SemaDeclCXX.cpp revision 136da1c4320156fe8924139f58fbeed2e32cc6e8
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().Microsoft) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDeclaration();
424           Older; Older = Older->getPreviousDeclaration()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  if (CheckEquivalentExceptionSpec(Old, New))
506    Invalid = true;
507
508  return Invalid;
509}
510
511/// \brief Merge the exception specifications of two variable declarations.
512///
513/// This is called when there's a redeclaration of a VarDecl. The function
514/// checks if the redeclaration might have an exception specification and
515/// validates compatibility and merges the specs if necessary.
516void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
517  // Shortcut if exceptions are disabled.
518  if (!getLangOptions().CXXExceptions)
519    return;
520
521  assert(Context.hasSameType(New->getType(), Old->getType()) &&
522         "Should only be called if types are otherwise the same.");
523
524  QualType NewType = New->getType();
525  QualType OldType = Old->getType();
526
527  // We're only interested in pointers and references to functions, as well
528  // as pointers to member functions.
529  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
530    NewType = R->getPointeeType();
531    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
532  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
533    NewType = P->getPointeeType();
534    OldType = OldType->getAs<PointerType>()->getPointeeType();
535  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
536    NewType = M->getPointeeType();
537    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
538  }
539
540  if (!NewType->isFunctionProtoType())
541    return;
542
543  // There's lots of special cases for functions. For function pointers, system
544  // libraries are hopefully not as broken so that we don't need these
545  // workarounds.
546  if (CheckEquivalentExceptionSpec(
547        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
548        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
549    New->setInvalidDecl();
550  }
551}
552
553/// CheckCXXDefaultArguments - Verify that the default arguments for a
554/// function declaration are well-formed according to C++
555/// [dcl.fct.default].
556void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
557  unsigned NumParams = FD->getNumParams();
558  unsigned p;
559
560  // Find first parameter with a default argument
561  for (p = 0; p < NumParams; ++p) {
562    ParmVarDecl *Param = FD->getParamDecl(p);
563    if (Param->hasDefaultArg())
564      break;
565  }
566
567  // C++ [dcl.fct.default]p4:
568  //   In a given function declaration, all parameters
569  //   subsequent to a parameter with a default argument shall
570  //   have default arguments supplied in this or previous
571  //   declarations. A default argument shall not be redefined
572  //   by a later declaration (not even to the same value).
573  unsigned LastMissingDefaultArg = 0;
574  for (; p < NumParams; ++p) {
575    ParmVarDecl *Param = FD->getParamDecl(p);
576    if (!Param->hasDefaultArg()) {
577      if (Param->isInvalidDecl())
578        /* We already complained about this parameter. */;
579      else if (Param->getIdentifier())
580        Diag(Param->getLocation(),
581             diag::err_param_default_argument_missing_name)
582          << Param->getIdentifier();
583      else
584        Diag(Param->getLocation(),
585             diag::err_param_default_argument_missing);
586
587      LastMissingDefaultArg = p;
588    }
589  }
590
591  if (LastMissingDefaultArg > 0) {
592    // Some default arguments were missing. Clear out all of the
593    // default arguments up to (and including) the last missing
594    // default argument, so that we leave the function parameters
595    // in a semantically valid state.
596    for (p = 0; p <= LastMissingDefaultArg; ++p) {
597      ParmVarDecl *Param = FD->getParamDecl(p);
598      if (Param->hasDefaultArg()) {
599        Param->setDefaultArg(0);
600      }
601    }
602  }
603}
604
605/// isCurrentClassName - Determine whether the identifier II is the
606/// name of the class type currently being defined. In the case of
607/// nested classes, this will only return true if II is the name of
608/// the innermost class.
609bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
610                              const CXXScopeSpec *SS) {
611  assert(getLangOptions().CPlusPlus && "No class names in C!");
612
613  CXXRecordDecl *CurDecl;
614  if (SS && SS->isSet() && !SS->isInvalid()) {
615    DeclContext *DC = computeDeclContext(*SS, true);
616    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
617  } else
618    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
619
620  if (CurDecl && CurDecl->getIdentifier())
621    return &II == CurDecl->getIdentifier();
622  else
623    return false;
624}
625
626/// \brief Check the validity of a C++ base class specifier.
627///
628/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
629/// and returns NULL otherwise.
630CXXBaseSpecifier *
631Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
632                         SourceRange SpecifierRange,
633                         bool Virtual, AccessSpecifier Access,
634                         TypeSourceInfo *TInfo,
635                         SourceLocation EllipsisLoc) {
636  QualType BaseType = TInfo->getType();
637
638  // C++ [class.union]p1:
639  //   A union shall not have base classes.
