SemaDeclCXX.cpp revision 0d30a87e124bb0273fedce3b62401039073fdece
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/AST/TypeOrdering.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31#include <map>
32#include <set>
33
34using namespace clang;
35
36//===----------------------------------------------------------------------===//
37// CheckDefaultArgumentVisitor
38//===----------------------------------------------------------------------===//
39
40namespace {
41  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
42  /// the default argument of a parameter to determine whether it
43  /// contains any ill-formed subexpressions. For example, this will
44  /// diagnose the use of local variables or parameters within the
45  /// default argument expression.
46  class CheckDefaultArgumentVisitor
47    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
48    Expr *DefaultArg;
49    Sema *S;
50
51  public:
52    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
53      : DefaultArg(defarg), S(s) {}
54
55    bool VisitExpr(Expr *Node);
56    bool VisitDeclRefExpr(DeclRefExpr *DRE);
57    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
58  };
59
60  /// VisitExpr - Visit all of the children of this expression.
61  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
62    bool IsInvalid = false;
63    for (Stmt::child_iterator I = Node->child_begin(),
64         E = Node->child_end(); I != E; ++I)
65      IsInvalid |= Visit(*I);
66    return IsInvalid;
67  }
68
69  /// VisitDeclRefExpr - Visit a reference to a declaration, to
70  /// determine whether this declaration can be used in the default
71  /// argument expression.
72  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
73    NamedDecl *Decl = DRE->getDecl();
74    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
75      // C++ [dcl.fct.default]p9
76      //   Default arguments are evaluated each time the function is
77      //   called. The order of evaluation of function arguments is
78      //   unspecified. Consequently, parameters of a function shall not
79      //   be used in default argument expressions, even if they are not
80      //   evaluated. Parameters of a function declared before a default
81      //   argument expression are in scope and can hide namespace and
82      //   class member names.
83      return S->Diag(DRE->getSourceRange().getBegin(),
84                     diag::err_param_default_argument_references_param)
85         << Param->getDeclName() << DefaultArg->getSourceRange();
86    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
87      // C++ [dcl.fct.default]p7
88      //   Local variables shall not be used in default argument
89      //   expressions.
90      if (VDecl->isBlockVarDecl())
91        return S->Diag(DRE->getSourceRange().getBegin(),
92                       diag::err_param_default_argument_references_local)
93          << VDecl->getDeclName() << DefaultArg->getSourceRange();
94    }
95
96    return false;
97  }
98
99  /// VisitCXXThisExpr - Visit a C++ "this" expression.
100  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
101    // C++ [dcl.fct.default]p8:
102    //   The keyword this shall not be used in a default argument of a
103    //   member function.
104    return S->Diag(ThisE->getSourceRange().getBegin(),
105                   diag::err_param_default_argument_references_this)
106               << ThisE->getSourceRange();
107  }
108}
109
110bool
111Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
112                              SourceLocation EqualLoc) {
113  if (RequireCompleteType(Param->getLocation(), Param->getType(),
114                          diag::err_typecheck_decl_incomplete_type)) {
115    Param->setInvalidDecl();
116    return true;
117  }
118
119  Expr *Arg = (Expr *)DefaultArg.get();
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
128  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
129                                                           EqualLoc);
130  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
131  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
132                                          MultiExprArg(*this, (void**)&Arg, 1));
133  if (Result.isInvalid())
134    return true;
135  Arg = Result.takeAs<Expr>();
136
137  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
138
139  // Okay: add the default argument to the parameter
140  Param->setDefaultArg(Arg);
141
142  DefaultArg.release();
143
144  return false;
145}
146
147/// ActOnParamDefaultArgument - Check whether the default argument
148/// provided for a function parameter is well-formed. If so, attach it
149/// to the parameter declaration.
150void
151Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
152                                ExprArg defarg) {
153  if (!param || !defarg.get())
154    return;
155
156  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
157  UnparsedDefaultArgLocs.erase(Param);
158
159  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
160
161  // Default arguments are only permitted in C++
162  if (!getLangOptions().CPlusPlus) {
163    Diag(EqualLoc, diag::err_param_default_argument)
164      << DefaultArg->getSourceRange();
165    Param->setInvalidDecl();
166    return;
167  }
168
169  // Check that the default argument is well-formed
170  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
171  if (DefaultArgChecker.Visit(DefaultArg.get())) {
172    Param->setInvalidDecl();
173    return;
174  }
175
176  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
177}
178
179/// ActOnParamUnparsedDefaultArgument - We've seen a default
180/// argument for a function parameter, but we can't parse it yet
181/// because we're inside a class definition. Note that this default
182/// argument will be parsed later.
183void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
184                                             SourceLocation EqualLoc,
185                                             SourceLocation ArgLoc) {
186  if (!param)
187    return;
188
189  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
190  if (Param)
191    Param->setUnparsedDefaultArg();
192
193  UnparsedDefaultArgLocs[Param] = ArgLoc;
194}
195
196/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
197/// the default argument for the parameter param failed.
198void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
199  if (!param)
200    return;
201
202  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
203
204  Param->setInvalidDecl();
205
206  UnparsedDefaultArgLocs.erase(Param);
207}
208
209/// CheckExtraCXXDefaultArguments - Check for any extra default
210/// arguments in the declarator, which is not a function declaration
211/// or definition and therefore is not permitted to have default
212/// arguments. This routine should be invoked for every declarator
213/// that is not a function declaration or definition.
214void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
215  // C++ [dcl.fct.default]p3
216  //   A default argument expression shall be specified only in the
217  //   parameter-declaration-clause of a function declaration or in a
218  //   template-parameter (14.1). It shall not be specified for a
219  //   parameter pack. If it is specified in a
220  //   parameter-declaration-clause, it shall not occur within a
221  //   declarator or abstract-declarator of a parameter-declaration.
222  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
223    DeclaratorChunk &chunk = D.getTypeObject(i);
224    if (chunk.Kind == DeclaratorChunk::Function) {
225      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
226        ParmVarDecl *Param =
227          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
228        if (Param->hasUnparsedDefaultArg()) {
229          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
230          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
231            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
232          delete Toks;
233          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
234        } else if (Param->getDefaultArg()) {
235          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
236            << Param->getDefaultArg()->getSourceRange();
237          Param->setDefaultArg(0);
238        }
239      }
240    }
241  }
242}
243
244// MergeCXXFunctionDecl - Merge two declarations of the same C++
245// function, once we already know that they have the same
246// type. Subroutine of MergeFunctionDecl. Returns true if there was an
247// error, false otherwise.
248bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
249  bool Invalid = false;
250
251  // C++ [dcl.fct.default]p4:
252  //   For non-template functions, default arguments can be added in
253  //   later declarations of a function in the same
254  //   scope. Declarations in different scopes have completely
255  //   distinct sets of default arguments. That is, declarations in
256  //   inner scopes do not acquire default arguments from
257  //   declarations in outer scopes, and vice versa. In a given
258  //   function declaration, all parameters subsequent to a
259  //   parameter with a default argument shall have default
260  //   arguments supplied in this or previous declarations. A
261  //   default argument shall not be redefined by a later
262  //   declaration (not even to the same value).
263  //
264  // C++ [dcl.fct.default]p6:
265  //   Except for member functions of class templates, the default arguments
266  //   in a member function definition that appears outside of the class
267  //   definition are added to the set of default arguments provided by the
268  //   member function declaration in the class definition.
269  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
270    ParmVarDecl *OldParam = Old->getParamDecl(p);
271    ParmVarDecl *NewParam = New->getParamDecl(p);
272
273    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
274      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
275      // hint here. Alternatively, we could walk the type-source information
276      // for NewParam to find the last source location in the type... but it
277      // isn't worth the effort right now. This is the kind of test case that
278      // is hard to get right:
279
280      //   int f(int);
281      //   void g(int (*fp)(int) = f);
282      //   void g(int (*fp)(int) = &f);
283      Diag(NewParam->getLocation(),
284           diag::err_param_default_argument_redefinition)
285        << NewParam->getDefaultArgRange();
286
287      // Look for the function declaration where the default argument was
288      // actually written, which may be a declaration prior to Old.
289      for (FunctionDecl *Older = Old->getPreviousDeclaration();
290           Older; Older = Older->getPreviousDeclaration()) {
291        if (!Older->getParamDecl(p)->hasDefaultArg())
292          break;
293
294        OldParam = Older->getParamDecl(p);
295      }
296
297      Diag(OldParam->getLocation(), diag::note_previous_definition)
298        << OldParam->getDefaultArgRange();
299      Invalid = true;
300    } else if (OldParam->hasDefaultArg()) {
301      // Merge the old default argument into the new parameter.
302      // It's important to use getInit() here;  getDefaultArg()
303      // strips off any top-level CXXExprWithTemporaries.
304      NewParam->setHasInheritedDefaultArg();
305      if (OldParam->hasUninstantiatedDefaultArg())
306        NewParam->setUninstantiatedDefaultArg(
307                                      OldParam->getUninstantiatedDefaultArg());
308      else
309        NewParam->setDefaultArg(OldParam->getInit());
310    } else if (NewParam->hasDefaultArg()) {
311      if (New->getDescribedFunctionTemplate()) {
312        // Paragraph 4, quoted above, only applies to non-template functions.
313        Diag(NewParam->getLocation(),
314             diag::err_param_default_argument_template_redecl)
315          << NewParam->getDefaultArgRange();
316        Diag(Old->getLocation(), diag::note_template_prev_declaration)
317          << false;
318      } else if (New->getTemplateSpecializationKind()
319                   != TSK_ImplicitInstantiation &&
320                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
321        // C++ [temp.expr.spec]p21:
322        //   Default function arguments shall not be specified in a declaration
323        //   or a definition for one of the following explicit specializations:
324        //     - the explicit specialization of a function template;
325        //     - the explicit specialization of a member function template;
326        //     - the explicit specialization of a member function of a class
327        //       template where the class template specialization to which the
328        //       member function specialization belongs is implicitly
329        //       instantiated.
330        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
331          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
332          << New->getDeclName()
333          << NewParam->getDefaultArgRange();
334      } else if (New->getDeclContext()->isDependentContext()) {
335        // C++ [dcl.fct.default]p6 (DR217):
336        //   Default arguments for a member function of a class template shall
337        //   be specified on the initial declaration of the member function
338        //   within the class template.
339        //
340        // Reading the tea leaves a bit in DR217 and its reference to DR205
341        // leads me to the conclusion that one cannot add default function
342        // arguments for an out-of-line definition of a member function of a
343        // dependent type.
344        int WhichKind = 2;
345        if (CXXRecordDecl *Record
346              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
347          if (Record->getDescribedClassTemplate())
348            WhichKind = 0;
349          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
350            WhichKind = 1;
351          else
352            WhichKind = 2;
353        }
354
355        Diag(NewParam->getLocation(),
356             diag::err_param_default_argument_member_template_redecl)
357          << WhichKind
358          << NewParam->getDefaultArgRange();
359      }
360    }
361  }
362
363  if (CheckEquivalentExceptionSpec(Old, New))
364    Invalid = true;
365
366  return Invalid;
367}
368
369/// CheckCXXDefaultArguments - Verify that the default arguments for a
370/// function declaration are well-formed according to C++
371/// [dcl.fct.default].
372void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
373  unsigned NumParams = FD->getNumParams();
374  unsigned p;
375
376  // Find first parameter with a default argument
377  for (p = 0; p < NumParams; ++p) {
378    ParmVarDecl *Param = FD->getParamDecl(p);
379    if (Param->hasDefaultArg())
380      break;
381  }
382
383  // C++ [dcl.fct.default]p4:
384  //   In a given function declaration, all parameters
385  //   subsequent to a parameter with a default argument shall
386  //   have default arguments supplied in this or previous
387  //   declarations. A default argument shall not be redefined
388  //   by a later declaration (not even to the same value).
389  unsigned LastMissingDefaultArg = 0;
390  for (; p < NumParams; ++p) {
391    ParmVarDecl *Param = FD->getParamDecl(p);
392    if (!Param->hasDefaultArg()) {
393      if (Param->isInvalidDecl())
394        /* We already complained about this parameter. */;
395      else if (Param->getIdentifier())
396        Diag(Param->getLocation(),
397             diag::err_param_default_argument_missing_name)
398          << Param->getIdentifier();
399      else
400        Diag(Param->getLocation(),
401             diag::err_param_default_argument_missing);
402
403      LastMissingDefaultArg = p;
404    }
405  }
406
407  if (LastMissingDefaultArg > 0) {
408    // Some default arguments were missing. Clear out all of the
409    // default arguments up to (and including) the last missing
410    // default argument, so that we leave the function parameters
411    // in a semantically valid state.
412    for (p = 0; p <= LastMissingDefaultArg; ++p) {
413      ParmVarDecl *Param = FD->getParamDecl(p);
414      if (Param->hasDefaultArg()) {
415        Param->setDefaultArg(0);
416      }
417    }
418  }
419}
420
421/// isCurrentClassName - Determine whether the identifier II is the
422/// name of the class type currently being defined. In the case of
423/// nested classes, this will only return true if II is the name of
424/// the innermost class.
425bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
426                              const CXXScopeSpec *SS) {
427  assert(getLangOptions().CPlusPlus && "No class names in C!");
428
429  CXXRecordDecl *CurDecl;
430  if (SS && SS->isSet() && !SS->isInvalid()) {
431    DeclContext *DC = computeDeclContext(*SS, true);
432    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
433  } else
434    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
435
436  if (CurDecl && CurDecl->getIdentifier())
437    return &II == CurDecl->getIdentifier();
438  else
439    return false;
440}
441
442/// \brief Check the validity of a C++ base class specifier.
443///
444/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
445/// and returns NULL otherwise.
446CXXBaseSpecifier *
447Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
448                         SourceRange SpecifierRange,
449                         bool Virtual, AccessSpecifier Access,
450                         TypeSourceInfo *TInfo) {
451  QualType BaseType = TInfo->getType();
452
453  // C++ [class.union]p1:
454  //   A union shall not have base classes.
455  if (Class->isUnion()) {
456    Diag(Class->getLocation(), diag::err_base_clause_on_union)
457      << SpecifierRange;
458    return 0;
459  }
460
461  if (BaseType->isDependentType())
462    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
463                                          Class->getTagKind() == TTK_Class,
464                                          Access, TInfo);
465
466  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
467
468  // Base specifiers must be record types.
469  if (!BaseType->isRecordType()) {
470    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
471    return 0;
472  }
473
474  // C++ [class.union]p1:
475  //   A union shall not be used as a base class.
476  if (BaseType->isUnionType()) {
477    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
478    return 0;
479  }
480
481  // C++ [class.derived]p2:
482  //   The class-name in a base-specifier shall not be an incompletely
483  //   defined class.
484  if (RequireCompleteType(BaseLoc, BaseType,
485                          PDiag(diag::err_incomplete_base_class)
486                            << SpecifierRange))
487    return 0;
488
489  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
490  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
491  assert(BaseDecl && "Record type has no declaration");
492  BaseDecl = BaseDecl->getDefinition();
493  assert(BaseDecl && "Base type is not incomplete, but has no definition");
494  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
495  assert(CXXBaseDecl && "Base type is not a C++ type");
496
497  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
498  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
499    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
500    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
501      << BaseType;
502    return 0;
503  }
504
505  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
506
507  // Create the base specifier.
508  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
509                                        Class->getTagKind() == TTK_Class,
510                                        Access, TInfo);
511}
512
513void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
514                                          const CXXRecordDecl *BaseClass,
515                                          bool BaseIsVirtual) {
516  // A class with a non-empty base class is not empty.
517  // FIXME: Standard ref?
518  if (!BaseClass->isEmpty())
519    Class->setEmpty(false);
520
521  // C++ [class.virtual]p1:
522  //   A class that [...] inherits a virtual function is called a polymorphic
523  //   class.
524  if (BaseClass->isPolymorphic())
525    Class->setPolymorphic(true);
526
527  // C++ [dcl.init.aggr]p1:
528  //   An aggregate is [...] a class with [...] no base classes [...].
529  Class->setAggregate(false);
530
531  // C++ [class]p4:
532  //   A POD-struct is an aggregate class...
533  Class->setPOD(false);
534
535  if (BaseIsVirtual) {
536    // C++ [class.ctor]p5:
537    //   A constructor is trivial if its class has no virtual base classes.
538    Class->setHasTrivialConstructor(false);
539
540    // C++ [class.copy]p6:
541    //   A copy constructor is trivial if its class has no virtual base classes.
542    Class->setHasTrivialCopyConstructor(false);
543
544    // C++ [class.copy]p11:
545    //   A copy assignment operator is trivial if its class has no virtual
546    //   base classes.
547    Class->setHasTrivialCopyAssignment(false);
548
549    // C++0x [meta.unary.prop] is_empty:
550    //    T is a class type, but not a union type, with ... no virtual base
551    //    classes
552    Class->setEmpty(false);
553  } else {
554    // C++ [class.ctor]p5:
555    //   A constructor is trivial if all the direct base classes of its
556    //   class have trivial constructors.
557    if (!BaseClass->hasTrivialConstructor())
558      Class->setHasTrivialConstructor(false);
559
560    // C++ [class.copy]p6:
561    //   A copy constructor is trivial if all the direct base classes of its
562    //   class have trivial copy constructors.
563    if (!BaseClass->hasTrivialCopyConstructor())
564      Class->setHasTrivialCopyConstructor(false);
565
566    // C++ [class.copy]p11:
567    //   A copy assignment operator is trivial if all the direct base classes
568    //   of its class have trivial copy assignment operators.
569    if (!BaseClass->hasTrivialCopyAssignment())
570      Class->setHasTrivialCopyAssignment(false);
571  }
572
573  // C++ [class.ctor]p3:
574  //   A destructor is trivial if all the direct base classes of its class
575  //   have trivial destructors.
576  if (!BaseClass->hasTrivialDestructor())
577    Class->setHasTrivialDestructor(false);
578}
579
580/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
581/// one entry in the base class list of a class specifier, for
582/// example:
583///    class foo : public bar, virtual private baz {
584/// 'public bar' and 'virtual private baz' are each base-specifiers.
585Sema::BaseResult
586Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
587                         bool Virtual, AccessSpecifier Access,
588                         TypeTy *basetype, SourceLocation BaseLoc) {
589  if (!classdecl)
590    return true;
591
592  AdjustDeclIfTemplate(classdecl);
593  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
594  if (!Class)
595    return true;
596
597  TypeSourceInfo *TInfo = 0;
598  GetTypeFromParser(basetype, &TInfo);
599  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
600                                                      Virtual, Access, TInfo))
601    return BaseSpec;
602
603  return true;
604}
605
606/// \brief Performs the actual work of attaching the given base class
607/// specifiers to a C++ class.
608bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
609                                unsigned NumBases) {
610 if (NumBases == 0)
611    return false;
612
613  // Used to keep track of which base types we have already seen, so
614  // that we can properly diagnose redundant direct base types. Note
615  // that the key is always the unqualified canonical type of the base
616  // class.
617  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
618
619  // Copy non-redundant base specifiers into permanent storage.
620  unsigned NumGoodBases = 0;
621  bool Invalid = false;
622  for (unsigned idx = 0; idx < NumBases; ++idx) {
623    QualType NewBaseType
624      = Context.getCanonicalType(Bases[idx]->getType());
625    NewBaseType = NewBaseType.getLocalUnqualifiedType();
626    if (!Class->hasObjectMember()) {
627      if (const RecordType *FDTTy =
628            NewBaseType.getTypePtr()->getAs<RecordType>())
629        if (FDTTy->getDecl()->hasObjectMember())
630          Class->setHasObjectMember(true);
631    }
632
633    if (KnownBaseTypes[NewBaseType]) {
634      // C++ [class.mi]p3:
635      //   A class shall not be specified as a direct base class of a
636      //   derived class more than once.
637      Diag(Bases[idx]->getSourceRange().getBegin(),
638           diag::err_duplicate_base_class)
639        << KnownBaseTypes[NewBaseType]->getType()
640        << Bases[idx]->getSourceRange();
641
642      // Delete the duplicate base class specifier; we're going to
643      // overwrite its pointer later.
644      Context.Deallocate(Bases[idx]);
645
646      Invalid = true;
647    } else {
648      // Okay, add this new base class.
649      KnownBaseTypes[NewBaseType] = Bases[idx];
650      Bases[NumGoodBases++] = Bases[idx];
651    }
652  }
653
654  // Attach the remaining base class specifiers to the derived class.
655  Class->setBases(Bases, NumGoodBases);
656
657  // Delete the remaining (good) base class specifiers, since their
658  // data has been copied into the CXXRecordDecl.
659  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
660    Context.Deallocate(Bases[idx]);
661
662  return Invalid;
663}
664
665/// ActOnBaseSpecifiers - Attach the given base specifiers to the
666/// class, after checking whether there are any duplicate base
667/// classes.
668void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
669                               unsigned NumBases) {
670  if (!ClassDecl || !Bases || !NumBases)
671    return;
672
673  AdjustDeclIfTemplate(ClassDecl);
674  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
675                       (CXXBaseSpecifier**)(Bases), NumBases);
676}
677
678static CXXRecordDecl *GetClassForType(QualType T) {
679  if (const RecordType *RT = T->getAs<RecordType>())
680    return cast<CXXRecordDecl>(RT->getDecl());
681  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
682    return ICT->getDecl();
683  else
684    return 0;
685}
686
687/// \brief Determine whether the type \p Derived is a C++ class that is
688/// derived from the type \p Base.
689bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
690  if (!getLangOptions().CPlusPlus)
691    return false;
692
693  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
694  if (!DerivedRD)
695    return false;
696
697  CXXRecordDecl *BaseRD = GetClassForType(Base);
698  if (!BaseRD)
699    return false;
700
701  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
702  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
703}
704
705/// \brief Determine whether the type \p Derived is a C++ class that is
706/// derived from the type \p Base.
707bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
708  if (!getLangOptions().CPlusPlus)
709    return false;
710
711  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
712  if (!DerivedRD)
713    return false;
714
715  CXXRecordDecl *BaseRD = GetClassForType(Base);
716  if (!BaseRD)
717    return false;
718
719  return DerivedRD->isDerivedFrom(BaseRD, Paths);
720}
721
722void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
723                              CXXCastPath &BasePathArray) {
724  assert(BasePathArray.empty() && "Base path array must be empty!");
725  assert(Paths.isRecordingPaths() && "Must record paths!");
726
727  const CXXBasePath &Path = Paths.front();
728
729  // We first go backward and check if we have a virtual base.
730  // FIXME: It would be better if CXXBasePath had the base specifier for
731  // the nearest virtual base.
732  unsigned Start = 0;
733  for (unsigned I = Path.size(); I != 0; --I) {
734    if (Path[I - 1].Base->isVirtual()) {
735      Start = I - 1;
736      break;
737    }
738  }
739
740  // Now add all bases.
741  for (unsigned I = Start, E = Path.size(); I != E; ++I)
742    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
743}
744
745/// \brief Determine whether the given base path includes a virtual
746/// base class.
747bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
748  for (CXXCastPath::const_iterator B = BasePath.begin(),
749                                BEnd = BasePath.end();
750       B != BEnd; ++B)
751    if ((*B)->isVirtual())
752      return true;
753
754  return false;
755}
756
757/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
758/// conversion (where Derived and Base are class types) is
759/// well-formed, meaning that the conversion is unambiguous (and
760/// that all of the base classes are accessible). Returns true
761/// and emits a diagnostic if the code is ill-formed, returns false
762/// otherwise. Loc is the location where this routine should point to
763/// if there is an error, and Range is the source range to highlight
764/// if there is an error.
765bool
766Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
767                                   unsigned InaccessibleBaseID,
768                                   unsigned AmbigiousBaseConvID,
769                                   SourceLocation Loc, SourceRange Range,
770                                   DeclarationName Name,
771                                   CXXCastPath *BasePath) {
772  // First, determine whether the path from Derived to Base is
773  // ambiguous. This is slightly more expensive than checking whether
774  // the Derived to Base conversion exists, because here we need to
775  // explore multiple paths to determine if there is an ambiguity.
776  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
777                     /*DetectVirtual=*/false);
778  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
779  assert(DerivationOkay &&
780         "Can only be used with a derived-to-base conversion");
781  (void)DerivationOkay;
782
783  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
784    if (InaccessibleBaseID) {
785      // Check that the base class can be accessed.
786      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
787                                   InaccessibleBaseID)) {
788        case AR_inaccessible:
789          return true;
790        case AR_accessible:
791        case AR_dependent:
792        case AR_delayed:
793          break;
794      }
795    }
796
797    // Build a base path if necessary.
798    if (BasePath)
799      BuildBasePathArray(Paths, *BasePath);
800    return false;
801  }
802
803  // We know that the derived-to-base conversion is ambiguous, and
804  // we're going to produce a diagnostic. Perform the derived-to-base
805  // search just one more time to compute all of the possible paths so
806  // that we can print them out. This is more expensive than any of
807  // the previous derived-to-base checks we've done, but at this point
808  // performance isn't as much of an issue.
809  Paths.clear();
810  Paths.setRecordingPaths(true);
811  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
812  assert(StillOkay && "Can only be used with a derived-to-base conversion");
813  (void)StillOkay;
814
815  // Build up a textual representation of the ambiguous paths, e.g.,
816  // D -> B -> A, that will be used to illustrate the ambiguous
817  // conversions in the diagnostic. We only print one of the paths
818  // to each base class subobject.
819  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
820
821  Diag(Loc, AmbigiousBaseConvID)
822  << Derived << Base << PathDisplayStr << Range << Name;
823  return true;
824}
825
826bool
827Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
828                                   SourceLocation Loc, SourceRange Range,
829                                   CXXCastPath *BasePath,
830                                   bool IgnoreAccess) {
831  return CheckDerivedToBaseConversion(Derived, Base,
832                                      IgnoreAccess ? 0
833                                       : diag::err_upcast_to_inaccessible_base,
834                                      diag::err_ambiguous_derived_to_base_conv,
835                                      Loc, Range, DeclarationName(),
836                                      BasePath);
837}
838
839
840/// @brief Builds a string representing ambiguous paths from a
841/// specific derived class to different subobjects of the same base
842/// class.
843///
844/// This function builds a string that can be used in error messages
845/// to show the different paths that one can take through the
846/// inheritance hierarchy to go from the derived class to different
847/// subobjects of a base class. The result looks something like this:
848/// @code
849/// struct D -> struct B -> struct A
850/// struct D -> struct C -> struct A
851/// @endcode
852std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
853  std::string PathDisplayStr;
854  std::set<unsigned> DisplayedPaths;
855  for (CXXBasePaths::paths_iterator Path = Paths.begin();
856       Path != Paths.end(); ++Path) {
857    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
858      // We haven't displayed a path to this particular base
859      // class subobject yet.
860      PathDisplayStr += "\n    ";
861      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
862      for (CXXBasePath::const_iterator Element = Path->begin();
863           Element != Path->end(); ++Element)
864        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
865    }
866  }
867
868  return PathDisplayStr;
869}
870
871//===----------------------------------------------------------------------===//
872// C++ class member Handling
873//===----------------------------------------------------------------------===//
874
875/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
876Sema::DeclPtrTy
877Sema::ActOnAccessSpecifier(AccessSpecifier Access,
878                           SourceLocation ASLoc, SourceLocation ColonLoc) {
879  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
880  AccessSpecDecl* ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
881                                                  ASLoc, ColonLoc);
882  CurContext->addHiddenDecl(ASDecl);
883  return DeclPtrTy::make(ASDecl);
884}
885
886/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
887/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
888/// bitfield width if there is one and 'InitExpr' specifies the initializer if
889/// any.
