    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1951                                                 ClassDecl->getLocation(),
1952                                                 /*IdentifierInfo=*/0,
1953                                                 ArgType, /*DInfo=*/0,
1954                                                 VarDecl::None, 0);
1955    CopyConstructor->setParams(Context, &FromParam, 1);
1956    ClassDecl->addDecl(CopyConstructor);
1957  }
1958
1959  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1960    // Note: The following rules are largely analoguous to the copy
1961    // constructor rules. Note that virtual bases are not taken into account
1962    // for determining the argument type of the operator. Note also that
1963    // operators taking an object instead of a reference are allowed.
1964    //
1965    // C++ [class.copy]p10:
1966    //   If the class definition does not explicitly declare a copy
1967    //   assignment operator, one is declared implicitly.
1968    //   The implicitly-defined copy assignment operator for a class X
1969    //   will have the form
1970    //
1971    //       X& X::operator=(const X&)
1972    //
1973    //   if
1974    bool HasConstCopyAssignment = true;
1975
1976    //       -- each direct base class B of X has a copy assignment operator
1977    //          whose parameter is of type const B&, const volatile B& or B,
1978    //          and
1979    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1980         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1981      const CXXRecordDecl *BaseClassDecl
1982        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1983      const CXXMethodDecl *MD = 0;
1984      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
1985                                                                     MD);
1986    }
1987
1988    //       -- for all the nonstatic data members of X that are of a class
1989    //          type M (or array thereof), each such class type has a copy
1990    //          assignment operator whose parameter is of type const M&,
1991    //          const volatile M& or M.
1992    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1993         HasConstCopyAssignment && Field != ClassDecl->field_end();
1994         ++Field) {
1995      QualType FieldType = (*Field)->getType();
1996      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1997        FieldType = Array->getElementType();
1998      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1999        const CXXRecordDecl *FieldClassDecl
2000          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2001        const CXXMethodDecl *MD = 0;
2002        HasConstCopyAssignment
2003          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2004      }
2005    }
2006
2007    //   Otherwise, the implicitly declared copy assignment operator will
2008    //   have the form
2009    //
2010    //       X& X::operator=(X&)
2011    QualType ArgType = ClassType;
2012    QualType RetType = Context.getLValueReferenceType(ArgType);
2013    if (HasConstCopyAssignment)
2014      ArgType = ArgType.withConst();
2015    ArgType = Context.getLValueReferenceType(ArgType);
2016
2017    //   An implicitly-declared copy assignment operator is an inline public
2018    //   member of its class.
2019    DeclarationName Name =
2020      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2021    CXXMethodDecl *CopyAssignment =
2022      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2023                            Context.getFunctionType(RetType, &ArgType, 1,
2024                                                    false, 0),
2025                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2026    CopyAssignment->setAccess(AS_public);
2027    CopyAssignment->setImplicit();
2028    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2029    CopyAssignment->setCopyAssignment(true);
2030
2031    // Add the parameter to the operator.
2032    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2033                                                 ClassDecl->getLocation(),
2034                                                 /*IdentifierInfo=*/0,
2035                                                 ArgType, /*DInfo=*/0,
2036                                                 VarDecl::None, 0);
2037    CopyAssignment->setParams(Context, &FromParam, 1);
2038
2039    // Don't call addedAssignmentOperator. There is no way to distinguish an
2040    // implicit from an explicit assignment operator.
2041    ClassDecl->addDecl(CopyAssignment);
2042  }
2043
2044  if (!ClassDecl->hasUserDeclaredDestructor()) {
2045    // C++ [class.dtor]p2:
2046    //   If a class has no user-declared destructor, a destructor is
2047    //   declared implicitly. An implicitly-declared destructor is an
2048    //   inline public member of its class.
2049    DeclarationName Name
2050      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2051    CXXDestructorDecl *Destructor
2052      = CXXDestructorDecl::Create(Context, ClassDecl,
2053                                  ClassDecl->getLocation(), Name,
2054                                  Context.getFunctionType(Context.VoidTy,
2055                                                          0, 0, false, 0),
2056                                  /*isInline=*/true,
2057                                  /*isImplicitlyDeclared=*/true);
2058    Destructor->setAccess(AS_public);
2059    Destructor->setImplicit();
2060    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2061    ClassDecl->addDecl(Destructor);
2062  }
2063}
2064
2065void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2066  Decl *D = TemplateD.getAs<Decl>();
2067  if (!D)
2068    return;
2069
2070  TemplateParameterList *Params = 0;
2071  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2072    Params = Template->getTemplateParameters();
2073  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2074           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2075    Params = PartialSpec->getTemplateParameters();
2076  else
2077    return;
2078
2079  for (TemplateParameterList::iterator Param = Params->begin(),
2080                                    ParamEnd = Params->end();
2081       Param != ParamEnd; ++Param) {
2082    NamedDecl *Named = cast<NamedDecl>(*Param);
2083    if (Named->getDeclName()) {
2084      S->AddDecl(DeclPtrTy::make(Named));
2085      IdResolver.AddDecl(Named);
2086    }
2087  }
2088}
2089
2090/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2091/// parsing a top-level (non-nested) C++ class, and we are now
2092/// parsing those parts of the given Method declaration that could
2093/// not be parsed earlier (C++ [class.mem]p2), such as default
2094/// arguments. This action should enter the scope of the given
2095/// Method declaration as if we had just parsed the qualified method
2096/// name. However, it should not bring the parameters into scope;
2097/// that will be performed by ActOnDelayedCXXMethodParameter.
2098void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2099  if (!MethodD)
2100    return;
2101
2102  AdjustDeclIfTemplate(MethodD);
2103
2104  CXXScopeSpec SS;
2105  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2106  QualType ClassTy
2107    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2108  SS.setScopeRep(
2109    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2110  ActOnCXXEnterDeclaratorScope(S, SS);
2111}
2112
2113/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2114/// C++ method declaration. We're (re-)introducing the given
2115/// function parameter into scope for use in parsing later parts of
2116/// the method declaration. For example, we could see an
2117/// ActOnParamDefaultArgument event for this parameter.
2118void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2119  if (!ParamD)
2120    return;
2121
2122  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2123
2124  // If this parameter has an unparsed default argument, clear it out
2125  // to make way for the parsed default argument.
2126  if (Param->hasUnparsedDefaultArg())
2127    Param->setDefaultArg(0);
2128
2129  S->AddDecl(DeclPtrTy::make(Param));
2130  if (Param->getDeclName())
2131    IdResolver.AddDecl(Param);
2132}
2133
2134/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2135/// processing the delayed method declaration for Method. The method
2136/// declaration is now considered finished. There may be a separate
2137/// ActOnStartOfFunctionDef action later (not necessarily
2138/// immediately!) for this method, if it was also defined inside the
2139/// class body.
2140void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2141  if (!MethodD)
2142    return;
2143
2144  AdjustDeclIfTemplate(MethodD);
2145
2146  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2147  CXXScopeSpec SS;
2148  QualType ClassTy
2149    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2150  SS.setScopeRep(
2151    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2152  ActOnCXXExitDeclaratorScope(S, SS);
2153
2154  // Now that we have our default arguments, check the constructor
2155  // again. It could produce additional diagnostics or affect whether
2156  // the class has implicitly-declared destructors, among other
2157  // things.
2158  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2159    CheckConstructor(Constructor);
2160
2161  // Check the default arguments, which we may have added.
2162  if (!Method->isInvalidDecl())
2163    CheckCXXDefaultArguments(Method);
2164}
2165
2166/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2167/// the well-formedness of the constructor declarator @p D with type @p
2168/// R. If there are any errors in the declarator, this routine will
2169/// emit diagnostics and set the invalid bit to true.  In any case, the type
2170/// will be updated to reflect a well-formed type for the constructor and
2171/// returned.
2172QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2173                                          FunctionDecl::StorageClass &SC) {
2174  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2175
2176  // C++ [class.ctor]p3:
2177  //   A constructor shall not be virtual (10.3) or static (9.4). A
2178  //   constructor can be invoked for a const, volatile or const
2179  //   volatile object. A constructor shall not be declared const,
2180  //   volatile, or const volatile (9.3.2).
2181  if (isVirtual) {
2182    if (!D.isInvalidType())
2183      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2184        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2185        << SourceRange(D.getIdentifierLoc());
2186    D.setInvalidType();
2187  }
2188  if (SC == FunctionDecl::Static) {
2189    if (!D.isInvalidType())
2190      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2191        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2192        << SourceRange(D.getIdentifierLoc());
2193    D.setInvalidType();
2194    SC = FunctionDecl::None;
2195  }
2196
2197  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2198  if (FTI.TypeQuals != 0) {
2199    if (FTI.TypeQuals & Qualifiers::Const)
2200      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2201        << "const" << SourceRange(D.getIdentifierLoc());
2202    if (FTI.TypeQuals & Qualifiers::Volatile)
2203      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2204        << "volatile" << SourceRange(D.getIdentifierLoc());
2205    if (FTI.TypeQuals & Qualifiers::Restrict)
2206      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2207        << "restrict" << SourceRange(D.getIdentifierLoc());
2208  }
2209
2210  // Rebuild the function type "R" without any type qualifiers (in
2211  // case any of the errors above fired) and with "void" as the
2212  // return type, since constructors don't have return types. We
2213  // *always* have to do this, because GetTypeForDeclarator will
2214  // put in a result type of "int" when none was specified.
2215  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2216  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2217                                 Proto->getNumArgs(),
2218                                 Proto->isVariadic(), 0);
2219}
2220
2221/// CheckConstructor - Checks a fully-formed constructor for
2222/// well-formedness, issuing any diagnostics required. Returns true if
2223/// the constructor declarator is invalid.
2224void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2225  CXXRecordDecl *ClassDecl
2226    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2227  if (!ClassDecl)
2228    return Constructor->setInvalidDecl();
2229
2230  // C++ [class.copy]p3:
2231  //   A declaration of a constructor for a class X is ill-formed if
2232  //   its first parameter is of type (optionally cv-qualified) X and
2233  //   either there are no other parameters or else all other
2234  //   parameters have default arguments.
2235  if (!Constructor->isInvalidDecl() &&
2236      ((Constructor->getNumParams() == 1) ||
2237       (Constructor->getNumParams() > 1 &&
2238        Constructor->getParamDecl(1)->hasDefaultArg()))) {
2239    QualType ParamType = Constructor->getParamDecl(0)->getType();
2240    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2241    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2242      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2243      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2244        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2245      Constructor->setInvalidDecl();
2246    }
2247  }
2248
2249  // Notify the class that we've added a constructor.
2250  ClassDecl->addedConstructor(Context, Constructor);
2251}
2252
2253static inline bool
2254FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2255  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2256          FTI.ArgInfo[0].Param &&
2257          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2258}
2259
2260/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2261/// the well-formednes of the destructor declarator @p D with type @p
2262/// R. If there are any errors in the declarator, this routine will
2263/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2264/// will be updated to reflect a well-formed type for the destructor and
2265/// returned.
2266QualType Sema::CheckDestructorDeclarator(Declarator &D,
2267                                         FunctionDecl::StorageClass& SC) {
2268  // C++ [class.dtor]p1:
2269  //   [...] A typedef-name that names a class is a class-name
2270  //   (7.1.3); however, a typedef-name that names a class shall not
2271  //   be used as the identifier in the declarator for a destructor
2272  //   declaration.
2273  QualType DeclaratorType = GetTypeFromParser(D.getDeclaratorIdType());
2274  if (isa<TypedefType>(DeclaratorType)) {
2275    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2276      << DeclaratorType;
2277    D.setInvalidType();
2278  }
2279
2280  // C++ [class.dtor]p2:
2281  //   A destructor is used to destroy objects of its class type. A
2282  //   destructor takes no parameters, and no return type can be
2283  //   specified for it (not even void). The address of a destructor
2284  //   shall not be taken. A destructor shall not be static. A
2285  //   destructor can be invoked for a const, volatile or const
2286  //   volatile object. A destructor shall not be declared const,
2287  //   volatile or const volatile (9.3.2).
