SemaDeclCXX.cpp revision 0e88aa7100da32acc63bc8a4dcb946ed517868f1
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/ParsedTemplate.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <map>
35#include <set>
36
37using namespace clang;
38
39//===----------------------------------------------------------------------===//
40// CheckDefaultArgumentVisitor
41//===----------------------------------------------------------------------===//
42
43namespace {
44  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
45  /// the default argument of a parameter to determine whether it
46  /// contains any ill-formed subexpressions. For example, this will
47  /// diagnose the use of local variables or parameters within the
48  /// default argument expression.
49  class CheckDefaultArgumentVisitor
50    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
51    Expr *DefaultArg;
52    Sema *S;
53
54  public:
55    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
56      : DefaultArg(defarg), S(s) {}
57
58    bool VisitExpr(Expr *Node);
59    bool VisitDeclRefExpr(DeclRefExpr *DRE);
60    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
61  };
62
63  /// VisitExpr - Visit all of the children of this expression.
64  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
65    bool IsInvalid = false;
66    for (Stmt::child_iterator I = Node->child_begin(),
67         E = Node->child_end(); I != E; ++I)
68      IsInvalid |= Visit(*I);
69    return IsInvalid;
70  }
71
72  /// VisitDeclRefExpr - Visit a reference to a declaration, to
73  /// determine whether this declaration can be used in the default
74  /// argument expression.
75  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
76    NamedDecl *Decl = DRE->getDecl();
77    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p9
79      //   Default arguments are evaluated each time the function is
80      //   called. The order of evaluation of function arguments is
81      //   unspecified. Consequently, parameters of a function shall not
82      //   be used in default argument expressions, even if they are not
83      //   evaluated. Parameters of a function declared before a default
84      //   argument expression are in scope and can hide namespace and
85      //   class member names.
86      return S->Diag(DRE->getSourceRange().getBegin(),
87                     diag::err_param_default_argument_references_param)
88         << Param->getDeclName() << DefaultArg->getSourceRange();
89    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
90      // C++ [dcl.fct.default]p7
91      //   Local variables shall not be used in default argument
92      //   expressions.
93      if (VDecl->isLocalVarDecl())
94        return S->Diag(DRE->getSourceRange().getBegin(),
95                       diag::err_param_default_argument_references_local)
96          << VDecl->getDeclName() << DefaultArg->getSourceRange();
97    }
98
99    return false;
100  }
101
102  /// VisitCXXThisExpr - Visit a C++ "this" expression.
103  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
104    // C++ [dcl.fct.default]p8:
105    //   The keyword this shall not be used in a default argument of a
106    //   member function.
107    return S->Diag(ThisE->getSourceRange().getBegin(),
108                   diag::err_param_default_argument_references_this)
109               << ThisE->getSourceRange();
110  }
111}
112
113bool
114Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
115                              SourceLocation EqualLoc) {
116  if (RequireCompleteType(Param->getLocation(), Param->getType(),
117                          diag::err_typecheck_decl_incomplete_type)) {
118    Param->setInvalidDecl();
119    return true;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
129                                                                    Param);
130  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
131                                                           EqualLoc);
132  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
133  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
134                                      MultiExprArg(*this, &Arg, 1));
135  if (Result.isInvalid())
136    return true;
137  Arg = Result.takeAs<Expr>();
138
139  CheckImplicitConversions(Arg, EqualLoc);
140  Arg = MaybeCreateExprWithCleanups(Arg);
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(Arg);
144
145  // We have already instantiated this parameter; provide each of the
146  // instantiations with the uninstantiated default argument.
147  UnparsedDefaultArgInstantiationsMap::iterator InstPos
148    = UnparsedDefaultArgInstantiations.find(Param);
149  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
150    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
151      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
152
153    // We're done tracking this parameter's instantiations.
154    UnparsedDefaultArgInstantiations.erase(InstPos);
155  }
156
157  return false;
158}
159
160/// ActOnParamDefaultArgument - Check whether the default argument
161/// provided for a function parameter is well-formed. If so, attach it
162/// to the parameter declaration.
163void
164Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
165                                Expr *DefaultArg) {
166  if (!param || !DefaultArg)
167    return;
168
169  ParmVarDecl *Param = cast<ParmVarDecl>(param);
170  UnparsedDefaultArgLocs.erase(Param);
171
172  // Default arguments are only permitted in C++
173  if (!getLangOptions().CPlusPlus) {
174    Diag(EqualLoc, diag::err_param_default_argument)
175      << DefaultArg->getSourceRange();
176    Param->setInvalidDecl();
177    return;
178  }
179
180  // Check that the default argument is well-formed
181  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
182  if (DefaultArgChecker.Visit(DefaultArg)) {
183    Param->setInvalidDecl();
184    return;
185  }
186
187  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
188}
189
190/// ActOnParamUnparsedDefaultArgument - We've seen a default
191/// argument for a function parameter, but we can't parse it yet
192/// because we're inside a class definition. Note that this default
193/// argument will be parsed later.
194void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
195                                             SourceLocation EqualLoc,
196                                             SourceLocation ArgLoc) {
197  if (!param)
198    return;
199
200  ParmVarDecl *Param = cast<ParmVarDecl>(param);
201  if (Param)
202    Param->setUnparsedDefaultArg();
203
204  UnparsedDefaultArgLocs[Param] = ArgLoc;
205}
206
207/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
208/// the default argument for the parameter param failed.
209void Sema::ActOnParamDefaultArgumentError(Decl *param) {
210  if (!param)
211    return;
212
213  ParmVarDecl *Param = cast<ParmVarDecl>(param);
214
215  Param->setInvalidDecl();
216
217  UnparsedDefaultArgLocs.erase(Param);
218}
219
220/// CheckExtraCXXDefaultArguments - Check for any extra default
221/// arguments in the declarator, which is not a function declaration
222/// or definition and therefore is not permitted to have default
223/// arguments. This routine should be invoked for every declarator
224/// that is not a function declaration or definition.
225void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
226  // C++ [dcl.fct.default]p3
227  //   A default argument expression shall be specified only in the
228  //   parameter-declaration-clause of a function declaration or in a
229  //   template-parameter (14.1). It shall not be specified for a
230  //   parameter pack. If it is specified in a
231  //   parameter-declaration-clause, it shall not occur within a
232  //   declarator or abstract-declarator of a parameter-declaration.
233  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
234    DeclaratorChunk &chunk = D.getTypeObject(i);
235    if (chunk.Kind == DeclaratorChunk::Function) {
236      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
237        ParmVarDecl *Param =
238          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
239        if (Param->hasUnparsedDefaultArg()) {
240          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
241          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
242            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
243          delete Toks;
244          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
245        } else if (Param->getDefaultArg()) {
246          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
247            << Param->getDefaultArg()->getSourceRange();
248          Param->setDefaultArg(0);
249        }
250      }
251    }
252  }
253}
254
255// MergeCXXFunctionDecl - Merge two declarations of the same C++
256// function, once we already know that they have the same
257// type. Subroutine of MergeFunctionDecl. Returns true if there was an
258// error, false otherwise.
259bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
260  bool Invalid = false;
261
262  // C++ [dcl.fct.default]p4:
263  //   For non-template functions, default arguments can be added in
264  //   later declarations of a function in the same
265  //   scope. Declarations in different scopes have completely
266  //   distinct sets of default arguments. That is, declarations in
267  //   inner scopes do not acquire default arguments from
268  //   declarations in outer scopes, and vice versa. In a given
269  //   function declaration, all parameters subsequent to a
270  //   parameter with a default argument shall have default
271  //   arguments supplied in this or previous declarations. A
272  //   default argument shall not be redefined by a later
273  //   declaration (not even to the same value).
274  //
275  // C++ [dcl.fct.default]p6:
276  //   Except for member functions of class templates, the default arguments
277  //   in a member function definition that appears outside of the class
278  //   definition are added to the set of default arguments provided by the
279  //   member function declaration in the class definition.
280  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
281    ParmVarDecl *OldParam = Old->getParamDecl(p);
282    ParmVarDecl *NewParam = New->getParamDecl(p);
283
284    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
285      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
286      // hint here. Alternatively, we could walk the type-source information
287      // for NewParam to find the last source location in the type... but it
288      // isn't worth the effort right now. This is the kind of test case that
289      // is hard to get right:
290
291      //   int f(int);
292      //   void g(int (*fp)(int) = f);
293      //   void g(int (*fp)(int) = &f);
294      Diag(NewParam->getLocation(),
295           diag::err_param_default_argument_redefinition)
296        << NewParam->getDefaultArgRange();
297
298      // Look for the function declaration where the default argument was
299      // actually written, which may be a declaration prior to Old.
300      for (FunctionDecl *Older = Old->getPreviousDeclaration();
301           Older; Older = Older->getPreviousDeclaration()) {
302        if (!Older->getParamDecl(p)->hasDefaultArg())
303          break;
304
305        OldParam = Older->getParamDecl(p);
306      }
307
308      Diag(OldParam->getLocation(), diag::note_previous_definition)
309        << OldParam->getDefaultArgRange();
310      Invalid = true;
311    } else if (OldParam->hasDefaultArg()) {
312      // Merge the old default argument into the new parameter.
313      // It's important to use getInit() here;  getDefaultArg()
314      // strips off any top-level ExprWithCleanups.
315      NewParam->setHasInheritedDefaultArg();
316      if (OldParam->hasUninstantiatedDefaultArg())
317        NewParam->setUninstantiatedDefaultArg(
318                                      OldParam->getUninstantiatedDefaultArg());
319      else
320        NewParam->setDefaultArg(OldParam->getInit());
321    } else if (NewParam->hasDefaultArg()) {
322      if (New->getDescribedFunctionTemplate()) {
323        // Paragraph 4, quoted above, only applies to non-template functions.
324        Diag(NewParam->getLocation(),
325             diag::err_param_default_argument_template_redecl)
326          << NewParam->getDefaultArgRange();
327        Diag(Old->getLocation(), diag::note_template_prev_declaration)
328          << false;
329      } else if (New->getTemplateSpecializationKind()
330                   != TSK_ImplicitInstantiation &&
331                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
332        // C++ [temp.expr.spec]p21:
333        //   Default function arguments shall not be specified in a declaration
334        //   or a definition for one of the following explicit specializations:
335        //     - the explicit specialization of a function template;
336        //     - the explicit specialization of a member function template;
337        //     - the explicit specialization of a member function of a class
338        //       template where the class template specialization to which the
339        //       member function specialization belongs is implicitly
340        //       instantiated.
341        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
342          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
343          << New->getDeclName()
344          << NewParam->getDefaultArgRange();
345      } else if (New->getDeclContext()->isDependentContext()) {
346        // C++ [dcl.fct.default]p6 (DR217):
347        //   Default arguments for a member function of a class template shall
348        //   be specified on the initial declaration of the member function
349        //   within the class template.
350        //
351        // Reading the tea leaves a bit in DR217 and its reference to DR205
352        // leads me to the conclusion that one cannot add default function
353        // arguments for an out-of-line definition of a member function of a
354        // dependent type.
355        int WhichKind = 2;
356        if (CXXRecordDecl *Record
357              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
358          if (Record->getDescribedClassTemplate())
359            WhichKind = 0;
360          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
361            WhichKind = 1;
362          else
363            WhichKind = 2;
364        }
365
366        Diag(NewParam->getLocation(),
367             diag::err_param_default_argument_member_template_redecl)
368          << WhichKind
369          << NewParam->getDefaultArgRange();
370      }
371    }
372  }
373
374  if (CheckEquivalentExceptionSpec(Old, New))
375    Invalid = true;
376
377  return Invalid;
378}
379
380/// CheckCXXDefaultArguments - Verify that the default arguments for a
381/// function declaration are well-formed according to C++
382/// [dcl.fct.default].
383void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
384  unsigned NumParams = FD->getNumParams();
385  unsigned p;
386
387  // Find first parameter with a default argument
388  for (p = 0; p < NumParams; ++p) {
389    ParmVarDecl *Param = FD->getParamDecl(p);
390    if (Param->hasDefaultArg())
391      break;
392  }
393
394  // C++ [dcl.fct.default]p4:
395  //   In a given function declaration, all parameters
396  //   subsequent to a parameter with a default argument shall
397  //   have default arguments supplied in this or previous
398  //   declarations. A default argument shall not be redefined
399  //   by a later declaration (not even to the same value).
400  unsigned LastMissingDefaultArg = 0;
401  for (; p < NumParams; ++p) {
402    ParmVarDecl *Param = FD->getParamDecl(p);
403    if (!Param->hasDefaultArg()) {
404      if (Param->isInvalidDecl())
405        /* We already complained about this parameter. */;
406      else if (Param->getIdentifier())
407        Diag(Param->getLocation(),
408             diag::err_param_default_argument_missing_name)
409          << Param->getIdentifier();
410      else
411        Diag(Param->getLocation(),
412             diag::err_param_default_argument_missing);
413
414      LastMissingDefaultArg = p;
415    }
416  }
417
418  if (LastMissingDefaultArg > 0) {
419    // Some default arguments were missing. Clear out all of the
420    // default arguments up to (and including) the last missing
421    // default argument, so that we leave the function parameters
422    // in a semantically valid state.
423    for (p = 0; p <= LastMissingDefaultArg; ++p) {
424      ParmVarDecl *Param = FD->getParamDecl(p);
425      if (Param->hasDefaultArg()) {
426        Param->setDefaultArg(0);
427      }
428    }
429  }
430}
431
432/// isCurrentClassName - Determine whether the identifier II is the
433/// name of the class type currently being defined. In the case of
434/// nested classes, this will only return true if II is the name of
435/// the innermost class.
436bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
437                              const CXXScopeSpec *SS) {
438  assert(getLangOptions().CPlusPlus && "No class names in C!");
439
440  CXXRecordDecl *CurDecl;
441  if (SS && SS->isSet() && !SS->isInvalid()) {
442    DeclContext *DC = computeDeclContext(*SS, true);
443    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
444  } else
445    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
446
447  if (CurDecl && CurDecl->getIdentifier())
448    return &II == CurDecl->getIdentifier();
449  else
450    return false;
451}
452
453/// \brief Check the validity of a C++ base class specifier.
454///
455/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
456/// and returns NULL otherwise.
457CXXBaseSpecifier *
458Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
459                         SourceRange SpecifierRange,
460                         bool Virtual, AccessSpecifier Access,
461                         TypeSourceInfo *TInfo) {
462  QualType BaseType = TInfo->getType();
463
464  // C++ [class.union]p1:
465  //   A union shall not have base classes.
466  if (Class->isUnion()) {
467    Diag(Class->getLocation(), diag::err_base_clause_on_union)
468      << SpecifierRange;
469    return 0;
470  }
471
472  if (BaseType->isDependentType())
473    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
474                                          Class->getTagKind() == TTK_Class,
475                                          Access, TInfo);
476
477  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
478
479  // Base specifiers must be record types.
480  if (!BaseType->isRecordType()) {
481    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
482    return 0;
483  }
484
485  // C++ [class.union]p1:
486  //   A union shall not be used as a base class.
487  if (BaseType->isUnionType()) {
488    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
489    return 0;
490  }
491
492  // C++ [class.derived]p2:
493  //   The class-name in a base-specifier shall not be an incompletely
494  //   defined class.
495  if (RequireCompleteType(BaseLoc, BaseType,
496                          PDiag(diag::err_incomplete_base_class)
497                            << SpecifierRange)) {
498    Class->setInvalidDecl();
499    return 0;
500  }
501
502  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
503  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
504  assert(BaseDecl && "Record type has no declaration");
505  BaseDecl = BaseDecl->getDefinition();
506  assert(BaseDecl && "Base type is not incomplete, but has no definition");
507  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
508  assert(CXXBaseDecl && "Base type is not a C++ type");
509
510  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
511  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
512    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
513    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
514      << BaseType;
515    return 0;
516  }
517
518  if (BaseDecl->isInvalidDecl())
519    Class->setInvalidDecl();
520
521  // Create the base specifier.
522  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
523                                        Class->getTagKind() == TTK_Class,
524                                        Access, TInfo);
525}
526
527/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
528/// one entry in the base class list of a class specifier, for
529/// example:
530///    class foo : public bar, virtual private baz {
531/// 'public bar' and 'virtual private baz' are each base-specifiers.
532BaseResult
533Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
534                         bool Virtual, AccessSpecifier Access,
535                         ParsedType basetype, SourceLocation BaseLoc) {
536  if (!classdecl)
537    return true;
538
539  AdjustDeclIfTemplate(classdecl);
540  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
541  if (!Class)
542    return true;
543
544  TypeSourceInfo *TInfo = 0;
545  GetTypeFromParser(basetype, &TInfo);
546
547  if (DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
548                                      UPPC_BaseType))
549    return true;
550
551  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
552                                                      Virtual, Access, TInfo))
553    return BaseSpec;
554
555  return true;
556}
557
558/// \brief Performs the actual work of attaching the given base class
559/// specifiers to a C++ class.
560bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
561                                unsigned NumBases) {
562 if (NumBases == 0)
563    return false;
564
565  // Used to keep track of which base types we have already seen, so
566  // that we can properly diagnose redundant direct base types. Note
567  // that the key is always the unqualified canonical type of the base
568  // class.
569  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
570
571  // Copy non-redundant base specifiers into permanent storage.
572  unsigned NumGoodBases = 0;
573  bool Invalid = false;
574  for (unsigned idx = 0; idx < NumBases; ++idx) {
575    QualType NewBaseType
576      = Context.getCanonicalType(Bases[idx]->getType());
577    NewBaseType = NewBaseType.getLocalUnqualifiedType();
578    if (!Class->hasObjectMember()) {
579      if (const RecordType *FDTTy =
580            NewBaseType.getTypePtr()->getAs<RecordType>())
581        if (FDTTy->getDecl()->hasObjectMember())
582          Class->setHasObjectMember(true);
583    }
584
585    if (KnownBaseTypes[NewBaseType]) {
586      // C++ [class.mi]p3:
587      //   A class shall not be specified as a direct base class of a
588      //   derived class more than once.
589      Diag(Bases[idx]->getSourceRange().getBegin(),
590           diag::err_duplicate_base_class)
591        << KnownBaseTypes[NewBaseType]->getType()
592        << Bases[idx]->getSourceRange();
593
594      // Delete the duplicate base class specifier; we're going to
595      // overwrite its pointer later.
596      Context.Deallocate(Bases[idx]);
597
598      Invalid = true;
599    } else {
600      // Okay, add this new base class.
601      KnownBaseTypes[NewBaseType] = Bases[idx];
602      Bases[NumGoodBases++] = Bases[idx];
603    }
604  }
605
606  // Attach the remaining base class specifiers to the derived class.
607  Class->setBases(Bases, NumGoodBases);
608
609  // Delete the remaining (good) base class specifiers, since their
610  // data has been copied into the CXXRecordDecl.
611  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
612    Context.Deallocate(Bases[idx]);
613
614  return Invalid;
615}
616
617/// ActOnBaseSpecifiers - Attach the given base specifiers to the
618/// class, after checking whether there are any duplicate base
619/// classes.
620void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
621                               unsigned NumBases) {
622  if (!ClassDecl || !Bases || !NumBases)
623    return;
624
625  AdjustDeclIfTemplate(ClassDecl);
626  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
627                       (CXXBaseSpecifier**)(Bases), NumBases);
628}
629
630static CXXRecordDecl *GetClassForType(QualType T) {
631  if (const RecordType *RT = T->getAs<RecordType>())
632    return cast<CXXRecordDecl>(RT->getDecl());
633  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
634    return ICT->getDecl();
635  else
636    return 0;
637}
638
639/// \brief Determine whether the type \p Derived is a C++ class that is
640/// derived from the type \p Base.
641bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
642  if (!getLangOptions().CPlusPlus)
643    return false;
644
645  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
646  if (!DerivedRD)
647    return false;
648
649  CXXRecordDecl *BaseRD = GetClassForType(Base);
650  if (!BaseRD)
651    return false;
652
653  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
654  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
655}
656
657/// \brief Determine whether the type \p Derived is a C++ class that is
658/// derived from the type \p Base.
659bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
660  if (!getLangOptions().CPlusPlus)
661    return false;
662
663  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
664  if (!DerivedRD)
665    return false;
666
667  CXXRecordDecl *BaseRD = GetClassForType(Base);
668  if (!BaseRD)
669    return false;
670
671  return DerivedRD->isDerivedFrom(BaseRD, Paths);
672}
673
674void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
675                              CXXCastPath &BasePathArray) {
676  assert(BasePathArray.empty() && "Base path array must be empty!");
677  assert(Paths.isRecordingPaths() && "Must record paths!");
678
679  const CXXBasePath &Path = Paths.front();
680
681  // We first go backward and check if we have a virtual base.
682  // FIXME: It would be better if CXXBasePath had the base specifier for
683  // the nearest virtual base.
684  unsigned Start = 0;
685  for (unsigned I = Path.size(); I != 0; --I) {
686    if (Path[I - 1].Base->isVirtual()) {
687      Start = I - 1;
688      break;
689    }
690  }
691
692  // Now add all bases.
693  for (unsigned I = Start, E = Path.size(); I != E; ++I)
694    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
695}
696
697/// \brief Determine whether the given base path includes a virtual
698/// base class.
699bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
700  for (CXXCastPath::const_iterator B = BasePath.begin(),
701                                BEnd = BasePath.end();
702       B != BEnd; ++B)
703    if ((*B)->isVirtual())
704      return true;
705
706  return false;
707}
708
709/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
710/// conversion (where Derived and Base are class types) is
711/// well-formed, meaning that the conversion is unambiguous (and
712/// that all of the base classes are accessible). Returns true
713/// and emits a diagnostic if the code is ill-formed, returns false
714/// otherwise. Loc is the location where this routine should point to
715/// if there is an error, and Range is the source range to highlight
716/// if there is an error.
717bool
718Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
719                                   unsigned InaccessibleBaseID,
720                                   unsigned AmbigiousBaseConvID,
721                                   SourceLocation Loc, SourceRange Range,
722                                   DeclarationName Name,
723                                   CXXCastPath *BasePath) {
724  // First, determine whether the path from Derived to Base is
725  // ambiguous. This is slightly more expensive than checking whether
726  // the Derived to Base conversion exists, because here we need to
727  // explore multiple paths to determine if there is an ambiguity.
728  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
729                     /*DetectVirtual=*/false);
730  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
731  assert(DerivationOkay &&
732         "Can only be used with a derived-to-base conversion");
733  (void)DerivationOkay;
734
735  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
736    if (InaccessibleBaseID) {
737      // Check that the base class can be accessed.
738      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
739                                   InaccessibleBaseID)) {
740        case AR_inaccessible:
741          return true;
742        case AR_accessible:
743        case AR_dependent:
744        case AR_delayed:
745          break;
746      }
747    }
748
749    // Build a base path if necessary.
750    if (BasePath)
751      BuildBasePathArray(Paths, *BasePath);
752    return false;
753  }
754
755  // We know that the derived-to-base conversion is ambiguous, and
756  // we're going to produce a diagnostic. Perform the derived-to-base
757  // search just one more time to compute all of the possible paths so
758  // that we can print them out. This is more expensive than any of
759  // the previous derived-to-base checks we've done, but at this point
760  // performance isn't as much of an issue.
761  Paths.clear();
762  Paths.setRecordingPaths(true);
763  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
764  assert(StillOkay && "Can only be used with a derived-to-base conversion");
765  (void)StillOkay;
766
767  // Build up a textual representation of the ambiguous paths, e.g.,
768  // D -> B -> A, that will be used to illustrate the ambiguous
769  // conversions in the diagnostic. We only print one of the paths
770  // to each base class subobject.
771  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
772
773  Diag(Loc, AmbigiousBaseConvID)
774  << Derived << Base << PathDisplayStr << Range << Name;
775  return true;
776}
777
778bool
779Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
780                                   SourceLocation Loc, SourceRange Range,
781                                   CXXCastPath *BasePath,
782                                   bool IgnoreAccess) {
783  return CheckDerivedToBaseConversion(Derived, Base,
784                                      IgnoreAccess ? 0
785                                       : diag::err_upcast_to_inaccessible_base,
786                                      diag::err_ambiguous_derived_to_base_conv,
787                                      Loc, Range, DeclarationName(),
788                                      BasePath);
789}
790
791
792/// @brief Builds a string representing ambiguous paths from a
793/// specific derived class to different subobjects of the same base
794/// class.
795///
796/// This function builds a string that can be used in error messages
797/// to show the different paths that one can take through the
798/// inheritance hierarchy to go from the derived class to different
799/// subobjects of a base class. The result looks something like this:
800/// @code
801/// struct D -> struct B -> struct A
802/// struct D -> struct C -> struct A
803/// @endcode
804std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
805  std::string PathDisplayStr;
806  std::set<unsigned> DisplayedPaths;
807  for (CXXBasePaths::paths_iterator Path = Paths.begin();
808       Path != Paths.end(); ++Path) {
809    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
810      // We haven't displayed a path to this particular base
811      // class subobject yet.
812      PathDisplayStr += "\n    ";
813      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
814      for (CXXBasePath::const_iterator Element = Path->begin();
815           Element != Path->end(); ++Element)
816        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
817    }
818  }
819
820  return PathDisplayStr;
821}
822
823//===----------------------------------------------------------------------===//
824// C++ class member Handling
825//===----------------------------------------------------------------------===//
826
827/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
828Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
829                                 SourceLocation ASLoc,
830                                 SourceLocation ColonLoc) {
831  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
832  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
833                                                  ASLoc, ColonLoc);
834  CurContext->addHiddenDecl(ASDecl);
835  return ASDecl;
836}
837
838/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
839/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
840/// bitfield width if there is one and 'InitExpr' specifies the initializer if
841/// any.
842Decl *
843Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
844                               MultiTemplateParamsArg TemplateParameterLists,
845                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
846                               bool Deleted) {
847  const DeclSpec &DS = D.getDeclSpec();
848  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
849  DeclarationName Name = NameInfo.getName();
850  SourceLocation Loc = NameInfo.getLoc();
851
852  // For anonymous bitfields, the location should point to the type.
853  if (Loc.isInvalid())
854    Loc = D.getSourceRange().getBegin();
855
856  Expr *BitWidth = static_cast<Expr*>(BW);
857  Expr *Init = static_cast<Expr*>(InitExpr);
858
859  assert(isa<CXXRecordDecl>(CurContext));
860  assert(!DS.isFriendSpecified());
861
862  bool isFunc = false;
863  if (D.isFunctionDeclarator())
864    isFunc = true;
865  else if (D.getNumTypeObjects() == 0 &&
866           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
867    QualType TDType = GetTypeFromParser(DS.getRepAsType());
868    isFunc = TDType->isFunctionType();
869  }
870
871  // C++ 9.2p6: A member shall not be declared to have automatic storage
872  // duration (auto, register) or with the extern storage-class-specifier.
873  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
874  // data members and cannot be applied to names declared const or static,
875  // and cannot be applied to reference members.
876  switch (DS.getStorageClassSpec()) {
877    case DeclSpec::SCS_unspecified:
878    case DeclSpec::SCS_typedef:
879    case DeclSpec::SCS_static:
880      // FALL THROUGH.
881      break;
882    case DeclSpec::SCS_mutable:
883      if (isFunc) {
884        if (DS.getStorageClassSpecLoc().isValid())
885          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
886        else
887          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
888
889        // FIXME: It would be nicer if the keyword was ignored only for this
890        // declarator. Otherwise we could get follow-up errors.
891        D.getMutableDeclSpec().ClearStorageClassSpecs();
892      }
893      break;
894    default:
895      if (DS.getStorageClassSpecLoc().isValid())
896        Diag(DS.getStorageClassSpecLoc(),
897             diag::err_storageclass_invalid_for_member);
898      else
899        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
900      D.getMutableDeclSpec().ClearStorageClassSpecs();
901  }
902
903  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
904                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
905                      !isFunc);
906
907  Decl *Member;
908  if (isInstField) {
909    CXXScopeSpec &SS = D.getCXXScopeSpec();
910
911
912    if (SS.isSet() && !SS.isInvalid()) {
913      // The user provided a superfluous scope specifier inside a class
914      // definition:
915      //
916      // class X {
917      //   int X::member;
918      // };
919      DeclContext *DC = 0;
920      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
921        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
922        << Name << FixItHint::CreateRemoval(SS.getRange());
923      else
924        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
925          << Name << SS.getRange();
926
927      SS.clear();
928    }
929
930    // FIXME: Check for template parameters!