890Sema::DeclPtrTy
891Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
892                               MultiTemplateParamsArg TemplateParameterLists,
893                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
894                               bool Deleted) {
895  const DeclSpec &DS = D.getDeclSpec();
896  DeclarationName Name = GetNameForDeclarator(D);
897  Expr *BitWidth = static_cast<Expr*>(BW);
898  Expr *Init = static_cast<Expr*>(InitExpr);
899  SourceLocation Loc = D.getIdentifierLoc();
900
901  assert(isa<CXXRecordDecl>(CurContext));
902  assert(!DS.isFriendSpecified());
903
904  bool isFunc = false;
905  if (D.isFunctionDeclarator())
906    isFunc = true;
907  else if (D.getNumTypeObjects() == 0 &&
908           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
909    QualType TDType = GetTypeFromParser(DS.getTypeRep());
910    isFunc = TDType->isFunctionType();
911  }
912
913  // C++ 9.2p6: A member shall not be declared to have automatic storage
914  // duration (auto, register) or with the extern storage-class-specifier.
915  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
916  // data members and cannot be applied to names declared const or static,
917  // and cannot be applied to reference members.
918  switch (DS.getStorageClassSpec()) {
919    case DeclSpec::SCS_unspecified:
920    case DeclSpec::SCS_typedef:
921    case DeclSpec::SCS_static:
922      // FALL THROUGH.
923      break;
924    case DeclSpec::SCS_mutable:
925      if (isFunc) {
926        if (DS.getStorageClassSpecLoc().isValid())
927          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
928        else
929          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
930
931        // FIXME: It would be nicer if the keyword was ignored only for this
932        // declarator. Otherwise we could get follow-up errors.
933        D.getMutableDeclSpec().ClearStorageClassSpecs();
934      }
935      break;
936    default:
937      if (DS.getStorageClassSpecLoc().isValid())
938        Diag(DS.getStorageClassSpecLoc(),
939             diag::err_storageclass_invalid_for_member);
940      else
941        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
942      D.getMutableDeclSpec().ClearStorageClassSpecs();
943  }
944
945  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
946                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
947                      !isFunc);
948
949  Decl *Member;
950  if (isInstField) {
951    // FIXME: Check for template parameters!
952    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
953                         AS);
954    assert(Member && "HandleField never returns null");
955  } else {
956    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
957               .getAs<Decl>();
958    if (!Member) {
959      if (BitWidth) DeleteExpr(BitWidth);
960      return DeclPtrTy();
961    }
962
963    // Non-instance-fields can't have a bitfield.
964    if (BitWidth) {
965      if (Member->isInvalidDecl()) {
966        // don't emit another diagnostic.
967      } else if (isa<VarDecl>(Member)) {
968        // C++ 9.6p3: A bit-field shall not be a static member.
969        // "static member 'A' cannot be a bit-field"
970        Diag(Loc, diag::err_static_not_bitfield)
971          << Name << BitWidth->getSourceRange();
972      } else if (isa<TypedefDecl>(Member)) {
973        // "typedef member 'x' cannot be a bit-field"
974        Diag(Loc, diag::err_typedef_not_bitfield)
975          << Name << BitWidth->getSourceRange();
976      } else {
977        // A function typedef ("typedef int f(); f a;").
978        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
979        Diag(Loc, diag::err_not_integral_type_bitfield)
980          << Name << cast<ValueDecl>(Member)->getType()
981          << BitWidth->getSourceRange();
982      }
983
984      DeleteExpr(BitWidth);
985      BitWidth = 0;
986      Member->setInvalidDecl();
987    }
988
989    Member->setAccess(AS);
990
991    // If we have declared a member function template, set the access of the
992    // templated declaration as well.
993    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
994      FunTmpl->getTemplatedDecl()->setAccess(AS);
995  }
996
997  assert((Name || isInstField) && "No identifier for non-field ?");
998
999  if (Init)
1000    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
1001  if (Deleted) // FIXME: Source location is not very good.
1002    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
1003
1004  if (isInstField) {
1005    FieldCollector->Add(cast<FieldDecl>(Member));
1006    return DeclPtrTy();
1007  }
1008  return DeclPtrTy::make(Member);
1009}
1010
1011/// \brief Find the direct and/or virtual base specifiers that
1012/// correspond to the given base type, for use in base initialization
1013/// within a constructor.
1014static bool FindBaseInitializer(Sema &SemaRef,
1015                                CXXRecordDecl *ClassDecl,
1016                                QualType BaseType,
1017                                const CXXBaseSpecifier *&DirectBaseSpec,
1018                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1019  // First, check for a direct base class.
1020  DirectBaseSpec = 0;
1021  for (CXXRecordDecl::base_class_const_iterator Base
1022         = ClassDecl->bases_begin();
1023       Base != ClassDecl->bases_end(); ++Base) {
1024    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1025      // We found a direct base of this type. That's what we're
1026      // initializing.
1027      DirectBaseSpec = &*Base;
1028      break;
1029    }
1030  }
1031
1032  // Check for a virtual base class.
1033  // FIXME: We might be able to short-circuit this if we know in advance that
1034  // there are no virtual bases.
1035  VirtualBaseSpec = 0;
1036  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1037    // We haven't found a base yet; search the class hierarchy for a
1038    // virtual base class.
1039    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1040                       /*DetectVirtual=*/false);
1041    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1042                              BaseType, Paths)) {
1043      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1044           Path != Paths.end(); ++Path) {
1045        if (Path->back().Base->isVirtual()) {
1046          VirtualBaseSpec = Path->back().Base;
1047          break;
1048        }
1049      }
1050    }
1051  }
1052
1053  return DirectBaseSpec || VirtualBaseSpec;
1054}
1055
1056/// ActOnMemInitializer - Handle a C++ member initializer.
1057Sema::MemInitResult
1058Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1059                          Scope *S,
1060                          CXXScopeSpec &SS,
1061                          IdentifierInfo *MemberOrBase,
1062                          TypeTy *TemplateTypeTy,
1063                          SourceLocation IdLoc,
1064                          SourceLocation LParenLoc,
1065                          ExprTy **Args, unsigned NumArgs,
1066                          SourceLocation *CommaLocs,
1067                          SourceLocation RParenLoc) {
1068  if (!ConstructorD)
1069    return true;
1070
1071  AdjustDeclIfTemplate(ConstructorD);
1072
1073  CXXConstructorDecl *Constructor
1074    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1075  if (!Constructor) {
1076    // The user wrote a constructor initializer on a function that is
1077    // not a C++ constructor. Ignore the error for now, because we may
1078    // have more member initializers coming; we'll diagnose it just
1079    // once in ActOnMemInitializers.
1080    return true;
1081  }
1082
1083  CXXRecordDecl *ClassDecl = Constructor->getParent();
1084
1085  // C++ [class.base.init]p2:
1086  //   Names in a mem-initializer-id are looked up in the scope of the
1087  //   constructor’s class and, if not found in that scope, are looked
1088  //   up in the scope containing the constructor’s
1089  //   definition. [Note: if the constructor’s class contains a member
1090  //   with the same name as a direct or virtual base class of the
1091  //   class, a mem-initializer-id naming the member or base class and
1092  //   composed of a single identifier refers to the class member. A
1093  //   mem-initializer-id for the hidden base class may be specified
1094  //   using a qualified name. ]
1095  if (!SS.getScopeRep() && !TemplateTypeTy) {
1096    // Look for a member, first.
1097    FieldDecl *Member = 0;
1098    DeclContext::lookup_result Result
1099      = ClassDecl->lookup(MemberOrBase);
1100    if (Result.first != Result.second)
1101      Member = dyn_cast<FieldDecl>(*Result.first);
1102
1103    // FIXME: Handle members of an anonymous union.
1104
1105    if (Member)
1106      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1107                                    LParenLoc, RParenLoc);
1108  }
1109  // It didn't name a member, so see if it names a class.
1110  QualType BaseType;
1111  TypeSourceInfo *TInfo = 0;
1112
1113  if (TemplateTypeTy) {
1114    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1115  } else {
1116    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1117    LookupParsedName(R, S, &SS);
1118
1119    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1120    if (!TyD) {
1121      if (R.isAmbiguous()) return true;
1122
1123      // We don't want access-control diagnostics here.
1124      R.suppressDiagnostics();
1125
1126      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1127        bool NotUnknownSpecialization = false;
1128        DeclContext *DC = computeDeclContext(SS, false);
1129        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1130          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1131
1132        if (!NotUnknownSpecialization) {
1133          // When the scope specifier can refer to a member of an unknown
1134          // specialization, we take it as a type name.
1135          BaseType = CheckTypenameType(ETK_None,
1136                                       (NestedNameSpecifier *)SS.getScopeRep(),
1137                                       *MemberOrBase, SourceLocation(),
1138                                       SS.getRange(), IdLoc);
1139          if (BaseType.isNull())
1140            return true;
1141
1142          R.clear();
1143          R.setLookupName(MemberOrBase);
1144        }
1145      }
1146
1147      // If no results were found, try to correct typos.
1148      if (R.empty() && BaseType.isNull() &&
1149          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1150          R.isSingleResult()) {
1151        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1152          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1153            // We have found a non-static data member with a similar
1154            // name to what was typed; complain and initialize that
1155            // member.
1156            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1157              << MemberOrBase << true << R.getLookupName()
1158              << FixItHint::CreateReplacement(R.getNameLoc(),
1159                                              R.getLookupName().getAsString());
1160            Diag(Member->getLocation(), diag::note_previous_decl)
1161              << Member->getDeclName();
1162
1163            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1164                                          LParenLoc, RParenLoc);
1165          }
1166        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1167          const CXXBaseSpecifier *DirectBaseSpec;
1168          const CXXBaseSpecifier *VirtualBaseSpec;
1169          if (FindBaseInitializer(*this, ClassDecl,
1170                                  Context.getTypeDeclType(Type),
1171                                  DirectBaseSpec, VirtualBaseSpec)) {
1172            // We have found a direct or virtual base class with a
1173            // similar name to what was typed; complain and initialize
1174            // that base class.
1175            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1176              << MemberOrBase << false << R.getLookupName()
1177              << FixItHint::CreateReplacement(R.getNameLoc(),
1178                                              R.getLookupName().getAsString());
1179
1180            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1181                                                             : VirtualBaseSpec;
1182            Diag(BaseSpec->getSourceRange().getBegin(),
1183                 diag::note_base_class_specified_here)
1184              << BaseSpec->getType()
1185              << BaseSpec->getSourceRange();
1186
1187            TyD = Type;
1188          }
1189        }
1190      }
1191
1192      if (!TyD && BaseType.isNull()) {
1193        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1194          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1195        return true;
1196      }
1197    }
1198
1199    if (BaseType.isNull()) {
1200      BaseType = Context.getTypeDeclType(TyD);
1201      if (SS.isSet()) {
1202        NestedNameSpecifier *Qualifier =
1203          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1204
1205        // FIXME: preserve source range information
1206        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1207      }
1208    }
1209  }
1210
1211  if (!TInfo)
1212    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1213
1214  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1215                              LParenLoc, RParenLoc, ClassDecl);
1216}
1217
1218/// Checks an initializer expression for use of uninitialized fields, such as
1219/// containing the field that is being initialized. Returns true if there is an
1220/// uninitialized field was used an updates the SourceLocation parameter; false
1221/// otherwise.
1222static bool InitExprContainsUninitializedFields(const Stmt *S,
1223                                                const FieldDecl *LhsField,
1224                                                SourceLocation *L) {
1225  if (isa<CallExpr>(S)) {
1226    // Do not descend into function calls or constructors, as the use
1227    // of an uninitialized field may be valid. One would have to inspect
1228    // the contents of the function/ctor to determine if it is safe or not.
1229    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1230    // may be safe, depending on what the function/ctor does.
1231    return false;
1232  }
1233  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1234    const NamedDecl *RhsField = ME->getMemberDecl();
1235    if (RhsField == LhsField) {
1236      // Initializing a field with itself. Throw a warning.
1237      // But wait; there are exceptions!
1238      // Exception #1:  The field may not belong to this record.
1239      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1240      const Expr *base = ME->getBase();
1241      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1242        // Even though the field matches, it does not belong to this record.
1243        return false;
1244      }
1245      // None of the exceptions triggered; return true to indicate an
1246      // uninitialized field was used.
1247      *L = ME->getMemberLoc();
1248      return true;
1249    }
1250  }
1251  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1252       it != e; ++it) {
1253    if (!*it) {
1254      // An expression such as 'member(arg ?: "")' may trigger this.
1255      continue;
1256    }
1257    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1258      return true;
1259  }
1260  return false;
1261}
1262
1263Sema::MemInitResult
1264Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1265                             unsigned NumArgs, SourceLocation IdLoc,
1266                             SourceLocation LParenLoc,
1267                             SourceLocation RParenLoc) {
1268  // Diagnose value-uses of fields to initialize themselves, e.g.
1269  //   foo(foo)
1270  // where foo is not also a parameter to the constructor.
1271  // TODO: implement -Wuninitialized and fold this into that framework.
1272  for (unsigned i = 0; i < NumArgs; ++i) {
1273    SourceLocation L;
1274    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1275      // FIXME: Return true in the case when other fields are used before being
1276      // uninitialized. For example, let this field be the i'th field. When
1277      // initializing the i'th field, throw a warning if any of the >= i'th
1278      // fields are used, as they are not yet initialized.
1279      // Right now we are only handling the case where the i'th field uses
1280      // itself in its initializer.
1281      Diag(L, diag::warn_field_is_uninit);
1282    }
1283  }
1284
1285  bool HasDependentArg = false;
1286  for (unsigned i = 0; i < NumArgs; i++)
1287    HasDependentArg |= Args[i]->isTypeDependent();
1288
1289  if (Member->getType()->isDependentType() || HasDependentArg) {
1290    // Can't check initialization for a member of dependent type or when
1291    // any of the arguments are type-dependent expressions.
1292    OwningExprResult Init
1293      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1294                                          RParenLoc));
1295
1296    // Erase any temporaries within this evaluation context; we're not
1297    // going to track them in the AST, since we'll be rebuilding the
1298    // ASTs during template instantiation.
1299    ExprTemporaries.erase(
1300              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1301                          ExprTemporaries.end());
1302
1303    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1304                                                    LParenLoc,
1305                                                    Init.takeAs<Expr>(),
1306                                                    RParenLoc);
1307
1308  }
1309
1310  if (Member->isInvalidDecl())
1311    return true;
1312
1313  // Initialize the member.
1314  InitializedEntity MemberEntity =
1315    InitializedEntity::InitializeMember(Member, 0);
1316  InitializationKind Kind =
1317    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1318
1319  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1320
1321  OwningExprResult MemberInit =
1322    InitSeq.Perform(*this, MemberEntity, Kind,
1323                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1324  if (MemberInit.isInvalid())
1325    return true;
1326
1327  // C++0x [class.base.init]p7:
1328  //   The initialization of each base and member constitutes a
1329  //   full-expression.
1330  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1331  if (MemberInit.isInvalid())
1332    return true;
1333
1334  // If we are in a dependent context, template instantiation will
1335  // perform this type-checking again. Just save the arguments that we
1336  // received in a ParenListExpr.
1337  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1338  // of the information that we have about the member
1339  // initializer. However, deconstructing the ASTs is a dicey process,
1340  // and this approach is far more likely to get the corner cases right.
1341  if (CurContext->isDependentContext()) {
1342    // Bump the reference count of all of the arguments.
1343    for (unsigned I = 0; I != NumArgs; ++I)
1344      Args[I]->Retain();
1345
1346    OwningExprResult Init
1347      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1348                                          RParenLoc));
1349    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1350                                                    LParenLoc,
1351                                                    Init.takeAs<Expr>(),
1352                                                    RParenLoc);
1353  }
1354
1355  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1356                                                  LParenLoc,
1357                                                  MemberInit.takeAs<Expr>(),
1358                                                  RParenLoc);
1359}
1360
1361Sema::MemInitResult
1362Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1363                           Expr **Args, unsigned NumArgs,
1364                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1365                           CXXRecordDecl *ClassDecl) {
1366  bool HasDependentArg = false;
1367  for (unsigned i = 0; i < NumArgs; i++)
1368    HasDependentArg |= Args[i]->isTypeDependent();
1369
1370  SourceLocation BaseLoc
1371    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1372
1373  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1374    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1375             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1376
1377  // C++ [class.base.init]p2:
1378  //   [...] Unless the mem-initializer-id names a nonstatic data
1379  //   member of the constructor’s class or a direct or virtual base
1380  //   of that class, the mem-initializer is ill-formed. A
1381  //   mem-initializer-list can initialize a base class using any
1382  //   name that denotes that base class type.
1383  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1384
1385  // Check for direct and virtual base classes.
1386  const CXXBaseSpecifier *DirectBaseSpec = 0;
1387  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1388  if (!Dependent) {
1389    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1390                        VirtualBaseSpec);
1391
1392    // C++ [base.class.init]p2:
1393    // Unless the mem-initializer-id names a nonstatic data member of the
1394    // constructor's class or a direct or virtual base of that class, the
1395    // mem-initializer is ill-formed.
1396    if (!DirectBaseSpec && !VirtualBaseSpec) {
1397      // If the class has any dependent bases, then it's possible that
1398      // one of those types will resolve to the same type as
1399      // BaseType. Therefore, just treat this as a dependent base
1400      // class initialization.  FIXME: Should we try to check the
1401      // initialization anyway? It seems odd.
1402      if (ClassDecl->hasAnyDependentBases())
1403        Dependent = true;
1404      else
1405        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1406          << BaseType << Context.getTypeDeclType(ClassDecl)
1407          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1408    }
1409  }
1410
1411  if (Dependent) {
1412    // Can't check initialization for a base of dependent type or when
1413    // any of the arguments are type-dependent expressions.
1414    OwningExprResult BaseInit
1415      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1416                                          RParenLoc));
1417
1418    // Erase any temporaries within this evaluation context; we're not
1419    // going to track them in the AST, since we'll be rebuilding the
1420    // ASTs during template instantiation.
1421    ExprTemporaries.erase(
1422              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1423                          ExprTemporaries.end());
1424
1425    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1426                                                    /*IsVirtual=*/false,
1427                                                    LParenLoc,
1428                                                    BaseInit.takeAs<Expr>(),
1429                                                    RParenLoc);
1430  }
1431
1432  // C++ [base.class.init]p2:
1433  //   If a mem-initializer-id is ambiguous because it designates both
1434  //   a direct non-virtual base class and an inherited virtual base
1435  //   class, the mem-initializer is ill-formed.
1436  if (DirectBaseSpec && VirtualBaseSpec)
1437    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1438      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1439
1440  CXXBaseSpecifier *BaseSpec
1441    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1442  if (!BaseSpec)
1443    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1444
1445  // Initialize the base.
1446  InitializedEntity BaseEntity =
1447    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1448  InitializationKind Kind =
1449    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1450
1451  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1452
1453  OwningExprResult BaseInit =
1454    InitSeq.Perform(*this, BaseEntity, Kind,
1455                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1456  if (BaseInit.isInvalid())
1457    return true;
1458
1459  // C++0x [class.base.init]p7:
1460  //   The initialization of each base and member constitutes a
1461  //   full-expression.
1462  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1463  if (BaseInit.isInvalid())
1464    return true;
1465
1466  // If we are in a dependent context, template instantiation will
1467  // perform this type-checking again. Just save the arguments that we
1468  // received in a ParenListExpr.
1469  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1470  // of the information that we have about the base
1471  // initializer. However, deconstructing the ASTs is a dicey process,
1472  // and this approach is far more likely to get the corner cases right.
1473  if (CurContext->isDependentContext()) {
1474    // Bump the reference count of all of the arguments.
1475    for (unsigned I = 0; I != NumArgs; ++I)
1476      Args[I]->Retain();
1477
1478    OwningExprResult Init
1479      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1480                                          RParenLoc));
1481    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1482                                                    BaseSpec->isVirtual(),
1483                                                    LParenLoc,
1484                                                    Init.takeAs<Expr>(),
1485                                                    RParenLoc);
1486  }
1487
1488  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1489                                                  BaseSpec->isVirtual(),
1490                                                  LParenLoc,
1491                                                  BaseInit.takeAs<Expr>(),
1492                                                  RParenLoc);
1493}
1494
1495/// ImplicitInitializerKind - How an implicit base or member initializer should
1496/// initialize its base or member.
1497enum ImplicitInitializerKind {
1498  IIK_Default,
1499  IIK_Copy,
1500  IIK_Move
1501};
1502
1503static bool
1504BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1505                             ImplicitInitializerKind ImplicitInitKind,
1506                             CXXBaseSpecifier *BaseSpec,
1507                             bool IsInheritedVirtualBase,
1508                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1509  InitializedEntity InitEntity
1510    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1511                                        IsInheritedVirtualBase);
1512
1513  Sema::OwningExprResult BaseInit(SemaRef);
1514
1515  switch (ImplicitInitKind) {
1516  case IIK_Default: {
1517    InitializationKind InitKind
1518      = InitializationKind::CreateDefault(Constructor->getLocation());
1519    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1520    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1521                               Sema::MultiExprArg(SemaRef, 0, 0));
1522    break;
1523  }
1524
1525  case IIK_Copy: {
1526    ParmVarDecl *Param = Constructor->getParamDecl(0);
1527    QualType ParamType = Param->getType().getNonReferenceType();
1528
1529    Expr *CopyCtorArg =
1530      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1531                          Constructor->getLocation(), ParamType, 0);
1532
1533    // Cast to the base class to avoid ambiguities.
1534    QualType ArgTy =
1535      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1536                                       ParamType.getQualifiers());
1537
1538    CXXCastPath BasePath;
1539    BasePath.push_back(BaseSpec);
1540    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1541                              CastExpr::CK_UncheckedDerivedToBase,
1542                              ImplicitCastExpr::LValue, &BasePath);
1543
1544    InitializationKind InitKind
1545      = InitializationKind::CreateDirect(Constructor->getLocation(),
1546                                         SourceLocation(), SourceLocation());
1547    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1548                                   &CopyCtorArg, 1);
1549    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1550                               Sema::MultiExprArg(SemaRef,
1551                                                  (void**)&CopyCtorArg, 1));
1552    break;
1553  }
1554
1555  case IIK_Move:
1556    assert(false && "Unhandled initializer kind!");
1557  }
1558
1559  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1560  if (BaseInit.isInvalid())
1561    return true;
1562
1563  CXXBaseInit =
1564    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1565               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1566                                                        SourceLocation()),
1567                                             BaseSpec->isVirtual(),
1568                                             SourceLocation(),
1569                                             BaseInit.takeAs<Expr>(),
1570                                             SourceLocation());
1571
1572  return false;
1573}
1574
1575static bool
1576BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1577                               ImplicitInitializerKind ImplicitInitKind,
1578                               FieldDecl *Field,
1579                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1580  if (Field->isInvalidDecl())
1581    return true;
1582
1583  SourceLocation Loc = Constructor->getLocation();
1584
1585  if (ImplicitInitKind == IIK_Copy) {
1586    ParmVarDecl *Param = Constructor->getParamDecl(0);
1587    QualType ParamType = Param->getType().getNonReferenceType();
1588
1589    Expr *MemberExprBase =
1590      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1591                          Loc, ParamType, 0);
1592
1593    // Build a reference to this field within the parameter.
1594    CXXScopeSpec SS;
1595    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1596                              Sema::LookupMemberName);
1597    MemberLookup.addDecl(Field, AS_public);
1598    MemberLookup.resolveKind();
1599    Sema::OwningExprResult CopyCtorArg
1600      = SemaRef.BuildMemberReferenceExpr(SemaRef.Owned(MemberExprBase),
1601                                         ParamType, Loc,
1602                                         /*IsArrow=*/false,
1603                                         SS,
1604                                         /*FirstQualifierInScope=*/0,
1605                                         MemberLookup,
1606                                         /*TemplateArgs=*/0);
1607    if (CopyCtorArg.isInvalid())
1608      return true;
1609
1610    // When the field we are copying is an array, create index variables for
1611    // each dimension of the array. We use these index variables to subscript
1612    // the source array, and other clients (e.g., CodeGen) will perform the
1613    // necessary iteration with these index variables.
1614    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1615    QualType BaseType = Field->getType();
1616    QualType SizeType = SemaRef.Context.getSizeType();
1617    while (const ConstantArrayType *Array
1618                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1619      // Create the iteration variable for this array index.
1620      IdentifierInfo *IterationVarName = 0;
1621      {
1622        llvm::SmallString<8> Str;
1623        llvm::raw_svector_ostream OS(Str);
1624        OS << "__i" << IndexVariables.size();
1625        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1626      }
1627      VarDecl *IterationVar
1628        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1629                          IterationVarName, SizeType,
1630                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1631                          VarDecl::None, VarDecl::None);
1632      IndexVariables.push_back(IterationVar);
1633
1634      // Create a reference to the iteration variable.
1635      Sema::OwningExprResult IterationVarRef
1636        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1637      assert(!IterationVarRef.isInvalid() &&
1638             "Reference to invented variable cannot fail!");
1639
1640      // Subscript the array with this iteration variable.
1641      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(move(CopyCtorArg),
1642                                                            Loc,
1643                                                          move(IterationVarRef),
1644                                                            Loc);
1645      if (CopyCtorArg.isInvalid())
1646        return true;
1647
1648      BaseType = Array->getElementType();
1649    }
1650
1651    // Construct the entity that we will be initializing. For an array, this
1652    // will be first element in the array, which may require several levels
1653    // of array-subscript entities.
1654    llvm::SmallVector<InitializedEntity, 4> Entities;
1655    Entities.reserve(1 + IndexVariables.size());
1656    Entities.push_back(InitializedEntity::InitializeMember(Field));
1657    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1658      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1659                                                              0,
1660                                                              Entities.back()));
1661
1662    // Direct-initialize to use the copy constructor.
1663    InitializationKind InitKind =
1664      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1665
1666    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1667    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1668                                   &CopyCtorArgE, 1);
1669
1670    Sema::OwningExprResult MemberInit
1671      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1672                        Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArgE, 1));
1673    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1674    if (MemberInit.isInvalid())
1675      return true;
1676
1677    CXXMemberInit
1678      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1679                                           MemberInit.takeAs<Expr>(), Loc,
1680                                           IndexVariables.data(),
1681                                           IndexVariables.size());
1682    return false;
1683  }
1684
1685  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1686
1687  QualType FieldBaseElementType =
1688    SemaRef.Context.getBaseElementType(Field->getType());
1689
1690  if (FieldBaseElementType->isRecordType()) {
1691    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1692    InitializationKind InitKind =
1693      InitializationKind::CreateDefault(Loc);
1694
1695    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1696    Sema::OwningExprResult MemberInit =
1697      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1698                      Sema::MultiExprArg(SemaRef, 0, 0));
1699    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1700    if (MemberInit.isInvalid())
1701      return true;
1702
1703    CXXMemberInit =
1704      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1705                                                       Field, Loc, Loc,
1706                                                      MemberInit.takeAs<Expr>(),
1707                                                       Loc);
1708    return false;
1709  }
1710
1711  if (FieldBaseElementType->isReferenceType()) {
1712    SemaRef.Diag(Constructor->getLocation(),
1713                 diag::err_uninitialized_member_in_ctor)
1714    << (int)Constructor->isImplicit()
1715    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1716    << 0 << Field->getDeclName();
1717    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1718    return true;
1719  }
1720
1721  if (FieldBaseElementType.isConstQualified()) {
1722    SemaRef.Diag(Constructor->getLocation(),
1723                 diag::err_uninitialized_member_in_ctor)
1724    << (int)Constructor->isImplicit()
1725    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1726    << 1 << Field->getDeclName();
1727    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1728    return true;
1729  }
1730
1731  // Nothing to initialize.
1732  CXXMemberInit = 0;
1733  return false;
1734}
1735
1736namespace {
1737struct BaseAndFieldInfo {
1738  Sema &S;
1739  CXXConstructorDecl *Ctor;
1740  bool AnyErrorsInInits;
1741  ImplicitInitializerKind IIK;
1742  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1743  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1744
1745  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1746    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1747    // FIXME: Handle implicit move constructors.
1748    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1749      IIK = IIK_Copy;
1750    else
1751      IIK = IIK_Default;
1752  }
1753};
1754}
1755
1756static void RecordFieldInitializer(BaseAndFieldInfo &Info,
1757                                   FieldDecl *Top, FieldDecl *Field,
1758                                   CXXBaseOrMemberInitializer *Init) {
1759  // If the member doesn't need to be initialized, Init will still be null.