2288  if (SC == FunctionDecl::Static) {
2289    if (!D.isInvalidType())
2290      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2291        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2292        << SourceRange(D.getIdentifierLoc());
2293    SC = FunctionDecl::None;
2294    D.setInvalidType();
2295  }
2296  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2297    // Destructors don't have return types, but the parser will
2298    // happily parse something like:
2299    //
2300    //   class X {
2301    //     float ~X();
2302    //   };
2303    //
2304    // The return type will be eliminated later.
2305    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2306      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2307      << SourceRange(D.getIdentifierLoc());
2308  }
2309
2310  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2311  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2312    if (FTI.TypeQuals & Qualifiers::Const)
2313      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2314        << "const" << SourceRange(D.getIdentifierLoc());
2315    if (FTI.TypeQuals & Qualifiers::Volatile)
2316      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2317        << "volatile" << SourceRange(D.getIdentifierLoc());
2318    if (FTI.TypeQuals & Qualifiers::Restrict)
2319      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2320        << "restrict" << SourceRange(D.getIdentifierLoc());
2321    D.setInvalidType();
2322  }
2323
2324  // Make sure we don't have any parameters.
2325  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2326    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2327
2328    // Delete the parameters.
2329    FTI.freeArgs();
2330    D.setInvalidType();
2331  }
2332
2333  // Make sure the destructor isn't variadic.
2334  if (FTI.isVariadic) {
2335    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2336    D.setInvalidType();
2337  }
2338
2339  // Rebuild the function type "R" without any type qualifiers or
2340  // parameters (in case any of the errors above fired) and with
2341  // "void" as the return type, since destructors don't have return
2342  // types. We *always* have to do this, because GetTypeForDeclarator
2343  // will put in a result type of "int" when none was specified.
2344  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2345}
2346
2347/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2348/// well-formednes of the conversion function declarator @p D with
2349/// type @p R. If there are any errors in the declarator, this routine
2350/// will emit diagnostics and return true. Otherwise, it will return
2351/// false. Either way, the type @p R will be updated to reflect a
2352/// well-formed type for the conversion operator.
2353void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2354                                     FunctionDecl::StorageClass& SC) {
2355  // C++ [class.conv.fct]p1:
2356  //   Neither parameter types nor return type can be specified. The
2357  //   type of a conversion function (8.3.5) is "function taking no
2358  //   parameter returning conversion-type-id."
2359  if (SC == FunctionDecl::Static) {
2360    if (!D.isInvalidType())
2361      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2362        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2363        << SourceRange(D.getIdentifierLoc());
2364    D.setInvalidType();
2365    SC = FunctionDecl::None;
2366  }
2367  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2368    // Conversion functions don't have return types, but the parser will
2369    // happily parse something like:
2370    //
2371    //   class X {
2372    //     float operator bool();
2373    //   };
2374    //
2375    // The return type will be changed later anyway.
2376    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2377      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2378      << SourceRange(D.getIdentifierLoc());
2379  }
2380
2381  // Make sure we don't have any parameters.
2382  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2383    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2384
2385    // Delete the parameters.
2386    D.getTypeObject(0).Fun.freeArgs();
2387    D.setInvalidType();
2388  }
2389
2390  // Make sure the conversion function isn't variadic.
2391  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2392    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2393    D.setInvalidType();
2394  }
2395
2396  // C++ [class.conv.fct]p4:
2397  //   The conversion-type-id shall not represent a function type nor
2398  //   an array type.
2399  QualType ConvType = GetTypeFromParser(D.getDeclaratorIdType());
2400  if (ConvType->isArrayType()) {
2401    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2402    ConvType = Context.getPointerType(ConvType);
2403    D.setInvalidType();
2404  } else if (ConvType->isFunctionType()) {
2405    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2406    ConvType = Context.getPointerType(ConvType);
2407    D.setInvalidType();
2408  }
2409
2410  // Rebuild the function type "R" without any parameters (in case any
2411  // of the errors above fired) and with the conversion type as the
2412  // return type.
2413  R = Context.getFunctionType(ConvType, 0, 0, false,
2414                              R->getAs<FunctionProtoType>()->getTypeQuals());
2415
2416  // C++0x explicit conversion operators.
2417  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2418    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2419         diag::warn_explicit_conversion_functions)
2420      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2421}
2422
2423/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2424/// the declaration of the given C++ conversion function. This routine
2425/// is responsible for recording the conversion function in the C++
2426/// class, if possible.
2427Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2428  assert(Conversion && "Expected to receive a conversion function declaration");
2429
2430  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2431
2432  // Make sure we aren't redeclaring the conversion function.
2433  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2434
2435  // C++ [class.conv.fct]p1:
2436  //   [...] A conversion function is never used to convert a
2437  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2438  //   same object type (or a reference to it), to a (possibly
2439  //   cv-qualified) base class of that type (or a reference to it),
2440  //   or to (possibly cv-qualified) void.
2441  // FIXME: Suppress this warning if the conversion function ends up being a
2442  // virtual function that overrides a virtual function in a base class.
2443  QualType ClassType
2444    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2445  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2446    ConvType = ConvTypeRef->getPointeeType();
2447  if (ConvType->isRecordType()) {
2448    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2449    if (ConvType == ClassType)
2450      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2451        << ClassType;
2452    else if (IsDerivedFrom(ClassType, ConvType))
2453      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2454        <<  ClassType << ConvType;
2455  } else if (ConvType->isVoidType()) {
2456    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2457      << ClassType << ConvType;
2458  }
2459
2460  if (Conversion->getPreviousDeclaration()) {
2461    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
2462    if (FunctionTemplateDecl *ConversionTemplate
2463          = Conversion->getDescribedFunctionTemplate())
2464      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
2465    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
2466    for (OverloadedFunctionDecl::function_iterator
2467           Conv = Conversions->function_begin(),
2468           ConvEnd = Conversions->function_end();
2469         Conv != ConvEnd; ++Conv) {
2470      if (*Conv == ExpectedPrevDecl) {
2471        *Conv = Conversion;
2472        return DeclPtrTy::make(Conversion);
2473      }
2474    }
2475    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2476  } else if (FunctionTemplateDecl *ConversionTemplate
2477               = Conversion->getDescribedFunctionTemplate())
2478    ClassDecl->addConversionFunction(ConversionTemplate);
2479  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
2480    ClassDecl->addConversionFunction(Conversion);
2481
2482  return DeclPtrTy::make(Conversion);
2483}
2484
2485//===----------------------------------------------------------------------===//
2486// Namespace Handling
2487//===----------------------------------------------------------------------===//
2488
2489/// ActOnStartNamespaceDef - This is called at the start of a namespace
2490/// definition.
2491Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2492                                             SourceLocation IdentLoc,
2493                                             IdentifierInfo *II,
2494                                             SourceLocation LBrace) {
2495  NamespaceDecl *Namespc =
2496      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2497  Namespc->setLBracLoc(LBrace);
2498
2499  Scope *DeclRegionScope = NamespcScope->getParent();
2500
2501  if (II) {
2502    // C++ [namespace.def]p2:
2503    // The identifier in an original-namespace-definition shall not have been
2504    // previously defined in the declarative region in which the
2505    // original-namespace-definition appears. The identifier in an
2506    // original-namespace-definition is the name of the namespace. Subsequently
2507    // in that declarative region, it is treated as an original-namespace-name.
2508
2509    NamedDecl *PrevDecl
2510      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName, true);
2511
2512    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2513      // This is an extended namespace definition.
2514      // Attach this namespace decl to the chain of extended namespace
2515      // definitions.
2516      OrigNS->setNextNamespace(Namespc);
2517      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2518
2519      // Remove the previous declaration from the scope.
2520      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2521        IdResolver.RemoveDecl(OrigNS);
2522        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2523      }
2524    } else if (PrevDecl) {
2525      // This is an invalid name redefinition.
2526      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2527       << Namespc->getDeclName();
2528      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2529      Namespc->setInvalidDecl();
2530      // Continue on to push Namespc as current DeclContext and return it.
2531    } else if (II->isStr("std") &&
2532               CurContext->getLookupContext()->isTranslationUnit()) {
2533      // This is the first "real" definition of the namespace "std", so update
2534      // our cache of the "std" namespace to point at this definition.
2535      if (StdNamespace) {
2536        // We had already defined a dummy namespace "std". Link this new
2537        // namespace definition to the dummy namespace "std".
2538        StdNamespace->setNextNamespace(Namespc);
2539        StdNamespace->setLocation(IdentLoc);
2540        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2541      }
2542
2543      // Make our StdNamespace cache point at the first real definition of the
2544      // "std" namespace.
2545      StdNamespace = Namespc;
2546    }
2547
2548    PushOnScopeChains(Namespc, DeclRegionScope);
2549  } else {
2550    // Anonymous namespaces.
2551
2552    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2553    //   behaves as if it were replaced by
2554    //     namespace unique { /* empty body */ }
2555    //     using namespace unique;
2556    //     namespace unique { namespace-body }
2557    //   where all occurrences of 'unique' in a translation unit are
2558    //   replaced by the same identifier and this identifier differs
2559    //   from all other identifiers in the entire program.
2560
2561    // We just create the namespace with an empty name and then add an
2562    // implicit using declaration, just like the standard suggests.
2563    //
2564    // CodeGen enforces the "universally unique" aspect by giving all
2565    // declarations semantically contained within an anonymous
2566    // namespace internal linkage.
2567
2568    assert(Namespc->isAnonymousNamespace());
2569    CurContext->addDecl(Namespc);
2570
2571    UsingDirectiveDecl* UD
2572      = UsingDirectiveDecl::Create(Context, CurContext,
2573                                   /* 'using' */ LBrace,
2574                                   /* 'namespace' */ SourceLocation(),
2575                                   /* qualifier */ SourceRange(),
2576                                   /* NNS */ NULL,
2577                                   /* identifier */ SourceLocation(),
2578                                   Namespc,
2579                                   /* Ancestor */ CurContext);
2580    UD->setImplicit();
2581    CurContext->addDecl(UD);
2582  }
2583
2584  // Although we could have an invalid decl (i.e. the namespace name is a
2585  // redefinition), push it as current DeclContext and try to continue parsing.
2586  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2587  // for the namespace has the declarations that showed up in that particular
2588  // namespace definition.
2589  PushDeclContext(NamespcScope, Namespc);
2590  return DeclPtrTy::make(Namespc);
2591}
2592
2593/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2594/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2595void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2596  Decl *Dcl = D.getAs<Decl>();
2597  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2598  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2599  Namespc->setRBracLoc(RBrace);
2600  PopDeclContext();
2601}
2602
2603Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2604                                          SourceLocation UsingLoc,
2605                                          SourceLocation NamespcLoc,
2606                                          const CXXScopeSpec &SS,
2607                                          SourceLocation IdentLoc,
2608                                          IdentifierInfo *NamespcName,
2609                                          AttributeList *AttrList) {
2610  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2611  assert(NamespcName && "Invalid NamespcName.");
2612  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2613  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2614
2615  UsingDirectiveDecl *UDir = 0;
2616
2617  // Lookup namespace name.
2618  LookupResult R;
2619  LookupParsedName(R, S, &SS, NamespcName, LookupNamespaceName, false);
2620  if (R.isAmbiguous()) {
2621    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
2622    return DeclPtrTy();
2623  }
2624  if (!R.empty()) {
2625    NamedDecl *NS = R.getFoundDecl();
2626    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
2627    // C++ [namespace.udir]p1:
2628    //   A using-directive specifies that the names in the nominated
2629    //   namespace can be used in the scope in which the
2630    //   using-directive appears after the using-directive. During
2631    //   unqualified name lookup (3.4.1), the names appear as if they
2632    //   were declared in the nearest enclosing namespace which
2633    //   contains both the using-directive and the nominated
2634    //   namespace. [Note: in this context, "contains" means "contains
2635    //   directly or indirectly". ]
2636
2637    // Find enclosing context containing both using-directive and
2638    // nominated namespace.
2639    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2640    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2641      CommonAncestor = CommonAncestor->getParent();
2642
2643    UDir = UsingDirectiveDecl::Create(Context,
2644                                      CurContext, UsingLoc,
2645                                      NamespcLoc,
2646                                      SS.getRange(),
2647                                      (NestedNameSpecifier *)SS.getScopeRep(),
2648                                      IdentLoc,
2649                                      cast<NamespaceDecl>(NS),
2650                                      CommonAncestor);
2651    PushUsingDirective(S, UDir);
2652  } else {
2653    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2654  }
2655
2656  // FIXME: We ignore attributes for now.