640  if (Class->isUnion()) {
641    Diag(Class->getLocation(), diag::err_base_clause_on_union)
642      << SpecifierRange;
643    return 0;
644  }
645
646  if (EllipsisLoc.isValid() &&
647      !TInfo->getType()->containsUnexpandedParameterPack()) {
648    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
649      << TInfo->getTypeLoc().getSourceRange();
650    EllipsisLoc = SourceLocation();
651  }
652
653  if (BaseType->isDependentType())
654    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
655                                          Class->getTagKind() == TTK_Class,
656                                          Access, TInfo, EllipsisLoc);
657
658  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
659
660  // Base specifiers must be record types.
661  if (!BaseType->isRecordType()) {
662    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
663    return 0;
664  }
665
666  // C++ [class.union]p1:
667  //   A union shall not be used as a base class.
668  if (BaseType->isUnionType()) {
669    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
670    return 0;
671  }
672
673  // C++ [class.derived]p2:
674  //   The class-name in a base-specifier shall not be an incompletely
675  //   defined class.
676  if (RequireCompleteType(BaseLoc, BaseType,
677                          PDiag(diag::err_incomplete_base_class)
678                            << SpecifierRange)) {
679    Class->setInvalidDecl();
680    return 0;
681  }
682
683  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
684  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
685  assert(BaseDecl && "Record type has no declaration");
686  BaseDecl = BaseDecl->getDefinition();
687  assert(BaseDecl && "Base type is not incomplete, but has no definition");
688  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
689  assert(CXXBaseDecl && "Base type is not a C++ type");
690
691  // C++ [class]p3:
692  //   If a class is marked final and it appears as a base-type-specifier in
693  //   base-clause, the program is ill-formed.
694  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
695    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
696      << CXXBaseDecl->getDeclName();
697    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
698      << CXXBaseDecl->getDeclName();
699    return 0;
700  }
701
702  if (BaseDecl->isInvalidDecl())
703    Class->setInvalidDecl();
704
705  // Create the base specifier.
706  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
707                                        Class->getTagKind() == TTK_Class,
708                                        Access, TInfo, EllipsisLoc);
709}
710
711/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
712/// one entry in the base class list of a class specifier, for
713/// example:
714///    class foo : public bar, virtual private baz {
715/// 'public bar' and 'virtual private baz' are each base-specifiers.
716BaseResult
717Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
718                         bool Virtual, AccessSpecifier Access,
719                         ParsedType basetype, SourceLocation BaseLoc,
720                         SourceLocation EllipsisLoc) {
721  if (!classdecl)
722    return true;
723
724  AdjustDeclIfTemplate(classdecl);
725  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
726  if (!Class)
727    return true;
728
729  TypeSourceInfo *TInfo = 0;
730  GetTypeFromParser(basetype, &TInfo);
731
732  if (EllipsisLoc.isInvalid() &&
733      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
734                                      UPPC_BaseType))
735    return true;
736
737  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
738                                                      Virtual, Access, TInfo,
739                                                      EllipsisLoc))
740    return BaseSpec;
741
742  return true;
743}
744
745/// \brief Performs the actual work of attaching the given base class
746/// specifiers to a C++ class.
747bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
748                                unsigned NumBases) {
749 if (NumBases == 0)
750    return false;
751
752  // Used to keep track of which base types we have already seen, so
753  // that we can properly diagnose redundant direct base types. Note
754  // that the key is always the unqualified canonical type of the base
755  // class.
756  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
757
758  // Copy non-redundant base specifiers into permanent storage.
759  unsigned NumGoodBases = 0;
760  bool Invalid = false;
761  for (unsigned idx = 0; idx < NumBases; ++idx) {
762    QualType NewBaseType
763      = Context.getCanonicalType(Bases[idx]->getType());
764    NewBaseType = NewBaseType.getLocalUnqualifiedType();
765    if (KnownBaseTypes[NewBaseType]) {
766      // C++ [class.mi]p3:
767      //   A class shall not be specified as a direct base class of a
768      //   derived class more than once.
769      Diag(Bases[idx]->getSourceRange().getBegin(),
770           diag::err_duplicate_base_class)
771        << KnownBaseTypes[NewBaseType]->getType()
772        << Bases[idx]->getSourceRange();
773
774      // Delete the duplicate base class specifier; we're going to
775      // overwrite its pointer later.