1760  if (!Init)
1761    return;
1762
1763  Info.AllToInit.push_back(Init);
1764  if (Field != Top) {
1765    Init->setMember(Top);
1766    Init->setAnonUnionMember(Field);
1767  }
1768}
1769
1770static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1771                                    FieldDecl *Top, FieldDecl *Field) {
1772
1773  // Overwhelmingly common case: we have a direct initializer for this field.
1774  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1775    RecordFieldInitializer(Info, Top, Field, Init);
1776    return false;
1777  }
1778
1779  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1780    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1781    assert(FieldClassType && "anonymous struct/union without record type");
1782    CXXRecordDecl *FieldClassDecl
1783      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1784
1785    // Even though union members never have non-trivial default
1786    // constructions in C++03, we still build member initializers for aggregate
1787    // record types which can be union members, and C++0x allows non-trivial
1788    // default constructors for union members, so we ensure that only one
1789    // member is initialized for these.
1790    if (FieldClassDecl->isUnion()) {
1791      // First check for an explicit initializer for one field.
1792      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1793           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1794        if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1795          RecordFieldInitializer(Info, Top, *FA, Init);
1796
1797          // Once we've initialized a field of an anonymous union, the union
1798          // field in the class is also initialized, so exit immediately.
1799          return false;
1800        }
1801      }
1802
1803      // Fallthrough and construct a default initializer for the union as
1804      // a whole, which can call its default constructor if such a thing exists
1805      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1806      // behavior going forward with C++0x, when anonymous unions there are
1807      // finalized, we should revisit this.
1808    } else {
1809      // For structs, we simply descend through to initialize all members where
1810      // necessary.
1811      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1812           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1813        if (CollectFieldInitializer(Info, Top, *FA))
1814          return true;
1815      }
1816    }
1817  }
1818
1819  // Don't try to build an implicit initializer if there were semantic
1820  // errors in any of the initializers (and therefore we might be
1821  // missing some that the user actually wrote).
1822  if (Info.AnyErrorsInInits)
1823    return false;
1824
1825  CXXBaseOrMemberInitializer *Init = 0;
1826  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1827    return true;
1828
1829  RecordFieldInitializer(Info, Top, Field, Init);
1830  return false;
1831}
1832
1833bool
1834Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1835                                  CXXBaseOrMemberInitializer **Initializers,
1836                                  unsigned NumInitializers,
1837                                  bool AnyErrors) {
1838  if (Constructor->getDeclContext()->isDependentContext()) {
1839    // Just store the initializers as written, they will be checked during
1840    // instantiation.
1841    if (NumInitializers > 0) {
1842      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1843      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1844        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1845      memcpy(baseOrMemberInitializers, Initializers,
1846             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1847      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1848    }
1849
1850    return false;
1851  }
1852
1853  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1854
1855  // We need to build the initializer AST according to order of construction
1856  // and not what user specified in the Initializers list.
1857  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1858  if (!ClassDecl)
1859    return true;
1860
1861  bool HadError = false;
1862
1863  for (unsigned i = 0; i < NumInitializers; i++) {
1864    CXXBaseOrMemberInitializer *Member = Initializers[i];
1865
1866    if (Member->isBaseInitializer())
1867      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1868    else
1869      Info.AllBaseFields[Member->getMember()] = Member;
1870  }
1871
1872  // Keep track of the direct virtual bases.
1873  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1874  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1875       E = ClassDecl->bases_end(); I != E; ++I) {
1876    if (I->isVirtual())
1877      DirectVBases.insert(I);
1878  }
1879
1880  // Push virtual bases before others.
1881  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1882       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1883
1884    if (CXXBaseOrMemberInitializer *Value
1885        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1886      Info.AllToInit.push_back(Value);
1887    } else if (!AnyErrors) {
1888      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1889      CXXBaseOrMemberInitializer *CXXBaseInit;
1890      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1891                                       VBase, IsInheritedVirtualBase,
1892                                       CXXBaseInit)) {
1893        HadError = true;
1894        continue;
1895      }
1896
1897      Info.AllToInit.push_back(CXXBaseInit);
1898    }
1899  }
1900
1901  // Non-virtual bases.
1902  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1903       E = ClassDecl->bases_end(); Base != E; ++Base) {
1904    // Virtuals are in the virtual base list and already constructed.
1905    if (Base->isVirtual())
1906      continue;
1907
1908    if (CXXBaseOrMemberInitializer *Value
1909          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1910      Info.AllToInit.push_back(Value);
1911    } else if (!AnyErrors) {
1912      CXXBaseOrMemberInitializer *CXXBaseInit;
1913      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1914                                       Base, /*IsInheritedVirtualBase=*/false,
1915                                       CXXBaseInit)) {
1916        HadError = true;
1917        continue;
1918      }
1919
1920      Info.AllToInit.push_back(CXXBaseInit);
1921    }
1922  }
1923
1924  // Fields.
1925  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1926       E = ClassDecl->field_end(); Field != E; ++Field) {
1927    if ((*Field)->getType()->isIncompleteArrayType()) {
1928      assert(ClassDecl->hasFlexibleArrayMember() &&
1929             "Incomplete array type is not valid");
1930      continue;
1931    }
1932    if (CollectFieldInitializer(Info, *Field, *Field))
1933      HadError = true;
1934  }
1935
1936  NumInitializers = Info.AllToInit.size();
1937  if (NumInitializers > 0) {
1938    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1939    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1940      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1941    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1942           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1943    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1944
1945    // Constructors implicitly reference the base and member
1946    // destructors.
1947    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1948                                           Constructor->getParent());
1949  }
1950
1951  return HadError;
1952}
1953
1954static void *GetKeyForTopLevelField(FieldDecl *Field) {
1955  // For anonymous unions, use the class declaration as the key.
1956  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1957    if (RT->getDecl()->isAnonymousStructOrUnion())
1958      return static_cast<void *>(RT->getDecl());
1959  }
1960  return static_cast<void *>(Field);
1961}
1962
1963static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1964  return Context.getCanonicalType(BaseType).getTypePtr();
1965}
1966
1967static void *GetKeyForMember(ASTContext &Context,
1968                             CXXBaseOrMemberInitializer *Member,
1969                             bool MemberMaybeAnon = false) {
1970  if (!Member->isMemberInitializer())
1971    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1972
1973  // For fields injected into the class via declaration of an anonymous union,
1974  // use its anonymous union class declaration as the unique key.
1975  FieldDecl *Field = Member->getMember();
1976
1977  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1978  // data member of the class. Data member used in the initializer list is
1979  // in AnonUnionMember field.
1980  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1981    Field = Member->getAnonUnionMember();
1982
1983  // If the field is a member of an anonymous struct or union, our key
1984  // is the anonymous record decl that's a direct child of the class.
1985  RecordDecl *RD = Field->getParent();
1986  if (RD->isAnonymousStructOrUnion()) {
1987    while (true) {
1988      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1989      if (Parent->isAnonymousStructOrUnion())
1990        RD = Parent;
1991      else
1992        break;
1993    }
1994
1995    return static_cast<void *>(RD);
1996  }
1997
1998  return static_cast<void *>(Field);
1999}
2000
2001static void
2002DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2003                                  const CXXConstructorDecl *Constructor,
2004                                  CXXBaseOrMemberInitializer **Inits,
2005                                  unsigned NumInits) {
2006  if (Constructor->getDeclContext()->isDependentContext())
2007    return;
2008
2009  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
2010        == Diagnostic::Ignored)
2011    return;
2012
2013  // Build the list of bases and members in the order that they'll
2014  // actually be initialized.  The explicit initializers should be in
2015  // this same order but may be missing things.
2016  llvm::SmallVector<const void*, 32> IdealInitKeys;
2017
2018  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2019
2020  // 1. Virtual bases.
2021  for (CXXRecordDecl::base_class_const_iterator VBase =
2022       ClassDecl->vbases_begin(),
2023       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2024    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2025
2026  // 2. Non-virtual bases.
2027  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2028       E = ClassDecl->bases_end(); Base != E; ++Base) {
2029    if (Base->isVirtual())
2030      continue;
2031    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2032  }
2033
2034  // 3. Direct fields.
2035  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2036       E = ClassDecl->field_end(); Field != E; ++Field)
2037    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2038
2039  unsigned NumIdealInits = IdealInitKeys.size();
2040  unsigned IdealIndex = 0;
2041
2042  CXXBaseOrMemberInitializer *PrevInit = 0;
2043  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2044    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2045    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
2046
2047    // Scan forward to try to find this initializer in the idealized
2048    // initializers list.
2049    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2050      if (InitKey == IdealInitKeys[IdealIndex])
2051        break;
2052
2053    // If we didn't find this initializer, it must be because we
2054    // scanned past it on a previous iteration.  That can only
2055    // happen if we're out of order;  emit a warning.
2056    if (IdealIndex == NumIdealInits && PrevInit) {
2057      Sema::SemaDiagnosticBuilder D =
2058        SemaRef.Diag(PrevInit->getSourceLocation(),
2059                     diag::warn_initializer_out_of_order);
2060
2061      if (PrevInit->isMemberInitializer())
2062        D << 0 << PrevInit->getMember()->getDeclName();
2063      else
2064        D << 1 << PrevInit->getBaseClassInfo()->getType();
2065
2066      if (Init->isMemberInitializer())
2067        D << 0 << Init->getMember()->getDeclName();
2068      else
2069        D << 1 << Init->getBaseClassInfo()->getType();
2070
2071      // Move back to the initializer's location in the ideal list.
2072      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2073        if (InitKey == IdealInitKeys[IdealIndex])
2074          break;
2075
2076      assert(IdealIndex != NumIdealInits &&
2077             "initializer not found in initializer list");
2078    }
2079
2080    PrevInit = Init;
2081  }
2082}
2083
2084namespace {
2085bool CheckRedundantInit(Sema &S,
2086                        CXXBaseOrMemberInitializer *Init,
2087                        CXXBaseOrMemberInitializer *&PrevInit) {
2088  if (!PrevInit) {
2089    PrevInit = Init;
2090    return false;
2091  }
2092
2093  if (FieldDecl *Field = Init->getMember())
2094    S.Diag(Init->getSourceLocation(),
2095           diag::err_multiple_mem_initialization)
2096      << Field->getDeclName()
2097      << Init->getSourceRange();
2098  else {
2099    Type *BaseClass = Init->getBaseClass();
2100    assert(BaseClass && "neither field nor base");
2101    S.Diag(Init->getSourceLocation(),
2102           diag::err_multiple_base_initialization)
2103      << QualType(BaseClass, 0)
2104      << Init->getSourceRange();
2105  }
2106  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2107    << 0 << PrevInit->getSourceRange();
2108
2109  return true;
2110}
2111
2112typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2113typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2114
2115bool CheckRedundantUnionInit(Sema &S,
2116                             CXXBaseOrMemberInitializer *Init,
2117                             RedundantUnionMap &Unions) {
2118  FieldDecl *Field = Init->getMember();
2119  RecordDecl *Parent = Field->getParent();
2120  if (!Parent->isAnonymousStructOrUnion())
2121    return false;
2122
2123  NamedDecl *Child = Field;
2124  do {
2125    if (Parent->isUnion()) {
2126      UnionEntry &En = Unions[Parent];
2127      if (En.first && En.first != Child) {
2128        S.Diag(Init->getSourceLocation(),
2129               diag::err_multiple_mem_union_initialization)
2130          << Field->getDeclName()
2131          << Init->getSourceRange();
2132        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2133          << 0 << En.second->getSourceRange();
2134        return true;
2135      } else if (!En.first) {
2136        En.first = Child;
2137        En.second = Init;
2138      }
2139    }
2140
2141    Child = Parent;
2142    Parent = cast<RecordDecl>(Parent->getDeclContext());
2143  } while (Parent->isAnonymousStructOrUnion());
2144
2145  return false;
2146}
2147}
2148
2149/// ActOnMemInitializers - Handle the member initializers for a constructor.
2150void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
2151                                SourceLocation ColonLoc,
2152                                MemInitTy **meminits, unsigned NumMemInits,
2153                                bool AnyErrors) {
2154  if (!ConstructorDecl)
2155    return;
2156
2157  AdjustDeclIfTemplate(ConstructorDecl);
2158
2159  CXXConstructorDecl *Constructor
2160    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
2161
2162  if (!Constructor) {
2163    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2164    return;
2165  }
2166
2167  CXXBaseOrMemberInitializer **MemInits =
2168    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2169
2170  // Mapping for the duplicate initializers check.
2171  // For member initializers, this is keyed with a FieldDecl*.
2172  // For base initializers, this is keyed with a Type*.
2173  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2174
2175  // Mapping for the inconsistent anonymous-union initializers check.
2176  RedundantUnionMap MemberUnions;
2177
2178  bool HadError = false;
2179  for (unsigned i = 0; i < NumMemInits; i++) {
2180    CXXBaseOrMemberInitializer *Init = MemInits[i];
2181
2182    // Set the source order index.
2183    Init->setSourceOrder(i);
2184
2185    if (Init->isMemberInitializer()) {
2186      FieldDecl *Field = Init->getMember();
2187      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2188          CheckRedundantUnionInit(*this, Init, MemberUnions))
2189        HadError = true;
2190    } else {
2191      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2192      if (CheckRedundantInit(*this, Init, Members[Key]))
2193        HadError = true;
2194    }
2195  }
2196
2197  if (HadError)
2198    return;
2199
2200  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2201
2202  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2203}
2204
2205void
2206Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2207                                             CXXRecordDecl *ClassDecl) {
2208  // Ignore dependent contexts.
2209  if (ClassDecl->isDependentContext())
2210    return;
2211
2212  // FIXME: all the access-control diagnostics are positioned on the
2213  // field/base declaration.  That's probably good; that said, the
2214  // user might reasonably want to know why the destructor is being
2215  // emitted, and we currently don't say.
2216
2217  // Non-static data members.
2218  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2219       E = ClassDecl->field_end(); I != E; ++I) {
2220    FieldDecl *Field = *I;
2221    if (Field->isInvalidDecl())
2222      continue;
2223    QualType FieldType = Context.getBaseElementType(Field->getType());
2224
2225    const RecordType* RT = FieldType->getAs<RecordType>();
2226    if (!RT)
2227      continue;
2228
2229    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2230    if (FieldClassDecl->hasTrivialDestructor())
2231      continue;
2232
2233    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2234    CheckDestructorAccess(Field->getLocation(), Dtor,
2235                          PDiag(diag::err_access_dtor_field)
2236                            << Field->getDeclName()
2237                            << FieldType);
2238
2239    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2240  }
2241
2242  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2243
2244  // Bases.
2245  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2246       E = ClassDecl->bases_end(); Base != E; ++Base) {
2247    // Bases are always records in a well-formed non-dependent class.
2248    const RecordType *RT = Base->getType()->getAs<RecordType>();
2249
2250    // Remember direct virtual bases.
2251    if (Base->isVirtual())
2252      DirectVirtualBases.insert(RT);
2253
2254    // Ignore trivial destructors.
2255    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2256    if (BaseClassDecl->hasTrivialDestructor())
2257      continue;
2258
2259    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2260
2261    // FIXME: caret should be on the start of the class name
2262    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2263                          PDiag(diag::err_access_dtor_base)
2264                            << Base->getType()
2265                            << Base->getSourceRange());
2266
2267    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2268  }
2269
2270  // Virtual bases.
2271  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2272       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2273
2274    // Bases are always records in a well-formed non-dependent class.
2275    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2276
2277    // Ignore direct virtual bases.
2278    if (DirectVirtualBases.count(RT))
2279      continue;
2280
2281    // Ignore trivial destructors.
2282    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2283    if (BaseClassDecl->hasTrivialDestructor())
2284      continue;
2285
2286    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2287    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2288                          PDiag(diag::err_access_dtor_vbase)
2289                            << VBase->getType());
2290
2291    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2292  }
2293}
2294
2295void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
2296  if (!CDtorDecl)
2297    return;
2298
2299  if (CXXConstructorDecl *Constructor
2300      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
2301    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2302}
2303
2304bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2305                                  unsigned DiagID, AbstractDiagSelID SelID,
2306                                  const CXXRecordDecl *CurrentRD) {
2307  if (SelID == -1)
2308    return RequireNonAbstractType(Loc, T,
2309                                  PDiag(DiagID), CurrentRD);
2310  else
2311    return RequireNonAbstractType(Loc, T,
2312                                  PDiag(DiagID) << SelID, CurrentRD);
2313}
2314
2315bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2316                                  const PartialDiagnostic &PD,
2317                                  const CXXRecordDecl *CurrentRD) {
2318  if (!getLangOptions().CPlusPlus)
2319    return false;
2320
2321  if (const ArrayType *AT = Context.getAsArrayType(T))
2322    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2323                                  CurrentRD);
2324
2325  if (const PointerType *PT = T->getAs<PointerType>()) {
2326    // Find the innermost pointer type.
2327    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2328      PT = T;
2329
2330    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2331      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2332  }
2333
2334  const RecordType *RT = T->getAs<RecordType>();
2335  if (!RT)
2336    return false;
2337
2338  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2339
2340  if (CurrentRD && CurrentRD != RD)
2341    return false;
2342
2343  // FIXME: is this reasonable?  It matches current behavior, but....
2344  if (!RD->getDefinition())
2345    return false;
2346
2347  if (!RD->isAbstract())
2348    return false;
2349
2350  Diag(Loc, PD) << RD->getDeclName();
2351
2352  // Check if we've already emitted the list of pure virtual functions for this
2353  // class.
2354  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2355    return true;
2356
2357  CXXFinalOverriderMap FinalOverriders;
2358  RD->getFinalOverriders(FinalOverriders);
2359
2360  // Keep a set of seen pure methods so we won't diagnose the same method
2361  // more than once.
2362  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2363
2364  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2365                                   MEnd = FinalOverriders.end();
2366       M != MEnd;
2367       ++M) {
2368    for (OverridingMethods::iterator SO = M->second.begin(),
2369                                  SOEnd = M->second.end();
2370         SO != SOEnd; ++SO) {
2371      // C++ [class.abstract]p4:
2372      //   A class is abstract if it contains or inherits at least one
2373      //   pure virtual function for which the final overrider is pure
2374      //   virtual.
2375
2376      //
2377      if (SO->second.size() != 1)
2378        continue;
2379
2380      if (!SO->second.front().Method->isPure())
2381        continue;
2382
2383      if (!SeenPureMethods.insert(SO->second.front().Method))
2384        continue;
2385
2386      Diag(SO->second.front().Method->getLocation(),
2387           diag::note_pure_virtual_function)
2388        << SO->second.front().Method->getDeclName();
2389    }
2390  }
2391
2392  if (!PureVirtualClassDiagSet)
2393    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2394  PureVirtualClassDiagSet->insert(RD);
2395
2396  return true;
2397}
2398
2399namespace {
2400  class AbstractClassUsageDiagnoser
2401    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2402    Sema &SemaRef;
2403    CXXRecordDecl *AbstractClass;
2404
2405    bool VisitDeclContext(const DeclContext *DC) {
2406      bool Invalid = false;
2407
2408      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2409           E = DC->decls_end(); I != E; ++I)
2410        Invalid |= Visit(*I);
2411
2412      return Invalid;
2413    }
2414
2415  public:
2416    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2417      : SemaRef(SemaRef), AbstractClass(ac) {
2418        Visit(SemaRef.Context.getTranslationUnitDecl());
2419    }
2420
2421    bool VisitFunctionDecl(const FunctionDecl *FD) {
2422      if (FD->isThisDeclarationADefinition()) {
2423        // No need to do the check if we're in a definition, because it requires
2424        // that the return/param types are complete.
2425        // because that requires
2426        return VisitDeclContext(FD);
2427      }
2428
2429      // Check the return type.
2430      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2431      bool Invalid =
2432        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2433                                       diag::err_abstract_type_in_decl,
2434                                       Sema::AbstractReturnType,
2435                                       AbstractClass);
2436
2437      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2438           E = FD->param_end(); I != E; ++I) {
2439        const ParmVarDecl *VD = *I;
2440        Invalid |=
2441          SemaRef.RequireNonAbstractType(VD->getLocation(),
2442                                         VD->getOriginalType(),
2443                                         diag::err_abstract_type_in_decl,
2444                                         Sema::AbstractParamType,
2445                                         AbstractClass);
2446      }
2447
2448      return Invalid;
2449    }
2450
2451    bool VisitDecl(const Decl* D) {
2452      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2453        return VisitDeclContext(DC);
2454
2455      return false;
2456    }
2457  };
2458}
2459
2460/// \brief Perform semantic checks on a class definition that has been
2461/// completing, introducing implicitly-declared members, checking for
2462/// abstract types, etc.
2463void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2464  if (!Record || Record->isInvalidDecl())
2465    return;
2466
2467  if (!Record->isDependentType())
2468    AddImplicitlyDeclaredMembersToClass(Record);
2469
2470  if (Record->isInvalidDecl())
2471    return;
2472
2473  // Set access bits correctly on the directly-declared conversions.
2474  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2475  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2476    Convs->setAccess(I, (*I)->getAccess());
2477
2478  // Determine whether we need to check for final overriders. We do
2479  // this either when there are virtual base classes (in which case we
2480  // may end up finding multiple final overriders for a given virtual
2481  // function) or any of the base classes is abstract (in which case
2482  // we might detect that this class is abstract).
2483  bool CheckFinalOverriders = false;
2484  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2485      !Record->isDependentType()) {
2486    if (Record->getNumVBases())
2487      CheckFinalOverriders = true;
2488    else if (!Record->isAbstract()) {
2489      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2490                                                 BEnd = Record->bases_end();
2491           B != BEnd; ++B) {
2492        CXXRecordDecl *BaseDecl
2493          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2494        if (BaseDecl->isAbstract()) {
2495          CheckFinalOverriders = true;
2496          break;
2497        }
2498      }
2499    }
2500  }
2501
2502  if (CheckFinalOverriders) {
2503    CXXFinalOverriderMap FinalOverriders;
2504    Record->getFinalOverriders(FinalOverriders);
2505
2506    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2507                                     MEnd = FinalOverriders.end();
2508         M != MEnd; ++M) {
2509      for (OverridingMethods::iterator SO = M->second.begin(),
2510                                    SOEnd = M->second.end();
2511           SO != SOEnd; ++SO) {
2512        assert(SO->second.size() > 0 &&
2513               "All virtual functions have overridding virtual functions");
2514        if (SO->second.size() == 1) {
2515          // C++ [class.abstract]p4:
2516          //   A class is abstract if it contains or inherits at least one
2517          //   pure virtual function for which the final overrider is pure
2518          //   virtual.
2519          if (SO->second.front().Method->isPure())
2520            Record->setAbstract(true);
2521          continue;
2522        }
2523
2524        // C++ [class.virtual]p2:
2525        //   In a derived class, if a virtual member function of a base
2526        //   class subobject has more than one final overrider the
2527        //   program is ill-formed.
2528        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2529          << (NamedDecl *)M->first << Record;
2530        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2531        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2532                                                 OMEnd = SO->second.end();
2533             OM != OMEnd; ++OM)
2534          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2535            << (NamedDecl *)M->first << OM->Method->getParent();
2536
2537        Record->setInvalidDecl();
2538      }
2539    }
2540  }
2541
2542  if (Record->isAbstract() && !Record->isInvalidDecl())
2543    (void)AbstractClassUsageDiagnoser(*this, Record);
2544
2545  // If this is not an aggregate type and has no user-declared constructor,
2546  // complain about any non-static data members of reference or const scalar
2547  // type, since they will never get initializers.
2548  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2549      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2550    bool Complained = false;
2551    for (RecordDecl::field_iterator F = Record->field_begin(),
2552                                 FEnd = Record->field_end();
2553         F != FEnd; ++F) {
2554      if (F->getType()->isReferenceType() ||
2555          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2556        if (!Complained) {
2557          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2558            << Record->getTagKind() << Record;
2559          Complained = true;
2560        }
2561
2562        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2563          << F->getType()->isReferenceType()
2564          << F->getDeclName();
2565      }
2566    }
2567  }
2568
2569  if (Record->isDynamicClass())
2570    DynamicClasses.push_back(Record);
2571}
2572
2573void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2574                                             DeclPtrTy TagDecl,
2575                                             SourceLocation LBrac,
2576                                             SourceLocation RBrac,
2577                                             AttributeList *AttrList) {
2578  if (!TagDecl)
2579    return;
2580
2581  AdjustDeclIfTemplate(TagDecl);
2582
2583  ActOnFields(S, RLoc, TagDecl,
2584              (DeclPtrTy*)FieldCollector->getCurFields(),
2585              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2586
2587  CheckCompletedCXXClass(
2588                        dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2589}
2590
2591namespace {
2592  /// \brief Helper class that collects exception specifications for
2593  /// implicitly-declared special member functions.
2594  class ImplicitExceptionSpecification {
2595    ASTContext &Context;
2596    bool AllowsAllExceptions;
2597    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2598    llvm::SmallVector<QualType, 4> Exceptions;
2599
2600  public:
2601    explicit ImplicitExceptionSpecification(ASTContext &Context)
2602      : Context(Context), AllowsAllExceptions(false) { }
2603
2604    /// \brief Whether the special member function should have any
2605    /// exception specification at all.
2606    bool hasExceptionSpecification() const {
2607      return !AllowsAllExceptions;
2608    }
2609
2610    /// \brief Whether the special member function should have a
2611    /// throw(...) exception specification (a Microsoft extension).
2612    bool hasAnyExceptionSpecification() const {
2613      return false;
2614    }
2615
2616    /// \brief The number of exceptions in the exception specification.
2617    unsigned size() const { return Exceptions.size(); }
2618
2619    /// \brief The set of exceptions in the exception specification.
2620    const QualType *data() const { return Exceptions.data(); }
2621
2622    /// \brief Note that
2623    void CalledDecl(CXXMethodDecl *Method) {
2624      // If we already know that we allow all exceptions, do nothing.
2625      if (AllowsAllExceptions || !Method)
2626        return;
2627
2628      const FunctionProtoType *Proto
2629        = Method->getType()->getAs<FunctionProtoType>();
2630
2631      // If this function can throw any exceptions, make a note of that.
2632      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2633        AllowsAllExceptions = true;
2634        ExceptionsSeen.clear();
2635        Exceptions.clear();
2636        return;
2637      }
2638
2639      // Record the exceptions in this function's exception specification.
2640      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2641                                              EEnd = Proto->exception_end();
2642           E != EEnd; ++E)
2643        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2644          Exceptions.push_back(*E);
2645    }
2646  };
2647}
2648
2649
2650/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2651/// special functions, such as the default constructor, copy
2652/// constructor, or destructor, to the given C++ class (C++
2653/// [special]p1).  This routine can only be executed just before the
2654/// definition of the class is complete.
2655void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2656  if (!ClassDecl->hasUserDeclaredConstructor())
2657    ++ASTContext::NumImplicitDefaultConstructors;
2658
2659  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2660    ++ASTContext::NumImplicitCopyConstructors;
2661
2662  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2663    ++ASTContext::NumImplicitCopyAssignmentOperators;
2664
2665    // If we have a dynamic class, then the copy assignment operator may be
2666    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2667    // it shows up in the right place in the vtable and that we diagnose
2668    // problems with the implicit exception specification.
2669    if (ClassDecl->isDynamicClass())
2670      DeclareImplicitCopyAssignment(ClassDecl);
2671  }
2672
2673  if (!ClassDecl->hasUserDeclaredDestructor()) {
2674    ++ASTContext::NumImplicitDestructors;
2675
2676    // If we have a dynamic class, then the destructor may be virtual, so we
2677    // have to declare the destructor immediately. This ensures that, e.g., it
2678    // shows up in the right place in the vtable and that we diagnose problems
2679    // with the implicit exception specification.