2657  delete AttrList;
2658  return DeclPtrTy::make(UDir);
2659}
2660
2661void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2662  // If scope has associated entity, then using directive is at namespace
2663  // or translation unit scope. We add UsingDirectiveDecls, into
2664  // it's lookup structure.
2665  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2666    Ctx->addDecl(UDir);
2667  else
2668    // Otherwise it is block-sope. using-directives will affect lookup
2669    // only to the end of scope.
2670    S->PushUsingDirective(DeclPtrTy::make(UDir));
2671}
2672
2673
2674Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2675                                            AccessSpecifier AS,
2676                                            SourceLocation UsingLoc,
2677                                            const CXXScopeSpec &SS,
2678                                            SourceLocation IdentLoc,
2679                                            IdentifierInfo *TargetName,
2680                                            OverloadedOperatorKind Op,
2681                                            AttributeList *AttrList,
2682                                            bool IsTypeName) {
2683  assert((TargetName || Op) && "Invalid TargetName.");
2684  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2685
2686  DeclarationName Name;
2687  if (TargetName)
2688    Name = TargetName;
2689  else
2690    Name = Context.DeclarationNames.getCXXOperatorName(Op);
2691
2692  NamedDecl *UD = BuildUsingDeclaration(UsingLoc, SS, IdentLoc,
2693                                        Name, AttrList, IsTypeName);
2694  if (UD) {
2695    PushOnScopeChains(UD, S);
2696    UD->setAccess(AS);
2697  }
2698
2699  return DeclPtrTy::make(UD);
2700}
2701
2702NamedDecl *Sema::BuildUsingDeclaration(SourceLocation UsingLoc,
2703                                       const CXXScopeSpec &SS,
2704                                       SourceLocation IdentLoc,
2705                                       DeclarationName Name,
2706                                       AttributeList *AttrList,
2707                                       bool IsTypeName) {
2708  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2709  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2710
2711  // FIXME: We ignore attributes for now.
2712  delete AttrList;
2713
2714  if (SS.isEmpty()) {
2715    Diag(IdentLoc, diag::err_using_requires_qualname);
2716    return 0;
2717  }
2718
2719  NestedNameSpecifier *NNS =
2720    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2721
2722  if (isUnknownSpecialization(SS)) {
2723    return UnresolvedUsingDecl::Create(Context, CurContext, UsingLoc,
2724                                       SS.getRange(), NNS,
2725                                       IdentLoc, Name, IsTypeName);
2726  }
2727
2728  DeclContext *LookupContext = 0;
2729
2730  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
2731    // C++0x N2914 [namespace.udecl]p3:
2732    // A using-declaration used as a member-declaration shall refer to a member
2733    // of a base class of the class being defined, shall refer to a member of an
2734    // anonymous union that is a member of a base class of the class being
2735    // defined, or shall refer to an enumerator for an enumeration type that is
2736    // a member of a base class of the class being defined.
2737    const Type *Ty = NNS->getAsType();
2738    if (!Ty || !IsDerivedFrom(Context.getTagDeclType(RD), QualType(Ty, 0))) {
2739      Diag(SS.getRange().getBegin(),
2740           diag::err_using_decl_nested_name_specifier_is_not_a_base_class)
2741        << NNS << RD->getDeclName();
2742      return 0;
2743    }
2744
2745    QualType BaseTy = Context.getCanonicalType(QualType(Ty, 0));
2746    LookupContext = BaseTy->getAs<RecordType>()->getDecl();
2747  } else {
2748    // C++0x N2914 [namespace.udecl]p8:
2749    // A using-declaration for a class member shall be a member-declaration.
2750    if (NNS->getKind() == NestedNameSpecifier::TypeSpec) {
2751      Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_class_member)
2752        << SS.getRange();
2753      return 0;
2754    }
2755
2756    // C++0x N2914 [namespace.udecl]p9:
2757    // In a using-declaration, a prefix :: refers to the global namespace.
2758    if (NNS->getKind() == NestedNameSpecifier::Global)
2759      LookupContext = Context.getTranslationUnitDecl();
2760    else
2761      LookupContext = NNS->getAsNamespace();
2762  }
2763
2764
2765  // Lookup target name.
2766  LookupResult R;
2767  LookupQualifiedName(R, LookupContext, Name, LookupOrdinaryName);
2768
2769  if (R.empty()) {
2770    DiagnoseMissingMember(IdentLoc, Name, NNS, SS.getRange());
2771    return 0;
2772  }
2773
2774  // FIXME: handle ambiguity?
2775  NamedDecl *ND = R.getAsSingleDecl(Context);
2776
2777  if (IsTypeName && !isa<TypeDecl>(ND)) {
2778    Diag(IdentLoc, diag::err_using_typename_non_type);
2779    return 0;
2780  }
2781
2782  // C++0x N2914 [namespace.udecl]p6:
2783  // A using-declaration shall not name a namespace.
2784  if (isa<NamespaceDecl>(ND)) {
2785    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
2786      << SS.getRange();
2787    return 0;
2788  }
2789
2790  return UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2791                           ND->getLocation(), UsingLoc, ND, NNS, IsTypeName);
2792}
2793
2794/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2795/// is a namespace alias, returns the namespace it points to.
2796static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2797  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2798    return AD->getNamespace();
2799  return dyn_cast_or_null<NamespaceDecl>(D);
2800}
2801
2802Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2803                                             SourceLocation NamespaceLoc,
2804                                             SourceLocation AliasLoc,
2805                                             IdentifierInfo *Alias,
2806                                             const CXXScopeSpec &SS,
2807                                             SourceLocation IdentLoc,
2808                                             IdentifierInfo *Ident) {
2809
2810  // Lookup the namespace name.
2811  LookupResult R;
2812  LookupParsedName(R, S, &SS, Ident, LookupNamespaceName, false);
2813
2814  // Check if we have a previous declaration with the same name.
2815  if (NamedDecl *PrevDecl
2816        = LookupSingleName(S, Alias, LookupOrdinaryName, true)) {
2817    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2818      // We already have an alias with the same name that points to the same
2819      // namespace, so don't create a new one.
2820      if (!R.isAmbiguous() && !R.empty() &&
2821          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
2822        return DeclPtrTy();
2823    }
2824
2825    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2826      diag::err_redefinition_different_kind;
2827    Diag(AliasLoc, DiagID) << Alias;
2828    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2829    return DeclPtrTy();
2830  }
2831
2832  if (R.isAmbiguous()) {
2833    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2834    return DeclPtrTy();
2835  }
2836
2837  if (R.empty()) {
2838    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2839    return DeclPtrTy();
2840  }
2841
2842  NamespaceAliasDecl *AliasDecl =
2843    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2844                               Alias, SS.getRange(),
2845                               (NestedNameSpecifier *)SS.getScopeRep(),
2846                               IdentLoc, R.getFoundDecl());
2847
2848  CurContext->addDecl(AliasDecl);
2849  return DeclPtrTy::make(AliasDecl);
2850}
2851
2852void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2853                                            CXXConstructorDecl *Constructor) {
2854  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2855          !Constructor->isUsed()) &&
2856    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2857
2858  CXXRecordDecl *ClassDecl
2859    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2860  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2861  // Before the implicitly-declared default constructor for a class is
2862  // implicitly defined, all the implicitly-declared default constructors
2863  // for its base class and its non-static data members shall have been
2864  // implicitly defined.
2865  bool err = false;
2866  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2867       E = ClassDecl->bases_end(); Base != E; ++Base) {
2868    CXXRecordDecl *BaseClassDecl
2869      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2870    if (!BaseClassDecl->hasTrivialConstructor()) {
2871      if (CXXConstructorDecl *BaseCtor =
2872            BaseClassDecl->getDefaultConstructor(Context))
2873        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2874      else {
2875        Diag(CurrentLocation, diag::err_defining_default_ctor)
2876          << Context.getTagDeclType(ClassDecl) << 0
2877          << Context.getTagDeclType(BaseClassDecl);
2878        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2879              << Context.getTagDeclType(BaseClassDecl);
2880        err = true;
2881      }
2882    }
2883  }
2884  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2885       E = ClassDecl->field_end(); Field != E; ++Field) {
2886    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2887    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2888      FieldType = Array->getElementType();
2889    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2890      CXXRecordDecl *FieldClassDecl
2891        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2892      if (!FieldClassDecl->hasTrivialConstructor()) {
2893        if (CXXConstructorDecl *FieldCtor =
2894            FieldClassDecl->getDefaultConstructor(Context))
2895          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2896        else {
2897          Diag(CurrentLocation, diag::err_defining_default_ctor)
2898          << Context.getTagDeclType(ClassDecl) << 1 <<
2899              Context.getTagDeclType(FieldClassDecl);
2900          Diag((*Field)->getLocation(), diag::note_field_decl);
2901          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2902          << Context.getTagDeclType(FieldClassDecl);
2903          err = true;
2904        }
2905      }
2906    } else if (FieldType->isReferenceType()) {
2907      Diag(CurrentLocation, diag::err_unintialized_member)
2908        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2909      Diag((*Field)->getLocation(), diag::note_declared_at);
2910      err = true;
2911    } else if (FieldType.isConstQualified()) {
2912      Diag(CurrentLocation, diag::err_unintialized_member)
2913        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2914       Diag((*Field)->getLocation(), diag::note_declared_at);
2915      err = true;
2916    }
2917  }
2918  if (!err)
2919    Constructor->setUsed();
2920  else
2921    Constructor->setInvalidDecl();
2922}
2923
2924void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2925                                    CXXDestructorDecl *Destructor) {
2926  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2927         "DefineImplicitDestructor - call it for implicit default dtor");
2928
2929  CXXRecordDecl *ClassDecl
2930  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2931  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2932  // C++ [class.dtor] p5
2933  // Before the implicitly-declared default destructor for a class is
2934  // implicitly defined, all the implicitly-declared default destructors
2935  // for its base class and its non-static data members shall have been
2936  // implicitly defined.
2937  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2938       E = ClassDecl->bases_end(); Base != E; ++Base) {
2939    CXXRecordDecl *BaseClassDecl
2940      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2941    if (!BaseClassDecl->hasTrivialDestructor()) {
2942      if (CXXDestructorDecl *BaseDtor =
2943          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2944        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2945      else
2946        assert(false &&
2947               "DefineImplicitDestructor - missing dtor in a base class");
2948    }
2949  }
2950
2951  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2952       E = ClassDecl->field_end(); Field != E; ++Field) {
2953    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2954    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2955      FieldType = Array->getElementType();
2956    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2957      CXXRecordDecl *FieldClassDecl
2958        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2959      if (!FieldClassDecl->hasTrivialDestructor()) {
2960        if (CXXDestructorDecl *FieldDtor =
2961            const_cast<CXXDestructorDecl*>(
2962                                        FieldClassDecl->getDestructor(Context)))
2963          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2964        else
2965          assert(false &&
2966          "DefineImplicitDestructor - missing dtor in class of a data member");
2967      }
2968    }
2969  }
2970  Destructor->setUsed();
2971}
2972
2973void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2974                                          CXXMethodDecl *MethodDecl) {
2975  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2976          MethodDecl->getOverloadedOperator() == OO_Equal &&
2977          !MethodDecl->isUsed()) &&
2978         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2979
2980  CXXRecordDecl *ClassDecl
2981    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2982
2983  // C++[class.copy] p12
2984  // Before the implicitly-declared copy assignment operator for a class is
2985  // implicitly defined, all implicitly-declared copy assignment operators
2986  // for its direct base classes and its nonstatic data members shall have
2987  // been implicitly defined.