776      Context.Deallocate(Bases[idx]);
777
778      Invalid = true;
779    } else {
780      // Okay, add this new base class.
781      KnownBaseTypes[NewBaseType] = Bases[idx];
782      Bases[NumGoodBases++] = Bases[idx];
783    }
784  }
785
786  // Attach the remaining base class specifiers to the derived class.
787  Class->setBases(Bases, NumGoodBases);
788
789  // Delete the remaining (good) base class specifiers, since their
790  // data has been copied into the CXXRecordDecl.
791  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
792    Context.Deallocate(Bases[idx]);
793
794  return Invalid;
795}
796
797/// ActOnBaseSpecifiers - Attach the given base specifiers to the
798/// class, after checking whether there are any duplicate base
799/// classes.
800void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
801                               unsigned NumBases) {
802  if (!ClassDecl || !Bases || !NumBases)
803    return;
804
805  AdjustDeclIfTemplate(ClassDecl);
806  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
807                       (CXXBaseSpecifier**)(Bases), NumBases);
808}
809
810static CXXRecordDecl *GetClassForType(QualType T) {
811  if (const RecordType *RT = T->getAs<RecordType>())
812    return cast<CXXRecordDecl>(RT->getDecl());
813  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
814    return ICT->getDecl();
815  else
816    return 0;
817}
818
819/// \brief Determine whether the type \p Derived is a C++ class that is
820/// derived from the type \p Base.
821bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
822  if (!getLangOptions().CPlusPlus)
823    return false;
824
825  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
826  if (!DerivedRD)
827    return false;
828
829  CXXRecordDecl *BaseRD = GetClassForType(Base);
830  if (!BaseRD)
831    return false;
832
833  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
834  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
835}
836
837/// \brief Determine whether the type \p Derived is a C++ class that is
838/// derived from the type \p Base.
839bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
840  if (!getLangOptions().CPlusPlus)
841    return false;
842
843  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
844  if (!DerivedRD)
845    return false;
846
847  CXXRecordDecl *BaseRD = GetClassForType(Base);
848  if (!BaseRD)
849    return false;
850
851  return DerivedRD->isDerivedFrom(BaseRD, Paths);
852}
853
854void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
855                              CXXCastPath &BasePathArray) {
856  assert(BasePathArray.empty() && "Base path array must be empty!");
857  assert(Paths.isRecordingPaths() && "Must record paths!");
858
859  const CXXBasePath &Path = Paths.front();
860
861  // We first go backward and check if we have a virtual base.
862  // FIXME: It would be better if CXXBasePath had the base specifier for
863  // the nearest virtual base.
864  unsigned Start = 0;
865  for (unsigned I = Path.size(); I != 0; --I) {
866    if (Path[I - 1].Base->isVirtual()) {
867      Start = I - 1;
868      break;
869    }
870  }
871
872  // Now add all bases.
873  for (unsigned I = Start, E = Path.size(); I != E; ++I)
874    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
875}
876
877/// \brief Determine whether the given base path includes a virtual
878/// base class.
879bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
880  for (CXXCastPath::const_iterator B = BasePath.begin(),
881                                BEnd = BasePath.end();
882       B != BEnd; ++B)
883    if ((*B)->isVirtual())
884      return true;
885
886  return false;
887}
888
889/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
890/// conversion (where Derived and Base are class types) is
891/// well-formed, meaning that the conversion is unambiguous (and
892/// that all of the base classes are accessible). Returns true
893/// and emits a diagnostic if the code is ill-formed, returns false
894/// otherwise. Loc is the location where this routine should point to
895/// if there is an error, and Range is the source range to highlight
896/// if there is an error.
897bool
898Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
899                                   unsigned InaccessibleBaseID,
900                                   unsigned AmbigiousBaseConvID,
901                                   SourceLocation Loc, SourceRange Range,
902                                   DeclarationName Name,
903                                   CXXCastPath *BasePath) {
904  // First, determine whether the path from Derived to Base is
905  // ambiguous. This is slightly more expensive than checking whether
906  // the Derived to Base conversion exists, because here we need to
907  // explore multiple paths to determine if there is an ambiguity.
908  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
909                     /*DetectVirtual=*/false);
910  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
911  assert(DerivationOkay &&
912         "Can only be used with a derived-to-base conversion");
913  (void)DerivationOkay;
914
915  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
916    if (InaccessibleBaseID) {
917      // Check that the base class can be accessed.