931    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
932                         AS);
933    assert(Member && "HandleField never returns null");
934  } else {
935    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
936    if (!Member) {
937      return 0;
938    }
939
940    // Non-instance-fields can't have a bitfield.
941    if (BitWidth) {
942      if (Member->isInvalidDecl()) {
943        // don't emit another diagnostic.
944      } else if (isa<VarDecl>(Member)) {
945        // C++ 9.6p3: A bit-field shall not be a static member.
946        // "static member 'A' cannot be a bit-field"
947        Diag(Loc, diag::err_static_not_bitfield)
948          << Name << BitWidth->getSourceRange();
949      } else if (isa<TypedefDecl>(Member)) {
950        // "typedef member 'x' cannot be a bit-field"
951        Diag(Loc, diag::err_typedef_not_bitfield)
952          << Name << BitWidth->getSourceRange();
953      } else {
954        // A function typedef ("typedef int f(); f a;").
955        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
956        Diag(Loc, diag::err_not_integral_type_bitfield)
957          << Name << cast<ValueDecl>(Member)->getType()
958          << BitWidth->getSourceRange();
959      }
960
961      BitWidth = 0;
962      Member->setInvalidDecl();
963    }
964
965    Member->setAccess(AS);
966
967    // If we have declared a member function template, set the access of the
968    // templated declaration as well.
969    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
970      FunTmpl->getTemplatedDecl()->setAccess(AS);
971  }
972
973  assert((Name || isInstField) && "No identifier for non-field ?");
974
975  if (Init)
976    AddInitializerToDecl(Member, Init, false);
977  if (Deleted) // FIXME: Source location is not very good.
978    SetDeclDeleted(Member, D.getSourceRange().getBegin());
979
980  if (isInstField) {
981    FieldCollector->Add(cast<FieldDecl>(Member));
982    return 0;
983  }
984  return Member;
985}
986
987/// \brief Find the direct and/or virtual base specifiers that
988/// correspond to the given base type, for use in base initialization
989/// within a constructor.
990static bool FindBaseInitializer(Sema &SemaRef,
991                                CXXRecordDecl *ClassDecl,
992                                QualType BaseType,
993                                const CXXBaseSpecifier *&DirectBaseSpec,
994                                const CXXBaseSpecifier *&VirtualBaseSpec) {
995  // First, check for a direct base class.
996  DirectBaseSpec = 0;
997  for (CXXRecordDecl::base_class_const_iterator Base
998         = ClassDecl->bases_begin();
999       Base != ClassDecl->bases_end(); ++Base) {
1000    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1001      // We found a direct base of this type. That's what we're
1002      // initializing.
1003      DirectBaseSpec = &*Base;
1004      break;
1005    }
1006  }
1007
1008  // Check for a virtual base class.
1009  // FIXME: We might be able to short-circuit this if we know in advance that
1010  // there are no virtual bases.
1011  VirtualBaseSpec = 0;
1012  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1013    // We haven't found a base yet; search the class hierarchy for a
1014    // virtual base class.
1015    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1016                       /*DetectVirtual=*/false);
1017    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1018                              BaseType, Paths)) {
1019      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1020           Path != Paths.end(); ++Path) {
1021        if (Path->back().Base->isVirtual()) {
1022          VirtualBaseSpec = Path->back().Base;
1023          break;
1024        }
1025      }
1026    }
1027  }
1028
1029  return DirectBaseSpec || VirtualBaseSpec;
1030}
1031
1032/// ActOnMemInitializer - Handle a C++ member initializer.
1033MemInitResult
1034Sema::ActOnMemInitializer(Decl *ConstructorD,
1035                          Scope *S,
1036                          CXXScopeSpec &SS,
1037                          IdentifierInfo *MemberOrBase,
1038                          ParsedType TemplateTypeTy,
1039                          SourceLocation IdLoc,
1040                          SourceLocation LParenLoc,
1041                          ExprTy **Args, unsigned NumArgs,
1042                          SourceLocation RParenLoc) {
1043  if (!ConstructorD)
1044    return true;
1045
1046  AdjustDeclIfTemplate(ConstructorD);
1047
1048  CXXConstructorDecl *Constructor
1049    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1050  if (!Constructor) {
1051    // The user wrote a constructor initializer on a function that is
1052    // not a C++ constructor. Ignore the error for now, because we may
1053    // have more member initializers coming; we'll diagnose it just
1054    // once in ActOnMemInitializers.
1055    return true;
1056  }
1057
1058  CXXRecordDecl *ClassDecl = Constructor->getParent();
1059
1060  // C++ [class.base.init]p2:
1061  //   Names in a mem-initializer-id are looked up in the scope of the
1062  //   constructor's class and, if not found in that scope, are looked
1063  //   up in the scope containing the constructor's definition.
1064  //   [Note: if the constructor's class contains a member with the
1065  //   same name as a direct or virtual base class of the class, a
1066  //   mem-initializer-id naming the member or base class and composed
1067  //   of a single identifier refers to the class member. A
1068  //   mem-initializer-id for the hidden base class may be specified
1069  //   using a qualified name. ]
1070  if (!SS.getScopeRep() && !TemplateTypeTy) {
1071    // Look for a member, first.
1072    FieldDecl *Member = 0;
1073    DeclContext::lookup_result Result
1074      = ClassDecl->lookup(MemberOrBase);
1075    if (Result.first != Result.second) {
1076      Member = dyn_cast<FieldDecl>(*Result.first);
1077
1078      if (Member)
1079        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1080                                    LParenLoc, RParenLoc);
1081      // Handle anonymous union case.
1082      if (IndirectFieldDecl* IndirectField
1083            = dyn_cast<IndirectFieldDecl>(*Result.first))
1084         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1085                                       NumArgs, IdLoc,
1086                                       LParenLoc, RParenLoc);
1087    }
1088  }
1089  // It didn't name a member, so see if it names a class.
1090  QualType BaseType;
1091  TypeSourceInfo *TInfo = 0;
1092
1093  if (TemplateTypeTy) {
1094    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1095  } else {
1096    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1097    LookupParsedName(R, S, &SS);
1098
1099    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1100    if (!TyD) {
1101      if (R.isAmbiguous()) return true;
1102
1103      // We don't want access-control diagnostics here.
1104      R.suppressDiagnostics();
1105
1106      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1107        bool NotUnknownSpecialization = false;
1108        DeclContext *DC = computeDeclContext(SS, false);
1109        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1110          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1111
1112        if (!NotUnknownSpecialization) {
1113          // When the scope specifier can refer to a member of an unknown
1114          // specialization, we take it as a type name.
1115          BaseType = CheckTypenameType(ETK_None,
1116                                       (NestedNameSpecifier *)SS.getScopeRep(),
1117                                       *MemberOrBase, SourceLocation(),
1118                                       SS.getRange(), IdLoc);
1119          if (BaseType.isNull())
1120            return true;
1121
1122          R.clear();
1123          R.setLookupName(MemberOrBase);
1124        }
1125      }
1126
1127      // If no results were found, try to correct typos.
1128      if (R.empty() && BaseType.isNull() &&
1129          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1130          R.isSingleResult()) {
1131        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1132          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1133            // We have found a non-static data member with a similar
1134            // name to what was typed; complain and initialize that
1135            // member.
1136            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1137              << MemberOrBase << true << R.getLookupName()
1138              << FixItHint::CreateReplacement(R.getNameLoc(),
1139                                              R.getLookupName().getAsString());
1140            Diag(Member->getLocation(), diag::note_previous_decl)
1141              << Member->getDeclName();
1142
1143            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1144                                          LParenLoc, RParenLoc);
1145          }
1146        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1147          const CXXBaseSpecifier *DirectBaseSpec;
1148          const CXXBaseSpecifier *VirtualBaseSpec;
1149          if (FindBaseInitializer(*this, ClassDecl,
1150                                  Context.getTypeDeclType(Type),
1151                                  DirectBaseSpec, VirtualBaseSpec)) {
1152            // We have found a direct or virtual base class with a
1153            // similar name to what was typed; complain and initialize
1154            // that base class.
1155            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1156              << MemberOrBase << false << R.getLookupName()
1157              << FixItHint::CreateReplacement(R.getNameLoc(),
1158                                              R.getLookupName().getAsString());
1159
1160            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1161                                                             : VirtualBaseSpec;
1162            Diag(BaseSpec->getSourceRange().getBegin(),
1163                 diag::note_base_class_specified_here)
1164              << BaseSpec->getType()
1165              << BaseSpec->getSourceRange();
1166
1167            TyD = Type;
1168          }
1169        }
1170      }
1171
1172      if (!TyD && BaseType.isNull()) {
1173        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1174          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1175        return true;
1176      }
1177    }
1178
1179    if (BaseType.isNull()) {
1180      BaseType = Context.getTypeDeclType(TyD);
1181      if (SS.isSet()) {
1182        NestedNameSpecifier *Qualifier =
1183          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1184
1185        // FIXME: preserve source range information
1186        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1187      }
1188    }
1189  }
1190
1191  if (!TInfo)
1192    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1193
1194  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1195                              LParenLoc, RParenLoc, ClassDecl);
1196}
1197
1198/// Checks an initializer expression for use of uninitialized fields, such as
1199/// containing the field that is being initialized. Returns true if there is an
1200/// uninitialized field was used an updates the SourceLocation parameter; false
1201/// otherwise.
1202static bool InitExprContainsUninitializedFields(const Stmt *S,
1203                                                const ValueDecl *LhsField,
1204                                                SourceLocation *L) {
1205  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1206
1207  if (isa<CallExpr>(S)) {
1208    // Do not descend into function calls or constructors, as the use
1209    // of an uninitialized field may be valid. One would have to inspect
1210    // the contents of the function/ctor to determine if it is safe or not.
1211    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1212    // may be safe, depending on what the function/ctor does.
1213    return false;
1214  }
1215  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1216    const NamedDecl *RhsField = ME->getMemberDecl();
1217
1218    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1219      // The member expression points to a static data member.
1220      assert(VD->isStaticDataMember() &&
1221             "Member points to non-static data member!");
1222      (void)VD;
1223      return false;
1224    }
1225
1226    if (isa<EnumConstantDecl>(RhsField)) {
1227      // The member expression points to an enum.
1228      return false;
1229    }
1230
1231    if (RhsField == LhsField) {
1232      // Initializing a field with itself. Throw a warning.
1233      // But wait; there are exceptions!
1234      // Exception #1:  The field may not belong to this record.
1235      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1236      const Expr *base = ME->getBase();
1237      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1238        // Even though the field matches, it does not belong to this record.
1239        return false;
1240      }
1241      // None of the exceptions triggered; return true to indicate an
1242      // uninitialized field was used.
1243      *L = ME->getMemberLoc();
1244      return true;
1245    }
1246  } else if (isa<SizeOfAlignOfExpr>(S)) {
1247    // sizeof/alignof doesn't reference contents, do not warn.
1248    return false;
1249  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1250    // address-of doesn't reference contents (the pointer may be dereferenced
1251    // in the same expression but it would be rare; and weird).
1252    if (UOE->getOpcode() == UO_AddrOf)
1253      return false;
1254  }
1255  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1256       it != e; ++it) {
1257    if (!*it) {
1258      // An expression such as 'member(arg ?: "")' may trigger this.
1259      continue;
1260    }
1261    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1262      return true;
1263  }
1264  return false;
1265}
1266
1267MemInitResult
1268Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1269                             unsigned NumArgs, SourceLocation IdLoc,
1270                             SourceLocation LParenLoc,
1271                             SourceLocation RParenLoc) {
1272  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1273  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1274  assert((DirectMember || IndirectMember) &&
1275         "Member must be a FieldDecl or IndirectFieldDecl");
1276
1277  if (Member->isInvalidDecl())
1278    return true;
1279
1280  // Diagnose value-uses of fields to initialize themselves, e.g.
1281  //   foo(foo)
1282  // where foo is not also a parameter to the constructor.
1283  // TODO: implement -Wuninitialized and fold this into that framework.
1284  for (unsigned i = 0; i < NumArgs; ++i) {
1285    SourceLocation L;
1286    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1287      // FIXME: Return true in the case when other fields are used before being
1288      // uninitialized. For example, let this field be the i'th field. When
1289      // initializing the i'th field, throw a warning if any of the >= i'th
1290      // fields are used, as they are not yet initialized.
1291      // Right now we are only handling the case where the i'th field uses
1292      // itself in its initializer.
1293      Diag(L, diag::warn_field_is_uninit);
1294    }
1295  }
1296
1297  bool HasDependentArg = false;
1298  for (unsigned i = 0; i < NumArgs; i++)
1299    HasDependentArg |= Args[i]->isTypeDependent();
1300
1301  Expr *Init;
1302  if (Member->getType()->isDependentType() || HasDependentArg) {
1303    // Can't check initialization for a member of dependent type or when
1304    // any of the arguments are type-dependent expressions.
1305    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1306                                       RParenLoc);
1307
1308    // Erase any temporaries within this evaluation context; we're not
1309    // going to track them in the AST, since we'll be rebuilding the
1310    // ASTs during template instantiation.
1311    ExprTemporaries.erase(
1312              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1313                          ExprTemporaries.end());
1314  } else {
1315    // Initialize the member.
1316    InitializedEntity MemberEntity =
1317      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1318                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1319    InitializationKind Kind =
1320      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1321
1322    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1323
1324    ExprResult MemberInit =
1325      InitSeq.Perform(*this, MemberEntity, Kind,
1326                      MultiExprArg(*this, Args, NumArgs), 0);
1327    if (MemberInit.isInvalid())
1328      return true;
1329
1330    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1331
1332    // C++0x [class.base.init]p7:
1333    //   The initialization of each base and member constitutes a
1334    //   full-expression.
1335    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1336    if (MemberInit.isInvalid())
1337      return true;
1338
1339    // If we are in a dependent context, template instantiation will
1340    // perform this type-checking again. Just save the arguments that we
1341    // received in a ParenListExpr.
1342    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1343    // of the information that we have about the member
1344    // initializer. However, deconstructing the ASTs is a dicey process,
1345    // and this approach is far more likely to get the corner cases right.
1346    if (CurContext->isDependentContext())
1347      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1348                                               RParenLoc);
1349    else
1350      Init = MemberInit.get();
1351  }
1352
1353  if (DirectMember) {
1354    return new (Context) CXXBaseOrMemberInitializer(Context, DirectMember,
1355                                                    IdLoc, LParenLoc, Init,
1356                                                    RParenLoc);
1357  } else {
1358    return new (Context) CXXBaseOrMemberInitializer(Context, IndirectMember,
1359                                                    IdLoc, LParenLoc, Init,
1360                                                    RParenLoc);
1361  }
1362}
1363
1364MemInitResult
1365Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1366                           Expr **Args, unsigned NumArgs,
1367                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1368                           CXXRecordDecl *ClassDecl) {
1369  bool HasDependentArg = false;
1370  for (unsigned i = 0; i < NumArgs; i++)
1371    HasDependentArg |= Args[i]->isTypeDependent();
1372
1373  SourceLocation BaseLoc
1374    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1375
1376  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1377    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1378             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1379
1380  // C++ [class.base.init]p2:
1381  //   [...] Unless the mem-initializer-id names a nonstatic data
1382  //   member of the constructor's class or a direct or virtual base
1383  //   of that class, the mem-initializer is ill-formed. A
1384  //   mem-initializer-list can initialize a base class using any
1385  //   name that denotes that base class type.
1386  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1387
1388  // Check for direct and virtual base classes.
1389  const CXXBaseSpecifier *DirectBaseSpec = 0;
1390  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1391  if (!Dependent) {
1392    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1393                        VirtualBaseSpec);
1394
1395    // C++ [base.class.init]p2:
1396    // Unless the mem-initializer-id names a nonstatic data member of the
1397    // constructor's class or a direct or virtual base of that class, the
1398    // mem-initializer is ill-formed.
1399    if (!DirectBaseSpec && !VirtualBaseSpec) {
1400      // If the class has any dependent bases, then it's possible that
1401      // one of those types will resolve to the same type as
1402      // BaseType. Therefore, just treat this as a dependent base
1403      // class initialization.  FIXME: Should we try to check the
1404      // initialization anyway? It seems odd.
1405      if (ClassDecl->hasAnyDependentBases())
1406        Dependent = true;
1407      else
1408        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1409          << BaseType << Context.getTypeDeclType(ClassDecl)
1410          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1411    }
1412  }
1413
1414  if (Dependent) {
1415    // Can't check initialization for a base of dependent type or when
1416    // any of the arguments are type-dependent expressions.
1417    ExprResult BaseInit
1418      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1419                                          RParenLoc));
1420
1421    // Erase any temporaries within this evaluation context; we're not
1422    // going to track them in the AST, since we'll be rebuilding the
1423    // ASTs during template instantiation.
1424    ExprTemporaries.erase(
1425              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1426                          ExprTemporaries.end());
1427
1428    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1429                                                    /*IsVirtual=*/false,
1430                                                    LParenLoc,
1431                                                    BaseInit.takeAs<Expr>(),
1432                                                    RParenLoc);
1433  }
1434
1435  // C++ [base.class.init]p2:
1436  //   If a mem-initializer-id is ambiguous because it designates both
1437  //   a direct non-virtual base class and an inherited virtual base
1438  //   class, the mem-initializer is ill-formed.
1439  if (DirectBaseSpec && VirtualBaseSpec)
1440    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1441      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1442
1443  CXXBaseSpecifier *BaseSpec
1444    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1445  if (!BaseSpec)
1446    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1447
1448  // Initialize the base.
1449  InitializedEntity BaseEntity =
1450    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1451  InitializationKind Kind =
1452    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1453
1454  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1455
1456  ExprResult BaseInit =
1457    InitSeq.Perform(*this, BaseEntity, Kind,
1458                    MultiExprArg(*this, Args, NumArgs), 0);
1459  if (BaseInit.isInvalid())
1460    return true;
1461
1462  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1463
1464  // C++0x [class.base.init]p7:
1465  //   The initialization of each base and member constitutes a
1466  //   full-expression.
1467  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1468  if (BaseInit.isInvalid())
1469    return true;
1470
1471  // If we are in a dependent context, template instantiation will
1472  // perform this type-checking again. Just save the arguments that we
1473  // received in a ParenListExpr.
1474  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1475  // of the information that we have about the base
1476  // initializer. However, deconstructing the ASTs is a dicey process,
1477  // and this approach is far more likely to get the corner cases right.
1478  if (CurContext->isDependentContext()) {
1479    ExprResult Init
1480      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1481                                          RParenLoc));
1482    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1483                                                    BaseSpec->isVirtual(),
1484                                                    LParenLoc,
1485                                                    Init.takeAs<Expr>(),
1486                                                    RParenLoc);
1487  }
1488
1489  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1490                                                  BaseSpec->isVirtual(),
1491                                                  LParenLoc,
1492                                                  BaseInit.takeAs<Expr>(),
1493                                                  RParenLoc);
1494}
1495
1496/// ImplicitInitializerKind - How an implicit base or member initializer should
1497/// initialize its base or member.
1498enum ImplicitInitializerKind {
1499  IIK_Default,
1500  IIK_Copy,
1501  IIK_Move
1502};
1503
1504static bool
1505BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1506                             ImplicitInitializerKind ImplicitInitKind,
1507                             CXXBaseSpecifier *BaseSpec,
1508                             bool IsInheritedVirtualBase,
1509                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1510  InitializedEntity InitEntity
1511    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1512                                        IsInheritedVirtualBase);
1513
1514  ExprResult BaseInit;
1515
1516  switch (ImplicitInitKind) {
1517  case IIK_Default: {
1518    InitializationKind InitKind
1519      = InitializationKind::CreateDefault(Constructor->getLocation());
1520    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1521    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1522                               MultiExprArg(SemaRef, 0, 0));
1523    break;
1524  }
1525
1526  case IIK_Copy: {
1527    ParmVarDecl *Param = Constructor->getParamDecl(0);
1528    QualType ParamType = Param->getType().getNonReferenceType();
1529
1530    Expr *CopyCtorArg =
1531      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1532                          Constructor->getLocation(), ParamType,
1533                          VK_LValue, 0);
1534
1535    // Cast to the base class to avoid ambiguities.
1536    QualType ArgTy =
1537      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1538                                       ParamType.getQualifiers());
1539
1540    CXXCastPath BasePath;
1541    BasePath.push_back(BaseSpec);
1542    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1543                              CK_UncheckedDerivedToBase,
1544                              VK_LValue, &BasePath);
1545
1546    InitializationKind InitKind
1547      = InitializationKind::CreateDirect(Constructor->getLocation(),
1548                                         SourceLocation(), SourceLocation());
1549    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1550                                   &CopyCtorArg, 1);
1551    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1552                               MultiExprArg(&CopyCtorArg, 1));
1553    break;
1554  }
1555
1556  case IIK_Move:
1557    assert(false && "Unhandled initializer kind!");
1558  }
1559
1560  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1561  if (BaseInit.isInvalid())
1562    return true;
1563
1564  CXXBaseInit =
1565    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1566               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1567                                                        SourceLocation()),
1568                                             BaseSpec->isVirtual(),
1569                                             SourceLocation(),
1570                                             BaseInit.takeAs<Expr>(),
1571                                             SourceLocation());
1572
1573  return false;
1574}
1575
1576static bool
1577BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1578                               ImplicitInitializerKind ImplicitInitKind,
1579                               FieldDecl *Field,
1580                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1581  if (Field->isInvalidDecl())
1582    return true;
1583
1584  SourceLocation Loc = Constructor->getLocation();
1585
1586  if (ImplicitInitKind == IIK_Copy) {
1587    ParmVarDecl *Param = Constructor->getParamDecl(0);
1588    QualType ParamType = Param->getType().getNonReferenceType();
1589
1590    Expr *MemberExprBase =
1591      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1592                          Loc, ParamType, VK_LValue, 0);
1593
1594    // Build a reference to this field within the parameter.
1595    CXXScopeSpec SS;
1596    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1597                              Sema::LookupMemberName);
1598    MemberLookup.addDecl(Field, AS_public);
1599    MemberLookup.resolveKind();
1600    ExprResult CopyCtorArg
1601      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1602                                         ParamType, Loc,
1603                                         /*IsArrow=*/false,
1604                                         SS,
1605                                         /*FirstQualifierInScope=*/0,
1606                                         MemberLookup,
1607                                         /*TemplateArgs=*/0);
1608    if (CopyCtorArg.isInvalid())
1609      return true;
1610
1611    // When the field we are copying is an array, create index variables for
1612    // each dimension of the array. We use these index variables to subscript
1613    // the source array, and other clients (e.g., CodeGen) will perform the
1614    // necessary iteration with these index variables.
1615    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1616    QualType BaseType = Field->getType();
1617    QualType SizeType = SemaRef.Context.getSizeType();
1618    while (const ConstantArrayType *Array
1619                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1620      // Create the iteration variable for this array index.
1621      IdentifierInfo *IterationVarName = 0;
1622      {
1623        llvm::SmallString<8> Str;
1624        llvm::raw_svector_ostream OS(Str);
1625        OS << "__i" << IndexVariables.size();
1626        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1627      }
1628      VarDecl *IterationVar
1629        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1630                          IterationVarName, SizeType,
1631                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1632                          SC_None, SC_None);
1633      IndexVariables.push_back(IterationVar);
1634
1635      // Create a reference to the iteration variable.
1636      ExprResult IterationVarRef
1637        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1638      assert(!IterationVarRef.isInvalid() &&
1639             "Reference to invented variable cannot fail!");
1640
1641      // Subscript the array with this iteration variable.
1642      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1643                                                            Loc,
1644                                                        IterationVarRef.take(),
1645                                                            Loc);
1646      if (CopyCtorArg.isInvalid())
1647        return true;
1648
1649      BaseType = Array->getElementType();
1650    }
1651
1652    // Construct the entity that we will be initializing. For an array, this
1653    // will be first element in the array, which may require several levels
1654    // of array-subscript entities.
1655    llvm::SmallVector<InitializedEntity, 4> Entities;
1656    Entities.reserve(1 + IndexVariables.size());
1657    Entities.push_back(InitializedEntity::InitializeMember(Field));
1658    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1659      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1660                                                              0,
1661                                                              Entities.back()));
1662
1663    // Direct-initialize to use the copy constructor.
1664    InitializationKind InitKind =
1665      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1666
1667    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1668    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1669                                   &CopyCtorArgE, 1);
1670
1671    ExprResult MemberInit
1672      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1673                        MultiExprArg(&CopyCtorArgE, 1));
1674    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1675    if (MemberInit.isInvalid())
1676      return true;
1677
1678    CXXMemberInit
1679      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1680                                           MemberInit.takeAs<Expr>(), Loc,
1681                                           IndexVariables.data(),
1682                                           IndexVariables.size());
1683    return false;
1684  }
1685
1686  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1687
1688  QualType FieldBaseElementType =
1689    SemaRef.Context.getBaseElementType(Field->getType());
1690
1691  if (FieldBaseElementType->isRecordType()) {
1692    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1693    InitializationKind InitKind =
1694      InitializationKind::CreateDefault(Loc);
1695
1696    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1697    ExprResult MemberInit =
1698      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1699
1700    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1701    if (MemberInit.isInvalid())
1702      return true;
1703
1704    CXXMemberInit =
1705      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1706                                                       Field, Loc, Loc,
1707                                                       MemberInit.get(),
1708                                                       Loc);
1709    return false;
1710  }
1711
1712  if (FieldBaseElementType->isReferenceType()) {
1713    SemaRef.Diag(Constructor->getLocation(),
1714                 diag::err_uninitialized_member_in_ctor)
1715    << (int)Constructor->isImplicit()
1716    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1717    << 0 << Field->getDeclName();
1718    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1719    return true;
1720  }
1721
1722  if (FieldBaseElementType.isConstQualified()) {
1723    SemaRef.Diag(Constructor->getLocation(),
1724                 diag::err_uninitialized_member_in_ctor)
1725    << (int)Constructor->isImplicit()
1726    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1727    << 1 << Field->getDeclName();
1728    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1729    return true;
1730  }
1731
1732  // Nothing to initialize.
1733  CXXMemberInit = 0;
1734  return false;
1735}
1736
1737namespace {
1738struct BaseAndFieldInfo {
1739  Sema &S;
1740  CXXConstructorDecl *Ctor;
1741  bool AnyErrorsInInits;
1742  ImplicitInitializerKind IIK;
1743  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1744  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1745
1746  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1747    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1748    // FIXME: Handle implicit move constructors.
1749    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1750      IIK = IIK_Copy;
1751    else
1752      IIK = IIK_Default;
1753  }
1754};
1755}
1756
1757static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1758                                    FieldDecl *Top, FieldDecl *Field) {
1759
1760  // Overwhelmingly common case: we have a direct initializer for this field.
1761  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1762    Info.AllToInit.push_back(Init);
1763    return false;
1764  }
1765
1766  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1767    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1768    assert(FieldClassType && "anonymous struct/union without record type");
1769    CXXRecordDecl *FieldClassDecl
1770      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1771
1772    // Even though union members never have non-trivial default
1773    // constructions in C++03, we still build member initializers for aggregate
1774    // record types which can be union members, and C++0x allows non-trivial
1775    // default constructors for union members, so we ensure that only one
1776    // member is initialized for these.
1777    if (FieldClassDecl->isUnion()) {
1778      // First check for an explicit initializer for one field.
1779      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1780           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1781        if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1782          Info.AllToInit.push_back(Init);
1783
1784          // Once we've initialized a field of an anonymous union, the union
1785          // field in the class is also initialized, so exit immediately.