2680    if (ClassDecl->isDynamicClass())
2681      DeclareImplicitDestructor(ClassDecl);
2682  }
2683}
2684
2685void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2686  Decl *D = TemplateD.getAs<Decl>();
2687  if (!D)
2688    return;
2689
2690  TemplateParameterList *Params = 0;
2691  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2692    Params = Template->getTemplateParameters();
2693  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2694           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2695    Params = PartialSpec->getTemplateParameters();
2696  else
2697    return;
2698
2699  for (TemplateParameterList::iterator Param = Params->begin(),
2700                                    ParamEnd = Params->end();
2701       Param != ParamEnd; ++Param) {
2702    NamedDecl *Named = cast<NamedDecl>(*Param);
2703    if (Named->getDeclName()) {
2704      S->AddDecl(DeclPtrTy::make(Named));
2705      IdResolver.AddDecl(Named);
2706    }
2707  }
2708}
2709
2710void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2711  if (!RecordD) return;
2712  AdjustDeclIfTemplate(RecordD);
2713  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2714  PushDeclContext(S, Record);
2715}
2716
2717void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2718  if (!RecordD) return;
2719  PopDeclContext();
2720}
2721
2722/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2723/// parsing a top-level (non-nested) C++ class, and we are now
2724/// parsing those parts of the given Method declaration that could
2725/// not be parsed earlier (C++ [class.mem]p2), such as default
2726/// arguments. This action should enter the scope of the given
2727/// Method declaration as if we had just parsed the qualified method
2728/// name. However, it should not bring the parameters into scope;
2729/// that will be performed by ActOnDelayedCXXMethodParameter.
2730void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2731}
2732
2733/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2734/// C++ method declaration. We're (re-)introducing the given
2735/// function parameter into scope for use in parsing later parts of
2736/// the method declaration. For example, we could see an
2737/// ActOnParamDefaultArgument event for this parameter.
2738void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2739  if (!ParamD)
2740    return;
2741
2742  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2743
2744  // If this parameter has an unparsed default argument, clear it out
2745  // to make way for the parsed default argument.
2746  if (Param->hasUnparsedDefaultArg())
2747    Param->setDefaultArg(0);
2748
2749  S->AddDecl(DeclPtrTy::make(Param));
2750  if (Param->getDeclName())
2751    IdResolver.AddDecl(Param);
2752}
2753
2754/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2755/// processing the delayed method declaration for Method. The method
2756/// declaration is now considered finished. There may be a separate
2757/// ActOnStartOfFunctionDef action later (not necessarily
2758/// immediately!) for this method, if it was also defined inside the
2759/// class body.
2760void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2761  if (!MethodD)
2762    return;
2763
2764  AdjustDeclIfTemplate(MethodD);
2765
2766  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2767
2768  // Now that we have our default arguments, check the constructor
2769  // again. It could produce additional diagnostics or affect whether
2770  // the class has implicitly-declared destructors, among other
2771  // things.
2772  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2773    CheckConstructor(Constructor);
2774
2775  // Check the default arguments, which we may have added.
2776  if (!Method->isInvalidDecl())
2777    CheckCXXDefaultArguments(Method);
2778}
2779
2780/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2781/// the well-formedness of the constructor declarator @p D with type @p
2782/// R. If there are any errors in the declarator, this routine will
2783/// emit diagnostics and set the invalid bit to true.  In any case, the type
2784/// will be updated to reflect a well-formed type for the constructor and
2785/// returned.
2786QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2787                                          FunctionDecl::StorageClass &SC) {
2788  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2789
2790  // C++ [class.ctor]p3:
2791  //   A constructor shall not be virtual (10.3) or static (9.4). A
2792  //   constructor can be invoked for a const, volatile or const
2793  //   volatile object. A constructor shall not be declared const,
2794  //   volatile, or const volatile (9.3.2).
2795  if (isVirtual) {
2796    if (!D.isInvalidType())
2797      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2798        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2799        << SourceRange(D.getIdentifierLoc());
2800    D.setInvalidType();
2801  }
2802  if (SC == FunctionDecl::Static) {
2803    if (!D.isInvalidType())
2804      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2805        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2806        << SourceRange(D.getIdentifierLoc());
2807    D.setInvalidType();
2808    SC = FunctionDecl::None;
2809  }
2810
2811  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2812  if (FTI.TypeQuals != 0) {
2813    if (FTI.TypeQuals & Qualifiers::Const)
2814      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2815        << "const" << SourceRange(D.getIdentifierLoc());
2816    if (FTI.TypeQuals & Qualifiers::Volatile)
2817      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2818        << "volatile" << SourceRange(D.getIdentifierLoc());
2819    if (FTI.TypeQuals & Qualifiers::Restrict)
2820      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2821        << "restrict" << SourceRange(D.getIdentifierLoc());
2822  }
2823
2824  // Rebuild the function type "R" without any type qualifiers (in
2825  // case any of the errors above fired) and with "void" as the
2826  // return type, since constructors don't have return types.
2827  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2828  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2829                                 Proto->getNumArgs(),
2830                                 Proto->isVariadic(), 0,
2831                                 Proto->hasExceptionSpec(),
2832                                 Proto->hasAnyExceptionSpec(),
2833                                 Proto->getNumExceptions(),
2834                                 Proto->exception_begin(),
2835                                 Proto->getExtInfo());
2836}
2837
2838/// CheckConstructor - Checks a fully-formed constructor for
2839/// well-formedness, issuing any diagnostics required. Returns true if
2840/// the constructor declarator is invalid.
2841void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2842  CXXRecordDecl *ClassDecl
2843    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2844  if (!ClassDecl)
2845    return Constructor->setInvalidDecl();
2846
2847  // C++ [class.copy]p3:
2848  //   A declaration of a constructor for a class X is ill-formed if
2849  //   its first parameter is of type (optionally cv-qualified) X and
2850  //   either there are no other parameters or else all other
2851  //   parameters have default arguments.
2852  if (!Constructor->isInvalidDecl() &&
2853      ((Constructor->getNumParams() == 1) ||
2854       (Constructor->getNumParams() > 1 &&
2855        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2856      Constructor->getTemplateSpecializationKind()
2857                                              != TSK_ImplicitInstantiation) {
2858    QualType ParamType = Constructor->getParamDecl(0)->getType();
2859    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2860    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2861      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2862      const char *ConstRef
2863        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
2864                                                        : " const &";
2865      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2866        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
2867
2868      // FIXME: Rather that making the constructor invalid, we should endeavor
2869      // to fix the type.
2870      Constructor->setInvalidDecl();
2871    }
2872  }
2873
2874  // Notify the class that we've added a constructor.  In principle we
2875  // don't need to do this for out-of-line declarations; in practice
2876  // we only instantiate the most recent declaration of a method, so
2877  // we have to call this for everything but friends.
2878  if (!Constructor->getFriendObjectKind())
2879    ClassDecl->addedConstructor(Context, Constructor);
2880}
2881
2882/// CheckDestructor - Checks a fully-formed destructor definition for
2883/// well-formedness, issuing any diagnostics required.  Returns true
2884/// on error.
2885bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2886  CXXRecordDecl *RD = Destructor->getParent();
2887
2888  if (Destructor->isVirtual()) {
2889    SourceLocation Loc;
2890
2891    if (!Destructor->isImplicit())
2892      Loc = Destructor->getLocation();
2893    else
2894      Loc = RD->getLocation();
2895
2896    // If we have a virtual destructor, look up the deallocation function
2897    FunctionDecl *OperatorDelete = 0;
2898    DeclarationName Name =
2899    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2900    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2901      return true;
2902
2903    MarkDeclarationReferenced(Loc, OperatorDelete);
2904
2905    Destructor->setOperatorDelete(OperatorDelete);
2906  }
2907
2908  return false;
2909}
2910
2911static inline bool
2912FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2913  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2914          FTI.ArgInfo[0].Param &&
2915          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2916}
2917
2918/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2919/// the well-formednes of the destructor declarator @p D with type @p
2920/// R. If there are any errors in the declarator, this routine will
2921/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2922/// will be updated to reflect a well-formed type for the destructor and
2923/// returned.
2924QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
2925                                         FunctionDecl::StorageClass& SC) {
2926  // C++ [class.dtor]p1:
2927  //   [...] A typedef-name that names a class is a class-name
2928  //   (7.1.3); however, a typedef-name that names a class shall not
2929  //   be used as the identifier in the declarator for a destructor
2930  //   declaration.
2931  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2932  if (isa<TypedefType>(DeclaratorType))
2933    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2934      << DeclaratorType;
2935
2936  // C++ [class.dtor]p2:
2937  //   A destructor is used to destroy objects of its class type. A
2938  //   destructor takes no parameters, and no return type can be
2939  //   specified for it (not even void). The address of a destructor
2940  //   shall not be taken. A destructor shall not be static. A
2941  //   destructor can be invoked for a const, volatile or const
2942  //   volatile object. A destructor shall not be declared const,
2943  //   volatile or const volatile (9.3.2).
2944  if (SC == FunctionDecl::Static) {
2945    if (!D.isInvalidType())
2946      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2947        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2948        << SourceRange(D.getIdentifierLoc())
2949        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2950
2951    SC = FunctionDecl::None;
2952  }
2953  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2954    // Destructors don't have return types, but the parser will
2955    // happily parse something like:
2956    //
2957    //   class X {
2958    //     float ~X();
2959    //   };
2960    //
2961    // The return type will be eliminated later.
2962    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2963      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2964      << SourceRange(D.getIdentifierLoc());
2965  }
2966
2967  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2968  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2969    if (FTI.TypeQuals & Qualifiers::Const)
2970      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2971        << "const" << SourceRange(D.getIdentifierLoc());
2972    if (FTI.TypeQuals & Qualifiers::Volatile)
2973      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2974        << "volatile" << SourceRange(D.getIdentifierLoc());
2975    if (FTI.TypeQuals & Qualifiers::Restrict)
2976      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2977        << "restrict" << SourceRange(D.getIdentifierLoc());
2978    D.setInvalidType();
2979  }
2980
2981  // Make sure we don't have any parameters.
2982  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2983    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2984
2985    // Delete the parameters.
2986    FTI.freeArgs();
2987    D.setInvalidType();
2988  }
2989
2990  // Make sure the destructor isn't variadic.
2991  if (FTI.isVariadic) {
2992    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2993    D.setInvalidType();
2994  }
2995
2996  // Rebuild the function type "R" without any type qualifiers or
2997  // parameters (in case any of the errors above fired) and with
2998  // "void" as the return type, since destructors don't have return
2999  // types.
3000  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3001  if (!Proto)
3002    return QualType();
3003
3004  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
3005                                 Proto->hasExceptionSpec(),
3006                                 Proto->hasAnyExceptionSpec(),
3007                                 Proto->getNumExceptions(),
3008                                 Proto->exception_begin(),
3009                                 Proto->getExtInfo());
3010}
3011
3012/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3013/// well-formednes of the conversion function declarator @p D with
3014/// type @p R. If there are any errors in the declarator, this routine
3015/// will emit diagnostics and return true. Otherwise, it will return
3016/// false. Either way, the type @p R will be updated to reflect a
3017/// well-formed type for the conversion operator.
3018void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3019                                     FunctionDecl::StorageClass& SC) {
3020  // C++ [class.conv.fct]p1:
3021  //   Neither parameter types nor return type can be specified. The
3022  //   type of a conversion function (8.3.5) is "function taking no
3023  //   parameter returning conversion-type-id."
3024  if (SC == FunctionDecl::Static) {
3025    if (!D.isInvalidType())
3026      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3027        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3028        << SourceRange(D.getIdentifierLoc());
3029    D.setInvalidType();
3030    SC = FunctionDecl::None;
3031  }
3032
3033  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3034
3035  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3036    // Conversion functions don't have return types, but the parser will
3037    // happily parse something like:
3038    //
3039    //   class X {
3040    //     float operator bool();
3041    //   };
3042    //
3043    // The return type will be changed later anyway.
3044    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3045      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3046      << SourceRange(D.getIdentifierLoc());
3047    D.setInvalidType();
3048  }
3049
3050  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3051
3052  // Make sure we don't have any parameters.
3053  if (Proto->getNumArgs() > 0) {
3054    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3055
3056    // Delete the parameters.
3057    D.getTypeObject(0).Fun.freeArgs();
3058    D.setInvalidType();
3059  } else if (Proto->isVariadic()) {
3060    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3061    D.setInvalidType();
3062  }
3063
3064  // Diagnose "&operator bool()" and other such nonsense.  This
3065  // is actually a gcc extension which we don't support.
3066  if (Proto->getResultType() != ConvType) {
3067    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3068      << Proto->getResultType();
3069    D.setInvalidType();
3070    ConvType = Proto->getResultType();
3071  }
3072
3073  // C++ [class.conv.fct]p4:
3074  //   The conversion-type-id shall not represent a function type nor
3075  //   an array type.
3076  if (ConvType->isArrayType()) {
3077    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3078    ConvType = Context.getPointerType(ConvType);
3079    D.setInvalidType();
3080  } else if (ConvType->isFunctionType()) {
3081    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3082    ConvType = Context.getPointerType(ConvType);
3083    D.setInvalidType();
3084  }
3085
3086  // Rebuild the function type "R" without any parameters (in case any
3087  // of the errors above fired) and with the conversion type as the
3088  // return type.
3089  if (D.isInvalidType()) {
3090    R = Context.getFunctionType(ConvType, 0, 0, false,
3091                                Proto->getTypeQuals(),
3092                                Proto->hasExceptionSpec(),
3093                                Proto->hasAnyExceptionSpec(),
3094                                Proto->getNumExceptions(),
3095                                Proto->exception_begin(),
3096                                Proto->getExtInfo());
3097  }
3098
3099  // C++0x explicit conversion operators.
3100  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3101    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3102         diag::warn_explicit_conversion_functions)
3103      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3104}
3105
3106/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3107/// the declaration of the given C++ conversion function. This routine
3108/// is responsible for recording the conversion function in the C++
3109/// class, if possible.
3110Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3111  assert(Conversion && "Expected to receive a conversion function declaration");
3112
3113  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3114
3115  // Make sure we aren't redeclaring the conversion function.
3116  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3117
3118  // C++ [class.conv.fct]p1:
3119  //   [...] A conversion function is never used to convert a
3120  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3121  //   same object type (or a reference to it), to a (possibly
3122  //   cv-qualified) base class of that type (or a reference to it),
3123  //   or to (possibly cv-qualified) void.
3124  // FIXME: Suppress this warning if the conversion function ends up being a
3125  // virtual function that overrides a virtual function in a base class.
3126  QualType ClassType
3127    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3128  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3129    ConvType = ConvTypeRef->getPointeeType();
3130  if (ConvType->isRecordType()) {
3131    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3132    if (ConvType == ClassType)
3133      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3134        << ClassType;
3135    else if (IsDerivedFrom(ClassType, ConvType))
3136      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3137        <<  ClassType << ConvType;
3138  } else if (ConvType->isVoidType()) {
3139    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3140      << ClassType << ConvType;
3141  }
3142
3143  if (Conversion->getPrimaryTemplate()) {
3144    // ignore specializations
3145  } else if (Conversion->getPreviousDeclaration()) {
3146    if (FunctionTemplateDecl *ConversionTemplate
3147                                  = Conversion->getDescribedFunctionTemplate()) {
3148      if (ClassDecl->replaceConversion(
3149                                   ConversionTemplate->getPreviousDeclaration(),
3150                                       ConversionTemplate))
3151        return DeclPtrTy::make(ConversionTemplate);
3152    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3153                                            Conversion))
3154      return DeclPtrTy::make(Conversion);
3155    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3156  } else if (FunctionTemplateDecl *ConversionTemplate
3157               = Conversion->getDescribedFunctionTemplate())
3158    ClassDecl->addConversionFunction(ConversionTemplate);
3159  else
3160    ClassDecl->addConversionFunction(Conversion);
3161
3162  return DeclPtrTy::make(Conversion);
3163}
3164
3165//===----------------------------------------------------------------------===//
3166// Namespace Handling
3167//===----------------------------------------------------------------------===//
3168
3169/// ActOnStartNamespaceDef - This is called at the start of a namespace
3170/// definition.
3171Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3172                                             SourceLocation IdentLoc,
3173                                             IdentifierInfo *II,
3174                                             SourceLocation LBrace,
3175                                             AttributeList *AttrList) {
3176  NamespaceDecl *Namespc =
3177      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
3178  Namespc->setLBracLoc(LBrace);
3179
3180  Scope *DeclRegionScope = NamespcScope->getParent();
3181
3182  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3183
3184  if (const VisibilityAttr *attr = Namespc->getAttr<VisibilityAttr>())
3185    PushPragmaVisibility(attr->getVisibility());
3186
3187  if (II) {
3188    // C++ [namespace.def]p2:
3189    // The identifier in an original-namespace-definition shall not have been
3190    // previously defined in the declarative region in which the
3191    // original-namespace-definition appears. The identifier in an
3192    // original-namespace-definition is the name of the namespace. Subsequently
3193    // in that declarative region, it is treated as an original-namespace-name.
3194
3195    NamedDecl *PrevDecl
3196      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3197                         ForRedeclaration);
3198
3199    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3200      // This is an extended namespace definition.
3201      // Attach this namespace decl to the chain of extended namespace
3202      // definitions.
3203      OrigNS->setNextNamespace(Namespc);
3204      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3205
3206      // Remove the previous declaration from the scope.
3207      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3208        IdResolver.RemoveDecl(OrigNS);
3209        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3210      }
3211    } else if (PrevDecl) {
3212      // This is an invalid name redefinition.
3213      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3214       << Namespc->getDeclName();
3215      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3216      Namespc->setInvalidDecl();
3217      // Continue on to push Namespc as current DeclContext and return it.
3218    } else if (II->isStr("std") &&
3219               CurContext->getLookupContext()->isTranslationUnit()) {
3220      // This is the first "real" definition of the namespace "std", so update
3221      // our cache of the "std" namespace to point at this definition.
3222      if (NamespaceDecl *StdNS = getStdNamespace()) {
3223        // We had already defined a dummy namespace "std". Link this new
3224        // namespace definition to the dummy namespace "std".
3225        StdNS->setNextNamespace(Namespc);
3226        StdNS->setLocation(IdentLoc);
3227        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3228      }
3229
3230      // Make our StdNamespace cache point at the first real definition of the
3231      // "std" namespace.
3232      StdNamespace = Namespc;
3233    }
3234
3235    PushOnScopeChains(Namespc, DeclRegionScope);
3236  } else {
3237    // Anonymous namespaces.
3238    assert(Namespc->isAnonymousNamespace());
3239
3240    // Link the anonymous namespace into its parent.
3241    NamespaceDecl *PrevDecl;
3242    DeclContext *Parent = CurContext->getLookupContext();
3243    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3244      PrevDecl = TU->getAnonymousNamespace();
3245      TU->setAnonymousNamespace(Namespc);
3246    } else {
3247      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3248      PrevDecl = ND->getAnonymousNamespace();
3249      ND->setAnonymousNamespace(Namespc);
3250    }
3251
3252    // Link the anonymous namespace with its previous declaration.
3253    if (PrevDecl) {
3254      assert(PrevDecl->isAnonymousNamespace());
3255      assert(!PrevDecl->getNextNamespace());
3256      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3257      PrevDecl->setNextNamespace(Namespc);
3258    }
3259
3260    CurContext->addDecl(Namespc);
3261
3262    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3263    //   behaves as if it were replaced by
3264    //     namespace unique { /* empty body */ }
3265    //     using namespace unique;
3266    //     namespace unique { namespace-body }
3267    //   where all occurrences of 'unique' in a translation unit are
3268    //   replaced by the same identifier and this identifier differs
3269    //   from all other identifiers in the entire program.
3270
3271    // We just create the namespace with an empty name and then add an
3272    // implicit using declaration, just like the standard suggests.
3273    //
3274    // CodeGen enforces the "universally unique" aspect by giving all
3275    // declarations semantically contained within an anonymous
3276    // namespace internal linkage.
3277
3278    if (!PrevDecl) {
3279      UsingDirectiveDecl* UD
3280        = UsingDirectiveDecl::Create(Context, CurContext,
3281                                     /* 'using' */ LBrace,
3282                                     /* 'namespace' */ SourceLocation(),
3283                                     /* qualifier */ SourceRange(),
3284                                     /* NNS */ NULL,
3285                                     /* identifier */ SourceLocation(),
3286                                     Namespc,
3287                                     /* Ancestor */ CurContext);
3288      UD->setImplicit();
3289      CurContext->addDecl(UD);
3290    }
3291  }
3292
3293  // Although we could have an invalid decl (i.e. the namespace name is a
3294  // redefinition), push it as current DeclContext and try to continue parsing.
3295  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3296  // for the namespace has the declarations that showed up in that particular
3297  // namespace definition.
3298  PushDeclContext(NamespcScope, Namespc);
3299  return DeclPtrTy::make(Namespc);
3300}
3301
3302/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3303/// is a namespace alias, returns the namespace it points to.
3304static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3305  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3306    return AD->getNamespace();
3307  return dyn_cast_or_null<NamespaceDecl>(D);
3308}
3309
3310/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3311/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3312void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3313  Decl *Dcl = D.getAs<Decl>();
3314  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3315  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3316  Namespc->setRBracLoc(RBrace);
3317  PopDeclContext();
3318  if (Namespc->hasAttr<VisibilityAttr>())
3319    PopPragmaVisibility();
3320}
3321
3322/// \brief Retrieve the special "std" namespace, which may require us to
3323/// implicitly define the namespace.
3324NamespaceDecl *Sema::getOrCreateStdNamespace() {
3325  if (!StdNamespace) {
3326    // The "std" namespace has not yet been defined, so build one implicitly.
3327    StdNamespace = NamespaceDecl::Create(Context,
3328                                         Context.getTranslationUnitDecl(),
3329                                         SourceLocation(),
3330                                         &PP.getIdentifierTable().get("std"));
3331    getStdNamespace()->setImplicit(true);
3332  }
3333
3334  return getStdNamespace();
3335}
3336
3337Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3338                                          SourceLocation UsingLoc,
3339                                          SourceLocation NamespcLoc,
3340                                          CXXScopeSpec &SS,
3341                                          SourceLocation IdentLoc,
3342                                          IdentifierInfo *NamespcName,
3343                                          AttributeList *AttrList) {
3344  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3345  assert(NamespcName && "Invalid NamespcName.");
3346  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3347  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3348
3349  UsingDirectiveDecl *UDir = 0;
3350  NestedNameSpecifier *Qualifier = 0;
3351  if (SS.isSet())
3352    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3353
3354  // Lookup namespace name.
3355  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3356  LookupParsedName(R, S, &SS);
3357  if (R.isAmbiguous())
3358    return DeclPtrTy();
3359
3360  if (R.empty()) {
3361    // Allow "using namespace std;" or "using namespace ::std;" even if
3362    // "std" hasn't been defined yet, for GCC compatibility.
3363    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3364        NamespcName->isStr("std")) {
3365      Diag(IdentLoc, diag::ext_using_undefined_std);
3366      R.addDecl(getOrCreateStdNamespace());
3367      R.resolveKind();
3368    }
3369    // Otherwise, attempt typo correction.
3370    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3371                                                       CTC_NoKeywords, 0)) {
3372      if (R.getAsSingle<NamespaceDecl>() ||
3373          R.getAsSingle<NamespaceAliasDecl>()) {
3374        if (DeclContext *DC = computeDeclContext(SS, false))
3375          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3376            << NamespcName << DC << Corrected << SS.getRange()
3377            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3378        else
3379          Diag(IdentLoc, diag::err_using_directive_suggest)
3380            << NamespcName << Corrected
3381            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3382        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3383          << Corrected;
3384
3385        NamespcName = Corrected.getAsIdentifierInfo();
3386      } else {
3387        R.clear();
3388        R.setLookupName(NamespcName);
3389      }
3390    }
3391  }
3392
3393  if (!R.empty()) {
3394    NamedDecl *Named = R.getFoundDecl();
3395    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3396        && "expected namespace decl");
3397    // C++ [namespace.udir]p1:
3398    //   A using-directive specifies that the names in the nominated
3399    //   namespace can be used in the scope in which the
3400    //   using-directive appears after the using-directive. During
3401    //   unqualified name lookup (3.4.1), the names appear as if they
3402    //   were declared in the nearest enclosing namespace which
3403    //   contains both the using-directive and the nominated
3404    //   namespace. [Note: in this context, "contains" means "contains
3405    //   directly or indirectly". ]
3406
3407    // Find enclosing context containing both using-directive and
3408    // nominated namespace.
3409    NamespaceDecl *NS = getNamespaceDecl(Named);
3410    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3411    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3412      CommonAncestor = CommonAncestor->getParent();
3413
3414    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3415                                      SS.getRange(),
3416                                      (NestedNameSpecifier *)SS.getScopeRep(),
3417                                      IdentLoc, Named, CommonAncestor);
3418    PushUsingDirective(S, UDir);
3419  } else {
3420    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3421  }
3422
3423  // FIXME: We ignore attributes for now.
3424  delete AttrList;
3425  return DeclPtrTy::make(UDir);
3426}
3427
3428void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3429  // If scope has associated entity, then using directive is at namespace
3430  // or translation unit scope. We add UsingDirectiveDecls, into
3431  // it's lookup structure.
3432  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3433    Ctx->addDecl(UDir);
3434  else
3435    // Otherwise it is block-sope. using-directives will affect lookup
3436    // only to the end of scope.
3437    S->PushUsingDirective(DeclPtrTy::make(UDir));
3438}
3439
3440
3441Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3442                                            AccessSpecifier AS,
3443                                            bool HasUsingKeyword,
3444                                            SourceLocation UsingLoc,
3445                                            CXXScopeSpec &SS,
3446                                            UnqualifiedId &Name,
3447                                            AttributeList *AttrList,
3448                                            bool IsTypeName,
3449                                            SourceLocation TypenameLoc) {
3450  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3451
3452  switch (Name.getKind()) {
3453  case UnqualifiedId::IK_Identifier:
3454  case UnqualifiedId::IK_OperatorFunctionId:
3455  case UnqualifiedId::IK_LiteralOperatorId:
3456  case UnqualifiedId::IK_ConversionFunctionId:
3457    break;
3458
3459  case UnqualifiedId::IK_ConstructorName:
3460  case UnqualifiedId::IK_ConstructorTemplateId:
3461    // C++0x inherited constructors.
3462    if (getLangOptions().CPlusPlus0x) break;
3463
3464    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3465      << SS.getRange();
3466    return DeclPtrTy();
3467
3468  case UnqualifiedId::IK_DestructorName:
3469    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3470      << SS.getRange();
3471    return DeclPtrTy();
3472
3473  case UnqualifiedId::IK_TemplateId:
3474    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3475      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3476    return DeclPtrTy();
3477  }
3478
3479  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3480  if (!TargetName)
3481    return DeclPtrTy();
3482
3483  // Warn about using declarations.
3484  // TODO: store that the declaration was written without 'using' and
3485  // talk about access decls instead of using decls in the
3486  // diagnostics.
3487  if (!HasUsingKeyword) {
3488    UsingLoc = Name.getSourceRange().getBegin();
3489
3490    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3491      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3492  }
3493
3494  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3495                                        Name.getSourceRange().getBegin(),
3496                                        TargetName, AttrList,
3497                                        /* IsInstantiation */ false,
3498                                        IsTypeName, TypenameLoc);
3499  if (UD)
3500    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3501
3502  return DeclPtrTy::make(UD);
3503}
3504
3505/// \brief Determine whether a using declaration considers the given
3506/// declarations as "equivalent", e.g., if they are redeclarations of
3507/// the same entity or are both typedefs of the same type.
3508static bool
3509IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3510                         bool &SuppressRedeclaration) {
3511  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3512    SuppressRedeclaration = false;
3513    return true;
3514  }
3515
3516  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3517    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3518      SuppressRedeclaration = true;
3519      return Context.hasSameType(TD1->getUnderlyingType(),
3520                                 TD2->getUnderlyingType());
3521    }
3522
3523  return false;
3524}
3525
3526
3527/// Determines whether to create a using shadow decl for a particular
3528/// decl, given the set of decls existing prior to this using lookup.