2988  bool err = false;
2989  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2990       E = ClassDecl->bases_end(); Base != E; ++Base) {
2991    CXXRecordDecl *BaseClassDecl
2992      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2993    if (CXXMethodDecl *BaseAssignOpMethod =
2994          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2995      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2996  }
2997  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2998       E = ClassDecl->field_end(); Field != E; ++Field) {
2999    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3000    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3001      FieldType = Array->getElementType();
3002    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3003      CXXRecordDecl *FieldClassDecl
3004        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3005      if (CXXMethodDecl *FieldAssignOpMethod =
3006          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
3007        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3008    } else if (FieldType->isReferenceType()) {
3009      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3010      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3011      Diag(Field->getLocation(), diag::note_declared_at);
3012      Diag(CurrentLocation, diag::note_first_required_here);
3013      err = true;
3014    } else if (FieldType.isConstQualified()) {
3015      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3016      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3017      Diag(Field->getLocation(), diag::note_declared_at);
3018      Diag(CurrentLocation, diag::note_first_required_here);
3019      err = true;
3020    }
3021  }
3022  if (!err)
3023    MethodDecl->setUsed();
3024}
3025
3026CXXMethodDecl *
3027Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
3028                              CXXRecordDecl *ClassDecl) {
3029  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3030  QualType RHSType(LHSType);
3031  // If class's assignment operator argument is const/volatile qualified,
3032  // look for operator = (const/volatile B&). Otherwise, look for
3033  // operator = (B&).
3034  RHSType = Context.getCVRQualifiedType(RHSType,
3035                                     ParmDecl->getType().getCVRQualifiers());
3036  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3037                                                          LHSType,
3038                                                          SourceLocation()));
3039  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3040                                                          RHSType,
3041                                                          SourceLocation()));
3042  Expr *Args[2] = { &*LHS, &*RHS };
3043  OverloadCandidateSet CandidateSet;
3044  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3045                              CandidateSet);
3046  OverloadCandidateSet::iterator Best;
3047  if (BestViableFunction(CandidateSet,
3048                         ClassDecl->getLocation(), Best) == OR_Success)
3049    return cast<CXXMethodDecl>(Best->Function);
3050  assert(false &&
3051         "getAssignOperatorMethod - copy assignment operator method not found");
3052  return 0;
3053}
3054
3055void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3056                                   CXXConstructorDecl *CopyConstructor,
3057                                   unsigned TypeQuals) {
3058  assert((CopyConstructor->isImplicit() &&
3059          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
3060          !CopyConstructor->isUsed()) &&
3061         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3062
3063  CXXRecordDecl *ClassDecl
3064    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3065  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3066  // C++ [class.copy] p209
3067  // Before the implicitly-declared copy constructor for a class is
3068  // implicitly defined, all the implicitly-declared copy constructors
3069  // for its base class and its non-static data members shall have been
3070  // implicitly defined.
3071  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3072       Base != ClassDecl->bases_end(); ++Base) {
3073    CXXRecordDecl *BaseClassDecl
3074      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3075    if (CXXConstructorDecl *BaseCopyCtor =
3076        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
3077      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3078  }
3079  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3080                                  FieldEnd = ClassDecl->field_end();
3081       Field != FieldEnd; ++Field) {
3082    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3083    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3084      FieldType = Array->getElementType();
3085    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3086      CXXRecordDecl *FieldClassDecl
3087        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3088      if (CXXConstructorDecl *FieldCopyCtor =
3089          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
3090        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3091    }
3092  }
3093  CopyConstructor->setUsed();
3094}
3095
3096Sema::OwningExprResult
3097Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3098                            CXXConstructorDecl *Constructor,
3099                            MultiExprArg ExprArgs) {
3100  bool Elidable = false;
3101
3102  // C++ [class.copy]p15:
3103  //   Whenever a temporary class object is copied using a copy constructor, and
3104  //   this object and the copy have the same cv-unqualified type, an
3105  //   implementation is permitted to treat the original and the copy as two
3106  //   different ways of referring to the same object and not perform a copy at
3107  //   all, even if the class copy constructor or destructor have side effects.
3108
3109  // FIXME: Is this enough?
3110  if (Constructor->isCopyConstructor(Context)) {
3111    Expr *E = ((Expr **)ExprArgs.get())[0];
3112    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3113      E = BE->getSubExpr();
3114    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3115      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3116        E = ICE->getSubExpr();
3117
3118    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
3119      Elidable = true;
3120  }
3121
3122  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
3123                               Elidable, move(ExprArgs));
3124}
3125
3126/// BuildCXXConstructExpr - Creates a complete call to a constructor,
3127/// including handling of its default argument expressions.
3128Sema::OwningExprResult
3129Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3130                            CXXConstructorDecl *Constructor, bool Elidable,
3131                            MultiExprArg ExprArgs) {
3132  unsigned NumExprs = ExprArgs.size();
3133  Expr **Exprs = (Expr **)ExprArgs.release();
3134
3135  return Owned(CXXConstructExpr::Create(Context, DeclInitType, Constructor,
3136                                        Elidable, Exprs, NumExprs));
3137}
3138
3139Sema::OwningExprResult
3140Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
3141                                  QualType Ty,
3142                                  SourceLocation TyBeginLoc,
3143                                  MultiExprArg Args,
3144                                  SourceLocation RParenLoc) {
3145  unsigned NumExprs = Args.size();
3146  Expr **Exprs = (Expr **)Args.release();
3147
3148  return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty,
3149                                                    TyBeginLoc, Exprs,
3150                                                    NumExprs, RParenLoc));
3151}
3152
3153
3154bool Sema::InitializeVarWithConstructor(VarDecl *VD,
3155                                        CXXConstructorDecl *Constructor,
3156                                        QualType DeclInitType,
3157                                        MultiExprArg Exprs) {
3158  OwningExprResult TempResult =
3159    BuildCXXConstructExpr(VD->getLocation(), DeclInitType, Constructor,
3160                          move(Exprs));
3161  if (TempResult.isInvalid())
3162    return true;
3163
3164  Expr *Temp = TempResult.takeAs<Expr>();
3165  MarkDeclarationReferenced(VD->getLocation(), Constructor);
3166  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
3167  VD->setInit(Context, Temp);
3168
3169  return false;
3170}
3171
3172void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) {
3173  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
3174                                  DeclInitType->getAs<RecordType>()->getDecl());
3175  if (!ClassDecl->hasTrivialDestructor())
3176    if (CXXDestructorDecl *Destructor =
3177        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
3178      MarkDeclarationReferenced(VD->getLocation(), Destructor);
3179}
3180
3181/// AddCXXDirectInitializerToDecl - This action is called immediately after
3182/// ActOnDeclarator, when a C++ direct initializer is present.
3183/// e.g: "int x(1);"
3184void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
3185                                         SourceLocation LParenLoc,
3186                                         MultiExprArg Exprs,
3187                                         SourceLocation *CommaLocs,
3188                                         SourceLocation RParenLoc) {
3189  unsigned NumExprs = Exprs.size();
3190  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
3191  Decl *RealDecl = Dcl.getAs<Decl>();
3192
3193  // If there is no declaration, there was an error parsing it.  Just ignore
3194  // the initializer.
3195  if (RealDecl == 0)
3196    return;
3197
3198  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3199  if (!VDecl) {
3200    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3201    RealDecl->setInvalidDecl();
3202    return;
3203  }
3204
3205  // We will represent direct-initialization similarly to copy-initialization:
3206  //    int x(1);  -as-> int x = 1;
3207  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
3208  //
3209  // Clients that want to distinguish between the two forms, can check for
3210  // direct initializer using VarDecl::hasCXXDirectInitializer().
3211  // A major benefit is that clients that don't particularly care about which
3212  // exactly form was it (like the CodeGen) can handle both cases without
3213  // special case code.
3214
3215  // If either the declaration has a dependent type or if any of the expressions
3216  // is type-dependent, we represent the initialization via a ParenListExpr for
3217  // later use during template instantiation.
3218  if (VDecl->getType()->isDependentType() ||
3219      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
3220    // Let clients know that initialization was done with a direct initializer.
3221    VDecl->setCXXDirectInitializer(true);
3222
3223    // Store the initialization expressions as a ParenListExpr.
3224    unsigned NumExprs = Exprs.size();
3225    VDecl->setInit(Context,
3226                   new (Context) ParenListExpr(Context, LParenLoc,
3227                                               (Expr **)Exprs.release(),
3228                                               NumExprs, RParenLoc));
3229    return;
3230  }
3231
3232
3233  // C++ 8.5p11:
3234  // The form of initialization (using parentheses or '=') is generally
3235  // insignificant, but does matter when the entity being initialized has a
3236  // class type.
3237  QualType DeclInitType = VDecl->getType();
3238  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
3239    DeclInitType = Array->getElementType();
3240
3241  // FIXME: This isn't the right place to complete the type.
3242  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3243                          diag::err_typecheck_decl_incomplete_type)) {
3244    VDecl->setInvalidDecl();
3245    return;
3246  }
3247
3248  if (VDecl->getType()->isRecordType()) {
3249    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3250
3251    CXXConstructorDecl *Constructor
3252      = PerformInitializationByConstructor(DeclInitType,
3253                                           move(Exprs),
3254                                           VDecl->getLocation(),
3255                                           SourceRange(VDecl->getLocation(),
3256                                                       RParenLoc),
3257                                           VDecl->getDeclName(),
3258                                           IK_Direct,
3259                                           ConstructorArgs);
3260    if (!Constructor)
3261      RealDecl->setInvalidDecl();
3262    else {
3263      VDecl->setCXXDirectInitializer(true);
3264      if (InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
3265                                       move_arg(ConstructorArgs)))
3266        RealDecl->setInvalidDecl();
3267      FinalizeVarWithDestructor(VDecl, DeclInitType);
3268    }
3269    return;
3270  }
3271
3272  if (NumExprs > 1) {
3273    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
3274      << SourceRange(VDecl->getLocation(), RParenLoc);
3275    RealDecl->setInvalidDecl();
3276    return;
3277  }
3278
3279  // Let clients know that initialization was done with a direct initializer.
3280  VDecl->setCXXDirectInitializer(true);
3281
3282  assert(NumExprs == 1 && "Expected 1 expression");
3283  // Set the init expression, handles conversions.
3284  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
3285                       /*DirectInit=*/true);
3286}
3287
3288/// \brief Perform initialization by constructor (C++ [dcl.init]p14), which
3289/// may occur as part of direct-initialization or copy-initialization.
3290///
3291/// \param ClassType the type of the object being initialized, which must have
3292/// class type.
3293///
3294/// \param ArgsPtr the arguments provided to initialize the object
3295///
3296/// \param Loc the source location where the initialization occurs
3297///
3298/// \param Range the source range that covers the entire initialization
3299///
3300/// \param InitEntity the name of the entity being initialized, if known
3301///
3302/// \param Kind the type of initialization being performed
3303///
3304/// \param ConvertedArgs a vector that will be filled in with the
3305/// appropriately-converted arguments to the constructor (if initialization
3306/// succeeded).
3307///
3308/// \returns the constructor used to initialize the object, if successful.
3309/// Otherwise, emits a diagnostic and returns NULL.
3310CXXConstructorDecl *
3311Sema::PerformInitializationByConstructor(QualType ClassType,
3312                                         MultiExprArg ArgsPtr,
3313                                         SourceLocation Loc, SourceRange Range,
3314                                         DeclarationName InitEntity,
3315                                         InitializationKind Kind,
3316                      ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3317  const RecordType *ClassRec = ClassType->getAs<RecordType>();
3318  assert(ClassRec && "Can only initialize a class type here");
3319  Expr **Args = (Expr **)ArgsPtr.get();
3320  unsigned NumArgs = ArgsPtr.size();
3321
3322  // C++ [dcl.init]p14:
3323  //   If the initialization is direct-initialization, or if it is
3324  //   copy-initialization where the cv-unqualified version of the
3325  //   source type is the same class as, or a derived class of, the
3326  //   class of the destination, constructors are considered. The
3327  //   applicable constructors are enumerated (13.3.1.3), and the
3328  //   best one is chosen through overload resolution (13.3). The
3329  //   constructor so selected is called to initialize the object,
3330  //   with the initializer expression(s) as its argument(s). If no
3331  //   constructor applies, or the overload resolution is ambiguous,
3332  //   the initialization is ill-formed.
3333  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
3334  OverloadCandidateSet CandidateSet;
3335
3336  // Add constructors to the overload set.