1786          return false;
1787        } else if ((*FA)->isAnonymousStructOrUnion()) {
1788          if (CollectFieldInitializer(Info, Top, *FA))
1789            return true;
1790        }
1791      }
1792
1793      // Fallthrough and construct a default initializer for the union as
1794      // a whole, which can call its default constructor if such a thing exists
1795      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1796      // behavior going forward with C++0x, when anonymous unions there are
1797      // finalized, we should revisit this.
1798    } else {
1799      // For structs, we simply descend through to initialize all members where
1800      // necessary.
1801      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1802           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1803        if (CollectFieldInitializer(Info, Top, *FA))
1804          return true;
1805      }
1806    }
1807  }
1808
1809  // Don't try to build an implicit initializer if there were semantic
1810  // errors in any of the initializers (and therefore we might be
1811  // missing some that the user actually wrote).
1812  if (Info.AnyErrorsInInits)
1813    return false;
1814
1815  CXXBaseOrMemberInitializer *Init = 0;
1816  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1817    return true;
1818
1819  if (Init)
1820    Info.AllToInit.push_back(Init);
1821
1822  return false;
1823}
1824
1825bool
1826Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1827                                  CXXBaseOrMemberInitializer **Initializers,
1828                                  unsigned NumInitializers,
1829                                  bool AnyErrors) {
1830  if (Constructor->getDeclContext()->isDependentContext()) {
1831    // Just store the initializers as written, they will be checked during
1832    // instantiation.
1833    if (NumInitializers > 0) {
1834      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1835      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1836        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1837      memcpy(baseOrMemberInitializers, Initializers,
1838             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1839      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1840    }
1841
1842    return false;
1843  }
1844
1845  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1846
1847  // We need to build the initializer AST according to order of construction
1848  // and not what user specified in the Initializers list.
1849  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1850  if (!ClassDecl)
1851    return true;
1852
1853  bool HadError = false;
1854
1855  for (unsigned i = 0; i < NumInitializers; i++) {
1856    CXXBaseOrMemberInitializer *Member = Initializers[i];
1857
1858    if (Member->isBaseInitializer())
1859      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1860    else
1861      Info.AllBaseFields[Member->getAnyMember()] = Member;
1862  }
1863
1864  // Keep track of the direct virtual bases.
1865  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1866  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1867       E = ClassDecl->bases_end(); I != E; ++I) {
1868    if (I->isVirtual())
1869      DirectVBases.insert(I);
1870  }
1871
1872  // Push virtual bases before others.
1873  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1874       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1875
1876    if (CXXBaseOrMemberInitializer *Value
1877        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1878      Info.AllToInit.push_back(Value);
1879    } else if (!AnyErrors) {
1880      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1881      CXXBaseOrMemberInitializer *CXXBaseInit;
1882      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1883                                       VBase, IsInheritedVirtualBase,
1884                                       CXXBaseInit)) {
1885        HadError = true;
1886        continue;
1887      }
1888
1889      Info.AllToInit.push_back(CXXBaseInit);
1890    }
1891  }
1892
1893  // Non-virtual bases.
1894  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1895       E = ClassDecl->bases_end(); Base != E; ++Base) {
1896    // Virtuals are in the virtual base list and already constructed.
1897    if (Base->isVirtual())
1898      continue;
1899
1900    if (CXXBaseOrMemberInitializer *Value
1901          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1902      Info.AllToInit.push_back(Value);
1903    } else if (!AnyErrors) {
1904      CXXBaseOrMemberInitializer *CXXBaseInit;
1905      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1906                                       Base, /*IsInheritedVirtualBase=*/false,
1907                                       CXXBaseInit)) {
1908        HadError = true;
1909        continue;
1910      }
1911
1912      Info.AllToInit.push_back(CXXBaseInit);
1913    }
1914  }
1915
1916  // Fields.
1917  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1918       E = ClassDecl->field_end(); Field != E; ++Field) {
1919    if ((*Field)->getType()->isIncompleteArrayType()) {
1920      assert(ClassDecl->hasFlexibleArrayMember() &&
1921             "Incomplete array type is not valid");
1922      continue;
1923    }
1924    if (CollectFieldInitializer(Info, *Field, *Field))
1925      HadError = true;
1926  }
1927
1928  NumInitializers = Info.AllToInit.size();
1929  if (NumInitializers > 0) {
1930    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1931    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1932      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1933    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1934           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1935    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1936
1937    // Constructors implicitly reference the base and member
1938    // destructors.
1939    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1940                                           Constructor->getParent());
1941  }
1942
1943  return HadError;
1944}
1945
1946static void *GetKeyForTopLevelField(FieldDecl *Field) {
1947  // For anonymous unions, use the class declaration as the key.
1948  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1949    if (RT->getDecl()->isAnonymousStructOrUnion())
1950      return static_cast<void *>(RT->getDecl());
1951  }
1952  return static_cast<void *>(Field);
1953}
1954
1955static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1956  return Context.getCanonicalType(BaseType).getTypePtr();
1957}
1958
1959static void *GetKeyForMember(ASTContext &Context,
1960                             CXXBaseOrMemberInitializer *Member) {
1961  if (!Member->isAnyMemberInitializer())
1962    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1963
1964  // For fields injected into the class via declaration of an anonymous union,
1965  // use its anonymous union class declaration as the unique key.
1966  FieldDecl *Field = Member->getAnyMember();
1967
1968  // If the field is a member of an anonymous struct or union, our key
1969  // is the anonymous record decl that's a direct child of the class.
1970  RecordDecl *RD = Field->getParent();
1971  if (RD->isAnonymousStructOrUnion()) {
1972    while (true) {
1973      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1974      if (Parent->isAnonymousStructOrUnion())
1975        RD = Parent;
1976      else
1977        break;
1978    }
1979
1980    return static_cast<void *>(RD);
1981  }
1982
1983  return static_cast<void *>(Field);
1984}
1985
1986static void
1987DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1988                                  const CXXConstructorDecl *Constructor,
1989                                  CXXBaseOrMemberInitializer **Inits,
1990                                  unsigned NumInits) {
1991  if (Constructor->getDeclContext()->isDependentContext())
1992    return;
1993
1994  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
1995        == Diagnostic::Ignored)
1996    return;
1997
1998  // Build the list of bases and members in the order that they'll
1999  // actually be initialized.  The explicit initializers should be in
2000  // this same order but may be missing things.
2001  llvm::SmallVector<const void*, 32> IdealInitKeys;
2002
2003  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2004
2005  // 1. Virtual bases.
2006  for (CXXRecordDecl::base_class_const_iterator VBase =
2007       ClassDecl->vbases_begin(),
2008       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2009    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2010
2011  // 2. Non-virtual bases.
2012  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2013       E = ClassDecl->bases_end(); Base != E; ++Base) {
2014    if (Base->isVirtual())
2015      continue;
2016    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2017  }
2018
2019  // 3. Direct fields.
2020  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2021       E = ClassDecl->field_end(); Field != E; ++Field)
2022    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2023
2024  unsigned NumIdealInits = IdealInitKeys.size();
2025  unsigned IdealIndex = 0;
2026
2027  CXXBaseOrMemberInitializer *PrevInit = 0;
2028  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2029    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2030    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2031
2032    // Scan forward to try to find this initializer in the idealized
2033    // initializers list.
2034    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2035      if (InitKey == IdealInitKeys[IdealIndex])
2036        break;
2037
2038    // If we didn't find this initializer, it must be because we
2039    // scanned past it on a previous iteration.  That can only
2040    // happen if we're out of order;  emit a warning.
2041    if (IdealIndex == NumIdealInits && PrevInit) {
2042      Sema::SemaDiagnosticBuilder D =
2043        SemaRef.Diag(PrevInit->getSourceLocation(),
2044                     diag::warn_initializer_out_of_order);
2045
2046      if (PrevInit->isAnyMemberInitializer())
2047        D << 0 << PrevInit->getAnyMember()->getDeclName();
2048      else
2049        D << 1 << PrevInit->getBaseClassInfo()->getType();
2050
2051      if (Init->isAnyMemberInitializer())
2052        D << 0 << Init->getAnyMember()->getDeclName();
2053      else
2054        D << 1 << Init->getBaseClassInfo()->getType();
2055
2056      // Move back to the initializer's location in the ideal list.
2057      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2058        if (InitKey == IdealInitKeys[IdealIndex])
2059          break;
2060
2061      assert(IdealIndex != NumIdealInits &&
2062             "initializer not found in initializer list");
2063    }
2064
2065    PrevInit = Init;
2066  }
2067}
2068
2069namespace {
2070bool CheckRedundantInit(Sema &S,
2071                        CXXBaseOrMemberInitializer *Init,
2072                        CXXBaseOrMemberInitializer *&PrevInit) {
2073  if (!PrevInit) {
2074    PrevInit = Init;
2075    return false;
2076  }
2077
2078  if (FieldDecl *Field = Init->getMember())
2079    S.Diag(Init->getSourceLocation(),
2080           diag::err_multiple_mem_initialization)
2081      << Field->getDeclName()
2082      << Init->getSourceRange();
2083  else {
2084    Type *BaseClass = Init->getBaseClass();
2085    assert(BaseClass && "neither field nor base");
2086    S.Diag(Init->getSourceLocation(),
2087           diag::err_multiple_base_initialization)
2088      << QualType(BaseClass, 0)
2089      << Init->getSourceRange();
2090  }
2091  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2092    << 0 << PrevInit->getSourceRange();
2093
2094  return true;
2095}
2096
2097typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2098typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2099
2100bool CheckRedundantUnionInit(Sema &S,
2101                             CXXBaseOrMemberInitializer *Init,
2102                             RedundantUnionMap &Unions) {
2103  FieldDecl *Field = Init->getAnyMember();
2104  RecordDecl *Parent = Field->getParent();
2105  if (!Parent->isAnonymousStructOrUnion())
2106    return false;
2107
2108  NamedDecl *Child = Field;
2109  do {
2110    if (Parent->isUnion()) {
2111      UnionEntry &En = Unions[Parent];
2112      if (En.first && En.first != Child) {
2113        S.Diag(Init->getSourceLocation(),
2114               diag::err_multiple_mem_union_initialization)
2115          << Field->getDeclName()
2116          << Init->getSourceRange();
2117        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2118          << 0 << En.second->getSourceRange();
2119        return true;
2120      } else if (!En.first) {
2121        En.first = Child;
2122        En.second = Init;
2123      }
2124    }
2125
2126    Child = Parent;
2127    Parent = cast<RecordDecl>(Parent->getDeclContext());
2128  } while (Parent->isAnonymousStructOrUnion());
2129
2130  return false;
2131}
2132}
2133
2134/// ActOnMemInitializers - Handle the member initializers for a constructor.
2135void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2136                                SourceLocation ColonLoc,
2137                                MemInitTy **meminits, unsigned NumMemInits,
2138                                bool AnyErrors) {
2139  if (!ConstructorDecl)
2140    return;
2141
2142  AdjustDeclIfTemplate(ConstructorDecl);
2143
2144  CXXConstructorDecl *Constructor
2145    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2146
2147  if (!Constructor) {
2148    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2149    return;
2150  }
2151
2152  CXXBaseOrMemberInitializer **MemInits =
2153    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2154
2155  // Mapping for the duplicate initializers check.
2156  // For member initializers, this is keyed with a FieldDecl*.
2157  // For base initializers, this is keyed with a Type*.
2158  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2159
2160  // Mapping for the inconsistent anonymous-union initializers check.
2161  RedundantUnionMap MemberUnions;
2162
2163  bool HadError = false;
2164  for (unsigned i = 0; i < NumMemInits; i++) {
2165    CXXBaseOrMemberInitializer *Init = MemInits[i];
2166
2167    // Set the source order index.
2168    Init->setSourceOrder(i);
2169
2170    if (Init->isAnyMemberInitializer()) {
2171      FieldDecl *Field = Init->getAnyMember();
2172      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2173          CheckRedundantUnionInit(*this, Init, MemberUnions))
2174        HadError = true;
2175    } else {
2176      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2177      if (CheckRedundantInit(*this, Init, Members[Key]))
2178        HadError = true;
2179    }
2180  }
2181
2182  if (HadError)
2183    return;
2184
2185  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2186
2187  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2188}
2189
2190void
2191Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2192                                             CXXRecordDecl *ClassDecl) {
2193  // Ignore dependent contexts.
2194  if (ClassDecl->isDependentContext())
2195    return;
2196
2197  // FIXME: all the access-control diagnostics are positioned on the
2198  // field/base declaration.  That's probably good; that said, the
2199  // user might reasonably want to know why the destructor is being
2200  // emitted, and we currently don't say.
2201
2202  // Non-static data members.
2203  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2204       E = ClassDecl->field_end(); I != E; ++I) {
2205    FieldDecl *Field = *I;
2206    if (Field->isInvalidDecl())
2207      continue;
2208    QualType FieldType = Context.getBaseElementType(Field->getType());
2209
2210    const RecordType* RT = FieldType->getAs<RecordType>();
2211    if (!RT)
2212      continue;
2213
2214    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2215    if (FieldClassDecl->hasTrivialDestructor())
2216      continue;
2217
2218    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2219    CheckDestructorAccess(Field->getLocation(), Dtor,
2220                          PDiag(diag::err_access_dtor_field)
2221                            << Field->getDeclName()
2222                            << FieldType);
2223
2224    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2225  }
2226
2227  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2228
2229  // Bases.
2230  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2231       E = ClassDecl->bases_end(); Base != E; ++Base) {
2232    // Bases are always records in a well-formed non-dependent class.
2233    const RecordType *RT = Base->getType()->getAs<RecordType>();
2234
2235    // Remember direct virtual bases.
2236    if (Base->isVirtual())
2237      DirectVirtualBases.insert(RT);
2238
2239    // Ignore trivial destructors.
2240    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2241    if (BaseClassDecl->hasTrivialDestructor())
2242      continue;
2243
2244    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2245
2246    // FIXME: caret should be on the start of the class name
2247    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2248                          PDiag(diag::err_access_dtor_base)
2249                            << Base->getType()
2250                            << Base->getSourceRange());
2251
2252    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2253  }
2254
2255  // Virtual bases.
2256  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2257       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2258
2259    // Bases are always records in a well-formed non-dependent class.
2260    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2261
2262    // Ignore direct virtual bases.
2263    if (DirectVirtualBases.count(RT))
2264      continue;
2265
2266    // Ignore trivial destructors.
2267    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2268    if (BaseClassDecl->hasTrivialDestructor())
2269      continue;
2270
2271    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2272    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2273                          PDiag(diag::err_access_dtor_vbase)
2274                            << VBase->getType());
2275
2276    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2277  }
2278}
2279
2280void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2281  if (!CDtorDecl)
2282    return;
2283
2284  if (CXXConstructorDecl *Constructor
2285      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2286    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2287}
2288
2289bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2290                                  unsigned DiagID, AbstractDiagSelID SelID) {
2291  if (SelID == -1)
2292    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2293  else
2294    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2295}
2296
2297bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2298                                  const PartialDiagnostic &PD) {
2299  if (!getLangOptions().CPlusPlus)
2300    return false;
2301
2302  if (const ArrayType *AT = Context.getAsArrayType(T))
2303    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2304
2305  if (const PointerType *PT = T->getAs<PointerType>()) {
2306    // Find the innermost pointer type.
2307    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2308      PT = T;
2309
2310    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2311      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2312  }
2313
2314  const RecordType *RT = T->getAs<RecordType>();
2315  if (!RT)
2316    return false;
2317
2318  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2319
2320  // We can't answer whether something is abstract until it has a
2321  // definition.  If it's currently being defined, we'll walk back
2322  // over all the declarations when we have a full definition.
2323  const CXXRecordDecl *Def = RD->getDefinition();
2324  if (!Def || Def->isBeingDefined())
2325    return false;
2326
2327  if (!RD->isAbstract())
2328    return false;
2329
2330  Diag(Loc, PD) << RD->getDeclName();
2331  DiagnoseAbstractType(RD);
2332
2333  return true;
2334}
2335
2336void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2337  // Check if we've already emitted the list of pure virtual functions
2338  // for this class.
2339  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2340    return;
2341
2342  CXXFinalOverriderMap FinalOverriders;
2343  RD->getFinalOverriders(FinalOverriders);
2344
2345  // Keep a set of seen pure methods so we won't diagnose the same method
2346  // more than once.
2347  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2348
2349  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2350                                   MEnd = FinalOverriders.end();
2351       M != MEnd;
2352       ++M) {
2353    for (OverridingMethods::iterator SO = M->second.begin(),
2354                                  SOEnd = M->second.end();
2355         SO != SOEnd; ++SO) {
2356      // C++ [class.abstract]p4:
2357      //   A class is abstract if it contains or inherits at least one
2358      //   pure virtual function for which the final overrider is pure
2359      //   virtual.
2360
2361      //
2362      if (SO->second.size() != 1)
2363        continue;
2364
2365      if (!SO->second.front().Method->isPure())
2366        continue;
2367
2368      if (!SeenPureMethods.insert(SO->second.front().Method))
2369        continue;
2370
2371      Diag(SO->second.front().Method->getLocation(),
2372           diag::note_pure_virtual_function)
2373        << SO->second.front().Method->getDeclName();
2374    }
2375  }
2376
2377  if (!PureVirtualClassDiagSet)
2378    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2379  PureVirtualClassDiagSet->insert(RD);
2380}
2381
2382namespace {
2383struct AbstractUsageInfo {
2384  Sema &S;
2385  CXXRecordDecl *Record;
2386  CanQualType AbstractType;
2387  bool Invalid;
2388
2389  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2390    : S(S), Record(Record),
2391      AbstractType(S.Context.getCanonicalType(
2392                   S.Context.getTypeDeclType(Record))),
2393      Invalid(false) {}
2394
2395  void DiagnoseAbstractType() {
2396    if (Invalid) return;
2397    S.DiagnoseAbstractType(Record);
2398    Invalid = true;
2399  }
2400
2401  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2402};
2403
2404struct CheckAbstractUsage {
2405  AbstractUsageInfo &Info;
2406  const NamedDecl *Ctx;
2407
2408  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2409    : Info(Info), Ctx(Ctx) {}
2410
2411  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2412    switch (TL.getTypeLocClass()) {
2413#define ABSTRACT_TYPELOC(CLASS, PARENT)
2414#define TYPELOC(CLASS, PARENT) \
2415    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2416#include "clang/AST/TypeLocNodes.def"
2417    }
2418  }
2419
2420  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2421    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2422    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2423      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2424      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2425    }
2426  }
2427
2428  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2429    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2430  }
2431
2432  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2433    // Visit the type parameters from a permissive context.
2434    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2435      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2436      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2437        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2438          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2439      // TODO: other template argument types?
2440    }
2441  }
2442
2443  // Visit pointee types from a permissive context.
2444#define CheckPolymorphic(Type) \
2445  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2446    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2447  }
2448  CheckPolymorphic(PointerTypeLoc)
2449  CheckPolymorphic(ReferenceTypeLoc)
2450  CheckPolymorphic(MemberPointerTypeLoc)
2451  CheckPolymorphic(BlockPointerTypeLoc)
2452
2453  /// Handle all the types we haven't given a more specific
2454  /// implementation for above.
2455  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2456    // Every other kind of type that we haven't called out already
2457    // that has an inner type is either (1) sugar or (2) contains that
2458    // inner type in some way as a subobject.
2459    if (TypeLoc Next = TL.getNextTypeLoc())
2460      return Visit(Next, Sel);
2461
2462    // If there's no inner type and we're in a permissive context,
2463    // don't diagnose.
2464    if (Sel == Sema::AbstractNone) return;
2465
2466    // Check whether the type matches the abstract type.
2467    QualType T = TL.getType();
2468    if (T->isArrayType()) {
2469      Sel = Sema::AbstractArrayType;
2470      T = Info.S.Context.getBaseElementType(T);
2471    }
2472    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2473    if (CT != Info.AbstractType) return;
2474
2475    // It matched; do some magic.
2476    if (Sel == Sema::AbstractArrayType) {
2477      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2478        << T << TL.getSourceRange();
2479    } else {
2480      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2481        << Sel << T << TL.getSourceRange();
2482    }
2483    Info.DiagnoseAbstractType();
2484  }
2485};
2486
2487void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2488                                  Sema::AbstractDiagSelID Sel) {
2489  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2490}
2491
2492}
2493
2494/// Check for invalid uses of an abstract type in a method declaration.
2495static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2496                                    CXXMethodDecl *MD) {
2497  // No need to do the check on definitions, which require that
2498  // the return/param types be complete.
2499  if (MD->isThisDeclarationADefinition())
2500    return;
2501
2502  // For safety's sake, just ignore it if we don't have type source
2503  // information.  This should never happen for non-implicit methods,
2504  // but...
2505  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2506    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2507}
2508
2509/// Check for invalid uses of an abstract type within a class definition.
2510static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2511                                    CXXRecordDecl *RD) {
2512  for (CXXRecordDecl::decl_iterator
2513         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2514    Decl *D = *I;
2515    if (D->isImplicit()) continue;
2516
2517    // Methods and method templates.
2518    if (isa<CXXMethodDecl>(D)) {
2519      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2520    } else if (isa<FunctionTemplateDecl>(D)) {
2521      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2522      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2523
2524    // Fields and static variables.
2525    } else if (isa<FieldDecl>(D)) {
2526      FieldDecl *FD = cast<FieldDecl>(D);
2527      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2528        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2529    } else if (isa<VarDecl>(D)) {
2530      VarDecl *VD = cast<VarDecl>(D);
2531      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2532        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2533
2534    // Nested classes and class templates.
2535    } else if (isa<CXXRecordDecl>(D)) {
2536      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2537    } else if (isa<ClassTemplateDecl>(D)) {
2538      CheckAbstractClassUsage(Info,
2539                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2540    }
2541  }
2542}
2543
2544/// \brief Perform semantic checks on a class definition that has been
2545/// completing, introducing implicitly-declared members, checking for
2546/// abstract types, etc.
2547void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2548  if (!Record)
2549    return;
2550
2551  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2552    AbstractUsageInfo Info(*this, Record);
2553    CheckAbstractClassUsage(Info, Record);
2554  }
2555
2556  // If this is not an aggregate type and has no user-declared constructor,
2557  // complain about any non-static data members of reference or const scalar
2558  // type, since they will never get initializers.
2559  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2560      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2561    bool Complained = false;
2562    for (RecordDecl::field_iterator F = Record->field_begin(),
2563                                 FEnd = Record->field_end();
2564         F != FEnd; ++F) {
2565      if (F->getType()->isReferenceType() ||
2566          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2567        if (!Complained) {
2568          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2569            << Record->getTagKind() << Record;
2570          Complained = true;
2571        }
2572
2573        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2574          << F->getType()->isReferenceType()
2575          << F->getDeclName();
2576      }
2577    }
2578  }
2579
2580  if (Record->isDynamicClass())
2581    DynamicClasses.push_back(Record);
2582
2583  if (Record->getIdentifier()) {
2584    // C++ [class.mem]p13:
2585    //   If T is the name of a class, then each of the following shall have a
2586    //   name different from T:
2587    //     - every member of every anonymous union that is a member of class T.
2588    //
2589    // C++ [class.mem]p14:
2590    //   In addition, if class T has a user-declared constructor (12.1), every
2591    //   non-static data member of class T shall have a name different from T.
2592    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2593         R.first != R.second; ++R.first) {
2594      NamedDecl *D = *R.first;
2595      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2596          isa<IndirectFieldDecl>(D)) {
2597        Diag(D->getLocation(), diag::err_member_name_of_class)
2598          << D->getDeclName();
2599        break;
2600      }
2601    }
2602  }
2603}
2604
2605void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2606                                             Decl *TagDecl,
2607                                             SourceLocation LBrac,
2608                                             SourceLocation RBrac,
2609                                             AttributeList *AttrList) {
2610  if (!TagDecl)
2611    return;
2612
2613  AdjustDeclIfTemplate(TagDecl);
2614
2615  ActOnFields(S, RLoc, TagDecl,
2616              // strict aliasing violation!
2617              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
2618              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2619
2620  CheckCompletedCXXClass(
2621                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
2622}
2623
2624namespace {
2625  /// \brief Helper class that collects exception specifications for
2626  /// implicitly-declared special member functions.
2627  class ImplicitExceptionSpecification {
2628    ASTContext &Context;
2629    bool AllowsAllExceptions;
2630    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2631    llvm::SmallVector<QualType, 4> Exceptions;
2632
2633  public:
2634    explicit ImplicitExceptionSpecification(ASTContext &Context)
2635      : Context(Context), AllowsAllExceptions(false) { }
2636
2637    /// \brief Whether the special member function should have any
2638    /// exception specification at all.
2639    bool hasExceptionSpecification() const {
2640      return !AllowsAllExceptions;
2641    }
2642
2643    /// \brief Whether the special member function should have a
2644    /// throw(...) exception specification (a Microsoft extension).
2645    bool hasAnyExceptionSpecification() const {
2646      return false;
2647    }
2648
2649    /// \brief The number of exceptions in the exception specification.
2650    unsigned size() const { return Exceptions.size(); }
2651
2652    /// \brief The set of exceptions in the exception specification.
2653    const QualType *data() const { return Exceptions.data(); }
2654
2655    /// \brief Note that
2656    void CalledDecl(CXXMethodDecl *Method) {
2657      // If we already know that we allow all exceptions, do nothing.
2658      if (AllowsAllExceptions || !Method)
2659        return;
2660
2661      const FunctionProtoType *Proto
2662        = Method->getType()->getAs<FunctionProtoType>();
2663
2664      // If this function can throw any exceptions, make a note of that.
2665      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2666        AllowsAllExceptions = true;
2667        ExceptionsSeen.clear();
2668        Exceptions.clear();
2669        return;
2670      }
2671
2672      // Record the exceptions in this function's exception specification.
2673      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2674                                              EEnd = Proto->exception_end();
2675           E != EEnd; ++E)
2676        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2677          Exceptions.push_back(*E);
2678    }
2679  };
2680}
2681
2682
2683/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2684/// special functions, such as the default constructor, copy
2685/// constructor, or destructor, to the given C++ class (C++
2686/// [special]p1).  This routine can only be executed just before the
2687/// definition of the class is complete.
2688void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2689  if (!ClassDecl->hasUserDeclaredConstructor())
2690    ++ASTContext::NumImplicitDefaultConstructors;
2691
2692  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2693    ++ASTContext::NumImplicitCopyConstructors;
2694
2695  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2696    ++ASTContext::NumImplicitCopyAssignmentOperators;
2697
2698    // If we have a dynamic class, then the copy assignment operator may be
2699    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2700    // it shows up in the right place in the vtable and that we diagnose
2701    // problems with the implicit exception specification.
2702    if (ClassDecl->isDynamicClass())
2703      DeclareImplicitCopyAssignment(ClassDecl);
2704  }
2705
2706  if (!ClassDecl->hasUserDeclaredDestructor()) {
2707    ++ASTContext::NumImplicitDestructors;
2708
2709    // If we have a dynamic class, then the destructor may be virtual, so we
2710    // have to declare the destructor immediately. This ensures that, e.g., it
2711    // shows up in the right place in the vtable and that we diagnose problems
2712    // with the implicit exception specification.
2713    if (ClassDecl->isDynamicClass())
2714      DeclareImplicitDestructor(ClassDecl);
2715  }
2716}
2717
2718void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
2719  if (!D)
2720    return;
2721
2722  TemplateParameterList *Params = 0;
2723  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2724    Params = Template->getTemplateParameters();
2725  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2726           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2727    Params = PartialSpec->getTemplateParameters();
2728  else
2729    return;
2730
2731  for (TemplateParameterList::iterator Param = Params->begin(),
2732                                    ParamEnd = Params->end();
2733       Param != ParamEnd; ++Param) {
2734    NamedDecl *Named = cast<NamedDecl>(*Param);
2735    if (Named->getDeclName()) {
2736      S->AddDecl(Named);
2737      IdResolver.AddDecl(Named);
2738    }
2739  }
2740}
2741
2742void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2743  if (!RecordD) return;
2744  AdjustDeclIfTemplate(RecordD);
2745  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
2746  PushDeclContext(S, Record);
2747}
2748
2749void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2750  if (!RecordD) return;
2751  PopDeclContext();
2752}
2753
2754/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2755/// parsing a top-level (non-nested) C++ class, and we are now
2756/// parsing those parts of the given Method declaration that could
2757/// not be parsed earlier (C++ [class.mem]p2), such as default
2758/// arguments. This action should enter the scope of the given
2759/// Method declaration as if we had just parsed the qualified method
2760/// name. However, it should not bring the parameters into scope;
2761/// that will be performed by ActOnDelayedCXXMethodParameter.