3529bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3530                                const LookupResult &Previous) {
3531  // Diagnose finding a decl which is not from a base class of the
3532  // current class.  We do this now because there are cases where this
3533  // function will silently decide not to build a shadow decl, which
3534  // will pre-empt further diagnostics.
3535  //
3536  // We don't need to do this in C++0x because we do the check once on
3537  // the qualifier.
3538  //
3539  // FIXME: diagnose the following if we care enough:
3540  //   struct A { int foo; };
3541  //   struct B : A { using A::foo; };
3542  //   template <class T> struct C : A {};
3543  //   template <class T> struct D : C<T> { using B::foo; } // <---
3544  // This is invalid (during instantiation) in C++03 because B::foo
3545  // resolves to the using decl in B, which is not a base class of D<T>.
3546  // We can't diagnose it immediately because C<T> is an unknown
3547  // specialization.  The UsingShadowDecl in D<T> then points directly
3548  // to A::foo, which will look well-formed when we instantiate.
3549  // The right solution is to not collapse the shadow-decl chain.
3550  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3551    DeclContext *OrigDC = Orig->getDeclContext();
3552
3553    // Handle enums and anonymous structs.
3554    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3555    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3556    while (OrigRec->isAnonymousStructOrUnion())
3557      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3558
3559    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3560      if (OrigDC == CurContext) {
3561        Diag(Using->getLocation(),
3562             diag::err_using_decl_nested_name_specifier_is_current_class)
3563          << Using->getNestedNameRange();
3564        Diag(Orig->getLocation(), diag::note_using_decl_target);
3565        return true;
3566      }
3567
3568      Diag(Using->getNestedNameRange().getBegin(),
3569           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3570        << Using->getTargetNestedNameDecl()
3571        << cast<CXXRecordDecl>(CurContext)
3572        << Using->getNestedNameRange();
3573      Diag(Orig->getLocation(), diag::note_using_decl_target);
3574      return true;
3575    }
3576  }
3577
3578  if (Previous.empty()) return false;
3579
3580  NamedDecl *Target = Orig;
3581  if (isa<UsingShadowDecl>(Target))
3582    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3583
3584  // If the target happens to be one of the previous declarations, we
3585  // don't have a conflict.
3586  //
3587  // FIXME: but we might be increasing its access, in which case we
3588  // should redeclare it.
3589  NamedDecl *NonTag = 0, *Tag = 0;
3590  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3591         I != E; ++I) {
3592    NamedDecl *D = (*I)->getUnderlyingDecl();
3593    bool Result;
3594    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3595      return Result;
3596
3597    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3598  }
3599
3600  if (Target->isFunctionOrFunctionTemplate()) {
3601    FunctionDecl *FD;
3602    if (isa<FunctionTemplateDecl>(Target))
3603      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3604    else
3605      FD = cast<FunctionDecl>(Target);
3606
3607    NamedDecl *OldDecl = 0;
3608    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3609    case Ovl_Overload:
3610      return false;
3611
3612    case Ovl_NonFunction:
3613      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3614      break;
3615
3616    // We found a decl with the exact signature.
3617    case Ovl_Match:
3618      // If we're in a record, we want to hide the target, so we
3619      // return true (without a diagnostic) to tell the caller not to
3620      // build a shadow decl.
3621      if (CurContext->isRecord())
3622        return true;
3623
3624      // If we're not in a record, this is an error.
3625      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3626      break;
3627    }
3628
3629    Diag(Target->getLocation(), diag::note_using_decl_target);
3630    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3631    return true;
3632  }
3633
3634  // Target is not a function.
3635
3636  if (isa<TagDecl>(Target)) {
3637    // No conflict between a tag and a non-tag.
3638    if (!Tag) return false;
3639
3640    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3641    Diag(Target->getLocation(), diag::note_using_decl_target);
3642    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3643    return true;
3644  }
3645
3646  // No conflict between a tag and a non-tag.
3647  if (!NonTag) return false;
3648
3649  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3650  Diag(Target->getLocation(), diag::note_using_decl_target);
3651  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3652  return true;
3653}
3654
3655/// Builds a shadow declaration corresponding to a 'using' declaration.
3656UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3657                                            UsingDecl *UD,
3658                                            NamedDecl *Orig) {
3659
3660  // If we resolved to another shadow declaration, just coalesce them.
3661  NamedDecl *Target = Orig;
3662  if (isa<UsingShadowDecl>(Target)) {
3663    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3664    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3665  }
3666
3667  UsingShadowDecl *Shadow
3668    = UsingShadowDecl::Create(Context, CurContext,
3669                              UD->getLocation(), UD, Target);
3670  UD->addShadowDecl(Shadow);
3671
3672  if (S)
3673    PushOnScopeChains(Shadow, S);
3674  else
3675    CurContext->addDecl(Shadow);
3676  Shadow->setAccess(UD->getAccess());
3677
3678  // Register it as a conversion if appropriate.
3679  if (Shadow->getDeclName().getNameKind()
3680        == DeclarationName::CXXConversionFunctionName)
3681    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3682
3683  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3684    Shadow->setInvalidDecl();
3685
3686  return Shadow;
3687}
3688
3689/// Hides a using shadow declaration.  This is required by the current
3690/// using-decl implementation when a resolvable using declaration in a
3691/// class is followed by a declaration which would hide or override
3692/// one or more of the using decl's targets; for example:
3693///
3694///   struct Base { void foo(int); };
3695///   struct Derived : Base {
3696///     using Base::foo;
3697///     void foo(int);
3698///   };
3699///
3700/// The governing language is C++03 [namespace.udecl]p12:
3701///
3702///   When a using-declaration brings names from a base class into a
3703///   derived class scope, member functions in the derived class
3704///   override and/or hide member functions with the same name and
3705///   parameter types in a base class (rather than conflicting).
3706///
3707/// There are two ways to implement this:
3708///   (1) optimistically create shadow decls when they're not hidden
3709///       by existing declarations, or
3710///   (2) don't create any shadow decls (or at least don't make them
3711///       visible) until we've fully parsed/instantiated the class.
3712/// The problem with (1) is that we might have to retroactively remove
3713/// a shadow decl, which requires several O(n) operations because the
3714/// decl structures are (very reasonably) not designed for removal.
3715/// (2) avoids this but is very fiddly and phase-dependent.
3716void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3717  if (Shadow->getDeclName().getNameKind() ==
3718        DeclarationName::CXXConversionFunctionName)
3719    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3720
3721  // Remove it from the DeclContext...
3722  Shadow->getDeclContext()->removeDecl(Shadow);
3723
3724  // ...and the scope, if applicable...
3725  if (S) {
3726    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3727    IdResolver.RemoveDecl(Shadow);
3728  }
3729
3730  // ...and the using decl.
3731  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3732
3733  // TODO: complain somehow if Shadow was used.  It shouldn't
3734  // be possible for this to happen, because...?
3735}
3736
3737/// Builds a using declaration.
3738///
3739/// \param IsInstantiation - Whether this call arises from an
3740///   instantiation of an unresolved using declaration.  We treat
3741///   the lookup differently for these declarations.
3742NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3743                                       SourceLocation UsingLoc,
3744                                       CXXScopeSpec &SS,
3745                                       SourceLocation IdentLoc,
3746                                       DeclarationName Name,
3747                                       AttributeList *AttrList,
3748                                       bool IsInstantiation,
3749                                       bool IsTypeName,
3750                                       SourceLocation TypenameLoc) {
3751  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3752  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3753
3754  // FIXME: We ignore attributes for now.
3755  delete AttrList;
3756
3757  if (SS.isEmpty()) {
3758    Diag(IdentLoc, diag::err_using_requires_qualname);
3759    return 0;
3760  }
3761
3762  // Do the redeclaration lookup in the current scope.
3763  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3764                        ForRedeclaration);
3765  Previous.setHideTags(false);
3766  if (S) {
3767    LookupName(Previous, S);
3768
3769    // It is really dumb that we have to do this.
3770    LookupResult::Filter F = Previous.makeFilter();
3771    while (F.hasNext()) {
3772      NamedDecl *D = F.next();
3773      if (!isDeclInScope(D, CurContext, S))
3774        F.erase();
3775    }
3776    F.done();
3777  } else {
3778    assert(IsInstantiation && "no scope in non-instantiation");
3779    assert(CurContext->isRecord() && "scope not record in instantiation");
3780    LookupQualifiedName(Previous, CurContext);
3781  }
3782
3783  NestedNameSpecifier *NNS =
3784    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3785
3786  // Check for invalid redeclarations.
3787  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3788    return 0;
3789
3790  // Check for bad qualifiers.
3791  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3792    return 0;
3793
3794  DeclContext *LookupContext = computeDeclContext(SS);
3795  NamedDecl *D;
3796  if (!LookupContext) {
3797    if (IsTypeName) {
3798      // FIXME: not all declaration name kinds are legal here
3799      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3800                                              UsingLoc, TypenameLoc,
3801                                              SS.getRange(), NNS,
3802                                              IdentLoc, Name);
3803    } else {
3804      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3805                                           UsingLoc, SS.getRange(), NNS,
3806                                           IdentLoc, Name);
3807    }
3808  } else {
3809    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3810                          SS.getRange(), UsingLoc, NNS, Name,
3811                          IsTypeName);
3812  }
3813  D->setAccess(AS);
3814  CurContext->addDecl(D);
3815
3816  if (!LookupContext) return D;
3817  UsingDecl *UD = cast<UsingDecl>(D);
3818
3819  if (RequireCompleteDeclContext(SS, LookupContext)) {
3820    UD->setInvalidDecl();
3821    return UD;
3822  }
3823
3824  // Look up the target name.
3825
3826  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3827
3828  // Unlike most lookups, we don't always want to hide tag
3829  // declarations: tag names are visible through the using declaration
3830  // even if hidden by ordinary names, *except* in a dependent context
3831  // where it's important for the sanity of two-phase lookup.
3832  if (!IsInstantiation)
3833    R.setHideTags(false);
3834
3835  LookupQualifiedName(R, LookupContext);
3836
3837  if (R.empty()) {
3838    Diag(IdentLoc, diag::err_no_member)
3839      << Name << LookupContext << SS.getRange();
3840    UD->setInvalidDecl();
3841    return UD;
3842  }
3843
3844  if (R.isAmbiguous()) {
3845    UD->setInvalidDecl();
3846    return UD;
3847  }
3848
3849  if (IsTypeName) {
3850    // If we asked for a typename and got a non-type decl, error out.
3851    if (!R.getAsSingle<TypeDecl>()) {
3852      Diag(IdentLoc, diag::err_using_typename_non_type);
3853      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3854        Diag((*I)->getUnderlyingDecl()->getLocation(),
3855             diag::note_using_decl_target);
3856      UD->setInvalidDecl();
3857      return UD;
3858    }
3859  } else {
3860    // If we asked for a non-typename and we got a type, error out,
3861    // but only if this is an instantiation of an unresolved using
3862    // decl.  Otherwise just silently find the type name.
3863    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3864      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3865      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3866      UD->setInvalidDecl();
3867      return UD;
3868    }
3869  }
3870
3871  // C++0x N2914 [namespace.udecl]p6:
3872  // A using-declaration shall not name a namespace.
3873  if (R.getAsSingle<NamespaceDecl>()) {
3874    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3875      << SS.getRange();
3876    UD->setInvalidDecl();
3877    return UD;
3878  }
3879
3880  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3881    if (!CheckUsingShadowDecl(UD, *I, Previous))
3882      BuildUsingShadowDecl(S, UD, *I);
3883  }
3884
3885  return UD;
3886}
3887
3888/// Checks that the given using declaration is not an invalid
3889/// redeclaration.  Note that this is checking only for the using decl
3890/// itself, not for any ill-formedness among the UsingShadowDecls.
3891bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3892                                       bool isTypeName,
3893                                       const CXXScopeSpec &SS,
3894                                       SourceLocation NameLoc,
3895                                       const LookupResult &Prev) {
3896  // C++03 [namespace.udecl]p8:
3897  // C++0x [namespace.udecl]p10:
3898  //   A using-declaration is a declaration and can therefore be used
3899  //   repeatedly where (and only where) multiple declarations are
3900  //   allowed.
3901  //
3902  // That's in non-member contexts.
3903  if (!CurContext->getLookupContext()->isRecord())
3904    return false;
3905
3906  NestedNameSpecifier *Qual
3907    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3908
3909  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3910    NamedDecl *D = *I;
3911
3912    bool DTypename;
3913    NestedNameSpecifier *DQual;
3914    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3915      DTypename = UD->isTypeName();
3916      DQual = UD->getTargetNestedNameDecl();
3917    } else if (UnresolvedUsingValueDecl *UD
3918                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3919      DTypename = false;
3920      DQual = UD->getTargetNestedNameSpecifier();
3921    } else if (UnresolvedUsingTypenameDecl *UD
3922                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3923      DTypename = true;
3924      DQual = UD->getTargetNestedNameSpecifier();
3925    } else continue;
3926
3927    // using decls differ if one says 'typename' and the other doesn't.
3928    // FIXME: non-dependent using decls?
3929    if (isTypeName != DTypename) continue;
3930
3931    // using decls differ if they name different scopes (but note that
3932    // template instantiation can cause this check to trigger when it
3933    // didn't before instantiation).
3934    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3935        Context.getCanonicalNestedNameSpecifier(DQual))
3936      continue;
3937
3938    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3939    Diag(D->getLocation(), diag::note_using_decl) << 1;
3940    return true;
3941  }
3942
3943  return false;
3944}
3945
3946
3947/// Checks that the given nested-name qualifier used in a using decl
3948/// in the current context is appropriately related to the current
3949/// scope.  If an error is found, diagnoses it and returns true.
3950bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3951                                   const CXXScopeSpec &SS,
3952                                   SourceLocation NameLoc) {
3953  DeclContext *NamedContext = computeDeclContext(SS);
3954
3955  if (!CurContext->isRecord()) {
3956    // C++03 [namespace.udecl]p3:
3957    // C++0x [namespace.udecl]p8:
3958    //   A using-declaration for a class member shall be a member-declaration.
3959
3960    // If we weren't able to compute a valid scope, it must be a
3961    // dependent class scope.
3962    if (!NamedContext || NamedContext->isRecord()) {
3963      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3964        << SS.getRange();
3965      return true;
3966    }
3967
3968    // Otherwise, everything is known to be fine.
3969    return false;
3970  }
3971
3972  // The current scope is a record.
3973
3974  // If the named context is dependent, we can't decide much.
3975  if (!NamedContext) {
3976    // FIXME: in C++0x, we can diagnose if we can prove that the
3977    // nested-name-specifier does not refer to a base class, which is
3978    // still possible in some cases.
3979
3980    // Otherwise we have to conservatively report that things might be
3981    // okay.
3982    return false;
3983  }
3984
3985  if (!NamedContext->isRecord()) {
3986    // Ideally this would point at the last name in the specifier,
3987    // but we don't have that level of source info.
3988    Diag(SS.getRange().getBegin(),
3989         diag::err_using_decl_nested_name_specifier_is_not_class)
3990      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3991    return true;
3992  }
3993
3994  if (getLangOptions().CPlusPlus0x) {
3995    // C++0x [namespace.udecl]p3:
3996    //   In a using-declaration used as a member-declaration, the
3997    //   nested-name-specifier shall name a base class of the class
3998    //   being defined.
3999
4000    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4001                                 cast<CXXRecordDecl>(NamedContext))) {
4002      if (CurContext == NamedContext) {
4003        Diag(NameLoc,
4004             diag::err_using_decl_nested_name_specifier_is_current_class)
4005          << SS.getRange();
4006        return true;
4007      }
4008
4009      Diag(SS.getRange().getBegin(),
4010           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4011        << (NestedNameSpecifier*) SS.getScopeRep()
4012        << cast<CXXRecordDecl>(CurContext)
4013        << SS.getRange();
4014      return true;
4015    }
4016
4017    return false;
4018  }
4019
4020  // C++03 [namespace.udecl]p4:
4021  //   A using-declaration used as a member-declaration shall refer
4022  //   to a member of a base class of the class being defined [etc.].
4023
4024  // Salient point: SS doesn't have to name a base class as long as
4025  // lookup only finds members from base classes.  Therefore we can
4026  // diagnose here only if we can prove that that can't happen,
4027  // i.e. if the class hierarchies provably don't intersect.
4028
4029  // TODO: it would be nice if "definitely valid" results were cached
4030  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4031  // need to be repeated.
4032
4033  struct UserData {
4034    llvm::DenseSet<const CXXRecordDecl*> Bases;
4035
4036    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4037      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4038      Data->Bases.insert(Base);
4039      return true;
4040    }
4041
4042    bool hasDependentBases(const CXXRecordDecl *Class) {
4043      return !Class->forallBases(collect, this);
4044    }
4045
4046    /// Returns true if the base is dependent or is one of the
4047    /// accumulated base classes.
4048    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4049      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4050      return !Data->Bases.count(Base);
4051    }
4052
4053    bool mightShareBases(const CXXRecordDecl *Class) {
4054      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4055    }
4056  };
4057
4058  UserData Data;
4059
4060  // Returns false if we find a dependent base.
4061  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4062    return false;
4063
4064  // Returns false if the class has a dependent base or if it or one
4065  // of its bases is present in the base set of the current context.
4066  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4067    return false;
4068
4069  Diag(SS.getRange().getBegin(),
4070       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4071    << (NestedNameSpecifier*) SS.getScopeRep()
4072    << cast<CXXRecordDecl>(CurContext)
4073    << SS.getRange();
4074
4075  return true;
4076}
4077
4078Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
4079                                             SourceLocation NamespaceLoc,
4080                                             SourceLocation AliasLoc,
4081                                             IdentifierInfo *Alias,
4082                                             CXXScopeSpec &SS,
4083                                             SourceLocation IdentLoc,
4084                                             IdentifierInfo *Ident) {
4085
4086  // Lookup the namespace name.
4087  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4088  LookupParsedName(R, S, &SS);
4089
4090  // Check if we have a previous declaration with the same name.
4091  NamedDecl *PrevDecl
4092    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4093                       ForRedeclaration);
4094  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4095    PrevDecl = 0;
4096
4097  if (PrevDecl) {
4098    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4099      // We already have an alias with the same name that points to the same
4100      // namespace, so don't create a new one.
4101      // FIXME: At some point, we'll want to create the (redundant)
4102      // declaration to maintain better source information.
4103      if (!R.isAmbiguous() && !R.empty() &&
4104          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4105        return DeclPtrTy();
4106    }
4107
4108    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4109      diag::err_redefinition_different_kind;
4110    Diag(AliasLoc, DiagID) << Alias;
4111    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4112    return DeclPtrTy();
4113  }
4114
4115  if (R.isAmbiguous())
4116    return DeclPtrTy();
4117
4118  if (R.empty()) {
4119    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4120                                                CTC_NoKeywords, 0)) {
4121      if (R.getAsSingle<NamespaceDecl>() ||
4122          R.getAsSingle<NamespaceAliasDecl>()) {
4123        if (DeclContext *DC = computeDeclContext(SS, false))
4124          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4125            << Ident << DC << Corrected << SS.getRange()
4126            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4127        else
4128          Diag(IdentLoc, diag::err_using_directive_suggest)
4129            << Ident << Corrected
4130            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4131
4132        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4133          << Corrected;
4134
4135        Ident = Corrected.getAsIdentifierInfo();
4136      } else {
4137        R.clear();
4138        R.setLookupName(Ident);
4139      }
4140    }
4141
4142    if (R.empty()) {
4143      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4144      return DeclPtrTy();
4145    }
4146  }
4147
4148  NamespaceAliasDecl *AliasDecl =
4149    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4150                               Alias, SS.getRange(),
4151                               (NestedNameSpecifier *)SS.getScopeRep(),
4152                               IdentLoc, R.getFoundDecl());
4153
4154  PushOnScopeChains(AliasDecl, S);
4155  return DeclPtrTy::make(AliasDecl);
4156}
4157
4158namespace {
4159  /// \brief Scoped object used to handle the state changes required in Sema
4160  /// to implicitly define the body of a C++ member function;
4161  class ImplicitlyDefinedFunctionScope {
4162    Sema &S;
4163    DeclContext *PreviousContext;
4164
4165  public:
4166    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4167      : S(S), PreviousContext(S.CurContext)
4168    {
4169      S.CurContext = Method;
4170      S.PushFunctionScope();
4171      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4172    }
4173
4174    ~ImplicitlyDefinedFunctionScope() {
4175      S.PopExpressionEvaluationContext();
4176      S.PopFunctionOrBlockScope();
4177      S.CurContext = PreviousContext;
4178    }
4179  };
4180}
4181
4182CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4183                                                     CXXRecordDecl *ClassDecl) {
4184  // C++ [class.ctor]p5:
4185  //   A default constructor for a class X is a constructor of class X
4186  //   that can be called without an argument. If there is no
4187  //   user-declared constructor for class X, a default constructor is
4188  //   implicitly declared. An implicitly-declared default constructor
4189  //   is an inline public member of its class.
4190  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4191         "Should not build implicit default constructor!");
4192
4193  // C++ [except.spec]p14:
4194  //   An implicitly declared special member function (Clause 12) shall have an
4195  //   exception-specification. [...]
4196  ImplicitExceptionSpecification ExceptSpec(Context);
4197
4198  // Direct base-class destructors.
4199  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4200                                       BEnd = ClassDecl->bases_end();
4201       B != BEnd; ++B) {
4202    if (B->isVirtual()) // Handled below.
4203      continue;
4204
4205    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4206      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4207      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4208        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4209      else if (CXXConstructorDecl *Constructor
4210                                       = BaseClassDecl->getDefaultConstructor())
4211        ExceptSpec.CalledDecl(Constructor);
4212    }
4213  }
4214
4215  // Virtual base-class destructors.
4216  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4217                                       BEnd = ClassDecl->vbases_end();
4218       B != BEnd; ++B) {
4219    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4220      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4221      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4222        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4223      else if (CXXConstructorDecl *Constructor
4224                                       = BaseClassDecl->getDefaultConstructor())
4225        ExceptSpec.CalledDecl(Constructor);
4226    }
4227  }
4228
4229  // Field destructors.
4230  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4231                               FEnd = ClassDecl->field_end();
4232       F != FEnd; ++F) {
4233    if (const RecordType *RecordTy
4234              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4235      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4236      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4237        ExceptSpec.CalledDecl(
4238                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4239      else if (CXXConstructorDecl *Constructor
4240                                      = FieldClassDecl->getDefaultConstructor())
4241        ExceptSpec.CalledDecl(Constructor);
4242    }
4243  }
4244
4245
4246  // Create the actual constructor declaration.
4247  CanQualType ClassType
4248    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4249  DeclarationName Name
4250    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4251  CXXConstructorDecl *DefaultCon
4252    = CXXConstructorDecl::Create(Context, ClassDecl,
4253                                 ClassDecl->getLocation(), Name,
4254                                 Context.getFunctionType(Context.VoidTy,
4255                                                         0, 0, false, 0,
4256                                       ExceptSpec.hasExceptionSpecification(),
4257                                     ExceptSpec.hasAnyExceptionSpecification(),
4258                                                         ExceptSpec.size(),
4259                                                         ExceptSpec.data(),
4260                                                       FunctionType::ExtInfo()),
4261                                 /*TInfo=*/0,
4262                                 /*isExplicit=*/false,
4263                                 /*isInline=*/true,
4264                                 /*isImplicitlyDeclared=*/true);
4265  DefaultCon->setAccess(AS_public);
4266  DefaultCon->setImplicit();
4267  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4268
4269  // Note that we have declared this constructor.
4270  ClassDecl->setDeclaredDefaultConstructor(true);
4271  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4272
4273  if (Scope *S = getScopeForContext(ClassDecl))
4274    PushOnScopeChains(DefaultCon, S, false);
4275  ClassDecl->addDecl(DefaultCon);
4276
4277  return DefaultCon;
4278}
4279
4280void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4281                                            CXXConstructorDecl *Constructor) {
4282  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4283          !Constructor->isUsed(false)) &&
4284    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4285
4286  CXXRecordDecl *ClassDecl = Constructor->getParent();
4287  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4288
4289  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4290  ErrorTrap Trap(*this);
4291  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4292      Trap.hasErrorOccurred()) {
4293    Diag(CurrentLocation, diag::note_member_synthesized_at)
4294      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4295    Constructor->setInvalidDecl();
4296  } else {
4297    Constructor->setUsed();
4298    MarkVTableUsed(CurrentLocation, ClassDecl);
4299  }
4300}
4301
4302CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4303  // C++ [class.dtor]p2:
4304  //   If a class has no user-declared destructor, a destructor is
4305  //   declared implicitly. An implicitly-declared destructor is an
4306  //   inline public member of its class.
4307
4308  // C++ [except.spec]p14:
4309  //   An implicitly declared special member function (Clause 12) shall have
4310  //   an exception-specification.
4311  ImplicitExceptionSpecification ExceptSpec(Context);
4312
4313  // Direct base-class destructors.
4314  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4315                                       BEnd = ClassDecl->bases_end();
4316       B != BEnd; ++B) {
4317    if (B->isVirtual()) // Handled below.
4318      continue;
4319
4320    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4321      ExceptSpec.CalledDecl(
4322                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4323  }
4324
4325  // Virtual base-class destructors.
4326  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4327                                       BEnd = ClassDecl->vbases_end();
4328       B != BEnd; ++B) {
4329    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4330      ExceptSpec.CalledDecl(
4331                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4332  }
4333
4334  // Field destructors.
4335  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4336                               FEnd = ClassDecl->field_end();
4337       F != FEnd; ++F) {
4338    if (const RecordType *RecordTy
4339        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4340      ExceptSpec.CalledDecl(
4341                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4342  }
4343
4344  // Create the actual destructor declaration.
4345  QualType Ty = Context.getFunctionType(Context.VoidTy,
4346                                        0, 0, false, 0,
4347                                        ExceptSpec.hasExceptionSpecification(),
4348                                    ExceptSpec.hasAnyExceptionSpecification(),
4349                                        ExceptSpec.size(),
4350                                        ExceptSpec.data(),
4351                                        FunctionType::ExtInfo());
4352
4353  CanQualType ClassType
4354    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4355  DeclarationName Name
4356    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4357  CXXDestructorDecl *Destructor
4358    = CXXDestructorDecl::Create(Context, ClassDecl,
4359                                ClassDecl->getLocation(), Name, Ty,
4360                                /*isInline=*/true,
4361                                /*isImplicitlyDeclared=*/true);
4362  Destructor->setAccess(AS_public);
4363  Destructor->setImplicit();
4364  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4365
4366  // Note that we have declared this destructor.
4367  ClassDecl->setDeclaredDestructor(true);
4368  ++ASTContext::NumImplicitDestructorsDeclared;
4369
4370  // Introduce this destructor into its scope.
4371  if (Scope *S = getScopeForContext(ClassDecl))
4372    PushOnScopeChains(Destructor, S, false);
4373  ClassDecl->addDecl(Destructor);
4374
4375  // This could be uniqued if it ever proves significant.
4376  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4377
4378  AddOverriddenMethods(ClassDecl, Destructor);
4379
4380  return Destructor;
4381}
4382
4383void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4384                                    CXXDestructorDecl *Destructor) {
4385  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4386         "DefineImplicitDestructor - call it for implicit default dtor");
4387  CXXRecordDecl *ClassDecl = Destructor->getParent();
4388  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4389
4390  if (Destructor->isInvalidDecl())
4391    return;
4392
4393  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4394
4395  ErrorTrap Trap(*this);
4396  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4397                                         Destructor->getParent());
4398
4399  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4400    Diag(CurrentLocation, diag::note_member_synthesized_at)
4401      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4402
4403    Destructor->setInvalidDecl();
4404    return;
4405  }
4406
4407  Destructor->setUsed();
4408  MarkVTableUsed(CurrentLocation, ClassDecl);
4409}
4410
4411/// \brief Builds a statement that copies the given entity from \p From to
4412/// \c To.
