SemaDeclCXX.cpp revision 0ee33912f8ec3453856c8a32ed2c2e8007bed614
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // If this function has a basic noexcept, it doesn't affect the outcome.
133  if (EST == EST_BasicNoexcept)
134    return;
135
136  // If we have a throw-all spec at this point, ignore the function.
137  if (ComputedEST == EST_None)
138    return;
139
140  // If we're still at noexcept(true) and there's a nothrow() callee,
141  // change to that specification.
142  if (EST == EST_DynamicNone) {
143    if (ComputedEST == EST_BasicNoexcept)
144      ComputedEST = EST_DynamicNone;
145    return;
146  }
147
148  // Check out noexcept specs.
149  if (EST == EST_ComputedNoexcept) {
150    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
151    assert(NR != FunctionProtoType::NR_NoNoexcept &&
152           "Must have noexcept result for EST_ComputedNoexcept.");
153    assert(NR != FunctionProtoType::NR_Dependent &&
154           "Should not generate implicit declarations for dependent cases, "
155           "and don't know how to handle them anyway.");
156
157    // noexcept(false) -> no spec on the new function
158    if (NR == FunctionProtoType::NR_Throw) {
159      ClearExceptions();
160      ComputedEST = EST_None;
161    }
162    // noexcept(true) won't change anything either.
163    return;
164  }
165
166  assert(EST == EST_Dynamic && "EST case not considered earlier.");
167  assert(ComputedEST != EST_None &&
168         "Shouldn't collect exceptions when throw-all is guaranteed.");
169  ComputedEST = EST_Dynamic;
170  // Record the exceptions in this function's exception specification.
171  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
172                                          EEnd = Proto->exception_end();
173       E != EEnd; ++E)
174    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
175      Exceptions.push_back(*E);
176}
177
178bool
179Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
180                              SourceLocation EqualLoc) {
181  if (RequireCompleteType(Param->getLocation(), Param->getType(),
182                          diag::err_typecheck_decl_incomplete_type)) {
183    Param->setInvalidDecl();
184    return true;
185  }
186
187  // C++ [dcl.fct.default]p5
188  //   A default argument expression is implicitly converted (clause
189  //   4) to the parameter type. The default argument expression has
190  //   the same semantic constraints as the initializer expression in
191  //   a declaration of a variable of the parameter type, using the
192  //   copy-initialization semantics (8.5).
193  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
194                                                                    Param);
195  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
196                                                           EqualLoc);
197  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
198  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
199                                      MultiExprArg(*this, &Arg, 1));
200  if (Result.isInvalid())
201    return true;
202  Arg = Result.takeAs<Expr>();
203
204  CheckImplicitConversions(Arg, EqualLoc);
205  Arg = MaybeCreateExprWithCleanups(Arg);
206
207  // Okay: add the default argument to the parameter
208  Param->setDefaultArg(Arg);
209
210  // We have already instantiated this parameter; provide each of the
211  // instantiations with the uninstantiated default argument.
212  UnparsedDefaultArgInstantiationsMap::iterator InstPos
213    = UnparsedDefaultArgInstantiations.find(Param);
214  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
215    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
216      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
217
218    // We're done tracking this parameter's instantiations.
219    UnparsedDefaultArgInstantiations.erase(InstPos);
220  }
221
222  return false;
223}
224
225/// ActOnParamDefaultArgument - Check whether the default argument
226/// provided for a function parameter is well-formed. If so, attach it
227/// to the parameter declaration.
228void
229Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
230                                Expr *DefaultArg) {
231  if (!param || !DefaultArg)
232    return;
233
234  ParmVarDecl *Param = cast<ParmVarDecl>(param);
235  UnparsedDefaultArgLocs.erase(Param);
236
237  // Default arguments are only permitted in C++
238  if (!getLangOptions().CPlusPlus) {
239    Diag(EqualLoc, diag::err_param_default_argument)
240      << DefaultArg->getSourceRange();
241    Param->setInvalidDecl();
242    return;
243  }
244
245  // Check for unexpanded parameter packs.
246  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
247    Param->setInvalidDecl();
248    return;
249  }
250
251  // Check that the default argument is well-formed
252  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
253  if (DefaultArgChecker.Visit(DefaultArg)) {
254    Param->setInvalidDecl();
255    return;
256  }
257
258  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
259}
260
261/// ActOnParamUnparsedDefaultArgument - We've seen a default
262/// argument for a function parameter, but we can't parse it yet
263/// because we're inside a class definition. Note that this default
264/// argument will be parsed later.
265void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
266                                             SourceLocation EqualLoc,
267                                             SourceLocation ArgLoc) {
268  if (!param)
269    return;
270
271  ParmVarDecl *Param = cast<ParmVarDecl>(param);
272  if (Param)
273    Param->setUnparsedDefaultArg();
274
275  UnparsedDefaultArgLocs[Param] = ArgLoc;
276}
277
278/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
279/// the default argument for the parameter param failed.
280void Sema::ActOnParamDefaultArgumentError(Decl *param) {
281  if (!param)
282    return;
283
284  ParmVarDecl *Param = cast<ParmVarDecl>(param);
285
286  Param->setInvalidDecl();
287
288  UnparsedDefaultArgLocs.erase(Param);
289}
290
291/// CheckExtraCXXDefaultArguments - Check for any extra default
292/// arguments in the declarator, which is not a function declaration
293/// or definition and therefore is not permitted to have default
294/// arguments. This routine should be invoked for every declarator
295/// that is not a function declaration or definition.
296void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
297  // C++ [dcl.fct.default]p3
298  //   A default argument expression shall be specified only in the
299  //   parameter-declaration-clause of a function declaration or in a
300  //   template-parameter (14.1). It shall not be specified for a
301  //   parameter pack. If it is specified in a
302  //   parameter-declaration-clause, it shall not occur within a
303  //   declarator or abstract-declarator of a parameter-declaration.
304  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
305    DeclaratorChunk &chunk = D.getTypeObject(i);
306    if (chunk.Kind == DeclaratorChunk::Function) {
307      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
308        ParmVarDecl *Param =
309          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
310        if (Param->hasUnparsedDefaultArg()) {
311          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
312          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
313            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
314          delete Toks;
315          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
316        } else if (Param->getDefaultArg()) {
317          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
318            << Param->getDefaultArg()->getSourceRange();
319          Param->setDefaultArg(0);
320        }
321      }
322    }
323  }
324}
325
326// MergeCXXFunctionDecl - Merge two declarations of the same C++
327// function, once we already know that they have the same
328// type. Subroutine of MergeFunctionDecl. Returns true if there was an
329// error, false otherwise.
330bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
331  bool Invalid = false;
332
333  // C++ [dcl.fct.default]p4:
334  //   For non-template functions, default arguments can be added in
335  //   later declarations of a function in the same
336  //   scope. Declarations in different scopes have completely
337  //   distinct sets of default arguments. That is, declarations in
338  //   inner scopes do not acquire default arguments from
339  //   declarations in outer scopes, and vice versa. In a given
340  //   function declaration, all parameters subsequent to a
341  //   parameter with a default argument shall have default
342  //   arguments supplied in this or previous declarations. A
343  //   default argument shall not be redefined by a later
344  //   declaration (not even to the same value).
345  //
346  // C++ [dcl.fct.default]p6:
347  //   Except for member functions of class templates, the default arguments
348  //   in a member function definition that appears outside of the class
349  //   definition are added to the set of default arguments provided by the
350  //   member function declaration in the class definition.
351  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
352    ParmVarDecl *OldParam = Old->getParamDecl(p);
353    ParmVarDecl *NewParam = New->getParamDecl(p);
354
355    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
356
357      unsigned DiagDefaultParamID =
358        diag::err_param_default_argument_redefinition;
359
360      // MSVC accepts that default parameters be redefined for member functions
361      // of template class. The new default parameter's value is ignored.
362      Invalid = true;
363      if (getLangOptions().Microsoft) {
364        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
365        if (MD && MD->getParent()->getDescribedClassTemplate()) {
366          // Merge the old default argument into the new parameter.
367          NewParam->setHasInheritedDefaultArg();
368          if (OldParam->hasUninstantiatedDefaultArg())
369            NewParam->setUninstantiatedDefaultArg(
370                                      OldParam->getUninstantiatedDefaultArg());
371          else
372            NewParam->setDefaultArg(OldParam->getInit());
373          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
374          Invalid = false;
375        }
376      }
377
378      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
379      // hint here. Alternatively, we could walk the type-source information
380      // for NewParam to find the last source location in the type... but it
381      // isn't worth the effort right now. This is the kind of test case that
382      // is hard to get right:
383      //   int f(int);
384      //   void g(int (*fp)(int) = f);
385      //   void g(int (*fp)(int) = &f);
386      Diag(NewParam->getLocation(), DiagDefaultParamID)
387        << NewParam->getDefaultArgRange();
388
389      // Look for the function declaration where the default argument was
390      // actually written, which may be a declaration prior to Old.
391      for (FunctionDecl *Older = Old->getPreviousDeclaration();
392           Older; Older = Older->getPreviousDeclaration()) {
393        if (!Older->getParamDecl(p)->hasDefaultArg())
394          break;
395
396        OldParam = Older->getParamDecl(p);
397      }
398
399      Diag(OldParam->getLocation(), diag::note_previous_definition)
400        << OldParam->getDefaultArgRange();
401    } else if (OldParam->hasDefaultArg()) {
402      // Merge the old default argument into the new parameter.
403      // It's important to use getInit() here;  getDefaultArg()
404      // strips off any top-level ExprWithCleanups.
405      NewParam->setHasInheritedDefaultArg();
406      if (OldParam->hasUninstantiatedDefaultArg())
407        NewParam->setUninstantiatedDefaultArg(
408                                      OldParam->getUninstantiatedDefaultArg());
409      else
410        NewParam->setDefaultArg(OldParam->getInit());
411    } else if (NewParam->hasDefaultArg()) {
412      if (New->getDescribedFunctionTemplate()) {
413        // Paragraph 4, quoted above, only applies to non-template functions.
414        Diag(NewParam->getLocation(),
415             diag::err_param_default_argument_template_redecl)
416          << NewParam->getDefaultArgRange();
417        Diag(Old->getLocation(), diag::note_template_prev_declaration)
418          << false;
419      } else if (New->getTemplateSpecializationKind()
420                   != TSK_ImplicitInstantiation &&
421                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
422        // C++ [temp.expr.spec]p21:
423        //   Default function arguments shall not be specified in a declaration
424        //   or a definition for one of the following explicit specializations:
425        //     - the explicit specialization of a function template;
426        //     - the explicit specialization of a member function template;
427        //     - the explicit specialization of a member function of a class
428        //       template where the class template specialization to which the
429        //       member function specialization belongs is implicitly
430        //       instantiated.
431        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
432          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
433          << New->getDeclName()
434          << NewParam->getDefaultArgRange();
435      } else if (New->getDeclContext()->isDependentContext()) {
436        // C++ [dcl.fct.default]p6 (DR217):
437        //   Default arguments for a member function of a class template shall
438        //   be specified on the initial declaration of the member function
439        //   within the class template.
440        //
441        // Reading the tea leaves a bit in DR217 and its reference to DR205
442        // leads me to the conclusion that one cannot add default function
443        // arguments for an out-of-line definition of a member function of a
444        // dependent type.
445        int WhichKind = 2;
446        if (CXXRecordDecl *Record
447              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
448          if (Record->getDescribedClassTemplate())
449            WhichKind = 0;
450          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
451            WhichKind = 1;
452          else
453            WhichKind = 2;
454        }
455
456        Diag(NewParam->getLocation(),
457             diag::err_param_default_argument_member_template_redecl)
458          << WhichKind
459          << NewParam->getDefaultArgRange();
460      }
461    }
462  }
463
464  if (CheckEquivalentExceptionSpec(Old, New))
465    Invalid = true;
466
467  return Invalid;
468}
469
470/// \brief Merge the exception specifications of two variable declarations.
471///
472/// This is called when there's a redeclaration of a VarDecl. The function
473/// checks if the redeclaration might have an exception specification and
474/// validates compatibility and merges the specs if necessary.
475void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
476  // Shortcut if exceptions are disabled.
477  if (!getLangOptions().CXXExceptions)
478    return;
479
480  assert(Context.hasSameType(New->getType(), Old->getType()) &&
481         "Should only be called if types are otherwise the same.");
482
483  QualType NewType = New->getType();
484  QualType OldType = Old->getType();
485
486  // We're only interested in pointers and references to functions, as well
487  // as pointers to member functions.
488  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
489    NewType = R->getPointeeType();
490    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
491  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
492    NewType = P->getPointeeType();
493    OldType = OldType->getAs<PointerType>()->getPointeeType();
494  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
495    NewType = M->getPointeeType();
496    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
497  }
498
499  if (!NewType->isFunctionProtoType())
500    return;
501
502  // There's lots of special cases for functions. For function pointers, system
503  // libraries are hopefully not as broken so that we don't need these
504  // workarounds.
505  if (CheckEquivalentExceptionSpec(
506        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
507        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
508    New->setInvalidDecl();
509  }
510}
511
512/// CheckCXXDefaultArguments - Verify that the default arguments for a
513/// function declaration are well-formed according to C++
514/// [dcl.fct.default].
515void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
516  unsigned NumParams = FD->getNumParams();
517  unsigned p;
518
519  // Find first parameter with a default argument
520  for (p = 0; p < NumParams; ++p) {
521    ParmVarDecl *Param = FD->getParamDecl(p);
522    if (Param->hasDefaultArg())
523      break;
524  }
525
526  // C++ [dcl.fct.default]p4:
527  //   In a given function declaration, all parameters
528  //   subsequent to a parameter with a default argument shall
529  //   have default arguments supplied in this or previous
530  //   declarations. A default argument shall not be redefined
531  //   by a later declaration (not even to the same value).
532  unsigned LastMissingDefaultArg = 0;
533  for (; p < NumParams; ++p) {
534    ParmVarDecl *Param = FD->getParamDecl(p);
535    if (!Param->hasDefaultArg()) {
536      if (Param->isInvalidDecl())
537        /* We already complained about this parameter. */;
538      else if (Param->getIdentifier())
539        Diag(Param->getLocation(),
540             diag::err_param_default_argument_missing_name)
541          << Param->getIdentifier();
542      else
543        Diag(Param->getLocation(),
544             diag::err_param_default_argument_missing);
545
546      LastMissingDefaultArg = p;
547    }
548  }
549
550  if (LastMissingDefaultArg > 0) {
551    // Some default arguments were missing. Clear out all of the
552    // default arguments up to (and including) the last missing
553    // default argument, so that we leave the function parameters
554    // in a semantically valid state.
555    for (p = 0; p <= LastMissingDefaultArg; ++p) {
556      ParmVarDecl *Param = FD->getParamDecl(p);
557      if (Param->hasDefaultArg()) {
558        Param->setDefaultArg(0);
559      }
560    }
561  }
562}
563
564/// isCurrentClassName - Determine whether the identifier II is the
565/// name of the class type currently being defined. In the case of
566/// nested classes, this will only return true if II is the name of
567/// the innermost class.
568bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
569                              const CXXScopeSpec *SS) {
570  assert(getLangOptions().CPlusPlus && "No class names in C!");
571
572  CXXRecordDecl *CurDecl;
573  if (SS && SS->isSet() && !SS->isInvalid()) {
574    DeclContext *DC = computeDeclContext(*SS, true);
575    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
576  } else
577    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
578
579  if (CurDecl && CurDecl->getIdentifier())
580    return &II == CurDecl->getIdentifier();
581  else
582    return false;
583}
584
585/// \brief Check the validity of a C++ base class specifier.
586///
587/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
588/// and returns NULL otherwise.
589CXXBaseSpecifier *
590Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
591                         SourceRange SpecifierRange,
592                         bool Virtual, AccessSpecifier Access,
593                         TypeSourceInfo *TInfo,
594                         SourceLocation EllipsisLoc) {
595  QualType BaseType = TInfo->getType();
596
597  // C++ [class.union]p1:
598  //   A union shall not have base classes.
599  if (Class->isUnion()) {
600    Diag(Class->getLocation(), diag::err_base_clause_on_union)
601      << SpecifierRange;
602    return 0;
603  }
604
605  if (EllipsisLoc.isValid() &&
606      !TInfo->getType()->containsUnexpandedParameterPack()) {
607    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
608      << TInfo->getTypeLoc().getSourceRange();
609    EllipsisLoc = SourceLocation();
610  }
611
612  if (BaseType->isDependentType())
613    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
614                                          Class->getTagKind() == TTK_Class,
615                                          Access, TInfo, EllipsisLoc);
616
617  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
618
619  // Base specifiers must be record types.
620  if (!BaseType->isRecordType()) {
621    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
622    return 0;
623  }
624
625  // C++ [class.union]p1:
626  //   A union shall not be used as a base class.
627  if (BaseType->isUnionType()) {
628    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
629    return 0;
630  }
631
632  // C++ [class.derived]p2:
633  //   The class-name in a base-specifier shall not be an incompletely
634  //   defined class.
635  if (RequireCompleteType(BaseLoc, BaseType,
636                          PDiag(diag::err_incomplete_base_class)
637                            << SpecifierRange)) {
638    Class->setInvalidDecl();
639    return 0;
640  }
641
642  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
643  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
644  assert(BaseDecl && "Record type has no declaration");
645  BaseDecl = BaseDecl->getDefinition();
646  assert(BaseDecl && "Base type is not incomplete, but has no definition");
647  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
648  assert(CXXBaseDecl && "Base type is not a C++ type");
649
650  // C++ [class]p3:
651  //   If a class is marked final and it appears as a base-type-specifier in
652  //   base-clause, the program is ill-formed.
653  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
654    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
655      << CXXBaseDecl->getDeclName();
656    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
657      << CXXBaseDecl->getDeclName();
658    return 0;
659  }
660
661  if (BaseDecl->isInvalidDecl())
662    Class->setInvalidDecl();
663
664  // Create the base specifier.
665  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
666                                        Class->getTagKind() == TTK_Class,
667                                        Access, TInfo, EllipsisLoc);
668}
669
670/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
671/// one entry in the base class list of a class specifier, for
672/// example:
673///    class foo : public bar, virtual private baz {
674/// 'public bar' and 'virtual private baz' are each base-specifiers.
675BaseResult
676Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
677                         bool Virtual, AccessSpecifier Access,
678                         ParsedType basetype, SourceLocation BaseLoc,
679                         SourceLocation EllipsisLoc) {
680  if (!classdecl)
681    return true;
682
683  AdjustDeclIfTemplate(classdecl);
684  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
685  if (!Class)
686    return true;
687
688  TypeSourceInfo *TInfo = 0;
689  GetTypeFromParser(basetype, &TInfo);
690
691  if (EllipsisLoc.isInvalid() &&
692      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
693                                      UPPC_BaseType))
694    return true;
695
696  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
697                                                      Virtual, Access, TInfo,
698                                                      EllipsisLoc))
699    return BaseSpec;
700
701  return true;
702}
703
704/// \brief Performs the actual work of attaching the given base class
705/// specifiers to a C++ class.
706bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
707                                unsigned NumBases) {
708 if (NumBases == 0)
709    return false;
710
711  // Used to keep track of which base types we have already seen, so
712  // that we can properly diagnose redundant direct base types. Note
713  // that the key is always the unqualified canonical type of the base
714  // class.
715  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
716
717  // Copy non-redundant base specifiers into permanent storage.
718  unsigned NumGoodBases = 0;
719  bool Invalid = false;
720  for (unsigned idx = 0; idx < NumBases; ++idx) {
721    QualType NewBaseType
722      = Context.getCanonicalType(Bases[idx]->getType());
723    NewBaseType = NewBaseType.getLocalUnqualifiedType();
724    if (!Class->hasObjectMember()) {
725      if (const RecordType *FDTTy =
726            NewBaseType.getTypePtr()->getAs<RecordType>())
727        if (FDTTy->getDecl()->hasObjectMember())
728          Class->setHasObjectMember(true);
729    }
730
731    if (KnownBaseTypes[NewBaseType]) {
732      // C++ [class.mi]p3:
733      //   A class shall not be specified as a direct base class of a
734      //   derived class more than once.
735      Diag(Bases[idx]->getSourceRange().getBegin(),
736           diag::err_duplicate_base_class)
737        << KnownBaseTypes[NewBaseType]->getType()
738        << Bases[idx]->getSourceRange();
739
740      // Delete the duplicate base class specifier; we're going to
741      // overwrite its pointer later.
742      Context.Deallocate(Bases[idx]);
743
744      Invalid = true;
745    } else {
746      // Okay, add this new base class.
747      KnownBaseTypes[NewBaseType] = Bases[idx];
748      Bases[NumGoodBases++] = Bases[idx];
749    }
750  }
751
752  // Attach the remaining base class specifiers to the derived class.
753  Class->setBases(Bases, NumGoodBases);
754
755  // Delete the remaining (good) base class specifiers, since their
756  // data has been copied into the CXXRecordDecl.
757  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
758    Context.Deallocate(Bases[idx]);
759
760  return Invalid;
761}
762
763/// ActOnBaseSpecifiers - Attach the given base specifiers to the
764/// class, after checking whether there are any duplicate base
765/// classes.
766void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
767                               unsigned NumBases) {
768  if (!ClassDecl || !Bases || !NumBases)
769    return;
770
771  AdjustDeclIfTemplate(ClassDecl);
772  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
773                       (CXXBaseSpecifier**)(Bases), NumBases);
774}
775
776static CXXRecordDecl *GetClassForType(QualType T) {
777  if (const RecordType *RT = T->getAs<RecordType>())
778    return cast<CXXRecordDecl>(RT->getDecl());
779  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
780    return ICT->getDecl();
781  else
782    return 0;
783}
784
785/// \brief Determine whether the type \p Derived is a C++ class that is
786/// derived from the type \p Base.
787bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
788  if (!getLangOptions().CPlusPlus)
789    return false;
790
791  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
792  if (!DerivedRD)
793    return false;
794
795  CXXRecordDecl *BaseRD = GetClassForType(Base);
796  if (!BaseRD)
797    return false;
798
799  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
800  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
801}
802
803/// \brief Determine whether the type \p Derived is a C++ class that is
804/// derived from the type \p Base.
805bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
806  if (!getLangOptions().CPlusPlus)
807    return false;
808
809  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
810  if (!DerivedRD)
811    return false;
812
813  CXXRecordDecl *BaseRD = GetClassForType(Base);
814  if (!BaseRD)
815    return false;
816
817  return DerivedRD->isDerivedFrom(BaseRD, Paths);
818}
819
820void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
821                              CXXCastPath &BasePathArray) {
822  assert(BasePathArray.empty() && "Base path array must be empty!");
823  assert(Paths.isRecordingPaths() && "Must record paths!");
824
825  const CXXBasePath &Path = Paths.front();
826
827  // We first go backward and check if we have a virtual base.
828  // FIXME: It would be better if CXXBasePath had the base specifier for
829  // the nearest virtual base.
830  unsigned Start = 0;
831  for (unsigned I = Path.size(); I != 0; --I) {
832    if (Path[I - 1].Base->isVirtual()) {
833      Start = I - 1;
834      break;
835    }
836  }
837
838  // Now add all bases.
839  for (unsigned I = Start, E = Path.size(); I != E; ++I)
840    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
841}
842
843/// \brief Determine whether the given base path includes a virtual
844/// base class.
845bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
846  for (CXXCastPath::const_iterator B = BasePath.begin(),
847                                BEnd = BasePath.end();
848       B != BEnd; ++B)
849    if ((*B)->isVirtual())
850      return true;
851
852  return false;
853}
854
855/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
856/// conversion (where Derived and Base are class types) is
857/// well-formed, meaning that the conversion is unambiguous (and
858/// that all of the base classes are accessible). Returns true
859/// and emits a diagnostic if the code is ill-formed, returns false
860/// otherwise. Loc is the location where this routine should point to
861/// if there is an error, and Range is the source range to highlight
862/// if there is an error.
863bool
864Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
865                                   unsigned InaccessibleBaseID,
866                                   unsigned AmbigiousBaseConvID,
867                                   SourceLocation Loc, SourceRange Range,
868                                   DeclarationName Name,
869                                   CXXCastPath *BasePath) {
870  // First, determine whether the path from Derived to Base is
871  // ambiguous. This is slightly more expensive than checking whether
872  // the Derived to Base conversion exists, because here we need to
873  // explore multiple paths to determine if there is an ambiguity.
874  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
875                     /*DetectVirtual=*/false);
876  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
877  assert(DerivationOkay &&
878         "Can only be used with a derived-to-base conversion");
879  (void)DerivationOkay;
880
881  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
882    if (InaccessibleBaseID) {
883      // Check that the base class can be accessed.
884      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
885                                   InaccessibleBaseID)) {
886        case AR_inaccessible:
887          return true;
888        case AR_accessible:
889        case AR_dependent:
890        case AR_delayed:
891          break;
892      }
893    }
894
895    // Build a base path if necessary.
896    if (BasePath)
897      BuildBasePathArray(Paths, *BasePath);
898    return false;
899  }
900
901  // We know that the derived-to-base conversion is ambiguous, and
902  // we're going to produce a diagnostic. Perform the derived-to-base
903  // search just one more time to compute all of the possible paths so
904  // that we can print them out. This is more expensive than any of
905  // the previous derived-to-base checks we've done, but at this point
906  // performance isn't as much of an issue.
907  Paths.clear();
908  Paths.setRecordingPaths(true);
909  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
910  assert(StillOkay && "Can only be used with a derived-to-base conversion");
911  (void)StillOkay;
912
913  // Build up a textual representation of the ambiguous paths, e.g.,
914  // D -> B -> A, that will be used to illustrate the ambiguous
915  // conversions in the diagnostic. We only print one of the paths
916  // to each base class subobject.
917  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
918
919  Diag(Loc, AmbigiousBaseConvID)
920  << Derived << Base << PathDisplayStr << Range << Name;
921  return true;
922}
923
924bool
925Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
926                                   SourceLocation Loc, SourceRange Range,
927                                   CXXCastPath *BasePath,
928                                   bool IgnoreAccess) {
929  return CheckDerivedToBaseConversion(Derived, Base,
930                                      IgnoreAccess ? 0
931                                       : diag::err_upcast_to_inaccessible_base,
932                                      diag::err_ambiguous_derived_to_base_conv,
933                                      Loc, Range, DeclarationName(),
934                                      BasePath);
935}
936
937
938/// @brief Builds a string representing ambiguous paths from a
939/// specific derived class to different subobjects of the same base
940/// class.
941///
942/// This function builds a string that can be used in error messages
943/// to show the different paths that one can take through the
944/// inheritance hierarchy to go from the derived class to different
945/// subobjects of a base class. The result looks something like this:
946/// @code
947/// struct D -> struct B -> struct A
948/// struct D -> struct C -> struct A
949/// @endcode
950std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
951  std::string PathDisplayStr;
952  std::set<unsigned> DisplayedPaths;
953  for (CXXBasePaths::paths_iterator Path = Paths.begin();
954       Path != Paths.end(); ++Path) {
955    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
956      // We haven't displayed a path to this particular base
957      // class subobject yet.
958      PathDisplayStr += "\n    ";
959      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
960      for (CXXBasePath::const_iterator Element = Path->begin();
961           Element != Path->end(); ++Element)
962        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
963    }
964  }
965
966  return PathDisplayStr;
967}
968
969//===----------------------------------------------------------------------===//
970// C++ class member Handling
971//===----------------------------------------------------------------------===//
972
973/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
974Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
975                                 SourceLocation ASLoc,
976                                 SourceLocation ColonLoc) {
977  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
978  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
979                                                  ASLoc, ColonLoc);
980  CurContext->addHiddenDecl(ASDecl);
981  return ASDecl;
982}
983
984/// CheckOverrideControl - Check C++0x override control semantics.
985void Sema::CheckOverrideControl(const Decl *D) {
986  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
987  if (!MD || !MD->isVirtual())
988    return;
989
990  if (MD->isDependentContext())
991    return;
992
993  // C++0x [class.virtual]p3:
994  //   If a virtual function is marked with the virt-specifier override and does
995  //   not override a member function of a base class,
996  //   the program is ill-formed.
997  bool HasOverriddenMethods =
998    MD->begin_overridden_methods() != MD->end_overridden_methods();
999  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1000    Diag(MD->getLocation(),
1001                 diag::err_function_marked_override_not_overriding)
1002      << MD->getDeclName();
1003    return;
1004  }
1005}
1006
1007/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1008/// function overrides a virtual member function marked 'final', according to
1009/// C++0x [class.virtual]p3.
1010bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1011                                                  const CXXMethodDecl *Old) {
1012  if (!Old->hasAttr<FinalAttr>())
1013    return false;
1014
1015  Diag(New->getLocation(), diag::err_final_function_overridden)
1016    << New->getDeclName();
1017  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1018  return true;
1019}
1020
1021/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1022/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1023/// bitfield width if there is one and 'InitExpr' specifies the initializer if
1024/// any.
1025Decl *
1026Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1027                               MultiTemplateParamsArg TemplateParameterLists,
1028                               ExprTy *BW, const VirtSpecifiers &VS,
1029                               ExprTy *InitExpr, bool IsDefinition) {
1030  const DeclSpec &DS = D.getDeclSpec();
1031  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1032  DeclarationName Name = NameInfo.getName();
1033  SourceLocation Loc = NameInfo.getLoc();
1034
1035  // For anonymous bitfields, the location should point to the type.
1036  if (Loc.isInvalid())
1037    Loc = D.getSourceRange().getBegin();
1038
1039  Expr *BitWidth = static_cast<Expr*>(BW);
1040  Expr *Init = static_cast<Expr*>(InitExpr);
1041
1042  assert(isa<CXXRecordDecl>(CurContext));
1043  assert(!DS.isFriendSpecified());
1044
1045  bool isFunc = false;
1046  if (D.isFunctionDeclarator())
1047    isFunc = true;
1048  else if (D.getNumTypeObjects() == 0 &&
1049           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
1050    QualType TDType = GetTypeFromParser(DS.getRepAsType());
1051    isFunc = TDType->isFunctionType();
1052  }
1053
1054  // C++ 9.2p6: A member shall not be declared to have automatic storage
1055  // duration (auto, register) or with the extern storage-class-specifier.
1056  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1057  // data members and cannot be applied to names declared const or static,
1058  // and cannot be applied to reference members.
1059  switch (DS.getStorageClassSpec()) {
1060    case DeclSpec::SCS_unspecified:
1061    case DeclSpec::SCS_typedef:
1062    case DeclSpec::SCS_static:
1063      // FALL THROUGH.
1064      break;
1065    case DeclSpec::SCS_mutable:
1066      if (isFunc) {
1067        if (DS.getStorageClassSpecLoc().isValid())
1068          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1069        else
1070          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1071
1072        // FIXME: It would be nicer if the keyword was ignored only for this
1073        // declarator. Otherwise we could get follow-up errors.
1074        D.getMutableDeclSpec().ClearStorageClassSpecs();
1075      }
1076      break;
1077    default:
1078      if (DS.getStorageClassSpecLoc().isValid())
1079        Diag(DS.getStorageClassSpecLoc(),
1080             diag::err_storageclass_invalid_for_member);
1081      else
1082        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1083      D.getMutableDeclSpec().ClearStorageClassSpecs();
1084  }
1085
1086  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1087                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1088                      !isFunc);
1089
1090  Decl *Member;
1091  if (isInstField) {
1092    CXXScopeSpec &SS = D.getCXXScopeSpec();
1093
1094    if (SS.isSet() && !SS.isInvalid()) {
1095      // The user provided a superfluous scope specifier inside a class
1096      // definition:
1097      //
1098      // class X {
1099      //   int X::member;
1100      // };
1101      DeclContext *DC = 0;
1102      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1103        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1104        << Name << FixItHint::CreateRemoval(SS.getRange());
1105      else
1106        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1107          << Name << SS.getRange();
1108
1109      SS.clear();
1110    }
1111
1112    // FIXME: Check for template parameters!
1113    // FIXME: Check that the name is an identifier!
1114    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1115                         AS);
1116    assert(Member && "HandleField never returns null");
1117  } else {
1118    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1119    if (!Member) {
1120      return 0;
1121    }
1122
1123    // Non-instance-fields can't have a bitfield.
1124    if (BitWidth) {
1125      if (Member->isInvalidDecl()) {
1126        // don't emit another diagnostic.
1127      } else if (isa<VarDecl>(Member)) {
1128        // C++ 9.6p3: A bit-field shall not be a static member.
1129        // "static member 'A' cannot be a bit-field"
1130        Diag(Loc, diag::err_static_not_bitfield)
1131          << Name << BitWidth->getSourceRange();
1132      } else if (isa<TypedefDecl>(Member)) {
1133        // "typedef member 'x' cannot be a bit-field"
1134        Diag(Loc, diag::err_typedef_not_bitfield)
1135          << Name << BitWidth->getSourceRange();
1136      } else {
1137        // A function typedef ("typedef int f(); f a;").
1138        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1139        Diag(Loc, diag::err_not_integral_type_bitfield)
1140          << Name << cast<ValueDecl>(Member)->getType()
1141          << BitWidth->getSourceRange();
1142      }
1143
1144      BitWidth = 0;
1145      Member->setInvalidDecl();
1146    }
1147
1148    Member->setAccess(AS);
1149
1150    // If we have declared a member function template, set the access of the
1151    // templated declaration as well.
1152    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1153      FunTmpl->getTemplatedDecl()->setAccess(AS);
1154  }
1155
1156  if (VS.isOverrideSpecified()) {
1157    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1158    if (!MD || !MD->isVirtual()) {
1159      Diag(Member->getLocStart(),
1160           diag::override_keyword_only_allowed_on_virtual_member_functions)
1161        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1162    } else
1163      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1164  }
1165  if (VS.isFinalSpecified()) {
1166    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1167    if (!MD || !MD->isVirtual()) {
1168      Diag(Member->getLocStart(),
1169           diag::override_keyword_only_allowed_on_virtual_member_functions)
1170      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1171    } else
1172      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1173  }
1174
1175  if (VS.getLastLocation().isValid()) {
1176    // Update the end location of a method that has a virt-specifiers.
1177    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1178      MD->setRangeEnd(VS.getLastLocation());
1179  }
1180
1181  CheckOverrideControl(Member);
1182
1183  assert((Name || isInstField) && "No identifier for non-field ?");
1184
1185  if (Init)
1186    AddInitializerToDecl(Member, Init, false,
1187                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1188
1189  FinalizeDeclaration(Member);
1190
1191  if (isInstField)
1192    FieldCollector->Add(cast<FieldDecl>(Member));
1193  return Member;
1194}
1195
1196/// \brief Find the direct and/or virtual base specifiers that
1197/// correspond to the given base type, for use in base initialization
1198/// within a constructor.
1199static bool FindBaseInitializer(Sema &SemaRef,
1200                                CXXRecordDecl *ClassDecl,
1201                                QualType BaseType,
1202                                const CXXBaseSpecifier *&DirectBaseSpec,
1203                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1204  // First, check for a direct base class.
1205  DirectBaseSpec = 0;
1206  for (CXXRecordDecl::base_class_const_iterator Base
1207         = ClassDecl->bases_begin();
1208       Base != ClassDecl->bases_end(); ++Base) {
1209    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1210      // We found a direct base of this type. That's what we're
1211      // initializing.
1212      DirectBaseSpec = &*Base;
1213      break;
1214    }
1215  }
1216
1217  // Check for a virtual base class.
1218  // FIXME: We might be able to short-circuit this if we know in advance that
1219  // there are no virtual bases.
1220  VirtualBaseSpec = 0;
1221  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1222    // We haven't found a base yet; search the class hierarchy for a
1223    // virtual base class.
1224    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1225                       /*DetectVirtual=*/false);
1226    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1227                              BaseType, Paths)) {
1228      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1229           Path != Paths.end(); ++Path) {
1230        if (Path->back().Base->isVirtual()) {
1231          VirtualBaseSpec = Path->back().Base;
1232          break;
1233        }
1234      }
1235    }
1236  }
1237
1238  return DirectBaseSpec || VirtualBaseSpec;
1239}
1240
1241/// ActOnMemInitializer - Handle a C++ member initializer.
1242MemInitResult
1243Sema::ActOnMemInitializer(Decl *ConstructorD,
1244                          Scope *S,
1245                          CXXScopeSpec &SS,
1246                          IdentifierInfo *MemberOrBase,
1247                          ParsedType TemplateTypeTy,
1248                          SourceLocation IdLoc,
1249                          SourceLocation LParenLoc,
1250                          ExprTy **Args, unsigned NumArgs,
1251                          SourceLocation RParenLoc,
1252                          SourceLocation EllipsisLoc) {
1253  if (!ConstructorD)
1254    return true;
1255
1256  AdjustDeclIfTemplate(ConstructorD);
1257
1258  CXXConstructorDecl *Constructor
1259    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1260  if (!Constructor) {
1261    // The user wrote a constructor initializer on a function that is
1262    // not a C++ constructor. Ignore the error for now, because we may
1263    // have more member initializers coming; we'll diagnose it just
1264    // once in ActOnMemInitializers.