3337  DeclarationName ConstructorName
3338    = Context.DeclarationNames.getCXXConstructorName(
3339                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
3340  DeclContext::lookup_const_iterator Con, ConEnd;
3341  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
3342       Con != ConEnd; ++Con) {
3343    // Find the constructor (which may be a template).
3344    CXXConstructorDecl *Constructor = 0;
3345    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
3346    if (ConstructorTmpl)
3347      Constructor
3348        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3349    else
3350      Constructor = cast<CXXConstructorDecl>(*Con);
3351
3352    if ((Kind == IK_Direct) ||
3353        (Kind == IK_Copy &&
3354         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
3355        (Kind == IK_Default && Constructor->isDefaultConstructor())) {
3356      if (ConstructorTmpl)
3357        AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0,
3358                                     Args, NumArgs, CandidateSet);
3359      else
3360        AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
3361    }
3362  }
3363
3364  // FIXME: When we decide not to synthesize the implicitly-declared
3365  // constructors, we'll need to make them appear here.
3366
3367  OverloadCandidateSet::iterator Best;
3368  switch (BestViableFunction(CandidateSet, Loc, Best)) {
3369  case OR_Success:
3370    // We found a constructor. Break out so that we can convert the arguments
3371    // appropriately.
3372    break;
3373
3374  case OR_No_Viable_Function:
3375    if (InitEntity)
3376      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3377        << InitEntity << Range;
3378    else
3379      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3380        << ClassType << Range;
3381    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3382    return 0;
3383
3384  case OR_Ambiguous:
3385    if (InitEntity)
3386      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
3387    else
3388      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
3389    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3390    return 0;
3391
3392  case OR_Deleted:
3393    if (InitEntity)
3394      Diag(Loc, diag::err_ovl_deleted_init)
3395        << Best->Function->isDeleted()
3396        << InitEntity << Range;
3397    else
3398      Diag(Loc, diag::err_ovl_deleted_init)
3399        << Best->Function->isDeleted()
3400        << InitEntity << Range;
3401    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3402    return 0;
3403  }
3404
3405  // Convert the arguments, fill in default arguments, etc.
3406  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3407  if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs))
3408    return 0;
3409
3410  return Constructor;
3411}
3412
3413/// \brief Given a constructor and the set of arguments provided for the
3414/// constructor, convert the arguments and add any required default arguments
3415/// to form a proper call to this constructor.
3416///
3417/// \returns true if an error occurred, false otherwise.
3418bool
3419Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
3420                              MultiExprArg ArgsPtr,
3421                              SourceLocation Loc,
3422                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3423  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
3424  unsigned NumArgs = ArgsPtr.size();
3425  Expr **Args = (Expr **)ArgsPtr.get();
3426
3427  const FunctionProtoType *Proto
3428    = Constructor->getType()->getAs<FunctionProtoType>();
3429  assert(Proto && "Constructor without a prototype?");
3430  unsigned NumArgsInProto = Proto->getNumArgs();
3431  unsigned NumArgsToCheck = NumArgs;
3432
3433  // If too few arguments are available, we'll fill in the rest with defaults.
3434  if (NumArgs < NumArgsInProto) {
3435    NumArgsToCheck = NumArgsInProto;
3436    ConvertedArgs.reserve(NumArgsInProto);
3437  } else {
3438    ConvertedArgs.reserve(NumArgs);
3439    if (NumArgs > NumArgsInProto)
3440      NumArgsToCheck = NumArgsInProto;
3441  }
3442
3443  // Convert arguments
3444  for (unsigned i = 0; i != NumArgsToCheck; i++) {
3445    QualType ProtoArgType = Proto->getArgType(i);
3446
3447    Expr *Arg;
3448    if (i < NumArgs) {
3449      Arg = Args[i];
3450
3451      // Pass the argument.
3452      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3453        return true;
3454
3455      Args[i] = 0;
3456    } else {
3457      ParmVarDecl *Param = Constructor->getParamDecl(i);
3458
3459      OwningExprResult DefArg = BuildCXXDefaultArgExpr(Loc, Constructor, Param);
3460      if (DefArg.isInvalid())
3461        return true;
3462
3463      Arg = DefArg.takeAs<Expr>();
3464    }
3465
3466    ConvertedArgs.push_back(Arg);
3467  }
3468
3469  // If this is a variadic call, handle args passed through "...".
3470  if (Proto->isVariadic()) {
3471    // Promote the arguments (C99 6.5.2.2p7).
3472    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3473      Expr *Arg = Args[i];
3474      if (DefaultVariadicArgumentPromotion(Arg, VariadicConstructor))
3475        return true;
3476
3477      ConvertedArgs.push_back(Arg);
3478      Args[i] = 0;
3479    }
3480  }
3481
3482  return false;
3483}
3484
3485/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3486/// determine whether they are reference-related,
3487/// reference-compatible, reference-compatible with added
3488/// qualification, or incompatible, for use in C++ initialization by
3489/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3490/// type, and the first type (T1) is the pointee type of the reference
3491/// type being initialized.
3492Sema::ReferenceCompareResult
3493Sema::CompareReferenceRelationship(QualType T1, QualType T2,
3494                                   bool& DerivedToBase) {
3495  assert(!T1->isReferenceType() &&
3496    "T1 must be the pointee type of the reference type");
3497  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
3498
3499  T1 = Context.getCanonicalType(T1);
3500  T2 = Context.getCanonicalType(T2);
3501  QualType UnqualT1 = T1.getUnqualifiedType();
3502  QualType UnqualT2 = T2.getUnqualifiedType();
3503
3504  // C++ [dcl.init.ref]p4:
3505  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3506  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3507  //   T1 is a base class of T2.
3508  if (UnqualT1 == UnqualT2)
3509    DerivedToBase = false;
3510  else if (IsDerivedFrom(UnqualT2, UnqualT1))
3511    DerivedToBase = true;
3512  else
3513    return Ref_Incompatible;
3514
3515  // At this point, we know that T1 and T2 are reference-related (at
3516  // least).
3517
3518  // C++ [dcl.init.ref]p4:
3519  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3520  //   reference-related to T2 and cv1 is the same cv-qualification
3521  //   as, or greater cv-qualification than, cv2. For purposes of
3522  //   overload resolution, cases for which cv1 is greater
3523  //   cv-qualification than cv2 are identified as
3524  //   reference-compatible with added qualification (see 13.3.3.2).
3525  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3526    return Ref_Compatible;
3527  else if (T1.isMoreQualifiedThan(T2))
3528    return Ref_Compatible_With_Added_Qualification;
3529  else
3530    return Ref_Related;
3531}
3532
3533/// CheckReferenceInit - Check the initialization of a reference
3534/// variable with the given initializer (C++ [dcl.init.ref]). Init is
3535/// the initializer (either a simple initializer or an initializer
3536/// list), and DeclType is the type of the declaration. When ICS is
3537/// non-null, this routine will compute the implicit conversion
3538/// sequence according to C++ [over.ics.ref] and will not produce any
3539/// diagnostics; when ICS is null, it will emit diagnostics when any
3540/// errors are found. Either way, a return value of true indicates
3541/// that there was a failure, a return value of false indicates that
3542/// the reference initialization succeeded.
3543///
3544/// When @p SuppressUserConversions, user-defined conversions are
3545/// suppressed.
3546/// When @p AllowExplicit, we also permit explicit user-defined
3547/// conversion functions.
3548/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
3549bool
3550Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
3551                         SourceLocation DeclLoc,
3552                         bool SuppressUserConversions,
3553                         bool AllowExplicit, bool ForceRValue,
3554                         ImplicitConversionSequence *ICS) {
3555  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3556
3557  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3558  QualType T2 = Init->getType();
3559
3560  // If the initializer is the address of an overloaded function, try
3561  // to resolve the overloaded function. If all goes well, T2 is the
3562  // type of the resulting function.
3563  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
3564    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
3565                                                          ICS != 0);
3566    if (Fn) {
3567      // Since we're performing this reference-initialization for
3568      // real, update the initializer with the resulting function.
3569      if (!ICS) {
3570        if (DiagnoseUseOfDecl(Fn, DeclLoc))
3571          return true;
3572
3573        FixOverloadedFunctionReference(Init, Fn);
3574      }
3575
3576      T2 = Fn->getType();
3577    }
3578  }
3579
3580  // Compute some basic properties of the types and the initializer.
3581  bool isRValRef = DeclType->isRValueReferenceType();
3582  bool DerivedToBase = false;
3583  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
3584                                                  Init->isLvalue(Context);
3585  ReferenceCompareResult RefRelationship
3586    = CompareReferenceRelationship(T1, T2, DerivedToBase);
3587
3588  // Most paths end in a failed conversion.
3589  if (ICS)
3590    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
3591
3592  // C++ [dcl.init.ref]p5:
3593  //   A reference to type "cv1 T1" is initialized by an expression
3594  //   of type "cv2 T2" as follows:
3595
3596  //     -- If the initializer expression
3597
3598  // Rvalue references cannot bind to lvalues (N2812).
3599  // There is absolutely no situation where they can. In particular, note that
3600  // this is ill-formed, even if B has a user-defined conversion to A&&:
3601  //   B b;
3602  //   A&& r = b;
3603  if (isRValRef && InitLvalue == Expr::LV_Valid) {
3604    if (!ICS)
3605      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
3606        << Init->getSourceRange();
3607    return true;
3608  }
3609
3610  bool BindsDirectly = false;
3611  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3612  //          reference-compatible with "cv2 T2," or
3613  //
3614  // Note that the bit-field check is skipped if we are just computing
3615  // the implicit conversion sequence (C++ [over.best.ics]p2).
3616  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
3617      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3618    BindsDirectly = true;
3619
3620    if (ICS) {
3621      // C++ [over.ics.ref]p1:
3622      //   When a parameter of reference type binds directly (8.5.3)
3623      //   to an argument expression, the implicit conversion sequence
3624      //   is the identity conversion, unless the argument expression
3625      //   has a type that is a derived class of the parameter type,
3626      //   in which case the implicit conversion sequence is a
3627      //   derived-to-base Conversion (13.3.3.1).
3628      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3629      ICS->Standard.First = ICK_Identity;
3630      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3631      ICS->Standard.Third = ICK_Identity;
3632      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3633      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3634      ICS->Standard.ReferenceBinding = true;
3635      ICS->Standard.DirectBinding = true;
3636      ICS->Standard.RRefBinding = false;
3637      ICS->Standard.CopyConstructor = 0;
3638
3639      // Nothing more to do: the inaccessibility/ambiguity check for
3640      // derived-to-base conversions is suppressed when we're
3641      // computing the implicit conversion sequence (C++
3642      // [over.best.ics]p2).
3643      return false;
3644    } else {
3645      // Perform the conversion.
3646      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3647      if (DerivedToBase)
3648        CK = CastExpr::CK_DerivedToBase;
3649      else if(CheckExceptionSpecCompatibility(Init, T1))
3650        return true;
3651      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
3652    }
3653  }
3654
3655  //       -- has a class type (i.e., T2 is a class type) and can be
3656  //          implicitly converted to an lvalue of type "cv3 T3,"
3657  //          where "cv1 T1" is reference-compatible with "cv3 T3"
3658  //          92) (this conversion is selected by enumerating the
3659  //          applicable conversion functions (13.3.1.6) and choosing
3660  //          the best one through overload resolution (13.3)),
3661  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
3662      !RequireCompleteType(SourceLocation(), T2, 0)) {
3663    CXXRecordDecl *T2RecordDecl
3664      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3665
3666    OverloadCandidateSet CandidateSet;
3667    OverloadedFunctionDecl *Conversions
3668      = T2RecordDecl->getVisibleConversionFunctions();
3669    for (OverloadedFunctionDecl::function_iterator Func
3670           = Conversions->function_begin();
3671         Func != Conversions->function_end(); ++Func) {
3672      FunctionTemplateDecl *ConvTemplate
3673        = dyn_cast<FunctionTemplateDecl>(*Func);
3674      CXXConversionDecl *Conv;
3675      if (ConvTemplate)
3676        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3677      else
3678        Conv = cast<CXXConversionDecl>(*Func);
3679
3680      // If the conversion function doesn't return a reference type,
3681      // it can't be considered for this conversion.