918      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
919                                   InaccessibleBaseID)) {
920        case AR_inaccessible:
921          return true;
922        case AR_accessible:
923        case AR_dependent:
924        case AR_delayed:
925          break;
926      }
927    }
928
929    // Build a base path if necessary.
930    if (BasePath)
931      BuildBasePathArray(Paths, *BasePath);
932    return false;
933  }
934
935  // We know that the derived-to-base conversion is ambiguous, and
936  // we're going to produce a diagnostic. Perform the derived-to-base
937  // search just one more time to compute all of the possible paths so
938  // that we can print them out. This is more expensive than any of
939  // the previous derived-to-base checks we've done, but at this point
940  // performance isn't as much of an issue.
941  Paths.clear();
942  Paths.setRecordingPaths(true);
943  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
944  assert(StillOkay && "Can only be used with a derived-to-base conversion");
945  (void)StillOkay;
946
947  // Build up a textual representation of the ambiguous paths, e.g.,
948  // D -> B -> A, that will be used to illustrate the ambiguous
949  // conversions in the diagnostic. We only print one of the paths
950  // to each base class subobject.
951  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
952
953  Diag(Loc, AmbigiousBaseConvID)
954  << Derived << Base << PathDisplayStr << Range << Name;
955  return true;
956}
957
958bool
959Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
960                                   SourceLocation Loc, SourceRange Range,
961                                   CXXCastPath *BasePath,
962                                   bool IgnoreAccess) {
963  return CheckDerivedToBaseConversion(Derived, Base,
964                                      IgnoreAccess ? 0
965                                       : diag::err_upcast_to_inaccessible_base,
966                                      diag::err_ambiguous_derived_to_base_conv,
967                                      Loc, Range, DeclarationName(),
968                                      BasePath);
969}
970
971
972/// @brief Builds a string representing ambiguous paths from a
973/// specific derived class to different subobjects of the same base
974/// class.
975///
976/// This function builds a string that can be used in error messages
977/// to show the different paths that one can take through the
978/// inheritance hierarchy to go from the derived class to different
979/// subobjects of a base class. The result looks something like this:
980/// @code
981/// struct D -> struct B -> struct A
982/// struct D -> struct C -> struct A
983/// @endcode
984std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
985  std::string PathDisplayStr;
986  std::set<unsigned> DisplayedPaths;
987  for (CXXBasePaths::paths_iterator Path = Paths.begin();
988       Path != Paths.end(); ++Path) {
989    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
990      // We haven't displayed a path to this particular base
991      // class subobject yet.
992      PathDisplayStr += "\n    ";
993      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
994      for (CXXBasePath::const_iterator Element = Path->begin();
995           Element != Path->end(); ++Element)
996        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
997    }
998  }
999
1000  return PathDisplayStr;
1001}
1002
1003//===----------------------------------------------------------------------===//
1004// C++ class member Handling
1005//===----------------------------------------------------------------------===//
1006
1007/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1008Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1009                                 SourceLocation ASLoc,
1010                                 SourceLocation ColonLoc) {
1011  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1012  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1013                                                  ASLoc, ColonLoc);
1014  CurContext->addHiddenDecl(ASDecl);
1015  return ASDecl;
1016}
1017
1018/// CheckOverrideControl - Check C++0x override control semantics.
1019void Sema::CheckOverrideControl(const Decl *D) {
1020  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1021  if (!MD || !MD->isVirtual())
1022    return;
1023
1024  if (MD->isDependentContext())
1025    return;
1026
1027  // C++0x [class.virtual]p3:
1028  //   If a virtual function is marked with the virt-specifier override and does
1029  //   not override a member function of a base class,
1030  //   the program is ill-formed.
1031  bool HasOverriddenMethods =
1032    MD->begin_overridden_methods() != MD->end_overridden_methods();
1033  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1034    Diag(MD->getLocation(),
1035                 diag::err_function_marked_override_not_overriding)
1036      << MD->getDeclName();
1037    return;
1038  }
1039}
1040
1041/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1042/// function overrides a virtual member function marked 'final', according to
1043/// C++0x [class.virtual]p3.
1044bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1045                                                  const CXXMethodDecl *Old) {
1046  if (!Old->hasAttr<FinalAttr>())
1047    return false;
1048
1049  Diag(New->getLocation(), diag::err_final_function_overridden)
1050    << New->getDeclName();
1051  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1052  return true;
1053}
1054
1055/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1056/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1057/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1058/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1059/// present but parsing it has been deferred.