1265    return true;
1266  }
1267
1268  CXXRecordDecl *ClassDecl = Constructor->getParent();
1269
1270  // C++ [class.base.init]p2:
1271  //   Names in a mem-initializer-id are looked up in the scope of the
1272  //   constructor's class and, if not found in that scope, are looked
1273  //   up in the scope containing the constructor's definition.
1274  //   [Note: if the constructor's class contains a member with the
1275  //   same name as a direct or virtual base class of the class, a
1276  //   mem-initializer-id naming the member or base class and composed
1277  //   of a single identifier refers to the class member. A
1278  //   mem-initializer-id for the hidden base class may be specified
1279  //   using a qualified name. ]
1280  if (!SS.getScopeRep() && !TemplateTypeTy) {
1281    // Look for a member, first.
1282    FieldDecl *Member = 0;
1283    DeclContext::lookup_result Result
1284      = ClassDecl->lookup(MemberOrBase);
1285    if (Result.first != Result.second) {
1286      Member = dyn_cast<FieldDecl>(*Result.first);
1287
1288      if (Member) {
1289        if (EllipsisLoc.isValid())
1290          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1291            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1292
1293        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1294                                    LParenLoc, RParenLoc);
1295      }
1296
1297      // Handle anonymous union case.
1298      if (IndirectFieldDecl* IndirectField
1299            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1300        if (EllipsisLoc.isValid())
1301          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1302            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1303
1304         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1305                                       NumArgs, IdLoc,
1306                                       LParenLoc, RParenLoc);
1307      }
1308    }
1309  }
1310  // It didn't name a member, so see if it names a class.
1311  QualType BaseType;
1312  TypeSourceInfo *TInfo = 0;
1313
1314  if (TemplateTypeTy) {
1315    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1316  } else {
1317    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1318    LookupParsedName(R, S, &SS);
1319
1320    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1321    if (!TyD) {
1322      if (R.isAmbiguous()) return true;
1323
1324      // We don't want access-control diagnostics here.
1325      R.suppressDiagnostics();
1326
1327      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1328        bool NotUnknownSpecialization = false;
1329        DeclContext *DC = computeDeclContext(SS, false);
1330        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1331          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1332
1333        if (!NotUnknownSpecialization) {
1334          // When the scope specifier can refer to a member of an unknown
1335          // specialization, we take it as a type name.
1336          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1337                                       SS.getWithLocInContext(Context),
1338                                       *MemberOrBase, IdLoc);
1339          if (BaseType.isNull())
1340            return true;
1341
1342          R.clear();
1343          R.setLookupName(MemberOrBase);
1344        }
1345      }
1346
1347      // If no results were found, try to correct typos.
1348      if (R.empty() && BaseType.isNull() &&
1349          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1350          R.isSingleResult()) {
1351        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1352          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1353            // We have found a non-static data member with a similar
1354            // name to what was typed; complain and initialize that
1355            // member.
1356            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1357              << MemberOrBase << true << R.getLookupName()
1358              << FixItHint::CreateReplacement(R.getNameLoc(),
1359                                              R.getLookupName().getAsString());
1360            Diag(Member->getLocation(), diag::note_previous_decl)
1361              << Member->getDeclName();
1362
1363            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1364                                          LParenLoc, RParenLoc);
1365          }
1366        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1367          const CXXBaseSpecifier *DirectBaseSpec;
1368          const CXXBaseSpecifier *VirtualBaseSpec;
1369          if (FindBaseInitializer(*this, ClassDecl,
1370                                  Context.getTypeDeclType(Type),
1371                                  DirectBaseSpec, VirtualBaseSpec)) {
1372            // We have found a direct or virtual base class with a
1373            // similar name to what was typed; complain and initialize
1374            // that base class.
1375            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1376              << MemberOrBase << false << R.getLookupName()
1377              << FixItHint::CreateReplacement(R.getNameLoc(),
1378                                              R.getLookupName().getAsString());
1379
1380            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1381                                                             : VirtualBaseSpec;
1382            Diag(BaseSpec->getSourceRange().getBegin(),
1383                 diag::note_base_class_specified_here)
1384              << BaseSpec->getType()
1385              << BaseSpec->getSourceRange();
1386
1387            TyD = Type;
1388          }
1389        }
1390      }
1391
1392      if (!TyD && BaseType.isNull()) {
1393        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1394          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1395        return true;
1396      }
1397    }
1398
1399    if (BaseType.isNull()) {
1400      BaseType = Context.getTypeDeclType(TyD);
1401      if (SS.isSet()) {
1402        NestedNameSpecifier *Qualifier =
1403          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1404
1405        // FIXME: preserve source range information
1406        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1407      }
1408    }
1409  }
1410
1411  if (!TInfo)
1412    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1413
1414  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1415                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1416}
1417
1418/// Checks an initializer expression for use of uninitialized fields, such as
1419/// containing the field that is being initialized. Returns true if there is an
1420/// uninitialized field was used an updates the SourceLocation parameter; false
1421/// otherwise.
1422static bool InitExprContainsUninitializedFields(const Stmt *S,
1423                                                const ValueDecl *LhsField,
1424                                                SourceLocation *L) {
1425  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1426
1427  if (isa<CallExpr>(S)) {
1428    // Do not descend into function calls or constructors, as the use
1429    // of an uninitialized field may be valid. One would have to inspect
1430    // the contents of the function/ctor to determine if it is safe or not.
1431    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1432    // may be safe, depending on what the function/ctor does.
1433    return false;
1434  }
1435  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1436    const NamedDecl *RhsField = ME->getMemberDecl();
1437
1438    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1439      // The member expression points to a static data member.
1440      assert(VD->isStaticDataMember() &&
1441             "Member points to non-static data member!");
1442      (void)VD;
1443      return false;
1444    }
1445
1446    if (isa<EnumConstantDecl>(RhsField)) {
1447      // The member expression points to an enum.
1448      return false;
1449    }
1450
1451    if (RhsField == LhsField) {
1452      // Initializing a field with itself. Throw a warning.
1453      // But wait; there are exceptions!
1454      // Exception #1:  The field may not belong to this record.
1455      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1456      const Expr *base = ME->getBase();
1457      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1458        // Even though the field matches, it does not belong to this record.
1459        return false;
1460      }
1461      // None of the exceptions triggered; return true to indicate an
1462      // uninitialized field was used.
1463      *L = ME->getMemberLoc();
1464      return true;
1465    }
1466  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
1467    // sizeof/alignof doesn't reference contents, do not warn.
1468    return false;
1469  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1470    // address-of doesn't reference contents (the pointer may be dereferenced
1471    // in the same expression but it would be rare; and weird).
1472    if (UOE->getOpcode() == UO_AddrOf)
1473      return false;
1474  }
1475  for (Stmt::const_child_range it = S->children(); it; ++it) {
1476    if (!*it) {
1477      // An expression such as 'member(arg ?: "")' may trigger this.
1478      continue;
1479    }
1480    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1481      return true;
1482  }
1483  return false;
1484}
1485
1486MemInitResult
1487Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1488                             unsigned NumArgs, SourceLocation IdLoc,
1489                             SourceLocation LParenLoc,
1490                             SourceLocation RParenLoc) {
1491  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1492  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1493  assert((DirectMember || IndirectMember) &&
1494         "Member must be a FieldDecl or IndirectFieldDecl");
1495
1496  if (Member->isInvalidDecl())
1497    return true;
1498
1499  // Diagnose value-uses of fields to initialize themselves, e.g.
1500  //   foo(foo)
1501  // where foo is not also a parameter to the constructor.
1502  // TODO: implement -Wuninitialized and fold this into that framework.
1503  for (unsigned i = 0; i < NumArgs; ++i) {
1504    SourceLocation L;
1505    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1506      // FIXME: Return true in the case when other fields are used before being
1507      // uninitialized. For example, let this field be the i'th field. When
1508      // initializing the i'th field, throw a warning if any of the >= i'th
1509      // fields are used, as they are not yet initialized.
1510      // Right now we are only handling the case where the i'th field uses
1511      // itself in its initializer.
1512      Diag(L, diag::warn_field_is_uninit);
1513    }
1514  }
1515
1516  bool HasDependentArg = false;
1517  for (unsigned i = 0; i < NumArgs; i++)
1518    HasDependentArg |= Args[i]->isTypeDependent();
1519
1520  Expr *Init;
1521  if (Member->getType()->isDependentType() || HasDependentArg) {
1522    // Can't check initialization for a member of dependent type or when
1523    // any of the arguments are type-dependent expressions.
1524    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1525                                       RParenLoc);
1526
1527    // Erase any temporaries within this evaluation context; we're not
1528    // going to track them in the AST, since we'll be rebuilding the
1529    // ASTs during template instantiation.
1530    ExprTemporaries.erase(
1531              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1532                          ExprTemporaries.end());
1533  } else {
1534    // Initialize the member.
1535    InitializedEntity MemberEntity =
1536      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1537                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1538    InitializationKind Kind =
1539      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1540
1541    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1542
1543    ExprResult MemberInit =
1544      InitSeq.Perform(*this, MemberEntity, Kind,
1545                      MultiExprArg(*this, Args, NumArgs), 0);
1546    if (MemberInit.isInvalid())
1547      return true;
1548
1549    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1550
1551    // C++0x [class.base.init]p7:
1552    //   The initialization of each base and member constitutes a
1553    //   full-expression.
1554    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1555    if (MemberInit.isInvalid())
1556      return true;
1557
1558    // If we are in a dependent context, template instantiation will
1559    // perform this type-checking again. Just save the arguments that we
1560    // received in a ParenListExpr.
1561    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1562    // of the information that we have about the member
1563    // initializer. However, deconstructing the ASTs is a dicey process,
1564    // and this approach is far more likely to get the corner cases right.
1565    if (CurContext->isDependentContext())
1566      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1567                                               RParenLoc);
1568    else
1569      Init = MemberInit.get();
1570  }
1571
1572  if (DirectMember) {
1573    return new (Context) CXXCtorInitializer(Context, DirectMember,
1574                                                    IdLoc, LParenLoc, Init,
1575                                                    RParenLoc);
1576  } else {
1577    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1578                                                    IdLoc, LParenLoc, Init,
1579                                                    RParenLoc);
1580  }
1581}
1582
1583MemInitResult
1584Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1585                                 Expr **Args, unsigned NumArgs,
1586                                 SourceLocation NameLoc,
1587                                 SourceLocation LParenLoc,
1588                                 SourceLocation RParenLoc,
1589                                 CXXRecordDecl *ClassDecl) {
1590  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1591  if (!LangOpts.CPlusPlus0x)
1592    return Diag(Loc, diag::err_delegation_0x_only)
1593      << TInfo->getTypeLoc().getLocalSourceRange();
1594
1595  // Initialize the object.
1596  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
1597                                     QualType(ClassDecl->getTypeForDecl(), 0));
1598  InitializationKind Kind =
1599    InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
1600
1601  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
1602
1603  ExprResult DelegationInit =
1604    InitSeq.Perform(*this, DelegationEntity, Kind,
1605                    MultiExprArg(*this, Args, NumArgs), 0);
1606  if (DelegationInit.isInvalid())
1607    return true;
1608
1609  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
1610  CXXConstructorDecl *Constructor
1611    = ConExpr->getConstructor();
1612  assert(Constructor && "Delegating constructor with no target?");
1613
1614  CheckImplicitConversions(DelegationInit.get(), LParenLoc);
1615
1616  // C++0x [class.base.init]p7:
1617  //   The initialization of each base and member constitutes a
1618  //   full-expression.
1619  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
1620  if (DelegationInit.isInvalid())
1621    return true;
1622
1623  // If we are in a dependent context, template instantiation will
1624  // perform this type-checking again. Just save the arguments that we
1625  // received in a ParenListExpr.
1626  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1627  // of the information that we have about the base
1628  // initializer. However, deconstructing the ASTs is a dicey process,
1629  // and this approach is far more likely to get the corner cases right.
1630  if (CurContext->isDependentContext()) {
1631    ExprResult Init
1632      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args,
1633                                          NumArgs, RParenLoc));
1634    return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc,
1635                                            Constructor, Init.takeAs<Expr>(),
1636                                            RParenLoc);
1637  }
1638
1639  return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
1640                                          DelegationInit.takeAs<Expr>(),
1641                                          RParenLoc);
1642}
1643
1644MemInitResult
1645Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1646                           Expr **Args, unsigned NumArgs,
1647                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1648                           CXXRecordDecl *ClassDecl,
1649                           SourceLocation EllipsisLoc) {
1650  bool HasDependentArg = false;
1651  for (unsigned i = 0; i < NumArgs; i++)
1652    HasDependentArg |= Args[i]->isTypeDependent();
1653
1654  SourceLocation BaseLoc
1655    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1656
1657  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1658    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1659             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1660
1661  // C++ [class.base.init]p2:
1662  //   [...] Unless the mem-initializer-id names a nonstatic data
1663  //   member of the constructor's class or a direct or virtual base
1664  //   of that class, the mem-initializer is ill-formed. A
1665  //   mem-initializer-list can initialize a base class using any
1666  //   name that denotes that base class type.
1667  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1668
1669  if (EllipsisLoc.isValid()) {
1670    // This is a pack expansion.
1671    if (!BaseType->containsUnexpandedParameterPack())  {
1672      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1673        << SourceRange(BaseLoc, RParenLoc);
1674
1675      EllipsisLoc = SourceLocation();
1676    }
1677  } else {
1678    // Check for any unexpanded parameter packs.
1679    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1680      return true;
1681
1682    for (unsigned I = 0; I != NumArgs; ++I)
1683      if (DiagnoseUnexpandedParameterPack(Args[I]))
1684        return true;
1685  }
1686
1687  // Check for direct and virtual base classes.
1688  const CXXBaseSpecifier *DirectBaseSpec = 0;
1689  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1690  if (!Dependent) {
1691    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1692                                       BaseType))
1693      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
1694                                        LParenLoc, RParenLoc, ClassDecl);
1695
1696    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1697                        VirtualBaseSpec);
1698
1699    // C++ [base.class.init]p2:
1700    // Unless the mem-initializer-id names a nonstatic data member of the
1701    // constructor's class or a direct or virtual base of that class, the
1702    // mem-initializer is ill-formed.
1703    if (!DirectBaseSpec && !VirtualBaseSpec) {
1704      // If the class has any dependent bases, then it's possible that
1705      // one of those types will resolve to the same type as
1706      // BaseType. Therefore, just treat this as a dependent base
1707      // class initialization.  FIXME: Should we try to check the
1708      // initialization anyway? It seems odd.
1709      if (ClassDecl->hasAnyDependentBases())
1710        Dependent = true;
1711      else
1712        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1713          << BaseType << Context.getTypeDeclType(ClassDecl)
1714          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1715    }
1716  }
1717
1718  if (Dependent) {
1719    // Can't check initialization for a base of dependent type or when
1720    // any of the arguments are type-dependent expressions.
1721    ExprResult BaseInit
1722      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1723                                          RParenLoc));
1724
1725    // Erase any temporaries within this evaluation context; we're not
1726    // going to track them in the AST, since we'll be rebuilding the
1727    // ASTs during template instantiation.
1728    ExprTemporaries.erase(
1729              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1730                          ExprTemporaries.end());
1731
1732    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1733                                                    /*IsVirtual=*/false,
1734                                                    LParenLoc,
1735                                                    BaseInit.takeAs<Expr>(),
1736                                                    RParenLoc,
1737                                                    EllipsisLoc);
1738  }
1739
1740  // C++ [base.class.init]p2:
1741  //   If a mem-initializer-id is ambiguous because it designates both
1742  //   a direct non-virtual base class and an inherited virtual base
1743  //   class, the mem-initializer is ill-formed.
1744  if (DirectBaseSpec && VirtualBaseSpec)
1745    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1746      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1747
1748  CXXBaseSpecifier *BaseSpec
1749    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1750  if (!BaseSpec)
1751    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1752
1753  // Initialize the base.
1754  InitializedEntity BaseEntity =
1755    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1756  InitializationKind Kind =
1757    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1758
1759  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1760
1761  ExprResult BaseInit =
1762    InitSeq.Perform(*this, BaseEntity, Kind,
1763                    MultiExprArg(*this, Args, NumArgs), 0);
1764  if (BaseInit.isInvalid())
1765    return true;
1766
1767  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1768
1769  // C++0x [class.base.init]p7:
1770  //   The initialization of each base and member constitutes a
1771  //   full-expression.
1772  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1773  if (BaseInit.isInvalid())
1774    return true;
1775
1776  // If we are in a dependent context, template instantiation will
1777  // perform this type-checking again. Just save the arguments that we
1778  // received in a ParenListExpr.
1779  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1780  // of the information that we have about the base
1781  // initializer. However, deconstructing the ASTs is a dicey process,
1782  // and this approach is far more likely to get the corner cases right.
1783  if (CurContext->isDependentContext()) {
1784    ExprResult Init
1785      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1786                                          RParenLoc));
1787    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1788                                                    BaseSpec->isVirtual(),
1789                                                    LParenLoc,
1790                                                    Init.takeAs<Expr>(),
1791                                                    RParenLoc,
1792                                                    EllipsisLoc);
1793  }
1794
1795  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1796                                                  BaseSpec->isVirtual(),
1797                                                  LParenLoc,
1798                                                  BaseInit.takeAs<Expr>(),
1799                                                  RParenLoc,
1800                                                  EllipsisLoc);
1801}
1802
1803/// ImplicitInitializerKind - How an implicit base or member initializer should
1804/// initialize its base or member.
1805enum ImplicitInitializerKind {
1806  IIK_Default,
1807  IIK_Copy,
1808  IIK_Move
1809};
1810
1811static bool
1812BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1813                             ImplicitInitializerKind ImplicitInitKind,
1814                             CXXBaseSpecifier *BaseSpec,
1815                             bool IsInheritedVirtualBase,
1816                             CXXCtorInitializer *&CXXBaseInit) {
1817  InitializedEntity InitEntity
1818    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1819                                        IsInheritedVirtualBase);
1820
1821  ExprResult BaseInit;
1822
1823  switch (ImplicitInitKind) {
1824  case IIK_Default: {
1825    InitializationKind InitKind
1826      = InitializationKind::CreateDefault(Constructor->getLocation());
1827    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1828    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1829                               MultiExprArg(SemaRef, 0, 0));
1830    break;
1831  }
1832
1833  case IIK_Copy: {
1834    ParmVarDecl *Param = Constructor->getParamDecl(0);
1835    QualType ParamType = Param->getType().getNonReferenceType();
1836
1837    Expr *CopyCtorArg =
1838      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1839                          Constructor->getLocation(), ParamType,
1840                          VK_LValue, 0);
1841
1842    // Cast to the base class to avoid ambiguities.
1843    QualType ArgTy =
1844      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1845                                       ParamType.getQualifiers());
1846
1847    CXXCastPath BasePath;
1848    BasePath.push_back(BaseSpec);
1849    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1850                                            CK_UncheckedDerivedToBase,
1851                                            VK_LValue, &BasePath).take();
1852
1853    InitializationKind InitKind
1854      = InitializationKind::CreateDirect(Constructor->getLocation(),
1855                                         SourceLocation(), SourceLocation());
1856    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1857                                   &CopyCtorArg, 1);
1858    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1859                               MultiExprArg(&CopyCtorArg, 1));
1860    break;
1861  }
1862
1863  case IIK_Move:
1864    assert(false && "Unhandled initializer kind!");
1865  }
1866
1867  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1868  if (BaseInit.isInvalid())
1869    return true;
1870
1871  CXXBaseInit =
1872    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1873               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1874                                                        SourceLocation()),
1875                                             BaseSpec->isVirtual(),
1876                                             SourceLocation(),
1877                                             BaseInit.takeAs<Expr>(),
1878                                             SourceLocation(),
1879                                             SourceLocation());
1880
1881  return false;
1882}
1883
1884static bool
1885BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1886                               ImplicitInitializerKind ImplicitInitKind,
1887                               FieldDecl *Field,
1888                               CXXCtorInitializer *&CXXMemberInit) {
1889  if (Field->isInvalidDecl())
1890    return true;
1891
1892  SourceLocation Loc = Constructor->getLocation();
1893
1894  if (ImplicitInitKind == IIK_Copy) {
1895    ParmVarDecl *Param = Constructor->getParamDecl(0);
1896    QualType ParamType = Param->getType().getNonReferenceType();
1897
1898    Expr *MemberExprBase =
1899      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1900                          Loc, ParamType, VK_LValue, 0);
1901
1902    // Build a reference to this field within the parameter.
1903    CXXScopeSpec SS;
1904    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1905                              Sema::LookupMemberName);
1906    MemberLookup.addDecl(Field, AS_public);
1907    MemberLookup.resolveKind();
1908    ExprResult CopyCtorArg
1909      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1910                                         ParamType, Loc,
1911                                         /*IsArrow=*/false,
1912                                         SS,
1913                                         /*FirstQualifierInScope=*/0,
1914                                         MemberLookup,
1915                                         /*TemplateArgs=*/0);
1916    if (CopyCtorArg.isInvalid())
1917      return true;
1918
1919    // When the field we are copying is an array, create index variables for
1920    // each dimension of the array. We use these index variables to subscript
1921    // the source array, and other clients (e.g., CodeGen) will perform the
1922    // necessary iteration with these index variables.
1923    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1924    QualType BaseType = Field->getType();
1925    QualType SizeType = SemaRef.Context.getSizeType();
1926    while (const ConstantArrayType *Array
1927                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1928      // Create the iteration variable for this array index.
1929      IdentifierInfo *IterationVarName = 0;
1930      {
1931        llvm::SmallString<8> Str;
1932        llvm::raw_svector_ostream OS(Str);
1933        OS << "__i" << IndexVariables.size();
1934        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1935      }
1936      VarDecl *IterationVar
1937        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
1938                          IterationVarName, SizeType,
1939                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1940                          SC_None, SC_None);
1941      IndexVariables.push_back(IterationVar);
1942
1943      // Create a reference to the iteration variable.
1944      ExprResult IterationVarRef
1945        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1946      assert(!IterationVarRef.isInvalid() &&
1947             "Reference to invented variable cannot fail!");
1948
1949      // Subscript the array with this iteration variable.
1950      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1951                                                            Loc,
1952                                                        IterationVarRef.take(),
1953                                                            Loc);
1954      if (CopyCtorArg.isInvalid())
1955        return true;
1956
1957      BaseType = Array->getElementType();
1958    }
1959
1960    // Construct the entity that we will be initializing. For an array, this
1961    // will be first element in the array, which may require several levels
1962    // of array-subscript entities.
1963    llvm::SmallVector<InitializedEntity, 4> Entities;
1964    Entities.reserve(1 + IndexVariables.size());
1965    Entities.push_back(InitializedEntity::InitializeMember(Field));
1966    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1967      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1968                                                              0,
1969                                                              Entities.back()));
1970
1971    // Direct-initialize to use the copy constructor.
1972    InitializationKind InitKind =
1973      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1974
1975    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1976    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1977                                   &CopyCtorArgE, 1);
1978
1979    ExprResult MemberInit
1980      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1981                        MultiExprArg(&CopyCtorArgE, 1));
1982    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1983    if (MemberInit.isInvalid())
1984      return true;
1985
1986    CXXMemberInit
1987      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1988                                           MemberInit.takeAs<Expr>(), Loc,
1989                                           IndexVariables.data(),
1990                                           IndexVariables.size());
1991    return false;
1992  }
1993
1994  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1995
1996  QualType FieldBaseElementType =
1997    SemaRef.Context.getBaseElementType(Field->getType());
1998
1999  if (FieldBaseElementType->isRecordType()) {
2000    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
2001    InitializationKind InitKind =
2002      InitializationKind::CreateDefault(Loc);
2003
2004    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2005    ExprResult MemberInit =
2006      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2007
2008    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2009    if (MemberInit.isInvalid())
2010      return true;
2011
2012    CXXMemberInit =
2013      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2014                                                       Field, Loc, Loc,
2015                                                       MemberInit.get(),
2016                                                       Loc);
2017    return false;
2018  }
2019
2020  if (!Field->getParent()->isUnion()) {
2021    if (FieldBaseElementType->isReferenceType()) {
2022      SemaRef.Diag(Constructor->getLocation(),
2023                   diag::err_uninitialized_member_in_ctor)
2024      << (int)Constructor->isImplicit()
2025      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2026      << 0 << Field->getDeclName();
2027      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2028      return true;
2029    }
2030
2031    if (FieldBaseElementType.isConstQualified()) {
2032      SemaRef.Diag(Constructor->getLocation(),
2033                   diag::err_uninitialized_member_in_ctor)
2034      << (int)Constructor->isImplicit()
2035      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2036      << 1 << Field->getDeclName();
2037      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2038      return true;
2039    }
2040  }
2041
2042  // Nothing to initialize.
2043  CXXMemberInit = 0;
2044  return false;
2045}
2046
2047namespace {
2048struct BaseAndFieldInfo {
2049  Sema &S;
2050  CXXConstructorDecl *Ctor;
2051  bool AnyErrorsInInits;
2052  ImplicitInitializerKind IIK;
2053  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2054  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
2055
2056  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2057    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2058    // FIXME: Handle implicit move constructors.
2059    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
2060      IIK = IIK_Copy;
2061    else
2062      IIK = IIK_Default;
2063  }
2064};
2065}
2066
2067static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
2068                                    FieldDecl *Top, FieldDecl *Field) {
2069
2070  // Overwhelmingly common case: we have a direct initializer for this field.
2071  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2072    Info.AllToInit.push_back(Init);
2073    return false;
2074  }
2075
2076  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
2077    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
2078    assert(FieldClassType && "anonymous struct/union without record type");
2079    CXXRecordDecl *FieldClassDecl
2080      = cast<CXXRecordDecl>(FieldClassType->getDecl());
2081
2082    // Even though union members never have non-trivial default
2083    // constructions in C++03, we still build member initializers for aggregate
2084    // record types which can be union members, and C++0x allows non-trivial
2085    // default constructors for union members, so we ensure that only one
2086    // member is initialized for these.
2087    if (FieldClassDecl->isUnion()) {
2088      // First check for an explicit initializer for one field.
2089      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2090           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2091        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
2092          Info.AllToInit.push_back(Init);
2093
2094          // Once we've initialized a field of an anonymous union, the union
2095          // field in the class is also initialized, so exit immediately.
2096          return false;
2097        } else if ((*FA)->isAnonymousStructOrUnion()) {
2098          if (CollectFieldInitializer(Info, Top, *FA))
2099            return true;
2100        }
2101      }
2102
2103      // Fallthrough and construct a default initializer for the union as
2104      // a whole, which can call its default constructor if such a thing exists
2105      // (C++0x perhaps). FIXME: It's not clear that this is the correct
2106      // behavior going forward with C++0x, when anonymous unions there are
2107      // finalized, we should revisit this.
2108    } else {
2109      // For structs, we simply descend through to initialize all members where
2110      // necessary.
2111      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2112           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2113        if (CollectFieldInitializer(Info, Top, *FA))
2114          return true;
2115      }
2116    }
2117  }
2118
2119  // Don't try to build an implicit initializer if there were semantic
2120  // errors in any of the initializers (and therefore we might be
2121  // missing some that the user actually wrote).
2122  if (Info.AnyErrorsInInits)
2123    return false;
2124
2125  CXXCtorInitializer *Init = 0;
2126  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
2127    return true;
2128
2129  if (Init)
2130    Info.AllToInit.push_back(Init);
2131
2132  return false;
2133}
2134
2135bool
2136Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2137                               CXXCtorInitializer *Initializer) {
2138  assert(Initializer->isDelegatingInitializer());
2139  Constructor->setNumCtorInitializers(1);
2140  CXXCtorInitializer **initializer =
2141    new (Context) CXXCtorInitializer*[1];
2142  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2143  Constructor->setCtorInitializers(initializer);
2144
2145  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2146    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2147    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2148  }
2149
2150  DelegatingCtorDecls.push_back(Constructor);
2151
2152  return false;
2153}
2154
2155bool
2156Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2157                                  CXXCtorInitializer **Initializers,
2158                                  unsigned NumInitializers,
2159                                  bool AnyErrors) {
2160  if (Constructor->getDeclContext()->isDependentContext()) {
2161    // Just store the initializers as written, they will be checked during
2162    // instantiation.
2163    if (NumInitializers > 0) {
2164      Constructor->setNumCtorInitializers(NumInitializers);
2165      CXXCtorInitializer **baseOrMemberInitializers =
2166        new (Context) CXXCtorInitializer*[NumInitializers];
2167      memcpy(baseOrMemberInitializers, Initializers,
2168             NumInitializers * sizeof(CXXCtorInitializer*));
2169      Constructor->setCtorInitializers(baseOrMemberInitializers);
2170    }
2171
2172    return false;
2173  }
2174
2175  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2176
2177  // We need to build the initializer AST according to order of construction
2178  // and not what user specified in the Initializers list.
2179  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2180  if (!ClassDecl)
2181    return true;
2182
2183  bool HadError = false;
2184
2185  for (unsigned i = 0; i < NumInitializers; i++) {
2186    CXXCtorInitializer *Member = Initializers[i];
2187
2188    if (Member->isBaseInitializer())
2189      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2190    else
2191      Info.AllBaseFields[Member->getAnyMember()] = Member;
2192  }
2193
2194  // Keep track of the direct virtual bases.
2195  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2196  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2197       E = ClassDecl->bases_end(); I != E; ++I) {
2198    if (I->isVirtual())
2199      DirectVBases.insert(I);
2200  }
2201
2202  // Push virtual bases before others.
2203  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2204       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2205
2206    if (CXXCtorInitializer *Value
2207        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2208      Info.AllToInit.push_back(Value);
2209    } else if (!AnyErrors) {
2210      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2211      CXXCtorInitializer *CXXBaseInit;
2212      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2213                                       VBase, IsInheritedVirtualBase,
2214                                       CXXBaseInit)) {
2215        HadError = true;
2216        continue;
2217      }
2218
2219      Info.AllToInit.push_back(CXXBaseInit);
2220    }
2221  }
2222
2223  // Non-virtual bases.
2224  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2225       E = ClassDecl->bases_end(); Base != E; ++Base) {
2226    // Virtuals are in the virtual base list and already constructed.
2227    if (Base->isVirtual())
2228      continue;
2229
2230    if (CXXCtorInitializer *Value
2231          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2232      Info.AllToInit.push_back(Value);
2233    } else if (!AnyErrors) {
2234      CXXCtorInitializer *CXXBaseInit;
2235      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2236                                       Base, /*IsInheritedVirtualBase=*/false,
2237                                       CXXBaseInit)) {
2238        HadError = true;
2239        continue;
2240      }
2241
2242      Info.AllToInit.push_back(CXXBaseInit);
2243    }
2244  }
2245
2246  // Fields.
2247  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2248       E = ClassDecl->field_end(); Field != E; ++Field) {
2249    if ((*Field)->getType()->isIncompleteArrayType()) {
2250      assert(ClassDecl->hasFlexibleArrayMember() &&
2251             "Incomplete array type is not valid");
2252      continue;
2253    }
2254    if (CollectFieldInitializer(Info, *Field, *Field))
2255      HadError = true;
2256  }
2257
2258  NumInitializers = Info.AllToInit.size();
2259  if (NumInitializers > 0) {
2260    Constructor->setNumCtorInitializers(NumInitializers);
2261    CXXCtorInitializer **baseOrMemberInitializers =
2262      new (Context) CXXCtorInitializer*[NumInitializers];
2263    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2264           NumInitializers * sizeof(CXXCtorInitializer*));
2265    Constructor->setCtorInitializers(baseOrMemberInitializers);
2266
2267    // Constructors implicitly reference the base and member
2268    // destructors.
2269    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2270                                           Constructor->getParent());
2271  }
2272
2273  return HadError;
2274}
2275
2276static void *GetKeyForTopLevelField(FieldDecl *Field) {
2277  // For anonymous unions, use the class declaration as the key.
2278  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2279    if (RT->getDecl()->isAnonymousStructOrUnion())
2280      return static_cast<void *>(RT->getDecl());
2281  }
2282  return static_cast<void *>(Field);
2283}
2284
2285static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2286  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2287}
2288
2289static void *GetKeyForMember(ASTContext &Context,
2290                             CXXCtorInitializer *Member) {
2291  if (!Member->isAnyMemberInitializer())
2292    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2293
2294  // For fields injected into the class via declaration of an anonymous union,
2295  // use its anonymous union class declaration as the unique key.
2296  FieldDecl *Field = Member->getAnyMember();
2297
2298  // If the field is a member of an anonymous struct or union, our key
2299  // is the anonymous record decl that's a direct child of the class.
2300  RecordDecl *RD = Field->getParent();
2301  if (RD->isAnonymousStructOrUnion()) {
2302    while (true) {
2303      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2304      if (Parent->isAnonymousStructOrUnion())
2305        RD = Parent;
2306      else
2307        break;
2308    }
2309
2310    return static_cast<void *>(RD);
2311  }
2312
2313  return static_cast<void *>(Field);
2314}
2315
2316static void
2317DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2318                                  const CXXConstructorDecl *Constructor,
2319                                  CXXCtorInitializer **Inits,
2320                                  unsigned NumInits) {
2321  if (Constructor->getDeclContext()->isDependentContext())
2322    return;
2323
2324  // Don't check initializers order unless the warning is enabled at the
2325  // location of at least one initializer.
2326  bool ShouldCheckOrder = false;
2327  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2328    CXXCtorInitializer *Init = Inits[InitIndex];
2329    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2330                                         Init->getSourceLocation())
2331          != Diagnostic::Ignored) {
2332      ShouldCheckOrder = true;
2333      break;
2334    }
2335  }
2336  if (!ShouldCheckOrder)
2337    return;
2338
2339  // Build the list of bases and members in the order that they'll
2340  // actually be initialized.  The explicit initializers should be in
2341  // this same order but may be missing things.
2342  llvm::SmallVector<const void*, 32> IdealInitKeys;
2343
2344  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2345
2346  // 1. Virtual bases.
2347  for (CXXRecordDecl::base_class_const_iterator VBase =
2348       ClassDecl->vbases_begin(),
2349       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2350    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2351
2352  // 2. Non-virtual bases.
2353  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2354       E = ClassDecl->bases_end(); Base != E; ++Base) {
2355    if (Base->isVirtual())
2356      continue;
2357    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2358  }
2359
2360  // 3. Direct fields.
2361  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2362       E = ClassDecl->field_end(); Field != E; ++Field)
2363    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2364
2365  unsigned NumIdealInits = IdealInitKeys.size();
2366  unsigned IdealIndex = 0;
2367
2368  CXXCtorInitializer *PrevInit = 0;
2369  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2370    CXXCtorInitializer *Init = Inits[InitIndex];
2371    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2372
2373    // Scan forward to try to find this initializer in the idealized
2374    // initializers list.
2375    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2376      if (InitKey == IdealInitKeys[IdealIndex])
2377        break;
2378
2379    // If we didn't find this initializer, it must be because we
2380    // scanned past it on a previous iteration.  That can only
2381    // happen if we're out of order;  emit a warning.
2382    if (IdealIndex == NumIdealInits && PrevInit) {
2383      Sema::SemaDiagnosticBuilder D =
2384        SemaRef.Diag(PrevInit->getSourceLocation(),
2385                     diag::warn_initializer_out_of_order);
2386
2387      if (PrevInit->isAnyMemberInitializer())
2388        D << 0 << PrevInit->getAnyMember()->getDeclName();
2389      else
2390        D << 1 << PrevInit->getBaseClassInfo()->getType();
2391
2392      if (Init->isAnyMemberInitializer())
2393        D << 0 << Init->getAnyMember()->getDeclName();
2394      else
2395        D << 1 << Init->getBaseClassInfo()->getType();
2396
2397      // Move back to the initializer's location in the ideal list.