4413///
4414/// This routine is used to copy the members of a class with an
4415/// implicitly-declared copy assignment operator. When the entities being
4416/// copied are arrays, this routine builds for loops to copy them.
4417///
4418/// \param S The Sema object used for type-checking.
4419///
4420/// \param Loc The location where the implicit copy is being generated.
4421///
4422/// \param T The type of the expressions being copied. Both expressions must
4423/// have this type.
4424///
4425/// \param To The expression we are copying to.
4426///
4427/// \param From The expression we are copying from.
4428///
4429/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4430/// Otherwise, it's a non-static member subobject.
4431///
4432/// \param Depth Internal parameter recording the depth of the recursion.
4433///
4434/// \returns A statement or a loop that copies the expressions.
4435static Sema::OwningStmtResult
4436BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4437                      Sema::OwningExprResult To, Sema::OwningExprResult From,
4438                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4439  typedef Sema::OwningStmtResult OwningStmtResult;
4440  typedef Sema::OwningExprResult OwningExprResult;
4441
4442  // C++0x [class.copy]p30:
4443  //   Each subobject is assigned in the manner appropriate to its type:
4444  //
4445  //     - if the subobject is of class type, the copy assignment operator
4446  //       for the class is used (as if by explicit qualification; that is,
4447  //       ignoring any possible virtual overriding functions in more derived
4448  //       classes);
4449  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4450    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4451
4452    // Look for operator=.
4453    DeclarationName Name
4454      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4455    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4456    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4457
4458    // Filter out any result that isn't a copy-assignment operator.
4459    LookupResult::Filter F = OpLookup.makeFilter();
4460    while (F.hasNext()) {
4461      NamedDecl *D = F.next();
4462      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4463        if (Method->isCopyAssignmentOperator())
4464          continue;
4465
4466      F.erase();
4467    }
4468    F.done();
4469
4470    // Suppress the protected check (C++ [class.protected]) for each of the
4471    // assignment operators we found. This strange dance is required when
4472    // we're assigning via a base classes's copy-assignment operator. To
4473    // ensure that we're getting the right base class subobject (without
4474    // ambiguities), we need to cast "this" to that subobject type; to
4475    // ensure that we don't go through the virtual call mechanism, we need
4476    // to qualify the operator= name with the base class (see below). However,
4477    // this means that if the base class has a protected copy assignment
4478    // operator, the protected member access check will fail. So, we
4479    // rewrite "protected" access to "public" access in this case, since we
4480    // know by construction that we're calling from a derived class.
4481    if (CopyingBaseSubobject) {
4482      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4483           L != LEnd; ++L) {
4484        if (L.getAccess() == AS_protected)
4485          L.setAccess(AS_public);
4486      }
4487    }
4488
4489    // Create the nested-name-specifier that will be used to qualify the
4490    // reference to operator=; this is required to suppress the virtual
4491    // call mechanism.
4492    CXXScopeSpec SS;
4493    SS.setRange(Loc);
4494    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4495                                               T.getTypePtr()));
4496
4497    // Create the reference to operator=.
4498    OwningExprResult OpEqualRef
4499      = S.BuildMemberReferenceExpr(move(To), T, Loc, /*isArrow=*/false, SS,
4500                                   /*FirstQualifierInScope=*/0, OpLookup,
4501                                   /*TemplateArgs=*/0,
4502                                   /*SuppressQualifierCheck=*/true);
4503    if (OpEqualRef.isInvalid())
4504      return S.StmtError();
4505
4506    // Build the call to the assignment operator.
4507    Expr *FromE = From.takeAs<Expr>();
4508    OwningExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4509                                                      OpEqualRef.takeAs<Expr>(),
4510                                                        Loc, &FromE, 1, 0, Loc);
4511    if (Call.isInvalid())
4512      return S.StmtError();
4513
4514    return S.Owned(Call.takeAs<Stmt>());
4515  }
4516
4517  //     - if the subobject is of scalar type, the built-in assignment
4518  //       operator is used.
4519  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4520  if (!ArrayTy) {
4521    OwningExprResult Assignment = S.CreateBuiltinBinOp(Loc,
4522                                                       BinaryOperator::Assign,
4523                                                       To.takeAs<Expr>(),
4524                                                       From.takeAs<Expr>());
4525    if (Assignment.isInvalid())
4526      return S.StmtError();
4527
4528    return S.Owned(Assignment.takeAs<Stmt>());
4529  }
4530
4531  //     - if the subobject is an array, each element is assigned, in the
4532  //       manner appropriate to the element type;
4533
4534  // Construct a loop over the array bounds, e.g.,
4535  //
4536  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4537  //
4538  // that will copy each of the array elements.
4539  QualType SizeType = S.Context.getSizeType();
4540
4541  // Create the iteration variable.
4542  IdentifierInfo *IterationVarName = 0;
4543  {
4544    llvm::SmallString<8> Str;
4545    llvm::raw_svector_ostream OS(Str);
4546    OS << "__i" << Depth;
4547    IterationVarName = &S.Context.Idents.get(OS.str());
4548  }
4549  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4550                                          IterationVarName, SizeType,
4551                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4552                                          VarDecl::None, VarDecl::None);
4553
4554  // Initialize the iteration variable to zero.
4555  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4556  IterationVar->setInit(new (S.Context) IntegerLiteral(Zero, SizeType, Loc));
4557
4558  // Create a reference to the iteration variable; we'll use this several
4559  // times throughout.
4560  Expr *IterationVarRef
4561    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4562  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4563
4564  // Create the DeclStmt that holds the iteration variable.
4565  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4566
4567  // Create the comparison against the array bound.
4568  llvm::APInt Upper = ArrayTy->getSize();
4569  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4570  OwningExprResult Comparison
4571    = S.Owned(new (S.Context) BinaryOperator(IterationVarRef->Retain(),
4572                           new (S.Context) IntegerLiteral(Upper, SizeType, Loc),
4573                                    BinaryOperator::NE, S.Context.BoolTy, Loc));
4574
4575  // Create the pre-increment of the iteration variable.
4576  OwningExprResult Increment
4577    = S.Owned(new (S.Context) UnaryOperator(IterationVarRef->Retain(),
4578                                            UnaryOperator::PreInc,
4579                                            SizeType, Loc));
4580
4581  // Subscript the "from" and "to" expressions with the iteration variable.
4582  From = S.CreateBuiltinArraySubscriptExpr(move(From), Loc,
4583                                           S.Owned(IterationVarRef->Retain()),
4584                                           Loc);
4585  To = S.CreateBuiltinArraySubscriptExpr(move(To), Loc,
4586                                         S.Owned(IterationVarRef->Retain()),
4587                                         Loc);
4588  assert(!From.isInvalid() && "Builtin subscripting can't fail!");
4589  assert(!To.isInvalid() && "Builtin subscripting can't fail!");
4590
4591  // Build the copy for an individual element of the array.
4592  OwningStmtResult Copy = BuildSingleCopyAssign(S, Loc,
4593                                                ArrayTy->getElementType(),
4594                                                move(To), move(From),
4595                                                CopyingBaseSubobject, Depth+1);
4596  if (Copy.isInvalid())
4597    return S.StmtError();
4598
4599  // Construct the loop that copies all elements of this array.
4600  return S.ActOnForStmt(Loc, Loc, S.Owned(InitStmt),
4601                        S.MakeFullExpr(Comparison),
4602                        Sema::DeclPtrTy(),
4603                        S.MakeFullExpr(Increment),
4604                        Loc, move(Copy));
4605}
4606
4607/// \brief Determine whether the given class has a copy assignment operator
4608/// that accepts a const-qualified argument.
4609static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
4610  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
4611
4612  if (!Class->hasDeclaredCopyAssignment())
4613    S.DeclareImplicitCopyAssignment(Class);
4614
4615  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
4616  DeclarationName OpName
4617    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4618
4619  DeclContext::lookup_const_iterator Op, OpEnd;
4620  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
4621    // C++ [class.copy]p9:
4622    //   A user-declared copy assignment operator is a non-static non-template
4623    //   member function of class X with exactly one parameter of type X, X&,
4624    //   const X&, volatile X& or const volatile X&.
4625    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
4626    if (!Method)
4627      continue;
4628
4629    if (Method->isStatic())
4630      continue;
4631    if (Method->getPrimaryTemplate())
4632      continue;
4633    const FunctionProtoType *FnType =
4634    Method->getType()->getAs<FunctionProtoType>();
4635    assert(FnType && "Overloaded operator has no prototype.");
4636    // Don't assert on this; an invalid decl might have been left in the AST.
4637    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
4638      continue;
4639    bool AcceptsConst = true;
4640    QualType ArgType = FnType->getArgType(0);
4641    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
4642      ArgType = Ref->getPointeeType();
4643      // Is it a non-const lvalue reference?
4644      if (!ArgType.isConstQualified())
4645        AcceptsConst = false;
4646    }
4647    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
4648      continue;
4649
4650    // We have a single argument of type cv X or cv X&, i.e. we've found the
4651    // copy assignment operator. Return whether it accepts const arguments.
4652    return AcceptsConst;
4653  }
4654  assert(Class->isInvalidDecl() &&
4655         "No copy assignment operator declared in valid code.");
4656  return false;
4657}
4658
4659CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
4660  // Note: The following rules are largely analoguous to the copy
4661  // constructor rules. Note that virtual bases are not taken into account
4662  // for determining the argument type of the operator. Note also that
4663  // operators taking an object instead of a reference are allowed.
4664
4665
4666  // C++ [class.copy]p10:
4667  //   If the class definition does not explicitly declare a copy
4668  //   assignment operator, one is declared implicitly.
4669  //   The implicitly-defined copy assignment operator for a class X
4670  //   will have the form
4671  //
4672  //       X& X::operator=(const X&)
4673  //
4674  //   if
4675  bool HasConstCopyAssignment = true;
4676
4677  //       -- each direct base class B of X has a copy assignment operator
4678  //          whose parameter is of type const B&, const volatile B& or B,
4679  //          and
4680  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4681                                       BaseEnd = ClassDecl->bases_end();
4682       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
4683    assert(!Base->getType()->isDependentType() &&
4684           "Cannot generate implicit members for class with dependent bases.");
4685    const CXXRecordDecl *BaseClassDecl
4686      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4687    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
4688  }
4689
4690  //       -- for all the nonstatic data members of X that are of a class
4691  //          type M (or array thereof), each such class type has a copy
4692  //          assignment operator whose parameter is of type const M&,
4693  //          const volatile M& or M.
4694  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4695                                  FieldEnd = ClassDecl->field_end();
4696       HasConstCopyAssignment && Field != FieldEnd;
4697       ++Field) {
4698    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4699    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4700      const CXXRecordDecl *FieldClassDecl
4701        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4702      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
4703    }
4704  }
4705
4706  //   Otherwise, the implicitly declared copy assignment operator will
4707  //   have the form
4708  //
4709  //       X& X::operator=(X&)
4710  QualType ArgType = Context.getTypeDeclType(ClassDecl);
4711  QualType RetType = Context.getLValueReferenceType(ArgType);
4712  if (HasConstCopyAssignment)
4713    ArgType = ArgType.withConst();
4714  ArgType = Context.getLValueReferenceType(ArgType);
4715
4716  // C++ [except.spec]p14:
4717  //   An implicitly declared special member function (Clause 12) shall have an
4718  //   exception-specification. [...]
4719  ImplicitExceptionSpecification ExceptSpec(Context);
4720  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4721                                       BaseEnd = ClassDecl->bases_end();
4722       Base != BaseEnd; ++Base) {
4723    CXXRecordDecl *BaseClassDecl
4724      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4725
4726    if (!BaseClassDecl->hasDeclaredCopyAssignment())
4727      DeclareImplicitCopyAssignment(BaseClassDecl);
4728
4729    if (CXXMethodDecl *CopyAssign
4730           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4731      ExceptSpec.CalledDecl(CopyAssign);
4732  }
4733  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4734                                  FieldEnd = ClassDecl->field_end();
4735       Field != FieldEnd;
4736       ++Field) {
4737    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4738    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4739      CXXRecordDecl *FieldClassDecl
4740        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4741
4742      if (!FieldClassDecl->hasDeclaredCopyAssignment())
4743        DeclareImplicitCopyAssignment(FieldClassDecl);
4744
4745      if (CXXMethodDecl *CopyAssign
4746            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4747        ExceptSpec.CalledDecl(CopyAssign);
4748    }
4749  }
4750
4751  //   An implicitly-declared copy assignment operator is an inline public
4752  //   member of its class.
4753  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4754  CXXMethodDecl *CopyAssignment
4755    = CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
4756                            Context.getFunctionType(RetType, &ArgType, 1,
4757                                                    false, 0,
4758                                         ExceptSpec.hasExceptionSpecification(),
4759                                      ExceptSpec.hasAnyExceptionSpecification(),
4760                                                    ExceptSpec.size(),
4761                                                    ExceptSpec.data(),
4762                                                    FunctionType::ExtInfo()),
4763                            /*TInfo=*/0, /*isStatic=*/false,
4764                            /*StorageClassAsWritten=*/FunctionDecl::None,
4765                            /*isInline=*/true);
4766  CopyAssignment->setAccess(AS_public);
4767  CopyAssignment->setImplicit();
4768  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
4769  CopyAssignment->setCopyAssignment(true);
4770
4771  // Add the parameter to the operator.
4772  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
4773                                               ClassDecl->getLocation(),
4774                                               /*Id=*/0,
4775                                               ArgType, /*TInfo=*/0,
4776                                               VarDecl::None,
4777                                               VarDecl::None, 0);
4778  CopyAssignment->setParams(&FromParam, 1);
4779
4780  // Note that we have added this copy-assignment operator.
4781  ClassDecl->setDeclaredCopyAssignment(true);
4782  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
4783
4784  if (Scope *S = getScopeForContext(ClassDecl))
4785    PushOnScopeChains(CopyAssignment, S, false);
4786  ClassDecl->addDecl(CopyAssignment);
4787
4788  AddOverriddenMethods(ClassDecl, CopyAssignment);
4789  return CopyAssignment;
4790}
4791
4792void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4793                                        CXXMethodDecl *CopyAssignOperator) {
4794  assert((CopyAssignOperator->isImplicit() &&
4795          CopyAssignOperator->isOverloadedOperator() &&
4796          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4797          !CopyAssignOperator->isUsed(false)) &&
4798         "DefineImplicitCopyAssignment called for wrong function");
4799
4800  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4801
4802  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4803    CopyAssignOperator->setInvalidDecl();
4804    return;
4805  }
4806
4807  CopyAssignOperator->setUsed();
4808
4809  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4810  ErrorTrap Trap(*this);
4811
4812  // C++0x [class.copy]p30:
4813  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4814  //   for a non-union class X performs memberwise copy assignment of its
4815  //   subobjects. The direct base classes of X are assigned first, in the
4816  //   order of their declaration in the base-specifier-list, and then the
4817  //   immediate non-static data members of X are assigned, in the order in
4818  //   which they were declared in the class definition.
4819
4820  // The statements that form the synthesized function body.
4821  ASTOwningVector<&ActionBase::DeleteStmt> Statements(*this);
4822
4823  // The parameter for the "other" object, which we are copying from.
4824  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4825  Qualifiers OtherQuals = Other->getType().getQualifiers();
4826  QualType OtherRefType = Other->getType();
4827  if (const LValueReferenceType *OtherRef
4828                                = OtherRefType->getAs<LValueReferenceType>()) {
4829    OtherRefType = OtherRef->getPointeeType();
4830    OtherQuals = OtherRefType.getQualifiers();
4831  }
4832
4833  // Our location for everything implicitly-generated.
4834  SourceLocation Loc = CopyAssignOperator->getLocation();
4835
4836  // Construct a reference to the "other" object. We'll be using this
4837  // throughout the generated ASTs.
4838  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4839  assert(OtherRef && "Reference to parameter cannot fail!");
4840
4841  // Construct the "this" pointer. We'll be using this throughout the generated
4842  // ASTs.
4843  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4844  assert(This && "Reference to this cannot fail!");
4845
4846  // Assign base classes.
4847  bool Invalid = false;
4848  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4849       E = ClassDecl->bases_end(); Base != E; ++Base) {
4850    // Form the assignment:
4851    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4852    QualType BaseType = Base->getType().getUnqualifiedType();
4853    CXXRecordDecl *BaseClassDecl = 0;
4854    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4855      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4856    else {
4857      Invalid = true;
4858      continue;
4859    }
4860
4861    CXXCastPath BasePath;
4862    BasePath.push_back(Base);
4863
4864    // Construct the "from" expression, which is an implicit cast to the
4865    // appropriately-qualified base type.
4866    Expr *From = OtherRef->Retain();
4867    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4868                      CastExpr::CK_UncheckedDerivedToBase,
4869                      ImplicitCastExpr::LValue, &BasePath);
4870
4871    // Dereference "this".
4872    OwningExprResult To = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4873                                               Owned(This->Retain()));
4874
4875    // Implicitly cast "this" to the appropriately-qualified base type.
4876    Expr *ToE = To.takeAs<Expr>();
4877    ImpCastExprToType(ToE,
4878                      Context.getCVRQualifiedType(BaseType,
4879                                      CopyAssignOperator->getTypeQualifiers()),
4880                      CastExpr::CK_UncheckedDerivedToBase,
4881                      ImplicitCastExpr::LValue, &BasePath);
4882    To = Owned(ToE);
4883
4884    // Build the copy.
4885    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4886                                                  move(To), Owned(From),
4887                                                /*CopyingBaseSubobject=*/true);
4888    if (Copy.isInvalid()) {
4889      Diag(CurrentLocation, diag::note_member_synthesized_at)
4890        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4891      CopyAssignOperator->setInvalidDecl();
4892      return;
4893    }
4894
4895    // Success! Record the copy.
4896    Statements.push_back(Copy.takeAs<Expr>());
4897  }
4898
4899  // \brief Reference to the __builtin_memcpy function.
4900  Expr *BuiltinMemCpyRef = 0;
4901  // \brief Reference to the __builtin_objc_memmove_collectable function.
4902  Expr *CollectableMemCpyRef = 0;
4903
4904  // Assign non-static members.
4905  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4906                                  FieldEnd = ClassDecl->field_end();
4907       Field != FieldEnd; ++Field) {
4908    // Check for members of reference type; we can't copy those.
4909    if (Field->getType()->isReferenceType()) {
4910      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4911        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4912      Diag(Field->getLocation(), diag::note_declared_at);
4913      Diag(CurrentLocation, diag::note_member_synthesized_at)
4914        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4915      Invalid = true;
4916      continue;
4917    }
4918
4919    // Check for members of const-qualified, non-class type.
4920    QualType BaseType = Context.getBaseElementType(Field->getType());
4921    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
4922      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4923        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4924      Diag(Field->getLocation(), diag::note_declared_at);
4925      Diag(CurrentLocation, diag::note_member_synthesized_at)
4926        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4927      Invalid = true;
4928      continue;
4929    }
4930
4931    QualType FieldType = Field->getType().getNonReferenceType();
4932    if (FieldType->isIncompleteArrayType()) {
4933      assert(ClassDecl->hasFlexibleArrayMember() &&
4934             "Incomplete array type is not valid");
4935      continue;
4936    }
4937
4938    // Build references to the field in the object we're copying from and to.
4939    CXXScopeSpec SS; // Intentionally empty
4940    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
4941                              LookupMemberName);
4942    MemberLookup.addDecl(*Field);
4943    MemberLookup.resolveKind();
4944    OwningExprResult From = BuildMemberReferenceExpr(Owned(OtherRef->Retain()),
4945                                                     OtherRefType,
4946                                                     Loc, /*IsArrow=*/false,
4947                                                     SS, 0, MemberLookup, 0);
4948    OwningExprResult To = BuildMemberReferenceExpr(Owned(This->Retain()),
4949                                                   This->getType(),
4950                                                   Loc, /*IsArrow=*/true,
4951                                                   SS, 0, MemberLookup, 0);
4952    assert(!From.isInvalid() && "Implicit field reference cannot fail");
4953    assert(!To.isInvalid() && "Implicit field reference cannot fail");
4954
4955    // If the field should be copied with __builtin_memcpy rather than via
4956    // explicit assignments, do so. This optimization only applies for arrays
4957    // of scalars and arrays of class type with trivial copy-assignment
4958    // operators.
4959    if (FieldType->isArrayType() &&
4960        (!BaseType->isRecordType() ||
4961         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
4962           ->hasTrivialCopyAssignment())) {
4963      // Compute the size of the memory buffer to be copied.
4964      QualType SizeType = Context.getSizeType();
4965      llvm::APInt Size(Context.getTypeSize(SizeType),
4966                       Context.getTypeSizeInChars(BaseType).getQuantity());
4967      for (const ConstantArrayType *Array
4968              = Context.getAsConstantArrayType(FieldType);
4969           Array;
4970           Array = Context.getAsConstantArrayType(Array->getElementType())) {
4971        llvm::APInt ArraySize = Array->getSize();
4972        ArraySize.zextOrTrunc(Size.getBitWidth());
4973        Size *= ArraySize;
4974      }
4975
4976      // Take the address of the field references for "from" and "to".
4977      From = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(From));
4978      To = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(To));
4979
4980      bool NeedsCollectableMemCpy =
4981          (BaseType->isRecordType() &&
4982           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
4983
4984      if (NeedsCollectableMemCpy) {
4985        if (!CollectableMemCpyRef) {
4986          // Create a reference to the __builtin_objc_memmove_collectable function.
4987          LookupResult R(*this,
4988                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
4989                         Loc, LookupOrdinaryName);
4990          LookupName(R, TUScope, true);
4991
4992          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
4993          if (!CollectableMemCpy) {
4994            // Something went horribly wrong earlier, and we will have
4995            // complained about it.
4996            Invalid = true;
4997            continue;
4998          }
4999
5000          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5001                                                  CollectableMemCpy->getType(),
5002                                                  Loc, 0).takeAs<Expr>();
5003          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5004        }
5005      }
5006      // Create a reference to the __builtin_memcpy builtin function.
5007      else if (!BuiltinMemCpyRef) {
5008        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5009                       LookupOrdinaryName);
5010        LookupName(R, TUScope, true);
5011
5012        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5013        if (!BuiltinMemCpy) {
5014          // Something went horribly wrong earlier, and we will have complained
5015          // about it.
5016          Invalid = true;
5017          continue;
5018        }
5019
5020        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5021                                            BuiltinMemCpy->getType(),
5022                                            Loc, 0).takeAs<Expr>();
5023        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5024      }
5025
5026      ASTOwningVector<&ActionBase::DeleteExpr> CallArgs(*this);
5027      CallArgs.push_back(To.takeAs<Expr>());
5028      CallArgs.push_back(From.takeAs<Expr>());
5029      CallArgs.push_back(new (Context) IntegerLiteral(Size, SizeType, Loc));
5030      llvm::SmallVector<SourceLocation, 4> Commas; // FIXME: Silly
5031      Commas.push_back(Loc);
5032      Commas.push_back(Loc);
5033      OwningExprResult Call = ExprError();
5034      if (NeedsCollectableMemCpy)
5035        Call = ActOnCallExpr(/*Scope=*/0,
5036                             Owned(CollectableMemCpyRef->Retain()),
5037                             Loc, move_arg(CallArgs),
5038                             Commas.data(), Loc);
5039      else
5040        Call = ActOnCallExpr(/*Scope=*/0,
5041                             Owned(BuiltinMemCpyRef->Retain()),
5042                             Loc, move_arg(CallArgs),
5043                             Commas.data(), Loc);
5044
5045      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5046      Statements.push_back(Call.takeAs<Expr>());
5047      continue;
5048    }
5049
5050    // Build the copy of this field.
5051    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5052                                                  move(To), move(From),
5053                                              /*CopyingBaseSubobject=*/false);
5054    if (Copy.isInvalid()) {
5055      Diag(CurrentLocation, diag::note_member_synthesized_at)
5056        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5057      CopyAssignOperator->setInvalidDecl();
5058      return;
5059    }
5060
5061    // Success! Record the copy.
5062    Statements.push_back(Copy.takeAs<Stmt>());
5063  }
5064
5065  if (!Invalid) {
5066    // Add a "return *this;"
5067    OwningExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
5068                                                    Owned(This->Retain()));
5069
5070    OwningStmtResult Return = ActOnReturnStmt(Loc, move(ThisObj));
5071    if (Return.isInvalid())
5072      Invalid = true;
5073    else {
5074      Statements.push_back(Return.takeAs<Stmt>());
5075
5076      if (Trap.hasErrorOccurred()) {
5077        Diag(CurrentLocation, diag::note_member_synthesized_at)
5078          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5079        Invalid = true;
5080      }
5081    }
5082  }
5083
5084  if (Invalid) {
5085    CopyAssignOperator->setInvalidDecl();
5086    return;
5087  }
5088
5089  OwningStmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5090                                            /*isStmtExpr=*/false);
5091  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5092  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5093}
5094
5095CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5096                                                    CXXRecordDecl *ClassDecl) {
5097  // C++ [class.copy]p4:
5098  //   If the class definition does not explicitly declare a copy
5099  //   constructor, one is declared implicitly.
5100
5101  // C++ [class.copy]p5:
5102  //   The implicitly-declared copy constructor for a class X will
5103  //   have the form
5104  //
5105  //       X::X(const X&)
5106  //
5107  //   if
5108  bool HasConstCopyConstructor = true;
5109
5110  //     -- each direct or virtual base class B of X has a copy
5111  //        constructor whose first parameter is of type const B& or
5112  //        const volatile B&, and
5113  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5114                                       BaseEnd = ClassDecl->bases_end();
5115       HasConstCopyConstructor && Base != BaseEnd;
5116       ++Base) {
5117    // Virtual bases are handled below.
5118    if (Base->isVirtual())
5119      continue;
5120
5121    CXXRecordDecl *BaseClassDecl
5122      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5123    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5124      DeclareImplicitCopyConstructor(BaseClassDecl);
5125
5126    HasConstCopyConstructor
5127      = BaseClassDecl->hasConstCopyConstructor(Context);
5128  }
5129
5130  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5131                                       BaseEnd = ClassDecl->vbases_end();
5132       HasConstCopyConstructor && Base != BaseEnd;
5133       ++Base) {
5134    CXXRecordDecl *BaseClassDecl
5135      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5136    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5137      DeclareImplicitCopyConstructor(BaseClassDecl);
5138
5139    HasConstCopyConstructor
5140      = BaseClassDecl->hasConstCopyConstructor(Context);
5141  }
5142
5143  //     -- for all the nonstatic data members of X that are of a
5144  //        class type M (or array thereof), each such class type
5145  //        has a copy constructor whose first parameter is of type
5146  //        const M& or const volatile M&.
5147  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5148                                  FieldEnd = ClassDecl->field_end();
5149       HasConstCopyConstructor && Field != FieldEnd;
5150       ++Field) {
5151    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5152    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5153      CXXRecordDecl *FieldClassDecl
5154        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5155      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5156        DeclareImplicitCopyConstructor(FieldClassDecl);
5157
5158      HasConstCopyConstructor
5159        = FieldClassDecl->hasConstCopyConstructor(Context);
5160    }
5161  }
5162
5163  //   Otherwise, the implicitly declared copy constructor will have
5164  //   the form
5165  //
5166  //       X::X(X&)
5167  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5168  QualType ArgType = ClassType;
5169  if (HasConstCopyConstructor)
5170    ArgType = ArgType.withConst();
5171  ArgType = Context.getLValueReferenceType(ArgType);
5172
5173  // C++ [except.spec]p14:
5174  //   An implicitly declared special member function (Clause 12) shall have an
5175  //   exception-specification. [...]
5176  ImplicitExceptionSpecification ExceptSpec(Context);
5177  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5178  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5179                                       BaseEnd = ClassDecl->bases_end();
5180       Base != BaseEnd;
5181       ++Base) {
5182    // Virtual bases are handled below.