2762void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2763}
2764
2765/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2766/// C++ method declaration. We're (re-)introducing the given
2767/// function parameter into scope for use in parsing later parts of
2768/// the method declaration. For example, we could see an
2769/// ActOnParamDefaultArgument event for this parameter.
2770void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
2771  if (!ParamD)
2772    return;
2773
2774  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
2775
2776  // If this parameter has an unparsed default argument, clear it out
2777  // to make way for the parsed default argument.
2778  if (Param->hasUnparsedDefaultArg())
2779    Param->setDefaultArg(0);
2780
2781  S->AddDecl(Param);
2782  if (Param->getDeclName())
2783    IdResolver.AddDecl(Param);
2784}
2785
2786/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2787/// processing the delayed method declaration for Method. The method
2788/// declaration is now considered finished. There may be a separate
2789/// ActOnStartOfFunctionDef action later (not necessarily
2790/// immediately!) for this method, if it was also defined inside the
2791/// class body.
2792void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2793  if (!MethodD)
2794    return;
2795
2796  AdjustDeclIfTemplate(MethodD);
2797
2798  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
2799
2800  // Now that we have our default arguments, check the constructor
2801  // again. It could produce additional diagnostics or affect whether
2802  // the class has implicitly-declared destructors, among other
2803  // things.
2804  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2805    CheckConstructor(Constructor);
2806
2807  // Check the default arguments, which we may have added.
2808  if (!Method->isInvalidDecl())
2809    CheckCXXDefaultArguments(Method);
2810}
2811
2812/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2813/// the well-formedness of the constructor declarator @p D with type @p
2814/// R. If there are any errors in the declarator, this routine will
2815/// emit diagnostics and set the invalid bit to true.  In any case, the type
2816/// will be updated to reflect a well-formed type for the constructor and
2817/// returned.
2818QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2819                                          StorageClass &SC) {
2820  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2821
2822  // C++ [class.ctor]p3:
2823  //   A constructor shall not be virtual (10.3) or static (9.4). A
2824  //   constructor can be invoked for a const, volatile or const
2825  //   volatile object. A constructor shall not be declared const,
2826  //   volatile, or const volatile (9.3.2).
2827  if (isVirtual) {
2828    if (!D.isInvalidType())
2829      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2830        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2831        << SourceRange(D.getIdentifierLoc());
2832    D.setInvalidType();
2833  }
2834  if (SC == SC_Static) {
2835    if (!D.isInvalidType())
2836      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2837        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2838        << SourceRange(D.getIdentifierLoc());
2839    D.setInvalidType();
2840    SC = SC_None;
2841  }
2842
2843  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
2844  if (FTI.TypeQuals != 0) {
2845    if (FTI.TypeQuals & Qualifiers::Const)
2846      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2847        << "const" << SourceRange(D.getIdentifierLoc());
2848    if (FTI.TypeQuals & Qualifiers::Volatile)
2849      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2850        << "volatile" << SourceRange(D.getIdentifierLoc());
2851    if (FTI.TypeQuals & Qualifiers::Restrict)
2852      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2853        << "restrict" << SourceRange(D.getIdentifierLoc());
2854    D.setInvalidType();
2855  }
2856
2857  // Rebuild the function type "R" without any type qualifiers (in
2858  // case any of the errors above fired) and with "void" as the
2859  // return type, since constructors don't have return types.
2860  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2861  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
2862    return R;
2863
2864  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
2865  EPI.TypeQuals = 0;
2866
2867  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2868                                 Proto->getNumArgs(), EPI);
2869}
2870
2871/// CheckConstructor - Checks a fully-formed constructor for
2872/// well-formedness, issuing any diagnostics required. Returns true if
2873/// the constructor declarator is invalid.
2874void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2875  CXXRecordDecl *ClassDecl
2876    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2877  if (!ClassDecl)
2878    return Constructor->setInvalidDecl();
2879
2880  // C++ [class.copy]p3:
2881  //   A declaration of a constructor for a class X is ill-formed if
2882  //   its first parameter is of type (optionally cv-qualified) X and
2883  //   either there are no other parameters or else all other
2884  //   parameters have default arguments.
2885  if (!Constructor->isInvalidDecl() &&
2886      ((Constructor->getNumParams() == 1) ||
2887       (Constructor->getNumParams() > 1 &&
2888        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2889      Constructor->getTemplateSpecializationKind()
2890                                              != TSK_ImplicitInstantiation) {
2891    QualType ParamType = Constructor->getParamDecl(0)->getType();
2892    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2893    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2894      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2895      const char *ConstRef
2896        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
2897                                                        : " const &";
2898      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2899        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
2900
2901      // FIXME: Rather that making the constructor invalid, we should endeavor
2902      // to fix the type.
2903      Constructor->setInvalidDecl();
2904    }
2905  }
2906}
2907
2908/// CheckDestructor - Checks a fully-formed destructor definition for
2909/// well-formedness, issuing any diagnostics required.  Returns true
2910/// on error.
2911bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2912  CXXRecordDecl *RD = Destructor->getParent();
2913
2914  if (Destructor->isVirtual()) {
2915    SourceLocation Loc;
2916
2917    if (!Destructor->isImplicit())
2918      Loc = Destructor->getLocation();
2919    else
2920      Loc = RD->getLocation();
2921
2922    // If we have a virtual destructor, look up the deallocation function
2923    FunctionDecl *OperatorDelete = 0;
2924    DeclarationName Name =
2925    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2926    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2927      return true;
2928
2929    MarkDeclarationReferenced(Loc, OperatorDelete);
2930
2931    Destructor->setOperatorDelete(OperatorDelete);
2932  }
2933
2934  return false;
2935}
2936
2937static inline bool
2938FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2939  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2940          FTI.ArgInfo[0].Param &&
2941          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
2942}
2943
2944/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2945/// the well-formednes of the destructor declarator @p D with type @p
2946/// R. If there are any errors in the declarator, this routine will
2947/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2948/// will be updated to reflect a well-formed type for the destructor and
2949/// returned.
2950QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
2951                                         StorageClass& SC) {
2952  // C++ [class.dtor]p1:
2953  //   [...] A typedef-name that names a class is a class-name
2954  //   (7.1.3); however, a typedef-name that names a class shall not
2955  //   be used as the identifier in the declarator for a destructor
2956  //   declaration.
2957  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2958  if (isa<TypedefType>(DeclaratorType))
2959    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2960      << DeclaratorType;
2961
2962  // C++ [class.dtor]p2:
2963  //   A destructor is used to destroy objects of its class type. A
2964  //   destructor takes no parameters, and no return type can be
2965  //   specified for it (not even void). The address of a destructor
2966  //   shall not be taken. A destructor shall not be static. A
2967  //   destructor can be invoked for a const, volatile or const
2968  //   volatile object. A destructor shall not be declared const,
2969  //   volatile or const volatile (9.3.2).
2970  if (SC == SC_Static) {
2971    if (!D.isInvalidType())
2972      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2973        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2974        << SourceRange(D.getIdentifierLoc())
2975        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2976
2977    SC = SC_None;
2978  }
2979  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2980    // Destructors don't have return types, but the parser will
2981    // happily parse something like:
2982    //
2983    //   class X {
2984    //     float ~X();
2985    //   };
2986    //
2987    // The return type will be eliminated later.
2988    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2989      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2990      << SourceRange(D.getIdentifierLoc());
2991  }
2992
2993  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
2994  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2995    if (FTI.TypeQuals & Qualifiers::Const)
2996      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2997        << "const" << SourceRange(D.getIdentifierLoc());
2998    if (FTI.TypeQuals & Qualifiers::Volatile)
2999      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3000        << "volatile" << SourceRange(D.getIdentifierLoc());
3001    if (FTI.TypeQuals & Qualifiers::Restrict)
3002      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3003        << "restrict" << SourceRange(D.getIdentifierLoc());
3004    D.setInvalidType();
3005  }
3006
3007  // Make sure we don't have any parameters.
3008  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3009    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3010
3011    // Delete the parameters.
3012    FTI.freeArgs();
3013    D.setInvalidType();
3014  }
3015
3016  // Make sure the destructor isn't variadic.
3017  if (FTI.isVariadic) {
3018    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3019    D.setInvalidType();
3020  }
3021
3022  // Rebuild the function type "R" without any type qualifiers or
3023  // parameters (in case any of the errors above fired) and with
3024  // "void" as the return type, since destructors don't have return
3025  // types.
3026  if (!D.isInvalidType())
3027    return R;
3028
3029  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3030  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3031  EPI.Variadic = false;
3032  EPI.TypeQuals = 0;
3033  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
3034}
3035
3036/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3037/// well-formednes of the conversion function declarator @p D with
3038/// type @p R. If there are any errors in the declarator, this routine
3039/// will emit diagnostics and return true. Otherwise, it will return
3040/// false. Either way, the type @p R will be updated to reflect a
3041/// well-formed type for the conversion operator.
3042void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3043                                     StorageClass& SC) {
3044  // C++ [class.conv.fct]p1:
3045  //   Neither parameter types nor return type can be specified. The
3046  //   type of a conversion function (8.3.5) is "function taking no
3047  //   parameter returning conversion-type-id."
3048  if (SC == SC_Static) {
3049    if (!D.isInvalidType())
3050      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3051        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3052        << SourceRange(D.getIdentifierLoc());
3053    D.setInvalidType();
3054    SC = SC_None;
3055  }
3056
3057  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3058
3059  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3060    // Conversion functions don't have return types, but the parser will
3061    // happily parse something like:
3062    //
3063    //   class X {
3064    //     float operator bool();
3065    //   };
3066    //
3067    // The return type will be changed later anyway.
3068    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3069      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3070      << SourceRange(D.getIdentifierLoc());
3071    D.setInvalidType();
3072  }
3073
3074  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3075
3076  // Make sure we don't have any parameters.
3077  if (Proto->getNumArgs() > 0) {
3078    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3079
3080    // Delete the parameters.
3081    D.getFunctionTypeInfo().freeArgs();
3082    D.setInvalidType();
3083  } else if (Proto->isVariadic()) {
3084    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3085    D.setInvalidType();
3086  }
3087
3088  // Diagnose "&operator bool()" and other such nonsense.  This
3089  // is actually a gcc extension which we don't support.
3090  if (Proto->getResultType() != ConvType) {
3091    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3092      << Proto->getResultType();
3093    D.setInvalidType();
3094    ConvType = Proto->getResultType();
3095  }
3096
3097  // C++ [class.conv.fct]p4:
3098  //   The conversion-type-id shall not represent a function type nor
3099  //   an array type.
3100  if (ConvType->isArrayType()) {
3101    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3102    ConvType = Context.getPointerType(ConvType);
3103    D.setInvalidType();
3104  } else if (ConvType->isFunctionType()) {
3105    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3106    ConvType = Context.getPointerType(ConvType);
3107    D.setInvalidType();
3108  }
3109
3110  // Rebuild the function type "R" without any parameters (in case any
3111  // of the errors above fired) and with the conversion type as the
3112  // return type.
3113  if (D.isInvalidType())
3114    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
3115
3116  // C++0x explicit conversion operators.
3117  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3118    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3119         diag::warn_explicit_conversion_functions)
3120      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3121}
3122
3123/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3124/// the declaration of the given C++ conversion function. This routine
3125/// is responsible for recording the conversion function in the C++
3126/// class, if possible.
3127Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3128  assert(Conversion && "Expected to receive a conversion function declaration");
3129
3130  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3131
3132  // Make sure we aren't redeclaring the conversion function.
3133  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3134
3135  // C++ [class.conv.fct]p1:
3136  //   [...] A conversion function is never used to convert a
3137  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3138  //   same object type (or a reference to it), to a (possibly
3139  //   cv-qualified) base class of that type (or a reference to it),
3140  //   or to (possibly cv-qualified) void.
3141  // FIXME: Suppress this warning if the conversion function ends up being a
3142  // virtual function that overrides a virtual function in a base class.
3143  QualType ClassType
3144    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3145  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3146    ConvType = ConvTypeRef->getPointeeType();
3147  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3148      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3149    /* Suppress diagnostics for instantiations. */;
3150  else if (ConvType->isRecordType()) {
3151    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3152    if (ConvType == ClassType)
3153      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3154        << ClassType;
3155    else if (IsDerivedFrom(ClassType, ConvType))
3156      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3157        <<  ClassType << ConvType;
3158  } else if (ConvType->isVoidType()) {
3159    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3160      << ClassType << ConvType;
3161  }
3162
3163  if (FunctionTemplateDecl *ConversionTemplate
3164                                = Conversion->getDescribedFunctionTemplate())
3165    return ConversionTemplate;
3166
3167  return Conversion;
3168}
3169
3170//===----------------------------------------------------------------------===//
3171// Namespace Handling
3172//===----------------------------------------------------------------------===//
3173
3174
3175
3176/// ActOnStartNamespaceDef - This is called at the start of a namespace
3177/// definition.
3178Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3179                                   SourceLocation InlineLoc,
3180                                   SourceLocation IdentLoc,
3181                                   IdentifierInfo *II,
3182                                   SourceLocation LBrace,
3183                                   AttributeList *AttrList) {
3184  // anonymous namespace starts at its left brace
3185  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3186    (II ? IdentLoc : LBrace) , II);
3187  Namespc->setLBracLoc(LBrace);
3188  Namespc->setInline(InlineLoc.isValid());
3189
3190  Scope *DeclRegionScope = NamespcScope->getParent();
3191
3192  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3193
3194  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
3195    PushNamespaceVisibilityAttr(Attr);
3196
3197  if (II) {
3198    // C++ [namespace.def]p2:
3199    //   The identifier in an original-namespace-definition shall not
3200    //   have been previously defined in the declarative region in
3201    //   which the original-namespace-definition appears. The
3202    //   identifier in an original-namespace-definition is the name of
3203    //   the namespace. Subsequently in that declarative region, it is
3204    //   treated as an original-namespace-name.
3205    //
3206    // Since namespace names are unique in their scope, and we don't
3207    // look through using directives, just
3208    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
3209    NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
3210
3211    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3212      // This is an extended namespace definition.
3213      if (Namespc->isInline() != OrigNS->isInline()) {
3214        // inline-ness must match
3215        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3216          << Namespc->isInline();
3217        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3218        Namespc->setInvalidDecl();
3219        // Recover by ignoring the new namespace's inline status.
3220        Namespc->setInline(OrigNS->isInline());
3221      }
3222
3223      // Attach this namespace decl to the chain of extended namespace
3224      // definitions.
3225      OrigNS->setNextNamespace(Namespc);
3226      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3227
3228      // Remove the previous declaration from the scope.
3229      if (DeclRegionScope->isDeclScope(OrigNS)) {
3230        IdResolver.RemoveDecl(OrigNS);
3231        DeclRegionScope->RemoveDecl(OrigNS);
3232      }
3233    } else if (PrevDecl) {
3234      // This is an invalid name redefinition.
3235      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3236       << Namespc->getDeclName();
3237      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3238      Namespc->setInvalidDecl();
3239      // Continue on to push Namespc as current DeclContext and return it.
3240    } else if (II->isStr("std") &&
3241               CurContext->getRedeclContext()->isTranslationUnit()) {
3242      // This is the first "real" definition of the namespace "std", so update
3243      // our cache of the "std" namespace to point at this definition.
3244      if (NamespaceDecl *StdNS = getStdNamespace()) {
3245        // We had already defined a dummy namespace "std". Link this new
3246        // namespace definition to the dummy namespace "std".
3247        StdNS->setNextNamespace(Namespc);
3248        StdNS->setLocation(IdentLoc);
3249        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3250      }
3251
3252      // Make our StdNamespace cache point at the first real definition of the
3253      // "std" namespace.
3254      StdNamespace = Namespc;
3255    }
3256
3257    PushOnScopeChains(Namespc, DeclRegionScope);
3258  } else {
3259    // Anonymous namespaces.
3260    assert(Namespc->isAnonymousNamespace());
3261
3262    // Link the anonymous namespace into its parent.
3263    NamespaceDecl *PrevDecl;
3264    DeclContext *Parent = CurContext->getRedeclContext();
3265    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3266      PrevDecl = TU->getAnonymousNamespace();
3267      TU->setAnonymousNamespace(Namespc);
3268    } else {
3269      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3270      PrevDecl = ND->getAnonymousNamespace();
3271      ND->setAnonymousNamespace(Namespc);
3272    }
3273
3274    // Link the anonymous namespace with its previous declaration.
3275    if (PrevDecl) {
3276      assert(PrevDecl->isAnonymousNamespace());
3277      assert(!PrevDecl->getNextNamespace());
3278      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3279      PrevDecl->setNextNamespace(Namespc);
3280
3281      if (Namespc->isInline() != PrevDecl->isInline()) {
3282        // inline-ness must match
3283        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3284          << Namespc->isInline();
3285        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3286        Namespc->setInvalidDecl();
3287        // Recover by ignoring the new namespace's inline status.
3288        Namespc->setInline(PrevDecl->isInline());
3289      }
3290    }
3291
3292    CurContext->addDecl(Namespc);
3293
3294    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3295    //   behaves as if it were replaced by
3296    //     namespace unique { /* empty body */ }
3297    //     using namespace unique;
3298    //     namespace unique { namespace-body }
3299    //   where all occurrences of 'unique' in a translation unit are
3300    //   replaced by the same identifier and this identifier differs
3301    //   from all other identifiers in the entire program.
3302
3303    // We just create the namespace with an empty name and then add an
3304    // implicit using declaration, just like the standard suggests.
3305    //
3306    // CodeGen enforces the "universally unique" aspect by giving all
3307    // declarations semantically contained within an anonymous
3308    // namespace internal linkage.
3309
3310    if (!PrevDecl) {
3311      UsingDirectiveDecl* UD
3312        = UsingDirectiveDecl::Create(Context, CurContext,
3313                                     /* 'using' */ LBrace,
3314                                     /* 'namespace' */ SourceLocation(),
3315                                     /* qualifier */ SourceRange(),
3316                                     /* NNS */ NULL,
3317                                     /* identifier */ SourceLocation(),
3318                                     Namespc,
3319                                     /* Ancestor */ CurContext);
3320      UD->setImplicit();
3321      CurContext->addDecl(UD);
3322    }
3323  }
3324
3325  // Although we could have an invalid decl (i.e. the namespace name is a
3326  // redefinition), push it as current DeclContext and try to continue parsing.
3327  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3328  // for the namespace has the declarations that showed up in that particular
3329  // namespace definition.
3330  PushDeclContext(NamespcScope, Namespc);
3331  return Namespc;
3332}
3333
3334/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3335/// is a namespace alias, returns the namespace it points to.
3336static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3337  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3338    return AD->getNamespace();
3339  return dyn_cast_or_null<NamespaceDecl>(D);
3340}
3341
3342/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3343/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3344void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3345  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3346  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3347  Namespc->setRBracLoc(RBrace);
3348  PopDeclContext();
3349  if (Namespc->hasAttr<VisibilityAttr>())
3350    PopPragmaVisibility();
3351}
3352
3353CXXRecordDecl *Sema::getStdBadAlloc() const {
3354  return cast_or_null<CXXRecordDecl>(
3355                                  StdBadAlloc.get(Context.getExternalSource()));
3356}
3357
3358NamespaceDecl *Sema::getStdNamespace() const {
3359  return cast_or_null<NamespaceDecl>(
3360                                 StdNamespace.get(Context.getExternalSource()));
3361}
3362
3363/// \brief Retrieve the special "std" namespace, which may require us to
3364/// implicitly define the namespace.
3365NamespaceDecl *Sema::getOrCreateStdNamespace() {
3366  if (!StdNamespace) {
3367    // The "std" namespace has not yet been defined, so build one implicitly.
3368    StdNamespace = NamespaceDecl::Create(Context,
3369                                         Context.getTranslationUnitDecl(),
3370                                         SourceLocation(),
3371                                         &PP.getIdentifierTable().get("std"));
3372    getStdNamespace()->setImplicit(true);
3373  }
3374
3375  return getStdNamespace();
3376}
3377
3378Decl *Sema::ActOnUsingDirective(Scope *S,
3379                                          SourceLocation UsingLoc,
3380                                          SourceLocation NamespcLoc,
3381                                          CXXScopeSpec &SS,
3382                                          SourceLocation IdentLoc,
3383                                          IdentifierInfo *NamespcName,
3384                                          AttributeList *AttrList) {
3385  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3386  assert(NamespcName && "Invalid NamespcName.");
3387  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3388
3389  // This can only happen along a recovery path.
3390  while (S->getFlags() & Scope::TemplateParamScope)
3391    S = S->getParent();
3392  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3393
3394  UsingDirectiveDecl *UDir = 0;
3395  NestedNameSpecifier *Qualifier = 0;
3396  if (SS.isSet())
3397    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3398
3399  // Lookup namespace name.
3400  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3401  LookupParsedName(R, S, &SS);
3402  if (R.isAmbiguous())
3403    return 0;
3404
3405  if (R.empty()) {
3406    // Allow "using namespace std;" or "using namespace ::std;" even if
3407    // "std" hasn't been defined yet, for GCC compatibility.
3408    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3409        NamespcName->isStr("std")) {
3410      Diag(IdentLoc, diag::ext_using_undefined_std);
3411      R.addDecl(getOrCreateStdNamespace());
3412      R.resolveKind();
3413    }
3414    // Otherwise, attempt typo correction.
3415    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3416                                                       CTC_NoKeywords, 0)) {
3417      if (R.getAsSingle<NamespaceDecl>() ||
3418          R.getAsSingle<NamespaceAliasDecl>()) {
3419        if (DeclContext *DC = computeDeclContext(SS, false))
3420          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3421            << NamespcName << DC << Corrected << SS.getRange()
3422            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3423        else
3424          Diag(IdentLoc, diag::err_using_directive_suggest)
3425            << NamespcName << Corrected
3426            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3427        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3428          << Corrected;
3429
3430        NamespcName = Corrected.getAsIdentifierInfo();
3431      } else {
3432        R.clear();
3433        R.setLookupName(NamespcName);
3434      }
3435    }
3436  }
3437
3438  if (!R.empty()) {
3439    NamedDecl *Named = R.getFoundDecl();
3440    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3441        && "expected namespace decl");
3442    // C++ [namespace.udir]p1:
3443    //   A using-directive specifies that the names in the nominated
3444    //   namespace can be used in the scope in which the
3445    //   using-directive appears after the using-directive. During
3446    //   unqualified name lookup (3.4.1), the names appear as if they
3447    //   were declared in the nearest enclosing namespace which
3448    //   contains both the using-directive and the nominated
3449    //   namespace. [Note: in this context, "contains" means "contains
3450    //   directly or indirectly". ]
3451
3452    // Find enclosing context containing both using-directive and
3453    // nominated namespace.
3454    NamespaceDecl *NS = getNamespaceDecl(Named);
3455    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3456    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3457      CommonAncestor = CommonAncestor->getParent();
3458
3459    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3460                                      SS.getRange(),
3461                                      (NestedNameSpecifier *)SS.getScopeRep(),
3462                                      IdentLoc, Named, CommonAncestor);
3463    PushUsingDirective(S, UDir);
3464  } else {
3465    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3466  }
3467
3468  // FIXME: We ignore attributes for now.
3469  return UDir;
3470}
3471
3472void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3473  // If scope has associated entity, then using directive is at namespace
3474  // or translation unit scope. We add UsingDirectiveDecls, into
3475  // it's lookup structure.
3476  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3477    Ctx->addDecl(UDir);
3478  else
3479    // Otherwise it is block-sope. using-directives will affect lookup
3480    // only to the end of scope.
3481    S->PushUsingDirective(UDir);
3482}
3483
3484
3485Decl *Sema::ActOnUsingDeclaration(Scope *S,
3486                                  AccessSpecifier AS,
3487                                  bool HasUsingKeyword,
3488                                  SourceLocation UsingLoc,
3489                                  CXXScopeSpec &SS,
3490                                  UnqualifiedId &Name,
3491                                  AttributeList *AttrList,
3492                                  bool IsTypeName,
3493                                  SourceLocation TypenameLoc) {
3494  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3495
3496  switch (Name.getKind()) {
3497  case UnqualifiedId::IK_Identifier:
3498  case UnqualifiedId::IK_OperatorFunctionId:
3499  case UnqualifiedId::IK_LiteralOperatorId:
3500  case UnqualifiedId::IK_ConversionFunctionId:
3501    break;
3502
3503  case UnqualifiedId::IK_ConstructorName:
3504  case UnqualifiedId::IK_ConstructorTemplateId:
3505    // C++0x inherited constructors.
3506    if (getLangOptions().CPlusPlus0x) break;
3507
3508    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3509      << SS.getRange();
3510    return 0;
3511
3512  case UnqualifiedId::IK_DestructorName:
3513    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3514      << SS.getRange();
3515    return 0;
3516
3517  case UnqualifiedId::IK_TemplateId:
3518    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3519      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3520    return 0;
3521  }
3522
3523  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3524  DeclarationName TargetName = TargetNameInfo.getName();
3525  if (!TargetName)
3526    return 0;
3527
3528  // Warn about using declarations.
3529  // TODO: store that the declaration was written without 'using' and
3530  // talk about access decls instead of using decls in the
3531  // diagnostics.
3532  if (!HasUsingKeyword) {
3533    UsingLoc = Name.getSourceRange().getBegin();
3534
3535    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3536      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3537  }
3538
3539  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3540                                        TargetNameInfo, AttrList,
3541                                        /* IsInstantiation */ false,
3542                                        IsTypeName, TypenameLoc);
3543  if (UD)
3544    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3545
3546  return UD;
3547}
3548
3549/// \brief Determine whether a using declaration considers the given
3550/// declarations as "equivalent", e.g., if they are redeclarations of
3551/// the same entity or are both typedefs of the same type.
3552static bool
3553IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3554                         bool &SuppressRedeclaration) {
3555  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3556    SuppressRedeclaration = false;
3557    return true;
3558  }
3559
3560  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3561    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3562      SuppressRedeclaration = true;
3563      return Context.hasSameType(TD1->getUnderlyingType(),
3564                                 TD2->getUnderlyingType());
3565    }
3566
3567  return false;
3568}
3569
3570
3571/// Determines whether to create a using shadow decl for a particular
3572/// decl, given the set of decls existing prior to this using lookup.
3573bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3574                                const LookupResult &Previous) {
3575  // Diagnose finding a decl which is not from a base class of the
3576  // current class.  We do this now because there are cases where this
3577  // function will silently decide not to build a shadow decl, which
3578  // will pre-empt further diagnostics.
3579  //
3580  // We don't need to do this in C++0x because we do the check once on
3581  // the qualifier.
3582  //
3583  // FIXME: diagnose the following if we care enough:
3584  //   struct A { int foo; };
3585  //   struct B : A { using A::foo; };
3586  //   template <class T> struct C : A {};
3587  //   template <class T> struct D : C<T> { using B::foo; } // <---
3588  // This is invalid (during instantiation) in C++03 because B::foo
3589  // resolves to the using decl in B, which is not a base class of D<T>.
3590  // We can't diagnose it immediately because C<T> is an unknown
3591  // specialization.  The UsingShadowDecl in D<T> then points directly
3592  // to A::foo, which will look well-formed when we instantiate.
3593  // The right solution is to not collapse the shadow-decl chain.
3594  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3595    DeclContext *OrigDC = Orig->getDeclContext();
3596
3597    // Handle enums and anonymous structs.