2398      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2399        if (InitKey == IdealInitKeys[IdealIndex])
2400          break;
2401
2402      assert(IdealIndex != NumIdealInits &&
2403             "initializer not found in initializer list");
2404    }
2405
2406    PrevInit = Init;
2407  }
2408}
2409
2410namespace {
2411bool CheckRedundantInit(Sema &S,
2412                        CXXCtorInitializer *Init,
2413                        CXXCtorInitializer *&PrevInit) {
2414  if (!PrevInit) {
2415    PrevInit = Init;
2416    return false;
2417  }
2418
2419  if (FieldDecl *Field = Init->getMember())
2420    S.Diag(Init->getSourceLocation(),
2421           diag::err_multiple_mem_initialization)
2422      << Field->getDeclName()
2423      << Init->getSourceRange();
2424  else {
2425    const Type *BaseClass = Init->getBaseClass();
2426    assert(BaseClass && "neither field nor base");
2427    S.Diag(Init->getSourceLocation(),
2428           diag::err_multiple_base_initialization)
2429      << QualType(BaseClass, 0)
2430      << Init->getSourceRange();
2431  }
2432  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2433    << 0 << PrevInit->getSourceRange();
2434
2435  return true;
2436}
2437
2438typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2439typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2440
2441bool CheckRedundantUnionInit(Sema &S,
2442                             CXXCtorInitializer *Init,
2443                             RedundantUnionMap &Unions) {
2444  FieldDecl *Field = Init->getAnyMember();
2445  RecordDecl *Parent = Field->getParent();
2446  if (!Parent->isAnonymousStructOrUnion())
2447    return false;
2448
2449  NamedDecl *Child = Field;
2450  do {
2451    if (Parent->isUnion()) {
2452      UnionEntry &En = Unions[Parent];
2453      if (En.first && En.first != Child) {
2454        S.Diag(Init->getSourceLocation(),
2455               diag::err_multiple_mem_union_initialization)
2456          << Field->getDeclName()
2457          << Init->getSourceRange();
2458        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2459          << 0 << En.second->getSourceRange();
2460        return true;
2461      } else if (!En.first) {
2462        En.first = Child;
2463        En.second = Init;
2464      }
2465    }
2466
2467    Child = Parent;
2468    Parent = cast<RecordDecl>(Parent->getDeclContext());
2469  } while (Parent->isAnonymousStructOrUnion());
2470
2471  return false;
2472}
2473}
2474
2475/// ActOnMemInitializers - Handle the member initializers for a constructor.
2476void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2477                                SourceLocation ColonLoc,
2478                                MemInitTy **meminits, unsigned NumMemInits,
2479                                bool AnyErrors) {
2480  if (!ConstructorDecl)
2481    return;
2482
2483  AdjustDeclIfTemplate(ConstructorDecl);
2484
2485  CXXConstructorDecl *Constructor
2486    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2487
2488  if (!Constructor) {
2489    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2490    return;
2491  }
2492
2493  CXXCtorInitializer **MemInits =
2494    reinterpret_cast<CXXCtorInitializer **>(meminits);
2495
2496  // Mapping for the duplicate initializers check.
2497  // For member initializers, this is keyed with a FieldDecl*.
2498  // For base initializers, this is keyed with a Type*.
2499  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2500
2501  // Mapping for the inconsistent anonymous-union initializers check.
2502  RedundantUnionMap MemberUnions;
2503
2504  bool HadError = false;
2505  for (unsigned i = 0; i < NumMemInits; i++) {
2506    CXXCtorInitializer *Init = MemInits[i];
2507
2508    // Set the source order index.
2509    Init->setSourceOrder(i);
2510
2511    if (Init->isAnyMemberInitializer()) {
2512      FieldDecl *Field = Init->getAnyMember();
2513      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2514          CheckRedundantUnionInit(*this, Init, MemberUnions))
2515        HadError = true;
2516    } else if (Init->isBaseInitializer()) {
2517      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2518      if (CheckRedundantInit(*this, Init, Members[Key]))
2519        HadError = true;
2520    } else {
2521      assert(Init->isDelegatingInitializer());
2522      // This must be the only initializer
2523      if (i != 0 || NumMemInits > 1) {
2524        Diag(MemInits[0]->getSourceLocation(),
2525             diag::err_delegating_initializer_alone)
2526          << MemInits[0]->getSourceRange();
2527        HadError = true;
2528        // We will treat this as being the only initializer.
2529      }
2530      SetDelegatingInitializer(Constructor, MemInits[i]);
2531      // Return immediately as the initializer is set.
2532      return;
2533    }
2534  }
2535
2536  if (HadError)
2537    return;
2538
2539  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2540
2541  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2542}
2543
2544void
2545Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2546                                             CXXRecordDecl *ClassDecl) {
2547  // Ignore dependent contexts.
2548  if (ClassDecl->isDependentContext())
2549    return;
2550
2551  // FIXME: all the access-control diagnostics are positioned on the
2552  // field/base declaration.  That's probably good; that said, the
2553  // user might reasonably want to know why the destructor is being
2554  // emitted, and we currently don't say.
2555
2556  // Non-static data members.
2557  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2558       E = ClassDecl->field_end(); I != E; ++I) {
2559    FieldDecl *Field = *I;
2560    if (Field->isInvalidDecl())
2561      continue;
2562    QualType FieldType = Context.getBaseElementType(Field->getType());
2563
2564    const RecordType* RT = FieldType->getAs<RecordType>();
2565    if (!RT)
2566      continue;
2567
2568    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2569    if (FieldClassDecl->isInvalidDecl())
2570      continue;
2571    if (FieldClassDecl->hasTrivialDestructor())
2572      continue;
2573
2574    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2575    assert(Dtor && "No dtor found for FieldClassDecl!");
2576    CheckDestructorAccess(Field->getLocation(), Dtor,
2577                          PDiag(diag::err_access_dtor_field)
2578                            << Field->getDeclName()
2579                            << FieldType);
2580
2581    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2582  }
2583
2584  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2585
2586  // Bases.
2587  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2588       E = ClassDecl->bases_end(); Base != E; ++Base) {
2589    // Bases are always records in a well-formed non-dependent class.
2590    const RecordType *RT = Base->getType()->getAs<RecordType>();
2591
2592    // Remember direct virtual bases.
2593    if (Base->isVirtual())
2594      DirectVirtualBases.insert(RT);
2595
2596    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2597    // If our base class is invalid, we probably can't get its dtor anyway.
2598    if (BaseClassDecl->isInvalidDecl())
2599      continue;
2600    // Ignore trivial destructors.
2601    if (BaseClassDecl->hasTrivialDestructor())
2602      continue;
2603
2604    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2605    assert(Dtor && "No dtor found for BaseClassDecl!");
2606
2607    // FIXME: caret should be on the start of the class name
2608    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2609                          PDiag(diag::err_access_dtor_base)
2610                            << Base->getType()
2611                            << Base->getSourceRange());
2612
2613    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2614  }
2615
2616  // Virtual bases.
2617  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2618       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2619
2620    // Bases are always records in a well-formed non-dependent class.
2621    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2622
2623    // Ignore direct virtual bases.
2624    if (DirectVirtualBases.count(RT))
2625      continue;
2626
2627    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2628    // If our base class is invalid, we probably can't get its dtor anyway.
2629    if (BaseClassDecl->isInvalidDecl())
2630      continue;
2631    // Ignore trivial destructors.
2632    if (BaseClassDecl->hasTrivialDestructor())
2633      continue;
2634
2635    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2636    assert(Dtor && "No dtor found for BaseClassDecl!");
2637    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2638                          PDiag(diag::err_access_dtor_vbase)
2639                            << VBase->getType());
2640
2641    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2642  }
2643}
2644
2645void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2646  if (!CDtorDecl)
2647    return;
2648
2649  if (CXXConstructorDecl *Constructor
2650      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2651    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2652}
2653
2654bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2655                                  unsigned DiagID, AbstractDiagSelID SelID) {
2656  if (SelID == -1)
2657    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2658  else
2659    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2660}
2661
2662bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2663                                  const PartialDiagnostic &PD) {
2664  if (!getLangOptions().CPlusPlus)
2665    return false;
2666
2667  if (const ArrayType *AT = Context.getAsArrayType(T))
2668    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2669
2670  if (const PointerType *PT = T->getAs<PointerType>()) {
2671    // Find the innermost pointer type.
2672    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2673      PT = T;
2674
2675    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2676      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2677  }
2678
2679  const RecordType *RT = T->getAs<RecordType>();
2680  if (!RT)
2681    return false;
2682
2683  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2684
2685  // We can't answer whether something is abstract until it has a
2686  // definition.  If it's currently being defined, we'll walk back
2687  // over all the declarations when we have a full definition.
2688  const CXXRecordDecl *Def = RD->getDefinition();
2689  if (!Def || Def->isBeingDefined())
2690    return false;
2691
2692  if (!RD->isAbstract())
2693    return false;
2694
2695  Diag(Loc, PD) << RD->getDeclName();
2696  DiagnoseAbstractType(RD);
2697
2698  return true;
2699}
2700
2701void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2702  // Check if we've already emitted the list of pure virtual functions
2703  // for this class.
2704  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2705    return;
2706
2707  CXXFinalOverriderMap FinalOverriders;
2708  RD->getFinalOverriders(FinalOverriders);
2709
2710  // Keep a set of seen pure methods so we won't diagnose the same method
2711  // more than once.
2712  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2713
2714  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2715                                   MEnd = FinalOverriders.end();
2716       M != MEnd;
2717       ++M) {
2718    for (OverridingMethods::iterator SO = M->second.begin(),
2719                                  SOEnd = M->second.end();
2720         SO != SOEnd; ++SO) {
2721      // C++ [class.abstract]p4:
2722      //   A class is abstract if it contains or inherits at least one
2723      //   pure virtual function for which the final overrider is pure
2724      //   virtual.
2725
2726      //
2727      if (SO->second.size() != 1)
2728        continue;
2729
2730      if (!SO->second.front().Method->isPure())
2731        continue;
2732
2733      if (!SeenPureMethods.insert(SO->second.front().Method))
2734        continue;
2735
2736      Diag(SO->second.front().Method->getLocation(),
2737           diag::note_pure_virtual_function)
2738        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2739    }
2740  }
2741
2742  if (!PureVirtualClassDiagSet)
2743    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2744  PureVirtualClassDiagSet->insert(RD);
2745}
2746
2747namespace {
2748struct AbstractUsageInfo {
2749  Sema &S;
2750  CXXRecordDecl *Record;
2751  CanQualType AbstractType;
2752  bool Invalid;
2753
2754  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2755    : S(S), Record(Record),
2756      AbstractType(S.Context.getCanonicalType(
2757                   S.Context.getTypeDeclType(Record))),
2758      Invalid(false) {}
2759
2760  void DiagnoseAbstractType() {
2761    if (Invalid) return;
2762    S.DiagnoseAbstractType(Record);
2763    Invalid = true;
2764  }
2765
2766  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2767};
2768
2769struct CheckAbstractUsage {
2770  AbstractUsageInfo &Info;
2771  const NamedDecl *Ctx;
2772
2773  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2774    : Info(Info), Ctx(Ctx) {}
2775
2776  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2777    switch (TL.getTypeLocClass()) {
2778#define ABSTRACT_TYPELOC(CLASS, PARENT)
2779#define TYPELOC(CLASS, PARENT) \
2780    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2781#include "clang/AST/TypeLocNodes.def"
2782    }
2783  }
2784
2785  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2786    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2787    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2788      if (!TL.getArg(I))
2789        continue;
2790
2791      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2792      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2793    }
2794  }
2795
2796  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2797    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2798  }
2799
2800  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2801    // Visit the type parameters from a permissive context.
2802    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2803      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2804      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2805        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2806          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2807      // TODO: other template argument types?
2808    }
2809  }
2810
2811  // Visit pointee types from a permissive context.
2812#define CheckPolymorphic(Type) \
2813  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2814    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2815  }
2816  CheckPolymorphic(PointerTypeLoc)
2817  CheckPolymorphic(ReferenceTypeLoc)
2818  CheckPolymorphic(MemberPointerTypeLoc)
2819  CheckPolymorphic(BlockPointerTypeLoc)
2820
2821  /// Handle all the types we haven't given a more specific
2822  /// implementation for above.
2823  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2824    // Every other kind of type that we haven't called out already
2825    // that has an inner type is either (1) sugar or (2) contains that
2826    // inner type in some way as a subobject.
2827    if (TypeLoc Next = TL.getNextTypeLoc())
2828      return Visit(Next, Sel);
2829
2830    // If there's no inner type and we're in a permissive context,
2831    // don't diagnose.
2832    if (Sel == Sema::AbstractNone) return;
2833
2834    // Check whether the type matches the abstract type.
2835    QualType T = TL.getType();
2836    if (T->isArrayType()) {
2837      Sel = Sema::AbstractArrayType;
2838      T = Info.S.Context.getBaseElementType(T);
2839    }
2840    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2841    if (CT != Info.AbstractType) return;
2842
2843    // It matched; do some magic.
2844    if (Sel == Sema::AbstractArrayType) {
2845      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2846        << T << TL.getSourceRange();
2847    } else {
2848      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2849        << Sel << T << TL.getSourceRange();
2850    }
2851    Info.DiagnoseAbstractType();
2852  }
2853};
2854
2855void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2856                                  Sema::AbstractDiagSelID Sel) {
2857  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2858}
2859
2860}
2861
2862/// Check for invalid uses of an abstract type in a method declaration.
2863static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2864                                    CXXMethodDecl *MD) {
2865  // No need to do the check on definitions, which require that
2866  // the return/param types be complete.
2867  if (MD->doesThisDeclarationHaveABody())
2868    return;
2869
2870  // For safety's sake, just ignore it if we don't have type source
2871  // information.  This should never happen for non-implicit methods,
2872  // but...
2873  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2874    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2875}
2876
2877/// Check for invalid uses of an abstract type within a class definition.
2878static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2879                                    CXXRecordDecl *RD) {
2880  for (CXXRecordDecl::decl_iterator
2881         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2882    Decl *D = *I;
2883    if (D->isImplicit()) continue;
2884
2885    // Methods and method templates.
2886    if (isa<CXXMethodDecl>(D)) {
2887      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2888    } else if (isa<FunctionTemplateDecl>(D)) {
2889      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2890      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2891
2892    // Fields and static variables.
2893    } else if (isa<FieldDecl>(D)) {
2894      FieldDecl *FD = cast<FieldDecl>(D);
2895      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2896        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2897    } else if (isa<VarDecl>(D)) {
2898      VarDecl *VD = cast<VarDecl>(D);
2899      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2900        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2901
2902    // Nested classes and class templates.
2903    } else if (isa<CXXRecordDecl>(D)) {
2904      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2905    } else if (isa<ClassTemplateDecl>(D)) {
2906      CheckAbstractClassUsage(Info,
2907                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2908    }
2909  }
2910}
2911
2912/// \brief Perform semantic checks on a class definition that has been
2913/// completing, introducing implicitly-declared members, checking for
2914/// abstract types, etc.
2915void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2916  if (!Record)
2917    return;
2918
2919  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2920    AbstractUsageInfo Info(*this, Record);
2921    CheckAbstractClassUsage(Info, Record);
2922  }
2923
2924  // If this is not an aggregate type and has no user-declared constructor,
2925  // complain about any non-static data members of reference or const scalar
2926  // type, since they will never get initializers.
2927  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2928      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2929    bool Complained = false;
2930    for (RecordDecl::field_iterator F = Record->field_begin(),
2931                                 FEnd = Record->field_end();
2932         F != FEnd; ++F) {
2933      if (F->getType()->isReferenceType() ||
2934          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2935        if (!Complained) {
2936          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2937            << Record->getTagKind() << Record;
2938          Complained = true;
2939        }
2940
2941        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2942          << F->getType()->isReferenceType()
2943          << F->getDeclName();
2944      }
2945    }
2946  }
2947
2948  if (Record->isDynamicClass() && !Record->isDependentType())
2949    DynamicClasses.push_back(Record);
2950
2951  if (Record->getIdentifier()) {
2952    // C++ [class.mem]p13:
2953    //   If T is the name of a class, then each of the following shall have a
2954    //   name different from T:
2955    //     - every member of every anonymous union that is a member of class T.
2956    //
2957    // C++ [class.mem]p14:
2958    //   In addition, if class T has a user-declared constructor (12.1), every
2959    //   non-static data member of class T shall have a name different from T.
2960    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2961         R.first != R.second; ++R.first) {
2962      NamedDecl *D = *R.first;
2963      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2964          isa<IndirectFieldDecl>(D)) {
2965        Diag(D->getLocation(), diag::err_member_name_of_class)
2966          << D->getDeclName();
2967        break;
2968      }
2969    }
2970  }
2971
2972  // Warn if the class has virtual methods but non-virtual public destructor.
2973  if (Record->isPolymorphic() && !Record->isDependentType()) {
2974    CXXDestructorDecl *dtor = Record->getDestructor();
2975    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
2976      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
2977           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
2978  }
2979
2980  // See if a method overloads virtual methods in a base
2981  /// class without overriding any.
2982  if (!Record->isDependentType()) {
2983    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
2984                                     MEnd = Record->method_end();
2985         M != MEnd; ++M) {
2986      if (!(*M)->isStatic())
2987        DiagnoseHiddenVirtualMethods(Record, *M);
2988    }
2989  }
2990
2991  // Declare inherited constructors. We do this eagerly here because:
2992  // - The standard requires an eager diagnostic for conflicting inherited
2993  //   constructors from different classes.
2994  // - The lazy declaration of the other implicit constructors is so as to not
2995  //   waste space and performance on classes that are not meant to be
2996  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
2997  //   have inherited constructors.
2998  DeclareInheritedConstructors(Record);
2999
3000  CheckExplicitlyDefaultedMethods(Record);
3001}
3002
3003void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3004  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3005                                      ME = Record->method_end();
3006       MI != ME; ++MI) {
3007    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3008      switch (getSpecialMember(*MI)) {
3009      case CXXDefaultConstructor:
3010        CheckExplicitlyDefaultedDefaultConstructor(
3011                                                  cast<CXXConstructorDecl>(*MI));
3012        break;
3013
3014      case CXXDestructor:
3015        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3016        break;
3017
3018      case CXXCopyConstructor:
3019        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3020        break;
3021
3022      case CXXCopyAssignment:
3023        CheckExplicitlyDefaultedCopyAssignment(*MI);
3024        break;
3025
3026      default:
3027        // FIXME: Do moves once they exist
3028        llvm_unreachable("non-special member explicitly defaulted!");
3029      }
3030    }
3031  }
3032
3033}
3034
3035void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3036  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3037
3038  // Whether this was the first-declared instance of the constructor.
3039  // This affects whether we implicitly add an exception spec (and, eventually,
3040  // constexpr). It is also ill-formed to explicitly default a constructor such
3041  // that it would be deleted. (C++0x [decl.fct.def.default])
3042  bool First = CD == CD->getCanonicalDecl();
3043
3044  bool HadError = false;
3045  if (CD->getNumParams() != 0) {
3046    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3047      << CD->getSourceRange();
3048    HadError = true;
3049  }
3050
3051  ImplicitExceptionSpecification Spec
3052    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3053  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3054  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3055                          *ExceptionType = Context.getFunctionType(
3056                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3057
3058  if (CtorType->hasExceptionSpec()) {
3059    if (CheckEquivalentExceptionSpec(
3060          PDiag(diag::err_incorrect_defaulted_exception_spec)
3061            << 0 /* default constructor */,
3062          PDiag(),
3063          ExceptionType, SourceLocation(),
3064          CtorType, CD->getLocation())) {
3065      HadError = true;
3066    }
3067  } else if (First) {
3068    // We set the declaration to have the computed exception spec here.
3069    // We know there are no parameters.
3070    EPI.ExtInfo = CtorType->getExtInfo();
3071    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3072  }
3073
3074  if (HadError) {
3075    CD->setInvalidDecl();
3076    return;
3077  }
3078
3079  if (ShouldDeleteDefaultConstructor(CD)) {
3080    if (First) {
3081      CD->setDeletedAsWritten();
3082    } else {
3083      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3084        << 0 /* default constructor */;
3085      CD->setInvalidDecl();
3086    }
3087  }
3088}
3089
3090void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3091  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3092
3093  // Whether this was the first-declared instance of the constructor.
3094  bool First = CD == CD->getCanonicalDecl();
3095
3096  bool HadError = false;
3097  if (CD->getNumParams() != 1) {
3098    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3099      << CD->getSourceRange();
3100    HadError = true;
3101  }
3102
3103  ImplicitExceptionSpecification Spec(Context);
3104  bool Const;
3105  llvm::tie(Spec, Const) =
3106    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3107
3108  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3109  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3110                          *ExceptionType = Context.getFunctionType(
3111                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3112
3113  // Check for parameter type matching.
3114  // This is a copy ctor so we know it's a cv-qualified reference to T.
3115  QualType ArgType = CtorType->getArgType(0);
3116  if (ArgType->getPointeeType().isVolatileQualified()) {
3117    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3118    HadError = true;
3119  }
3120  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3121    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3122    HadError = true;
3123  }
3124
3125  if (CtorType->hasExceptionSpec()) {
3126    if (CheckEquivalentExceptionSpec(
3127          PDiag(diag::err_incorrect_defaulted_exception_spec)
3128            << 1 /* copy constructor */,
3129          PDiag(),
3130          ExceptionType, SourceLocation(),
3131          CtorType, CD->getLocation())) {
3132      HadError = true;
3133    }
3134  } else if (First) {
3135    // We set the declaration to have the computed exception spec here.
3136    // We duplicate the one parameter type.
3137    EPI.ExtInfo = CtorType->getExtInfo();
3138    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3139  }
3140
3141  if (HadError) {
3142    CD->setInvalidDecl();
3143    return;
3144  }
3145
3146  if (ShouldDeleteCopyConstructor(CD)) {
3147    if (First) {
3148      CD->setDeletedAsWritten();
3149    } else {
3150      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3151        << 1 /* copy constructor */;
3152      CD->setInvalidDecl();
3153    }
3154  }
3155}
3156
3157void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3158  assert(MD->isExplicitlyDefaulted());
3159
3160  // Whether this was the first-declared instance of the operator
3161  bool First = MD == MD->getCanonicalDecl();
3162
3163  bool HadError = false;
3164  if (MD->getNumParams() != 1) {
3165    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3166      << MD->getSourceRange();
3167    HadError = true;
3168  }
3169
3170  QualType ReturnType =
3171    MD->getType()->getAs<FunctionType>()->getResultType();
3172  if (!ReturnType->isLValueReferenceType() ||
3173      !Context.hasSameType(
3174        Context.getCanonicalType(ReturnType->getPointeeType()),
3175        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3176    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3177    HadError = true;
3178  }
3179
3180  ImplicitExceptionSpecification Spec(Context);
3181  bool Const;
3182  llvm::tie(Spec, Const) =
3183    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3184
3185  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3186  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3187                          *ExceptionType = Context.getFunctionType(
3188                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3189
3190  QualType ArgType = OperType->getArgType(0);
3191  if (!ArgType->isReferenceType()) {
3192    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3193    HadError = true;
3194  } else {
3195    if (ArgType->getPointeeType().isVolatileQualified()) {
3196      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3197      HadError = true;
3198    }
3199    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3200      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3201      HadError = true;
3202    }
3203  }
3204
3205  if (OperType->getTypeQuals()) {
3206    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3207    HadError = true;
3208  }
3209
3210  if (OperType->hasExceptionSpec()) {
3211    if (CheckEquivalentExceptionSpec(
3212          PDiag(diag::err_incorrect_defaulted_exception_spec)
3213            << 2 /* copy assignment operator */,
3214          PDiag(),
3215          ExceptionType, SourceLocation(),
3216          OperType, MD->getLocation())) {
3217      HadError = true;
3218    }
3219  } else if (First) {
3220    // We set the declaration to have the computed exception spec here.
3221    // We duplicate the one parameter type.
3222    EPI.RefQualifier = OperType->getRefQualifier();
3223    EPI.ExtInfo = OperType->getExtInfo();
3224    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3225  }
3226
3227  if (HadError) {
3228    MD->setInvalidDecl();
3229    return;
3230  }
3231
3232  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3233    if (First) {
3234      MD->setDeletedAsWritten();
3235    } else {
3236      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3237        << 2 /* copy assignment operator  */;
3238      MD->setInvalidDecl();
3239    }
3240  }
3241}
3242
3243void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
3244  assert(DD->isExplicitlyDefaulted());
3245
3246  // Whether this was the first-declared instance of the destructor.
3247  bool First = DD == DD->getCanonicalDecl();
3248
3249  ImplicitExceptionSpecification Spec
3250    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
3251  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3252  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
3253                          *ExceptionType = Context.getFunctionType(
3254                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3255
3256  if (DtorType->hasExceptionSpec()) {
3257    if (CheckEquivalentExceptionSpec(
3258          PDiag(diag::err_incorrect_defaulted_exception_spec)
3259            << 3 /* destructor */,
3260          PDiag(),
3261          ExceptionType, SourceLocation(),
3262          DtorType, DD->getLocation())) {
3263      DD->setInvalidDecl();
3264      return;
3265    }
3266  } else if (First) {
3267    // We set the declaration to have the computed exception spec here.
3268    // There are no parameters.
3269    EPI.ExtInfo = DtorType->getExtInfo();
3270    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3271  }
3272
3273  if (ShouldDeleteDestructor(DD)) {
3274    if (First) {
3275      DD->setDeletedAsWritten();
3276    } else {
3277      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
3278        << 3 /* destructor */;
3279      DD->setInvalidDecl();
3280    }
3281  }
3282}
3283
3284bool Sema::ShouldDeleteDefaultConstructor(CXXConstructorDecl *CD) {
3285  CXXRecordDecl *RD = CD->getParent();
3286  assert(!RD->isDependentType() && "do deletion after instantiation");
3287  if (!LangOpts.CPlusPlus0x)
3288    return false;
3289
3290  SourceLocation Loc = CD->getLocation();
3291
3292  // Do access control from the constructor
3293  ContextRAII CtorContext(*this, CD);
3294
3295  bool Union = RD->isUnion();
3296  bool AllConst = true;
3297
3298  // We do this because we should never actually use an anonymous
3299  // union's constructor.
3300  if (Union && RD->isAnonymousStructOrUnion())
3301    return false;
3302
3303  // FIXME: We should put some diagnostic logic right into this function.
3304
3305  // C++0x [class.ctor]/5
3306  //    A defaulted default constructor for class X is defined as delete if:
3307
3308  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3309                                          BE = RD->bases_end();
3310       BI != BE; ++BI) {
3311    // We'll handle this one later
3312    if (BI->isVirtual())
3313      continue;
3314
3315    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3316    assert(BaseDecl && "base isn't a CXXRecordDecl");
3317
3318    // -- any [direct base class] has a type with a destructor that is
3319    //    delete or inaccessible from the defaulted default constructor
3320    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3321    if (BaseDtor->isDeleted())
3322      return true;
3323    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3324        AR_accessible)
3325      return true;
3326
3327    // -- any [direct base class either] has no default constructor or
3328    //    overload resolution as applied to [its] default constructor
3329    //    results in an ambiguity or in a function that is deleted or
3330    //    inaccessible from the defaulted default constructor
3331    InitializedEntity BaseEntity =
3332      InitializedEntity::InitializeBase(Context, BI, 0);
3333    InitializationKind Kind =
3334      InitializationKind::CreateDirect(Loc, Loc, Loc);
3335
3336    InitializationSequence InitSeq(*this, BaseEntity, Kind, 0, 0);
3337
3338    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3339      return true;
3340  }
3341
3342  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3343                                          BE = RD->vbases_end();
3344       BI != BE; ++BI) {
3345    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3346    assert(BaseDecl && "base isn't a CXXRecordDecl");
3347
3348    // -- any [virtual base class] has a type with a destructor that is
3349    //    delete or inaccessible from the defaulted default constructor
3350    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3351    if (BaseDtor->isDeleted())
3352      return true;
3353    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3354        AR_accessible)
3355      return true;
3356
3357    // -- any [virtual base class either] has no default constructor or
3358    //    overload resolution as applied to [its] default constructor
3359    //    results in an ambiguity or in a function that is deleted or
3360    //    inaccessible from the defaulted default constructor
3361    InitializedEntity BaseEntity =
3362      InitializedEntity::InitializeBase(Context, BI, BI);
3363    InitializationKind Kind =
3364      InitializationKind::CreateDirect(Loc, Loc, Loc);
3365
3366    InitializationSequence InitSeq(*this, BaseEntity, Kind, 0, 0);
3367
3368    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3369      return true;
3370  }
3371
3372  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3373                                     FE = RD->field_end();
3374       FI != FE; ++FI) {
3375    QualType FieldType = Context.getBaseElementType(FI->getType());
3376    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3377
3378    // -- any non-static data member with no brace-or-equal-initializer is of
3379    //    reference type
3380    if (FieldType->isReferenceType())
3381      return true;
3382
3383    // -- X is a union and all its variant members are of const-qualified type
3384    //    (or array thereof)
3385    if (Union && !FieldType.isConstQualified())
3386      AllConst = false;
3387
3388    if (FieldRecord) {
3389      // -- X is a union-like class that has a variant member with a non-trivial
3390      //    default constructor
3391      if (Union && !FieldRecord->hasTrivialDefaultConstructor())
3392        return true;
3393
3394      CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3395      if (FieldDtor->isDeleted())
3396        return true;
3397      if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3398          AR_accessible)
3399        return true;
3400
3401      // -- any non-variant non-static data member of const-qualified type (or
3402      //    array thereof) with no brace-or-equal-initializer does not have a
3403      //    user-provided default constructor
3404      if (FieldType.isConstQualified() &&
3405          !FieldRecord->hasUserProvidedDefaultConstructor())
3406        return true;
3407
3408      if (!Union && FieldRecord->isUnion() &&
3409          FieldRecord->isAnonymousStructOrUnion()) {
3410        // We're okay to reuse AllConst here since we only care about the
3411        // value otherwise if we're in a union.
3412        AllConst = true;
3413
3414        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3415                                           UE = FieldRecord->field_end();
3416             UI != UE; ++UI) {
3417          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3418          CXXRecordDecl *UnionFieldRecord =
3419            UnionFieldType->getAsCXXRecordDecl();
3420
3421          if (!UnionFieldType.isConstQualified())
3422            AllConst = false;
3423
3424          if (UnionFieldRecord &&
3425              !UnionFieldRecord->hasTrivialDefaultConstructor())
3426            return true;
3427        }
3428
3429        if (AllConst)
3430          return true;
3431
3432        // Don't try to initialize the anonymous union
3433        // This is technically non-conformant, but sanity demands it.
3434        continue;
3435      }
3436    }
3437
3438    InitializedEntity MemberEntity =
3439      InitializedEntity::InitializeMember(*FI, 0);
3440    InitializationKind Kind =
3441      InitializationKind::CreateDirect(Loc, Loc, Loc);
3442
3443    InitializationSequence InitSeq(*this, MemberEntity, Kind, 0, 0);
3444
3445    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3446      return true;
3447  }
3448
3449  if (Union && AllConst)
3450    return true;
3451
3452  return false;
3453}
3454
3455bool Sema::ShouldDeleteCopyConstructor(CXXConstructorDecl *CD) {
3456  CXXRecordDecl *RD = CD->getParent();
3457  assert(!RD->isDependentType() && "do deletion after instantiation");
3458  if (!LangOpts.CPlusPlus0x)
3459    return false;
3460
3461  SourceLocation Loc = CD->getLocation();
3462
3463  // Do access control from the constructor
3464  ContextRAII CtorContext(*this, CD);
3465
3466    bool Union = RD->isUnion();
3467
3468  assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() &&
3469         "copy assignment arg has no pointee type");
3470  bool ConstArg =
3471    CD->getParamDecl(0)->getType()->getPointeeType().isConstQualified();
3472
3473  // We do this because we should never actually use an anonymous
3474  // union's constructor.
3475  if (Union && RD->isAnonymousStructOrUnion())
3476    return false;
3477
3478  // FIXME: We should put some diagnostic logic right into this function.
3479
3480  // C++0x [class.copy]/11
3481  //    A defaulted [copy] constructor for class X is defined as delete if X has:
3482
3483  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3484                                          BE = RD->bases_end();
3485       BI != BE; ++BI) {
3486    // We'll handle this one later
3487    if (BI->isVirtual())
3488      continue;
3489
3490    QualType BaseType = BI->getType();
3491    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3492    assert(BaseDecl && "base isn't a CXXRecordDecl");
3493
3494    // -- any [direct base class] of a type with a destructor that is deleted or
3495    //    inaccessible from the defaulted constructor
3496    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3497    if (BaseDtor->isDeleted())
3498      return true;
3499    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3500        AR_accessible)
3501      return true;
3502
3503    // -- a [direct base class] B that cannot be [copied] because overload
3504    //    resolution, as applied to B's [copy] constructor, results in an
3505    //    ambiguity or a function that is deleted or inaccessible from the
3506    //    defaulted constructor
3507    InitializedEntity BaseEntity =
3508      InitializedEntity::InitializeBase(Context, BI, 0);
3509    InitializationKind Kind =
3510      InitializationKind::CreateDirect(Loc, Loc, Loc);
3511
3512    // Construct a fake expression to perform the copy overloading.
3513    QualType ArgType = BaseType.getUnqualifiedType();
3514    if (ConstArg)
3515      ArgType.addConst();
3516    Expr *Arg = new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue);
3517
3518    InitializationSequence InitSeq(*this, BaseEntity, Kind, &Arg, 1);
3519
3520    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3521      return true;
3522  }
3523
3524  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3525                                          BE = RD->vbases_end();
3526       BI != BE; ++BI) {
3527    QualType BaseType = BI->getType();
3528    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3529    assert(BaseDecl && "base isn't a CXXRecordDecl");
3530
3531    // -- any [direct base class] of a type with a destructor that is deleted or
3532    //    inaccessible from the defaulted constructor
3533    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3534    if (BaseDtor->isDeleted())
3535      return true;
3536    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3537        AR_accessible)
3538      return true;
3539
3540    // -- a [virtual base class] B that cannot be [copied] because overload
3541    //    resolution, as applied to B's [copy] constructor, results in an
3542    //    ambiguity or a function that is deleted or inaccessible from the
3543    //    defaulted constructor
3544    InitializedEntity BaseEntity =
3545      InitializedEntity::InitializeBase(Context, BI, BI);
3546    InitializationKind Kind =
3547      InitializationKind::CreateDirect(Loc, Loc, Loc);
3548
3549    // Construct a fake expression to perform the copy overloading.
3550    QualType ArgType = BaseType.getUnqualifiedType();
3551    if (ConstArg)
3552      ArgType.addConst();
3553    Expr *Arg = new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue);
3554
3555    InitializationSequence InitSeq(*this, BaseEntity, Kind, &Arg, 1);
3556
3557    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3558      return true;
3559  }
3560
3561  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3562                                     FE = RD->field_end();
3563       FI != FE; ++FI) {
3564    QualType FieldType = Context.getBaseElementType(FI->getType());
3565
3566    // -- for a copy constructor, a non-static data member of rvalue reference
3567    //    type
3568    if (FieldType->isRValueReferenceType())
3569      return true;
3570
3571    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3572
3573    if (FieldRecord) {
3574      // This is an anonymous union
3575      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3576        // Anonymous unions inside unions do not variant members create
3577        if (!Union) {
3578          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3579                                             UE = FieldRecord->field_end();
3580               UI != UE; ++UI) {
3581            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3582            CXXRecordDecl *UnionFieldRecord =
3583              UnionFieldType->getAsCXXRecordDecl();
3584
3585            // -- a variant member with a non-trivial [copy] constructor and X
3586            //    is a union-like class
3587            if (UnionFieldRecord &&
3588                !UnionFieldRecord->hasTrivialCopyConstructor())
3589              return true;
3590          }
3591        }
3592
3593        // Don't try to initalize an anonymous union
3594        continue;
3595      } else {
3596         // -- a variant member with a non-trivial [copy] constructor and X is a
3597         //    union-like class
3598        if (Union && !FieldRecord->hasTrivialCopyConstructor())
3599          return true;
3600
3601        // -- any [non-static data member] of a type with a destructor that is
3602        //    deleted or inaccessible from the defaulted constructor
3603        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3604        if (FieldDtor->isDeleted())
3605          return true;
3606        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3607            AR_accessible)
3608          return true;
3609      }
3610    }
3611
3612    llvm::SmallVector<InitializedEntity, 4> Entities;
3613    QualType CurType = FI->getType();
3614    Entities.push_back(InitializedEntity::InitializeMember(*FI, 0));
3615    while (CurType->isArrayType()) {
3616      Entities.push_back(InitializedEntity::InitializeElement(Context, 0,
3617                                                              Entities.back()));
3618      CurType = Context.getAsArrayType(CurType)->getElementType();
3619    }
3620
3621    InitializationKind Kind =
3622      InitializationKind::CreateDirect(Loc, Loc, Loc);
3623
3624    // Construct a fake expression to perform the copy overloading.
3625    QualType ArgType = FieldType;
3626    if (ArgType->isReferenceType())
3627      ArgType = ArgType->getPointeeType();
3628    else if (ConstArg)
3629      ArgType.addConst();
3630    Expr *Arg = new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue);
3631
3632    InitializationSequence InitSeq(*this, Entities.back(), Kind, &Arg, 1);
3633
3634    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3635      return true;
3636  }
3637
3638  return false;
3639}
3640
3641bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
3642  CXXRecordDecl *RD = MD->getParent();
3643  assert(!RD->isDependentType() && "do deletion after instantiation");
3644  if (!LangOpts.CPlusPlus0x)
3645    return false;
3646
3647  SourceLocation Loc = MD->getLocation();
3648
3649  // Do access control from the constructor
3650  ContextRAII MethodContext(*this, MD);
3651
3652  bool Union = RD->isUnion();
3653
3654  bool ConstArg =
3655    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified();
3656
3657  // We do this because we should never actually use an anonymous
3658  // union's constructor.