5183    if (Base->isVirtual())
5184      continue;
5185
5186    CXXRecordDecl *BaseClassDecl
5187      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5188    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5189      DeclareImplicitCopyConstructor(BaseClassDecl);
5190
5191    if (CXXConstructorDecl *CopyConstructor
5192                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5193      ExceptSpec.CalledDecl(CopyConstructor);
5194  }
5195  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5196                                       BaseEnd = ClassDecl->vbases_end();
5197       Base != BaseEnd;
5198       ++Base) {
5199    CXXRecordDecl *BaseClassDecl
5200      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5201    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5202      DeclareImplicitCopyConstructor(BaseClassDecl);
5203
5204    if (CXXConstructorDecl *CopyConstructor
5205                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5206      ExceptSpec.CalledDecl(CopyConstructor);
5207  }
5208  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5209                                  FieldEnd = ClassDecl->field_end();
5210       Field != FieldEnd;
5211       ++Field) {
5212    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5213    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5214      CXXRecordDecl *FieldClassDecl
5215        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5216      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5217        DeclareImplicitCopyConstructor(FieldClassDecl);
5218
5219      if (CXXConstructorDecl *CopyConstructor
5220                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5221        ExceptSpec.CalledDecl(CopyConstructor);
5222    }
5223  }
5224
5225  //   An implicitly-declared copy constructor is an inline public
5226  //   member of its class.
5227  DeclarationName Name
5228    = Context.DeclarationNames.getCXXConstructorName(
5229                                           Context.getCanonicalType(ClassType));
5230  CXXConstructorDecl *CopyConstructor
5231    = CXXConstructorDecl::Create(Context, ClassDecl,
5232                                 ClassDecl->getLocation(), Name,
5233                                 Context.getFunctionType(Context.VoidTy,
5234                                                         &ArgType, 1,
5235                                                         false, 0,
5236                                         ExceptSpec.hasExceptionSpecification(),
5237                                      ExceptSpec.hasAnyExceptionSpecification(),
5238                                                         ExceptSpec.size(),
5239                                                         ExceptSpec.data(),
5240                                                       FunctionType::ExtInfo()),
5241                                 /*TInfo=*/0,
5242                                 /*isExplicit=*/false,
5243                                 /*isInline=*/true,
5244                                 /*isImplicitlyDeclared=*/true);
5245  CopyConstructor->setAccess(AS_public);
5246  CopyConstructor->setImplicit();
5247  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5248
5249  // Note that we have declared this constructor.
5250  ClassDecl->setDeclaredCopyConstructor(true);
5251  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5252
5253  // Add the parameter to the constructor.
5254  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5255                                               ClassDecl->getLocation(),
5256                                               /*IdentifierInfo=*/0,
5257                                               ArgType, /*TInfo=*/0,
5258                                               VarDecl::None,
5259                                               VarDecl::None, 0);
5260  CopyConstructor->setParams(&FromParam, 1);
5261  if (Scope *S = getScopeForContext(ClassDecl))
5262    PushOnScopeChains(CopyConstructor, S, false);
5263  ClassDecl->addDecl(CopyConstructor);
5264
5265  return CopyConstructor;
5266}
5267
5268void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5269                                   CXXConstructorDecl *CopyConstructor,
5270                                   unsigned TypeQuals) {
5271  assert((CopyConstructor->isImplicit() &&
5272          CopyConstructor->isCopyConstructor(TypeQuals) &&
5273          !CopyConstructor->isUsed(false)) &&
5274         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5275
5276  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5277  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5278
5279  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5280  ErrorTrap Trap(*this);
5281
5282  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5283      Trap.hasErrorOccurred()) {
5284    Diag(CurrentLocation, diag::note_member_synthesized_at)
5285      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5286    CopyConstructor->setInvalidDecl();
5287  }  else {
5288    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5289                                               CopyConstructor->getLocation(),
5290                                               MultiStmtArg(*this, 0, 0),
5291                                               /*isStmtExpr=*/false)
5292                                                              .takeAs<Stmt>());
5293  }
5294
5295  CopyConstructor->setUsed();
5296}
5297
5298Sema::OwningExprResult
5299Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5300                            CXXConstructorDecl *Constructor,
5301                            MultiExprArg ExprArgs,
5302                            bool RequiresZeroInit,
5303                            CXXConstructExpr::ConstructionKind ConstructKind) {
5304  bool Elidable = false;
5305
5306  // C++0x [class.copy]p34:
5307  //   When certain criteria are met, an implementation is allowed to
5308  //   omit the copy/move construction of a class object, even if the
5309  //   copy/move constructor and/or destructor for the object have
5310  //   side effects. [...]
5311  //     - when a temporary class object that has not been bound to a
5312  //       reference (12.2) would be copied/moved to a class object
5313  //       with the same cv-unqualified type, the copy/move operation
5314  //       can be omitted by constructing the temporary object
5315  //       directly into the target of the omitted copy/move
5316  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
5317    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5318    Elidable = SubExpr->isTemporaryObject() &&
5319      Context.hasSameUnqualifiedType(SubExpr->getType(),
5320                           Context.getTypeDeclType(Constructor->getParent()));
5321  }
5322
5323  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5324                               Elidable, move(ExprArgs), RequiresZeroInit,
5325                               ConstructKind);
5326}
5327
5328/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5329/// including handling of its default argument expressions.
5330Sema::OwningExprResult
5331Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5332                            CXXConstructorDecl *Constructor, bool Elidable,
5333                            MultiExprArg ExprArgs,
5334                            bool RequiresZeroInit,
5335                            CXXConstructExpr::ConstructionKind ConstructKind) {
5336  unsigned NumExprs = ExprArgs.size();
5337  Expr **Exprs = (Expr **)ExprArgs.release();
5338
5339  MarkDeclarationReferenced(ConstructLoc, Constructor);
5340  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5341                                        Constructor, Elidable, Exprs, NumExprs,
5342                                        RequiresZeroInit, ConstructKind));
5343}
5344
5345bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5346                                        CXXConstructorDecl *Constructor,
5347                                        MultiExprArg Exprs) {
5348  OwningExprResult TempResult =
5349    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5350                          move(Exprs));
5351  if (TempResult.isInvalid())
5352    return true;
5353
5354  Expr *Temp = TempResult.takeAs<Expr>();
5355  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5356  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
5357  VD->setInit(Temp);
5358
5359  return false;
5360}
5361
5362void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5363  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5364  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5365      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5366    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5367    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5368    CheckDestructorAccess(VD->getLocation(), Destructor,
5369                          PDiag(diag::err_access_dtor_var)
5370                            << VD->getDeclName()
5371                            << VD->getType());
5372
5373    if (!VD->isInvalidDecl() && VD->hasGlobalStorage())
5374      Diag(VD->getLocation(), diag::warn_global_destructor);
5375  }
5376}
5377
5378/// AddCXXDirectInitializerToDecl - This action is called immediately after
5379/// ActOnDeclarator, when a C++ direct initializer is present.
5380/// e.g: "int x(1);"
5381void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
5382                                         SourceLocation LParenLoc,
5383                                         MultiExprArg Exprs,
5384                                         SourceLocation *CommaLocs,
5385                                         SourceLocation RParenLoc) {
5386  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5387  Decl *RealDecl = Dcl.getAs<Decl>();
5388
5389  // If there is no declaration, there was an error parsing it.  Just ignore
5390  // the initializer.
5391  if (RealDecl == 0)
5392    return;
5393
5394  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5395  if (!VDecl) {
5396    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5397    RealDecl->setInvalidDecl();
5398    return;
5399  }
5400
5401  // We will represent direct-initialization similarly to copy-initialization:
5402  //    int x(1);  -as-> int x = 1;
5403  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5404  //
5405  // Clients that want to distinguish between the two forms, can check for
5406  // direct initializer using VarDecl::hasCXXDirectInitializer().
5407  // A major benefit is that clients that don't particularly care about which
5408  // exactly form was it (like the CodeGen) can handle both cases without
5409  // special case code.
5410
5411  // C++ 8.5p11:
5412  // The form of initialization (using parentheses or '=') is generally
5413  // insignificant, but does matter when the entity being initialized has a
5414  // class type.
5415
5416  if (!VDecl->getType()->isDependentType() &&
5417      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5418                          diag::err_typecheck_decl_incomplete_type)) {
5419    VDecl->setInvalidDecl();
5420    return;
5421  }
5422
5423  // The variable can not have an abstract class type.
5424  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5425                             diag::err_abstract_type_in_decl,
5426                             AbstractVariableType))
5427    VDecl->setInvalidDecl();
5428
5429  const VarDecl *Def;
5430  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5431    Diag(VDecl->getLocation(), diag::err_redefinition)
5432    << VDecl->getDeclName();
5433    Diag(Def->getLocation(), diag::note_previous_definition);
5434    VDecl->setInvalidDecl();
5435    return;
5436  }
5437
5438  // If either the declaration has a dependent type or if any of the
5439  // expressions is type-dependent, we represent the initialization
5440  // via a ParenListExpr for later use during template instantiation.
5441  if (VDecl->getType()->isDependentType() ||
5442      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
5443    // Let clients know that initialization was done with a direct initializer.
5444    VDecl->setCXXDirectInitializer(true);
5445
5446    // Store the initialization expressions as a ParenListExpr.
5447    unsigned NumExprs = Exprs.size();
5448    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5449                                               (Expr **)Exprs.release(),
5450                                               NumExprs, RParenLoc));
5451    return;
5452  }
5453
5454  // Capture the variable that is being initialized and the style of
5455  // initialization.
5456  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5457
5458  // FIXME: Poor source location information.
5459  InitializationKind Kind
5460    = InitializationKind::CreateDirect(VDecl->getLocation(),
5461                                       LParenLoc, RParenLoc);
5462
5463  InitializationSequence InitSeq(*this, Entity, Kind,
5464                                 (Expr**)Exprs.get(), Exprs.size());
5465  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5466  if (Result.isInvalid()) {
5467    VDecl->setInvalidDecl();
5468    return;
5469  }
5470
5471  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
5472  VDecl->setInit(Result.takeAs<Expr>());
5473  VDecl->setCXXDirectInitializer(true);
5474
5475    if (!VDecl->isInvalidDecl() &&
5476        !VDecl->getDeclContext()->isDependentContext() &&
5477        VDecl->hasGlobalStorage() &&
5478        !VDecl->getInit()->isConstantInitializer(Context,
5479                                        VDecl->getType()->isReferenceType()))
5480      Diag(VDecl->getLocation(), diag::warn_global_constructor)
5481        << VDecl->getInit()->getSourceRange();
5482
5483  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
5484    FinalizeVarWithDestructor(VDecl, Record);
5485}
5486
5487/// \brief Given a constructor and the set of arguments provided for the
5488/// constructor, convert the arguments and add any required default arguments
5489/// to form a proper call to this constructor.
5490///
5491/// \returns true if an error occurred, false otherwise.
5492bool
5493Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5494                              MultiExprArg ArgsPtr,
5495                              SourceLocation Loc,
5496                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
5497  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5498  unsigned NumArgs = ArgsPtr.size();
5499  Expr **Args = (Expr **)ArgsPtr.get();
5500
5501  const FunctionProtoType *Proto
5502    = Constructor->getType()->getAs<FunctionProtoType>();
5503  assert(Proto && "Constructor without a prototype?");
5504  unsigned NumArgsInProto = Proto->getNumArgs();
5505
5506  // If too few arguments are available, we'll fill in the rest with defaults.
5507  if (NumArgs < NumArgsInProto)
5508    ConvertedArgs.reserve(NumArgsInProto);
5509  else
5510    ConvertedArgs.reserve(NumArgs);
5511
5512  VariadicCallType CallType =
5513    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5514  llvm::SmallVector<Expr *, 8> AllArgs;
5515  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5516                                        Proto, 0, Args, NumArgs, AllArgs,
5517                                        CallType);
5518  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5519    ConvertedArgs.push_back(AllArgs[i]);
5520  return Invalid;
5521}
5522
5523static inline bool
5524CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5525                                       const FunctionDecl *FnDecl) {
5526  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
5527  if (isa<NamespaceDecl>(DC)) {
5528    return SemaRef.Diag(FnDecl->getLocation(),
5529                        diag::err_operator_new_delete_declared_in_namespace)
5530      << FnDecl->getDeclName();
5531  }
5532
5533  if (isa<TranslationUnitDecl>(DC) &&
5534      FnDecl->getStorageClass() == FunctionDecl::Static) {
5535    return SemaRef.Diag(FnDecl->getLocation(),
5536                        diag::err_operator_new_delete_declared_static)
5537      << FnDecl->getDeclName();
5538  }
5539
5540  return false;
5541}
5542
5543static inline bool
5544CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5545                            CanQualType ExpectedResultType,
5546                            CanQualType ExpectedFirstParamType,
5547                            unsigned DependentParamTypeDiag,
5548                            unsigned InvalidParamTypeDiag) {
5549  QualType ResultType =
5550    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5551
5552  // Check that the result type is not dependent.
5553  if (ResultType->isDependentType())
5554    return SemaRef.Diag(FnDecl->getLocation(),
5555                        diag::err_operator_new_delete_dependent_result_type)
5556    << FnDecl->getDeclName() << ExpectedResultType;
5557
5558  // Check that the result type is what we expect.
5559  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5560    return SemaRef.Diag(FnDecl->getLocation(),
5561                        diag::err_operator_new_delete_invalid_result_type)
5562    << FnDecl->getDeclName() << ExpectedResultType;
5563
5564  // A function template must have at least 2 parameters.
5565  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5566    return SemaRef.Diag(FnDecl->getLocation(),
5567                      diag::err_operator_new_delete_template_too_few_parameters)
5568        << FnDecl->getDeclName();
5569
5570  // The function decl must have at least 1 parameter.
5571  if (FnDecl->getNumParams() == 0)
5572    return SemaRef.Diag(FnDecl->getLocation(),
5573                        diag::err_operator_new_delete_too_few_parameters)
5574      << FnDecl->getDeclName();
5575
5576  // Check the the first parameter type is not dependent.
5577  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5578  if (FirstParamType->isDependentType())
5579    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5580      << FnDecl->getDeclName() << ExpectedFirstParamType;
5581
5582  // Check that the first parameter type is what we expect.
5583  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5584      ExpectedFirstParamType)
5585    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5586    << FnDecl->getDeclName() << ExpectedFirstParamType;
5587
5588  return false;
5589}
5590
5591static bool
5592CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5593  // C++ [basic.stc.dynamic.allocation]p1:
5594  //   A program is ill-formed if an allocation function is declared in a
5595  //   namespace scope other than global scope or declared static in global
5596  //   scope.
5597  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5598    return true;
5599
5600  CanQualType SizeTy =
5601    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5602
5603  // C++ [basic.stc.dynamic.allocation]p1:
5604  //  The return type shall be void*. The first parameter shall have type
5605  //  std::size_t.
5606  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5607                                  SizeTy,
5608                                  diag::err_operator_new_dependent_param_type,
5609                                  diag::err_operator_new_param_type))
5610    return true;
5611
5612  // C++ [basic.stc.dynamic.allocation]p1:
5613  //  The first parameter shall not have an associated default argument.
5614  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5615    return SemaRef.Diag(FnDecl->getLocation(),
5616                        diag::err_operator_new_default_arg)
5617      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5618
5619  return false;
5620}
5621
5622static bool
5623CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5624  // C++ [basic.stc.dynamic.deallocation]p1:
5625  //   A program is ill-formed if deallocation functions are declared in a
5626  //   namespace scope other than global scope or declared static in global
5627  //   scope.
5628  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5629    return true;
5630
5631  // C++ [basic.stc.dynamic.deallocation]p2:
5632  //   Each deallocation function shall return void and its first parameter
5633  //   shall be void*.
5634  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5635                                  SemaRef.Context.VoidPtrTy,
5636                                 diag::err_operator_delete_dependent_param_type,
5637                                 diag::err_operator_delete_param_type))
5638    return true;
5639
5640  return false;
5641}
5642
5643/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5644/// of this overloaded operator is well-formed. If so, returns false;
5645/// otherwise, emits appropriate diagnostics and returns true.
5646bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5647  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5648         "Expected an overloaded operator declaration");
5649
5650  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5651
5652  // C++ [over.oper]p5:
5653  //   The allocation and deallocation functions, operator new,
5654  //   operator new[], operator delete and operator delete[], are
5655  //   described completely in 3.7.3. The attributes and restrictions
5656  //   found in the rest of this subclause do not apply to them unless
5657  //   explicitly stated in 3.7.3.
5658  if (Op == OO_Delete || Op == OO_Array_Delete)
5659    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5660
5661  if (Op == OO_New || Op == OO_Array_New)
5662    return CheckOperatorNewDeclaration(*this, FnDecl);
5663
5664  // C++ [over.oper]p6:
5665  //   An operator function shall either be a non-static member
5666  //   function or be a non-member function and have at least one
5667  //   parameter whose type is a class, a reference to a class, an
5668  //   enumeration, or a reference to an enumeration.
5669  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5670    if (MethodDecl->isStatic())
5671      return Diag(FnDecl->getLocation(),
5672                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5673  } else {
5674    bool ClassOrEnumParam = false;
5675    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5676                                   ParamEnd = FnDecl->param_end();
5677         Param != ParamEnd; ++Param) {
5678      QualType ParamType = (*Param)->getType().getNonReferenceType();
5679      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5680          ParamType->isEnumeralType()) {
5681        ClassOrEnumParam = true;
5682        break;
5683      }
5684    }
5685
5686    if (!ClassOrEnumParam)
5687      return Diag(FnDecl->getLocation(),
5688                  diag::err_operator_overload_needs_class_or_enum)
5689        << FnDecl->getDeclName();
5690  }
5691
5692  // C++ [over.oper]p8:
5693  //   An operator function cannot have default arguments (8.3.6),
5694  //   except where explicitly stated below.
5695  //
5696  // Only the function-call operator allows default arguments
5697  // (C++ [over.call]p1).
5698  if (Op != OO_Call) {
5699    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5700         Param != FnDecl->param_end(); ++Param) {
5701      if ((*Param)->hasDefaultArg())
5702        return Diag((*Param)->getLocation(),
5703                    diag::err_operator_overload_default_arg)
5704          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5705    }
5706  }
5707
5708  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5709    { false, false, false }
5710#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5711    , { Unary, Binary, MemberOnly }
5712#include "clang/Basic/OperatorKinds.def"
5713  };
5714
5715  bool CanBeUnaryOperator = OperatorUses[Op][0];
5716  bool CanBeBinaryOperator = OperatorUses[Op][1];
5717  bool MustBeMemberOperator = OperatorUses[Op][2];
5718
5719  // C++ [over.oper]p8:
5720  //   [...] Operator functions cannot have more or fewer parameters
5721  //   than the number required for the corresponding operator, as
5722  //   described in the rest of this subclause.
5723  unsigned NumParams = FnDecl->getNumParams()
5724                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5725  if (Op != OO_Call &&
5726      ((NumParams == 1 && !CanBeUnaryOperator) ||
5727       (NumParams == 2 && !CanBeBinaryOperator) ||
5728       (NumParams < 1) || (NumParams > 2))) {
5729    // We have the wrong number of parameters.
5730    unsigned ErrorKind;
5731    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5732      ErrorKind = 2;  // 2 -> unary or binary.
5733    } else if (CanBeUnaryOperator) {
5734      ErrorKind = 0;  // 0 -> unary
5735    } else {
5736      assert(CanBeBinaryOperator &&
5737             "All non-call overloaded operators are unary or binary!");
5738      ErrorKind = 1;  // 1 -> binary
5739    }
5740
5741    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5742      << FnDecl->getDeclName() << NumParams << ErrorKind;
5743  }
5744
5745  // Overloaded operators other than operator() cannot be variadic.
5746  if (Op != OO_Call &&
5747      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5748    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5749      << FnDecl->getDeclName();
5750  }
5751
5752  // Some operators must be non-static member functions.
5753  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5754    return Diag(FnDecl->getLocation(),
5755                diag::err_operator_overload_must_be_member)
5756      << FnDecl->getDeclName();
5757  }
5758
5759  // C++ [over.inc]p1:
5760  //   The user-defined function called operator++ implements the
5761  //   prefix and postfix ++ operator. If this function is a member
5762  //   function with no parameters, or a non-member function with one
5763  //   parameter of class or enumeration type, it defines the prefix
5764  //   increment operator ++ for objects of that type. If the function
5765  //   is a member function with one parameter (which shall be of type
5766  //   int) or a non-member function with two parameters (the second
5767  //   of which shall be of type int), it defines the postfix
5768  //   increment operator ++ for objects of that type.
5769  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5770    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5771    bool ParamIsInt = false;
5772    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5773      ParamIsInt = BT->getKind() == BuiltinType::Int;
5774
5775    if (!ParamIsInt)
5776      return Diag(LastParam->getLocation(),
5777                  diag::err_operator_overload_post_incdec_must_be_int)
5778        << LastParam->getType() << (Op == OO_MinusMinus);
5779  }
5780
5781  // Notify the class if it got an assignment operator.
5782  if (Op == OO_Equal) {
5783    // Would have returned earlier otherwise.
5784    assert(isa<CXXMethodDecl>(FnDecl) &&
5785      "Overloaded = not member, but not filtered.");
5786    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5787    Method->getParent()->addedAssignmentOperator(Context, Method);
5788  }
5789
5790  return false;
5791}
5792
5793/// CheckLiteralOperatorDeclaration - Check whether the declaration
5794/// of this literal operator function is well-formed. If so, returns
5795/// false; otherwise, emits appropriate diagnostics and returns true.
5796bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5797  DeclContext *DC = FnDecl->getDeclContext();
5798  Decl::Kind Kind = DC->getDeclKind();
5799  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5800      Kind != Decl::LinkageSpec) {
5801    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5802      << FnDecl->getDeclName();
5803    return true;
5804  }
5805
5806  bool Valid = false;
5807
5808  // template <char...> type operator "" name() is the only valid template
5809  // signature, and the only valid signature with no parameters.
5810  if (FnDecl->param_size() == 0) {
5811    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5812      // Must have only one template parameter
5813      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5814      if (Params->size() == 1) {
5815        NonTypeTemplateParmDecl *PmDecl =
5816          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5817
5818        // The template parameter must be a char parameter pack.
5819        // FIXME: This test will always fail because non-type parameter packs
5820        //   have not been implemented.
5821        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5822            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5823          Valid = true;
5824      }
5825    }
5826  } else {
5827    // Check the first parameter
5828    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5829
5830    QualType T = (*Param)->getType();
5831
5832    // unsigned long long int, long double, and any character type are allowed
5833    // as the only parameters.
5834    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5835        Context.hasSameType(T, Context.LongDoubleTy) ||
5836        Context.hasSameType(T, Context.CharTy) ||
5837        Context.hasSameType(T, Context.WCharTy) ||
5838        Context.hasSameType(T, Context.Char16Ty) ||
5839        Context.hasSameType(T, Context.Char32Ty)) {
5840      if (++Param == FnDecl->param_end())
5841        Valid = true;
5842      goto FinishedParams;
5843    }
5844
5845    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5846    const PointerType *PT = T->getAs<PointerType>();
5847    if (!PT)
5848      goto FinishedParams;
5849    T = PT->getPointeeType();
5850    if (!T.isConstQualified())
5851      goto FinishedParams;
5852    T = T.getUnqualifiedType();
5853
5854    // Move on to the second parameter;
5855    ++Param;
5856
5857    // If there is no second parameter, the first must be a const char *
5858    if (Param == FnDecl->param_end()) {
5859      if (Context.hasSameType(T, Context.CharTy))
5860        Valid = true;
5861      goto FinishedParams;
5862    }
5863
5864    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5865    // are allowed as the first parameter to a two-parameter function
5866    if (!(Context.hasSameType(T, Context.CharTy) ||
5867          Context.hasSameType(T, Context.WCharTy) ||
5868          Context.hasSameType(T, Context.Char16Ty) ||
5869          Context.hasSameType(T, Context.Char32Ty)))
5870      goto FinishedParams;
5871
5872    // The second and final parameter must be an std::size_t
5873    T = (*Param)->getType().getUnqualifiedType();
5874    if (Context.hasSameType(T, Context.getSizeType()) &&
5875        ++Param == FnDecl->param_end())
5876      Valid = true;
5877  }
5878
5879  // FIXME: This diagnostic is absolutely terrible.
5880FinishedParams:
5881  if (!Valid) {
5882    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5883      << FnDecl->getDeclName();
5884    return true;
5885  }
5886
5887  return false;
5888}
5889
5890/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5891/// linkage specification, including the language and (if present)
5892/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5893/// the location of the language string literal, which is provided
5894/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5895/// the '{' brace. Otherwise, this linkage specification does not
5896/// have any braces.
5897Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5898                                                     SourceLocation ExternLoc,
5899                                                     SourceLocation LangLoc,
5900                                                     llvm::StringRef Lang,
5901                                                     SourceLocation LBraceLoc) {
5902  LinkageSpecDecl::LanguageIDs Language;
5903  if (Lang == "\"C\"")
5904    Language = LinkageSpecDecl::lang_c;
5905  else if (Lang == "\"C++\"")
5906    Language = LinkageSpecDecl::lang_cxx;
5907  else {
5908    Diag(LangLoc, diag::err_bad_language);
5909    return DeclPtrTy();
5910  }
5911
5912  // FIXME: Add all the various semantics of linkage specifications
5913
5914  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5915                                               LangLoc, Language,
5916                                               LBraceLoc.isValid());
5917  CurContext->addDecl(D);
5918  PushDeclContext(S, D);
5919  return DeclPtrTy::make(D);
5920}
5921
5922/// ActOnFinishLinkageSpecification - Complete the definition of
5923/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5924/// valid, it's the position of the closing '}' brace in a linkage
5925/// specification that uses braces.
5926Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5927                                                      DeclPtrTy LinkageSpec,
5928                                                      SourceLocation RBraceLoc) {
5929  if (LinkageSpec)
5930    PopDeclContext();
5931  return LinkageSpec;
5932}
5933
5934/// \brief Perform semantic analysis for the variable declaration that
5935/// occurs within a C++ catch clause, returning the newly-created
5936/// variable.
5937VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5938                                         TypeSourceInfo *TInfo,
5939                                         IdentifierInfo *Name,
5940                                         SourceLocation Loc,
5941                                         SourceRange Range) {
5942  bool Invalid = false;
5943
5944  // Arrays and functions decay.
5945  if (ExDeclType->isArrayType())
5946    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5947  else if (ExDeclType->isFunctionType())
5948    ExDeclType = Context.getPointerType(ExDeclType);
5949
5950  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5951  // The exception-declaration shall not denote a pointer or reference to an
5952  // incomplete type, other than [cv] void*.
5953  // N2844 forbids rvalue references.
5954  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5955    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5956    Invalid = true;
5957  }
5958
5959  // GCC allows catching pointers and references to incomplete types
5960  // as an extension; so do we, but we warn by default.
5961
5962  QualType BaseType = ExDeclType;
5963  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5964  unsigned DK = diag::err_catch_incomplete;
5965  bool IncompleteCatchIsInvalid = true;
5966  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5967    BaseType = Ptr->getPointeeType();
5968    Mode = 1;
5969    DK = diag::ext_catch_incomplete_ptr;
5970    IncompleteCatchIsInvalid = false;
5971  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5972    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5973    BaseType = Ref->getPointeeType();
5974    Mode = 2;
5975    DK = diag::ext_catch_incomplete_ref;
5976    IncompleteCatchIsInvalid = false;
5977  }
5978  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5979      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5980      IncompleteCatchIsInvalid)
5981    Invalid = true;
5982
5983  if (!Invalid && !ExDeclType->isDependentType() &&
5984      RequireNonAbstractType(Loc, ExDeclType,
5985                             diag::err_abstract_type_in_decl,
5986                             AbstractVariableType))
5987    Invalid = true;
5988
5989  // Only the non-fragile NeXT runtime currently supports C++ catches
5990  // of ObjC types, and no runtime supports catching ObjC types by value.