3598    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3599    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3600    while (OrigRec->isAnonymousStructOrUnion())
3601      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3602
3603    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3604      if (OrigDC == CurContext) {
3605        Diag(Using->getLocation(),
3606             diag::err_using_decl_nested_name_specifier_is_current_class)
3607          << Using->getNestedNameRange();
3608        Diag(Orig->getLocation(), diag::note_using_decl_target);
3609        return true;
3610      }
3611
3612      Diag(Using->getNestedNameRange().getBegin(),
3613           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3614        << Using->getTargetNestedNameDecl()
3615        << cast<CXXRecordDecl>(CurContext)
3616        << Using->getNestedNameRange();
3617      Diag(Orig->getLocation(), diag::note_using_decl_target);
3618      return true;
3619    }
3620  }
3621
3622  if (Previous.empty()) return false;
3623
3624  NamedDecl *Target = Orig;
3625  if (isa<UsingShadowDecl>(Target))
3626    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3627
3628  // If the target happens to be one of the previous declarations, we
3629  // don't have a conflict.
3630  //
3631  // FIXME: but we might be increasing its access, in which case we
3632  // should redeclare it.
3633  NamedDecl *NonTag = 0, *Tag = 0;
3634  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3635         I != E; ++I) {
3636    NamedDecl *D = (*I)->getUnderlyingDecl();
3637    bool Result;
3638    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3639      return Result;
3640
3641    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3642  }
3643
3644  if (Target->isFunctionOrFunctionTemplate()) {
3645    FunctionDecl *FD;
3646    if (isa<FunctionTemplateDecl>(Target))
3647      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3648    else
3649      FD = cast<FunctionDecl>(Target);
3650
3651    NamedDecl *OldDecl = 0;
3652    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3653    case Ovl_Overload:
3654      return false;
3655
3656    case Ovl_NonFunction:
3657      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3658      break;
3659
3660    // We found a decl with the exact signature.
3661    case Ovl_Match:
3662      // If we're in a record, we want to hide the target, so we
3663      // return true (without a diagnostic) to tell the caller not to
3664      // build a shadow decl.
3665      if (CurContext->isRecord())
3666        return true;
3667
3668      // If we're not in a record, this is an error.
3669      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3670      break;
3671    }
3672
3673    Diag(Target->getLocation(), diag::note_using_decl_target);
3674    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3675    return true;
3676  }
3677
3678  // Target is not a function.
3679
3680  if (isa<TagDecl>(Target)) {
3681    // No conflict between a tag and a non-tag.
3682    if (!Tag) return false;
3683
3684    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3685    Diag(Target->getLocation(), diag::note_using_decl_target);
3686    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3687    return true;
3688  }
3689
3690  // No conflict between a tag and a non-tag.
3691  if (!NonTag) return false;
3692
3693  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3694  Diag(Target->getLocation(), diag::note_using_decl_target);
3695  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3696  return true;
3697}
3698
3699/// Builds a shadow declaration corresponding to a 'using' declaration.
3700UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3701                                            UsingDecl *UD,
3702                                            NamedDecl *Orig) {
3703
3704  // If we resolved to another shadow declaration, just coalesce them.
3705  NamedDecl *Target = Orig;
3706  if (isa<UsingShadowDecl>(Target)) {
3707    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3708    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3709  }
3710
3711  UsingShadowDecl *Shadow
3712    = UsingShadowDecl::Create(Context, CurContext,
3713                              UD->getLocation(), UD, Target);
3714  UD->addShadowDecl(Shadow);
3715
3716  Shadow->setAccess(UD->getAccess());
3717  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3718    Shadow->setInvalidDecl();
3719
3720  if (S)
3721    PushOnScopeChains(Shadow, S);
3722  else
3723    CurContext->addDecl(Shadow);
3724
3725
3726  return Shadow;
3727}
3728
3729/// Hides a using shadow declaration.  This is required by the current
3730/// using-decl implementation when a resolvable using declaration in a
3731/// class is followed by a declaration which would hide or override
3732/// one or more of the using decl's targets; for example:
3733///
3734///   struct Base { void foo(int); };
3735///   struct Derived : Base {
3736///     using Base::foo;
3737///     void foo(int);
3738///   };
3739///
3740/// The governing language is C++03 [namespace.udecl]p12:
3741///
3742///   When a using-declaration brings names from a base class into a
3743///   derived class scope, member functions in the derived class
3744///   override and/or hide member functions with the same name and
3745///   parameter types in a base class (rather than conflicting).
3746///
3747/// There are two ways to implement this:
3748///   (1) optimistically create shadow decls when they're not hidden
3749///       by existing declarations, or
3750///   (2) don't create any shadow decls (or at least don't make them
3751///       visible) until we've fully parsed/instantiated the class.
3752/// The problem with (1) is that we might have to retroactively remove
3753/// a shadow decl, which requires several O(n) operations because the
3754/// decl structures are (very reasonably) not designed for removal.
3755/// (2) avoids this but is very fiddly and phase-dependent.
3756void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3757  if (Shadow->getDeclName().getNameKind() ==
3758        DeclarationName::CXXConversionFunctionName)
3759    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3760
3761  // Remove it from the DeclContext...
3762  Shadow->getDeclContext()->removeDecl(Shadow);
3763
3764  // ...and the scope, if applicable...
3765  if (S) {
3766    S->RemoveDecl(Shadow);
3767    IdResolver.RemoveDecl(Shadow);
3768  }
3769
3770  // ...and the using decl.
3771  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3772
3773  // TODO: complain somehow if Shadow was used.  It shouldn't
3774  // be possible for this to happen, because...?
3775}
3776
3777/// Builds a using declaration.
3778///
3779/// \param IsInstantiation - Whether this call arises from an
3780///   instantiation of an unresolved using declaration.  We treat
3781///   the lookup differently for these declarations.
3782NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3783                                       SourceLocation UsingLoc,
3784                                       CXXScopeSpec &SS,
3785                                       const DeclarationNameInfo &NameInfo,
3786                                       AttributeList *AttrList,
3787                                       bool IsInstantiation,
3788                                       bool IsTypeName,
3789                                       SourceLocation TypenameLoc) {
3790  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3791  SourceLocation IdentLoc = NameInfo.getLoc();
3792  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3793
3794  // FIXME: We ignore attributes for now.
3795
3796  if (SS.isEmpty()) {
3797    Diag(IdentLoc, diag::err_using_requires_qualname);
3798    return 0;
3799  }
3800
3801  // Do the redeclaration lookup in the current scope.
3802  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
3803                        ForRedeclaration);
3804  Previous.setHideTags(false);
3805  if (S) {
3806    LookupName(Previous, S);
3807
3808    // It is really dumb that we have to do this.
3809    LookupResult::Filter F = Previous.makeFilter();
3810    while (F.hasNext()) {
3811      NamedDecl *D = F.next();
3812      if (!isDeclInScope(D, CurContext, S))
3813        F.erase();
3814    }
3815    F.done();
3816  } else {
3817    assert(IsInstantiation && "no scope in non-instantiation");
3818    assert(CurContext->isRecord() && "scope not record in instantiation");
3819    LookupQualifiedName(Previous, CurContext);
3820  }
3821
3822  NestedNameSpecifier *NNS =
3823    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3824
3825  // Check for invalid redeclarations.
3826  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3827    return 0;
3828
3829  // Check for bad qualifiers.
3830  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3831    return 0;
3832
3833  DeclContext *LookupContext = computeDeclContext(SS);
3834  NamedDecl *D;
3835  if (!LookupContext) {
3836    if (IsTypeName) {
3837      // FIXME: not all declaration name kinds are legal here
3838      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3839                                              UsingLoc, TypenameLoc,
3840                                              SS.getRange(), NNS,
3841                                              IdentLoc, NameInfo.getName());
3842    } else {
3843      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3844                                           UsingLoc, SS.getRange(),
3845                                           NNS, NameInfo);
3846    }
3847  } else {
3848    D = UsingDecl::Create(Context, CurContext,
3849                          SS.getRange(), UsingLoc, NNS, NameInfo,
3850                          IsTypeName);
3851  }
3852  D->setAccess(AS);
3853  CurContext->addDecl(D);
3854
3855  if (!LookupContext) return D;
3856  UsingDecl *UD = cast<UsingDecl>(D);
3857
3858  if (RequireCompleteDeclContext(SS, LookupContext)) {
3859    UD->setInvalidDecl();
3860    return UD;
3861  }
3862
3863  // Look up the target name.
3864
3865  LookupResult R(*this, NameInfo, LookupOrdinaryName);
3866
3867  // Unlike most lookups, we don't always want to hide tag
3868  // declarations: tag names are visible through the using declaration
3869  // even if hidden by ordinary names, *except* in a dependent context
3870  // where it's important for the sanity of two-phase lookup.
3871  if (!IsInstantiation)
3872    R.setHideTags(false);
3873
3874  LookupQualifiedName(R, LookupContext);
3875
3876  if (R.empty()) {
3877    Diag(IdentLoc, diag::err_no_member)
3878      << NameInfo.getName() << LookupContext << SS.getRange();
3879    UD->setInvalidDecl();
3880    return UD;
3881  }
3882
3883  if (R.isAmbiguous()) {
3884    UD->setInvalidDecl();
3885    return UD;
3886  }
3887
3888  if (IsTypeName) {
3889    // If we asked for a typename and got a non-type decl, error out.
3890    if (!R.getAsSingle<TypeDecl>()) {
3891      Diag(IdentLoc, diag::err_using_typename_non_type);
3892      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3893        Diag((*I)->getUnderlyingDecl()->getLocation(),
3894             diag::note_using_decl_target);
3895      UD->setInvalidDecl();
3896      return UD;
3897    }
3898  } else {
3899    // If we asked for a non-typename and we got a type, error out,
3900    // but only if this is an instantiation of an unresolved using
3901    // decl.  Otherwise just silently find the type name.
3902    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3903      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3904      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3905      UD->setInvalidDecl();
3906      return UD;
3907    }
3908  }
3909
3910  // C++0x N2914 [namespace.udecl]p6:
3911  // A using-declaration shall not name a namespace.
3912  if (R.getAsSingle<NamespaceDecl>()) {
3913    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3914      << SS.getRange();
3915    UD->setInvalidDecl();
3916    return UD;
3917  }
3918
3919  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3920    if (!CheckUsingShadowDecl(UD, *I, Previous))
3921      BuildUsingShadowDecl(S, UD, *I);
3922  }
3923
3924  return UD;
3925}
3926
3927/// Checks that the given using declaration is not an invalid
3928/// redeclaration.  Note that this is checking only for the using decl
3929/// itself, not for any ill-formedness among the UsingShadowDecls.
3930bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3931                                       bool isTypeName,
3932                                       const CXXScopeSpec &SS,
3933                                       SourceLocation NameLoc,
3934                                       const LookupResult &Prev) {
3935  // C++03 [namespace.udecl]p8:
3936  // C++0x [namespace.udecl]p10:
3937  //   A using-declaration is a declaration and can therefore be used
3938  //   repeatedly where (and only where) multiple declarations are
3939  //   allowed.
3940  //
3941  // That's in non-member contexts.
3942  if (!CurContext->getRedeclContext()->isRecord())
3943    return false;
3944
3945  NestedNameSpecifier *Qual
3946    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3947
3948  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3949    NamedDecl *D = *I;
3950
3951    bool DTypename;
3952    NestedNameSpecifier *DQual;
3953    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3954      DTypename = UD->isTypeName();
3955      DQual = UD->getTargetNestedNameDecl();
3956    } else if (UnresolvedUsingValueDecl *UD
3957                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3958      DTypename = false;
3959      DQual = UD->getTargetNestedNameSpecifier();
3960    } else if (UnresolvedUsingTypenameDecl *UD
3961                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3962      DTypename = true;
3963      DQual = UD->getTargetNestedNameSpecifier();
3964    } else continue;
3965
3966    // using decls differ if one says 'typename' and the other doesn't.
3967    // FIXME: non-dependent using decls?
3968    if (isTypeName != DTypename) continue;
3969
3970    // using decls differ if they name different scopes (but note that
3971    // template instantiation can cause this check to trigger when it
3972    // didn't before instantiation).
3973    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3974        Context.getCanonicalNestedNameSpecifier(DQual))
3975      continue;
3976
3977    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3978    Diag(D->getLocation(), diag::note_using_decl) << 1;
3979    return true;
3980  }
3981
3982  return false;
3983}
3984
3985
3986/// Checks that the given nested-name qualifier used in a using decl
3987/// in the current context is appropriately related to the current
3988/// scope.  If an error is found, diagnoses it and returns true.
3989bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3990                                   const CXXScopeSpec &SS,
3991                                   SourceLocation NameLoc) {
3992  DeclContext *NamedContext = computeDeclContext(SS);
3993
3994  if (!CurContext->isRecord()) {
3995    // C++03 [namespace.udecl]p3:
3996    // C++0x [namespace.udecl]p8:
3997    //   A using-declaration for a class member shall be a member-declaration.
3998
3999    // If we weren't able to compute a valid scope, it must be a
4000    // dependent class scope.
4001    if (!NamedContext || NamedContext->isRecord()) {
4002      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4003        << SS.getRange();
4004      return true;
4005    }
4006
4007    // Otherwise, everything is known to be fine.
4008    return false;
4009  }
4010
4011  // The current scope is a record.
4012
4013  // If the named context is dependent, we can't decide much.
4014  if (!NamedContext) {
4015    // FIXME: in C++0x, we can diagnose if we can prove that the
4016    // nested-name-specifier does not refer to a base class, which is
4017    // still possible in some cases.
4018
4019    // Otherwise we have to conservatively report that things might be
4020    // okay.
4021    return false;
4022  }
4023
4024  if (!NamedContext->isRecord()) {
4025    // Ideally this would point at the last name in the specifier,
4026    // but we don't have that level of source info.
4027    Diag(SS.getRange().getBegin(),
4028         diag::err_using_decl_nested_name_specifier_is_not_class)
4029      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4030    return true;
4031  }
4032
4033  if (getLangOptions().CPlusPlus0x) {
4034    // C++0x [namespace.udecl]p3:
4035    //   In a using-declaration used as a member-declaration, the
4036    //   nested-name-specifier shall name a base class of the class
4037    //   being defined.
4038
4039    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4040                                 cast<CXXRecordDecl>(NamedContext))) {
4041      if (CurContext == NamedContext) {
4042        Diag(NameLoc,
4043             diag::err_using_decl_nested_name_specifier_is_current_class)
4044          << SS.getRange();
4045        return true;
4046      }
4047
4048      Diag(SS.getRange().getBegin(),
4049           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4050        << (NestedNameSpecifier*) SS.getScopeRep()
4051        << cast<CXXRecordDecl>(CurContext)
4052        << SS.getRange();
4053      return true;
4054    }
4055
4056    return false;
4057  }
4058
4059  // C++03 [namespace.udecl]p4:
4060  //   A using-declaration used as a member-declaration shall refer
4061  //   to a member of a base class of the class being defined [etc.].
4062
4063  // Salient point: SS doesn't have to name a base class as long as
4064  // lookup only finds members from base classes.  Therefore we can
4065  // diagnose here only if we can prove that that can't happen,
4066  // i.e. if the class hierarchies provably don't intersect.
4067
4068  // TODO: it would be nice if "definitely valid" results were cached
4069  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4070  // need to be repeated.
4071
4072  struct UserData {
4073    llvm::DenseSet<const CXXRecordDecl*> Bases;
4074
4075    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4076      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4077      Data->Bases.insert(Base);
4078      return true;
4079    }
4080
4081    bool hasDependentBases(const CXXRecordDecl *Class) {
4082      return !Class->forallBases(collect, this);
4083    }
4084
4085    /// Returns true if the base is dependent or is one of the
4086    /// accumulated base classes.
4087    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4088      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4089      return !Data->Bases.count(Base);
4090    }
4091
4092    bool mightShareBases(const CXXRecordDecl *Class) {
4093      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4094    }
4095  };
4096
4097  UserData Data;
4098
4099  // Returns false if we find a dependent base.
4100  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4101    return false;
4102
4103  // Returns false if the class has a dependent base or if it or one
4104  // of its bases is present in the base set of the current context.
4105  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4106    return false;
4107
4108  Diag(SS.getRange().getBegin(),
4109       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4110    << (NestedNameSpecifier*) SS.getScopeRep()
4111    << cast<CXXRecordDecl>(CurContext)
4112    << SS.getRange();
4113
4114  return true;
4115}
4116
4117Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4118                                             SourceLocation NamespaceLoc,
4119                                             SourceLocation AliasLoc,
4120                                             IdentifierInfo *Alias,
4121                                             CXXScopeSpec &SS,
4122                                             SourceLocation IdentLoc,
4123                                             IdentifierInfo *Ident) {
4124
4125  // Lookup the namespace name.
4126  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4127  LookupParsedName(R, S, &SS);
4128
4129  // Check if we have a previous declaration with the same name.
4130  NamedDecl *PrevDecl
4131    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4132                       ForRedeclaration);
4133  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4134    PrevDecl = 0;
4135
4136  if (PrevDecl) {
4137    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4138      // We already have an alias with the same name that points to the same
4139      // namespace, so don't create a new one.
4140      // FIXME: At some point, we'll want to create the (redundant)
4141      // declaration to maintain better source information.
4142      if (!R.isAmbiguous() && !R.empty() &&
4143          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4144        return 0;
4145    }
4146
4147    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4148      diag::err_redefinition_different_kind;
4149    Diag(AliasLoc, DiagID) << Alias;
4150    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4151    return 0;
4152  }
4153
4154  if (R.isAmbiguous())
4155    return 0;
4156
4157  if (R.empty()) {
4158    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4159                                                CTC_NoKeywords, 0)) {
4160      if (R.getAsSingle<NamespaceDecl>() ||
4161          R.getAsSingle<NamespaceAliasDecl>()) {
4162        if (DeclContext *DC = computeDeclContext(SS, false))
4163          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4164            << Ident << DC << Corrected << SS.getRange()
4165            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4166        else
4167          Diag(IdentLoc, diag::err_using_directive_suggest)
4168            << Ident << Corrected
4169            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4170
4171        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4172          << Corrected;
4173
4174        Ident = Corrected.getAsIdentifierInfo();
4175      } else {
4176        R.clear();
4177        R.setLookupName(Ident);
4178      }
4179    }
4180
4181    if (R.empty()) {
4182      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4183      return 0;
4184    }
4185  }
4186
4187  NamespaceAliasDecl *AliasDecl =
4188    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4189                               Alias, SS.getRange(),
4190                               (NestedNameSpecifier *)SS.getScopeRep(),
4191                               IdentLoc, R.getFoundDecl());
4192
4193  PushOnScopeChains(AliasDecl, S);
4194  return AliasDecl;
4195}
4196
4197namespace {
4198  /// \brief Scoped object used to handle the state changes required in Sema
4199  /// to implicitly define the body of a C++ member function;
4200  class ImplicitlyDefinedFunctionScope {
4201    Sema &S;
4202    DeclContext *PreviousContext;
4203
4204  public:
4205    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4206      : S(S), PreviousContext(S.CurContext)
4207    {
4208      S.CurContext = Method;
4209      S.PushFunctionScope();
4210      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4211    }
4212
4213    ~ImplicitlyDefinedFunctionScope() {
4214      S.PopExpressionEvaluationContext();
4215      S.PopFunctionOrBlockScope();
4216      S.CurContext = PreviousContext;
4217    }
4218  };
4219}
4220
4221static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4222                                                       CXXRecordDecl *D) {
4223  ASTContext &Context = Self.Context;
4224  QualType ClassType = Context.getTypeDeclType(D);
4225  DeclarationName ConstructorName
4226    = Context.DeclarationNames.getCXXConstructorName(
4227                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4228
4229  DeclContext::lookup_const_iterator Con, ConEnd;
4230  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4231       Con != ConEnd; ++Con) {
4232    // FIXME: In C++0x, a constructor template can be a default constructor.
4233    if (isa<FunctionTemplateDecl>(*Con))
4234      continue;
4235
4236    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4237    if (Constructor->isDefaultConstructor())
4238      return Constructor;
4239  }
4240  return 0;
4241}
4242
4243CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4244                                                     CXXRecordDecl *ClassDecl) {
4245  // C++ [class.ctor]p5:
4246  //   A default constructor for a class X is a constructor of class X
4247  //   that can be called without an argument. If there is no
4248  //   user-declared constructor for class X, a default constructor is
4249  //   implicitly declared. An implicitly-declared default constructor
4250  //   is an inline public member of its class.
4251  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4252         "Should not build implicit default constructor!");
4253
4254  // C++ [except.spec]p14:
4255  //   An implicitly declared special member function (Clause 12) shall have an
4256  //   exception-specification. [...]
4257  ImplicitExceptionSpecification ExceptSpec(Context);
4258
4259  // Direct base-class destructors.
4260  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4261                                       BEnd = ClassDecl->bases_end();
4262       B != BEnd; ++B) {
4263    if (B->isVirtual()) // Handled below.
4264      continue;
4265
4266    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4267      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4268      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4269        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4270      else if (CXXConstructorDecl *Constructor
4271                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4272        ExceptSpec.CalledDecl(Constructor);
4273    }
4274  }
4275
4276  // Virtual base-class destructors.
4277  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4278                                       BEnd = ClassDecl->vbases_end();
4279       B != BEnd; ++B) {
4280    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4281      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4282      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4283        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4284      else if (CXXConstructorDecl *Constructor
4285                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4286        ExceptSpec.CalledDecl(Constructor);
4287    }
4288  }
4289
4290  // Field destructors.
4291  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4292                               FEnd = ClassDecl->field_end();
4293       F != FEnd; ++F) {
4294    if (const RecordType *RecordTy
4295              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4296      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4297      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4298        ExceptSpec.CalledDecl(
4299                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4300      else if (CXXConstructorDecl *Constructor
4301                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4302        ExceptSpec.CalledDecl(Constructor);
4303    }
4304  }
4305
4306  FunctionProtoType::ExtProtoInfo EPI;
4307  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4308  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4309  EPI.NumExceptions = ExceptSpec.size();
4310  EPI.Exceptions = ExceptSpec.data();
4311
4312  // Create the actual constructor declaration.
4313  CanQualType ClassType
4314    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4315  DeclarationName Name
4316    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4317  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4318  CXXConstructorDecl *DefaultCon
4319    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4320                                 Context.getFunctionType(Context.VoidTy,
4321                                                         0, 0, EPI),
4322                                 /*TInfo=*/0,
4323                                 /*isExplicit=*/false,
4324                                 /*isInline=*/true,
4325                                 /*isImplicitlyDeclared=*/true);
4326  DefaultCon->setAccess(AS_public);
4327  DefaultCon->setImplicit();
4328  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4329
4330  // Note that we have declared this constructor.
4331  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4332
4333  if (Scope *S = getScopeForContext(ClassDecl))
4334    PushOnScopeChains(DefaultCon, S, false);
4335  ClassDecl->addDecl(DefaultCon);
4336
4337  return DefaultCon;
4338}
4339
4340void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4341                                            CXXConstructorDecl *Constructor) {
4342  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4343          !Constructor->isUsed(false)) &&
4344    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4345
4346  CXXRecordDecl *ClassDecl = Constructor->getParent();
4347  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4348
4349  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4350  DiagnosticErrorTrap Trap(Diags);
4351  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4352      Trap.hasErrorOccurred()) {
4353    Diag(CurrentLocation, diag::note_member_synthesized_at)
4354      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4355    Constructor->setInvalidDecl();
4356    return;
4357  }
4358
4359  SourceLocation Loc = Constructor->getLocation();
4360  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4361
4362  Constructor->setUsed();
4363  MarkVTableUsed(CurrentLocation, ClassDecl);
4364}
4365
4366CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4367  // C++ [class.dtor]p2:
4368  //   If a class has no user-declared destructor, a destructor is
4369  //   declared implicitly. An implicitly-declared destructor is an
4370  //   inline public member of its class.
4371
4372  // C++ [except.spec]p14:
4373  //   An implicitly declared special member function (Clause 12) shall have
4374  //   an exception-specification.
4375  ImplicitExceptionSpecification ExceptSpec(Context);
4376
4377  // Direct base-class destructors.
4378  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4379                                       BEnd = ClassDecl->bases_end();
4380       B != BEnd; ++B) {
4381    if (B->isVirtual()) // Handled below.
4382      continue;
4383
4384    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4385      ExceptSpec.CalledDecl(
4386                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4387  }
4388
4389  // Virtual base-class destructors.
4390  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4391                                       BEnd = ClassDecl->vbases_end();
4392       B != BEnd; ++B) {
4393    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4394      ExceptSpec.CalledDecl(
4395                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4396  }
4397
4398  // Field destructors.
4399  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4400                               FEnd = ClassDecl->field_end();
4401       F != FEnd; ++F) {
4402    if (const RecordType *RecordTy
4403        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4404      ExceptSpec.CalledDecl(
4405                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4406  }
4407
4408  // Create the actual destructor declaration.
4409  FunctionProtoType::ExtProtoInfo EPI;
4410  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4411  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4412  EPI.NumExceptions = ExceptSpec.size();
4413  EPI.Exceptions = ExceptSpec.data();
4414  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4415
4416  CanQualType ClassType
4417    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4418  DeclarationName Name
4419    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4420  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4421  CXXDestructorDecl *Destructor
4422      = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty, 0,
4423                                /*isInline=*/true,
4424                                /*isImplicitlyDeclared=*/true);
4425  Destructor->setAccess(AS_public);
4426  Destructor->setImplicit();
4427  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4428
4429  // Note that we have declared this destructor.
4430  ++ASTContext::NumImplicitDestructorsDeclared;
4431
4432  // Introduce this destructor into its scope.
4433  if (Scope *S = getScopeForContext(ClassDecl))
4434    PushOnScopeChains(Destructor, S, false);
4435  ClassDecl->addDecl(Destructor);
4436
4437  // This could be uniqued if it ever proves significant.
4438  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4439
4440  AddOverriddenMethods(ClassDecl, Destructor);
4441
4442  return Destructor;
4443}
4444
4445void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4446                                    CXXDestructorDecl *Destructor) {
4447  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4448         "DefineImplicitDestructor - call it for implicit default dtor");
4449  CXXRecordDecl *ClassDecl = Destructor->getParent();
4450  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4451
4452  if (Destructor->isInvalidDecl())
4453    return;
4454
4455  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4456
4457  DiagnosticErrorTrap Trap(Diags);
4458  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4459                                         Destructor->getParent());
4460
4461  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4462    Diag(CurrentLocation, diag::note_member_synthesized_at)
4463      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4464
4465    Destructor->setInvalidDecl();
4466    return;
4467  }
4468
4469  SourceLocation Loc = Destructor->getLocation();
4470  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4471
4472  Destructor->setUsed();
4473  MarkVTableUsed(CurrentLocation, ClassDecl);
4474}
4475
4476/// \brief Builds a statement that copies the given entity from \p From to
4477/// \c To.
4478///
4479/// This routine is used to copy the members of a class with an
4480/// implicitly-declared copy assignment operator. When the entities being
4481/// copied are arrays, this routine builds for loops to copy them.
4482///
4483/// \param S The Sema object used for type-checking.
4484///
4485/// \param Loc The location where the implicit copy is being generated.
4486///
4487/// \param T The type of the expressions being copied. Both expressions must
4488/// have this type.
4489///
4490/// \param To The expression we are copying to.
4491///
4492/// \param From The expression we are copying from.
4493///
4494/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4495/// Otherwise, it's a non-static member subobject.
4496///
4497/// \param Depth Internal parameter recording the depth of the recursion.
4498///
4499/// \returns A statement or a loop that copies the expressions.
4500static StmtResult
4501BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4502                      Expr *To, Expr *From,
4503                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4504  // C++0x [class.copy]p30:
4505  //   Each subobject is assigned in the manner appropriate to its type:
4506  //
4507  //     - if the subobject is of class type, the copy assignment operator
4508  //       for the class is used (as if by explicit qualification; that is,
4509  //       ignoring any possible virtual overriding functions in more derived
4510  //       classes);
4511  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4512    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4513
4514    // Look for operator=.