3659  if (Union && RD->isAnonymousStructOrUnion())
3660    return false;
3661
3662  DeclarationName OperatorName =
3663    Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3664  LookupResult R(*this, OperatorName, Loc, LookupOrdinaryName);
3665  R.suppressDiagnostics();
3666
3667  // FIXME: We should put some diagnostic logic right into this function.
3668
3669  // C++0x [class.copy]/11
3670  //    A defaulted [copy] assignment operator for class X is defined as deleted
3671  //    if X has:
3672
3673  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3674                                          BE = RD->bases_end();
3675       BI != BE; ++BI) {
3676    // We'll handle this one later
3677    if (BI->isVirtual())
3678      continue;
3679
3680    QualType BaseType = BI->getType();
3681    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3682    assert(BaseDecl && "base isn't a CXXRecordDecl");
3683
3684    // -- a [direct base class] B that cannot be [copied] because overload
3685    //    resolution, as applied to B's [copy] assignment operator, results in
3686    //    an ambiguity or a function that is deleted or inaccessible from the
3687    //    assignment operator
3688
3689    LookupQualifiedName(R, BaseDecl, false);
3690
3691    // Filter out any result that isn't a copy-assignment operator.
3692    LookupResult::Filter F = R.makeFilter();
3693    while (F.hasNext()) {
3694      NamedDecl *D = F.next();
3695      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
3696        if (Method->isCopyAssignmentOperator())
3697          continue;
3698
3699      F.erase();
3700    }
3701    F.done();
3702
3703    // Build a fake argument expression
3704    QualType ArgType = BaseType;
3705    QualType ThisType = BaseType;
3706    if (ConstArg)
3707      ArgType.addConst();
3708    Expr *Args[] = { new (Context) OpaqueValueExpr(Loc, ThisType, VK_LValue)
3709                   , new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue)
3710                   };
3711
3712    OverloadCandidateSet OCS((Loc));
3713    OverloadCandidateSet::iterator Best;
3714
3715    AddFunctionCandidates(R.asUnresolvedSet(), Args, 2, OCS);
3716
3717    if (OCS.BestViableFunction(*this, Loc, Best, false) !=
3718        OR_Success)
3719      return true;
3720  }
3721
3722  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3723                                          BE = RD->vbases_end();
3724       BI != BE; ++BI) {
3725    QualType BaseType = BI->getType();
3726    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3727    assert(BaseDecl && "base isn't a CXXRecordDecl");
3728
3729    // -- a [virtual base class] B that cannot be [copied] because overload
3730    //    resolution, as applied to B's [copy] assignment operator, results in
3731    //    an ambiguity or a function that is deleted or inaccessible from the
3732    //    assignment operator
3733
3734    LookupQualifiedName(R, BaseDecl, false);
3735
3736    // Filter out any result that isn't a copy-assignment operator.
3737    LookupResult::Filter F = R.makeFilter();
3738    while (F.hasNext()) {
3739      NamedDecl *D = F.next();
3740      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
3741        if (Method->isCopyAssignmentOperator())
3742          continue;
3743
3744      F.erase();
3745    }
3746    F.done();
3747
3748    // Build a fake argument expression
3749    QualType ArgType = BaseType;
3750    QualType ThisType = BaseType;
3751    if (ConstArg)
3752      ArgType.addConst();
3753    Expr *Args[] = { new (Context) OpaqueValueExpr(Loc, ThisType, VK_LValue)
3754                   , new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue)
3755                   };
3756
3757    OverloadCandidateSet OCS((Loc));
3758    OverloadCandidateSet::iterator Best;
3759
3760    AddFunctionCandidates(R.asUnresolvedSet(), Args, 2, OCS);
3761
3762    if (OCS.BestViableFunction(*this, Loc, Best, false) !=
3763        OR_Success)
3764      return true;
3765  }
3766
3767  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3768                                     FE = RD->field_end();
3769       FI != FE; ++FI) {
3770    QualType FieldType = Context.getBaseElementType(FI->getType());
3771
3772    // -- a non-static data member of reference type
3773    if (FieldType->isReferenceType())
3774      return true;
3775
3776    // -- a non-static data member of const non-class type (or array thereof)
3777    if (FieldType.isConstQualified() && !FieldType->isRecordType())
3778      return true;
3779
3780    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3781
3782    if (FieldRecord) {
3783      // This is an anonymous union
3784      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3785        // Anonymous unions inside unions do not variant members create
3786        if (!Union) {
3787          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3788                                             UE = FieldRecord->field_end();
3789               UI != UE; ++UI) {
3790            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3791            CXXRecordDecl *UnionFieldRecord =
3792              UnionFieldType->getAsCXXRecordDecl();
3793
3794            // -- a variant member with a non-trivial [copy] assignment operator
3795            //    and X is a union-like class
3796            if (UnionFieldRecord &&
3797                !UnionFieldRecord->hasTrivialCopyAssignment())
3798              return true;
3799          }
3800        }
3801
3802        // Don't try to initalize an anonymous union
3803        continue;
3804      // -- a variant member with a non-trivial [copy] assignment operator
3805      //    and X is a union-like class
3806      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
3807          return true;
3808      }
3809
3810      LookupQualifiedName(R, FieldRecord, false);
3811
3812      // Filter out any result that isn't a copy-assignment operator.
3813      LookupResult::Filter F = R.makeFilter();
3814      while (F.hasNext()) {
3815        NamedDecl *D = F.next();
3816        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
3817          if (Method->isCopyAssignmentOperator())
3818            continue;
3819
3820        F.erase();
3821      }
3822      F.done();
3823
3824      // Build a fake argument expression
3825      QualType ArgType = FieldType;
3826      QualType ThisType = FieldType;
3827      if (ConstArg)
3828        ArgType.addConst();
3829      Expr *Args[] = { new (Context) OpaqueValueExpr(Loc, ThisType, VK_LValue)
3830                     , new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue)
3831                     };
3832
3833      OverloadCandidateSet OCS((Loc));
3834      OverloadCandidateSet::iterator Best;
3835
3836      AddFunctionCandidates(R.asUnresolvedSet(), Args, 2, OCS);
3837
3838      if (OCS.BestViableFunction(*this, Loc, Best, false) !=
3839          OR_Success)
3840        return true;
3841    }
3842  }
3843
3844  return false;
3845}
3846
3847bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
3848  CXXRecordDecl *RD = DD->getParent();
3849  assert(!RD->isDependentType() && "do deletion after instantiation");
3850  if (!LangOpts.CPlusPlus0x)
3851    return false;
3852
3853  SourceLocation Loc = DD->getLocation();
3854
3855  // Do access control from the destructor
3856  ContextRAII CtorContext(*this, DD);
3857
3858  bool Union = RD->isUnion();
3859
3860  // We do this because we should never actually use an anonymous
3861  // union's destructor.
3862  if (Union && RD->isAnonymousStructOrUnion())
3863    return false;
3864
3865  // C++0x [class.dtor]p5
3866  //    A defaulted destructor for a class X is defined as deleted if:
3867  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3868                                          BE = RD->bases_end();
3869       BI != BE; ++BI) {
3870    // We'll handle this one later
3871    if (BI->isVirtual())
3872      continue;
3873
3874    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3875    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3876    assert(BaseDtor && "base has no destructor");
3877
3878    // -- any direct or virtual base class has a deleted destructor or
3879    //    a destructor that is inaccessible from the defaulted destructor
3880    if (BaseDtor->isDeleted())
3881      return true;
3882    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3883        AR_accessible)
3884      return true;
3885  }
3886
3887  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3888                                          BE = RD->vbases_end();
3889       BI != BE; ++BI) {
3890    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3891    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3892    assert(BaseDtor && "base has no destructor");
3893
3894    // -- any direct or virtual base class has a deleted destructor or
3895    //    a destructor that is inaccessible from the defaulted destructor
3896    if (BaseDtor->isDeleted())
3897      return true;
3898    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3899        AR_accessible)
3900      return true;
3901  }
3902
3903  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3904                                     FE = RD->field_end();
3905       FI != FE; ++FI) {
3906    QualType FieldType = Context.getBaseElementType(FI->getType());
3907    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3908    if (FieldRecord) {
3909      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3910         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3911                                            UE = FieldRecord->field_end();
3912              UI != UE; ++UI) {
3913           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
3914           CXXRecordDecl *UnionFieldRecord =
3915             UnionFieldType->getAsCXXRecordDecl();
3916
3917           // -- X is a union-like class that has a variant member with a non-
3918           //    trivial destructor.
3919           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
3920             return true;
3921         }
3922      // Technically we are supposed to do this next check unconditionally.
3923      // But that makes absolutely no sense.
3924      } else {
3925        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3926
3927        // -- any of the non-static data members has class type M (or array
3928        //    thereof) and M has a deleted destructor or a destructor that is
3929        //    inaccessible from the defaulted destructor
3930        if (FieldDtor->isDeleted())
3931          return true;
3932        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3933          AR_accessible)
3934        return true;
3935
3936        // -- X is a union-like class that has a variant member with a non-
3937        //    trivial destructor.
3938        if (Union && !FieldDtor->isTrivial())
3939          return true;
3940      }
3941    }
3942  }
3943
3944  if (DD->isVirtual()) {
3945    FunctionDecl *OperatorDelete = 0;
3946    DeclarationName Name =
3947      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3948    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
3949          false))
3950      return true;
3951  }
3952
3953
3954  return false;
3955}
3956
3957/// \brief Data used with FindHiddenVirtualMethod
3958namespace {
3959  struct FindHiddenVirtualMethodData {
3960    Sema *S;
3961    CXXMethodDecl *Method;
3962    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
3963    llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
3964  };
3965}
3966
3967/// \brief Member lookup function that determines whether a given C++
3968/// method overloads virtual methods in a base class without overriding any,
3969/// to be used with CXXRecordDecl::lookupInBases().
3970static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
3971                                    CXXBasePath &Path,
3972                                    void *UserData) {
3973  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3974
3975  FindHiddenVirtualMethodData &Data
3976    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
3977
3978  DeclarationName Name = Data.Method->getDeclName();
3979  assert(Name.getNameKind() == DeclarationName::Identifier);
3980
3981  bool foundSameNameMethod = false;
3982  llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
3983  for (Path.Decls = BaseRecord->lookup(Name);
3984       Path.Decls.first != Path.Decls.second;
3985       ++Path.Decls.first) {
3986    NamedDecl *D = *Path.Decls.first;
3987    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3988      MD = MD->getCanonicalDecl();
3989      foundSameNameMethod = true;
3990      // Interested only in hidden virtual methods.
3991      if (!MD->isVirtual())
3992        continue;
3993      // If the method we are checking overrides a method from its base
3994      // don't warn about the other overloaded methods.
3995      if (!Data.S->IsOverload(Data.Method, MD, false))
3996        return true;
3997      // Collect the overload only if its hidden.
3998      if (!Data.OverridenAndUsingBaseMethods.count(MD))
3999        overloadedMethods.push_back(MD);
4000    }
4001  }
4002
4003  if (foundSameNameMethod)
4004    Data.OverloadedMethods.append(overloadedMethods.begin(),
4005                                   overloadedMethods.end());
4006  return foundSameNameMethod;
4007}
4008
4009/// \brief See if a method overloads virtual methods in a base class without
4010/// overriding any.
4011void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4012  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4013                               MD->getLocation()) == Diagnostic::Ignored)
4014    return;
4015  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4016    return;
4017
4018  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4019                     /*bool RecordPaths=*/false,
4020                     /*bool DetectVirtual=*/false);
4021  FindHiddenVirtualMethodData Data;
4022  Data.Method = MD;
4023  Data.S = this;
4024
4025  // Keep the base methods that were overriden or introduced in the subclass
4026  // by 'using' in a set. A base method not in this set is hidden.
4027  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4028       res.first != res.second; ++res.first) {
4029    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4030      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4031                                          E = MD->end_overridden_methods();
4032           I != E; ++I)
4033        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4034    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4035      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4036        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4037  }
4038
4039  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4040      !Data.OverloadedMethods.empty()) {
4041    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4042      << MD << (Data.OverloadedMethods.size() > 1);
4043
4044    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4045      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4046      Diag(overloadedMD->getLocation(),
4047           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4048    }
4049  }
4050}
4051
4052void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4053                                             Decl *TagDecl,
4054                                             SourceLocation LBrac,
4055                                             SourceLocation RBrac,
4056                                             AttributeList *AttrList) {
4057  if (!TagDecl)
4058    return;
4059
4060  AdjustDeclIfTemplate(TagDecl);
4061
4062  ActOnFields(S, RLoc, TagDecl,
4063              // strict aliasing violation!
4064              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4065              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
4066
4067  CheckCompletedCXXClass(
4068                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4069}
4070
4071/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4072/// special functions, such as the default constructor, copy
4073/// constructor, or destructor, to the given C++ class (C++
4074/// [special]p1).  This routine can only be executed just before the
4075/// definition of the class is complete.
4076void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4077  if (!ClassDecl->hasUserDeclaredConstructor())
4078    ++ASTContext::NumImplicitDefaultConstructors;
4079
4080  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4081    ++ASTContext::NumImplicitCopyConstructors;
4082
4083  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4084    ++ASTContext::NumImplicitCopyAssignmentOperators;
4085
4086    // If we have a dynamic class, then the copy assignment operator may be
4087    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4088    // it shows up in the right place in the vtable and that we diagnose
4089    // problems with the implicit exception specification.
4090    if (ClassDecl->isDynamicClass())
4091      DeclareImplicitCopyAssignment(ClassDecl);
4092  }
4093
4094  if (!ClassDecl->hasUserDeclaredDestructor()) {
4095    ++ASTContext::NumImplicitDestructors;
4096
4097    // If we have a dynamic class, then the destructor may be virtual, so we
4098    // have to declare the destructor immediately. This ensures that, e.g., it
4099    // shows up in the right place in the vtable and that we diagnose problems
4100    // with the implicit exception specification.
4101    if (ClassDecl->isDynamicClass())
4102      DeclareImplicitDestructor(ClassDecl);
4103  }
4104}
4105
4106void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4107  if (!D)
4108    return;
4109
4110  int NumParamList = D->getNumTemplateParameterLists();
4111  for (int i = 0; i < NumParamList; i++) {
4112    TemplateParameterList* Params = D->getTemplateParameterList(i);
4113    for (TemplateParameterList::iterator Param = Params->begin(),
4114                                      ParamEnd = Params->end();
4115          Param != ParamEnd; ++Param) {
4116      NamedDecl *Named = cast<NamedDecl>(*Param);
4117      if (Named->getDeclName()) {
4118        S->AddDecl(Named);
4119        IdResolver.AddDecl(Named);
4120      }
4121    }
4122  }
4123}
4124
4125void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4126  if (!D)
4127    return;
4128
4129  TemplateParameterList *Params = 0;
4130  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4131    Params = Template->getTemplateParameters();
4132  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4133           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4134    Params = PartialSpec->getTemplateParameters();
4135  else
4136    return;
4137
4138  for (TemplateParameterList::iterator Param = Params->begin(),
4139                                    ParamEnd = Params->end();
4140       Param != ParamEnd; ++Param) {
4141    NamedDecl *Named = cast<NamedDecl>(*Param);
4142    if (Named->getDeclName()) {
4143      S->AddDecl(Named);
4144      IdResolver.AddDecl(Named);
4145    }
4146  }
4147}
4148
4149void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4150  if (!RecordD) return;
4151  AdjustDeclIfTemplate(RecordD);
4152  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4153  PushDeclContext(S, Record);
4154}
4155
4156void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4157  if (!RecordD) return;
4158  PopDeclContext();
4159}
4160
4161/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4162/// parsing a top-level (non-nested) C++ class, and we are now
4163/// parsing those parts of the given Method declaration that could
4164/// not be parsed earlier (C++ [class.mem]p2), such as default
4165/// arguments. This action should enter the scope of the given
4166/// Method declaration as if we had just parsed the qualified method
4167/// name. However, it should not bring the parameters into scope;
4168/// that will be performed by ActOnDelayedCXXMethodParameter.
4169void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4170}
4171
4172/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4173/// C++ method declaration. We're (re-)introducing the given
4174/// function parameter into scope for use in parsing later parts of
4175/// the method declaration. For example, we could see an
4176/// ActOnParamDefaultArgument event for this parameter.
4177void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4178  if (!ParamD)
4179    return;
4180
4181  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4182
4183  // If this parameter has an unparsed default argument, clear it out
4184  // to make way for the parsed default argument.
4185  if (Param->hasUnparsedDefaultArg())
4186    Param->setDefaultArg(0);
4187
4188  S->AddDecl(Param);
4189  if (Param->getDeclName())
4190    IdResolver.AddDecl(Param);
4191}
4192
4193/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4194/// processing the delayed method declaration for Method. The method
4195/// declaration is now considered finished. There may be a separate
4196/// ActOnStartOfFunctionDef action later (not necessarily
4197/// immediately!) for this method, if it was also defined inside the
4198/// class body.
4199void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4200  if (!MethodD)
4201    return;
4202
4203  AdjustDeclIfTemplate(MethodD);
4204
4205  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4206
4207  // Now that we have our default arguments, check the constructor
4208  // again. It could produce additional diagnostics or affect whether
4209  // the class has implicitly-declared destructors, among other
4210  // things.
4211  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4212    CheckConstructor(Constructor);
4213
4214  // Check the default arguments, which we may have added.
4215  if (!Method->isInvalidDecl())
4216    CheckCXXDefaultArguments(Method);
4217}
4218
4219/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4220/// the well-formedness of the constructor declarator @p D with type @p
4221/// R. If there are any errors in the declarator, this routine will
4222/// emit diagnostics and set the invalid bit to true.  In any case, the type
4223/// will be updated to reflect a well-formed type for the constructor and
4224/// returned.
4225QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4226                                          StorageClass &SC) {
4227  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4228
4229  // C++ [class.ctor]p3:
4230  //   A constructor shall not be virtual (10.3) or static (9.4). A
4231  //   constructor can be invoked for a const, volatile or const
4232  //   volatile object. A constructor shall not be declared const,
4233  //   volatile, or const volatile (9.3.2).
4234  if (isVirtual) {
4235    if (!D.isInvalidType())
4236      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4237        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4238        << SourceRange(D.getIdentifierLoc());
4239    D.setInvalidType();
4240  }
4241  if (SC == SC_Static) {
4242    if (!D.isInvalidType())
4243      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4244        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4245        << SourceRange(D.getIdentifierLoc());
4246    D.setInvalidType();
4247    SC = SC_None;
4248  }
4249
4250  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4251  if (FTI.TypeQuals != 0) {
4252    if (FTI.TypeQuals & Qualifiers::Const)
4253      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4254        << "const" << SourceRange(D.getIdentifierLoc());
4255    if (FTI.TypeQuals & Qualifiers::Volatile)
4256      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4257        << "volatile" << SourceRange(D.getIdentifierLoc());
4258    if (FTI.TypeQuals & Qualifiers::Restrict)
4259      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4260        << "restrict" << SourceRange(D.getIdentifierLoc());
4261    D.setInvalidType();
4262  }
4263
4264  // C++0x [class.ctor]p4:
4265  //   A constructor shall not be declared with a ref-qualifier.
4266  if (FTI.hasRefQualifier()) {
4267    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4268      << FTI.RefQualifierIsLValueRef
4269      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4270    D.setInvalidType();
4271  }
4272
4273  // Rebuild the function type "R" without any type qualifiers (in
4274  // case any of the errors above fired) and with "void" as the
4275  // return type, since constructors don't have return types.
4276  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4277  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4278    return R;
4279
4280  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4281  EPI.TypeQuals = 0;
4282  EPI.RefQualifier = RQ_None;
4283
4284  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
4285                                 Proto->getNumArgs(), EPI);
4286}
4287
4288/// CheckConstructor - Checks a fully-formed constructor for
4289/// well-formedness, issuing any diagnostics required. Returns true if
4290/// the constructor declarator is invalid.
4291void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
4292  CXXRecordDecl *ClassDecl
4293    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
4294  if (!ClassDecl)
4295    return Constructor->setInvalidDecl();
4296
4297  // C++ [class.copy]p3:
4298  //   A declaration of a constructor for a class X is ill-formed if
4299  //   its first parameter is of type (optionally cv-qualified) X and
4300  //   either there are no other parameters or else all other
4301  //   parameters have default arguments.
4302  if (!Constructor->isInvalidDecl() &&
4303      ((Constructor->getNumParams() == 1) ||
4304       (Constructor->getNumParams() > 1 &&
4305        Constructor->getParamDecl(1)->hasDefaultArg())) &&
4306      Constructor->getTemplateSpecializationKind()
4307                                              != TSK_ImplicitInstantiation) {
4308    QualType ParamType = Constructor->getParamDecl(0)->getType();
4309    QualType ClassTy = Context.getTagDeclType(ClassDecl);
4310    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
4311      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
4312      const char *ConstRef
4313        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
4314                                                        : " const &";
4315      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
4316        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
4317
4318      // FIXME: Rather that making the constructor invalid, we should endeavor
4319      // to fix the type.
4320      Constructor->setInvalidDecl();
4321    }
4322  }
4323}
4324
4325/// CheckDestructor - Checks a fully-formed destructor definition for
4326/// well-formedness, issuing any diagnostics required.  Returns true
4327/// on error.
4328bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
4329  CXXRecordDecl *RD = Destructor->getParent();
4330
4331  if (Destructor->isVirtual()) {
4332    SourceLocation Loc;
4333
4334    if (!Destructor->isImplicit())
4335      Loc = Destructor->getLocation();
4336    else
4337      Loc = RD->getLocation();
4338
4339    // If we have a virtual destructor, look up the deallocation function
4340    FunctionDecl *OperatorDelete = 0;
4341    DeclarationName Name =
4342    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4343    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
4344      return true;
4345
4346    MarkDeclarationReferenced(Loc, OperatorDelete);
4347
4348    Destructor->setOperatorDelete(OperatorDelete);
4349  }
4350
4351  return false;
4352}
4353
4354static inline bool
4355FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
4356  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4357          FTI.ArgInfo[0].Param &&
4358          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
4359}
4360
4361/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
4362/// the well-formednes of the destructor declarator @p D with type @p
4363/// R. If there are any errors in the declarator, this routine will
4364/// emit diagnostics and set the declarator to invalid.  Even if this happens,
4365/// will be updated to reflect a well-formed type for the destructor and
4366/// returned.
4367QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
4368                                         StorageClass& SC) {
4369  // C++ [class.dtor]p1:
4370  //   [...] A typedef-name that names a class is a class-name
4371  //   (7.1.3); however, a typedef-name that names a class shall not
4372  //   be used as the identifier in the declarator for a destructor
4373  //   declaration.
4374  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
4375  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
4376    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4377      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
4378  else if (const TemplateSpecializationType *TST =
4379             DeclaratorType->getAs<TemplateSpecializationType>())
4380    if (TST->isTypeAlias())
4381      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4382        << DeclaratorType << 1;
4383
4384  // C++ [class.dtor]p2:
4385  //   A destructor is used to destroy objects of its class type. A
4386  //   destructor takes no parameters, and no return type can be
4387  //   specified for it (not even void). The address of a destructor
4388  //   shall not be taken. A destructor shall not be static. A
4389  //   destructor can be invoked for a const, volatile or const
4390  //   volatile object. A destructor shall not be declared const,
4391  //   volatile or const volatile (9.3.2).
4392  if (SC == SC_Static) {
4393    if (!D.isInvalidType())
4394      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
4395        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4396        << SourceRange(D.getIdentifierLoc())
4397        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4398
4399    SC = SC_None;
4400  }
4401  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4402    // Destructors don't have return types, but the parser will
4403    // happily parse something like:
4404    //
4405    //   class X {
4406    //     float ~X();
4407    //   };
4408    //
4409    // The return type will be eliminated later.
4410    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
4411      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4412      << SourceRange(D.getIdentifierLoc());
4413  }
4414
4415  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4416  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
4417    if (FTI.TypeQuals & Qualifiers::Const)
4418      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4419        << "const" << SourceRange(D.getIdentifierLoc());
4420    if (FTI.TypeQuals & Qualifiers::Volatile)
4421      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4422        << "volatile" << SourceRange(D.getIdentifierLoc());
4423    if (FTI.TypeQuals & Qualifiers::Restrict)
4424      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4425        << "restrict" << SourceRange(D.getIdentifierLoc());
4426    D.setInvalidType();
4427  }
4428
4429  // C++0x [class.dtor]p2:
4430  //   A destructor shall not be declared with a ref-qualifier.
4431  if (FTI.hasRefQualifier()) {
4432    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
4433      << FTI.RefQualifierIsLValueRef
4434      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4435    D.setInvalidType();
4436  }
4437
4438  // Make sure we don't have any parameters.
4439  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
4440    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
4441
4442    // Delete the parameters.
4443    FTI.freeArgs();
4444    D.setInvalidType();
4445  }
4446
4447  // Make sure the destructor isn't variadic.
4448  if (FTI.isVariadic) {
4449    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
4450    D.setInvalidType();
4451  }
4452
4453  // Rebuild the function type "R" without any type qualifiers or
4454  // parameters (in case any of the errors above fired) and with
4455  // "void" as the return type, since destructors don't have return
4456  // types.
4457  if (!D.isInvalidType())
4458    return R;
4459
4460  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4461  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4462  EPI.Variadic = false;
4463  EPI.TypeQuals = 0;
4464  EPI.RefQualifier = RQ_None;
4465  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4466}
4467
4468/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
4469/// well-formednes of the conversion function declarator @p D with
4470/// type @p R. If there are any errors in the declarator, this routine
4471/// will emit diagnostics and return true. Otherwise, it will return
4472/// false. Either way, the type @p R will be updated to reflect a
4473/// well-formed type for the conversion operator.
4474void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
4475                                     StorageClass& SC) {
4476  // C++ [class.conv.fct]p1:
4477  //   Neither parameter types nor return type can be specified. The
4478  //   type of a conversion function (8.3.5) is "function taking no
4479  //   parameter returning conversion-type-id."
4480  if (SC == SC_Static) {
4481    if (!D.isInvalidType())
4482      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
4483        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4484        << SourceRange(D.getIdentifierLoc());
4485    D.setInvalidType();
4486    SC = SC_None;
4487  }
4488
4489  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
4490
4491  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4492    // Conversion functions don't have return types, but the parser will
4493    // happily parse something like:
4494    //
4495    //   class X {
4496    //     float operator bool();
4497    //   };
4498    //
4499    // The return type will be changed later anyway.
4500    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
4501      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4502      << SourceRange(D.getIdentifierLoc());
4503    D.setInvalidType();
4504  }
4505
4506  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4507
4508  // Make sure we don't have any parameters.
4509  if (Proto->getNumArgs() > 0) {
4510    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
4511
4512    // Delete the parameters.
4513    D.getFunctionTypeInfo().freeArgs();
4514    D.setInvalidType();
4515  } else if (Proto->isVariadic()) {
4516    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
4517    D.setInvalidType();
4518  }
4519
4520  // Diagnose "&operator bool()" and other such nonsense.  This
4521  // is actually a gcc extension which we don't support.
4522  if (Proto->getResultType() != ConvType) {
4523    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
4524      << Proto->getResultType();
4525    D.setInvalidType();
4526    ConvType = Proto->getResultType();
4527  }
4528
4529  // C++ [class.conv.fct]p4:
4530  //   The conversion-type-id shall not represent a function type nor
4531  //   an array type.
4532  if (ConvType->isArrayType()) {
4533    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
4534    ConvType = Context.getPointerType(ConvType);
4535    D.setInvalidType();
4536  } else if (ConvType->isFunctionType()) {
4537    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
4538    ConvType = Context.getPointerType(ConvType);
4539    D.setInvalidType();
4540  }
4541
4542  // Rebuild the function type "R" without any parameters (in case any
4543  // of the errors above fired) and with the conversion type as the
4544  // return type.
4545  if (D.isInvalidType())
4546    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
4547
4548  // C++0x explicit conversion operators.
4549  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
4550    Diag(D.getDeclSpec().getExplicitSpecLoc(),
4551         diag::warn_explicit_conversion_functions)
4552      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
4553}
4554
4555/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
4556/// the declaration of the given C++ conversion function. This routine
4557/// is responsible for recording the conversion function in the C++
4558/// class, if possible.
4559Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
4560  assert(Conversion && "Expected to receive a conversion function declaration");
4561
4562  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
4563
4564  // Make sure we aren't redeclaring the conversion function.
4565  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
4566
4567  // C++ [class.conv.fct]p1:
4568  //   [...] A conversion function is never used to convert a
4569  //   (possibly cv-qualified) object to the (possibly cv-qualified)
4570  //   same object type (or a reference to it), to a (possibly
4571  //   cv-qualified) base class of that type (or a reference to it),
4572  //   or to (possibly cv-qualified) void.
4573  // FIXME: Suppress this warning if the conversion function ends up being a
4574  // virtual function that overrides a virtual function in a base class.
4575  QualType ClassType
4576    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4577  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
4578    ConvType = ConvTypeRef->getPointeeType();
4579  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
4580      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4581    /* Suppress diagnostics for instantiations. */;
4582  else if (ConvType->isRecordType()) {
4583    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
4584    if (ConvType == ClassType)
4585      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
4586        << ClassType;
4587    else if (IsDerivedFrom(ClassType, ConvType))
4588      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
4589        <<  ClassType << ConvType;
4590  } else if (ConvType->isVoidType()) {
4591    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
4592      << ClassType << ConvType;
4593  }
4594
4595  if (FunctionTemplateDecl *ConversionTemplate
4596                                = Conversion->getDescribedFunctionTemplate())
4597    return ConversionTemplate;
4598
4599  return Conversion;
4600}
4601
4602//===----------------------------------------------------------------------===//
4603// Namespace Handling
4604//===----------------------------------------------------------------------===//
4605
4606
4607
4608/// ActOnStartNamespaceDef - This is called at the start of a namespace
4609/// definition.
4610Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
4611                                   SourceLocation InlineLoc,
4612                                   SourceLocation NamespaceLoc,
4613                                   SourceLocation IdentLoc,
4614                                   IdentifierInfo *II,
4615                                   SourceLocation LBrace,
4616                                   AttributeList *AttrList) {
4617  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
4618  // For anonymous namespace, take the location of the left brace.
4619  SourceLocation Loc = II ? IdentLoc : LBrace;
4620  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
4621                                                 StartLoc, Loc, II);
4622  Namespc->setInline(InlineLoc.isValid());
4623
4624  Scope *DeclRegionScope = NamespcScope->getParent();
4625
4626  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
4627
4628  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
4629    PushNamespaceVisibilityAttr(Attr);
4630
4631  if (II) {
4632    // C++ [namespace.def]p2:
4633    //   The identifier in an original-namespace-definition shall not
4634    //   have been previously defined in the declarative region in
4635    //   which the original-namespace-definition appears. The
4636    //   identifier in an original-namespace-definition is the name of
4637    //   the namespace. Subsequently in that declarative region, it is
4638    //   treated as an original-namespace-name.
4639    //
4640    // Since namespace names are unique in their scope, and we don't
4641    // look through using directives, just look for any ordinary names.
4642
4643    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
4644      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
4645      Decl::IDNS_Namespace;
4646    NamedDecl *PrevDecl = 0;
4647    for (DeclContext::lookup_result R
4648            = CurContext->getRedeclContext()->lookup(II);
4649         R.first != R.second; ++R.first) {
4650      if ((*R.first)->getIdentifierNamespace() & IDNS) {
4651        PrevDecl = *R.first;
4652        break;
4653      }
4654    }
4655
4656    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
4657      // This is an extended namespace definition.
4658      if (Namespc->isInline() != OrigNS->isInline()) {
4659        // inline-ness must match
4660        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4661          << Namespc->isInline();
4662        Diag(OrigNS->getLocation(), diag::note_previous_definition);
4663        Namespc->setInvalidDecl();
4664        // Recover by ignoring the new namespace's inline status.
4665        Namespc->setInline(OrigNS->isInline());
4666      }
4667
4668      // Attach this namespace decl to the chain of extended namespace
4669      // definitions.
4670      OrigNS->setNextNamespace(Namespc);
4671      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
4672
4673      // Remove the previous declaration from the scope.
4674      if (DeclRegionScope->isDeclScope(OrigNS)) {
4675        IdResolver.RemoveDecl(OrigNS);
4676        DeclRegionScope->RemoveDecl(OrigNS);
4677      }
4678    } else if (PrevDecl) {
4679      // This is an invalid name redefinition.
4680      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
4681       << Namespc->getDeclName();
4682      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4683      Namespc->setInvalidDecl();
4684      // Continue on to push Namespc as current DeclContext and return it.
4685    } else if (II->isStr("std") &&
4686               CurContext->getRedeclContext()->isTranslationUnit()) {
4687      // This is the first "real" definition of the namespace "std", so update
4688      // our cache of the "std" namespace to point at this definition.
4689      if (NamespaceDecl *StdNS = getStdNamespace()) {
4690        // We had already defined a dummy namespace "std". Link this new
4691        // namespace definition to the dummy namespace "std".
4692        StdNS->setNextNamespace(Namespc);
4693        StdNS->setLocation(IdentLoc);
4694        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
4695      }
4696
4697      // Make our StdNamespace cache point at the first real definition of the
4698      // "std" namespace.
4699      StdNamespace = Namespc;
4700    }
4701
4702    PushOnScopeChains(Namespc, DeclRegionScope);
4703  } else {
4704    // Anonymous namespaces.
4705    assert(Namespc->isAnonymousNamespace());
4706
4707    // Link the anonymous namespace into its parent.
4708    NamespaceDecl *PrevDecl;
4709    DeclContext *Parent = CurContext->getRedeclContext();
4710    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
4711      PrevDecl = TU->getAnonymousNamespace();
4712      TU->setAnonymousNamespace(Namespc);
4713    } else {
4714      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
4715      PrevDecl = ND->getAnonymousNamespace();
4716      ND->setAnonymousNamespace(Namespc);
4717    }
4718
4719    // Link the anonymous namespace with its previous declaration.
4720    if (PrevDecl) {
4721      assert(PrevDecl->isAnonymousNamespace());
4722      assert(!PrevDecl->getNextNamespace());
4723      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
4724      PrevDecl->setNextNamespace(Namespc);
4725
4726      if (Namespc->isInline() != PrevDecl->isInline()) {
4727        // inline-ness must match
4728        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4729          << Namespc->isInline();
4730        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4731        Namespc->setInvalidDecl();
4732        // Recover by ignoring the new namespace's inline status.
4733        Namespc->setInline(PrevDecl->isInline());
4734      }
4735    }
4736
4737    CurContext->addDecl(Namespc);
4738
4739    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
4740    //   behaves as if it were replaced by
4741    //     namespace unique { /* empty body */ }
4742    //     using namespace unique;
4743    //     namespace unique { namespace-body }
4744    //   where all occurrences of 'unique' in a translation unit are
4745    //   replaced by the same identifier and this identifier differs
4746    //   from all other identifiers in the entire program.
4747
4748    // We just create the namespace with an empty name and then add an
4749    // implicit using declaration, just like the standard suggests.
4750    //
4751    // CodeGen enforces the "universally unique" aspect by giving all
4752    // declarations semantically contained within an anonymous
4753    // namespace internal linkage.
4754
4755    if (!PrevDecl) {
4756      UsingDirectiveDecl* UD
4757        = UsingDirectiveDecl::Create(Context, CurContext,
4758                                     /* 'using' */ LBrace,
4759                                     /* 'namespace' */ SourceLocation(),
4760                                     /* qualifier */ NestedNameSpecifierLoc(),
4761                                     /* identifier */ SourceLocation(),
4762                                     Namespc,
4763                                     /* Ancestor */ CurContext);
4764      UD->setImplicit();
4765      CurContext->addDecl(UD);
4766    }
4767  }
4768
4769  // Although we could have an invalid decl (i.e. the namespace name is a
4770  // redefinition), push it as current DeclContext and try to continue parsing.
4771  // FIXME: We should be able to push Namespc here, so that the each DeclContext
4772  // for the namespace has the declarations that showed up in that particular
4773  // namespace definition.
4774  PushDeclContext(NamespcScope, Namespc);
4775  return Namespc;
4776}
4777
4778/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
4779/// is a namespace alias, returns the namespace it points to.
4780static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
4781  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
4782    return AD->getNamespace();
4783  return dyn_cast_or_null<NamespaceDecl>(D);
4784}
4785
4786/// ActOnFinishNamespaceDef - This callback is called after a namespace is
4787/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
4788void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
4789  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
4790  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
4791  Namespc->setRBraceLoc(RBrace);
4792  PopDeclContext();
4793  if (Namespc->hasAttr<VisibilityAttr>())
4794    PopPragmaVisibility();
4795}
4796
4797CXXRecordDecl *Sema::getStdBadAlloc() const {
4798  return cast_or_null<CXXRecordDecl>(
4799                                  StdBadAlloc.get(Context.getExternalSource()));
4800}
4801
4802NamespaceDecl *Sema::getStdNamespace() const {
4803  return cast_or_null<NamespaceDecl>(
4804                                 StdNamespace.get(Context.getExternalSource()));
4805}
4806
4807/// \brief Retrieve the special "std" namespace, which may require us to
4808/// implicitly define the namespace.