5991  if (!Invalid && getLangOptions().ObjC1) {
5992    QualType T = ExDeclType;
5993    if (const ReferenceType *RT = T->getAs<ReferenceType>())
5994      T = RT->getPointeeType();
5995
5996    if (T->isObjCObjectType()) {
5997      Diag(Loc, diag::err_objc_object_catch);
5998      Invalid = true;
5999    } else if (T->isObjCObjectPointerType()) {
6000      if (!getLangOptions().NeXTRuntime) {
6001        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6002        Invalid = true;
6003      } else if (!getLangOptions().ObjCNonFragileABI) {
6004        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6005        Invalid = true;
6006      }
6007    }
6008  }
6009
6010  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6011                                    Name, ExDeclType, TInfo, VarDecl::None,
6012                                    VarDecl::None);
6013  ExDecl->setExceptionVariable(true);
6014
6015  if (!Invalid) {
6016    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6017      // C++ [except.handle]p16:
6018      //   The object declared in an exception-declaration or, if the
6019      //   exception-declaration does not specify a name, a temporary (12.2) is
6020      //   copy-initialized (8.5) from the exception object. [...]
6021      //   The object is destroyed when the handler exits, after the destruction
6022      //   of any automatic objects initialized within the handler.
6023      //
6024      // We just pretend to initialize the object with itself, then make sure
6025      // it can be destroyed later.
6026      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6027      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6028                                            Loc, ExDeclType, 0);
6029      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6030                                                               SourceLocation());
6031      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6032      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6033                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
6034      if (Result.isInvalid())
6035        Invalid = true;
6036      else
6037        FinalizeVarWithDestructor(ExDecl, RecordTy);
6038    }
6039  }
6040
6041  if (Invalid)
6042    ExDecl->setInvalidDecl();
6043
6044  return ExDecl;
6045}
6046
6047/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6048/// handler.
6049Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6050  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6051  QualType ExDeclType = TInfo->getType();
6052
6053  bool Invalid = D.isInvalidType();
6054  IdentifierInfo *II = D.getIdentifier();
6055  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6056                                             LookupOrdinaryName,
6057                                             ForRedeclaration)) {
6058    // The scope should be freshly made just for us. There is just no way
6059    // it contains any previous declaration.
6060    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
6061    if (PrevDecl->isTemplateParameter()) {
6062      // Maybe we will complain about the shadowed template parameter.
6063      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6064    }
6065  }
6066
6067  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6068    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6069      << D.getCXXScopeSpec().getRange();
6070    Invalid = true;
6071  }
6072
6073  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
6074                                              D.getIdentifier(),
6075                                              D.getIdentifierLoc(),
6076                                            D.getDeclSpec().getSourceRange());
6077
6078  if (Invalid)
6079    ExDecl->setInvalidDecl();
6080
6081  // Add the exception declaration into this scope.
6082  if (II)
6083    PushOnScopeChains(ExDecl, S);
6084  else
6085    CurContext->addDecl(ExDecl);
6086
6087  ProcessDeclAttributes(S, ExDecl, D);
6088  return DeclPtrTy::make(ExDecl);
6089}
6090
6091Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6092                                                   ExprArg assertexpr,
6093                                                   ExprArg assertmessageexpr) {
6094  Expr *AssertExpr = (Expr *)assertexpr.get();
6095  StringLiteral *AssertMessage =
6096    cast<StringLiteral>((Expr *)assertmessageexpr.get());
6097
6098  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6099    llvm::APSInt Value(32);
6100    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6101      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6102        AssertExpr->getSourceRange();
6103      return DeclPtrTy();
6104    }
6105
6106    if (Value == 0) {
6107      Diag(AssertLoc, diag::err_static_assert_failed)
6108        << AssertMessage->getString() << AssertExpr->getSourceRange();
6109    }
6110  }
6111
6112  assertexpr.release();
6113  assertmessageexpr.release();
6114  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6115                                        AssertExpr, AssertMessage);
6116
6117  CurContext->addDecl(Decl);
6118  return DeclPtrTy::make(Decl);
6119}
6120
6121/// \brief Perform semantic analysis of the given friend type declaration.
6122///
6123/// \returns A friend declaration that.
6124FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6125                                      TypeSourceInfo *TSInfo) {
6126  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6127
6128  QualType T = TSInfo->getType();
6129  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6130
6131  if (!getLangOptions().CPlusPlus0x) {
6132    // C++03 [class.friend]p2:
6133    //   An elaborated-type-specifier shall be used in a friend declaration
6134    //   for a class.*
6135    //
6136    //   * The class-key of the elaborated-type-specifier is required.
6137    if (!ActiveTemplateInstantiations.empty()) {
6138      // Do not complain about the form of friend template types during
6139      // template instantiation; we will already have complained when the
6140      // template was declared.
6141    } else if (!T->isElaboratedTypeSpecifier()) {
6142      // If we evaluated the type to a record type, suggest putting
6143      // a tag in front.
6144      if (const RecordType *RT = T->getAs<RecordType>()) {
6145        RecordDecl *RD = RT->getDecl();
6146
6147        std::string InsertionText = std::string(" ") + RD->getKindName();
6148
6149        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6150          << (unsigned) RD->getTagKind()
6151          << T
6152          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6153                                        InsertionText);
6154      } else {
6155        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6156          << T
6157          << SourceRange(FriendLoc, TypeRange.getEnd());
6158      }
6159    } else if (T->getAs<EnumType>()) {
6160      Diag(FriendLoc, diag::ext_enum_friend)
6161        << T
6162        << SourceRange(FriendLoc, TypeRange.getEnd());
6163    }
6164  }
6165
6166  // C++0x [class.friend]p3:
6167  //   If the type specifier in a friend declaration designates a (possibly
6168  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6169  //   the friend declaration is ignored.
6170
6171  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6172  // in [class.friend]p3 that we do not implement.
6173
6174  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6175}
6176
6177/// Handle a friend type declaration.  This works in tandem with
6178/// ActOnTag.
6179///
6180/// Notes on friend class templates:
6181///
6182/// We generally treat friend class declarations as if they were
6183/// declaring a class.  So, for example, the elaborated type specifier
6184/// in a friend declaration is required to obey the restrictions of a
6185/// class-head (i.e. no typedefs in the scope chain), template
6186/// parameters are required to match up with simple template-ids, &c.
6187/// However, unlike when declaring a template specialization, it's
6188/// okay to refer to a template specialization without an empty
6189/// template parameter declaration, e.g.
6190///   friend class A<T>::B<unsigned>;
6191/// We permit this as a special case; if there are any template
6192/// parameters present at all, require proper matching, i.e.
6193///   template <> template <class T> friend class A<int>::B;
6194Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6195                                          MultiTemplateParamsArg TempParams) {
6196  SourceLocation Loc = DS.getSourceRange().getBegin();
6197
6198  assert(DS.isFriendSpecified());
6199  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6200
6201  // Try to convert the decl specifier to a type.  This works for
6202  // friend templates because ActOnTag never produces a ClassTemplateDecl
6203  // for a TUK_Friend.
6204  Declarator TheDeclarator(DS, Declarator::MemberContext);
6205  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6206  QualType T = TSI->getType();
6207  if (TheDeclarator.isInvalidType())
6208    return DeclPtrTy();
6209
6210  // This is definitely an error in C++98.  It's probably meant to
6211  // be forbidden in C++0x, too, but the specification is just
6212  // poorly written.
6213  //
6214  // The problem is with declarations like the following:
6215  //   template <T> friend A<T>::foo;
6216  // where deciding whether a class C is a friend or not now hinges
6217  // on whether there exists an instantiation of A that causes
6218  // 'foo' to equal C.  There are restrictions on class-heads
6219  // (which we declare (by fiat) elaborated friend declarations to
6220  // be) that makes this tractable.
6221  //
6222  // FIXME: handle "template <> friend class A<T>;", which
6223  // is possibly well-formed?  Who even knows?
6224  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6225    Diag(Loc, diag::err_tagless_friend_type_template)
6226      << DS.getSourceRange();
6227    return DeclPtrTy();
6228  }
6229
6230  // C++98 [class.friend]p1: A friend of a class is a function
6231  //   or class that is not a member of the class . . .
6232  // This is fixed in DR77, which just barely didn't make the C++03
6233  // deadline.  It's also a very silly restriction that seriously
6234  // affects inner classes and which nobody else seems to implement;
6235  // thus we never diagnose it, not even in -pedantic.
6236  //
6237  // But note that we could warn about it: it's always useless to
6238  // friend one of your own members (it's not, however, worthless to
6239  // friend a member of an arbitrary specialization of your template).
6240
6241  Decl *D;
6242  if (unsigned NumTempParamLists = TempParams.size())
6243    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6244                                   NumTempParamLists,
6245                                 (TemplateParameterList**) TempParams.release(),
6246                                   TSI,
6247                                   DS.getFriendSpecLoc());
6248  else
6249    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6250
6251  if (!D)
6252    return DeclPtrTy();
6253
6254  D->setAccess(AS_public);
6255  CurContext->addDecl(D);
6256
6257  return DeclPtrTy::make(D);
6258}
6259
6260Sema::DeclPtrTy
6261Sema::ActOnFriendFunctionDecl(Scope *S,
6262                              Declarator &D,
6263                              bool IsDefinition,
6264                              MultiTemplateParamsArg TemplateParams) {
6265  const DeclSpec &DS = D.getDeclSpec();
6266
6267  assert(DS.isFriendSpecified());
6268  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6269
6270  SourceLocation Loc = D.getIdentifierLoc();
6271  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6272  QualType T = TInfo->getType();
6273
6274  // C++ [class.friend]p1
6275  //   A friend of a class is a function or class....
6276  // Note that this sees through typedefs, which is intended.
6277  // It *doesn't* see through dependent types, which is correct
6278  // according to [temp.arg.type]p3:
6279  //   If a declaration acquires a function type through a
6280  //   type dependent on a template-parameter and this causes
6281  //   a declaration that does not use the syntactic form of a
6282  //   function declarator to have a function type, the program
6283  //   is ill-formed.
6284  if (!T->isFunctionType()) {
6285    Diag(Loc, diag::err_unexpected_friend);
6286
6287    // It might be worthwhile to try to recover by creating an
6288    // appropriate declaration.
6289    return DeclPtrTy();
6290  }
6291
6292  // C++ [namespace.memdef]p3
6293  //  - If a friend declaration in a non-local class first declares a
6294  //    class or function, the friend class or function is a member
6295  //    of the innermost enclosing namespace.
6296  //  - The name of the friend is not found by simple name lookup
6297  //    until a matching declaration is provided in that namespace
6298  //    scope (either before or after the class declaration granting
6299  //    friendship).
6300  //  - If a friend function is called, its name may be found by the
6301  //    name lookup that considers functions from namespaces and
6302  //    classes associated with the types of the function arguments.
6303  //  - When looking for a prior declaration of a class or a function
6304  //    declared as a friend, scopes outside the innermost enclosing
6305  //    namespace scope are not considered.
6306
6307  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
6308  DeclarationName Name = GetNameForDeclarator(D);
6309  assert(Name);
6310
6311  // The context we found the declaration in, or in which we should
6312  // create the declaration.
6313  DeclContext *DC;
6314
6315  // FIXME: handle local classes
6316
6317  // Recover from invalid scope qualifiers as if they just weren't there.
6318  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
6319                        ForRedeclaration);
6320  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
6321    DC = computeDeclContext(ScopeQual);
6322
6323    // FIXME: handle dependent contexts
6324    if (!DC) return DeclPtrTy();
6325    if (RequireCompleteDeclContext(ScopeQual, DC)) return DeclPtrTy();
6326
6327    LookupQualifiedName(Previous, DC);
6328
6329    // Ignore things found implicitly in the wrong scope.
6330    // TODO: better diagnostics for this case.  Suggesting the right
6331    // qualified scope would be nice...
6332    LookupResult::Filter F = Previous.makeFilter();
6333    while (F.hasNext()) {
6334      NamedDecl *D = F.next();
6335      if (!D->getDeclContext()->getLookupContext()->Equals(DC))
6336        F.erase();
6337    }
6338    F.done();
6339
6340    if (Previous.empty()) {
6341      D.setInvalidType();
6342      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6343      return DeclPtrTy();
6344    }
6345
6346    // C++ [class.friend]p1: A friend of a class is a function or
6347    //   class that is not a member of the class . . .
6348    if (DC->Equals(CurContext))
6349      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6350
6351  // Otherwise walk out to the nearest namespace scope looking for matches.
6352  } else {
6353    // TODO: handle local class contexts.
6354
6355    DC = CurContext;
6356    while (true) {
6357      // Skip class contexts.  If someone can cite chapter and verse
6358      // for this behavior, that would be nice --- it's what GCC and
6359      // EDG do, and it seems like a reasonable intent, but the spec
6360      // really only says that checks for unqualified existing
6361      // declarations should stop at the nearest enclosing namespace,
6362      // not that they should only consider the nearest enclosing
6363      // namespace.
6364      while (DC->isRecord())
6365        DC = DC->getParent();
6366
6367      LookupQualifiedName(Previous, DC);
6368
6369      // TODO: decide what we think about using declarations.
6370      if (!Previous.empty())
6371        break;
6372
6373      if (DC->isFileContext()) break;
6374      DC = DC->getParent();
6375    }
6376
6377    // C++ [class.friend]p1: A friend of a class is a function or
6378    //   class that is not a member of the class . . .
6379    // C++0x changes this for both friend types and functions.
6380    // Most C++ 98 compilers do seem to give an error here, so
6381    // we do, too.
6382    if (!Previous.empty() && DC->Equals(CurContext)
6383        && !getLangOptions().CPlusPlus0x)
6384      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6385  }
6386
6387  if (DC->isFileContext()) {
6388    // This implies that it has to be an operator or function.
6389    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6390        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6391        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6392      Diag(Loc, diag::err_introducing_special_friend) <<
6393        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6394         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6395      return DeclPtrTy();
6396    }
6397  }
6398
6399  bool Redeclaration = false;
6400  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
6401                                          move(TemplateParams),
6402                                          IsDefinition,
6403                                          Redeclaration);
6404  if (!ND) return DeclPtrTy();
6405
6406  assert(ND->getDeclContext() == DC);
6407  assert(ND->getLexicalDeclContext() == CurContext);
6408
6409  // Add the function declaration to the appropriate lookup tables,
6410  // adjusting the redeclarations list as necessary.  We don't
6411  // want to do this yet if the friending class is dependent.
6412  //
6413  // Also update the scope-based lookup if the target context's
6414  // lookup context is in lexical scope.
6415  if (!CurContext->isDependentContext()) {
6416    DC = DC->getLookupContext();
6417    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6418    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6419      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6420  }
6421
6422  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6423                                       D.getIdentifierLoc(), ND,
6424                                       DS.getFriendSpecLoc());
6425  FrD->setAccess(AS_public);
6426  CurContext->addDecl(FrD);
6427
6428  return DeclPtrTy::make(ND);
6429}
6430
6431void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
6432  AdjustDeclIfTemplate(dcl);
6433
6434  Decl *Dcl = dcl.getAs<Decl>();
6435  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6436  if (!Fn) {
6437    Diag(DelLoc, diag::err_deleted_non_function);
6438    return;
6439  }
6440  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6441    Diag(DelLoc, diag::err_deleted_decl_not_first);
6442    Diag(Prev->getLocation(), diag::note_previous_declaration);
6443    // If the declaration wasn't the first, we delete the function anyway for
6444    // recovery.
6445  }
6446  Fn->setDeleted();
6447}
6448
6449static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6450  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6451       ++CI) {
6452    Stmt *SubStmt = *CI;
6453    if (!SubStmt)
6454      continue;
6455    if (isa<ReturnStmt>(SubStmt))
6456      Self.Diag(SubStmt->getSourceRange().getBegin(),
6457           diag::err_return_in_constructor_handler);
6458    if (!isa<Expr>(SubStmt))
6459      SearchForReturnInStmt(Self, SubStmt);
6460  }
6461}
6462
6463void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6464  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6465    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6466    SearchForReturnInStmt(*this, Handler);
6467  }
6468}
6469
6470bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6471                                             const CXXMethodDecl *Old) {
6472  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6473  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6474
6475  if (Context.hasSameType(NewTy, OldTy) ||
6476      NewTy->isDependentType() || OldTy->isDependentType())
6477    return false;
6478
6479  // Check if the return types are covariant
6480  QualType NewClassTy, OldClassTy;
6481
6482  /// Both types must be pointers or references to classes.
6483  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6484    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6485      NewClassTy = NewPT->getPointeeType();
6486      OldClassTy = OldPT->getPointeeType();
6487    }
6488  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6489    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6490      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6491        NewClassTy = NewRT->getPointeeType();
6492        OldClassTy = OldRT->getPointeeType();
6493      }
6494    }
6495  }
6496
6497  // The return types aren't either both pointers or references to a class type.
6498  if (NewClassTy.isNull()) {
6499    Diag(New->getLocation(),
6500         diag::err_different_return_type_for_overriding_virtual_function)
6501      << New->getDeclName() << NewTy << OldTy;
6502    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6503
6504    return true;
6505  }
6506
6507  // C++ [class.virtual]p6:
6508  //   If the return type of D::f differs from the return type of B::f, the
6509  //   class type in the return type of D::f shall be complete at the point of
6510  //   declaration of D::f or shall be the class type D.
6511  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6512    if (!RT->isBeingDefined() &&
6513        RequireCompleteType(New->getLocation(), NewClassTy,
6514                            PDiag(diag::err_covariant_return_incomplete)
6515                              << New->getDeclName()))
6516    return true;
6517  }
6518
6519  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6520    // Check if the new class derives from the old class.
6521    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6522      Diag(New->getLocation(),
6523           diag::err_covariant_return_not_derived)
6524      << New->getDeclName() << NewTy << OldTy;
6525      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6526      return true;
6527    }
6528
6529    // Check if we the conversion from derived to base is valid.
6530    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6531                    diag::err_covariant_return_inaccessible_base,
6532                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6533                    // FIXME: Should this point to the return type?
6534                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6535      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6536      return true;
6537    }
6538  }
6539
6540  // The qualifiers of the return types must be the same.
6541  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6542    Diag(New->getLocation(),
6543         diag::err_covariant_return_type_different_qualifications)
6544    << New->getDeclName() << NewTy << OldTy;
6545    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6546    return true;
6547  };
6548
6549
6550  // The new class type must have the same or less qualifiers as the old type.
6551  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6552    Diag(New->getLocation(),
6553         diag::err_covariant_return_type_class_type_more_qualified)
6554    << New->getDeclName() << NewTy << OldTy;
6555    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6556    return true;
6557  };
6558
6559  return false;
6560}
6561
6562bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6563                                             const CXXMethodDecl *Old)
6564{
6565  if (Old->hasAttr<FinalAttr>()) {
6566    Diag(New->getLocation(), diag::err_final_function_overridden)
6567      << New->getDeclName();
6568    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6569    return true;
6570  }
6571
6572  return false;
6573}
6574
6575/// \brief Mark the given method pure.
6576///
6577/// \param Method the method to be marked pure.
6578///
6579/// \param InitRange the source range that covers the "0" initializer.
6580bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6581  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6582    Method->setPure();
6583
6584    // A class is abstract if at least one function is pure virtual.
6585    Method->getParent()->setAbstract(true);
6586    return false;
6587  }
6588
6589  if (!Method->isInvalidDecl())
6590    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6591      << Method->getDeclName() << InitRange;
6592  return true;
6593}
6594
6595/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6596/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6597/// is a fresh scope pushed for just this purpose.
6598///
6599/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6600/// static data member of class X, names should be looked up in the scope of
6601/// class X.
6602void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6603  // If there is no declaration, there was an error parsing it.
6604  Decl *D = Dcl.getAs<Decl>();
6605  if (D == 0) return;
6606
6607  // We should only get called for declarations with scope specifiers, like:
6608  //   int foo::bar;
6609  assert(D->isOutOfLine());
6610  EnterDeclaratorContext(S, D->getDeclContext());
6611}
6612
6613/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6614/// initializer for the out-of-line declaration 'Dcl'.
6615void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6616  // If there is no declaration, there was an error parsing it.
6617  Decl *D = Dcl.getAs<Decl>();
6618  if (D == 0) return;
6619
6620  assert(D->isOutOfLine());
6621  ExitDeclaratorContext(S);
6622}
6623
6624/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6625/// C++ if/switch/while/for statement.
6626/// e.g: "if (int x = f()) {...}"
6627Action::DeclResult
6628Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6629  // C++ 6.4p2:
6630  // The declarator shall not specify a function or an array.
6631  // The type-specifier-seq shall not contain typedef and shall not declare a
6632  // new class or enumeration.
6633  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6634         "Parser allowed 'typedef' as storage class of condition decl.");
6635
6636  TagDecl *OwnedTag = 0;
6637  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6638  QualType Ty = TInfo->getType();
6639
6640  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6641                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6642                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6643    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6644      << D.getSourceRange();
6645    return DeclResult();
6646  } else if (OwnedTag && OwnedTag->isDefinition()) {
6647    // The type-specifier-seq shall not declare a new class or enumeration.
6648    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6649  }
6650
6651  DeclPtrTy Dcl = ActOnDeclarator(S, D);
6652  if (!Dcl)
6653    return DeclResult();
6654
6655  return Dcl;
6656}
6657
6658void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6659                          bool DefinitionRequired) {
6660  // Ignore any vtable uses in unevaluated operands or for classes that do
6661  // not have a vtable.
6662  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6663      CurContext->isDependentContext() ||
6664      ExprEvalContexts.back().Context == Unevaluated)
6665    return;
6666
6667  // Try to insert this class into the map.
6668  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6669  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6670    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6671  if (!Pos.second) {
6672    // If we already had an entry, check to see if we are promoting this vtable
6673    // to required a definition. If so, we need to reappend to the VTableUses
6674    // list, since we may have already processed the first entry.
6675    if (DefinitionRequired && !Pos.first->second) {
6676      Pos.first->second = true;
6677    } else {
6678      // Otherwise, we can early exit.
6679      return;
6680    }
6681  }
6682
6683  // Local classes need to have their virtual members marked
6684  // immediately. For all other classes, we mark their virtual members
6685  // at the end of the translation unit.
6686  if (Class->isLocalClass())
6687    MarkVirtualMembersReferenced(Loc, Class);
6688  else
6689    VTableUses.push_back(std::make_pair(Class, Loc));
6690}
6691
6692bool Sema::DefineUsedVTables() {
6693  // If any dynamic classes have their key function defined within
6694  // this translation unit, then those vtables are considered "used" and must
6695  // be emitted.
6696  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6697    if (const CXXMethodDecl *KeyFunction
6698                             = Context.getKeyFunction(DynamicClasses[I])) {
6699      const FunctionDecl *Definition = 0;
6700      if (KeyFunction->hasBody(Definition))
6701        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6702    }
6703  }
6704
6705  if (VTableUses.empty())
6706    return false;
6707
6708  // Note: The VTableUses vector could grow as a result of marking
6709  // the members of a class as "used", so we check the size each
6710  // time through the loop and prefer indices (with are stable) to
6711  // iterators (which are not).
6712  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6713    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6714    if (!Class)
6715      continue;
6716
6717    SourceLocation Loc = VTableUses[I].second;
6718
6719    // If this class has a key function, but that key function is
6720    // defined in another translation unit, we don't need to emit the
6721    // vtable even though we're using it.
6722    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6723    if (KeyFunction && !KeyFunction->hasBody()) {
6724      switch (KeyFunction->getTemplateSpecializationKind()) {
6725      case TSK_Undeclared:
6726      case TSK_ExplicitSpecialization:
6727      case TSK_ExplicitInstantiationDeclaration:
6728        // The key function is in another translation unit.
6729        continue;
6730
6731      case TSK_ExplicitInstantiationDefinition:
6732      case TSK_ImplicitInstantiation:
6733        // We will be instantiating the key function.
6734        break;
6735      }
6736    } else if (!KeyFunction) {
6737      // If we have a class with no key function that is the subject
6738      // of an explicit instantiation declaration, suppress the
6739      // vtable; it will live with the explicit instantiation
6740      // definition.
6741      bool IsExplicitInstantiationDeclaration
6742        = Class->getTemplateSpecializationKind()
6743                                      == TSK_ExplicitInstantiationDeclaration;
6744      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6745                                 REnd = Class->redecls_end();
6746           R != REnd; ++R) {
6747        TemplateSpecializationKind TSK
6748          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6749        if (TSK == TSK_ExplicitInstantiationDeclaration)
6750          IsExplicitInstantiationDeclaration = true;
6751        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6752          IsExplicitInstantiationDeclaration = false;
6753          break;
6754        }
6755      }
6756
6757      if (IsExplicitInstantiationDeclaration)
6758        continue;
6759    }
6760
6761    // Mark all of the virtual members of this class as referenced, so
6762    // that we can build a vtable. Then, tell the AST consumer that a
6763    // vtable for this class is required.
6764    MarkVirtualMembersReferenced(Loc, Class);
6765    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6766    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6767
6768    // Optionally warn if we're emitting a weak vtable.
6769    if (Class->getLinkage() == ExternalLinkage &&
6770        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6771      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
6772        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6773    }
6774  }
6775  VTableUses.clear();
6776
6777  return true;
6778}
6779
6780void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6781                                        const CXXRecordDecl *RD) {
6782  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6783       e = RD->method_end(); i != e; ++i) {
6784    CXXMethodDecl *MD = *i;
6785
6786    // C++ [basic.def.odr]p2:
6787    //   [...] A virtual member function is used if it is not pure. [...]
6788    if (MD->isVirtual() && !MD->isPure())
6789      MarkDeclarationReferenced(Loc, MD);
6790  }
6791
6792  // Only classes that have virtual bases need a VTT.
6793  if (RD->getNumVBases() == 0)
6794    return;
6795
6796  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6797           e = RD->bases_end(); i != e; ++i) {
6798    const CXXRecordDecl *Base =
6799        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6800    if (Base->getNumVBases() == 0)
6801      continue;
6802    MarkVirtualMembersReferenced(Loc, Base);
6803  }
6804}
6805
6806/// SetIvarInitializers - This routine builds initialization ASTs for the
6807/// Objective-C implementation whose ivars need be initialized.
6808void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6809  if (!getLangOptions().CPlusPlus)
6810    return;
6811  if (const ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6812    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
6813    CollectIvarsToConstructOrDestruct(OID, ivars);
6814    if (ivars.empty())
6815      return;
6816    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
6817    for (unsigned i = 0; i < ivars.size(); i++) {
6818      FieldDecl *Field = ivars[i];
6819      if (Field->isInvalidDecl())
6820        continue;
6821
6822      CXXBaseOrMemberInitializer *Member;
6823      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
6824      InitializationKind InitKind =
6825        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
6826
6827      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
6828      Sema::OwningExprResult MemberInit =
6829        InitSeq.Perform(*this, InitEntity, InitKind,
6830                        Sema::MultiExprArg(*this, 0, 0));
6831      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
6832      // Note, MemberInit could actually come back empty if no initialization
6833      // is required (e.g., because it would call a trivial default constructor)
6834      if (!MemberInit.get() || MemberInit.isInvalid())
6835        continue;
6836
6837      Member =
6838        new (Context) CXXBaseOrMemberInitializer(Context,
6839                                                 Field, SourceLocation(),
6840                                                 SourceLocation(),
6841                                                 MemberInit.takeAs<Expr>(),
6842                                                 SourceLocation());
6843      AllToInit.push_back(Member);
6844
6845      // Be sure that the destructor is accessible and is marked as referenced.
6846      if (const RecordType *RecordTy
6847                  = Context.getBaseElementType(Field->getType())
6848                                                        ->getAs<RecordType>()) {
6849                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
6850        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
6851          MarkDeclarationReferenced(Field->getLocation(), Destructor);
6852          CheckDestructorAccess(Field->getLocation(), Destructor,
6853                            PDiag(diag::err_access_dtor_ivar)
6854                              << Context.getBaseElementType(Field->getType()));
6855        }
6856      }
6857    }
6858    ObjCImplementation->setIvarInitializers(Context,
6859                                            AllToInit.data(), AllToInit.size());
6860  }
6861}
6862