4515    DeclarationName Name
4516      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4517    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4518    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4519
4520    // Filter out any result that isn't a copy-assignment operator.
4521    LookupResult::Filter F = OpLookup.makeFilter();
4522    while (F.hasNext()) {
4523      NamedDecl *D = F.next();
4524      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4525        if (Method->isCopyAssignmentOperator())
4526          continue;
4527
4528      F.erase();
4529    }
4530    F.done();
4531
4532    // Suppress the protected check (C++ [class.protected]) for each of the
4533    // assignment operators we found. This strange dance is required when
4534    // we're assigning via a base classes's copy-assignment operator. To
4535    // ensure that we're getting the right base class subobject (without
4536    // ambiguities), we need to cast "this" to that subobject type; to
4537    // ensure that we don't go through the virtual call mechanism, we need
4538    // to qualify the operator= name with the base class (see below). However,
4539    // this means that if the base class has a protected copy assignment
4540    // operator, the protected member access check will fail. So, we
4541    // rewrite "protected" access to "public" access in this case, since we
4542    // know by construction that we're calling from a derived class.
4543    if (CopyingBaseSubobject) {
4544      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4545           L != LEnd; ++L) {
4546        if (L.getAccess() == AS_protected)
4547          L.setAccess(AS_public);
4548      }
4549    }
4550
4551    // Create the nested-name-specifier that will be used to qualify the
4552    // reference to operator=; this is required to suppress the virtual
4553    // call mechanism.
4554    CXXScopeSpec SS;
4555    SS.setRange(Loc);
4556    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4557                                               T.getTypePtr()));
4558
4559    // Create the reference to operator=.
4560    ExprResult OpEqualRef
4561      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
4562                                   /*FirstQualifierInScope=*/0, OpLookup,
4563                                   /*TemplateArgs=*/0,
4564                                   /*SuppressQualifierCheck=*/true);
4565    if (OpEqualRef.isInvalid())
4566      return StmtError();
4567
4568    // Build the call to the assignment operator.
4569
4570    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4571                                                  OpEqualRef.takeAs<Expr>(),
4572                                                  Loc, &From, 1, Loc);
4573    if (Call.isInvalid())
4574      return StmtError();
4575
4576    return S.Owned(Call.takeAs<Stmt>());
4577  }
4578
4579  //     - if the subobject is of scalar type, the built-in assignment
4580  //       operator is used.
4581  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4582  if (!ArrayTy) {
4583    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
4584    if (Assignment.isInvalid())
4585      return StmtError();
4586
4587    return S.Owned(Assignment.takeAs<Stmt>());
4588  }
4589
4590  //     - if the subobject is an array, each element is assigned, in the
4591  //       manner appropriate to the element type;
4592
4593  // Construct a loop over the array bounds, e.g.,
4594  //
4595  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4596  //
4597  // that will copy each of the array elements.
4598  QualType SizeType = S.Context.getSizeType();
4599
4600  // Create the iteration variable.
4601  IdentifierInfo *IterationVarName = 0;
4602  {
4603    llvm::SmallString<8> Str;
4604    llvm::raw_svector_ostream OS(Str);
4605    OS << "__i" << Depth;
4606    IterationVarName = &S.Context.Idents.get(OS.str());
4607  }
4608  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4609                                          IterationVarName, SizeType,
4610                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4611                                          SC_None, SC_None);
4612
4613  // Initialize the iteration variable to zero.
4614  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4615  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
4616
4617  // Create a reference to the iteration variable; we'll use this several
4618  // times throughout.
4619  Expr *IterationVarRef
4620    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
4621  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4622
4623  // Create the DeclStmt that holds the iteration variable.
4624  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4625
4626  // Create the comparison against the array bound.
4627  llvm::APInt Upper
4628    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
4629  Expr *Comparison
4630    = new (S.Context) BinaryOperator(IterationVarRef,
4631                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
4632                                     BO_NE, S.Context.BoolTy,
4633                                     VK_RValue, OK_Ordinary, Loc);
4634
4635  // Create the pre-increment of the iteration variable.
4636  Expr *Increment
4637    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
4638                                    VK_LValue, OK_Ordinary, Loc);
4639
4640  // Subscript the "from" and "to" expressions with the iteration variable.
4641  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
4642                                                         IterationVarRef, Loc));
4643  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
4644                                                       IterationVarRef, Loc));
4645
4646  // Build the copy for an individual element of the array.
4647  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
4648                                          To, From, CopyingBaseSubobject,
4649                                          Depth + 1);
4650  if (Copy.isInvalid())
4651    return StmtError();
4652
4653  // Construct the loop that copies all elements of this array.
4654  return S.ActOnForStmt(Loc, Loc, InitStmt,
4655                        S.MakeFullExpr(Comparison),
4656                        0, S.MakeFullExpr(Increment),
4657                        Loc, Copy.take());
4658}
4659
4660/// \brief Determine whether the given class has a copy assignment operator
4661/// that accepts a const-qualified argument.
4662static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
4663  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
4664
4665  if (!Class->hasDeclaredCopyAssignment())
4666    S.DeclareImplicitCopyAssignment(Class);
4667
4668  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
4669  DeclarationName OpName
4670    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4671
4672  DeclContext::lookup_const_iterator Op, OpEnd;
4673  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
4674    // C++ [class.copy]p9:
4675    //   A user-declared copy assignment operator is a non-static non-template
4676    //   member function of class X with exactly one parameter of type X, X&,
4677    //   const X&, volatile X& or const volatile X&.
4678    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
4679    if (!Method)
4680      continue;
4681
4682    if (Method->isStatic())
4683      continue;
4684    if (Method->getPrimaryTemplate())
4685      continue;
4686    const FunctionProtoType *FnType =
4687    Method->getType()->getAs<FunctionProtoType>();
4688    assert(FnType && "Overloaded operator has no prototype.");
4689    // Don't assert on this; an invalid decl might have been left in the AST.
4690    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
4691      continue;
4692    bool AcceptsConst = true;
4693    QualType ArgType = FnType->getArgType(0);
4694    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
4695      ArgType = Ref->getPointeeType();
4696      // Is it a non-const lvalue reference?
4697      if (!ArgType.isConstQualified())
4698        AcceptsConst = false;
4699    }
4700    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
4701      continue;
4702
4703    // We have a single argument of type cv X or cv X&, i.e. we've found the
4704    // copy assignment operator. Return whether it accepts const arguments.
4705    return AcceptsConst;
4706  }
4707  assert(Class->isInvalidDecl() &&
4708         "No copy assignment operator declared in valid code.");
4709  return false;
4710}
4711
4712CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
4713  // Note: The following rules are largely analoguous to the copy
4714  // constructor rules. Note that virtual bases are not taken into account
4715  // for determining the argument type of the operator. Note also that
4716  // operators taking an object instead of a reference are allowed.
4717
4718
4719  // C++ [class.copy]p10:
4720  //   If the class definition does not explicitly declare a copy
4721  //   assignment operator, one is declared implicitly.
4722  //   The implicitly-defined copy assignment operator for a class X
4723  //   will have the form
4724  //
4725  //       X& X::operator=(const X&)
4726  //
4727  //   if
4728  bool HasConstCopyAssignment = true;
4729
4730  //       -- each direct base class B of X has a copy assignment operator
4731  //          whose parameter is of type const B&, const volatile B& or B,
4732  //          and
4733  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4734                                       BaseEnd = ClassDecl->bases_end();
4735       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
4736    assert(!Base->getType()->isDependentType() &&
4737           "Cannot generate implicit members for class with dependent bases.");
4738    const CXXRecordDecl *BaseClassDecl
4739      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4740    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
4741  }
4742
4743  //       -- for all the nonstatic data members of X that are of a class
4744  //          type M (or array thereof), each such class type has a copy
4745  //          assignment operator whose parameter is of type const M&,
4746  //          const volatile M& or M.
4747  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4748                                  FieldEnd = ClassDecl->field_end();
4749       HasConstCopyAssignment && Field != FieldEnd;
4750       ++Field) {
4751    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4752    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4753      const CXXRecordDecl *FieldClassDecl
4754        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4755      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
4756    }
4757  }
4758
4759  //   Otherwise, the implicitly declared copy assignment operator will
4760  //   have the form
4761  //
4762  //       X& X::operator=(X&)
4763  QualType ArgType = Context.getTypeDeclType(ClassDecl);
4764  QualType RetType = Context.getLValueReferenceType(ArgType);
4765  if (HasConstCopyAssignment)
4766    ArgType = ArgType.withConst();
4767  ArgType = Context.getLValueReferenceType(ArgType);
4768
4769  // C++ [except.spec]p14:
4770  //   An implicitly declared special member function (Clause 12) shall have an
4771  //   exception-specification. [...]
4772  ImplicitExceptionSpecification ExceptSpec(Context);
4773  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4774                                       BaseEnd = ClassDecl->bases_end();
4775       Base != BaseEnd; ++Base) {
4776    CXXRecordDecl *BaseClassDecl
4777      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4778
4779    if (!BaseClassDecl->hasDeclaredCopyAssignment())
4780      DeclareImplicitCopyAssignment(BaseClassDecl);
4781
4782    if (CXXMethodDecl *CopyAssign
4783           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4784      ExceptSpec.CalledDecl(CopyAssign);
4785  }
4786  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4787                                  FieldEnd = ClassDecl->field_end();
4788       Field != FieldEnd;
4789       ++Field) {
4790    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4791    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4792      CXXRecordDecl *FieldClassDecl
4793        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4794
4795      if (!FieldClassDecl->hasDeclaredCopyAssignment())
4796        DeclareImplicitCopyAssignment(FieldClassDecl);
4797
4798      if (CXXMethodDecl *CopyAssign
4799            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4800        ExceptSpec.CalledDecl(CopyAssign);
4801    }
4802  }
4803
4804  //   An implicitly-declared copy assignment operator is an inline public
4805  //   member of its class.
4806  FunctionProtoType::ExtProtoInfo EPI;
4807  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4808  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4809  EPI.NumExceptions = ExceptSpec.size();
4810  EPI.Exceptions = ExceptSpec.data();
4811  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4812  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4813  CXXMethodDecl *CopyAssignment
4814    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
4815                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
4816                            /*TInfo=*/0, /*isStatic=*/false,
4817                            /*StorageClassAsWritten=*/SC_None,
4818                            /*isInline=*/true);
4819  CopyAssignment->setAccess(AS_public);
4820  CopyAssignment->setImplicit();
4821  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
4822
4823  // Add the parameter to the operator.
4824  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
4825                                               ClassDecl->getLocation(),
4826                                               /*Id=*/0,
4827                                               ArgType, /*TInfo=*/0,
4828                                               SC_None,
4829                                               SC_None, 0);
4830  CopyAssignment->setParams(&FromParam, 1);
4831
4832  // Note that we have added this copy-assignment operator.
4833  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
4834
4835  if (Scope *S = getScopeForContext(ClassDecl))
4836    PushOnScopeChains(CopyAssignment, S, false);
4837  ClassDecl->addDecl(CopyAssignment);
4838
4839  AddOverriddenMethods(ClassDecl, CopyAssignment);
4840  return CopyAssignment;
4841}
4842
4843void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4844                                        CXXMethodDecl *CopyAssignOperator) {
4845  assert((CopyAssignOperator->isImplicit() &&
4846          CopyAssignOperator->isOverloadedOperator() &&
4847          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4848          !CopyAssignOperator->isUsed(false)) &&
4849         "DefineImplicitCopyAssignment called for wrong function");
4850
4851  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4852
4853  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4854    CopyAssignOperator->setInvalidDecl();
4855    return;
4856  }
4857
4858  CopyAssignOperator->setUsed();
4859
4860  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4861  DiagnosticErrorTrap Trap(Diags);
4862
4863  // C++0x [class.copy]p30:
4864  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4865  //   for a non-union class X performs memberwise copy assignment of its
4866  //   subobjects. The direct base classes of X are assigned first, in the
4867  //   order of their declaration in the base-specifier-list, and then the
4868  //   immediate non-static data members of X are assigned, in the order in
4869  //   which they were declared in the class definition.
4870
4871  // The statements that form the synthesized function body.
4872  ASTOwningVector<Stmt*> Statements(*this);
4873
4874  // The parameter for the "other" object, which we are copying from.
4875  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4876  Qualifiers OtherQuals = Other->getType().getQualifiers();
4877  QualType OtherRefType = Other->getType();
4878  if (const LValueReferenceType *OtherRef
4879                                = OtherRefType->getAs<LValueReferenceType>()) {
4880    OtherRefType = OtherRef->getPointeeType();
4881    OtherQuals = OtherRefType.getQualifiers();
4882  }
4883
4884  // Our location for everything implicitly-generated.
4885  SourceLocation Loc = CopyAssignOperator->getLocation();
4886
4887  // Construct a reference to the "other" object. We'll be using this
4888  // throughout the generated ASTs.
4889  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
4890  assert(OtherRef && "Reference to parameter cannot fail!");
4891
4892  // Construct the "this" pointer. We'll be using this throughout the generated
4893  // ASTs.
4894  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4895  assert(This && "Reference to this cannot fail!");
4896
4897  // Assign base classes.
4898  bool Invalid = false;
4899  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4900       E = ClassDecl->bases_end(); Base != E; ++Base) {
4901    // Form the assignment:
4902    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4903    QualType BaseType = Base->getType().getUnqualifiedType();
4904    CXXRecordDecl *BaseClassDecl = 0;
4905    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4906      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4907    else {
4908      Invalid = true;
4909      continue;
4910    }
4911
4912    CXXCastPath BasePath;
4913    BasePath.push_back(Base);
4914
4915    // Construct the "from" expression, which is an implicit cast to the
4916    // appropriately-qualified base type.
4917    Expr *From = OtherRef;
4918    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4919                      CK_UncheckedDerivedToBase,
4920                      VK_LValue, &BasePath);
4921
4922    // Dereference "this".
4923    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
4924
4925    // Implicitly cast "this" to the appropriately-qualified base type.
4926    Expr *ToE = To.takeAs<Expr>();
4927    ImpCastExprToType(ToE,
4928                      Context.getCVRQualifiedType(BaseType,
4929                                      CopyAssignOperator->getTypeQualifiers()),
4930                      CK_UncheckedDerivedToBase,
4931                      VK_LValue, &BasePath);
4932    To = Owned(ToE);
4933
4934    // Build the copy.
4935    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4936                                            To.get(), From,
4937                                            /*CopyingBaseSubobject=*/true);
4938    if (Copy.isInvalid()) {
4939      Diag(CurrentLocation, diag::note_member_synthesized_at)
4940        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4941      CopyAssignOperator->setInvalidDecl();
4942      return;
4943    }
4944
4945    // Success! Record the copy.
4946    Statements.push_back(Copy.takeAs<Expr>());
4947  }
4948
4949  // \brief Reference to the __builtin_memcpy function.
4950  Expr *BuiltinMemCpyRef = 0;
4951  // \brief Reference to the __builtin_objc_memmove_collectable function.
4952  Expr *CollectableMemCpyRef = 0;
4953
4954  // Assign non-static members.
4955  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4956                                  FieldEnd = ClassDecl->field_end();
4957       Field != FieldEnd; ++Field) {
4958    // Check for members of reference type; we can't copy those.
4959    if (Field->getType()->isReferenceType()) {
4960      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4961        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4962      Diag(Field->getLocation(), diag::note_declared_at);
4963      Diag(CurrentLocation, diag::note_member_synthesized_at)
4964        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4965      Invalid = true;
4966      continue;
4967    }
4968
4969    // Check for members of const-qualified, non-class type.
4970    QualType BaseType = Context.getBaseElementType(Field->getType());
4971    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
4972      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4973        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4974      Diag(Field->getLocation(), diag::note_declared_at);
4975      Diag(CurrentLocation, diag::note_member_synthesized_at)
4976        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4977      Invalid = true;
4978      continue;
4979    }
4980
4981    QualType FieldType = Field->getType().getNonReferenceType();
4982    if (FieldType->isIncompleteArrayType()) {
4983      assert(ClassDecl->hasFlexibleArrayMember() &&
4984             "Incomplete array type is not valid");
4985      continue;
4986    }
4987
4988    // Build references to the field in the object we're copying from and to.
4989    CXXScopeSpec SS; // Intentionally empty
4990    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
4991                              LookupMemberName);
4992    MemberLookup.addDecl(*Field);
4993    MemberLookup.resolveKind();
4994    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
4995                                               Loc, /*IsArrow=*/false,
4996                                               SS, 0, MemberLookup, 0);
4997    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
4998                                             Loc, /*IsArrow=*/true,
4999                                             SS, 0, MemberLookup, 0);
5000    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5001    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5002
5003    // If the field should be copied with __builtin_memcpy rather than via
5004    // explicit assignments, do so. This optimization only applies for arrays
5005    // of scalars and arrays of class type with trivial copy-assignment
5006    // operators.
5007    if (FieldType->isArrayType() &&
5008        (!BaseType->isRecordType() ||
5009         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5010           ->hasTrivialCopyAssignment())) {
5011      // Compute the size of the memory buffer to be copied.
5012      QualType SizeType = Context.getSizeType();
5013      llvm::APInt Size(Context.getTypeSize(SizeType),
5014                       Context.getTypeSizeInChars(BaseType).getQuantity());
5015      for (const ConstantArrayType *Array
5016              = Context.getAsConstantArrayType(FieldType);
5017           Array;
5018           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5019        llvm::APInt ArraySize
5020          = Array->getSize().zextOrTrunc(Size.getBitWidth());
5021        Size *= ArraySize;
5022      }
5023
5024      // Take the address of the field references for "from" and "to".
5025      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5026      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5027
5028      bool NeedsCollectableMemCpy =
5029          (BaseType->isRecordType() &&
5030           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5031
5032      if (NeedsCollectableMemCpy) {
5033        if (!CollectableMemCpyRef) {
5034          // Create a reference to the __builtin_objc_memmove_collectable function.
5035          LookupResult R(*this,
5036                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5037                         Loc, LookupOrdinaryName);
5038          LookupName(R, TUScope, true);
5039
5040          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5041          if (!CollectableMemCpy) {
5042            // Something went horribly wrong earlier, and we will have
5043            // complained about it.
5044            Invalid = true;
5045            continue;
5046          }
5047
5048          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5049                                                  CollectableMemCpy->getType(),
5050                                                  VK_LValue, Loc, 0).take();
5051          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5052        }
5053      }
5054      // Create a reference to the __builtin_memcpy builtin function.
5055      else if (!BuiltinMemCpyRef) {
5056        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5057                       LookupOrdinaryName);
5058        LookupName(R, TUScope, true);
5059
5060        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5061        if (!BuiltinMemCpy) {
5062          // Something went horribly wrong earlier, and we will have complained
5063          // about it.
5064          Invalid = true;
5065          continue;
5066        }
5067
5068        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5069                                            BuiltinMemCpy->getType(),
5070                                            VK_LValue, Loc, 0).take();
5071        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5072      }
5073
5074      ASTOwningVector<Expr*> CallArgs(*this);
5075      CallArgs.push_back(To.takeAs<Expr>());
5076      CallArgs.push_back(From.takeAs<Expr>());
5077      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5078      ExprResult Call = ExprError();
5079      if (NeedsCollectableMemCpy)
5080        Call = ActOnCallExpr(/*Scope=*/0,
5081                             CollectableMemCpyRef,
5082                             Loc, move_arg(CallArgs),
5083                             Loc);
5084      else
5085        Call = ActOnCallExpr(/*Scope=*/0,
5086                             BuiltinMemCpyRef,
5087                             Loc, move_arg(CallArgs),
5088                             Loc);
5089
5090      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5091      Statements.push_back(Call.takeAs<Expr>());
5092      continue;
5093    }
5094
5095    // Build the copy of this field.
5096    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5097                                                  To.get(), From.get(),
5098                                              /*CopyingBaseSubobject=*/false);
5099    if (Copy.isInvalid()) {
5100      Diag(CurrentLocation, diag::note_member_synthesized_at)
5101        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5102      CopyAssignOperator->setInvalidDecl();
5103      return;
5104    }
5105
5106    // Success! Record the copy.
5107    Statements.push_back(Copy.takeAs<Stmt>());
5108  }
5109
5110  if (!Invalid) {
5111    // Add a "return *this;"
5112    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5113
5114    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5115    if (Return.isInvalid())
5116      Invalid = true;
5117    else {
5118      Statements.push_back(Return.takeAs<Stmt>());
5119
5120      if (Trap.hasErrorOccurred()) {
5121        Diag(CurrentLocation, diag::note_member_synthesized_at)
5122          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5123        Invalid = true;
5124      }
5125    }
5126  }
5127
5128  if (Invalid) {
5129    CopyAssignOperator->setInvalidDecl();
5130    return;
5131  }
5132
5133  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5134                                            /*isStmtExpr=*/false);
5135  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5136  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5137}
5138
5139CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5140                                                    CXXRecordDecl *ClassDecl) {
5141  // C++ [class.copy]p4:
5142  //   If the class definition does not explicitly declare a copy
5143  //   constructor, one is declared implicitly.
5144
5145  // C++ [class.copy]p5:
5146  //   The implicitly-declared copy constructor for a class X will
5147  //   have the form
5148  //
5149  //       X::X(const X&)
5150  //
5151  //   if
5152  bool HasConstCopyConstructor = true;
5153
5154  //     -- each direct or virtual base class B of X has a copy
5155  //        constructor whose first parameter is of type const B& or
5156  //        const volatile B&, and
5157  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5158                                       BaseEnd = ClassDecl->bases_end();
5159       HasConstCopyConstructor && Base != BaseEnd;
5160       ++Base) {
5161    // Virtual bases are handled below.
5162    if (Base->isVirtual())
5163      continue;
5164
5165    CXXRecordDecl *BaseClassDecl
5166      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5167    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5168      DeclareImplicitCopyConstructor(BaseClassDecl);
5169
5170    HasConstCopyConstructor
5171      = BaseClassDecl->hasConstCopyConstructor(Context);
5172  }
5173
5174  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5175                                       BaseEnd = ClassDecl->vbases_end();
5176       HasConstCopyConstructor && Base != BaseEnd;
5177       ++Base) {
5178    CXXRecordDecl *BaseClassDecl
5179      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5180    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5181      DeclareImplicitCopyConstructor(BaseClassDecl);
5182
5183    HasConstCopyConstructor
5184      = BaseClassDecl->hasConstCopyConstructor(Context);
5185  }
5186
5187  //     -- for all the nonstatic data members of X that are of a
5188  //        class type M (or array thereof), each such class type
5189  //        has a copy constructor whose first parameter is of type
5190  //        const M& or const volatile M&.
5191  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5192                                  FieldEnd = ClassDecl->field_end();
5193       HasConstCopyConstructor && Field != FieldEnd;
5194       ++Field) {
5195    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5196    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5197      CXXRecordDecl *FieldClassDecl
5198        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5199      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5200        DeclareImplicitCopyConstructor(FieldClassDecl);
5201
5202      HasConstCopyConstructor
5203        = FieldClassDecl->hasConstCopyConstructor(Context);
5204    }
5205  }
5206
5207  //   Otherwise, the implicitly declared copy constructor will have
5208  //   the form
5209  //
5210  //       X::X(X&)
5211  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5212  QualType ArgType = ClassType;
5213  if (HasConstCopyConstructor)
5214    ArgType = ArgType.withConst();
5215  ArgType = Context.getLValueReferenceType(ArgType);
5216
5217  // C++ [except.spec]p14:
5218  //   An implicitly declared special member function (Clause 12) shall have an
5219  //   exception-specification. [...]
5220  ImplicitExceptionSpecification ExceptSpec(Context);
5221  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5222  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5223                                       BaseEnd = ClassDecl->bases_end();
5224       Base != BaseEnd;
5225       ++Base) {
5226    // Virtual bases are handled below.
5227    if (Base->isVirtual())
5228      continue;
5229
5230    CXXRecordDecl *BaseClassDecl
5231      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5232    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5233      DeclareImplicitCopyConstructor(BaseClassDecl);
5234
5235    if (CXXConstructorDecl *CopyConstructor
5236                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5237      ExceptSpec.CalledDecl(CopyConstructor);
5238  }
5239  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5240                                       BaseEnd = ClassDecl->vbases_end();
5241       Base != BaseEnd;
5242       ++Base) {
5243    CXXRecordDecl *BaseClassDecl
5244      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5245    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5246      DeclareImplicitCopyConstructor(BaseClassDecl);
5247
5248    if (CXXConstructorDecl *CopyConstructor
5249                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5250      ExceptSpec.CalledDecl(CopyConstructor);
5251  }
5252  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5253                                  FieldEnd = ClassDecl->field_end();
5254       Field != FieldEnd;
5255       ++Field) {
5256    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5257    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5258      CXXRecordDecl *FieldClassDecl
5259        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5260      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5261        DeclareImplicitCopyConstructor(FieldClassDecl);
5262
5263      if (CXXConstructorDecl *CopyConstructor
5264                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5265        ExceptSpec.CalledDecl(CopyConstructor);
5266    }
5267  }
5268
5269  //   An implicitly-declared copy constructor is an inline public
5270  //   member of its class.
5271  FunctionProtoType::ExtProtoInfo EPI;
5272  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
5273  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
5274  EPI.NumExceptions = ExceptSpec.size();
5275  EPI.Exceptions = ExceptSpec.data();
5276  DeclarationName Name
5277    = Context.DeclarationNames.getCXXConstructorName(
5278                                           Context.getCanonicalType(ClassType));
5279  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5280  CXXConstructorDecl *CopyConstructor
5281    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5282                                 Context.getFunctionType(Context.VoidTy,
5283                                                         &ArgType, 1, EPI),
5284                                 /*TInfo=*/0,
5285                                 /*isExplicit=*/false,
5286                                 /*isInline=*/true,
5287                                 /*isImplicitlyDeclared=*/true);
5288  CopyConstructor->setAccess(AS_public);
5289  CopyConstructor->setImplicit();
5290  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5291
5292  // Note that we have declared this constructor.
5293  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5294
5295  // Add the parameter to the constructor.
5296  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5297                                               ClassDecl->getLocation(),
5298                                               /*IdentifierInfo=*/0,
5299                                               ArgType, /*TInfo=*/0,
5300                                               SC_None,
5301                                               SC_None, 0);
5302  CopyConstructor->setParams(&FromParam, 1);
5303  if (Scope *S = getScopeForContext(ClassDecl))
5304    PushOnScopeChains(CopyConstructor, S, false);
5305  ClassDecl->addDecl(CopyConstructor);
5306
5307  return CopyConstructor;
5308}
5309
5310void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5311                                   CXXConstructorDecl *CopyConstructor,
5312                                   unsigned TypeQuals) {
5313  assert((CopyConstructor->isImplicit() &&
5314          CopyConstructor->isCopyConstructor(TypeQuals) &&
5315          !CopyConstructor->isUsed(false)) &&
5316         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5317
5318  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5319  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5320
5321  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5322  DiagnosticErrorTrap Trap(Diags);
5323
5324  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5325      Trap.hasErrorOccurred()) {
5326    Diag(CurrentLocation, diag::note_member_synthesized_at)
5327      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5328    CopyConstructor->setInvalidDecl();
5329  }  else {
5330    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5331                                               CopyConstructor->getLocation(),
5332                                               MultiStmtArg(*this, 0, 0),
5333                                               /*isStmtExpr=*/false)
5334                                                              .takeAs<Stmt>());
5335  }
5336
5337  CopyConstructor->setUsed();
5338}
5339
5340ExprResult
5341Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5342                            CXXConstructorDecl *Constructor,
5343                            MultiExprArg ExprArgs,
5344                            bool RequiresZeroInit,
5345                            unsigned ConstructKind,
5346                            SourceRange ParenRange) {
5347  bool Elidable = false;
5348
5349  // C++0x [class.copy]p34:
5350  //   When certain criteria are met, an implementation is allowed to
5351  //   omit the copy/move construction of a class object, even if the
5352  //   copy/move constructor and/or destructor for the object have
5353  //   side effects. [...]