4809NamespaceDecl *Sema::getOrCreateStdNamespace() {
4810  if (!StdNamespace) {
4811    // The "std" namespace has not yet been defined, so build one implicitly.
4812    StdNamespace = NamespaceDecl::Create(Context,
4813                                         Context.getTranslationUnitDecl(),
4814                                         SourceLocation(), SourceLocation(),
4815                                         &PP.getIdentifierTable().get("std"));
4816    getStdNamespace()->setImplicit(true);
4817  }
4818
4819  return getStdNamespace();
4820}
4821
4822/// \brief Determine whether a using statement is in a context where it will be
4823/// apply in all contexts.
4824static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
4825  switch (CurContext->getDeclKind()) {
4826    case Decl::TranslationUnit:
4827      return true;
4828    case Decl::LinkageSpec:
4829      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
4830    default:
4831      return false;
4832  }
4833}
4834
4835Decl *Sema::ActOnUsingDirective(Scope *S,
4836                                          SourceLocation UsingLoc,
4837                                          SourceLocation NamespcLoc,
4838                                          CXXScopeSpec &SS,
4839                                          SourceLocation IdentLoc,
4840                                          IdentifierInfo *NamespcName,
4841                                          AttributeList *AttrList) {
4842  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4843  assert(NamespcName && "Invalid NamespcName.");
4844  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
4845
4846  // This can only happen along a recovery path.
4847  while (S->getFlags() & Scope::TemplateParamScope)
4848    S = S->getParent();
4849  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4850
4851  UsingDirectiveDecl *UDir = 0;
4852  NestedNameSpecifier *Qualifier = 0;
4853  if (SS.isSet())
4854    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4855
4856  // Lookup namespace name.
4857  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
4858  LookupParsedName(R, S, &SS);
4859  if (R.isAmbiguous())
4860    return 0;
4861
4862  if (R.empty()) {
4863    // Allow "using namespace std;" or "using namespace ::std;" even if
4864    // "std" hasn't been defined yet, for GCC compatibility.
4865    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
4866        NamespcName->isStr("std")) {
4867      Diag(IdentLoc, diag::ext_using_undefined_std);
4868      R.addDecl(getOrCreateStdNamespace());
4869      R.resolveKind();
4870    }
4871    // Otherwise, attempt typo correction.
4872    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4873                                                       CTC_NoKeywords, 0)) {
4874      if (R.getAsSingle<NamespaceDecl>() ||
4875          R.getAsSingle<NamespaceAliasDecl>()) {
4876        if (DeclContext *DC = computeDeclContext(SS, false))
4877          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4878            << NamespcName << DC << Corrected << SS.getRange()
4879            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4880        else
4881          Diag(IdentLoc, diag::err_using_directive_suggest)
4882            << NamespcName << Corrected
4883            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4884        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4885          << Corrected;
4886
4887        NamespcName = Corrected.getAsIdentifierInfo();
4888      } else {
4889        R.clear();
4890        R.setLookupName(NamespcName);
4891      }
4892    }
4893  }
4894
4895  if (!R.empty()) {
4896    NamedDecl *Named = R.getFoundDecl();
4897    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
4898        && "expected namespace decl");
4899    // C++ [namespace.udir]p1:
4900    //   A using-directive specifies that the names in the nominated
4901    //   namespace can be used in the scope in which the
4902    //   using-directive appears after the using-directive. During
4903    //   unqualified name lookup (3.4.1), the names appear as if they
4904    //   were declared in the nearest enclosing namespace which
4905    //   contains both the using-directive and the nominated
4906    //   namespace. [Note: in this context, "contains" means "contains
4907    //   directly or indirectly". ]
4908
4909    // Find enclosing context containing both using-directive and
4910    // nominated namespace.
4911    NamespaceDecl *NS = getNamespaceDecl(Named);
4912    DeclContext *CommonAncestor = cast<DeclContext>(NS);
4913    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
4914      CommonAncestor = CommonAncestor->getParent();
4915
4916    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
4917                                      SS.getWithLocInContext(Context),
4918                                      IdentLoc, Named, CommonAncestor);
4919
4920    if (IsUsingDirectiveInToplevelContext(CurContext) &&
4921        !SourceMgr.isFromMainFile(SourceMgr.getInstantiationLoc(IdentLoc))) {
4922      Diag(IdentLoc, diag::warn_using_directive_in_header);
4923    }
4924
4925    PushUsingDirective(S, UDir);
4926  } else {
4927    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
4928  }
4929
4930  // FIXME: We ignore attributes for now.
4931  return UDir;
4932}
4933
4934void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
4935  // If scope has associated entity, then using directive is at namespace
4936  // or translation unit scope. We add UsingDirectiveDecls, into
4937  // it's lookup structure.
4938  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
4939    Ctx->addDecl(UDir);
4940  else
4941    // Otherwise it is block-sope. using-directives will affect lookup
4942    // only to the end of scope.
4943    S->PushUsingDirective(UDir);
4944}
4945
4946
4947Decl *Sema::ActOnUsingDeclaration(Scope *S,
4948                                  AccessSpecifier AS,
4949                                  bool HasUsingKeyword,
4950                                  SourceLocation UsingLoc,
4951                                  CXXScopeSpec &SS,
4952                                  UnqualifiedId &Name,
4953                                  AttributeList *AttrList,
4954                                  bool IsTypeName,
4955                                  SourceLocation TypenameLoc) {
4956  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4957
4958  switch (Name.getKind()) {
4959  case UnqualifiedId::IK_Identifier:
4960  case UnqualifiedId::IK_OperatorFunctionId:
4961  case UnqualifiedId::IK_LiteralOperatorId:
4962  case UnqualifiedId::IK_ConversionFunctionId:
4963    break;
4964
4965  case UnqualifiedId::IK_ConstructorName:
4966  case UnqualifiedId::IK_ConstructorTemplateId:
4967    // C++0x inherited constructors.
4968    if (getLangOptions().CPlusPlus0x) break;
4969
4970    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
4971      << SS.getRange();
4972    return 0;
4973
4974  case UnqualifiedId::IK_DestructorName:
4975    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
4976      << SS.getRange();
4977    return 0;
4978
4979  case UnqualifiedId::IK_TemplateId:
4980    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
4981      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
4982    return 0;
4983  }
4984
4985  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
4986  DeclarationName TargetName = TargetNameInfo.getName();
4987  if (!TargetName)
4988    return 0;
4989
4990  // Warn about using declarations.
4991  // TODO: store that the declaration was written without 'using' and
4992  // talk about access decls instead of using decls in the
4993  // diagnostics.
4994  if (!HasUsingKeyword) {
4995    UsingLoc = Name.getSourceRange().getBegin();
4996
4997    Diag(UsingLoc, diag::warn_access_decl_deprecated)
4998      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
4999  }
5000
5001  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5002      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5003    return 0;
5004
5005  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5006                                        TargetNameInfo, AttrList,
5007                                        /* IsInstantiation */ false,
5008                                        IsTypeName, TypenameLoc);
5009  if (UD)
5010    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5011
5012  return UD;
5013}
5014
5015/// \brief Determine whether a using declaration considers the given
5016/// declarations as "equivalent", e.g., if they are redeclarations of
5017/// the same entity or are both typedefs of the same type.
5018static bool
5019IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5020                         bool &SuppressRedeclaration) {
5021  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5022    SuppressRedeclaration = false;
5023    return true;
5024  }
5025
5026  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5027    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5028      SuppressRedeclaration = true;
5029      return Context.hasSameType(TD1->getUnderlyingType(),
5030                                 TD2->getUnderlyingType());
5031    }
5032
5033  return false;
5034}
5035
5036
5037/// Determines whether to create a using shadow decl for a particular
5038/// decl, given the set of decls existing prior to this using lookup.
5039bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5040                                const LookupResult &Previous) {
5041  // Diagnose finding a decl which is not from a base class of the
5042  // current class.  We do this now because there are cases where this
5043  // function will silently decide not to build a shadow decl, which
5044  // will pre-empt further diagnostics.
5045  //
5046  // We don't need to do this in C++0x because we do the check once on
5047  // the qualifier.
5048  //
5049  // FIXME: diagnose the following if we care enough:
5050  //   struct A { int foo; };
5051  //   struct B : A { using A::foo; };
5052  //   template <class T> struct C : A {};
5053  //   template <class T> struct D : C<T> { using B::foo; } // <---
5054  // This is invalid (during instantiation) in C++03 because B::foo
5055  // resolves to the using decl in B, which is not a base class of D<T>.
5056  // We can't diagnose it immediately because C<T> is an unknown
5057  // specialization.  The UsingShadowDecl in D<T> then points directly
5058  // to A::foo, which will look well-formed when we instantiate.
5059  // The right solution is to not collapse the shadow-decl chain.
5060  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5061    DeclContext *OrigDC = Orig->getDeclContext();
5062
5063    // Handle enums and anonymous structs.
5064    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5065    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5066    while (OrigRec->isAnonymousStructOrUnion())
5067      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5068
5069    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5070      if (OrigDC == CurContext) {
5071        Diag(Using->getLocation(),
5072             diag::err_using_decl_nested_name_specifier_is_current_class)
5073          << Using->getQualifierLoc().getSourceRange();
5074        Diag(Orig->getLocation(), diag::note_using_decl_target);
5075        return true;
5076      }
5077
5078      Diag(Using->getQualifierLoc().getBeginLoc(),
5079           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5080        << Using->getQualifier()
5081        << cast<CXXRecordDecl>(CurContext)
5082        << Using->getQualifierLoc().getSourceRange();
5083      Diag(Orig->getLocation(), diag::note_using_decl_target);
5084      return true;
5085    }
5086  }
5087
5088  if (Previous.empty()) return false;
5089
5090  NamedDecl *Target = Orig;
5091  if (isa<UsingShadowDecl>(Target))
5092    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5093
5094  // If the target happens to be one of the previous declarations, we
5095  // don't have a conflict.
5096  //
5097  // FIXME: but we might be increasing its access, in which case we
5098  // should redeclare it.
5099  NamedDecl *NonTag = 0, *Tag = 0;
5100  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5101         I != E; ++I) {
5102    NamedDecl *D = (*I)->getUnderlyingDecl();
5103    bool Result;
5104    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5105      return Result;
5106
5107    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5108  }
5109
5110  if (Target->isFunctionOrFunctionTemplate()) {
5111    FunctionDecl *FD;
5112    if (isa<FunctionTemplateDecl>(Target))
5113      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5114    else
5115      FD = cast<FunctionDecl>(Target);
5116
5117    NamedDecl *OldDecl = 0;
5118    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5119    case Ovl_Overload:
5120      return false;
5121
5122    case Ovl_NonFunction:
5123      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5124      break;
5125
5126    // We found a decl with the exact signature.
5127    case Ovl_Match:
5128      // If we're in a record, we want to hide the target, so we
5129      // return true (without a diagnostic) to tell the caller not to
5130      // build a shadow decl.
5131      if (CurContext->isRecord())
5132        return true;
5133
5134      // If we're not in a record, this is an error.
5135      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5136      break;
5137    }
5138
5139    Diag(Target->getLocation(), diag::note_using_decl_target);
5140    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5141    return true;
5142  }
5143
5144  // Target is not a function.
5145
5146  if (isa<TagDecl>(Target)) {
5147    // No conflict between a tag and a non-tag.
5148    if (!Tag) return false;
5149
5150    Diag(Using->getLocation(), diag::err_using_decl_conflict);
5151    Diag(Target->getLocation(), diag::note_using_decl_target);
5152    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5153    return true;
5154  }
5155
5156  // No conflict between a tag and a non-tag.
5157  if (!NonTag) return false;
5158
5159  Diag(Using->getLocation(), diag::err_using_decl_conflict);
5160  Diag(Target->getLocation(), diag::note_using_decl_target);
5161  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5162  return true;
5163}
5164
5165/// Builds a shadow declaration corresponding to a 'using' declaration.
5166UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
5167                                            UsingDecl *UD,
5168                                            NamedDecl *Orig) {
5169
5170  // If we resolved to another shadow declaration, just coalesce them.
5171  NamedDecl *Target = Orig;
5172  if (isa<UsingShadowDecl>(Target)) {
5173    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5174    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
5175  }
5176
5177  UsingShadowDecl *Shadow
5178    = UsingShadowDecl::Create(Context, CurContext,
5179                              UD->getLocation(), UD, Target);
5180  UD->addShadowDecl(Shadow);
5181
5182  Shadow->setAccess(UD->getAccess());
5183  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
5184    Shadow->setInvalidDecl();
5185
5186  if (S)
5187    PushOnScopeChains(Shadow, S);
5188  else
5189    CurContext->addDecl(Shadow);
5190
5191
5192  return Shadow;
5193}
5194
5195/// Hides a using shadow declaration.  This is required by the current
5196/// using-decl implementation when a resolvable using declaration in a
5197/// class is followed by a declaration which would hide or override
5198/// one or more of the using decl's targets; for example:
5199///
5200///   struct Base { void foo(int); };
5201///   struct Derived : Base {
5202///     using Base::foo;
5203///     void foo(int);
5204///   };
5205///
5206/// The governing language is C++03 [namespace.udecl]p12:
5207///
5208///   When a using-declaration brings names from a base class into a
5209///   derived class scope, member functions in the derived class
5210///   override and/or hide member functions with the same name and
5211///   parameter types in a base class (rather than conflicting).
5212///
5213/// There are two ways to implement this:
5214///   (1) optimistically create shadow decls when they're not hidden
5215///       by existing declarations, or
5216///   (2) don't create any shadow decls (or at least don't make them
5217///       visible) until we've fully parsed/instantiated the class.
5218/// The problem with (1) is that we might have to retroactively remove
5219/// a shadow decl, which requires several O(n) operations because the
5220/// decl structures are (very reasonably) not designed for removal.
5221/// (2) avoids this but is very fiddly and phase-dependent.
5222void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
5223  if (Shadow->getDeclName().getNameKind() ==
5224        DeclarationName::CXXConversionFunctionName)
5225    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
5226
5227  // Remove it from the DeclContext...
5228  Shadow->getDeclContext()->removeDecl(Shadow);
5229
5230  // ...and the scope, if applicable...
5231  if (S) {
5232    S->RemoveDecl(Shadow);
5233    IdResolver.RemoveDecl(Shadow);
5234  }
5235
5236  // ...and the using decl.
5237  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
5238
5239  // TODO: complain somehow if Shadow was used.  It shouldn't
5240  // be possible for this to happen, because...?
5241}
5242
5243/// Builds a using declaration.
5244///
5245/// \param IsInstantiation - Whether this call arises from an
5246///   instantiation of an unresolved using declaration.  We treat
5247///   the lookup differently for these declarations.
5248NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
5249                                       SourceLocation UsingLoc,
5250                                       CXXScopeSpec &SS,
5251                                       const DeclarationNameInfo &NameInfo,
5252                                       AttributeList *AttrList,
5253                                       bool IsInstantiation,
5254                                       bool IsTypeName,
5255                                       SourceLocation TypenameLoc) {
5256  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5257  SourceLocation IdentLoc = NameInfo.getLoc();
5258  assert(IdentLoc.isValid() && "Invalid TargetName location.");
5259
5260  // FIXME: We ignore attributes for now.
5261
5262  if (SS.isEmpty()) {
5263    Diag(IdentLoc, diag::err_using_requires_qualname);
5264    return 0;
5265  }
5266
5267  // Do the redeclaration lookup in the current scope.
5268  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
5269                        ForRedeclaration);
5270  Previous.setHideTags(false);
5271  if (S) {
5272    LookupName(Previous, S);
5273
5274    // It is really dumb that we have to do this.
5275    LookupResult::Filter F = Previous.makeFilter();
5276    while (F.hasNext()) {
5277      NamedDecl *D = F.next();
5278      if (!isDeclInScope(D, CurContext, S))
5279        F.erase();
5280    }
5281    F.done();
5282  } else {
5283    assert(IsInstantiation && "no scope in non-instantiation");
5284    assert(CurContext->isRecord() && "scope not record in instantiation");
5285    LookupQualifiedName(Previous, CurContext);
5286  }
5287
5288  // Check for invalid redeclarations.
5289  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
5290    return 0;
5291
5292  // Check for bad qualifiers.
5293  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
5294    return 0;
5295
5296  DeclContext *LookupContext = computeDeclContext(SS);
5297  NamedDecl *D;
5298  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
5299  if (!LookupContext) {
5300    if (IsTypeName) {
5301      // FIXME: not all declaration name kinds are legal here
5302      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
5303                                              UsingLoc, TypenameLoc,
5304                                              QualifierLoc,
5305                                              IdentLoc, NameInfo.getName());
5306    } else {
5307      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
5308                                           QualifierLoc, NameInfo);
5309    }
5310  } else {
5311    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
5312                          NameInfo, IsTypeName);
5313  }
5314  D->setAccess(AS);
5315  CurContext->addDecl(D);
5316
5317  if (!LookupContext) return D;
5318  UsingDecl *UD = cast<UsingDecl>(D);
5319
5320  if (RequireCompleteDeclContext(SS, LookupContext)) {
5321    UD->setInvalidDecl();
5322    return UD;
5323  }
5324
5325  // Constructor inheriting using decls get special treatment.
5326  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
5327    if (CheckInheritedConstructorUsingDecl(UD))
5328      UD->setInvalidDecl();
5329    return UD;
5330  }
5331
5332  // Otherwise, look up the target name.
5333
5334  LookupResult R(*this, NameInfo, LookupOrdinaryName);
5335
5336  // Unlike most lookups, we don't always want to hide tag
5337  // declarations: tag names are visible through the using declaration
5338  // even if hidden by ordinary names, *except* in a dependent context
5339  // where it's important for the sanity of two-phase lookup.
5340  if (!IsInstantiation)
5341    R.setHideTags(false);
5342
5343  LookupQualifiedName(R, LookupContext);
5344
5345  if (R.empty()) {
5346    Diag(IdentLoc, diag::err_no_member)
5347      << NameInfo.getName() << LookupContext << SS.getRange();
5348    UD->setInvalidDecl();
5349    return UD;
5350  }
5351
5352  if (R.isAmbiguous()) {
5353    UD->setInvalidDecl();
5354    return UD;
5355  }
5356
5357  if (IsTypeName) {
5358    // If we asked for a typename and got a non-type decl, error out.
5359    if (!R.getAsSingle<TypeDecl>()) {
5360      Diag(IdentLoc, diag::err_using_typename_non_type);
5361      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
5362        Diag((*I)->getUnderlyingDecl()->getLocation(),
5363             diag::note_using_decl_target);
5364      UD->setInvalidDecl();
5365      return UD;
5366    }
5367  } else {
5368    // If we asked for a non-typename and we got a type, error out,
5369    // but only if this is an instantiation of an unresolved using
5370    // decl.  Otherwise just silently find the type name.
5371    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
5372      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
5373      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
5374      UD->setInvalidDecl();
5375      return UD;
5376    }
5377  }
5378
5379  // C++0x N2914 [namespace.udecl]p6:
5380  // A using-declaration shall not name a namespace.
5381  if (R.getAsSingle<NamespaceDecl>()) {
5382    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
5383      << SS.getRange();
5384    UD->setInvalidDecl();
5385    return UD;
5386  }
5387
5388  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
5389    if (!CheckUsingShadowDecl(UD, *I, Previous))
5390      BuildUsingShadowDecl(S, UD, *I);
5391  }
5392
5393  return UD;
5394}
5395
5396/// Additional checks for a using declaration referring to a constructor name.
5397bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
5398  if (UD->isTypeName()) {
5399    // FIXME: Cannot specify typename when specifying constructor
5400    return true;
5401  }
5402
5403  const Type *SourceType = UD->getQualifier()->getAsType();
5404  assert(SourceType &&
5405         "Using decl naming constructor doesn't have type in scope spec.");
5406  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
5407
5408  // Check whether the named type is a direct base class.
5409  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
5410  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
5411  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
5412       BaseIt != BaseE; ++BaseIt) {
5413    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
5414    if (CanonicalSourceType == BaseType)
5415      break;
5416  }
5417
5418  if (BaseIt == BaseE) {
5419    // Did not find SourceType in the bases.
5420    Diag(UD->getUsingLocation(),
5421         diag::err_using_decl_constructor_not_in_direct_base)
5422      << UD->getNameInfo().getSourceRange()
5423      << QualType(SourceType, 0) << TargetClass;
5424    return true;
5425  }
5426
5427  BaseIt->setInheritConstructors();
5428
5429  return false;
5430}
5431
5432/// Checks that the given using declaration is not an invalid
5433/// redeclaration.  Note that this is checking only for the using decl
5434/// itself, not for any ill-formedness among the UsingShadowDecls.
5435bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
5436                                       bool isTypeName,
5437                                       const CXXScopeSpec &SS,
5438                                       SourceLocation NameLoc,
5439                                       const LookupResult &Prev) {
5440  // C++03 [namespace.udecl]p8:
5441  // C++0x [namespace.udecl]p10:
5442  //   A using-declaration is a declaration and can therefore be used
5443  //   repeatedly where (and only where) multiple declarations are
5444  //   allowed.
5445  //
5446  // That's in non-member contexts.
5447  if (!CurContext->getRedeclContext()->isRecord())
5448    return false;
5449
5450  NestedNameSpecifier *Qual
5451    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5452
5453  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
5454    NamedDecl *D = *I;
5455
5456    bool DTypename;
5457    NestedNameSpecifier *DQual;
5458    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
5459      DTypename = UD->isTypeName();
5460      DQual = UD->getQualifier();
5461    } else if (UnresolvedUsingValueDecl *UD
5462                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
5463      DTypename = false;
5464      DQual = UD->getQualifier();
5465    } else if (UnresolvedUsingTypenameDecl *UD
5466                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
5467      DTypename = true;
5468      DQual = UD->getQualifier();
5469    } else continue;
5470
5471    // using decls differ if one says 'typename' and the other doesn't.
5472    // FIXME: non-dependent using decls?
5473    if (isTypeName != DTypename) continue;
5474
5475    // using decls differ if they name different scopes (but note that
5476    // template instantiation can cause this check to trigger when it
5477    // didn't before instantiation).
5478    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
5479        Context.getCanonicalNestedNameSpecifier(DQual))
5480      continue;
5481
5482    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
5483    Diag(D->getLocation(), diag::note_using_decl) << 1;
5484    return true;
5485  }
5486
5487  return false;
5488}
5489
5490
5491/// Checks that the given nested-name qualifier used in a using decl
5492/// in the current context is appropriately related to the current
5493/// scope.  If an error is found, diagnoses it and returns true.
5494bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
5495                                   const CXXScopeSpec &SS,
5496                                   SourceLocation NameLoc) {
5497  DeclContext *NamedContext = computeDeclContext(SS);
5498
5499  if (!CurContext->isRecord()) {
5500    // C++03 [namespace.udecl]p3:
5501    // C++0x [namespace.udecl]p8:
5502    //   A using-declaration for a class member shall be a member-declaration.
5503
5504    // If we weren't able to compute a valid scope, it must be a
5505    // dependent class scope.
5506    if (!NamedContext || NamedContext->isRecord()) {
5507      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
5508        << SS.getRange();
5509      return true;
5510    }
5511
5512    // Otherwise, everything is known to be fine.
5513    return false;
5514  }
5515
5516  // The current scope is a record.
5517
5518  // If the named context is dependent, we can't decide much.
5519  if (!NamedContext) {
5520    // FIXME: in C++0x, we can diagnose if we can prove that the
5521    // nested-name-specifier does not refer to a base class, which is
5522    // still possible in some cases.
5523
5524    // Otherwise we have to conservatively report that things might be
5525    // okay.
5526    return false;
5527  }
5528
5529  if (!NamedContext->isRecord()) {
5530    // Ideally this would point at the last name in the specifier,
5531    // but we don't have that level of source info.
5532    Diag(SS.getRange().getBegin(),
5533         diag::err_using_decl_nested_name_specifier_is_not_class)
5534      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
5535    return true;
5536  }
5537
5538  if (!NamedContext->isDependentContext() &&
5539      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
5540    return true;
5541
5542  if (getLangOptions().CPlusPlus0x) {
5543    // C++0x [namespace.udecl]p3:
5544    //   In a using-declaration used as a member-declaration, the
5545    //   nested-name-specifier shall name a base class of the class
5546    //   being defined.
5547
5548    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
5549                                 cast<CXXRecordDecl>(NamedContext))) {
5550      if (CurContext == NamedContext) {
5551        Diag(NameLoc,
5552             diag::err_using_decl_nested_name_specifier_is_current_class)
5553          << SS.getRange();
5554        return true;
5555      }
5556
5557      Diag(SS.getRange().getBegin(),
5558           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5559        << (NestedNameSpecifier*) SS.getScopeRep()
5560        << cast<CXXRecordDecl>(CurContext)
5561        << SS.getRange();
5562      return true;
5563    }
5564
5565    return false;
5566  }
5567
5568  // C++03 [namespace.udecl]p4:
5569  //   A using-declaration used as a member-declaration shall refer
5570  //   to a member of a base class of the class being defined [etc.].
5571
5572  // Salient point: SS doesn't have to name a base class as long as
5573  // lookup only finds members from base classes.  Therefore we can
5574  // diagnose here only if we can prove that that can't happen,
5575  // i.e. if the class hierarchies provably don't intersect.
5576
5577  // TODO: it would be nice if "definitely valid" results were cached
5578  // in the UsingDecl and UsingShadowDecl so that these checks didn't
5579  // need to be repeated.
5580
5581  struct UserData {
5582    llvm::DenseSet<const CXXRecordDecl*> Bases;
5583
5584    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
5585      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5586      Data->Bases.insert(Base);
5587      return true;
5588    }
5589
5590    bool hasDependentBases(const CXXRecordDecl *Class) {
5591      return !Class->forallBases(collect, this);
5592    }
5593
5594    /// Returns true if the base is dependent or is one of the
5595    /// accumulated base classes.
5596    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
5597      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5598      return !Data->Bases.count(Base);
5599    }
5600
5601    bool mightShareBases(const CXXRecordDecl *Class) {
5602      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
5603    }
5604  };
5605
5606  UserData Data;
5607
5608  // Returns false if we find a dependent base.
5609  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
5610    return false;
5611
5612  // Returns false if the class has a dependent base or if it or one
5613  // of its bases is present in the base set of the current context.
5614  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
5615    return false;
5616
5617  Diag(SS.getRange().getBegin(),
5618       diag::err_using_decl_nested_name_specifier_is_not_base_class)
5619    << (NestedNameSpecifier*) SS.getScopeRep()
5620    << cast<CXXRecordDecl>(CurContext)
5621    << SS.getRange();
5622
5623  return true;
5624}
5625
5626Decl *Sema::ActOnAliasDeclaration(Scope *S,
5627                                  AccessSpecifier AS,
5628                                  MultiTemplateParamsArg TemplateParamLists,
5629                                  SourceLocation UsingLoc,
5630                                  UnqualifiedId &Name,
5631                                  TypeResult Type) {
5632  // Skip up to the relevant declaration scope.
5633  while (S->getFlags() & Scope::TemplateParamScope)
5634    S = S->getParent();
5635  assert((S->getFlags() & Scope::DeclScope) &&
5636         "got alias-declaration outside of declaration scope");
5637
5638  if (Type.isInvalid())
5639    return 0;
5640
5641  bool Invalid = false;
5642  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
5643  TypeSourceInfo *TInfo = 0;
5644  GetTypeFromParser(Type.get(), &TInfo);
5645
5646  if (DiagnoseClassNameShadow(CurContext, NameInfo))
5647    return 0;
5648
5649  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
5650                                      UPPC_DeclarationType)) {
5651    Invalid = true;
5652    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
5653                                             TInfo->getTypeLoc().getBeginLoc());
5654  }
5655
5656  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
5657  LookupName(Previous, S);
5658
5659  // Warn about shadowing the name of a template parameter.
5660  if (Previous.isSingleResult() &&
5661      Previous.getFoundDecl()->isTemplateParameter()) {
5662    if (DiagnoseTemplateParameterShadow(Name.StartLocation,
5663                                        Previous.getFoundDecl()))
5664      Invalid = true;
5665    Previous.clear();
5666  }
5667
5668  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
5669         "name in alias declaration must be an identifier");
5670  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
5671                                               Name.StartLocation,
5672                                               Name.Identifier, TInfo);
5673
5674  NewTD->setAccess(AS);
5675
5676  if (Invalid)
5677    NewTD->setInvalidDecl();
5678
5679  CheckTypedefForVariablyModifiedType(S, NewTD);
5680  Invalid |= NewTD->isInvalidDecl();
5681
5682  bool Redeclaration = false;
5683
5684  NamedDecl *NewND;
5685  if (TemplateParamLists.size()) {
5686    TypeAliasTemplateDecl *OldDecl = 0;
5687    TemplateParameterList *OldTemplateParams = 0;
5688
5689    if (TemplateParamLists.size() != 1) {
5690      Diag(UsingLoc, diag::err_alias_template_extra_headers)
5691        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
5692         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
5693    }
5694    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
5695
5696    // Only consider previous declarations in the same scope.
5697    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
5698                         /*ExplicitInstantiationOrSpecialization*/false);
5699    if (!Previous.empty()) {
5700      Redeclaration = true;
5701
5702      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
5703      if (!OldDecl && !Invalid) {
5704        Diag(UsingLoc, diag::err_redefinition_different_kind)
5705          << Name.Identifier;
5706
5707        NamedDecl *OldD = Previous.getRepresentativeDecl();
5708        if (OldD->getLocation().isValid())
5709          Diag(OldD->getLocation(), diag::note_previous_definition);
5710
5711        Invalid = true;
5712      }
5713
5714      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
5715        if (TemplateParameterListsAreEqual(TemplateParams,
5716                                           OldDecl->getTemplateParameters(),
5717                                           /*Complain=*/true,
5718                                           TPL_TemplateMatch))
5719          OldTemplateParams = OldDecl->getTemplateParameters();
5720        else
5721          Invalid = true;
5722
5723        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
5724        if (!Invalid &&
5725            !Context.hasSameType(OldTD->getUnderlyingType(),
5726                                 NewTD->getUnderlyingType())) {
5727          // FIXME: The C++0x standard does not clearly say this is ill-formed,
5728          // but we can't reasonably accept it.
5729          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
5730            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
5731          if (OldTD->getLocation().isValid())
5732            Diag(OldTD->getLocation(), diag::note_previous_definition);
5733          Invalid = true;
5734        }
5735      }
5736    }
5737
5738    // Merge any previous default template arguments into our parameters,
5739    // and check the parameter list.
5740    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
5741                                   TPC_TypeAliasTemplate))
5742      return 0;
5743
5744    TypeAliasTemplateDecl *NewDecl =
5745      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
5746                                    Name.Identifier, TemplateParams,
5747                                    NewTD);
5748
5749    NewDecl->setAccess(AS);
5750
5751    if (Invalid)
5752      NewDecl->setInvalidDecl();
5753    else if (OldDecl)
5754      NewDecl->setPreviousDeclaration(OldDecl);
5755
5756    NewND = NewDecl;
5757  } else {
5758    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
5759    NewND = NewTD;
5760  }
5761
5762  if (!Redeclaration)
5763    PushOnScopeChains(NewND, S);
5764
5765  return NewND;
5766}
5767
5768Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
5769                                             SourceLocation NamespaceLoc,
5770                                             SourceLocation AliasLoc,
5771                                             IdentifierInfo *Alias,
5772                                             CXXScopeSpec &SS,
5773                                             SourceLocation IdentLoc,
5774                                             IdentifierInfo *Ident) {
5775
5776  // Lookup the namespace name.
5777  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
5778  LookupParsedName(R, S, &SS);
5779
5780  // Check if we have a previous declaration with the same name.
5781  NamedDecl *PrevDecl
5782    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
5783                       ForRedeclaration);
5784  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
5785    PrevDecl = 0;
5786
5787  if (PrevDecl) {
5788    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
5789      // We already have an alias with the same name that points to the same
5790      // namespace, so don't create a new one.
5791      // FIXME: At some point, we'll want to create the (redundant)
5792      // declaration to maintain better source information.
5793      if (!R.isAmbiguous() && !R.empty() &&
5794          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
5795        return 0;
5796    }
5797
5798    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
5799      diag::err_redefinition_different_kind;
5800    Diag(AliasLoc, DiagID) << Alias;
5801    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5802    return 0;
5803  }
5804
5805  if (R.isAmbiguous())
5806    return 0;
5807
5808  if (R.empty()) {
5809    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
5810                                                CTC_NoKeywords, 0)) {
5811      if (R.getAsSingle<NamespaceDecl>() ||
5812          R.getAsSingle<NamespaceAliasDecl>()) {
5813        if (DeclContext *DC = computeDeclContext(SS, false))
5814          Diag(IdentLoc, diag::err_using_directive_member_suggest)
5815            << Ident << DC << Corrected << SS.getRange()
5816            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
5817        else
5818          Diag(IdentLoc, diag::err_using_directive_suggest)
5819            << Ident << Corrected
5820            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
5821
5822        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
5823          << Corrected;
5824
5825        Ident = Corrected.getAsIdentifierInfo();
5826      } else {
5827        R.clear();
5828        R.setLookupName(Ident);
5829      }
5830    }
5831
5832    if (R.empty()) {
5833      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
5834      return 0;
5835    }
5836  }
5837
5838  NamespaceAliasDecl *AliasDecl =
5839    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
5840                               Alias, SS.getWithLocInContext(Context),
5841                               IdentLoc, R.getFoundDecl());
5842
5843  PushOnScopeChains(AliasDecl, S);
5844  return AliasDecl;
5845}
5846
5847namespace {
5848  /// \brief Scoped object used to handle the state changes required in Sema
5849  /// to implicitly define the body of a C++ member function;
5850  class ImplicitlyDefinedFunctionScope {
5851    Sema &S;
5852    Sema::ContextRAII SavedContext;
5853
5854  public:
5855    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
5856      : S(S), SavedContext(S, Method)
5857    {
5858      S.PushFunctionScope();
5859      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
5860    }
5861
5862    ~ImplicitlyDefinedFunctionScope() {
5863      S.PopExpressionEvaluationContext();
5864      S.PopFunctionOrBlockScope();
5865    }
5866  };
5867}
5868
5869static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
5870                                                       CXXRecordDecl *D) {
5871  ASTContext &Context = Self.Context;
5872  QualType ClassType = Context.getTypeDeclType(D);
5873  DeclarationName ConstructorName
5874    = Context.DeclarationNames.getCXXConstructorName(
5875                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
5876
5877  DeclContext::lookup_const_iterator Con, ConEnd;
5878  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
5879       Con != ConEnd; ++Con) {
5880    // FIXME: In C++0x, a constructor template can be a default constructor.
5881    if (isa<FunctionTemplateDecl>(*Con))
5882      continue;
5883
5884    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
5885    if (Constructor->isDefaultConstructor())
5886      return Constructor;
5887  }
5888  return 0;
5889}
5890
5891Sema::ImplicitExceptionSpecification
5892Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
5893  // C++ [except.spec]p14:
5894  //   An implicitly declared special member function (Clause 12) shall have an
5895  //   exception-specification. [...]
5896  ImplicitExceptionSpecification ExceptSpec(Context);
5897
5898  // Direct base-class constructors.
5899  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
5900                                       BEnd = ClassDecl->bases_end();
5901       B != BEnd; ++B) {
5902    if (B->isVirtual()) // Handled below.
5903      continue;
5904
5905    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5906      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5907      if (BaseClassDecl->needsImplicitDefaultConstructor())
5908        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
5909      else if (CXXConstructorDecl *Constructor
5910                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
5911        ExceptSpec.CalledDecl(Constructor);
5912    }
5913  }
5914
5915  // Virtual base-class constructors.
5916  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
5917                                       BEnd = ClassDecl->vbases_end();
5918       B != BEnd; ++B) {
5919    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5920      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5921      if (BaseClassDecl->needsImplicitDefaultConstructor())
5922        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
5923      else if (CXXConstructorDecl *Constructor
5924                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
5925        ExceptSpec.CalledDecl(Constructor);
5926    }
5927  }
5928
5929  // Field constructors.
5930  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
5931                               FEnd = ClassDecl->field_end();
5932       F != FEnd; ++F) {
5933    if (const RecordType *RecordTy
5934              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
5935      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5936      if (FieldClassDecl->needsImplicitDefaultConstructor())
5937        ExceptSpec.CalledDecl(
5938                            DeclareImplicitDefaultConstructor(FieldClassDecl));
5939      else if (CXXConstructorDecl *Constructor
5940                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
5941        ExceptSpec.CalledDecl(Constructor);
5942    }
5943  }
5944
5945  return ExceptSpec;
5946}
5947
5948CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
5949                                                     CXXRecordDecl *ClassDecl) {
5950  // C++ [class.ctor]p5:
5951  //   A default constructor for a class X is a constructor of class X
5952  //   that can be called without an argument. If there is no
5953  //   user-declared constructor for class X, a default constructor is
5954  //   implicitly declared. An implicitly-declared default constructor
5955  //   is an inline public member of its class.