3682      if (Conv->getConversionType()->isLValueReferenceType() &&
3683          (AllowExplicit || !Conv->isExplicit())) {
3684        if (ConvTemplate)
3685          AddTemplateConversionCandidate(ConvTemplate, Init, DeclType,
3686                                         CandidateSet);
3687        else
3688          AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
3689      }
3690    }
3691
3692    OverloadCandidateSet::iterator Best;
3693    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
3694    case OR_Success:
3695      // This is a direct binding.
3696      BindsDirectly = true;
3697
3698      if (ICS) {
3699        // C++ [over.ics.ref]p1:
3700        //
3701        //   [...] If the parameter binds directly to the result of
3702        //   applying a conversion function to the argument
3703        //   expression, the implicit conversion sequence is a
3704        //   user-defined conversion sequence (13.3.3.1.2), with the
3705        //   second standard conversion sequence either an identity
3706        //   conversion or, if the conversion function returns an
3707        //   entity of a type that is a derived class of the parameter
3708        //   type, a derived-to-base Conversion.
3709        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
3710        ICS->UserDefined.Before = Best->Conversions[0].Standard;
3711        ICS->UserDefined.After = Best->FinalConversion;
3712        ICS->UserDefined.ConversionFunction = Best->Function;
3713        assert(ICS->UserDefined.After.ReferenceBinding &&
3714               ICS->UserDefined.After.DirectBinding &&
3715               "Expected a direct reference binding!");
3716        return false;
3717      } else {
3718        OwningExprResult InitConversion =
3719          BuildCXXCastArgument(DeclLoc, QualType(),
3720                               CastExpr::CK_UserDefinedConversion,
3721                               cast<CXXMethodDecl>(Best->Function),
3722                               Owned(Init));
3723        Init = InitConversion.takeAs<Expr>();
3724
3725        if (CheckExceptionSpecCompatibility(Init, T1))
3726          return true;
3727        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
3728                          /*isLvalue=*/true);
3729      }
3730      break;
3731
3732    case OR_Ambiguous:
3733      assert(false && "Ambiguous reference binding conversions not implemented.");
3734      return true;
3735
3736    case OR_No_Viable_Function:
3737    case OR_Deleted:
3738      // There was no suitable conversion, or we found a deleted
3739      // conversion; continue with other checks.
3740      break;
3741    }
3742  }
3743
3744  if (BindsDirectly) {
3745    // C++ [dcl.init.ref]p4:
3746    //   [...] In all cases where the reference-related or
3747    //   reference-compatible relationship of two types is used to
3748    //   establish the validity of a reference binding, and T1 is a
3749    //   base class of T2, a program that necessitates such a binding
3750    //   is ill-formed if T1 is an inaccessible (clause 11) or
3751    //   ambiguous (10.2) base class of T2.
3752    //
3753    // Note that we only check this condition when we're allowed to
3754    // complain about errors, because we should not be checking for
3755    // ambiguity (or inaccessibility) unless the reference binding
3756    // actually happens.
3757    if (DerivedToBase)
3758      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
3759                                          Init->getSourceRange());
3760    else
3761      return false;
3762  }
3763
3764  //     -- Otherwise, the reference shall be to a non-volatile const
3765  //        type (i.e., cv1 shall be const), or the reference shall be an
3766  //        rvalue reference and the initializer expression shall be an rvalue.
3767  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
3768    if (!ICS)
3769      Diag(DeclLoc, diag::err_not_reference_to_const_init)
3770        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3771        << T2 << Init->getSourceRange();
3772    return true;
3773  }
3774
3775  //       -- If the initializer expression is an rvalue, with T2 a
3776  //          class type, and "cv1 T1" is reference-compatible with
3777  //          "cv2 T2," the reference is bound in one of the
3778  //          following ways (the choice is implementation-defined):
3779  //
3780  //          -- The reference is bound to the object represented by
3781  //             the rvalue (see 3.10) or to a sub-object within that
3782  //             object.
3783  //
3784  //          -- A temporary of type "cv1 T2" [sic] is created, and
3785  //             a constructor is called to copy the entire rvalue
3786  //             object into the temporary. The reference is bound to
3787  //             the temporary or to a sub-object within the
3788  //             temporary.
3789  //
3790  //          The constructor that would be used to make the copy
3791  //          shall be callable whether or not the copy is actually
3792  //          done.
3793  //
3794  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
3795  // freedom, so we will always take the first option and never build
3796  // a temporary in this case. FIXME: We will, however, have to check
3797  // for the presence of a copy constructor in C++98/03 mode.
3798  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
3799      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3800    if (ICS) {
3801      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3802      ICS->Standard.First = ICK_Identity;
3803      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3804      ICS->Standard.Third = ICK_Identity;
3805      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3806      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3807      ICS->Standard.ReferenceBinding = true;
3808      ICS->Standard.DirectBinding = false;
3809      ICS->Standard.RRefBinding = isRValRef;
3810      ICS->Standard.CopyConstructor = 0;
3811    } else {
3812      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3813      if (DerivedToBase)
3814        CK = CastExpr::CK_DerivedToBase;
3815      else if(CheckExceptionSpecCompatibility(Init, T1))
3816        return true;
3817      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
3818    }
3819    return false;
3820  }
3821
3822  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3823  //          initialized from the initializer expression using the
3824  //          rules for a non-reference copy initialization (8.5). The
3825  //          reference is then bound to the temporary. If T1 is
3826  //          reference-related to T2, cv1 must be the same
3827  //          cv-qualification as, or greater cv-qualification than,
3828  //          cv2; otherwise, the program is ill-formed.
3829  if (RefRelationship == Ref_Related) {
3830    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3831    // we would be reference-compatible or reference-compatible with
3832    // added qualification. But that wasn't the case, so the reference
3833    // initialization fails.
3834    if (!ICS)
3835      Diag(DeclLoc, diag::err_reference_init_drops_quals)
3836        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3837        << T2 << Init->getSourceRange();
3838    return true;
3839  }
3840
3841  // If at least one of the types is a class type, the types are not
3842  // related, and we aren't allowed any user conversions, the
3843  // reference binding fails. This case is important for breaking
3844  // recursion, since TryImplicitConversion below will attempt to
3845  // create a temporary through the use of a copy constructor.
3846  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
3847      (T1->isRecordType() || T2->isRecordType())) {
3848    if (!ICS)
3849      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
3850        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
3851    return true;
3852  }
3853
3854  // Actually try to convert the initializer to T1.
3855  if (ICS) {
3856    // C++ [over.ics.ref]p2:
3857    //
3858    //   When a parameter of reference type is not bound directly to
3859    //   an argument expression, the conversion sequence is the one
3860    //   required to convert the argument expression to the
3861    //   underlying type of the reference according to
3862    //   13.3.3.1. Conceptually, this conversion sequence corresponds
3863    //   to copy-initializing a temporary of the underlying type with
3864    //   the argument expression. Any difference in top-level
3865    //   cv-qualification is subsumed by the initialization itself
3866    //   and does not constitute a conversion.
3867    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
3868                                 /*AllowExplicit=*/false,
3869                                 /*ForceRValue=*/false,
3870                                 /*InOverloadResolution=*/false);
3871
3872    // Of course, that's still a reference binding.
3873    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
3874      ICS->Standard.ReferenceBinding = true;
3875      ICS->Standard.RRefBinding = isRValRef;
3876    } else if (ICS->ConversionKind ==
3877              ImplicitConversionSequence::UserDefinedConversion) {
3878      ICS->UserDefined.After.ReferenceBinding = true;
3879      ICS->UserDefined.After.RRefBinding = isRValRef;
3880    }
3881    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
3882  } else {
3883    ImplicitConversionSequence Conversions;
3884    bool badConversion = PerformImplicitConversion(Init, T1, "initializing",
3885                                                   false, false,
3886                                                   Conversions);
3887    if (badConversion) {
3888      if ((Conversions.ConversionKind  ==
3889            ImplicitConversionSequence::BadConversion)
3890          && !Conversions.ConversionFunctionSet.empty()) {
3891        Diag(DeclLoc,
3892             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
3893        for (int j = Conversions.ConversionFunctionSet.size()-1;
3894             j >= 0; j--) {
3895          FunctionDecl *Func = Conversions.ConversionFunctionSet[j];
3896          Diag(Func->getLocation(), diag::err_ovl_candidate);
3897        }
3898      }
3899      else {
3900        if (isRValRef)
3901          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
3902            << Init->getSourceRange();
3903        else
3904          Diag(DeclLoc, diag::err_invalid_initialization)
3905            << DeclType << Init->getType() << Init->getSourceRange();
3906      }
3907    }
3908    return badConversion;
3909  }
3910}
3911
3912/// CheckOverloadedOperatorDeclaration - Check whether the declaration
3913/// of this overloaded operator is well-formed. If so, returns false;
3914/// otherwise, emits appropriate diagnostics and returns true.
3915bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
3916  assert(FnDecl && FnDecl->isOverloadedOperator() &&
3917         "Expected an overloaded operator declaration");
3918
3919  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
3920
3921  // C++ [over.oper]p5:
3922  //   The allocation and deallocation functions, operator new,
3923  //   operator new[], operator delete and operator delete[], are
3924  //   described completely in 3.7.3. The attributes and restrictions
3925  //   found in the rest of this subclause do not apply to them unless
3926  //   explicitly stated in 3.7.3.
3927  // FIXME: Write a separate routine for checking this. For now, just allow it.
3928  if (Op == OO_New || Op == OO_Array_New ||
3929      Op == OO_Delete || Op == OO_Array_Delete)
3930    return false;
3931
3932  // C++ [over.oper]p6:
3933  //   An operator function shall either be a non-static member
3934  //   function or be a non-member function and have at least one
3935  //   parameter whose type is a class, a reference to a class, an
3936  //   enumeration, or a reference to an enumeration.
3937  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
3938    if (MethodDecl->isStatic())
3939      return Diag(FnDecl->getLocation(),
3940                  diag::err_operator_overload_static) << FnDecl->getDeclName();
3941  } else {
3942    bool ClassOrEnumParam = false;
3943    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
3944                                   ParamEnd = FnDecl->param_end();
3945         Param != ParamEnd; ++Param) {
3946      QualType ParamType = (*Param)->getType().getNonReferenceType();
3947      if (ParamType->isDependentType() || ParamType->isRecordType() ||
3948          ParamType->isEnumeralType()) {
3949        ClassOrEnumParam = true;
3950        break;
3951      }
3952    }
3953
3954    if (!ClassOrEnumParam)
3955      return Diag(FnDecl->getLocation(),
3956                  diag::err_operator_overload_needs_class_or_enum)
3957        << FnDecl->getDeclName();
3958  }
3959
3960  // C++ [over.oper]p8:
3961  //   An operator function cannot have default arguments (8.3.6),
3962  //   except where explicitly stated below.
3963  //
3964  // Only the function-call operator allows default arguments
3965  // (C++ [over.call]p1).
3966  if (Op != OO_Call) {
3967    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
3968         Param != FnDecl->param_end(); ++Param) {
3969      if ((*Param)->hasUnparsedDefaultArg())
3970        return Diag((*Param)->getLocation(),
3971                    diag::err_operator_overload_default_arg)
3972          << FnDecl->getDeclName();
3973      else if (Expr *DefArg = (*Param)->getDefaultArg())
3974        return Diag((*Param)->getLocation(),
3975                    diag::err_operator_overload_default_arg)
3976          << FnDecl->getDeclName() << DefArg->getSourceRange();
3977    }
3978  }
3979
3980  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
3981    { false, false, false }
3982#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
3983    , { Unary, Binary, MemberOnly }
3984#include "clang/Basic/OperatorKinds.def"
3985  };
3986
3987  bool CanBeUnaryOperator = OperatorUses[Op][0];
3988  bool CanBeBinaryOperator = OperatorUses[Op][1];
3989  bool MustBeMemberOperator = OperatorUses[Op][2];
3990
3991  // C++ [over.oper]p8:
3992  //   [...] Operator functions cannot have more or fewer parameters
3993  //   than the number required for the corresponding operator, as
3994  //   described in the rest of this subclause.