5354  //     - when a temporary class object that has not been bound to a
5355  //       reference (12.2) would be copied/moved to a class object
5356  //       with the same cv-unqualified type, the copy/move operation
5357  //       can be omitted by constructing the temporary object
5358  //       directly into the target of the omitted copy/move
5359  if (ConstructKind == CXXConstructExpr::CK_Complete &&
5360      Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
5361    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5362    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
5363  }
5364
5365  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5366                               Elidable, move(ExprArgs), RequiresZeroInit,
5367                               ConstructKind, ParenRange);
5368}
5369
5370/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5371/// including handling of its default argument expressions.
5372ExprResult
5373Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5374                            CXXConstructorDecl *Constructor, bool Elidable,
5375                            MultiExprArg ExprArgs,
5376                            bool RequiresZeroInit,
5377                            unsigned ConstructKind,
5378                            SourceRange ParenRange) {
5379  unsigned NumExprs = ExprArgs.size();
5380  Expr **Exprs = (Expr **)ExprArgs.release();
5381
5382  MarkDeclarationReferenced(ConstructLoc, Constructor);
5383  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5384                                        Constructor, Elidable, Exprs, NumExprs,
5385                                        RequiresZeroInit,
5386              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
5387                                        ParenRange));
5388}
5389
5390bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5391                                        CXXConstructorDecl *Constructor,
5392                                        MultiExprArg Exprs) {
5393  // FIXME: Provide the correct paren SourceRange when available.
5394  ExprResult TempResult =
5395    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5396                          move(Exprs), false, CXXConstructExpr::CK_Complete,
5397                          SourceRange());
5398  if (TempResult.isInvalid())
5399    return true;
5400
5401  Expr *Temp = TempResult.takeAs<Expr>();
5402  CheckImplicitConversions(Temp, VD->getLocation());
5403  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5404  Temp = MaybeCreateExprWithCleanups(Temp);
5405  VD->setInit(Temp);
5406
5407  return false;
5408}
5409
5410void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5411  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5412  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5413      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5414    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5415    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5416    CheckDestructorAccess(VD->getLocation(), Destructor,
5417                          PDiag(diag::err_access_dtor_var)
5418                            << VD->getDeclName()
5419                            << VD->getType());
5420
5421    // TODO: this should be re-enabled for static locals by !CXAAtExit
5422    if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal())
5423      Diag(VD->getLocation(), diag::warn_global_destructor);
5424  }
5425}
5426
5427/// AddCXXDirectInitializerToDecl - This action is called immediately after
5428/// ActOnDeclarator, when a C++ direct initializer is present.
5429/// e.g: "int x(1);"
5430void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
5431                                         SourceLocation LParenLoc,
5432                                         MultiExprArg Exprs,
5433                                         SourceLocation RParenLoc) {
5434  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5435
5436  // If there is no declaration, there was an error parsing it.  Just ignore
5437  // the initializer.
5438  if (RealDecl == 0)
5439    return;
5440
5441  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5442  if (!VDecl) {
5443    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5444    RealDecl->setInvalidDecl();
5445    return;
5446  }
5447
5448  // We will represent direct-initialization similarly to copy-initialization:
5449  //    int x(1);  -as-> int x = 1;
5450  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5451  //
5452  // Clients that want to distinguish between the two forms, can check for
5453  // direct initializer using VarDecl::hasCXXDirectInitializer().
5454  // A major benefit is that clients that don't particularly care about which
5455  // exactly form was it (like the CodeGen) can handle both cases without
5456  // special case code.
5457
5458  // C++ 8.5p11:
5459  // The form of initialization (using parentheses or '=') is generally
5460  // insignificant, but does matter when the entity being initialized has a
5461  // class type.
5462
5463  if (!VDecl->getType()->isDependentType() &&
5464      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5465                          diag::err_typecheck_decl_incomplete_type)) {
5466    VDecl->setInvalidDecl();
5467    return;
5468  }
5469
5470  // The variable can not have an abstract class type.
5471  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5472                             diag::err_abstract_type_in_decl,
5473                             AbstractVariableType))
5474    VDecl->setInvalidDecl();
5475
5476  const VarDecl *Def;
5477  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5478    Diag(VDecl->getLocation(), diag::err_redefinition)
5479    << VDecl->getDeclName();
5480    Diag(Def->getLocation(), diag::note_previous_definition);
5481    VDecl->setInvalidDecl();
5482    return;
5483  }
5484
5485  // C++ [class.static.data]p4
5486  //   If a static data member is of const integral or const
5487  //   enumeration type, its declaration in the class definition can
5488  //   specify a constant-initializer which shall be an integral
5489  //   constant expression (5.19). In that case, the member can appear
5490  //   in integral constant expressions. The member shall still be
5491  //   defined in a namespace scope if it is used in the program and the
5492  //   namespace scope definition shall not contain an initializer.
5493  //
5494  // We already performed a redefinition check above, but for static
5495  // data members we also need to check whether there was an in-class
5496  // declaration with an initializer.
5497  const VarDecl* PrevInit = 0;
5498  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5499    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5500    Diag(PrevInit->getLocation(), diag::note_previous_definition);
5501    return;
5502  }
5503
5504  // If either the declaration has a dependent type or if any of the
5505  // expressions is type-dependent, we represent the initialization
5506  // via a ParenListExpr for later use during template instantiation.
5507  if (VDecl->getType()->isDependentType() ||
5508      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
5509    // Let clients know that initialization was done with a direct initializer.
5510    VDecl->setCXXDirectInitializer(true);
5511
5512    // Store the initialization expressions as a ParenListExpr.
5513    unsigned NumExprs = Exprs.size();
5514    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5515                                               (Expr **)Exprs.release(),
5516                                               NumExprs, RParenLoc));
5517    return;
5518  }
5519
5520  // Capture the variable that is being initialized and the style of
5521  // initialization.
5522  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5523
5524  // FIXME: Poor source location information.
5525  InitializationKind Kind
5526    = InitializationKind::CreateDirect(VDecl->getLocation(),
5527                                       LParenLoc, RParenLoc);
5528
5529  InitializationSequence InitSeq(*this, Entity, Kind,
5530                                 Exprs.get(), Exprs.size());
5531  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5532  if (Result.isInvalid()) {
5533    VDecl->setInvalidDecl();
5534    return;
5535  }
5536
5537  CheckImplicitConversions(Result.get(), LParenLoc);
5538
5539  Result = MaybeCreateExprWithCleanups(Result);
5540  VDecl->setInit(Result.takeAs<Expr>());
5541  VDecl->setCXXDirectInitializer(true);
5542
5543    if (!VDecl->isInvalidDecl() &&
5544        !VDecl->getDeclContext()->isDependentContext() &&
5545        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
5546        !VDecl->getInit()->isConstantInitializer(Context,
5547                                        VDecl->getType()->isReferenceType()))
5548      Diag(VDecl->getLocation(), diag::warn_global_constructor)
5549        << VDecl->getInit()->getSourceRange();
5550
5551  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
5552    FinalizeVarWithDestructor(VDecl, Record);
5553}
5554
5555/// \brief Given a constructor and the set of arguments provided for the
5556/// constructor, convert the arguments and add any required default arguments
5557/// to form a proper call to this constructor.
5558///
5559/// \returns true if an error occurred, false otherwise.
5560bool
5561Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5562                              MultiExprArg ArgsPtr,
5563                              SourceLocation Loc,
5564                              ASTOwningVector<Expr*> &ConvertedArgs) {
5565  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5566  unsigned NumArgs = ArgsPtr.size();
5567  Expr **Args = (Expr **)ArgsPtr.get();
5568
5569  const FunctionProtoType *Proto
5570    = Constructor->getType()->getAs<FunctionProtoType>();
5571  assert(Proto && "Constructor without a prototype?");
5572  unsigned NumArgsInProto = Proto->getNumArgs();
5573
5574  // If too few arguments are available, we'll fill in the rest with defaults.
5575  if (NumArgs < NumArgsInProto)
5576    ConvertedArgs.reserve(NumArgsInProto);
5577  else
5578    ConvertedArgs.reserve(NumArgs);
5579
5580  VariadicCallType CallType =
5581    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5582  llvm::SmallVector<Expr *, 8> AllArgs;
5583  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5584                                        Proto, 0, Args, NumArgs, AllArgs,
5585                                        CallType);
5586  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5587    ConvertedArgs.push_back(AllArgs[i]);
5588  return Invalid;
5589}
5590
5591static inline bool
5592CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5593                                       const FunctionDecl *FnDecl) {
5594  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
5595  if (isa<NamespaceDecl>(DC)) {
5596    return SemaRef.Diag(FnDecl->getLocation(),
5597                        diag::err_operator_new_delete_declared_in_namespace)
5598      << FnDecl->getDeclName();
5599  }
5600
5601  if (isa<TranslationUnitDecl>(DC) &&
5602      FnDecl->getStorageClass() == SC_Static) {
5603    return SemaRef.Diag(FnDecl->getLocation(),
5604                        diag::err_operator_new_delete_declared_static)
5605      << FnDecl->getDeclName();
5606  }
5607
5608  return false;
5609}
5610
5611static inline bool
5612CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5613                            CanQualType ExpectedResultType,
5614                            CanQualType ExpectedFirstParamType,
5615                            unsigned DependentParamTypeDiag,
5616                            unsigned InvalidParamTypeDiag) {
5617  QualType ResultType =
5618    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5619
5620  // Check that the result type is not dependent.
5621  if (ResultType->isDependentType())
5622    return SemaRef.Diag(FnDecl->getLocation(),
5623                        diag::err_operator_new_delete_dependent_result_type)
5624    << FnDecl->getDeclName() << ExpectedResultType;
5625
5626  // Check that the result type is what we expect.
5627  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5628    return SemaRef.Diag(FnDecl->getLocation(),
5629                        diag::err_operator_new_delete_invalid_result_type)
5630    << FnDecl->getDeclName() << ExpectedResultType;
5631
5632  // A function template must have at least 2 parameters.
5633  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5634    return SemaRef.Diag(FnDecl->getLocation(),
5635                      diag::err_operator_new_delete_template_too_few_parameters)
5636        << FnDecl->getDeclName();
5637
5638  // The function decl must have at least 1 parameter.
5639  if (FnDecl->getNumParams() == 0)
5640    return SemaRef.Diag(FnDecl->getLocation(),
5641                        diag::err_operator_new_delete_too_few_parameters)
5642      << FnDecl->getDeclName();
5643
5644  // Check the the first parameter type is not dependent.
5645  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5646  if (FirstParamType->isDependentType())
5647    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5648      << FnDecl->getDeclName() << ExpectedFirstParamType;
5649
5650  // Check that the first parameter type is what we expect.
5651  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5652      ExpectedFirstParamType)
5653    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5654    << FnDecl->getDeclName() << ExpectedFirstParamType;
5655
5656  return false;
5657}
5658
5659static bool
5660CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5661  // C++ [basic.stc.dynamic.allocation]p1:
5662  //   A program is ill-formed if an allocation function is declared in a
5663  //   namespace scope other than global scope or declared static in global
5664  //   scope.
5665  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5666    return true;
5667
5668  CanQualType SizeTy =
5669    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5670
5671  // C++ [basic.stc.dynamic.allocation]p1:
5672  //  The return type shall be void*. The first parameter shall have type
5673  //  std::size_t.
5674  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5675                                  SizeTy,
5676                                  diag::err_operator_new_dependent_param_type,
5677                                  diag::err_operator_new_param_type))
5678    return true;
5679
5680  // C++ [basic.stc.dynamic.allocation]p1:
5681  //  The first parameter shall not have an associated default argument.
5682  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5683    return SemaRef.Diag(FnDecl->getLocation(),
5684                        diag::err_operator_new_default_arg)
5685      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5686
5687  return false;
5688}
5689
5690static bool
5691CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5692  // C++ [basic.stc.dynamic.deallocation]p1:
5693  //   A program is ill-formed if deallocation functions are declared in a
5694  //   namespace scope other than global scope or declared static in global
5695  //   scope.
5696  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5697    return true;
5698
5699  // C++ [basic.stc.dynamic.deallocation]p2:
5700  //   Each deallocation function shall return void and its first parameter
5701  //   shall be void*.
5702  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5703                                  SemaRef.Context.VoidPtrTy,
5704                                 diag::err_operator_delete_dependent_param_type,
5705                                 diag::err_operator_delete_param_type))
5706    return true;
5707
5708  return false;
5709}
5710
5711/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5712/// of this overloaded operator is well-formed. If so, returns false;
5713/// otherwise, emits appropriate diagnostics and returns true.
5714bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5715  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5716         "Expected an overloaded operator declaration");
5717
5718  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5719
5720  // C++ [over.oper]p5:
5721  //   The allocation and deallocation functions, operator new,
5722  //   operator new[], operator delete and operator delete[], are
5723  //   described completely in 3.7.3. The attributes and restrictions
5724  //   found in the rest of this subclause do not apply to them unless
5725  //   explicitly stated in 3.7.3.
5726  if (Op == OO_Delete || Op == OO_Array_Delete)
5727    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5728
5729  if (Op == OO_New || Op == OO_Array_New)
5730    return CheckOperatorNewDeclaration(*this, FnDecl);
5731
5732  // C++ [over.oper]p6:
5733  //   An operator function shall either be a non-static member
5734  //   function or be a non-member function and have at least one
5735  //   parameter whose type is a class, a reference to a class, an
5736  //   enumeration, or a reference to an enumeration.
5737  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5738    if (MethodDecl->isStatic())
5739      return Diag(FnDecl->getLocation(),
5740                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5741  } else {
5742    bool ClassOrEnumParam = false;
5743    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5744                                   ParamEnd = FnDecl->param_end();
5745         Param != ParamEnd; ++Param) {
5746      QualType ParamType = (*Param)->getType().getNonReferenceType();
5747      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5748          ParamType->isEnumeralType()) {
5749        ClassOrEnumParam = true;
5750        break;
5751      }
5752    }
5753
5754    if (!ClassOrEnumParam)
5755      return Diag(FnDecl->getLocation(),
5756                  diag::err_operator_overload_needs_class_or_enum)
5757        << FnDecl->getDeclName();
5758  }
5759
5760  // C++ [over.oper]p8:
5761  //   An operator function cannot have default arguments (8.3.6),
5762  //   except where explicitly stated below.
5763  //
5764  // Only the function-call operator allows default arguments
5765  // (C++ [over.call]p1).
5766  if (Op != OO_Call) {
5767    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5768         Param != FnDecl->param_end(); ++Param) {
5769      if ((*Param)->hasDefaultArg())
5770        return Diag((*Param)->getLocation(),
5771                    diag::err_operator_overload_default_arg)
5772          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5773    }
5774  }
5775
5776  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5777    { false, false, false }
5778#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5779    , { Unary, Binary, MemberOnly }
5780#include "clang/Basic/OperatorKinds.def"
5781  };
5782
5783  bool CanBeUnaryOperator = OperatorUses[Op][0];
5784  bool CanBeBinaryOperator = OperatorUses[Op][1];
5785  bool MustBeMemberOperator = OperatorUses[Op][2];
5786
5787  // C++ [over.oper]p8:
5788  //   [...] Operator functions cannot have more or fewer parameters
5789  //   than the number required for the corresponding operator, as
5790  //   described in the rest of this subclause.
5791  unsigned NumParams = FnDecl->getNumParams()
5792                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5793  if (Op != OO_Call &&
5794      ((NumParams == 1 && !CanBeUnaryOperator) ||
5795       (NumParams == 2 && !CanBeBinaryOperator) ||
5796       (NumParams < 1) || (NumParams > 2))) {
5797    // We have the wrong number of parameters.
5798    unsigned ErrorKind;
5799    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5800      ErrorKind = 2;  // 2 -> unary or binary.
5801    } else if (CanBeUnaryOperator) {
5802      ErrorKind = 0;  // 0 -> unary
5803    } else {
5804      assert(CanBeBinaryOperator &&
5805             "All non-call overloaded operators are unary or binary!");
5806      ErrorKind = 1;  // 1 -> binary
5807    }
5808
5809    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5810      << FnDecl->getDeclName() << NumParams << ErrorKind;
5811  }
5812
5813  // Overloaded operators other than operator() cannot be variadic.
5814  if (Op != OO_Call &&
5815      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5816    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5817      << FnDecl->getDeclName();
5818  }
5819
5820  // Some operators must be non-static member functions.
5821  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5822    return Diag(FnDecl->getLocation(),
5823                diag::err_operator_overload_must_be_member)
5824      << FnDecl->getDeclName();
5825  }
5826
5827  // C++ [over.inc]p1:
5828  //   The user-defined function called operator++ implements the
5829  //   prefix and postfix ++ operator. If this function is a member
5830  //   function with no parameters, or a non-member function with one
5831  //   parameter of class or enumeration type, it defines the prefix
5832  //   increment operator ++ for objects of that type. If the function
5833  //   is a member function with one parameter (which shall be of type
5834  //   int) or a non-member function with two parameters (the second
5835  //   of which shall be of type int), it defines the postfix
5836  //   increment operator ++ for objects of that type.
5837  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5838    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5839    bool ParamIsInt = false;
5840    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5841      ParamIsInt = BT->getKind() == BuiltinType::Int;
5842
5843    if (!ParamIsInt)
5844      return Diag(LastParam->getLocation(),
5845                  diag::err_operator_overload_post_incdec_must_be_int)
5846        << LastParam->getType() << (Op == OO_MinusMinus);
5847  }
5848
5849  return false;
5850}
5851
5852/// CheckLiteralOperatorDeclaration - Check whether the declaration
5853/// of this literal operator function is well-formed. If so, returns
5854/// false; otherwise, emits appropriate diagnostics and returns true.
5855bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5856  DeclContext *DC = FnDecl->getDeclContext();
5857  Decl::Kind Kind = DC->getDeclKind();
5858  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5859      Kind != Decl::LinkageSpec) {
5860    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5861      << FnDecl->getDeclName();
5862    return true;
5863  }
5864
5865  bool Valid = false;
5866
5867  // template <char...> type operator "" name() is the only valid template
5868  // signature, and the only valid signature with no parameters.
5869  if (FnDecl->param_size() == 0) {
5870    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5871      // Must have only one template parameter
5872      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5873      if (Params->size() == 1) {
5874        NonTypeTemplateParmDecl *PmDecl =
5875          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5876
5877        // The template parameter must be a char parameter pack.
5878        // FIXME: This test will always fail because non-type parameter packs
5879        //   have not been implemented.
5880        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5881            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5882          Valid = true;
5883      }
5884    }
5885  } else {
5886    // Check the first parameter
5887    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5888
5889    QualType T = (*Param)->getType();
5890
5891    // unsigned long long int, long double, and any character type are allowed
5892    // as the only parameters.
5893    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5894        Context.hasSameType(T, Context.LongDoubleTy) ||
5895        Context.hasSameType(T, Context.CharTy) ||
5896        Context.hasSameType(T, Context.WCharTy) ||
5897        Context.hasSameType(T, Context.Char16Ty) ||
5898        Context.hasSameType(T, Context.Char32Ty)) {
5899      if (++Param == FnDecl->param_end())
5900        Valid = true;
5901      goto FinishedParams;
5902    }
5903
5904    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5905    const PointerType *PT = T->getAs<PointerType>();
5906    if (!PT)
5907      goto FinishedParams;
5908    T = PT->getPointeeType();
5909    if (!T.isConstQualified())
5910      goto FinishedParams;
5911    T = T.getUnqualifiedType();
5912
5913    // Move on to the second parameter;
5914    ++Param;
5915
5916    // If there is no second parameter, the first must be a const char *
5917    if (Param == FnDecl->param_end()) {
5918      if (Context.hasSameType(T, Context.CharTy))
5919        Valid = true;
5920      goto FinishedParams;
5921    }
5922
5923    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5924    // are allowed as the first parameter to a two-parameter function
5925    if (!(Context.hasSameType(T, Context.CharTy) ||
5926          Context.hasSameType(T, Context.WCharTy) ||
5927          Context.hasSameType(T, Context.Char16Ty) ||
5928          Context.hasSameType(T, Context.Char32Ty)))
5929      goto FinishedParams;
5930
5931    // The second and final parameter must be an std::size_t
5932    T = (*Param)->getType().getUnqualifiedType();
5933    if (Context.hasSameType(T, Context.getSizeType()) &&
5934        ++Param == FnDecl->param_end())
5935      Valid = true;
5936  }
5937
5938  // FIXME: This diagnostic is absolutely terrible.
5939FinishedParams:
5940  if (!Valid) {
5941    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5942      << FnDecl->getDeclName();
5943    return true;
5944  }
5945
5946  return false;
5947}
5948
5949/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5950/// linkage specification, including the language and (if present)
5951/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5952/// the location of the language string literal, which is provided
5953/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5954/// the '{' brace. Otherwise, this linkage specification does not
5955/// have any braces.
5956Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
5957                                           SourceLocation LangLoc,
5958                                           llvm::StringRef Lang,
5959                                           SourceLocation LBraceLoc) {
5960  LinkageSpecDecl::LanguageIDs Language;
5961  if (Lang == "\"C\"")
5962    Language = LinkageSpecDecl::lang_c;
5963  else if (Lang == "\"C++\"")
5964    Language = LinkageSpecDecl::lang_cxx;
5965  else {
5966    Diag(LangLoc, diag::err_bad_language);
5967    return 0;
5968  }
5969
5970  // FIXME: Add all the various semantics of linkage specifications
5971
5972  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5973                                               LangLoc, Language,
5974                                               LBraceLoc.isValid());
5975  CurContext->addDecl(D);
5976  PushDeclContext(S, D);
5977  return D;
5978}
5979
5980/// ActOnFinishLinkageSpecification - Complete the definition of
5981/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5982/// valid, it's the position of the closing '}' brace in a linkage
5983/// specification that uses braces.
5984Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
5985                                                      Decl *LinkageSpec,
5986                                                      SourceLocation RBraceLoc) {
5987  if (LinkageSpec)
5988    PopDeclContext();
5989  return LinkageSpec;
5990}
5991
5992/// \brief Perform semantic analysis for the variable declaration that
5993/// occurs within a C++ catch clause, returning the newly-created
5994/// variable.
5995VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
5996                                         TypeSourceInfo *TInfo,
5997                                         IdentifierInfo *Name,
5998                                         SourceLocation Loc) {
5999  bool Invalid = false;
6000  QualType ExDeclType = TInfo->getType();
6001
6002  // Arrays and functions decay.
6003  if (ExDeclType->isArrayType())
6004    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6005  else if (ExDeclType->isFunctionType())
6006    ExDeclType = Context.getPointerType(ExDeclType);
6007
6008  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6009  // The exception-declaration shall not denote a pointer or reference to an
6010  // incomplete type, other than [cv] void*.
6011  // N2844 forbids rvalue references.
6012  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6013    Diag(Loc, diag::err_catch_rvalue_ref);
6014    Invalid = true;
6015  }
6016
6017  // GCC allows catching pointers and references to incomplete types
6018  // as an extension; so do we, but we warn by default.
6019
6020  QualType BaseType = ExDeclType;
6021  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6022  unsigned DK = diag::err_catch_incomplete;
6023  bool IncompleteCatchIsInvalid = true;
6024  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6025    BaseType = Ptr->getPointeeType();
6026    Mode = 1;
6027    DK = diag::ext_catch_incomplete_ptr;
6028    IncompleteCatchIsInvalid = false;
6029  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6030    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6031    BaseType = Ref->getPointeeType();
6032    Mode = 2;
6033    DK = diag::ext_catch_incomplete_ref;
6034    IncompleteCatchIsInvalid = false;
6035  }
6036  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6037      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6038      IncompleteCatchIsInvalid)
6039    Invalid = true;
6040
6041  if (!Invalid && !ExDeclType->isDependentType() &&
6042      RequireNonAbstractType(Loc, ExDeclType,
6043                             diag::err_abstract_type_in_decl,
6044                             AbstractVariableType))
6045    Invalid = true;
6046
6047  // Only the non-fragile NeXT runtime currently supports C++ catches
6048  // of ObjC types, and no runtime supports catching ObjC types by value.
6049  if (!Invalid && getLangOptions().ObjC1) {
6050    QualType T = ExDeclType;
6051    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6052      T = RT->getPointeeType();
6053
6054    if (T->isObjCObjectType()) {
6055      Diag(Loc, diag::err_objc_object_catch);
6056      Invalid = true;
6057    } else if (T->isObjCObjectPointerType()) {
6058      if (!getLangOptions().NeXTRuntime) {
6059        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6060        Invalid = true;
6061      } else if (!getLangOptions().ObjCNonFragileABI) {
6062        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6063        Invalid = true;
6064      }
6065    }
6066  }
6067
6068  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6069                                    Name, ExDeclType, TInfo, SC_None,
6070                                    SC_None);
6071  ExDecl->setExceptionVariable(true);
6072
6073  if (!Invalid) {
6074    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6075      // C++ [except.handle]p16:
6076      //   The object declared in an exception-declaration or, if the
6077      //   exception-declaration does not specify a name, a temporary (12.2) is
6078      //   copy-initialized (8.5) from the exception object. [...]
6079      //   The object is destroyed when the handler exits, after the destruction
6080      //   of any automatic objects initialized within the handler.
6081      //
6082      // We just pretend to initialize the object with itself, then make sure
6083      // it can be destroyed later.
6084      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6085      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6086                                            Loc, ExDeclType, VK_LValue, 0);
6087      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6088                                                               SourceLocation());
6089      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6090      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6091                                         MultiExprArg(*this, &ExDeclRef, 1));
6092      if (Result.isInvalid())
6093        Invalid = true;
6094      else
6095        FinalizeVarWithDestructor(ExDecl, RecordTy);
6096    }
6097  }
6098
6099  if (Invalid)
6100    ExDecl->setInvalidDecl();
6101
6102  return ExDecl;
6103}
6104
6105/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6106/// handler.
6107Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6108  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6109  QualType ExDeclType = TInfo->getType();
6110
6111  bool Invalid = D.isInvalidType();
6112  IdentifierInfo *II = D.getIdentifier();
6113  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6114                                             LookupOrdinaryName,
6115                                             ForRedeclaration)) {
6116    // The scope should be freshly made just for us. There is just no way
6117    // it contains any previous declaration.
6118    assert(!S->isDeclScope(PrevDecl));
6119    if (PrevDecl->isTemplateParameter()) {
6120      // Maybe we will complain about the shadowed template parameter.
6121      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6122    }
6123  }
6124
6125  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6126    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6127      << D.getCXXScopeSpec().getRange();
6128    Invalid = true;
6129  }
6130
6131  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6132                                              D.getIdentifier(),
6133                                              D.getIdentifierLoc());
6134
6135  if (Invalid)
6136    ExDecl->setInvalidDecl();
6137
6138  // Add the exception declaration into this scope.
6139  if (II)
6140    PushOnScopeChains(ExDecl, S);
6141  else
6142    CurContext->addDecl(ExDecl);
6143
6144  ProcessDeclAttributes(S, ExDecl, D);
6145  return ExDecl;
6146}
6147
6148Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6149                                         Expr *AssertExpr,
6150                                         Expr *AssertMessageExpr_) {
6151  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6152
6153  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6154    llvm::APSInt Value(32);
6155    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6156      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6157        AssertExpr->getSourceRange();
6158      return 0;
6159    }
6160
6161    if (Value == 0) {
6162      Diag(AssertLoc, diag::err_static_assert_failed)
6163        << AssertMessage->getString() << AssertExpr->getSourceRange();
6164    }
6165  }
6166
6167  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6168                                        AssertExpr, AssertMessage);
6169
6170  CurContext->addDecl(Decl);
6171  return Decl;
6172}
6173
6174/// \brief Perform semantic analysis of the given friend type declaration.
6175///
6176/// \returns A friend declaration that.
6177FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6178                                      TypeSourceInfo *TSInfo) {
6179  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6180
6181  QualType T = TSInfo->getType();
6182  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6183
6184  if (!getLangOptions().CPlusPlus0x) {
6185    // C++03 [class.friend]p2:
6186    //   An elaborated-type-specifier shall be used in a friend declaration
6187    //   for a class.*
6188    //
6189    //   * The class-key of the elaborated-type-specifier is required.