5956  assert(!ClassDecl->hasUserDeclaredConstructor() &&
5957         "Should not build implicit default constructor!");
5958
5959  ImplicitExceptionSpecification Spec =
5960    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
5961  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
5962
5963  // Create the actual constructor declaration.
5964  CanQualType ClassType
5965    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5966  SourceLocation ClassLoc = ClassDecl->getLocation();
5967  DeclarationName Name
5968    = Context.DeclarationNames.getCXXConstructorName(ClassType);
5969  DeclarationNameInfo NameInfo(Name, ClassLoc);
5970  CXXConstructorDecl *DefaultCon
5971    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
5972                                 Context.getFunctionType(Context.VoidTy,
5973                                                         0, 0, EPI),
5974                                 /*TInfo=*/0,
5975                                 /*isExplicit=*/false,
5976                                 /*isInline=*/true,
5977                                 /*isImplicitlyDeclared=*/true);
5978  DefaultCon->setAccess(AS_public);
5979  DefaultCon->setDefaulted();
5980  DefaultCon->setImplicit();
5981  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
5982
5983  // Note that we have declared this constructor.
5984  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
5985
5986  if (Scope *S = getScopeForContext(ClassDecl))
5987    PushOnScopeChains(DefaultCon, S, false);
5988  ClassDecl->addDecl(DefaultCon);
5989
5990  if (ShouldDeleteDefaultConstructor(DefaultCon))
5991    DefaultCon->setDeletedAsWritten();
5992
5993  return DefaultCon;
5994}
5995
5996void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
5997                                            CXXConstructorDecl *Constructor) {
5998  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5999          !Constructor->isUsed(false) && !Constructor->isDeleted()) &&
6000    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6001
6002  CXXRecordDecl *ClassDecl = Constructor->getParent();
6003  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6004
6005  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6006  DiagnosticErrorTrap Trap(Diags);
6007  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6008      Trap.hasErrorOccurred()) {
6009    Diag(CurrentLocation, diag::note_member_synthesized_at)
6010      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6011    Constructor->setInvalidDecl();
6012    return;
6013  }
6014
6015  SourceLocation Loc = Constructor->getLocation();
6016  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6017
6018  Constructor->setUsed();
6019  MarkVTableUsed(CurrentLocation, ClassDecl);
6020
6021  if (ASTMutationListener *L = getASTMutationListener()) {
6022    L->CompletedImplicitDefinition(Constructor);
6023  }
6024}
6025
6026void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6027  // We start with an initial pass over the base classes to collect those that
6028  // inherit constructors from. If there are none, we can forgo all further
6029  // processing.
6030  typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
6031  BasesVector BasesToInheritFrom;
6032  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6033                                          BaseE = ClassDecl->bases_end();
6034         BaseIt != BaseE; ++BaseIt) {
6035    if (BaseIt->getInheritConstructors()) {
6036      QualType Base = BaseIt->getType();
6037      if (Base->isDependentType()) {
6038        // If we inherit constructors from anything that is dependent, just
6039        // abort processing altogether. We'll get another chance for the
6040        // instantiations.
6041        return;
6042      }
6043      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6044    }
6045  }
6046  if (BasesToInheritFrom.empty())
6047    return;
6048
6049  // Now collect the constructors that we already have in the current class.
6050  // Those take precedence over inherited constructors.
6051  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6052  //   unless there is a user-declared constructor with the same signature in
6053  //   the class where the using-declaration appears.
6054  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6055  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6056                                    CtorE = ClassDecl->ctor_end();
6057       CtorIt != CtorE; ++CtorIt) {
6058    ExistingConstructors.insert(
6059        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6060  }
6061
6062  Scope *S = getScopeForContext(ClassDecl);
6063  DeclarationName CreatedCtorName =
6064      Context.DeclarationNames.getCXXConstructorName(
6065          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6066
6067  // Now comes the true work.
6068  // First, we keep a map from constructor types to the base that introduced
6069  // them. Needed for finding conflicting constructors. We also keep the
6070  // actually inserted declarations in there, for pretty diagnostics.
6071  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6072  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6073  ConstructorToSourceMap InheritedConstructors;
6074  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6075                             BaseE = BasesToInheritFrom.end();
6076       BaseIt != BaseE; ++BaseIt) {
6077    const RecordType *Base = *BaseIt;
6078    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6079    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6080    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6081                                      CtorE = BaseDecl->ctor_end();
6082         CtorIt != CtorE; ++CtorIt) {
6083      // Find the using declaration for inheriting this base's constructors.
6084      DeclarationName Name =
6085          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6086      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6087          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6088      SourceLocation UsingLoc = UD ? UD->getLocation() :
6089                                     ClassDecl->getLocation();
6090
6091      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6092      //   from the class X named in the using-declaration consists of actual
6093      //   constructors and notional constructors that result from the
6094      //   transformation of defaulted parameters as follows:
6095      //   - all non-template default constructors of X, and
6096      //   - for each non-template constructor of X that has at least one
6097      //     parameter with a default argument, the set of constructors that
6098      //     results from omitting any ellipsis parameter specification and
6099      //     successively omitting parameters with a default argument from the
6100      //     end of the parameter-type-list.
6101      CXXConstructorDecl *BaseCtor = *CtorIt;
6102      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6103      const FunctionProtoType *BaseCtorType =
6104          BaseCtor->getType()->getAs<FunctionProtoType>();
6105
6106      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6107                    maxParams = BaseCtor->getNumParams();
6108           params <= maxParams; ++params) {
6109        // Skip default constructors. They're never inherited.
6110        if (params == 0)
6111          continue;
6112        // Skip copy and move constructors for the same reason.
6113        if (CanBeCopyOrMove && params == 1)
6114          continue;
6115
6116        // Build up a function type for this particular constructor.
6117        // FIXME: The working paper does not consider that the exception spec
6118        // for the inheriting constructor might be larger than that of the
6119        // source. This code doesn't yet, either.
6120        const Type *NewCtorType;
6121        if (params == maxParams)
6122          NewCtorType = BaseCtorType;
6123        else {
6124          llvm::SmallVector<QualType, 16> Args;
6125          for (unsigned i = 0; i < params; ++i) {
6126            Args.push_back(BaseCtorType->getArgType(i));
6127          }
6128          FunctionProtoType::ExtProtoInfo ExtInfo =
6129              BaseCtorType->getExtProtoInfo();
6130          ExtInfo.Variadic = false;
6131          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6132                                                Args.data(), params, ExtInfo)
6133                       .getTypePtr();
6134        }
6135        const Type *CanonicalNewCtorType =
6136            Context.getCanonicalType(NewCtorType);
6137
6138        // Now that we have the type, first check if the class already has a
6139        // constructor with this signature.
6140        if (ExistingConstructors.count(CanonicalNewCtorType))
6141          continue;
6142
6143        // Then we check if we have already declared an inherited constructor
6144        // with this signature.
6145        std::pair<ConstructorToSourceMap::iterator, bool> result =
6146            InheritedConstructors.insert(std::make_pair(
6147                CanonicalNewCtorType,
6148                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
6149        if (!result.second) {
6150          // Already in the map. If it came from a different class, that's an
6151          // error. Not if it's from the same.
6152          CanQualType PreviousBase = result.first->second.first;
6153          if (CanonicalBase != PreviousBase) {
6154            const CXXConstructorDecl *PrevCtor = result.first->second.second;
6155            const CXXConstructorDecl *PrevBaseCtor =
6156                PrevCtor->getInheritedConstructor();
6157            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
6158
6159            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
6160            Diag(BaseCtor->getLocation(),
6161                 diag::note_using_decl_constructor_conflict_current_ctor);
6162            Diag(PrevBaseCtor->getLocation(),
6163                 diag::note_using_decl_constructor_conflict_previous_ctor);
6164            Diag(PrevCtor->getLocation(),
6165                 diag::note_using_decl_constructor_conflict_previous_using);
6166          }
6167          continue;
6168        }
6169
6170        // OK, we're there, now add the constructor.
6171        // C++0x [class.inhctor]p8: [...] that would be performed by a
6172        //   user-writtern inline constructor [...]
6173        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
6174        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
6175            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
6176            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
6177            /*ImplicitlyDeclared=*/true);
6178        NewCtor->setAccess(BaseCtor->getAccess());
6179
6180        // Build up the parameter decls and add them.
6181        llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
6182        for (unsigned i = 0; i < params; ++i) {
6183          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
6184                                                   UsingLoc, UsingLoc,
6185                                                   /*IdentifierInfo=*/0,
6186                                                   BaseCtorType->getArgType(i),
6187                                                   /*TInfo=*/0, SC_None,
6188                                                   SC_None, /*DefaultArg=*/0));
6189        }
6190        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
6191        NewCtor->setInheritedConstructor(BaseCtor);
6192
6193        PushOnScopeChains(NewCtor, S, false);
6194        ClassDecl->addDecl(NewCtor);
6195        result.first->second.second = NewCtor;
6196      }
6197    }
6198  }
6199}
6200
6201Sema::ImplicitExceptionSpecification
6202Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6203  // C++ [except.spec]p14:
6204  //   An implicitly declared special member function (Clause 12) shall have
6205  //   an exception-specification.
6206  ImplicitExceptionSpecification ExceptSpec(Context);
6207
6208  // Direct base-class destructors.
6209  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6210                                       BEnd = ClassDecl->bases_end();
6211       B != BEnd; ++B) {
6212    if (B->isVirtual()) // Handled below.
6213      continue;
6214
6215    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6216      ExceptSpec.CalledDecl(
6217                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6218  }
6219
6220  // Virtual base-class destructors.
6221  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6222                                       BEnd = ClassDecl->vbases_end();
6223       B != BEnd; ++B) {
6224    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6225      ExceptSpec.CalledDecl(
6226                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6227  }
6228
6229  // Field destructors.
6230  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6231                               FEnd = ClassDecl->field_end();
6232       F != FEnd; ++F) {
6233    if (const RecordType *RecordTy
6234        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
6235      ExceptSpec.CalledDecl(
6236                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
6237  }
6238
6239  return ExceptSpec;
6240}
6241
6242CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
6243  // C++ [class.dtor]p2:
6244  //   If a class has no user-declared destructor, a destructor is
6245  //   declared implicitly. An implicitly-declared destructor is an
6246  //   inline public member of its class.
6247
6248  ImplicitExceptionSpecification Spec =
6249      ComputeDefaultedDtorExceptionSpec(ClassDecl);
6250  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6251
6252  // Create the actual destructor declaration.
6253  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
6254
6255  CanQualType ClassType
6256    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6257  SourceLocation ClassLoc = ClassDecl->getLocation();
6258  DeclarationName Name
6259    = Context.DeclarationNames.getCXXDestructorName(ClassType);
6260  DeclarationNameInfo NameInfo(Name, ClassLoc);
6261  CXXDestructorDecl *Destructor
6262      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
6263                                  /*isInline=*/true,
6264                                  /*isImplicitlyDeclared=*/true);
6265  Destructor->setAccess(AS_public);
6266  Destructor->setDefaulted();
6267  Destructor->setImplicit();
6268  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
6269
6270  // Note that we have declared this destructor.
6271  ++ASTContext::NumImplicitDestructorsDeclared;
6272
6273  // Introduce this destructor into its scope.
6274  if (Scope *S = getScopeForContext(ClassDecl))
6275    PushOnScopeChains(Destructor, S, false);
6276  ClassDecl->addDecl(Destructor);
6277
6278  // This could be uniqued if it ever proves significant.
6279  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
6280
6281  if (ShouldDeleteDestructor(Destructor))
6282    Destructor->setDeletedAsWritten();
6283
6284  AddOverriddenMethods(ClassDecl, Destructor);
6285
6286  return Destructor;
6287}
6288
6289void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
6290                                    CXXDestructorDecl *Destructor) {
6291  assert((Destructor->isDefaulted() && !Destructor->isUsed(false)) &&
6292         "DefineImplicitDestructor - call it for implicit default dtor");
6293  CXXRecordDecl *ClassDecl = Destructor->getParent();
6294  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
6295
6296  if (Destructor->isInvalidDecl())
6297    return;
6298
6299  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
6300
6301  DiagnosticErrorTrap Trap(Diags);
6302  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6303                                         Destructor->getParent());
6304
6305  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
6306    Diag(CurrentLocation, diag::note_member_synthesized_at)
6307      << CXXDestructor << Context.getTagDeclType(ClassDecl);
6308
6309    Destructor->setInvalidDecl();
6310    return;
6311  }
6312
6313  SourceLocation Loc = Destructor->getLocation();
6314  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6315
6316  Destructor->setUsed();
6317  MarkVTableUsed(CurrentLocation, ClassDecl);
6318
6319  if (ASTMutationListener *L = getASTMutationListener()) {
6320    L->CompletedImplicitDefinition(Destructor);
6321  }
6322}
6323
6324void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
6325                                         CXXDestructorDecl *destructor) {
6326  // C++11 [class.dtor]p3:
6327  //   A declaration of a destructor that does not have an exception-
6328  //   specification is implicitly considered to have the same exception-
6329  //   specification as an implicit declaration.
6330  const FunctionProtoType *dtorType = destructor->getType()->
6331                                        getAs<FunctionProtoType>();
6332  if (dtorType->hasExceptionSpec())
6333    return;
6334
6335  ImplicitExceptionSpecification exceptSpec =
6336      ComputeDefaultedDtorExceptionSpec(classDecl);
6337
6338  // Replace the destructor's type.
6339  FunctionProtoType::ExtProtoInfo epi;
6340  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
6341  epi.NumExceptions = exceptSpec.size();
6342  epi.Exceptions = exceptSpec.data();
6343  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
6344
6345  destructor->setType(ty);
6346
6347  // FIXME: If the destructor has a body that could throw, and the newly created
6348  // spec doesn't allow exceptions, we should emit a warning, because this
6349  // change in behavior can break conforming C++03 programs at runtime.
6350  // However, we don't have a body yet, so it needs to be done somewhere else.
6351}
6352
6353/// \brief Builds a statement that copies the given entity from \p From to
6354/// \c To.
6355///
6356/// This routine is used to copy the members of a class with an
6357/// implicitly-declared copy assignment operator. When the entities being
6358/// copied are arrays, this routine builds for loops to copy them.
6359///
6360/// \param S The Sema object used for type-checking.
6361///
6362/// \param Loc The location where the implicit copy is being generated.
6363///
6364/// \param T The type of the expressions being copied. Both expressions must
6365/// have this type.
6366///
6367/// \param To The expression we are copying to.
6368///
6369/// \param From The expression we are copying from.
6370///
6371/// \param CopyingBaseSubobject Whether we're copying a base subobject.
6372/// Otherwise, it's a non-static member subobject.
6373///
6374/// \param Depth Internal parameter recording the depth of the recursion.
6375///
6376/// \returns A statement or a loop that copies the expressions.
6377static StmtResult
6378BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
6379                      Expr *To, Expr *From,
6380                      bool CopyingBaseSubobject, unsigned Depth = 0) {
6381  // C++0x [class.copy]p30:
6382  //   Each subobject is assigned in the manner appropriate to its type:
6383  //
6384  //     - if the subobject is of class type, the copy assignment operator
6385  //       for the class is used (as if by explicit qualification; that is,
6386  //       ignoring any possible virtual overriding functions in more derived
6387  //       classes);
6388  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
6389    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6390
6391    // Look for operator=.
6392    DeclarationName Name
6393      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6394    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
6395    S.LookupQualifiedName(OpLookup, ClassDecl, false);
6396
6397    // Filter out any result that isn't a copy-assignment operator.
6398    LookupResult::Filter F = OpLookup.makeFilter();
6399    while (F.hasNext()) {
6400      NamedDecl *D = F.next();
6401      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
6402        if (Method->isCopyAssignmentOperator())
6403          continue;
6404
6405      F.erase();
6406    }
6407    F.done();
6408
6409    // Suppress the protected check (C++ [class.protected]) for each of the
6410    // assignment operators we found. This strange dance is required when
6411    // we're assigning via a base classes's copy-assignment operator. To
6412    // ensure that we're getting the right base class subobject (without
6413    // ambiguities), we need to cast "this" to that subobject type; to
6414    // ensure that we don't go through the virtual call mechanism, we need
6415    // to qualify the operator= name with the base class (see below). However,
6416    // this means that if the base class has a protected copy assignment
6417    // operator, the protected member access check will fail. So, we
6418    // rewrite "protected" access to "public" access in this case, since we
6419    // know by construction that we're calling from a derived class.
6420    if (CopyingBaseSubobject) {
6421      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
6422           L != LEnd; ++L) {
6423        if (L.getAccess() == AS_protected)
6424          L.setAccess(AS_public);
6425      }
6426    }
6427
6428    // Create the nested-name-specifier that will be used to qualify the
6429    // reference to operator=; this is required to suppress the virtual
6430    // call mechanism.
6431    CXXScopeSpec SS;
6432    SS.MakeTrivial(S.Context,
6433                   NestedNameSpecifier::Create(S.Context, 0, false,
6434                                               T.getTypePtr()),
6435                   Loc);
6436
6437    // Create the reference to operator=.
6438    ExprResult OpEqualRef
6439      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
6440                                   /*FirstQualifierInScope=*/0, OpLookup,
6441                                   /*TemplateArgs=*/0,
6442                                   /*SuppressQualifierCheck=*/true);
6443    if (OpEqualRef.isInvalid())
6444      return StmtError();
6445
6446    // Build the call to the assignment operator.
6447
6448    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
6449                                                  OpEqualRef.takeAs<Expr>(),
6450                                                  Loc, &From, 1, Loc);
6451    if (Call.isInvalid())
6452      return StmtError();
6453
6454    return S.Owned(Call.takeAs<Stmt>());
6455  }
6456
6457  //     - if the subobject is of scalar type, the built-in assignment
6458  //       operator is used.
6459  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
6460  if (!ArrayTy) {
6461    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
6462    if (Assignment.isInvalid())
6463      return StmtError();
6464
6465    return S.Owned(Assignment.takeAs<Stmt>());
6466  }
6467
6468  //     - if the subobject is an array, each element is assigned, in the
6469  //       manner appropriate to the element type;
6470
6471  // Construct a loop over the array bounds, e.g.,
6472  //
6473  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
6474  //
6475  // that will copy each of the array elements.
6476  QualType SizeType = S.Context.getSizeType();
6477
6478  // Create the iteration variable.
6479  IdentifierInfo *IterationVarName = 0;
6480  {
6481    llvm::SmallString<8> Str;
6482    llvm::raw_svector_ostream OS(Str);
6483    OS << "__i" << Depth;
6484    IterationVarName = &S.Context.Idents.get(OS.str());
6485  }
6486  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
6487                                          IterationVarName, SizeType,
6488                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
6489                                          SC_None, SC_None);
6490
6491  // Initialize the iteration variable to zero.
6492  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
6493  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
6494
6495  // Create a reference to the iteration variable; we'll use this several
6496  // times throughout.
6497  Expr *IterationVarRef
6498    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
6499  assert(IterationVarRef && "Reference to invented variable cannot fail!");
6500
6501  // Create the DeclStmt that holds the iteration variable.
6502  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
6503
6504  // Create the comparison against the array bound.
6505  llvm::APInt Upper
6506    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
6507  Expr *Comparison
6508    = new (S.Context) BinaryOperator(IterationVarRef,
6509                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
6510                                     BO_NE, S.Context.BoolTy,
6511                                     VK_RValue, OK_Ordinary, Loc);
6512
6513  // Create the pre-increment of the iteration variable.
6514  Expr *Increment
6515    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
6516                                    VK_LValue, OK_Ordinary, Loc);
6517
6518  // Subscript the "from" and "to" expressions with the iteration variable.
6519  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
6520                                                         IterationVarRef, Loc));
6521  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
6522                                                       IterationVarRef, Loc));
6523
6524  // Build the copy for an individual element of the array.
6525  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
6526                                          To, From, CopyingBaseSubobject,
6527                                          Depth + 1);
6528  if (Copy.isInvalid())
6529    return StmtError();
6530
6531  // Construct the loop that copies all elements of this array.
6532  return S.ActOnForStmt(Loc, Loc, InitStmt,
6533                        S.MakeFullExpr(Comparison),
6534                        0, S.MakeFullExpr(Increment),
6535                        Loc, Copy.take());
6536}
6537
6538/// \brief Determine whether the given class has a copy assignment operator
6539/// that accepts a const-qualified argument.
6540static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
6541  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
6542
6543  if (!Class->hasDeclaredCopyAssignment())
6544    S.DeclareImplicitCopyAssignment(Class);
6545
6546  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
6547  DeclarationName OpName
6548    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6549
6550  DeclContext::lookup_const_iterator Op, OpEnd;
6551  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
6552    // C++ [class.copy]p9:
6553    //   A user-declared copy assignment operator is a non-static non-template
6554    //   member function of class X with exactly one parameter of type X, X&,
6555    //   const X&, volatile X& or const volatile X&.
6556    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
6557    if (!Method)
6558      continue;
6559
6560    if (Method->isStatic())
6561      continue;
6562    if (Method->getPrimaryTemplate())
6563      continue;
6564    const FunctionProtoType *FnType =
6565    Method->getType()->getAs<FunctionProtoType>();
6566    assert(FnType && "Overloaded operator has no prototype.");
6567    // Don't assert on this; an invalid decl might have been left in the AST.
6568    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
6569      continue;
6570    bool AcceptsConst = true;
6571    QualType ArgType = FnType->getArgType(0);
6572    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
6573      ArgType = Ref->getPointeeType();
6574      // Is it a non-const lvalue reference?
6575      if (!ArgType.isConstQualified())
6576        AcceptsConst = false;
6577    }
6578    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
6579      continue;
6580
6581    // We have a single argument of type cv X or cv X&, i.e. we've found the
6582    // copy assignment operator. Return whether it accepts const arguments.
6583    return AcceptsConst;
6584  }
6585  assert(Class->isInvalidDecl() &&
6586         "No copy assignment operator declared in valid code.");
6587  return false;
6588}
6589
6590std::pair<Sema::ImplicitExceptionSpecification, bool>
6591Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
6592                                                   CXXRecordDecl *ClassDecl) {
6593  // C++ [class.copy]p10:
6594  //   If the class definition does not explicitly declare a copy
6595  //   assignment operator, one is declared implicitly.
6596  //   The implicitly-defined copy assignment operator for a class X
6597  //   will have the form
6598  //
6599  //       X& X::operator=(const X&)
6600  //
6601  //   if
6602  bool HasConstCopyAssignment = true;
6603
6604  //       -- each direct base class B of X has a copy assignment operator
6605  //          whose parameter is of type const B&, const volatile B& or B,
6606  //          and
6607  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6608                                       BaseEnd = ClassDecl->bases_end();
6609       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
6610    assert(!Base->getType()->isDependentType() &&
6611           "Cannot generate implicit members for class with dependent bases.");
6612    const CXXRecordDecl *BaseClassDecl
6613      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6614    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
6615  }
6616
6617  //       -- for all the nonstatic data members of X that are of a class
6618  //          type M (or array thereof), each such class type has a copy
6619  //          assignment operator whose parameter is of type const M&,
6620  //          const volatile M& or M.
6621  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6622                                  FieldEnd = ClassDecl->field_end();
6623       HasConstCopyAssignment && Field != FieldEnd;
6624       ++Field) {
6625    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6626    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
6627      const CXXRecordDecl *FieldClassDecl
6628        = cast<CXXRecordDecl>(FieldClassType->getDecl());
6629      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
6630    }
6631  }
6632
6633  //   Otherwise, the implicitly declared copy assignment operator will
6634  //   have the form
6635  //
6636  //       X& X::operator=(X&)
6637
6638  // C++ [except.spec]p14:
6639  //   An implicitly declared special member function (Clause 12) shall have an
6640  //   exception-specification. [...]
6641  ImplicitExceptionSpecification ExceptSpec(Context);
6642  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6643                                       BaseEnd = ClassDecl->bases_end();
6644       Base != BaseEnd; ++Base) {
6645    CXXRecordDecl *BaseClassDecl
6646      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6647
6648    if (!BaseClassDecl->hasDeclaredCopyAssignment())
6649      DeclareImplicitCopyAssignment(BaseClassDecl);
6650
6651    if (CXXMethodDecl *CopyAssign
6652           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
6653      ExceptSpec.CalledDecl(CopyAssign);
6654  }
6655  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6656                                  FieldEnd = ClassDecl->field_end();
6657       Field != FieldEnd;
6658       ++Field) {
6659    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6660    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
6661      CXXRecordDecl *FieldClassDecl
6662        = cast<CXXRecordDecl>(FieldClassType->getDecl());
6663
6664      if (!FieldClassDecl->hasDeclaredCopyAssignment())
6665        DeclareImplicitCopyAssignment(FieldClassDecl);
6666
6667      if (CXXMethodDecl *CopyAssign
6668            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
6669        ExceptSpec.CalledDecl(CopyAssign);
6670    }
6671  }
6672
6673  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
6674}
6675
6676CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
6677  // Note: The following rules are largely analoguous to the copy
6678  // constructor rules. Note that virtual bases are not taken into account
6679  // for determining the argument type of the operator. Note also that
6680  // operators taking an object instead of a reference are allowed.
6681
6682  ImplicitExceptionSpecification Spec(Context);
6683  bool Const;
6684  llvm::tie(Spec, Const) =
6685    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
6686
6687  QualType ArgType = Context.getTypeDeclType(ClassDecl);
6688  QualType RetType = Context.getLValueReferenceType(ArgType);
6689  if (Const)
6690    ArgType = ArgType.withConst();
6691  ArgType = Context.getLValueReferenceType(ArgType);
6692
6693  //   An implicitly-declared copy assignment operator is an inline public
6694  //   member of its class.
6695  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6696  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6697  SourceLocation ClassLoc = ClassDecl->getLocation();
6698  DeclarationNameInfo NameInfo(Name, ClassLoc);
6699  CXXMethodDecl *CopyAssignment
6700    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6701                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
6702                            /*TInfo=*/0, /*isStatic=*/false,
6703                            /*StorageClassAsWritten=*/SC_None,
6704                            /*isInline=*/true,
6705                            SourceLocation());
6706  CopyAssignment->setAccess(AS_public);
6707  CopyAssignment->setDefaulted();
6708  CopyAssignment->setImplicit();
6709  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
6710
6711  // Add the parameter to the operator.
6712  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
6713                                               ClassLoc, ClassLoc, /*Id=*/0,
6714                                               ArgType, /*TInfo=*/0,
6715                                               SC_None,
6716                                               SC_None, 0);
6717  CopyAssignment->setParams(&FromParam, 1);
6718
6719  // Note that we have added this copy-assignment operator.
6720  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
6721
6722  if (Scope *S = getScopeForContext(ClassDecl))
6723    PushOnScopeChains(CopyAssignment, S, false);
6724  ClassDecl->addDecl(CopyAssignment);
6725
6726  if (ShouldDeleteCopyAssignmentOperator(CopyAssignment))
6727    CopyAssignment->setDeletedAsWritten();
6728
6729  AddOverriddenMethods(ClassDecl, CopyAssignment);
6730  return CopyAssignment;
6731}
6732
6733void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
6734                                        CXXMethodDecl *CopyAssignOperator) {
6735  assert((CopyAssignOperator->isDefaulted() &&
6736          CopyAssignOperator->isOverloadedOperator() &&
6737          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
6738          !CopyAssignOperator->isUsed(false)) &&
6739         "DefineImplicitCopyAssignment called for wrong function");
6740
6741  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
6742
6743  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
6744    CopyAssignOperator->setInvalidDecl();
6745    return;
6746  }
6747
6748  CopyAssignOperator->setUsed();
6749
6750  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
6751  DiagnosticErrorTrap Trap(Diags);
6752
6753  // C++0x [class.copy]p30:
6754  //   The implicitly-defined or explicitly-defaulted copy assignment operator
6755  //   for a non-union class X performs memberwise copy assignment of its
6756  //   subobjects. The direct base classes of X are assigned first, in the
6757  //   order of their declaration in the base-specifier-list, and then the
6758  //   immediate non-static data members of X are assigned, in the order in
6759  //   which they were declared in the class definition.
6760
6761  // The statements that form the synthesized function body.
6762  ASTOwningVector<Stmt*> Statements(*this);
6763
6764  // The parameter for the "other" object, which we are copying from.
6765  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
6766  Qualifiers OtherQuals = Other->getType().getQualifiers();
6767  QualType OtherRefType = Other->getType();
6768  if (const LValueReferenceType *OtherRef
6769                                = OtherRefType->getAs<LValueReferenceType>()) {
6770    OtherRefType = OtherRef->getPointeeType();
6771    OtherQuals = OtherRefType.getQualifiers();
6772  }
6773
6774  // Our location for everything implicitly-generated.
6775  SourceLocation Loc = CopyAssignOperator->getLocation();
6776
6777  // Construct a reference to the "other" object. We'll be using this
6778  // throughout the generated ASTs.
6779  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
6780  assert(OtherRef && "Reference to parameter cannot fail!");
6781
6782  // Construct the "this" pointer. We'll be using this throughout the generated
6783  // ASTs.
6784  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
6785  assert(This && "Reference to this cannot fail!");
6786
6787  // Assign base classes.
6788  bool Invalid = false;
6789  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6790       E = ClassDecl->bases_end(); Base != E; ++Base) {
6791    // Form the assignment:
6792    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
6793    QualType BaseType = Base->getType().getUnqualifiedType();
6794    if (!BaseType->isRecordType()) {
6795      Invalid = true;
6796      continue;
6797    }
6798
6799    CXXCastPath BasePath;
6800    BasePath.push_back(Base);
6801
6802    // Construct the "from" expression, which is an implicit cast to the
6803    // appropriately-qualified base type.
6804    Expr *From = OtherRef;
6805    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
6806                             CK_UncheckedDerivedToBase,
6807                             VK_LValue, &BasePath).take();
6808
6809    // Dereference "this".
6810    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
6811
6812    // Implicitly cast "this" to the appropriately-qualified base type.
6813    To = ImpCastExprToType(To.take(),
6814                           Context.getCVRQualifiedType(BaseType,
6815                                     CopyAssignOperator->getTypeQualifiers()),
6816                           CK_UncheckedDerivedToBase,
6817                           VK_LValue, &BasePath);
6818
6819    // Build the copy.
6820    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
6821                                            To.get(), From,
6822                                            /*CopyingBaseSubobject=*/true);
6823    if (Copy.isInvalid()) {
6824      Diag(CurrentLocation, diag::note_member_synthesized_at)
6825        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6826      CopyAssignOperator->setInvalidDecl();
6827      return;
6828    }
6829
6830    // Success! Record the copy.
6831    Statements.push_back(Copy.takeAs<Expr>());
6832  }
6833
6834  // \brief Reference to the __builtin_memcpy function.
6835  Expr *BuiltinMemCpyRef = 0;
6836  // \brief Reference to the __builtin_objc_memmove_collectable function.
6837  Expr *CollectableMemCpyRef = 0;
6838
6839  // Assign non-static members.
6840  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6841                                  FieldEnd = ClassDecl->field_end();
6842       Field != FieldEnd; ++Field) {
6843    // Check for members of reference type; we can't copy those.
6844    if (Field->getType()->isReferenceType()) {
6845      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6846        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
6847      Diag(Field->getLocation(), diag::note_declared_at);
6848      Diag(CurrentLocation, diag::note_member_synthesized_at)
6849        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6850      Invalid = true;
6851      continue;
6852    }
6853
6854    // Check for members of const-qualified, non-class type.
6855    QualType BaseType = Context.getBaseElementType(Field->getType());
6856    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
6857      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6858        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
6859      Diag(Field->getLocation(), diag::note_declared_at);
6860      Diag(CurrentLocation, diag::note_member_synthesized_at)
6861        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6862      Invalid = true;
6863      continue;
6864    }
6865
6866    QualType FieldType = Field->getType().getNonReferenceType();
6867    if (FieldType->isIncompleteArrayType()) {
6868      assert(ClassDecl->hasFlexibleArrayMember() &&
6869             "Incomplete array type is not valid");
6870      continue;
6871    }
6872
6873    // Build references to the field in the object we're copying from and to.
6874    CXXScopeSpec SS; // Intentionally empty
6875    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
6876                              LookupMemberName);
6877    MemberLookup.addDecl(*Field);
6878    MemberLookup.resolveKind();
6879    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
6880                                               Loc, /*IsArrow=*/false,
6881                                               SS, 0, MemberLookup, 0);
6882    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
6883                                             Loc, /*IsArrow=*/true,
6884                                             SS, 0, MemberLookup, 0);
6885    assert(!From.isInvalid() && "Implicit field reference cannot fail");
6886    assert(!To.isInvalid() && "Implicit field reference cannot fail");
6887
6888    // If the field should be copied with __builtin_memcpy rather than via
6889    // explicit assignments, do so. This optimization only applies for arrays
6890    // of scalars and arrays of class type with trivial copy-assignment
6891    // operators.
6892    if (FieldType->isArrayType() &&
6893        (!BaseType->isRecordType() ||
6894         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
6895           ->hasTrivialCopyAssignment())) {
6896      // Compute the size of the memory buffer to be copied.
6897      QualType SizeType = Context.getSizeType();
6898      llvm::APInt Size(Context.getTypeSize(SizeType),
6899                       Context.getTypeSizeInChars(BaseType).getQuantity());
6900      for (const ConstantArrayType *Array
6901              = Context.getAsConstantArrayType(FieldType);
6902           Array;
6903           Array = Context.getAsConstantArrayType(Array->getElementType())) {
6904        llvm::APInt ArraySize
6905          = Array->getSize().zextOrTrunc(Size.getBitWidth());
6906        Size *= ArraySize;
6907      }
6908
6909      // Take the address of the field references for "from" and "to".
6910      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
6911      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
6912
6913      bool NeedsCollectableMemCpy =
6914          (BaseType->isRecordType() &&
6915           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
6916
6917      if (NeedsCollectableMemCpy) {
6918        if (!CollectableMemCpyRef) {
6919          // Create a reference to the __builtin_objc_memmove_collectable function.
6920          LookupResult R(*this,
6921                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
6922                         Loc, LookupOrdinaryName);
6923          LookupName(R, TUScope, true);
6924
6925          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
6926          if (!CollectableMemCpy) {
6927            // Something went horribly wrong earlier, and we will have
6928            // complained about it.
6929            Invalid = true;
6930            continue;
6931          }
6932
6933          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
6934                                                  CollectableMemCpy->getType(),
6935                                                  VK_LValue, Loc, 0).take();
6936          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
6937        }
6938      }
6939      // Create a reference to the __builtin_memcpy builtin function.
6940      else if (!BuiltinMemCpyRef) {
6941        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
6942                       LookupOrdinaryName);
6943        LookupName(R, TUScope, true);
6944
6945        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
6946        if (!BuiltinMemCpy) {
6947          // Something went horribly wrong earlier, and we will have complained
6948          // about it.
6949          Invalid = true;
6950          continue;
6951        }
6952
6953        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
6954                                            BuiltinMemCpy->getType(),
6955                                            VK_LValue, Loc, 0).take();
6956        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
6957      }
6958
6959      ASTOwningVector<Expr*> CallArgs(*this);
6960      CallArgs.push_back(To.takeAs<Expr>());
6961      CallArgs.push_back(From.takeAs<Expr>());
6962      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
6963      ExprResult Call = ExprError();
6964      if (NeedsCollectableMemCpy)
6965        Call = ActOnCallExpr(/*Scope=*/0,
6966                             CollectableMemCpyRef,
6967                             Loc, move_arg(CallArgs),
6968                             Loc);
6969      else
6970        Call = ActOnCallExpr(/*Scope=*/0,
6971                             BuiltinMemCpyRef,
6972                             Loc, move_arg(CallArgs),
6973                             Loc);
6974
6975      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
6976      Statements.push_back(Call.takeAs<Expr>());
6977      continue;
6978    }
6979
6980    // Build the copy of this field.
6981    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
6982                                                  To.get(), From.get(),
6983                                              /*CopyingBaseSubobject=*/false);
6984    if (Copy.isInvalid()) {
6985      Diag(CurrentLocation, diag::note_member_synthesized_at)
6986        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6987      CopyAssignOperator->setInvalidDecl();
6988      return;
6989    }
6990
6991    // Success! Record the copy.