3995  unsigned NumParams = FnDecl->getNumParams()
3996                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
3997  if (Op != OO_Call &&
3998      ((NumParams == 1 && !CanBeUnaryOperator) ||
3999       (NumParams == 2 && !CanBeBinaryOperator) ||
4000       (NumParams < 1) || (NumParams > 2))) {
4001    // We have the wrong number of parameters.
4002    unsigned ErrorKind;
4003    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4004      ErrorKind = 2;  // 2 -> unary or binary.
4005    } else if (CanBeUnaryOperator) {
4006      ErrorKind = 0;  // 0 -> unary
4007    } else {
4008      assert(CanBeBinaryOperator &&
4009             "All non-call overloaded operators are unary or binary!");
4010      ErrorKind = 1;  // 1 -> binary
4011    }
4012
4013    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4014      << FnDecl->getDeclName() << NumParams << ErrorKind;
4015  }
4016
4017  // Overloaded operators other than operator() cannot be variadic.
4018  if (Op != OO_Call &&
4019      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4020    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4021      << FnDecl->getDeclName();
4022  }
4023
4024  // Some operators must be non-static member functions.
4025  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4026    return Diag(FnDecl->getLocation(),
4027                diag::err_operator_overload_must_be_member)
4028      << FnDecl->getDeclName();
4029  }
4030
4031  // C++ [over.inc]p1:
4032  //   The user-defined function called operator++ implements the
4033  //   prefix and postfix ++ operator. If this function is a member
4034  //   function with no parameters, or a non-member function with one
4035  //   parameter of class or enumeration type, it defines the prefix
4036  //   increment operator ++ for objects of that type. If the function
4037  //   is a member function with one parameter (which shall be of type
4038  //   int) or a non-member function with two parameters (the second
4039  //   of which shall be of type int), it defines the postfix
4040  //   increment operator ++ for objects of that type.
4041  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4042    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4043    bool ParamIsInt = false;
4044    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4045      ParamIsInt = BT->getKind() == BuiltinType::Int;
4046
4047    if (!ParamIsInt)
4048      return Diag(LastParam->getLocation(),
4049                  diag::err_operator_overload_post_incdec_must_be_int)
4050        << LastParam->getType() << (Op == OO_MinusMinus);
4051  }
4052
4053  // Notify the class if it got an assignment operator.
4054  if (Op == OO_Equal) {
4055    // Would have returned earlier otherwise.
4056    assert(isa<CXXMethodDecl>(FnDecl) &&
4057      "Overloaded = not member, but not filtered.");
4058    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4059    Method->setCopyAssignment(true);
4060    Method->getParent()->addedAssignmentOperator(Context, Method);
4061  }
4062
4063  return false;
4064}
4065
4066/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
4067/// linkage specification, including the language and (if present)
4068/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
4069/// the location of the language string literal, which is provided
4070/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
4071/// the '{' brace. Otherwise, this linkage specification does not
4072/// have any braces.
4073Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
4074                                                     SourceLocation ExternLoc,
4075                                                     SourceLocation LangLoc,
4076                                                     const char *Lang,
4077                                                     unsigned StrSize,
4078                                                     SourceLocation LBraceLoc) {
4079  LinkageSpecDecl::LanguageIDs Language;
4080  if (strncmp(Lang, "\"C\"", StrSize) == 0)
4081    Language = LinkageSpecDecl::lang_c;
4082  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
4083    Language = LinkageSpecDecl::lang_cxx;
4084  else {
4085    Diag(LangLoc, diag::err_bad_language);
4086    return DeclPtrTy();
4087  }
4088
4089  // FIXME: Add all the various semantics of linkage specifications
4090
4091  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
4092                                               LangLoc, Language,
4093                                               LBraceLoc.isValid());
4094  CurContext->addDecl(D);
4095  PushDeclContext(S, D);
4096  return DeclPtrTy::make(D);
4097}
4098
4099/// ActOnFinishLinkageSpecification - Completely the definition of
4100/// the C++ linkage specification LinkageSpec. If RBraceLoc is
4101/// valid, it's the position of the closing '}' brace in a linkage
4102/// specification that uses braces.
4103Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
4104                                                      DeclPtrTy LinkageSpec,
4105                                                      SourceLocation RBraceLoc) {
4106  if (LinkageSpec)
4107    PopDeclContext();
4108  return LinkageSpec;
4109}
4110
4111/// \brief Perform semantic analysis for the variable declaration that
4112/// occurs within a C++ catch clause, returning the newly-created
4113/// variable.
4114VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
4115                                         DeclaratorInfo *DInfo,
4116                                         IdentifierInfo *Name,
4117                                         SourceLocation Loc,
4118                                         SourceRange Range) {
4119  bool Invalid = false;
4120
4121  // Arrays and functions decay.
4122  if (ExDeclType->isArrayType())
4123    ExDeclType = Context.getArrayDecayedType(ExDeclType);
4124  else if (ExDeclType->isFunctionType())
4125    ExDeclType = Context.getPointerType(ExDeclType);
4126
4127  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
4128  // The exception-declaration shall not denote a pointer or reference to an
4129  // incomplete type, other than [cv] void*.
4130  // N2844 forbids rvalue references.
4131  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
4132    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
4133    Invalid = true;
4134  }
4135
4136  QualType BaseType = ExDeclType;
4137  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
4138  unsigned DK = diag::err_catch_incomplete;
4139  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
4140    BaseType = Ptr->getPointeeType();
4141    Mode = 1;
4142    DK = diag::err_catch_incomplete_ptr;
4143  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
4144    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
4145    BaseType = Ref->getPointeeType();
4146    Mode = 2;
4147    DK = diag::err_catch_incomplete_ref;
4148  }
4149  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
4150      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
4151    Invalid = true;
4152
4153  if (!Invalid && !ExDeclType->isDependentType() &&
4154      RequireNonAbstractType(Loc, ExDeclType,
4155                             diag::err_abstract_type_in_decl,
4156                             AbstractVariableType))
4157    Invalid = true;
4158
4159  // FIXME: Need to test for ability to copy-construct and destroy the
4160  // exception variable.
4161
4162  // FIXME: Need to check for abstract classes.
4163
4164  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
4165                                    Name, ExDeclType, DInfo, VarDecl::None);
4166
4167  if (Invalid)
4168    ExDecl->setInvalidDecl();
4169
4170  return ExDecl;
4171}
4172
4173/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
4174/// handler.
4175Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
4176  DeclaratorInfo *DInfo = 0;
4177  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
4178
4179  bool Invalid = D.isInvalidType();
4180  IdentifierInfo *II = D.getIdentifier();
4181  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
4182    // The scope should be freshly made just for us. There is just no way
4183    // it contains any previous declaration.
4184    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
4185    if (PrevDecl->isTemplateParameter()) {
4186      // Maybe we will complain about the shadowed template parameter.
4187      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4188    }
4189  }
4190
4191  if (D.getCXXScopeSpec().isSet() && !Invalid) {
4192    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
4193      << D.getCXXScopeSpec().getRange();
4194    Invalid = true;
4195  }
4196
4197  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
4198                                              D.getIdentifier(),
4199                                              D.getIdentifierLoc(),
4200                                            D.getDeclSpec().getSourceRange());
4201
4202  if (Invalid)
4203    ExDecl->setInvalidDecl();
4204
4205  // Add the exception declaration into this scope.
4206  if (II)
4207    PushOnScopeChains(ExDecl, S);
4208  else
4209    CurContext->addDecl(ExDecl);
4210
4211  ProcessDeclAttributes(S, ExDecl, D);
4212  return DeclPtrTy::make(ExDecl);
4213}
4214
4215Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
4216                                                   ExprArg assertexpr,
4217                                                   ExprArg assertmessageexpr) {
4218  Expr *AssertExpr = (Expr *)assertexpr.get();
4219  StringLiteral *AssertMessage =
4220    cast<StringLiteral>((Expr *)assertmessageexpr.get());
4221
4222  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
4223    llvm::APSInt Value(32);
4224    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
4225      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
4226        AssertExpr->getSourceRange();
4227      return DeclPtrTy();
4228    }
4229
4230    if (Value == 0) {
4231      std::string str(AssertMessage->getStrData(),
4232                      AssertMessage->getByteLength());
4233      Diag(AssertLoc, diag::err_static_assert_failed)
4234        << str << AssertExpr->getSourceRange();
4235    }
4236  }
4237
4238  assertexpr.release();
4239  assertmessageexpr.release();
4240  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
4241                                        AssertExpr, AssertMessage);
4242
4243  CurContext->addDecl(Decl);
4244  return DeclPtrTy::make(Decl);
4245}
4246
4247/// Handle a friend type declaration.  This works in tandem with
4248/// ActOnTag.
4249///
4250/// Notes on friend class templates:
4251///
4252/// We generally treat friend class declarations as if they were
4253/// declaring a class.  So, for example, the elaborated type specifier
4254/// in a friend declaration is required to obey the restrictions of a
4255/// class-head (i.e. no typedefs in the scope chain), template
4256/// parameters are required to match up with simple template-ids, &c.
4257/// However, unlike when declaring a template specialization, it's
4258/// okay to refer to a template specialization without an empty
4259/// template parameter declaration, e.g.
4260///   friend class A<T>::B<unsigned>;
4261/// We permit this as a special case; if there are any template
4262/// parameters present at all, require proper matching, i.e.
4263///   template <> template <class T> friend class A<int>::B;
4264Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S,
4265                                          const DeclSpec &DS,
4266                                          MultiTemplateParamsArg TempParams) {
4267  SourceLocation Loc = DS.getSourceRange().getBegin();
4268
4269  assert(DS.isFriendSpecified());
4270  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4271
4272  // Try to convert the decl specifier to a type.  This works for
4273  // friend templates because ActOnTag never produces a ClassTemplateDecl
4274  // for a TUK_Friend.
4275  bool invalid = false;
4276  QualType SourceTy;
4277  QualType T = ConvertDeclSpecToType(DS, Loc, invalid, SourceTy);
4278  if (invalid) return DeclPtrTy();
4279
4280  // This is definitely an error in C++98.  It's probably meant to
4281  // be forbidden in C++0x, too, but the specification is just
4282  // poorly written.
4283  //
4284  // The problem is with declarations like the following:
4285  //   template <T> friend A<T>::foo;
4286  // where deciding whether a class C is a friend or not now hinges
4287  // on whether there exists an instantiation of A that causes
4288  // 'foo' to equal C.  There are restrictions on class-heads
4289  // (which we declare (by fiat) elaborated friend declarations to
4290  // be) that makes this tractable.
4291  //
4292  // FIXME: handle "template <> friend class A<T>;", which
4293  // is possibly well-formed?  Who even knows?
4294  if (TempParams.size() && !isa<ElaboratedType>(T)) {
4295    Diag(Loc, diag::err_tagless_friend_type_template)
4296      << DS.getSourceRange();
4297    return DeclPtrTy();
4298  }
4299
4300  // C++ [class.friend]p2:
4301  //   An elaborated-type-specifier shall be used in a friend declaration
4302  //   for a class.*
4303  //   * The class-key of the elaborated-type-specifier is required.
4304  // This is one of the rare places in Clang where it's legitimate to
4305  // ask about the "spelling" of the type.
4306  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
4307    // If we evaluated the type to a record type, suggest putting
4308    // a tag in front.
4309    if (const RecordType *RT = T->getAs<RecordType>()) {
4310      RecordDecl *RD = RT->getDecl();
4311
4312      std::string InsertionText = std::string(" ") + RD->getKindName();
4313
4314      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
4315        << (unsigned) RD->getTagKind()
4316        << T
4317        << SourceRange(DS.getFriendSpecLoc())
4318        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
4319                                                 InsertionText);
4320      return DeclPtrTy();
4321    }else {
4322      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
4323          << DS.getSourceRange();
4324      return DeclPtrTy();
4325    }
4326  }
4327
4328  // Enum types cannot be friends.
4329  if (T->getAs<EnumType>()) {
4330    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
4331      << SourceRange(DS.getFriendSpecLoc());
4332    return DeclPtrTy();
4333  }
4334
4335  // C++98 [class.friend]p1: A friend of a class is a function
4336  //   or class that is not a member of the class . . .