6190    if (!ActiveTemplateInstantiations.empty()) {
6191      // Do not complain about the form of friend template types during
6192      // template instantiation; we will already have complained when the
6193      // template was declared.
6194    } else if (!T->isElaboratedTypeSpecifier()) {
6195      // If we evaluated the type to a record type, suggest putting
6196      // a tag in front.
6197      if (const RecordType *RT = T->getAs<RecordType>()) {
6198        RecordDecl *RD = RT->getDecl();
6199
6200        std::string InsertionText = std::string(" ") + RD->getKindName();
6201
6202        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6203          << (unsigned) RD->getTagKind()
6204          << T
6205          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6206                                        InsertionText);
6207      } else {
6208        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6209          << T
6210          << SourceRange(FriendLoc, TypeRange.getEnd());
6211      }
6212    } else if (T->getAs<EnumType>()) {
6213      Diag(FriendLoc, diag::ext_enum_friend)
6214        << T
6215        << SourceRange(FriendLoc, TypeRange.getEnd());
6216    }
6217  }
6218
6219  // C++0x [class.friend]p3:
6220  //   If the type specifier in a friend declaration designates a (possibly
6221  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6222  //   the friend declaration is ignored.
6223
6224  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6225  // in [class.friend]p3 that we do not implement.
6226
6227  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6228}
6229
6230/// Handle a friend tag declaration where the scope specifier was
6231/// templated.
6232Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
6233                                    unsigned TagSpec, SourceLocation TagLoc,
6234                                    CXXScopeSpec &SS,
6235                                    IdentifierInfo *Name, SourceLocation NameLoc,
6236                                    AttributeList *Attr,
6237                                    MultiTemplateParamsArg TempParamLists) {
6238  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6239
6240  bool isExplicitSpecialization = false;
6241  unsigned NumMatchedTemplateParamLists = TempParamLists.size();
6242  bool Invalid = false;
6243
6244  if (TemplateParameterList *TemplateParams
6245        = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
6246                                                  TempParamLists.get(),
6247                                                  TempParamLists.size(),
6248                                                  /*friend*/ true,
6249                                                  isExplicitSpecialization,
6250                                                  Invalid)) {
6251    --NumMatchedTemplateParamLists;
6252
6253    if (TemplateParams->size() > 0) {
6254      // This is a declaration of a class template.
6255      if (Invalid)
6256        return 0;
6257
6258      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
6259                                SS, Name, NameLoc, Attr,
6260                                TemplateParams, AS_public).take();
6261    } else {
6262      // The "template<>" header is extraneous.
6263      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6264        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6265      isExplicitSpecialization = true;
6266    }
6267  }
6268
6269  if (Invalid) return 0;
6270
6271  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
6272
6273  bool isAllExplicitSpecializations = true;
6274  for (unsigned I = 0; I != NumMatchedTemplateParamLists; ++I) {
6275    if (TempParamLists.get()[I]->size()) {
6276      isAllExplicitSpecializations = false;
6277      break;
6278    }
6279  }
6280
6281  // FIXME: don't ignore attributes.
6282
6283  // If it's explicit specializations all the way down, just forget
6284  // about the template header and build an appropriate non-templated
6285  // friend.  TODO: for source fidelity, remember the headers.
6286  if (isAllExplicitSpecializations) {
6287    ElaboratedTypeKeyword Keyword
6288      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6289    QualType T = CheckTypenameType(Keyword, SS.getScopeRep(), *Name,
6290                                   TagLoc, SS.getRange(), NameLoc);
6291    if (T.isNull())
6292      return 0;
6293
6294    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6295    if (isa<DependentNameType>(T)) {
6296      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6297      TL.setKeywordLoc(TagLoc);
6298      TL.setQualifierRange(SS.getRange());
6299      TL.setNameLoc(NameLoc);
6300    } else {
6301      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6302      TL.setKeywordLoc(TagLoc);
6303      TL.setQualifierRange(SS.getRange());
6304      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
6305    }
6306
6307    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6308                                            TSI, FriendLoc);
6309    Friend->setAccess(AS_public);
6310    CurContext->addDecl(Friend);
6311    return Friend;
6312  }
6313
6314  // Handle the case of a templated-scope friend class.  e.g.
6315  //   template <class T> class A<T>::B;
6316  // FIXME: we don't support these right now.
6317  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6318  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
6319  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6320  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6321  TL.setKeywordLoc(TagLoc);
6322  TL.setQualifierRange(SS.getRange());
6323  TL.setNameLoc(NameLoc);
6324
6325  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6326                                          TSI, FriendLoc);
6327  Friend->setAccess(AS_public);
6328  Friend->setUnsupportedFriend(true);
6329  CurContext->addDecl(Friend);
6330  return Friend;
6331}
6332
6333
6334/// Handle a friend type declaration.  This works in tandem with
6335/// ActOnTag.
6336///
6337/// Notes on friend class templates:
6338///
6339/// We generally treat friend class declarations as if they were
6340/// declaring a class.  So, for example, the elaborated type specifier
6341/// in a friend declaration is required to obey the restrictions of a
6342/// class-head (i.e. no typedefs in the scope chain), template
6343/// parameters are required to match up with simple template-ids, &c.
6344/// However, unlike when declaring a template specialization, it's
6345/// okay to refer to a template specialization without an empty
6346/// template parameter declaration, e.g.
6347///   friend class A<T>::B<unsigned>;
6348/// We permit this as a special case; if there are any template
6349/// parameters present at all, require proper matching, i.e.
6350///   template <> template <class T> friend class A<int>::B;
6351Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6352                                MultiTemplateParamsArg TempParams) {
6353  SourceLocation Loc = DS.getSourceRange().getBegin();
6354
6355  assert(DS.isFriendSpecified());
6356  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6357
6358  // Try to convert the decl specifier to a type.  This works for
6359  // friend templates because ActOnTag never produces a ClassTemplateDecl
6360  // for a TUK_Friend.
6361  Declarator TheDeclarator(DS, Declarator::MemberContext);
6362  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6363  QualType T = TSI->getType();
6364  if (TheDeclarator.isInvalidType())
6365    return 0;
6366
6367  // This is definitely an error in C++98.  It's probably meant to
6368  // be forbidden in C++0x, too, but the specification is just
6369  // poorly written.
6370  //
6371  // The problem is with declarations like the following:
6372  //   template <T> friend A<T>::foo;
6373  // where deciding whether a class C is a friend or not now hinges
6374  // on whether there exists an instantiation of A that causes
6375  // 'foo' to equal C.  There are restrictions on class-heads
6376  // (which we declare (by fiat) elaborated friend declarations to
6377  // be) that makes this tractable.
6378  //
6379  // FIXME: handle "template <> friend class A<T>;", which
6380  // is possibly well-formed?  Who even knows?
6381  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6382    Diag(Loc, diag::err_tagless_friend_type_template)
6383      << DS.getSourceRange();
6384    return 0;
6385  }
6386
6387  // C++98 [class.friend]p1: A friend of a class is a function
6388  //   or class that is not a member of the class . . .
6389  // This is fixed in DR77, which just barely didn't make the C++03
6390  // deadline.  It's also a very silly restriction that seriously
6391  // affects inner classes and which nobody else seems to implement;
6392  // thus we never diagnose it, not even in -pedantic.
6393  //
6394  // But note that we could warn about it: it's always useless to
6395  // friend one of your own members (it's not, however, worthless to
6396  // friend a member of an arbitrary specialization of your template).
6397
6398  Decl *D;
6399  if (unsigned NumTempParamLists = TempParams.size())
6400    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6401                                   NumTempParamLists,
6402                                   TempParams.release(),
6403                                   TSI,
6404                                   DS.getFriendSpecLoc());
6405  else
6406    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6407
6408  if (!D)
6409    return 0;
6410
6411  D->setAccess(AS_public);
6412  CurContext->addDecl(D);
6413
6414  return D;
6415}
6416
6417Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
6418                                    MultiTemplateParamsArg TemplateParams) {
6419  const DeclSpec &DS = D.getDeclSpec();
6420
6421  assert(DS.isFriendSpecified());
6422  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6423
6424  SourceLocation Loc = D.getIdentifierLoc();
6425  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6426  QualType T = TInfo->getType();
6427
6428  // C++ [class.friend]p1
6429  //   A friend of a class is a function or class....
6430  // Note that this sees through typedefs, which is intended.
6431  // It *doesn't* see through dependent types, which is correct
6432  // according to [temp.arg.type]p3:
6433  //   If a declaration acquires a function type through a
6434  //   type dependent on a template-parameter and this causes
6435  //   a declaration that does not use the syntactic form of a
6436  //   function declarator to have a function type, the program
6437  //   is ill-formed.
6438  if (!T->isFunctionType()) {
6439    Diag(Loc, diag::err_unexpected_friend);
6440
6441    // It might be worthwhile to try to recover by creating an
6442    // appropriate declaration.
6443    return 0;
6444  }
6445
6446  // C++ [namespace.memdef]p3
6447  //  - If a friend declaration in a non-local class first declares a
6448  //    class or function, the friend class or function is a member
6449  //    of the innermost enclosing namespace.
6450  //  - The name of the friend is not found by simple name lookup
6451  //    until a matching declaration is provided in that namespace
6452  //    scope (either before or after the class declaration granting
6453  //    friendship).
6454  //  - If a friend function is called, its name may be found by the
6455  //    name lookup that considers functions from namespaces and
6456  //    classes associated with the types of the function arguments.
6457  //  - When looking for a prior declaration of a class or a function
6458  //    declared as a friend, scopes outside the innermost enclosing
6459  //    namespace scope are not considered.
6460
6461  CXXScopeSpec &SS = D.getCXXScopeSpec();
6462  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6463  DeclarationName Name = NameInfo.getName();
6464  assert(Name);
6465
6466  // The context we found the declaration in, or in which we should
6467  // create the declaration.
6468  DeclContext *DC;
6469  Scope *DCScope = S;
6470  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6471                        ForRedeclaration);
6472
6473  // FIXME: there are different rules in local classes
6474
6475  // There are four cases here.
6476  //   - There's no scope specifier, in which case we just go to the
6477  //     appropriate scope and look for a function or function template
6478  //     there as appropriate.
6479  // Recover from invalid scope qualifiers as if they just weren't there.
6480  if (SS.isInvalid() || !SS.isSet()) {
6481    // C++0x [namespace.memdef]p3:
6482    //   If the name in a friend declaration is neither qualified nor
6483    //   a template-id and the declaration is a function or an
6484    //   elaborated-type-specifier, the lookup to determine whether
6485    //   the entity has been previously declared shall not consider
6486    //   any scopes outside the innermost enclosing namespace.
6487    // C++0x [class.friend]p11:
6488    //   If a friend declaration appears in a local class and the name
6489    //   specified is an unqualified name, a prior declaration is
6490    //   looked up without considering scopes that are outside the
6491    //   innermost enclosing non-class scope. For a friend function
6492    //   declaration, if there is no prior declaration, the program is
6493    //   ill-formed.
6494    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
6495    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
6496
6497    // Find the appropriate context according to the above.
6498    DC = CurContext;
6499    while (true) {
6500      // Skip class contexts.  If someone can cite chapter and verse
6501      // for this behavior, that would be nice --- it's what GCC and
6502      // EDG do, and it seems like a reasonable intent, but the spec
6503      // really only says that checks for unqualified existing
6504      // declarations should stop at the nearest enclosing namespace,
6505      // not that they should only consider the nearest enclosing
6506      // namespace.
6507      while (DC->isRecord())
6508        DC = DC->getParent();
6509
6510      LookupQualifiedName(Previous, DC);
6511
6512      // TODO: decide what we think about using declarations.
6513      if (isLocal || !Previous.empty())
6514        break;
6515
6516      if (isTemplateId) {
6517        if (isa<TranslationUnitDecl>(DC)) break;
6518      } else {
6519        if (DC->isFileContext()) break;
6520      }
6521      DC = DC->getParent();
6522    }
6523
6524    // C++ [class.friend]p1: A friend of a class is a function or
6525    //   class that is not a member of the class . . .
6526    // C++0x changes this for both friend types and functions.
6527    // Most C++ 98 compilers do seem to give an error here, so
6528    // we do, too.
6529    if (!Previous.empty() && DC->Equals(CurContext)
6530        && !getLangOptions().CPlusPlus0x)
6531      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6532
6533    DCScope = getScopeForDeclContext(S, DC);
6534
6535  //   - There's a non-dependent scope specifier, in which case we
6536  //     compute it and do a previous lookup there for a function
6537  //     or function template.
6538  } else if (!SS.getScopeRep()->isDependent()) {
6539    DC = computeDeclContext(SS);
6540    if (!DC) return 0;
6541
6542    if (RequireCompleteDeclContext(SS, DC)) return 0;
6543
6544    LookupQualifiedName(Previous, DC);
6545
6546    // Ignore things found implicitly in the wrong scope.
6547    // TODO: better diagnostics for this case.  Suggesting the right
6548    // qualified scope would be nice...
6549    LookupResult::Filter F = Previous.makeFilter();
6550    while (F.hasNext()) {
6551      NamedDecl *D = F.next();
6552      if (!DC->InEnclosingNamespaceSetOf(
6553              D->getDeclContext()->getRedeclContext()))
6554        F.erase();
6555    }
6556    F.done();
6557
6558    if (Previous.empty()) {
6559      D.setInvalidType();
6560      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6561      return 0;
6562    }
6563
6564    // C++ [class.friend]p1: A friend of a class is a function or
6565    //   class that is not a member of the class . . .
6566    if (DC->Equals(CurContext))
6567      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6568
6569  //   - There's a scope specifier that does not match any template
6570  //     parameter lists, in which case we use some arbitrary context,
6571  //     create a method or method template, and wait for instantiation.
6572  //   - There's a scope specifier that does match some template
6573  //     parameter lists, which we don't handle right now.
6574  } else {
6575    DC = CurContext;
6576    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
6577  }
6578
6579  if (!DC->isRecord()) {
6580    // This implies that it has to be an operator or function.
6581    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6582        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6583        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6584      Diag(Loc, diag::err_introducing_special_friend) <<
6585        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6586         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6587      return 0;
6588    }
6589  }
6590
6591  bool Redeclaration = false;
6592  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
6593                                          move(TemplateParams),
6594                                          IsDefinition,
6595                                          Redeclaration);
6596  if (!ND) return 0;
6597
6598  assert(ND->getDeclContext() == DC);
6599  assert(ND->getLexicalDeclContext() == CurContext);
6600
6601  // Add the function declaration to the appropriate lookup tables,
6602  // adjusting the redeclarations list as necessary.  We don't
6603  // want to do this yet if the friending class is dependent.
6604  //
6605  // Also update the scope-based lookup if the target context's
6606  // lookup context is in lexical scope.
6607  if (!CurContext->isDependentContext()) {
6608    DC = DC->getRedeclContext();
6609    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6610    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6611      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6612  }
6613
6614  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6615                                       D.getIdentifierLoc(), ND,
6616                                       DS.getFriendSpecLoc());
6617  FrD->setAccess(AS_public);
6618  CurContext->addDecl(FrD);
6619
6620  if (ND->isInvalidDecl())
6621    FrD->setInvalidDecl();
6622  else {
6623    FunctionDecl *FD;
6624    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
6625      FD = FTD->getTemplatedDecl();
6626    else
6627      FD = cast<FunctionDecl>(ND);
6628
6629    // Mark templated-scope function declarations as unsupported.
6630    if (FD->getNumTemplateParameterLists())
6631      FrD->setUnsupportedFriend(true);
6632  }
6633
6634  return ND;
6635}
6636
6637void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
6638  AdjustDeclIfTemplate(Dcl);
6639
6640  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6641  if (!Fn) {
6642    Diag(DelLoc, diag::err_deleted_non_function);
6643    return;
6644  }
6645  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6646    Diag(DelLoc, diag::err_deleted_decl_not_first);
6647    Diag(Prev->getLocation(), diag::note_previous_declaration);
6648    // If the declaration wasn't the first, we delete the function anyway for
6649    // recovery.
6650  }
6651  Fn->setDeleted();
6652}
6653
6654static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6655  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6656       ++CI) {
6657    Stmt *SubStmt = *CI;
6658    if (!SubStmt)
6659      continue;
6660    if (isa<ReturnStmt>(SubStmt))
6661      Self.Diag(SubStmt->getSourceRange().getBegin(),
6662           diag::err_return_in_constructor_handler);
6663    if (!isa<Expr>(SubStmt))
6664      SearchForReturnInStmt(Self, SubStmt);
6665  }
6666}
6667
6668void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6669  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6670    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6671    SearchForReturnInStmt(*this, Handler);
6672  }
6673}
6674
6675bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6676                                             const CXXMethodDecl *Old) {
6677  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6678  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6679
6680  if (Context.hasSameType(NewTy, OldTy) ||
6681      NewTy->isDependentType() || OldTy->isDependentType())
6682    return false;
6683
6684  // Check if the return types are covariant
6685  QualType NewClassTy, OldClassTy;
6686
6687  /// Both types must be pointers or references to classes.
6688  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6689    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6690      NewClassTy = NewPT->getPointeeType();
6691      OldClassTy = OldPT->getPointeeType();
6692    }
6693  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6694    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6695      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6696        NewClassTy = NewRT->getPointeeType();
6697        OldClassTy = OldRT->getPointeeType();
6698      }
6699    }
6700  }
6701
6702  // The return types aren't either both pointers or references to a class type.
6703  if (NewClassTy.isNull()) {
6704    Diag(New->getLocation(),
6705         diag::err_different_return_type_for_overriding_virtual_function)
6706      << New->getDeclName() << NewTy << OldTy;
6707    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6708
6709    return true;
6710  }
6711
6712  // C++ [class.virtual]p6:
6713  //   If the return type of D::f differs from the return type of B::f, the
6714  //   class type in the return type of D::f shall be complete at the point of
6715  //   declaration of D::f or shall be the class type D.
6716  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6717    if (!RT->isBeingDefined() &&
6718        RequireCompleteType(New->getLocation(), NewClassTy,
6719                            PDiag(diag::err_covariant_return_incomplete)
6720                              << New->getDeclName()))
6721    return true;
6722  }
6723
6724  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6725    // Check if the new class derives from the old class.
6726    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6727      Diag(New->getLocation(),
6728           diag::err_covariant_return_not_derived)
6729      << New->getDeclName() << NewTy << OldTy;
6730      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6731      return true;
6732    }
6733
6734    // Check if we the conversion from derived to base is valid.
6735    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6736                    diag::err_covariant_return_inaccessible_base,
6737                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6738                    // FIXME: Should this point to the return type?
6739                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6740      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6741      return true;
6742    }
6743  }
6744
6745  // The qualifiers of the return types must be the same.
6746  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6747    Diag(New->getLocation(),
6748         diag::err_covariant_return_type_different_qualifications)
6749    << New->getDeclName() << NewTy << OldTy;
6750    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6751    return true;
6752  };
6753
6754
6755  // The new class type must have the same or less qualifiers as the old type.
6756  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6757    Diag(New->getLocation(),
6758         diag::err_covariant_return_type_class_type_more_qualified)
6759    << New->getDeclName() << NewTy << OldTy;
6760    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6761    return true;
6762  };
6763
6764  return false;
6765}
6766
6767bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6768                                             const CXXMethodDecl *Old)
6769{
6770  if (Old->hasAttr<FinalAttr>()) {
6771    Diag(New->getLocation(), diag::err_final_function_overridden)
6772      << New->getDeclName();
6773    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6774    return true;
6775  }
6776
6777  return false;
6778}
6779
6780/// \brief Mark the given method pure.
6781///
6782/// \param Method the method to be marked pure.
6783///
6784/// \param InitRange the source range that covers the "0" initializer.
6785bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6786  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6787    Method->setPure();
6788    return false;
6789  }
6790
6791  if (!Method->isInvalidDecl())
6792    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6793      << Method->getDeclName() << InitRange;
6794  return true;
6795}
6796
6797/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6798/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6799/// is a fresh scope pushed for just this purpose.
6800///
6801/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6802/// static data member of class X, names should be looked up in the scope of
6803/// class X.
6804void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
6805  // If there is no declaration, there was an error parsing it.
6806  if (D == 0) return;
6807
6808  // We should only get called for declarations with scope specifiers, like:
6809  //   int foo::bar;
6810  assert(D->isOutOfLine());
6811  EnterDeclaratorContext(S, D->getDeclContext());
6812}
6813
6814/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6815/// initializer for the out-of-line declaration 'D'.
6816void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
6817  // If there is no declaration, there was an error parsing it.
6818  if (D == 0) return;
6819
6820  assert(D->isOutOfLine());
6821  ExitDeclaratorContext(S);
6822}
6823
6824/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6825/// C++ if/switch/while/for statement.
6826/// e.g: "if (int x = f()) {...}"
6827DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6828  // C++ 6.4p2:
6829  // The declarator shall not specify a function or an array.
6830  // The type-specifier-seq shall not contain typedef and shall not declare a
6831  // new class or enumeration.
6832  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6833         "Parser allowed 'typedef' as storage class of condition decl.");
6834
6835  TagDecl *OwnedTag = 0;
6836  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6837  QualType Ty = TInfo->getType();
6838
6839  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6840                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6841                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6842    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6843      << D.getSourceRange();
6844    return DeclResult();
6845  } else if (OwnedTag && OwnedTag->isDefinition()) {
6846    // The type-specifier-seq shall not declare a new class or enumeration.
6847    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6848  }
6849
6850  Decl *Dcl = ActOnDeclarator(S, D);
6851  if (!Dcl)
6852    return DeclResult();
6853
6854  return Dcl;
6855}
6856
6857void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6858                          bool DefinitionRequired) {
6859  // Ignore any vtable uses in unevaluated operands or for classes that do
6860  // not have a vtable.
6861  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6862      CurContext->isDependentContext() ||
6863      ExprEvalContexts.back().Context == Unevaluated)
6864    return;
6865
6866  // Try to insert this class into the map.
6867  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6868  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6869    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6870  if (!Pos.second) {
6871    // If we already had an entry, check to see if we are promoting this vtable
6872    // to required a definition. If so, we need to reappend to the VTableUses
6873    // list, since we may have already processed the first entry.
6874    if (DefinitionRequired && !Pos.first->second) {
6875      Pos.first->second = true;
6876    } else {
6877      // Otherwise, we can early exit.
6878      return;
6879    }
6880  }
6881
6882  // Local classes need to have their virtual members marked
6883  // immediately. For all other classes, we mark their virtual members
6884  // at the end of the translation unit.
6885  if (Class->isLocalClass())
6886    MarkVirtualMembersReferenced(Loc, Class);
6887  else
6888    VTableUses.push_back(std::make_pair(Class, Loc));
6889}
6890
6891bool Sema::DefineUsedVTables() {
6892  if (VTableUses.empty())
6893    return false;
6894
6895  // Note: The VTableUses vector could grow as a result of marking
6896  // the members of a class as "used", so we check the size each
6897  // time through the loop and prefer indices (with are stable) to
6898  // iterators (which are not).
6899  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6900    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6901    if (!Class)
6902      continue;
6903
6904    SourceLocation Loc = VTableUses[I].second;
6905
6906    // If this class has a key function, but that key function is
6907    // defined in another translation unit, we don't need to emit the
6908    // vtable even though we're using it.
6909    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6910    if (KeyFunction && !KeyFunction->hasBody()) {
6911      switch (KeyFunction->getTemplateSpecializationKind()) {
6912      case TSK_Undeclared:
6913      case TSK_ExplicitSpecialization:
6914      case TSK_ExplicitInstantiationDeclaration:
6915        // The key function is in another translation unit.
6916        continue;
6917
6918      case TSK_ExplicitInstantiationDefinition:
6919      case TSK_ImplicitInstantiation:
6920        // We will be instantiating the key function.
6921        break;
6922      }
6923    } else if (!KeyFunction) {
6924      // If we have a class with no key function that is the subject
6925      // of an explicit instantiation declaration, suppress the
6926      // vtable; it will live with the explicit instantiation
6927      // definition.
6928      bool IsExplicitInstantiationDeclaration
6929        = Class->getTemplateSpecializationKind()
6930                                      == TSK_ExplicitInstantiationDeclaration;
6931      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6932                                 REnd = Class->redecls_end();
6933           R != REnd; ++R) {
6934        TemplateSpecializationKind TSK
6935          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6936        if (TSK == TSK_ExplicitInstantiationDeclaration)
6937          IsExplicitInstantiationDeclaration = true;
6938        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6939          IsExplicitInstantiationDeclaration = false;
6940          break;
6941        }
6942      }
6943
6944      if (IsExplicitInstantiationDeclaration)
6945        continue;
6946    }
6947
6948    // Mark all of the virtual members of this class as referenced, so
6949    // that we can build a vtable. Then, tell the AST consumer that a
6950    // vtable for this class is required.
6951    MarkVirtualMembersReferenced(Loc, Class);
6952    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6953    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6954
6955    // Optionally warn if we're emitting a weak vtable.
6956    if (Class->getLinkage() == ExternalLinkage &&
6957        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6958      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
6959        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6960    }
6961  }
6962  VTableUses.clear();
6963
6964  return true;
6965}
6966
6967void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6968                                        const CXXRecordDecl *RD) {
6969  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6970       e = RD->method_end(); i != e; ++i) {
6971    CXXMethodDecl *MD = *i;
6972
6973    // C++ [basic.def.odr]p2:
6974    //   [...] A virtual member function is used if it is not pure. [...]
6975    if (MD->isVirtual() && !MD->isPure())
6976      MarkDeclarationReferenced(Loc, MD);
6977  }
6978
6979  // Only classes that have virtual bases need a VTT.
6980  if (RD->getNumVBases() == 0)
6981    return;
6982
6983  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6984           e = RD->bases_end(); i != e; ++i) {
6985    const CXXRecordDecl *Base =
6986        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6987    if (Base->getNumVBases() == 0)
6988      continue;
6989    MarkVirtualMembersReferenced(Loc, Base);
6990  }
6991}
6992
6993/// SetIvarInitializers - This routine builds initialization ASTs for the
6994/// Objective-C implementation whose ivars need be initialized.
6995void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6996  if (!getLangOptions().CPlusPlus)
6997    return;
6998  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6999    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
7000    CollectIvarsToConstructOrDestruct(OID, ivars);
7001    if (ivars.empty())
7002      return;
7003    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
7004    for (unsigned i = 0; i < ivars.size(); i++) {
7005      FieldDecl *Field = ivars[i];
7006      if (Field->isInvalidDecl())
7007        continue;
7008
7009      CXXBaseOrMemberInitializer *Member;
7010      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
7011      InitializationKind InitKind =
7012        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
7013
7014      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
7015      ExprResult MemberInit =
7016        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
7017      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
7018      // Note, MemberInit could actually come back empty if no initialization
7019      // is required (e.g., because it would call a trivial default constructor)
7020      if (!MemberInit.get() || MemberInit.isInvalid())
7021        continue;
7022
7023      Member =
7024        new (Context) CXXBaseOrMemberInitializer(Context,
7025                                                 Field, SourceLocation(),
7026                                                 SourceLocation(),
7027                                                 MemberInit.takeAs<Expr>(),
7028                                                 SourceLocation());
7029      AllToInit.push_back(Member);
7030
7031      // Be sure that the destructor is accessible and is marked as referenced.
7032      if (const RecordType *RecordTy
7033                  = Context.getBaseElementType(Field->getType())
7034                                                        ->getAs<RecordType>()) {
7035                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
7036        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
7037          MarkDeclarationReferenced(Field->getLocation(), Destructor);
7038          CheckDestructorAccess(Field->getLocation(), Destructor,
7039                            PDiag(diag::err_access_dtor_ivar)
7040                              << Context.getBaseElementType(Field->getType()));
7041        }
7042      }
7043    }
7044    ObjCImplementation->setIvarInitializers(Context,
7045                                            AllToInit.data(), AllToInit.size());
7046  }
7047}
7048