6992    Statements.push_back(Copy.takeAs<Stmt>());
6993  }
6994
6995  if (!Invalid) {
6996    // Add a "return *this;"
6997    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
6998
6999    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7000    if (Return.isInvalid())
7001      Invalid = true;
7002    else {
7003      Statements.push_back(Return.takeAs<Stmt>());
7004
7005      if (Trap.hasErrorOccurred()) {
7006        Diag(CurrentLocation, diag::note_member_synthesized_at)
7007          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7008        Invalid = true;
7009      }
7010    }
7011  }
7012
7013  if (Invalid) {
7014    CopyAssignOperator->setInvalidDecl();
7015    return;
7016  }
7017
7018  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7019                                            /*isStmtExpr=*/false);
7020  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7021  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7022
7023  if (ASTMutationListener *L = getASTMutationListener()) {
7024    L->CompletedImplicitDefinition(CopyAssignOperator);
7025  }
7026}
7027
7028std::pair<Sema::ImplicitExceptionSpecification, bool>
7029Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
7030  // C++ [class.copy]p5:
7031  //   The implicitly-declared copy constructor for a class X will
7032  //   have the form
7033  //
7034  //       X::X(const X&)
7035  //
7036  //   if
7037  bool HasConstCopyConstructor = true;
7038
7039  //     -- each direct or virtual base class B of X has a copy
7040  //        constructor whose first parameter is of type const B& or
7041  //        const volatile B&, and
7042  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7043                                       BaseEnd = ClassDecl->bases_end();
7044       HasConstCopyConstructor && Base != BaseEnd;
7045       ++Base) {
7046    // Virtual bases are handled below.
7047    if (Base->isVirtual())
7048      continue;
7049
7050    CXXRecordDecl *BaseClassDecl
7051      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7052    if (!BaseClassDecl->hasDeclaredCopyConstructor())
7053      DeclareImplicitCopyConstructor(BaseClassDecl);
7054
7055    HasConstCopyConstructor
7056      = BaseClassDecl->hasConstCopyConstructor(Context);
7057  }
7058
7059  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7060                                       BaseEnd = ClassDecl->vbases_end();
7061       HasConstCopyConstructor && Base != BaseEnd;
7062       ++Base) {
7063    CXXRecordDecl *BaseClassDecl
7064      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7065    if (!BaseClassDecl->hasDeclaredCopyConstructor())
7066      DeclareImplicitCopyConstructor(BaseClassDecl);
7067
7068    HasConstCopyConstructor
7069      = BaseClassDecl->hasConstCopyConstructor(Context);
7070  }
7071
7072  //     -- for all the nonstatic data members of X that are of a
7073  //        class type M (or array thereof), each such class type
7074  //        has a copy constructor whose first parameter is of type
7075  //        const M& or const volatile M&.
7076  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7077                                  FieldEnd = ClassDecl->field_end();
7078       HasConstCopyConstructor && Field != FieldEnd;
7079       ++Field) {
7080    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7081    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
7082      CXXRecordDecl *FieldClassDecl
7083        = cast<CXXRecordDecl>(FieldClassType->getDecl());
7084      if (!FieldClassDecl->hasDeclaredCopyConstructor())
7085        DeclareImplicitCopyConstructor(FieldClassDecl);
7086
7087      HasConstCopyConstructor
7088        = FieldClassDecl->hasConstCopyConstructor(Context);
7089    }
7090  }
7091  //   Otherwise, the implicitly declared copy constructor will have
7092  //   the form
7093  //
7094  //       X::X(X&)
7095
7096  // C++ [except.spec]p14:
7097  //   An implicitly declared special member function (Clause 12) shall have an
7098  //   exception-specification. [...]
7099  ImplicitExceptionSpecification ExceptSpec(Context);
7100  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
7101  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7102                                       BaseEnd = ClassDecl->bases_end();
7103       Base != BaseEnd;
7104       ++Base) {
7105    // Virtual bases are handled below.
7106    if (Base->isVirtual())
7107      continue;
7108
7109    CXXRecordDecl *BaseClassDecl
7110      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7111    if (!BaseClassDecl->hasDeclaredCopyConstructor())
7112      DeclareImplicitCopyConstructor(BaseClassDecl);
7113
7114    if (CXXConstructorDecl *CopyConstructor
7115                          = BaseClassDecl->getCopyConstructor(Context, Quals))
7116      ExceptSpec.CalledDecl(CopyConstructor);
7117  }
7118  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7119                                       BaseEnd = ClassDecl->vbases_end();
7120       Base != BaseEnd;
7121       ++Base) {
7122    CXXRecordDecl *BaseClassDecl
7123      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7124    if (!BaseClassDecl->hasDeclaredCopyConstructor())
7125      DeclareImplicitCopyConstructor(BaseClassDecl);
7126
7127    if (CXXConstructorDecl *CopyConstructor
7128                          = BaseClassDecl->getCopyConstructor(Context, Quals))
7129      ExceptSpec.CalledDecl(CopyConstructor);
7130  }
7131  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7132                                  FieldEnd = ClassDecl->field_end();
7133       Field != FieldEnd;
7134       ++Field) {
7135    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7136    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
7137      CXXRecordDecl *FieldClassDecl
7138        = cast<CXXRecordDecl>(FieldClassType->getDecl());
7139      if (!FieldClassDecl->hasDeclaredCopyConstructor())
7140        DeclareImplicitCopyConstructor(FieldClassDecl);
7141
7142      if (CXXConstructorDecl *CopyConstructor
7143                          = FieldClassDecl->getCopyConstructor(Context, Quals))
7144        ExceptSpec.CalledDecl(CopyConstructor);
7145    }
7146  }
7147
7148  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
7149}
7150
7151CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
7152                                                    CXXRecordDecl *ClassDecl) {
7153  // C++ [class.copy]p4:
7154  //   If the class definition does not explicitly declare a copy
7155  //   constructor, one is declared implicitly.
7156
7157  ImplicitExceptionSpecification Spec(Context);
7158  bool Const;
7159  llvm::tie(Spec, Const) =
7160    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
7161
7162  QualType ClassType = Context.getTypeDeclType(ClassDecl);
7163  QualType ArgType = ClassType;
7164  if (Const)
7165    ArgType = ArgType.withConst();
7166  ArgType = Context.getLValueReferenceType(ArgType);
7167
7168  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7169
7170  DeclarationName Name
7171    = Context.DeclarationNames.getCXXConstructorName(
7172                                           Context.getCanonicalType(ClassType));
7173  SourceLocation ClassLoc = ClassDecl->getLocation();
7174  DeclarationNameInfo NameInfo(Name, ClassLoc);
7175
7176  //   An implicitly-declared copy constructor is an inline public
7177  //   member of its class.
7178  CXXConstructorDecl *CopyConstructor
7179    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7180                                 Context.getFunctionType(Context.VoidTy,
7181                                                         &ArgType, 1, EPI),
7182                                 /*TInfo=*/0,
7183                                 /*isExplicit=*/false,
7184                                 /*isInline=*/true,
7185                                 /*isImplicitlyDeclared=*/true);
7186  CopyConstructor->setAccess(AS_public);
7187  CopyConstructor->setDefaulted();
7188  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
7189
7190  // Note that we have declared this constructor.
7191  ++ASTContext::NumImplicitCopyConstructorsDeclared;
7192
7193  // Add the parameter to the constructor.
7194  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
7195                                               ClassLoc, ClassLoc,
7196                                               /*IdentifierInfo=*/0,
7197                                               ArgType, /*TInfo=*/0,
7198                                               SC_None,
7199                                               SC_None, 0);
7200  CopyConstructor->setParams(&FromParam, 1);
7201
7202  if (Scope *S = getScopeForContext(ClassDecl))
7203    PushOnScopeChains(CopyConstructor, S, false);
7204  ClassDecl->addDecl(CopyConstructor);
7205
7206  if (ShouldDeleteCopyConstructor(CopyConstructor))
7207    CopyConstructor->setDeletedAsWritten();
7208
7209  return CopyConstructor;
7210}
7211
7212void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
7213                                   CXXConstructorDecl *CopyConstructor) {
7214  assert((CopyConstructor->isDefaulted() &&
7215          CopyConstructor->isCopyConstructor() &&
7216          !CopyConstructor->isUsed(false)) &&
7217         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
7218
7219  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
7220  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
7221
7222  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
7223  DiagnosticErrorTrap Trap(Diags);
7224
7225  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
7226      Trap.hasErrorOccurred()) {
7227    Diag(CurrentLocation, diag::note_member_synthesized_at)
7228      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
7229    CopyConstructor->setInvalidDecl();
7230  }  else {
7231    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
7232                                               CopyConstructor->getLocation(),
7233                                               MultiStmtArg(*this, 0, 0),
7234                                               /*isStmtExpr=*/false)
7235                                                              .takeAs<Stmt>());
7236  }
7237
7238  CopyConstructor->setUsed();
7239
7240  if (ASTMutationListener *L = getASTMutationListener()) {
7241    L->CompletedImplicitDefinition(CopyConstructor);
7242  }
7243}
7244
7245ExprResult
7246Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7247                            CXXConstructorDecl *Constructor,
7248                            MultiExprArg ExprArgs,
7249                            bool RequiresZeroInit,
7250                            unsigned ConstructKind,
7251                            SourceRange ParenRange) {
7252  bool Elidable = false;
7253
7254  // C++0x [class.copy]p34:
7255  //   When certain criteria are met, an implementation is allowed to
7256  //   omit the copy/move construction of a class object, even if the
7257  //   copy/move constructor and/or destructor for the object have
7258  //   side effects. [...]
7259  //     - when a temporary class object that has not been bound to a
7260  //       reference (12.2) would be copied/moved to a class object
7261  //       with the same cv-unqualified type, the copy/move operation
7262  //       can be omitted by constructing the temporary object
7263  //       directly into the target of the omitted copy/move
7264  if (ConstructKind == CXXConstructExpr::CK_Complete &&
7265      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
7266    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
7267    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
7268  }
7269
7270  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
7271                               Elidable, move(ExprArgs), RequiresZeroInit,
7272                               ConstructKind, ParenRange);
7273}
7274
7275/// BuildCXXConstructExpr - Creates a complete call to a constructor,
7276/// including handling of its default argument expressions.
7277ExprResult
7278Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7279                            CXXConstructorDecl *Constructor, bool Elidable,
7280                            MultiExprArg ExprArgs,
7281                            bool RequiresZeroInit,
7282                            unsigned ConstructKind,
7283                            SourceRange ParenRange) {
7284  unsigned NumExprs = ExprArgs.size();
7285  Expr **Exprs = (Expr **)ExprArgs.release();
7286
7287  for (specific_attr_iterator<NonNullAttr>
7288           i = Constructor->specific_attr_begin<NonNullAttr>(),
7289           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
7290    const NonNullAttr *NonNull = *i;
7291    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
7292  }
7293
7294  MarkDeclarationReferenced(ConstructLoc, Constructor);
7295  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
7296                                        Constructor, Elidable, Exprs, NumExprs,
7297                                        RequiresZeroInit,
7298              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
7299                                        ParenRange));
7300}
7301
7302bool Sema::InitializeVarWithConstructor(VarDecl *VD,
7303                                        CXXConstructorDecl *Constructor,
7304                                        MultiExprArg Exprs) {
7305  // FIXME: Provide the correct paren SourceRange when available.
7306  ExprResult TempResult =
7307    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
7308                          move(Exprs), false, CXXConstructExpr::CK_Complete,
7309                          SourceRange());
7310  if (TempResult.isInvalid())
7311    return true;
7312
7313  Expr *Temp = TempResult.takeAs<Expr>();
7314  CheckImplicitConversions(Temp, VD->getLocation());
7315  MarkDeclarationReferenced(VD->getLocation(), Constructor);
7316  Temp = MaybeCreateExprWithCleanups(Temp);
7317  VD->setInit(Temp);
7318
7319  return false;
7320}
7321
7322void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
7323  if (VD->isInvalidDecl()) return;
7324
7325  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
7326  if (ClassDecl->isInvalidDecl()) return;
7327  if (ClassDecl->hasTrivialDestructor()) return;
7328  if (ClassDecl->isDependentContext()) return;
7329
7330  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
7331  MarkDeclarationReferenced(VD->getLocation(), Destructor);
7332  CheckDestructorAccess(VD->getLocation(), Destructor,
7333                        PDiag(diag::err_access_dtor_var)
7334                        << VD->getDeclName()
7335                        << VD->getType());
7336
7337  if (!VD->hasGlobalStorage()) return;
7338
7339  // Emit warning for non-trivial dtor in global scope (a real global,
7340  // class-static, function-static).
7341  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
7342
7343  // TODO: this should be re-enabled for static locals by !CXAAtExit
7344  if (!VD->isStaticLocal())
7345    Diag(VD->getLocation(), diag::warn_global_destructor);
7346}
7347
7348/// AddCXXDirectInitializerToDecl - This action is called immediately after
7349/// ActOnDeclarator, when a C++ direct initializer is present.
7350/// e.g: "int x(1);"
7351void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
7352                                         SourceLocation LParenLoc,
7353                                         MultiExprArg Exprs,
7354                                         SourceLocation RParenLoc,
7355                                         bool TypeMayContainAuto) {
7356  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
7357
7358  // If there is no declaration, there was an error parsing it.  Just ignore
7359  // the initializer.
7360  if (RealDecl == 0)
7361    return;
7362
7363  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7364  if (!VDecl) {
7365    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7366    RealDecl->setInvalidDecl();
7367    return;
7368  }
7369
7370  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7371  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
7372    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
7373    if (Exprs.size() > 1) {
7374      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
7375           diag::err_auto_var_init_multiple_expressions)
7376        << VDecl->getDeclName() << VDecl->getType()
7377        << VDecl->getSourceRange();
7378      RealDecl->setInvalidDecl();
7379      return;
7380    }
7381
7382    Expr *Init = Exprs.get()[0];
7383    TypeSourceInfo *DeducedType = 0;
7384    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
7385      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
7386        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
7387        << Init->getSourceRange();
7388    if (!DeducedType) {
7389      RealDecl->setInvalidDecl();
7390      return;
7391    }
7392    VDecl->setTypeSourceInfo(DeducedType);
7393    VDecl->setType(DeducedType->getType());
7394
7395    // If this is a redeclaration, check that the type we just deduced matches
7396    // the previously declared type.
7397    if (VarDecl *Old = VDecl->getPreviousDeclaration())
7398      MergeVarDeclTypes(VDecl, Old);
7399  }
7400
7401  // We will represent direct-initialization similarly to copy-initialization:
7402  //    int x(1);  -as-> int x = 1;
7403  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7404  //
7405  // Clients that want to distinguish between the two forms, can check for
7406  // direct initializer using VarDecl::hasCXXDirectInitializer().
7407  // A major benefit is that clients that don't particularly care about which
7408  // exactly form was it (like the CodeGen) can handle both cases without
7409  // special case code.
7410
7411  // C++ 8.5p11:
7412  // The form of initialization (using parentheses or '=') is generally
7413  // insignificant, but does matter when the entity being initialized has a
7414  // class type.
7415
7416  if (!VDecl->getType()->isDependentType() &&
7417      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
7418                          diag::err_typecheck_decl_incomplete_type)) {
7419    VDecl->setInvalidDecl();
7420    return;
7421  }
7422
7423  // The variable can not have an abstract class type.
7424  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7425                             diag::err_abstract_type_in_decl,
7426                             AbstractVariableType))
7427    VDecl->setInvalidDecl();
7428
7429  const VarDecl *Def;
7430  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7431    Diag(VDecl->getLocation(), diag::err_redefinition)
7432    << VDecl->getDeclName();
7433    Diag(Def->getLocation(), diag::note_previous_definition);
7434    VDecl->setInvalidDecl();
7435    return;
7436  }
7437
7438  // C++ [class.static.data]p4
7439  //   If a static data member is of const integral or const
7440  //   enumeration type, its declaration in the class definition can
7441  //   specify a constant-initializer which shall be an integral
7442  //   constant expression (5.19). In that case, the member can appear
7443  //   in integral constant expressions. The member shall still be
7444  //   defined in a namespace scope if it is used in the program and the
7445  //   namespace scope definition shall not contain an initializer.
7446  //
7447  // We already performed a redefinition check above, but for static
7448  // data members we also need to check whether there was an in-class
7449  // declaration with an initializer.
7450  const VarDecl* PrevInit = 0;
7451  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7452    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
7453    Diag(PrevInit->getLocation(), diag::note_previous_definition);
7454    return;
7455  }
7456
7457  bool IsDependent = false;
7458  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
7459    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
7460      VDecl->setInvalidDecl();
7461      return;
7462    }
7463
7464    if (Exprs.get()[I]->isTypeDependent())
7465      IsDependent = true;
7466  }
7467
7468  // If either the declaration has a dependent type or if any of the
7469  // expressions is type-dependent, we represent the initialization
7470  // via a ParenListExpr for later use during template instantiation.
7471  if (VDecl->getType()->isDependentType() || IsDependent) {
7472    // Let clients know that initialization was done with a direct initializer.
7473    VDecl->setCXXDirectInitializer(true);
7474
7475    // Store the initialization expressions as a ParenListExpr.
7476    unsigned NumExprs = Exprs.size();
7477    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
7478                                               (Expr **)Exprs.release(),
7479                                               NumExprs, RParenLoc));
7480    return;
7481  }
7482
7483  // Capture the variable that is being initialized and the style of
7484  // initialization.
7485  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7486
7487  // FIXME: Poor source location information.
7488  InitializationKind Kind
7489    = InitializationKind::CreateDirect(VDecl->getLocation(),
7490                                       LParenLoc, RParenLoc);
7491
7492  InitializationSequence InitSeq(*this, Entity, Kind,
7493                                 Exprs.get(), Exprs.size());
7494  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
7495  if (Result.isInvalid()) {
7496    VDecl->setInvalidDecl();
7497    return;
7498  }
7499
7500  CheckImplicitConversions(Result.get(), LParenLoc);
7501
7502  Result = MaybeCreateExprWithCleanups(Result);
7503  VDecl->setInit(Result.takeAs<Expr>());
7504  VDecl->setCXXDirectInitializer(true);
7505
7506  CheckCompleteVariableDeclaration(VDecl);
7507}
7508
7509/// \brief Given a constructor and the set of arguments provided for the
7510/// constructor, convert the arguments and add any required default arguments
7511/// to form a proper call to this constructor.
7512///
7513/// \returns true if an error occurred, false otherwise.
7514bool
7515Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
7516                              MultiExprArg ArgsPtr,
7517                              SourceLocation Loc,
7518                              ASTOwningVector<Expr*> &ConvertedArgs) {
7519  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
7520  unsigned NumArgs = ArgsPtr.size();
7521  Expr **Args = (Expr **)ArgsPtr.get();
7522
7523  const FunctionProtoType *Proto
7524    = Constructor->getType()->getAs<FunctionProtoType>();
7525  assert(Proto && "Constructor without a prototype?");
7526  unsigned NumArgsInProto = Proto->getNumArgs();
7527
7528  // If too few arguments are available, we'll fill in the rest with defaults.
7529  if (NumArgs < NumArgsInProto)
7530    ConvertedArgs.reserve(NumArgsInProto);
7531  else
7532    ConvertedArgs.reserve(NumArgs);
7533
7534  VariadicCallType CallType =
7535    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
7536  llvm::SmallVector<Expr *, 8> AllArgs;
7537  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
7538                                        Proto, 0, Args, NumArgs, AllArgs,
7539                                        CallType);
7540  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
7541    ConvertedArgs.push_back(AllArgs[i]);
7542  return Invalid;
7543}
7544
7545static inline bool
7546CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
7547                                       const FunctionDecl *FnDecl) {
7548  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
7549  if (isa<NamespaceDecl>(DC)) {
7550    return SemaRef.Diag(FnDecl->getLocation(),
7551                        diag::err_operator_new_delete_declared_in_namespace)
7552      << FnDecl->getDeclName();
7553  }
7554
7555  if (isa<TranslationUnitDecl>(DC) &&
7556      FnDecl->getStorageClass() == SC_Static) {
7557    return SemaRef.Diag(FnDecl->getLocation(),
7558                        diag::err_operator_new_delete_declared_static)
7559      << FnDecl->getDeclName();
7560  }
7561
7562  return false;
7563}
7564
7565static inline bool
7566CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
7567                            CanQualType ExpectedResultType,
7568                            CanQualType ExpectedFirstParamType,
7569                            unsigned DependentParamTypeDiag,
7570                            unsigned InvalidParamTypeDiag) {
7571  QualType ResultType =
7572    FnDecl->getType()->getAs<FunctionType>()->getResultType();
7573
7574  // Check that the result type is not dependent.
7575  if (ResultType->isDependentType())
7576    return SemaRef.Diag(FnDecl->getLocation(),
7577                        diag::err_operator_new_delete_dependent_result_type)
7578    << FnDecl->getDeclName() << ExpectedResultType;
7579
7580  // Check that the result type is what we expect.
7581  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
7582    return SemaRef.Diag(FnDecl->getLocation(),
7583                        diag::err_operator_new_delete_invalid_result_type)
7584    << FnDecl->getDeclName() << ExpectedResultType;
7585
7586  // A function template must have at least 2 parameters.
7587  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
7588    return SemaRef.Diag(FnDecl->getLocation(),
7589                      diag::err_operator_new_delete_template_too_few_parameters)
7590        << FnDecl->getDeclName();
7591
7592  // The function decl must have at least 1 parameter.
7593  if (FnDecl->getNumParams() == 0)
7594    return SemaRef.Diag(FnDecl->getLocation(),
7595                        diag::err_operator_new_delete_too_few_parameters)
7596      << FnDecl->getDeclName();
7597
7598  // Check the the first parameter type is not dependent.
7599  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
7600  if (FirstParamType->isDependentType())
7601    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
7602      << FnDecl->getDeclName() << ExpectedFirstParamType;
7603
7604  // Check that the first parameter type is what we expect.
7605  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
7606      ExpectedFirstParamType)
7607    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
7608    << FnDecl->getDeclName() << ExpectedFirstParamType;
7609
7610  return false;
7611}
7612
7613static bool
7614CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7615  // C++ [basic.stc.dynamic.allocation]p1:
7616  //   A program is ill-formed if an allocation function is declared in a
7617  //   namespace scope other than global scope or declared static in global
7618  //   scope.
7619  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7620    return true;
7621
7622  CanQualType SizeTy =
7623    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
7624
7625  // C++ [basic.stc.dynamic.allocation]p1:
7626  //  The return type shall be void*. The first parameter shall have type
7627  //  std::size_t.
7628  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
7629                                  SizeTy,
7630                                  diag::err_operator_new_dependent_param_type,
7631                                  diag::err_operator_new_param_type))
7632    return true;
7633
7634  // C++ [basic.stc.dynamic.allocation]p1:
7635  //  The first parameter shall not have an associated default argument.
7636  if (FnDecl->getParamDecl(0)->hasDefaultArg())
7637    return SemaRef.Diag(FnDecl->getLocation(),
7638                        diag::err_operator_new_default_arg)
7639      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
7640
7641  return false;
7642}
7643
7644static bool
7645CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7646  // C++ [basic.stc.dynamic.deallocation]p1:
7647  //   A program is ill-formed if deallocation functions are declared in a
7648  //   namespace scope other than global scope or declared static in global
7649  //   scope.
7650  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7651    return true;
7652
7653  // C++ [basic.stc.dynamic.deallocation]p2:
7654  //   Each deallocation function shall return void and its first parameter
7655  //   shall be void*.
7656  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
7657                                  SemaRef.Context.VoidPtrTy,
7658                                 diag::err_operator_delete_dependent_param_type,
7659                                 diag::err_operator_delete_param_type))
7660    return true;
7661
7662  return false;
7663}
7664
7665/// CheckOverloadedOperatorDeclaration - Check whether the declaration
7666/// of this overloaded operator is well-formed. If so, returns false;
7667/// otherwise, emits appropriate diagnostics and returns true.
7668bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
7669  assert(FnDecl && FnDecl->isOverloadedOperator() &&
7670         "Expected an overloaded operator declaration");
7671
7672  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
7673
7674  // C++ [over.oper]p5:
7675  //   The allocation and deallocation functions, operator new,
7676  //   operator new[], operator delete and operator delete[], are
7677  //   described completely in 3.7.3. The attributes and restrictions
7678  //   found in the rest of this subclause do not apply to them unless
7679  //   explicitly stated in 3.7.3.
7680  if (Op == OO_Delete || Op == OO_Array_Delete)
7681    return CheckOperatorDeleteDeclaration(*this, FnDecl);
7682
7683  if (Op == OO_New || Op == OO_Array_New)
7684    return CheckOperatorNewDeclaration(*this, FnDecl);
7685
7686  // C++ [over.oper]p6:
7687  //   An operator function shall either be a non-static member
7688  //   function or be a non-member function and have at least one
7689  //   parameter whose type is a class, a reference to a class, an
7690  //   enumeration, or a reference to an enumeration.
7691  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
7692    if (MethodDecl->isStatic())
7693      return Diag(FnDecl->getLocation(),
7694                  diag::err_operator_overload_static) << FnDecl->getDeclName();
7695  } else {
7696    bool ClassOrEnumParam = false;
7697    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
7698                                   ParamEnd = FnDecl->param_end();
7699         Param != ParamEnd; ++Param) {
7700      QualType ParamType = (*Param)->getType().getNonReferenceType();
7701      if (ParamType->isDependentType() || ParamType->isRecordType() ||
7702          ParamType->isEnumeralType()) {
7703        ClassOrEnumParam = true;
7704        break;
7705      }
7706    }
7707
7708    if (!ClassOrEnumParam)
7709      return Diag(FnDecl->getLocation(),
7710                  diag::err_operator_overload_needs_class_or_enum)
7711        << FnDecl->getDeclName();
7712  }
7713
7714  // C++ [over.oper]p8:
7715  //   An operator function cannot have default arguments (8.3.6),
7716  //   except where explicitly stated below.
7717  //
7718  // Only the function-call operator allows default arguments
7719  // (C++ [over.call]p1).
7720  if (Op != OO_Call) {
7721    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
7722         Param != FnDecl->param_end(); ++Param) {
7723      if ((*Param)->hasDefaultArg())
7724        return Diag((*Param)->getLocation(),
7725                    diag::err_operator_overload_default_arg)
7726          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
7727    }
7728  }
7729
7730  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
7731    { false, false, false }
7732#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
7733    , { Unary, Binary, MemberOnly }
7734#include "clang/Basic/OperatorKinds.def"
7735  };
7736
7737  bool CanBeUnaryOperator = OperatorUses[Op][0];
7738  bool CanBeBinaryOperator = OperatorUses[Op][1];
7739  bool MustBeMemberOperator = OperatorUses[Op][2];
7740
7741  // C++ [over.oper]p8:
7742  //   [...] Operator functions cannot have more or fewer parameters
7743  //   than the number required for the corresponding operator, as
7744  //   described in the rest of this subclause.
7745  unsigned NumParams = FnDecl->getNumParams()
7746                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
7747  if (Op != OO_Call &&
7748      ((NumParams == 1 && !CanBeUnaryOperator) ||
7749       (NumParams == 2 && !CanBeBinaryOperator) ||
7750       (NumParams < 1) || (NumParams > 2))) {
7751    // We have the wrong number of parameters.
7752    unsigned ErrorKind;
7753    if (CanBeUnaryOperator && CanBeBinaryOperator) {
7754      ErrorKind = 2;  // 2 -> unary or binary.
7755    } else if (CanBeUnaryOperator) {
7756      ErrorKind = 0;  // 0 -> unary
7757    } else {
7758      assert(CanBeBinaryOperator &&
7759             "All non-call overloaded operators are unary or binary!");
7760      ErrorKind = 1;  // 1 -> binary
7761    }
7762
7763    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
7764      << FnDecl->getDeclName() << NumParams << ErrorKind;
7765  }
7766
7767  // Overloaded operators other than operator() cannot be variadic.
7768  if (Op != OO_Call &&
7769      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
7770    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
7771      << FnDecl->getDeclName();
7772  }
7773
7774  // Some operators must be non-static member functions.
7775  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
7776    return Diag(FnDecl->getLocation(),
7777                diag::err_operator_overload_must_be_member)
7778      << FnDecl->getDeclName();
7779  }
7780
7781  // C++ [over.inc]p1:
7782  //   The user-defined function called operator++ implements the
7783  //   prefix and postfix ++ operator. If this function is a member
7784  //   function with no parameters, or a non-member function with one
7785  //   parameter of class or enumeration type, it defines the prefix
7786  //   increment operator ++ for objects of that type. If the function
7787  //   is a member function with one parameter (which shall be of type
7788  //   int) or a non-member function with two parameters (the second
7789  //   of which shall be of type int), it defines the postfix
7790  //   increment operator ++ for objects of that type.
7791  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
7792    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
7793    bool ParamIsInt = false;
7794    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
7795      ParamIsInt = BT->getKind() == BuiltinType::Int;
7796
7797    if (!ParamIsInt)
7798      return Diag(LastParam->getLocation(),
7799                  diag::err_operator_overload_post_incdec_must_be_int)
7800        << LastParam->getType() << (Op == OO_MinusMinus);
7801  }
7802
7803  return false;
7804}
7805
7806/// CheckLiteralOperatorDeclaration - Check whether the declaration
7807/// of this literal operator function is well-formed. If so, returns
7808/// false; otherwise, emits appropriate diagnostics and returns true.
7809bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
7810  DeclContext *DC = FnDecl->getDeclContext();
7811  Decl::Kind Kind = DC->getDeclKind();
7812  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
7813      Kind != Decl::LinkageSpec) {
7814    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
7815      << FnDecl->getDeclName();
7816    return true;
7817  }
7818
7819  bool Valid = false;
7820
7821  // template <char...> type operator "" name() is the only valid template
7822  // signature, and the only valid signature with no parameters.
7823  if (FnDecl->param_size() == 0) {
7824    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
7825      // Must have only one template parameter
7826      TemplateParameterList *Params = TpDecl->getTemplateParameters();
7827      if (Params->size() == 1) {
7828        NonTypeTemplateParmDecl *PmDecl =
7829          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
7830
7831        // The template parameter must be a char parameter pack.
7832        if (PmDecl && PmDecl->isTemplateParameterPack() &&
7833            Context.hasSameType(PmDecl->getType(), Context.CharTy))
7834          Valid = true;
7835      }
7836    }
7837  } else {
7838    // Check the first parameter
7839    FunctionDecl::param_iterator Param = FnDecl->param_begin();
7840
7841    QualType T = (*Param)->getType();
7842
7843    // unsigned long long int, long double, and any character type are allowed
7844    // as the only parameters.
7845    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
7846        Context.hasSameType(T, Context.LongDoubleTy) ||
7847        Context.hasSameType(T, Context.CharTy) ||
7848        Context.hasSameType(T, Context.WCharTy) ||
7849        Context.hasSameType(T, Context.Char16Ty) ||
7850        Context.hasSameType(T, Context.Char32Ty)) {
7851      if (++Param == FnDecl->param_end())
7852        Valid = true;
7853      goto FinishedParams;
7854    }
7855
7856    // Otherwise it must be a pointer to const; let's strip those qualifiers.
7857    const PointerType *PT = T->getAs<PointerType>();
7858    if (!PT)
7859      goto FinishedParams;
7860    T = PT->getPointeeType();
7861    if (!T.isConstQualified())
7862      goto FinishedParams;
7863    T = T.getUnqualifiedType();
7864
7865    // Move on to the second parameter;
7866    ++Param;
7867
7868    // If there is no second parameter, the first must be a const char *
7869    if (Param == FnDecl->param_end()) {
7870      if (Context.hasSameType(T, Context.CharTy))
7871        Valid = true;
7872      goto FinishedParams;
7873    }
7874
7875    // const char *, const wchar_t*, const char16_t*, and const char32_t*
7876    // are allowed as the first parameter to a two-parameter function
7877    if (!(Context.hasSameType(T, Context.CharTy) ||
7878          Context.hasSameType(T, Context.WCharTy) ||
7879          Context.hasSameType(T, Context.Char16Ty) ||
7880          Context.hasSameType(T, Context.Char32Ty)))
7881      goto FinishedParams;
7882
7883    // The second and final parameter must be an std::size_t
7884    T = (*Param)->getType().getUnqualifiedType();
7885    if (Context.hasSameType(T, Context.getSizeType()) &&
7886        ++Param == FnDecl->param_end())
7887      Valid = true;
7888  }
7889
7890  // FIXME: This diagnostic is absolutely terrible.
7891FinishedParams:
7892  if (!Valid) {
7893    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
7894      << FnDecl->getDeclName();
7895    return true;
7896  }
7897
7898  return false;
7899}
7900
7901/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
7902/// linkage specification, including the language and (if present)
7903/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
7904/// the location of the language string literal, which is provided
7905/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
7906/// the '{' brace. Otherwise, this linkage specification does not
7907/// have any braces.
7908Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
7909                                           SourceLocation LangLoc,
7910                                           llvm::StringRef Lang,
7911                                           SourceLocation LBraceLoc) {
7912  LinkageSpecDecl::LanguageIDs Language;
7913  if (Lang == "\"C\"")
7914    Language = LinkageSpecDecl::lang_c;
7915  else if (Lang == "\"C++\"")
7916    Language = LinkageSpecDecl::lang_cxx;
7917  else {
7918    Diag(LangLoc, diag::err_bad_language);
7919    return 0;
7920  }
7921
7922  // FIXME: Add all the various semantics of linkage specifications
7923
7924  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
7925                                               ExternLoc, LangLoc, Language);
7926  CurContext->addDecl(D);
7927  PushDeclContext(S, D);
7928  return D;
7929}
7930
7931/// ActOnFinishLinkageSpecification - Complete the definition of
7932/// the C++ linkage specification LinkageSpec. If RBraceLoc is
7933/// valid, it's the position of the closing '}' brace in a linkage
7934/// specification that uses braces.
7935Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
7936                                            Decl *LinkageSpec,
7937                                            SourceLocation RBraceLoc) {
7938  if (LinkageSpec) {
7939    if (RBraceLoc.isValid()) {
7940      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
7941      LSDecl->setRBraceLoc(RBraceLoc);
7942    }
7943    PopDeclContext();
7944  }
7945  return LinkageSpec;
7946}
7947
7948/// \brief Perform semantic analysis for the variable declaration that
7949/// occurs within a C++ catch clause, returning the newly-created
7950/// variable.
7951VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
7952                                         TypeSourceInfo *TInfo,
7953                                         SourceLocation StartLoc,
7954                                         SourceLocation Loc,
7955                                         IdentifierInfo *Name) {
7956  bool Invalid = false;
7957  QualType ExDeclType = TInfo->getType();
7958
7959  // Arrays and functions decay.
7960  if (ExDeclType->isArrayType())
7961    ExDeclType = Context.getArrayDecayedType(ExDeclType);
7962  else if (ExDeclType->isFunctionType())
7963    ExDeclType = Context.getPointerType(ExDeclType);
7964
7965  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
7966  // The exception-declaration shall not denote a pointer or reference to an
7967  // incomplete type, other than [cv] void*.
7968  // N2844 forbids rvalue references.
7969  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
7970    Diag(Loc, diag::err_catch_rvalue_ref);
7971    Invalid = true;
7972  }
7973
7974  // GCC allows catching pointers and references to incomplete types
7975  // as an extension; so do we, but we warn by default.
7976
7977  QualType BaseType = ExDeclType;
7978  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
7979  unsigned DK = diag::err_catch_incomplete;
7980  bool IncompleteCatchIsInvalid = true;
7981  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
7982    BaseType = Ptr->getPointeeType();
7983    Mode = 1;
7984    DK = diag::ext_catch_incomplete_ptr;
7985    IncompleteCatchIsInvalid = false;
7986  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
7987    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
7988    BaseType = Ref->getPointeeType();
7989    Mode = 2;
7990    DK = diag::ext_catch_incomplete_ref;
7991    IncompleteCatchIsInvalid = false;
7992  }
7993  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
7994      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
7995      IncompleteCatchIsInvalid)
7996    Invalid = true;
7997
7998  if (!Invalid && !ExDeclType->isDependentType() &&
7999      RequireNonAbstractType(Loc, ExDeclType,
8000                             diag::err_abstract_type_in_decl,
8001                             AbstractVariableType))
8002    Invalid = true;
8003
8004  // Only the non-fragile NeXT runtime currently supports C++ catches
8005  // of ObjC types, and no runtime supports catching ObjC types by value.
8006  if (!Invalid && getLangOptions().ObjC1) {
8007    QualType T = ExDeclType;
8008    if (const ReferenceType *RT = T->getAs<ReferenceType>())
8009      T = RT->getPointeeType();
8010
8011    if (T->isObjCObjectType()) {
8012      Diag(Loc, diag::err_objc_object_catch);
8013      Invalid = true;
8014    } else if (T->isObjCObjectPointerType()) {
8015      if (!getLangOptions().ObjCNonFragileABI) {
8016        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
8017        Invalid = true;
8018      }
8019    }
8020  }
8021
8022  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
8023                                    ExDeclType, TInfo, SC_None, SC_None);
8024  ExDecl->setExceptionVariable(true);
8025
8026  if (!Invalid) {
8027    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
8028      // C++ [except.handle]p16:
8029      //   The object declared in an exception-declaration or, if the
8030      //   exception-declaration does not specify a name, a temporary (12.2) is
8031      //   copy-initialized (8.5) from the exception object. [...]