4337  // But that's a silly restriction which nobody implements for
4338  // inner classes, and C++0x removes it anyway, so we only report
4339  // this (as a warning) if we're being pedantic.
4340  if (!getLangOptions().CPlusPlus0x)
4341    if (const RecordType *RT = T->getAs<RecordType>())
4342      if (RT->getDecl()->getDeclContext() == CurContext)
4343        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
4344
4345  Decl *D;
4346  if (TempParams.size())
4347    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
4348                                   TempParams.size(),
4349                                 (TemplateParameterList**) TempParams.release(),
4350                                   T.getTypePtr(),
4351                                   DS.getFriendSpecLoc());
4352  else
4353    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
4354                           DS.getFriendSpecLoc());
4355  D->setAccess(AS_public);
4356  CurContext->addDecl(D);
4357
4358  return DeclPtrTy::make(D);
4359}
4360
4361Sema::DeclPtrTy
4362Sema::ActOnFriendFunctionDecl(Scope *S,
4363                              Declarator &D,
4364                              bool IsDefinition,
4365                              MultiTemplateParamsArg TemplateParams) {
4366  const DeclSpec &DS = D.getDeclSpec();
4367
4368  assert(DS.isFriendSpecified());
4369  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4370
4371  SourceLocation Loc = D.getIdentifierLoc();
4372  DeclaratorInfo *DInfo = 0;
4373  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4374
4375  // C++ [class.friend]p1
4376  //   A friend of a class is a function or class....
4377  // Note that this sees through typedefs, which is intended.
4378  // It *doesn't* see through dependent types, which is correct
4379  // according to [temp.arg.type]p3:
4380  //   If a declaration acquires a function type through a
4381  //   type dependent on a template-parameter and this causes
4382  //   a declaration that does not use the syntactic form of a
4383  //   function declarator to have a function type, the program
4384  //   is ill-formed.
4385  if (!T->isFunctionType()) {
4386    Diag(Loc, diag::err_unexpected_friend);
4387
4388    // It might be worthwhile to try to recover by creating an
4389    // appropriate declaration.
4390    return DeclPtrTy();
4391  }
4392
4393  // C++ [namespace.memdef]p3
4394  //  - If a friend declaration in a non-local class first declares a
4395  //    class or function, the friend class or function is a member
4396  //    of the innermost enclosing namespace.
4397  //  - The name of the friend is not found by simple name lookup
4398  //    until a matching declaration is provided in that namespace
4399  //    scope (either before or after the class declaration granting
4400  //    friendship).
4401  //  - If a friend function is called, its name may be found by the
4402  //    name lookup that considers functions from namespaces and
4403  //    classes associated with the types of the function arguments.
4404  //  - When looking for a prior declaration of a class or a function
4405  //    declared as a friend, scopes outside the innermost enclosing
4406  //    namespace scope are not considered.
4407
4408  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
4409  DeclarationName Name = GetNameForDeclarator(D);
4410  assert(Name);
4411
4412  // The context we found the declaration in, or in which we should
4413  // create the declaration.
4414  DeclContext *DC;
4415
4416  // FIXME: handle local classes
4417
4418  // Recover from invalid scope qualifiers as if they just weren't there.
4419  NamedDecl *PrevDecl = 0;
4420  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
4421    // FIXME: RequireCompleteDeclContext
4422    DC = computeDeclContext(ScopeQual);
4423
4424    // FIXME: handle dependent contexts
4425    if (!DC) return DeclPtrTy();
4426
4427    LookupResult R;
4428    LookupQualifiedName(R, DC, Name, LookupOrdinaryName, true);
4429    PrevDecl = R.getAsSingleDecl(Context);
4430
4431    // If searching in that context implicitly found a declaration in
4432    // a different context, treat it like it wasn't found at all.
4433    // TODO: better diagnostics for this case.  Suggesting the right
4434    // qualified scope would be nice...
4435    if (!PrevDecl || !PrevDecl->getDeclContext()->Equals(DC)) {
4436      D.setInvalidType();
4437      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
4438      return DeclPtrTy();
4439    }
4440
4441    // C++ [class.friend]p1: A friend of a class is a function or
4442    //   class that is not a member of the class . . .
4443    if (DC->Equals(CurContext))
4444      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4445
4446  // Otherwise walk out to the nearest namespace scope looking for matches.
4447  } else {
4448    // TODO: handle local class contexts.
4449
4450    DC = CurContext;
4451    while (true) {
4452      // Skip class contexts.  If someone can cite chapter and verse
4453      // for this behavior, that would be nice --- it's what GCC and
4454      // EDG do, and it seems like a reasonable intent, but the spec
4455      // really only says that checks for unqualified existing
4456      // declarations should stop at the nearest enclosing namespace,
4457      // not that they should only consider the nearest enclosing
4458      // namespace.
4459      while (DC->isRecord())
4460        DC = DC->getParent();
4461
4462      LookupResult R;
4463      LookupQualifiedName(R, DC, Name, LookupOrdinaryName, true);
4464      PrevDecl = R.getAsSingleDecl(Context);
4465
4466      // TODO: decide what we think about using declarations.
4467      if (PrevDecl)
4468        break;
4469
4470      if (DC->isFileContext()) break;
4471      DC = DC->getParent();
4472    }
4473
4474    // C++ [class.friend]p1: A friend of a class is a function or
4475    //   class that is not a member of the class . . .
4476    // C++0x changes this for both friend types and functions.
4477    // Most C++ 98 compilers do seem to give an error here, so
4478    // we do, too.
4479    if (PrevDecl && DC->Equals(CurContext) && !getLangOptions().CPlusPlus0x)
4480      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4481  }
4482
4483  if (DC->isFileContext()) {
4484    // This implies that it has to be an operator or function.
4485    if (D.getKind() == Declarator::DK_Constructor ||
4486        D.getKind() == Declarator::DK_Destructor ||
4487        D.getKind() == Declarator::DK_Conversion) {
4488      Diag(Loc, diag::err_introducing_special_friend) <<
4489        (D.getKind() == Declarator::DK_Constructor ? 0 :
4490         D.getKind() == Declarator::DK_Destructor ? 1 : 2);
4491      return DeclPtrTy();
4492    }
4493  }
4494
4495  bool Redeclaration = false;
4496  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, DInfo, PrevDecl,
4497                                          move(TemplateParams),
4498                                          IsDefinition,
4499                                          Redeclaration);
4500  if (!ND) return DeclPtrTy();
4501
4502  assert(ND->getDeclContext() == DC);
4503  assert(ND->getLexicalDeclContext() == CurContext);
4504
4505  // Add the function declaration to the appropriate lookup tables,
4506  // adjusting the redeclarations list as necessary.  We don't
4507  // want to do this yet if the friending class is dependent.
4508  //
4509  // Also update the scope-based lookup if the target context's
4510  // lookup context is in lexical scope.
4511  if (!CurContext->isDependentContext()) {
4512    DC = DC->getLookupContext();
4513    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
4514    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4515      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
4516  }
4517
4518  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
4519                                       D.getIdentifierLoc(), ND,
4520                                       DS.getFriendSpecLoc());
4521  FrD->setAccess(AS_public);
4522  CurContext->addDecl(FrD);
4523
4524  return DeclPtrTy::make(ND);
4525}
4526
4527void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
4528  AdjustDeclIfTemplate(dcl);
4529
4530  Decl *Dcl = dcl.getAs<Decl>();
4531  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
4532  if (!Fn) {
4533    Diag(DelLoc, diag::err_deleted_non_function);
4534    return;
4535  }
4536  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
4537    Diag(DelLoc, diag::err_deleted_decl_not_first);
4538    Diag(Prev->getLocation(), diag::note_previous_declaration);
4539    // If the declaration wasn't the first, we delete the function anyway for
4540    // recovery.
4541  }
4542  Fn->setDeleted();
4543}
4544
4545static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
4546  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
4547       ++CI) {
4548    Stmt *SubStmt = *CI;
4549    if (!SubStmt)
4550      continue;
4551    if (isa<ReturnStmt>(SubStmt))
4552      Self.Diag(SubStmt->getSourceRange().getBegin(),
4553           diag::err_return_in_constructor_handler);
4554    if (!isa<Expr>(SubStmt))
4555      SearchForReturnInStmt(Self, SubStmt);
4556  }
4557}
4558
4559void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
4560  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
4561    CXXCatchStmt *Handler = TryBlock->getHandler(I);
4562    SearchForReturnInStmt(*this, Handler);
4563  }
4564}
4565
4566bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
4567                                             const CXXMethodDecl *Old) {
4568  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
4569  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
4570
4571  QualType CNewTy = Context.getCanonicalType(NewTy);
4572  QualType COldTy = Context.getCanonicalType(OldTy);
4573
4574  if (CNewTy == COldTy &&
4575      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
4576    return false;
4577
4578  // Check if the return types are covariant
4579  QualType NewClassTy, OldClassTy;
4580
4581  /// Both types must be pointers or references to classes.
4582  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
4583    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
4584      NewClassTy = NewPT->getPointeeType();
4585      OldClassTy = OldPT->getPointeeType();
4586    }
4587  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
4588    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
4589      NewClassTy = NewRT->getPointeeType();
4590      OldClassTy = OldRT->getPointeeType();
4591    }
4592  }
4593
4594  // The return types aren't either both pointers or references to a class type.
4595  if (NewClassTy.isNull()) {
4596    Diag(New->getLocation(),
4597         diag::err_different_return_type_for_overriding_virtual_function)
4598      << New->getDeclName() << NewTy << OldTy;
4599    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4600
4601    return true;
4602  }
4603
4604  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
4605    // Check if the new class derives from the old class.
4606    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
4607      Diag(New->getLocation(),
4608           diag::err_covariant_return_not_derived)
4609      << New->getDeclName() << NewTy << OldTy;
4610      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4611      return true;
4612    }
4613
4614    // Check if we the conversion from derived to base is valid.
4615    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
4616                      diag::err_covariant_return_inaccessible_base,
4617                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
4618                      // FIXME: Should this point to the return type?
4619                      New->getLocation(), SourceRange(), New->getDeclName())) {
4620      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4621      return true;
4622    }
4623  }
4624
4625  // The qualifiers of the return types must be the same.
4626  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
4627    Diag(New->getLocation(),
4628         diag::err_covariant_return_type_different_qualifications)
4629    << New->getDeclName() << NewTy << OldTy;
4630    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4631    return true;
4632  };
4633
4634
4635  // The new class type must have the same or less qualifiers as the old type.
4636  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
4637    Diag(New->getLocation(),
4638         diag::err_covariant_return_type_class_type_more_qualified)
4639    << New->getDeclName() << NewTy << OldTy;
4640    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4641    return true;
4642  };
4643
4644  return false;
4645}
4646
4647/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
4648/// initializer for the declaration 'Dcl'.
4649/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
4650/// static data member of class X, names should be looked up in the scope of
4651/// class X.
4652void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4653  AdjustDeclIfTemplate(Dcl);
4654
4655  Decl *D = Dcl.getAs<Decl>();
4656  // If there is no declaration, there was an error parsing it.
4657  if (D == 0)
4658    return;
4659
4660  // Check whether it is a declaration with a nested name specifier like
4661  // int foo::bar;
4662  if (!D->isOutOfLine())
4663    return;
4664
4665  // C++ [basic.lookup.unqual]p13
4666  //
4667  // A name used in the definition of a static data member of class X
4668  // (after the qualified-id of the static member) is looked up as if the name
4669  // was used in a member function of X.
4670
4671  // Change current context into the context of the initializing declaration.
4672  EnterDeclaratorContext(S, D->getDeclContext());
4673}
4674
4675/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
4676/// initializer for the declaration 'Dcl'.
4677void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4678  AdjustDeclIfTemplate(Dcl);
4679
4680  Decl *D = Dcl.getAs<Decl>();
4681  // If there is no declaration, there was an error parsing it.
4682  if (D == 0)
4683    return;
4684
4685  // Check whether it is a declaration with a nested name specifier like
4686  // int foo::bar;
4687  if (!D->isOutOfLine())
4688    return;
4689
4690  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
4691  ExitDeclaratorContext(S);
4692}
4693