8032      //   The object is destroyed when the handler exits, after the destruction
8033      //   of any automatic objects initialized within the handler.
8034      //
8035      // We just pretend to initialize the object with itself, then make sure
8036      // it can be destroyed later.
8037      QualType initType = ExDeclType;
8038
8039      InitializedEntity entity =
8040        InitializedEntity::InitializeVariable(ExDecl);
8041      InitializationKind initKind =
8042        InitializationKind::CreateCopy(Loc, SourceLocation());
8043
8044      Expr *opaqueValue =
8045        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
8046      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
8047      ExprResult result = sequence.Perform(*this, entity, initKind,
8048                                           MultiExprArg(&opaqueValue, 1));
8049      if (result.isInvalid())
8050        Invalid = true;
8051      else {
8052        // If the constructor used was non-trivial, set this as the
8053        // "initializer".
8054        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
8055        if (!construct->getConstructor()->isTrivial()) {
8056          Expr *init = MaybeCreateExprWithCleanups(construct);
8057          ExDecl->setInit(init);
8058        }
8059
8060        // And make sure it's destructable.
8061        FinalizeVarWithDestructor(ExDecl, recordType);
8062      }
8063    }
8064  }
8065
8066  if (Invalid)
8067    ExDecl->setInvalidDecl();
8068
8069  return ExDecl;
8070}
8071
8072/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
8073/// handler.
8074Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
8075  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8076  bool Invalid = D.isInvalidType();
8077
8078  // Check for unexpanded parameter packs.
8079  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8080                                               UPPC_ExceptionType)) {
8081    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
8082                                             D.getIdentifierLoc());
8083    Invalid = true;
8084  }
8085
8086  IdentifierInfo *II = D.getIdentifier();
8087  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
8088                                             LookupOrdinaryName,
8089                                             ForRedeclaration)) {
8090    // The scope should be freshly made just for us. There is just no way
8091    // it contains any previous declaration.
8092    assert(!S->isDeclScope(PrevDecl));
8093    if (PrevDecl->isTemplateParameter()) {
8094      // Maybe we will complain about the shadowed template parameter.
8095      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8096    }
8097  }
8098
8099  if (D.getCXXScopeSpec().isSet() && !Invalid) {
8100    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
8101      << D.getCXXScopeSpec().getRange();
8102    Invalid = true;
8103  }
8104
8105  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
8106                                              D.getSourceRange().getBegin(),
8107                                              D.getIdentifierLoc(),
8108                                              D.getIdentifier());
8109  if (Invalid)
8110    ExDecl->setInvalidDecl();
8111
8112  // Add the exception declaration into this scope.
8113  if (II)
8114    PushOnScopeChains(ExDecl, S);
8115  else
8116    CurContext->addDecl(ExDecl);
8117
8118  ProcessDeclAttributes(S, ExDecl, D);
8119  return ExDecl;
8120}
8121
8122Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
8123                                         Expr *AssertExpr,
8124                                         Expr *AssertMessageExpr_,
8125                                         SourceLocation RParenLoc) {
8126  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
8127
8128  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
8129    llvm::APSInt Value(32);
8130    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
8131      Diag(StaticAssertLoc,
8132           diag::err_static_assert_expression_is_not_constant) <<
8133        AssertExpr->getSourceRange();
8134      return 0;
8135    }
8136
8137    if (Value == 0) {
8138      Diag(StaticAssertLoc, diag::err_static_assert_failed)
8139        << AssertMessage->getString() << AssertExpr->getSourceRange();
8140    }
8141  }
8142
8143  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
8144    return 0;
8145
8146  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
8147                                        AssertExpr, AssertMessage, RParenLoc);
8148
8149  CurContext->addDecl(Decl);
8150  return Decl;
8151}
8152
8153/// \brief Perform semantic analysis of the given friend type declaration.
8154///
8155/// \returns A friend declaration that.
8156FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
8157                                      TypeSourceInfo *TSInfo) {
8158  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
8159
8160  QualType T = TSInfo->getType();
8161  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
8162
8163  if (!getLangOptions().CPlusPlus0x) {
8164    // C++03 [class.friend]p2:
8165    //   An elaborated-type-specifier shall be used in a friend declaration
8166    //   for a class.*
8167    //
8168    //   * The class-key of the elaborated-type-specifier is required.
8169    if (!ActiveTemplateInstantiations.empty()) {
8170      // Do not complain about the form of friend template types during
8171      // template instantiation; we will already have complained when the
8172      // template was declared.
8173    } else if (!T->isElaboratedTypeSpecifier()) {
8174      // If we evaluated the type to a record type, suggest putting
8175      // a tag in front.
8176      if (const RecordType *RT = T->getAs<RecordType>()) {
8177        RecordDecl *RD = RT->getDecl();
8178
8179        std::string InsertionText = std::string(" ") + RD->getKindName();
8180
8181        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
8182          << (unsigned) RD->getTagKind()
8183          << T
8184          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
8185                                        InsertionText);
8186      } else {
8187        Diag(FriendLoc, diag::ext_nonclass_type_friend)
8188          << T
8189          << SourceRange(FriendLoc, TypeRange.getEnd());
8190      }
8191    } else if (T->getAs<EnumType>()) {
8192      Diag(FriendLoc, diag::ext_enum_friend)
8193        << T
8194        << SourceRange(FriendLoc, TypeRange.getEnd());
8195    }
8196  }
8197
8198  // C++0x [class.friend]p3:
8199  //   If the type specifier in a friend declaration designates a (possibly
8200  //   cv-qualified) class type, that class is declared as a friend; otherwise,
8201  //   the friend declaration is ignored.
8202
8203  // FIXME: C++0x has some syntactic restrictions on friend type declarations
8204  // in [class.friend]p3 that we do not implement.
8205
8206  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
8207}
8208
8209/// Handle a friend tag declaration where the scope specifier was
8210/// templated.
8211Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
8212                                    unsigned TagSpec, SourceLocation TagLoc,
8213                                    CXXScopeSpec &SS,
8214                                    IdentifierInfo *Name, SourceLocation NameLoc,
8215                                    AttributeList *Attr,
8216                                    MultiTemplateParamsArg TempParamLists) {
8217  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8218
8219  bool isExplicitSpecialization = false;
8220  bool Invalid = false;
8221
8222  if (TemplateParameterList *TemplateParams
8223        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
8224                                                  TempParamLists.get(),
8225                                                  TempParamLists.size(),
8226                                                  /*friend*/ true,
8227                                                  isExplicitSpecialization,
8228                                                  Invalid)) {
8229    if (TemplateParams->size() > 0) {
8230      // This is a declaration of a class template.
8231      if (Invalid)
8232        return 0;
8233
8234      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
8235                                SS, Name, NameLoc, Attr,
8236                                TemplateParams, AS_public,
8237                                TempParamLists.size() - 1,
8238                   (TemplateParameterList**) TempParamLists.release()).take();
8239    } else {
8240      // The "template<>" header is extraneous.
8241      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8242        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8243      isExplicitSpecialization = true;
8244    }
8245  }
8246
8247  if (Invalid) return 0;
8248
8249  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
8250
8251  bool isAllExplicitSpecializations = true;
8252  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
8253    if (TempParamLists.get()[I]->size()) {
8254      isAllExplicitSpecializations = false;
8255      break;
8256    }
8257  }
8258
8259  // FIXME: don't ignore attributes.
8260
8261  // If it's explicit specializations all the way down, just forget
8262  // about the template header and build an appropriate non-templated
8263  // friend.  TODO: for source fidelity, remember the headers.
8264  if (isAllExplicitSpecializations) {
8265    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8266    ElaboratedTypeKeyword Keyword
8267      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8268    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
8269                                   *Name, NameLoc);
8270    if (T.isNull())
8271      return 0;
8272
8273    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8274    if (isa<DependentNameType>(T)) {
8275      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8276      TL.setKeywordLoc(TagLoc);
8277      TL.setQualifierLoc(QualifierLoc);
8278      TL.setNameLoc(NameLoc);
8279    } else {
8280      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
8281      TL.setKeywordLoc(TagLoc);
8282      TL.setQualifierLoc(QualifierLoc);
8283      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
8284    }
8285
8286    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8287                                            TSI, FriendLoc);
8288    Friend->setAccess(AS_public);
8289    CurContext->addDecl(Friend);
8290    return Friend;
8291  }
8292
8293  // Handle the case of a templated-scope friend class.  e.g.
8294  //   template <class T> class A<T>::B;
8295  // FIXME: we don't support these right now.
8296  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8297  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
8298  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8299  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8300  TL.setKeywordLoc(TagLoc);
8301  TL.setQualifierLoc(SS.getWithLocInContext(Context));
8302  TL.setNameLoc(NameLoc);
8303
8304  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8305                                          TSI, FriendLoc);
8306  Friend->setAccess(AS_public);
8307  Friend->setUnsupportedFriend(true);
8308  CurContext->addDecl(Friend);
8309  return Friend;
8310}
8311
8312
8313/// Handle a friend type declaration.  This works in tandem with
8314/// ActOnTag.
8315///
8316/// Notes on friend class templates:
8317///
8318/// We generally treat friend class declarations as if they were
8319/// declaring a class.  So, for example, the elaborated type specifier
8320/// in a friend declaration is required to obey the restrictions of a
8321/// class-head (i.e. no typedefs in the scope chain), template
8322/// parameters are required to match up with simple template-ids, &c.
8323/// However, unlike when declaring a template specialization, it's
8324/// okay to refer to a template specialization without an empty
8325/// template parameter declaration, e.g.
8326///   friend class A<T>::B<unsigned>;
8327/// We permit this as a special case; if there are any template
8328/// parameters present at all, require proper matching, i.e.
8329///   template <> template <class T> friend class A<int>::B;
8330Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
8331                                MultiTemplateParamsArg TempParams) {
8332  SourceLocation Loc = DS.getSourceRange().getBegin();
8333
8334  assert(DS.isFriendSpecified());
8335  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8336
8337  // Try to convert the decl specifier to a type.  This works for
8338  // friend templates because ActOnTag never produces a ClassTemplateDecl
8339  // for a TUK_Friend.
8340  Declarator TheDeclarator(DS, Declarator::MemberContext);
8341  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
8342  QualType T = TSI->getType();
8343  if (TheDeclarator.isInvalidType())
8344    return 0;
8345
8346  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
8347    return 0;
8348
8349  // This is definitely an error in C++98.  It's probably meant to
8350  // be forbidden in C++0x, too, but the specification is just
8351  // poorly written.
8352  //
8353  // The problem is with declarations like the following:
8354  //   template <T> friend A<T>::foo;
8355  // where deciding whether a class C is a friend or not now hinges
8356  // on whether there exists an instantiation of A that causes
8357  // 'foo' to equal C.  There are restrictions on class-heads
8358  // (which we declare (by fiat) elaborated friend declarations to
8359  // be) that makes this tractable.
8360  //
8361  // FIXME: handle "template <> friend class A<T>;", which
8362  // is possibly well-formed?  Who even knows?
8363  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
8364    Diag(Loc, diag::err_tagless_friend_type_template)
8365      << DS.getSourceRange();
8366    return 0;
8367  }
8368
8369  // C++98 [class.friend]p1: A friend of a class is a function
8370  //   or class that is not a member of the class . . .
8371  // This is fixed in DR77, which just barely didn't make the C++03
8372  // deadline.  It's also a very silly restriction that seriously
8373  // affects inner classes and which nobody else seems to implement;
8374  // thus we never diagnose it, not even in -pedantic.
8375  //
8376  // But note that we could warn about it: it's always useless to
8377  // friend one of your own members (it's not, however, worthless to
8378  // friend a member of an arbitrary specialization of your template).
8379
8380  Decl *D;
8381  if (unsigned NumTempParamLists = TempParams.size())
8382    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
8383                                   NumTempParamLists,
8384                                   TempParams.release(),
8385                                   TSI,
8386                                   DS.getFriendSpecLoc());
8387  else
8388    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
8389
8390  if (!D)
8391    return 0;
8392
8393  D->setAccess(AS_public);
8394  CurContext->addDecl(D);
8395
8396  return D;
8397}
8398
8399Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
8400                                    MultiTemplateParamsArg TemplateParams) {
8401  const DeclSpec &DS = D.getDeclSpec();
8402
8403  assert(DS.isFriendSpecified());
8404  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8405
8406  SourceLocation Loc = D.getIdentifierLoc();
8407  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8408  QualType T = TInfo->getType();
8409
8410  // C++ [class.friend]p1
8411  //   A friend of a class is a function or class....
8412  // Note that this sees through typedefs, which is intended.
8413  // It *doesn't* see through dependent types, which is correct
8414  // according to [temp.arg.type]p3:
8415  //   If a declaration acquires a function type through a
8416  //   type dependent on a template-parameter and this causes
8417  //   a declaration that does not use the syntactic form of a
8418  //   function declarator to have a function type, the program
8419  //   is ill-formed.
8420  if (!T->isFunctionType()) {
8421    Diag(Loc, diag::err_unexpected_friend);
8422
8423    // It might be worthwhile to try to recover by creating an
8424    // appropriate declaration.
8425    return 0;
8426  }
8427
8428  // C++ [namespace.memdef]p3
8429  //  - If a friend declaration in a non-local class first declares a
8430  //    class or function, the friend class or function is a member
8431  //    of the innermost enclosing namespace.
8432  //  - The name of the friend is not found by simple name lookup
8433  //    until a matching declaration is provided in that namespace
8434  //    scope (either before or after the class declaration granting
8435  //    friendship).
8436  //  - If a friend function is called, its name may be found by the
8437  //    name lookup that considers functions from namespaces and
8438  //    classes associated with the types of the function arguments.
8439  //  - When looking for a prior declaration of a class or a function
8440  //    declared as a friend, scopes outside the innermost enclosing
8441  //    namespace scope are not considered.
8442
8443  CXXScopeSpec &SS = D.getCXXScopeSpec();
8444  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8445  DeclarationName Name = NameInfo.getName();
8446  assert(Name);
8447
8448  // Check for unexpanded parameter packs.
8449  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
8450      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
8451      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
8452    return 0;
8453
8454  // The context we found the declaration in, or in which we should
8455  // create the declaration.
8456  DeclContext *DC;
8457  Scope *DCScope = S;
8458  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8459                        ForRedeclaration);
8460
8461  // FIXME: there are different rules in local classes
8462
8463  // There are four cases here.
8464  //   - There's no scope specifier, in which case we just go to the
8465  //     appropriate scope and look for a function or function template
8466  //     there as appropriate.
8467  // Recover from invalid scope qualifiers as if they just weren't there.
8468  if (SS.isInvalid() || !SS.isSet()) {
8469    // C++0x [namespace.memdef]p3:
8470    //   If the name in a friend declaration is neither qualified nor
8471    //   a template-id and the declaration is a function or an
8472    //   elaborated-type-specifier, the lookup to determine whether
8473    //   the entity has been previously declared shall not consider
8474    //   any scopes outside the innermost enclosing namespace.
8475    // C++0x [class.friend]p11:
8476    //   If a friend declaration appears in a local class and the name
8477    //   specified is an unqualified name, a prior declaration is
8478    //   looked up without considering scopes that are outside the
8479    //   innermost enclosing non-class scope. For a friend function
8480    //   declaration, if there is no prior declaration, the program is
8481    //   ill-formed.
8482    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
8483    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
8484
8485    // Find the appropriate context according to the above.
8486    DC = CurContext;
8487    while (true) {
8488      // Skip class contexts.  If someone can cite chapter and verse
8489      // for this behavior, that would be nice --- it's what GCC and
8490      // EDG do, and it seems like a reasonable intent, but the spec
8491      // really only says that checks for unqualified existing
8492      // declarations should stop at the nearest enclosing namespace,
8493      // not that they should only consider the nearest enclosing
8494      // namespace.
8495      while (DC->isRecord())
8496        DC = DC->getParent();
8497
8498      LookupQualifiedName(Previous, DC);
8499
8500      // TODO: decide what we think about using declarations.
8501      if (isLocal || !Previous.empty())
8502        break;
8503
8504      if (isTemplateId) {
8505        if (isa<TranslationUnitDecl>(DC)) break;
8506      } else {
8507        if (DC->isFileContext()) break;
8508      }
8509      DC = DC->getParent();
8510    }
8511
8512    // C++ [class.friend]p1: A friend of a class is a function or
8513    //   class that is not a member of the class . . .
8514    // C++0x changes this for both friend types and functions.
8515    // Most C++ 98 compilers do seem to give an error here, so
8516    // we do, too.
8517    if (!Previous.empty() && DC->Equals(CurContext)
8518        && !getLangOptions().CPlusPlus0x)
8519      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8520
8521    DCScope = getScopeForDeclContext(S, DC);
8522
8523  //   - There's a non-dependent scope specifier, in which case we
8524  //     compute it and do a previous lookup there for a function
8525  //     or function template.
8526  } else if (!SS.getScopeRep()->isDependent()) {
8527    DC = computeDeclContext(SS);
8528    if (!DC) return 0;
8529
8530    if (RequireCompleteDeclContext(SS, DC)) return 0;
8531
8532    LookupQualifiedName(Previous, DC);
8533
8534    // Ignore things found implicitly in the wrong scope.
8535    // TODO: better diagnostics for this case.  Suggesting the right
8536    // qualified scope would be nice...
8537    LookupResult::Filter F = Previous.makeFilter();
8538    while (F.hasNext()) {
8539      NamedDecl *D = F.next();
8540      if (!DC->InEnclosingNamespaceSetOf(
8541              D->getDeclContext()->getRedeclContext()))
8542        F.erase();
8543    }
8544    F.done();
8545
8546    if (Previous.empty()) {
8547      D.setInvalidType();
8548      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
8549      return 0;
8550    }
8551
8552    // C++ [class.friend]p1: A friend of a class is a function or
8553    //   class that is not a member of the class . . .
8554    if (DC->Equals(CurContext))
8555      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8556
8557  //   - There's a scope specifier that does not match any template
8558  //     parameter lists, in which case we use some arbitrary context,
8559  //     create a method or method template, and wait for instantiation.
8560  //   - There's a scope specifier that does match some template
8561  //     parameter lists, which we don't handle right now.
8562  } else {
8563    DC = CurContext;
8564    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
8565  }
8566
8567  if (!DC->isRecord()) {
8568    // This implies that it has to be an operator or function.
8569    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
8570        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
8571        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
8572      Diag(Loc, diag::err_introducing_special_friend) <<
8573        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
8574         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
8575      return 0;
8576    }
8577  }
8578
8579  bool Redeclaration = false;
8580  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
8581                                          move(TemplateParams),
8582                                          IsDefinition,
8583                                          Redeclaration);
8584  if (!ND) return 0;
8585
8586  assert(ND->getDeclContext() == DC);
8587  assert(ND->getLexicalDeclContext() == CurContext);
8588
8589  // Add the function declaration to the appropriate lookup tables,
8590  // adjusting the redeclarations list as necessary.  We don't
8591  // want to do this yet if the friending class is dependent.
8592  //
8593  // Also update the scope-based lookup if the target context's
8594  // lookup context is in lexical scope.
8595  if (!CurContext->isDependentContext()) {
8596    DC = DC->getRedeclContext();
8597    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
8598    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8599      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
8600  }
8601
8602  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
8603                                       D.getIdentifierLoc(), ND,
8604                                       DS.getFriendSpecLoc());
8605  FrD->setAccess(AS_public);
8606  CurContext->addDecl(FrD);
8607
8608  if (ND->isInvalidDecl())
8609    FrD->setInvalidDecl();
8610  else {
8611    FunctionDecl *FD;
8612    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
8613      FD = FTD->getTemplatedDecl();
8614    else
8615      FD = cast<FunctionDecl>(ND);
8616
8617    // Mark templated-scope function declarations as unsupported.
8618    if (FD->getNumTemplateParameterLists())
8619      FrD->setUnsupportedFriend(true);
8620  }
8621
8622  return ND;
8623}
8624
8625void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
8626  AdjustDeclIfTemplate(Dcl);
8627
8628  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
8629  if (!Fn) {
8630    Diag(DelLoc, diag::err_deleted_non_function);
8631    return;
8632  }
8633  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
8634    Diag(DelLoc, diag::err_deleted_decl_not_first);
8635    Diag(Prev->getLocation(), diag::note_previous_declaration);
8636    // If the declaration wasn't the first, we delete the function anyway for
8637    // recovery.
8638  }
8639  Fn->setDeletedAsWritten();
8640}
8641
8642void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
8643  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
8644
8645  if (MD) {
8646    CXXSpecialMember Member = getSpecialMember(MD);
8647    if (Member == CXXInvalid) {
8648      Diag(DefaultLoc, diag::err_default_special_members);
8649      return;
8650    }
8651
8652    MD->setDefaulted();
8653    MD->setExplicitlyDefaulted();
8654
8655    // We'll check it when the record is done
8656    if (MD == MD->getCanonicalDecl())
8657      return;
8658
8659    switch (Member) {
8660    case CXXDefaultConstructor: {
8661      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8662      CheckExplicitlyDefaultedDefaultConstructor(CD);
8663      if (!CD->isInvalidDecl())
8664        DefineImplicitDefaultConstructor(DefaultLoc, CD);
8665      break;
8666    }
8667
8668    case CXXCopyConstructor: {
8669      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8670      CheckExplicitlyDefaultedCopyConstructor(CD);
8671      if (!CD->isInvalidDecl())
8672        DefineImplicitCopyConstructor(DefaultLoc, CD);
8673      break;
8674    }
8675
8676    case CXXCopyAssignment: {
8677      CheckExplicitlyDefaultedCopyAssignment(MD);
8678      if (!MD->isInvalidDecl())
8679        DefineImplicitCopyAssignment(DefaultLoc, MD);
8680      break;
8681    }
8682
8683    case CXXDestructor: {
8684      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
8685      CheckExplicitlyDefaultedDestructor(DD);
8686      if (!DD->isInvalidDecl())
8687        DefineImplicitDestructor(DefaultLoc, DD);
8688      break;
8689    }
8690
8691    default:
8692      // FIXME: Do the rest once we have move functions
8693      break;
8694    }
8695  } else {
8696    Diag(DefaultLoc, diag::err_default_special_members);
8697  }
8698}
8699
8700static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
8701  for (Stmt::child_range CI = S->children(); CI; ++CI) {
8702    Stmt *SubStmt = *CI;
8703    if (!SubStmt)
8704      continue;
8705    if (isa<ReturnStmt>(SubStmt))
8706      Self.Diag(SubStmt->getSourceRange().getBegin(),
8707           diag::err_return_in_constructor_handler);
8708    if (!isa<Expr>(SubStmt))
8709      SearchForReturnInStmt(Self, SubStmt);
8710  }
8711}
8712
8713void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
8714  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
8715    CXXCatchStmt *Handler = TryBlock->getHandler(I);
8716    SearchForReturnInStmt(*this, Handler);
8717  }
8718}
8719
8720bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
8721                                             const CXXMethodDecl *Old) {
8722  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
8723  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
8724
8725  if (Context.hasSameType(NewTy, OldTy) ||
8726      NewTy->isDependentType() || OldTy->isDependentType())
8727    return false;
8728
8729  // Check if the return types are covariant
8730  QualType NewClassTy, OldClassTy;
8731
8732  /// Both types must be pointers or references to classes.
8733  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
8734    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
8735      NewClassTy = NewPT->getPointeeType();
8736      OldClassTy = OldPT->getPointeeType();
8737    }
8738  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
8739    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
8740      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
8741        NewClassTy = NewRT->getPointeeType();
8742        OldClassTy = OldRT->getPointeeType();
8743      }
8744    }
8745  }
8746
8747  // The return types aren't either both pointers or references to a class type.
8748  if (NewClassTy.isNull()) {
8749    Diag(New->getLocation(),
8750         diag::err_different_return_type_for_overriding_virtual_function)
8751      << New->getDeclName() << NewTy << OldTy;
8752    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8753
8754    return true;
8755  }
8756
8757  // C++ [class.virtual]p6:
8758  //   If the return type of D::f differs from the return type of B::f, the
8759  //   class type in the return type of D::f shall be complete at the point of
8760  //   declaration of D::f or shall be the class type D.
8761  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
8762    if (!RT->isBeingDefined() &&
8763        RequireCompleteType(New->getLocation(), NewClassTy,
8764                            PDiag(diag::err_covariant_return_incomplete)
8765                              << New->getDeclName()))
8766    return true;
8767  }
8768
8769  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
8770    // Check if the new class derives from the old class.
8771    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
8772      Diag(New->getLocation(),
8773           diag::err_covariant_return_not_derived)
8774      << New->getDeclName() << NewTy << OldTy;
8775      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8776      return true;
8777    }
8778
8779    // Check if we the conversion from derived to base is valid.
8780    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
8781                    diag::err_covariant_return_inaccessible_base,
8782                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
8783                    // FIXME: Should this point to the return type?
8784                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
8785      // FIXME: this note won't trigger for delayed access control
8786      // diagnostics, and it's impossible to get an undelayed error
8787      // here from access control during the original parse because
8788      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
8789      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8790      return true;
8791    }
8792  }
8793
8794  // The qualifiers of the return types must be the same.
8795  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
8796    Diag(New->getLocation(),
8797         diag::err_covariant_return_type_different_qualifications)
8798    << New->getDeclName() << NewTy << OldTy;
8799    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8800    return true;
8801  };
8802
8803
8804  // The new class type must have the same or less qualifiers as the old type.
8805  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
8806    Diag(New->getLocation(),
8807         diag::err_covariant_return_type_class_type_more_qualified)
8808    << New->getDeclName() << NewTy << OldTy;
8809    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8810    return true;
8811  };
8812
8813  return false;
8814}
8815
8816/// \brief Mark the given method pure.
8817///
8818/// \param Method the method to be marked pure.
8819///
8820/// \param InitRange the source range that covers the "0" initializer.
8821bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
8822  SourceLocation EndLoc = InitRange.getEnd();
8823  if (EndLoc.isValid())
8824    Method->setRangeEnd(EndLoc);
8825
8826  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
8827    Method->setPure();
8828    return false;
8829  }
8830
8831  if (!Method->isInvalidDecl())
8832    Diag(Method->getLocation(), diag::err_non_virtual_pure)
8833      << Method->getDeclName() << InitRange;
8834  return true;
8835}
8836
8837/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
8838/// an initializer for the out-of-line declaration 'Dcl'.  The scope
8839/// is a fresh scope pushed for just this purpose.
8840///
8841/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
8842/// static data member of class X, names should be looked up in the scope of
8843/// class X.
8844void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
8845  // If there is no declaration, there was an error parsing it.
8846  if (D == 0 || D->isInvalidDecl()) return;
8847
8848  // We should only get called for declarations with scope specifiers, like:
8849  //   int foo::bar;
8850  assert(D->isOutOfLine());
8851  EnterDeclaratorContext(S, D->getDeclContext());
8852}
8853
8854/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
8855/// initializer for the out-of-line declaration 'D'.
8856void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
8857  // If there is no declaration, there was an error parsing it.
8858  if (D == 0 || D->isInvalidDecl()) return;
8859
8860  assert(D->isOutOfLine());
8861  ExitDeclaratorContext(S);
8862}
8863
8864/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
8865/// C++ if/switch/while/for statement.
8866/// e.g: "if (int x = f()) {...}"
8867DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
8868  // C++ 6.4p2:
8869  // The declarator shall not specify a function or an array.
8870  // The type-specifier-seq shall not contain typedef and shall not declare a
8871  // new class or enumeration.
8872  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
8873         "Parser allowed 'typedef' as storage class of condition decl.");
8874
8875  TagDecl *OwnedTag = 0;
8876  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
8877  QualType Ty = TInfo->getType();
8878
8879  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
8880                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
8881                              // would be created and CXXConditionDeclExpr wants a VarDecl.
8882    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
8883      << D.getSourceRange();
8884    return DeclResult();
8885  } else if (OwnedTag && OwnedTag->isDefinition()) {
8886    // The type-specifier-seq shall not declare a new class or enumeration.
8887    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
8888  }
8889
8890  Decl *Dcl = ActOnDeclarator(S, D);
8891  if (!Dcl)
8892    return DeclResult();
8893
8894  return Dcl;
8895}
8896
8897void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
8898                          bool DefinitionRequired) {
8899  // Ignore any vtable uses in unevaluated operands or for classes that do
8900  // not have a vtable.
8901  if (!Class->isDynamicClass() || Class->isDependentContext() ||
8902      CurContext->isDependentContext() ||
8903      ExprEvalContexts.back().Context == Unevaluated)
8904    return;
8905
8906  // Try to insert this class into the map.
8907  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
8908  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
8909    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
8910  if (!Pos.second) {
8911    // If we already had an entry, check to see if we are promoting this vtable
8912    // to required a definition. If so, we need to reappend to the VTableUses
8913    // list, since we may have already processed the first entry.
8914    if (DefinitionRequired && !Pos.first->second) {
8915      Pos.first->second = true;
8916    } else {
8917      // Otherwise, we can early exit.
8918      return;
8919    }
8920  }
8921
8922  // Local classes need to have their virtual members marked
8923  // immediately. For all other classes, we mark their virtual members
8924  // at the end of the translation unit.
8925  if (Class->isLocalClass())
8926    MarkVirtualMembersReferenced(Loc, Class);
8927  else
8928    VTableUses.push_back(std::make_pair(Class, Loc));
8929}
8930
8931bool Sema::DefineUsedVTables() {
8932  if (VTableUses.empty())
8933    return false;
8934
8935  // Note: The VTableUses vector could grow as a result of marking
8936  // the members of a class as "used", so we check the size each
8937  // time through the loop and prefer indices (with are stable) to
8938  // iterators (which are not).
8939  bool DefinedAnything = false;
8940  for (unsigned I = 0; I != VTableUses.size(); ++I) {
8941    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
8942    if (!Class)
8943      continue;
8944
8945    SourceLocation Loc = VTableUses[I].second;
8946
8947    // If this class has a key function, but that key function is
8948    // defined in another translation unit, we don't need to emit the
8949    // vtable even though we're using it.
8950    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
8951    if (KeyFunction && !KeyFunction->hasBody()) {
8952      switch (KeyFunction->getTemplateSpecializationKind()) {
8953      case TSK_Undeclared:
8954      case TSK_ExplicitSpecialization:
8955      case TSK_ExplicitInstantiationDeclaration:
8956        // The key function is in another translation unit.
8957        continue;
8958
8959      case TSK_ExplicitInstantiationDefinition:
8960      case TSK_ImplicitInstantiation:
8961        // We will be instantiating the key function.
8962        break;
8963      }
8964    } else if (!KeyFunction) {
8965      // If we have a class with no key function that is the subject
8966      // of an explicit instantiation declaration, suppress the
8967      // vtable; it will live with the explicit instantiation
8968      // definition.
8969      bool IsExplicitInstantiationDeclaration
8970        = Class->getTemplateSpecializationKind()
8971                                      == TSK_ExplicitInstantiationDeclaration;
8972      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
8973                                 REnd = Class->redecls_end();
8974           R != REnd; ++R) {
8975        TemplateSpecializationKind TSK
8976          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
8977        if (TSK == TSK_ExplicitInstantiationDeclaration)
8978          IsExplicitInstantiationDeclaration = true;
8979        else if (TSK == TSK_ExplicitInstantiationDefinition) {
8980          IsExplicitInstantiationDeclaration = false;
8981          break;
8982        }
8983      }
8984
8985      if (IsExplicitInstantiationDeclaration)
8986        continue;
8987    }
8988
8989    // Mark all of the virtual members of this class as referenced, so
8990    // that we can build a vtable. Then, tell the AST consumer that a
8991    // vtable for this class is required.
8992    DefinedAnything = true;
8993    MarkVirtualMembersReferenced(Loc, Class);
8994    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
8995    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
8996
8997    // Optionally warn if we're emitting a weak vtable.
8998    if (Class->getLinkage() == ExternalLinkage &&
8999        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
9000      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
9001        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
9002    }
9003  }
9004  VTableUses.clear();
9005
9006  return DefinedAnything;
9007}
9008
9009void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
9010                                        const CXXRecordDecl *RD) {
9011  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
9012       e = RD->method_end(); i != e; ++i) {
9013    CXXMethodDecl *MD = *i;
9014
9015    // C++ [basic.def.odr]p2:
9016    //   [...] A virtual member function is used if it is not pure. [...]
9017    if (MD->isVirtual() && !MD->isPure())
9018      MarkDeclarationReferenced(Loc, MD);
9019  }
9020
9021  // Only classes that have virtual bases need a VTT.
9022  if (RD->getNumVBases() == 0)
9023    return;
9024
9025  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
9026           e = RD->bases_end(); i != e; ++i) {
9027    const CXXRecordDecl *Base =
9028        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
9029    if (Base->getNumVBases() == 0)
9030      continue;
9031    MarkVirtualMembersReferenced(Loc, Base);
9032  }
9033}
9034
9035/// SetIvarInitializers - This routine builds initialization ASTs for the
9036/// Objective-C implementation whose ivars need be initialized.
9037void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
9038  if (!getLangOptions().CPlusPlus)
9039    return;
9040  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
9041    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
9042    CollectIvarsToConstructOrDestruct(OID, ivars);
9043    if (ivars.empty())
9044      return;
9045    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
9046    for (unsigned i = 0; i < ivars.size(); i++) {
9047      FieldDecl *Field = ivars[i];
9048      if (Field->isInvalidDecl())
9049        continue;
9050
9051      CXXCtorInitializer *Member;
9052      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
9053      InitializationKind InitKind =
9054        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
9055
9056      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
9057      ExprResult MemberInit =
9058        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
9059      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
9060      // Note, MemberInit could actually come back empty if no initialization
9061      // is required (e.g., because it would call a trivial default constructor)
9062      if (!MemberInit.get() || MemberInit.isInvalid())
9063        continue;
9064
9065      Member =
9066        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
9067                                         SourceLocation(),
9068                                         MemberInit.takeAs<Expr>(),
9069                                         SourceLocation());
9070      AllToInit.push_back(Member);
9071
9072      // Be sure that the destructor is accessible and is marked as referenced.
9073      if (const RecordType *RecordTy
9074                  = Context.getBaseElementType(Field->getType())
9075                                                        ->getAs<RecordType>()) {
9076                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
9077        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
9078          MarkDeclarationReferenced(Field->getLocation(), Destructor);
9079          CheckDestructorAccess(Field->getLocation(), Destructor,
9080                            PDiag(diag::err_access_dtor_ivar)
9081                              << Context.getBaseElementType(Field->getType()));
9082        }
9083      }
9084    }
9085    ObjCImplementation->setIvarInitializers(Context,
9086                                            AllToInit.data(), AllToInit.size());
9087  }
9088}
9089
9090static
9091void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
9092                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
9093                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
9094                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
9095                           Sema &S) {
9096  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9097                                                   CE = Current.end();
9098  if (Ctor->isInvalidDecl())
9099    return;
9100
9101  const FunctionDecl *FNTarget = 0;
9102  CXXConstructorDecl *Target;
9103
9104  // We ignore the result here since if we don't have a body, Target will be
9105  // null below.
9106  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
9107  Target
9108= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
9109
9110  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
9111                     // Avoid dereferencing a null pointer here.
9112                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
9113
9114  if (!Current.insert(Canonical))
9115    return;
9116
9117  // We know that beyond here, we aren't chaining into a cycle.
9118  if (!Target || !Target->isDelegatingConstructor() ||
9119      Target->isInvalidDecl() || Valid.count(TCanonical)) {
9120    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9121      Valid.insert(*CI);
9122    Current.clear();
9123  // We've hit a cycle.
9124  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
9125             Current.count(TCanonical)) {
9126    // If we haven't diagnosed this cycle yet, do so now.
9127    if (!Invalid.count(TCanonical)) {
9128      S.Diag((*Ctor->init_begin())->getSourceLocation(),
9129             diag::warn_delegating_ctor_cycle)
9130        << Ctor;
9131
9132      // Don't add a note for a function delegating directo to itself.
9133      if (TCanonical != Canonical)
9134        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
9135
9136      CXXConstructorDecl *C = Target;
9137      while (C->getCanonicalDecl() != Canonical) {
9138        (void)C->getTargetConstructor()->hasBody(FNTarget);
9139        assert(FNTarget && "Ctor cycle through bodiless function");
9140
9141        C
9142       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
9143        S.Diag(C->getLocation(), diag::note_which_delegates_to);
9144      }
9145    }
9146
9147    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9148      Invalid.insert(*CI);
9149    Current.clear();
9150  } else {
9151    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
9152  }
9153}
9154
9155
9156void Sema::CheckDelegatingCtorCycles() {
9157  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
9158
9159  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9160                                                   CE = Current.end();
9161
9162  for (llvm::SmallVector<CXXConstructorDecl*, 4>::iterator
9163         I = DelegatingCtorDecls.begin(),
9164         E = DelegatingCtorDecls.end();
9165       I != E; ++I) {
9166   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
9167  }
9168
9169  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
9170    (*CI)->setInvalidDecl();
9171}
9172