1060Decl *
1061Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1062                               MultiTemplateParamsArg TemplateParameterLists,
1063                               ExprTy *BW, const VirtSpecifiers &VS,
1064                               ExprTy *InitExpr, bool HasDeferredInit,
1065                               bool IsDefinition) {
1066  const DeclSpec &DS = D.getDeclSpec();
1067  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1068  DeclarationName Name = NameInfo.getName();
1069  SourceLocation Loc = NameInfo.getLoc();
1070
1071  // For anonymous bitfields, the location should point to the type.
1072  if (Loc.isInvalid())
1073    Loc = D.getSourceRange().getBegin();
1074
1075  Expr *BitWidth = static_cast<Expr*>(BW);
1076  Expr *Init = static_cast<Expr*>(InitExpr);
1077
1078  assert(isa<CXXRecordDecl>(CurContext));
1079  assert(!DS.isFriendSpecified());
1080  assert(!Init || !HasDeferredInit);
1081
1082  bool isFunc = D.isDeclarationOfFunction();
1083
1084  // C++ 9.2p6: A member shall not be declared to have automatic storage
1085  // duration (auto, register) or with the extern storage-class-specifier.
1086  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1087  // data members and cannot be applied to names declared const or static,
1088  // and cannot be applied to reference members.
1089  switch (DS.getStorageClassSpec()) {
1090    case DeclSpec::SCS_unspecified:
1091    case DeclSpec::SCS_typedef:
1092    case DeclSpec::SCS_static:
1093      // FALL THROUGH.
1094      break;
1095    case DeclSpec::SCS_mutable:
1096      if (isFunc) {
1097        if (DS.getStorageClassSpecLoc().isValid())
1098          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1099        else
1100          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1101
1102        // FIXME: It would be nicer if the keyword was ignored only for this
1103        // declarator. Otherwise we could get follow-up errors.
1104        D.getMutableDeclSpec().ClearStorageClassSpecs();
1105      }
1106      break;
1107    default:
1108      if (DS.getStorageClassSpecLoc().isValid())
1109        Diag(DS.getStorageClassSpecLoc(),
1110             diag::err_storageclass_invalid_for_member);
1111      else
1112        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1113      D.getMutableDeclSpec().ClearStorageClassSpecs();
1114  }
1115
1116  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1117                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1118                      !isFunc);
1119
1120  Decl *Member;
1121  if (isInstField) {
1122    CXXScopeSpec &SS = D.getCXXScopeSpec();
1123
1124    if (SS.isSet() && !SS.isInvalid()) {
1125      // The user provided a superfluous scope specifier inside a class
1126      // definition:
1127      //
1128      // class X {
1129      //   int X::member;
1130      // };
1131      DeclContext *DC = 0;
1132      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1133        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1134        << Name << FixItHint::CreateRemoval(SS.getRange());
1135      else
1136        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1137          << Name << SS.getRange();
1138
1139      SS.clear();
1140    }
1141
1142    // FIXME: Check for template parameters!
1143    // FIXME: Check that the name is an identifier!
1144    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1145                         HasDeferredInit, AS);
1146    assert(Member && "HandleField never returns null");
1147  } else {
1148    assert(!HasDeferredInit);
1149
1150    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1151    if (!Member) {
1152      return 0;
1153    }
1154
1155    // Non-instance-fields can't have a bitfield.
1156    if (BitWidth) {
1157      if (Member->isInvalidDecl()) {
1158        // don't emit another diagnostic.
1159      } else if (isa<VarDecl>(Member)) {
1160        // C++ 9.6p3: A bit-field shall not be a static member.
1161        // "static member 'A' cannot be a bit-field"
1162        Diag(Loc, diag::err_static_not_bitfield)
1163          << Name << BitWidth->getSourceRange();
1164      } else if (isa<TypedefDecl>(Member)) {
1165        // "typedef member 'x' cannot be a bit-field"
1166        Diag(Loc, diag::err_typedef_not_bitfield)
1167          << Name << BitWidth->getSourceRange();
1168      } else {
1169        // A function typedef ("typedef int f(); f a;").
1170        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1171        Diag(Loc, diag::err_not_integral_type_bitfield)
1172          << Name << cast<ValueDecl>(Member)->getType()
1173          << BitWidth->getSourceRange();
1174      }
1175
1176      BitWidth = 0;
1177      Member->setInvalidDecl();
1178    }
1179
1180    Member->setAccess(AS);
1181
1182    // If we have declared a member function template, set the access of the
1183    // templated declaration as well.
1184    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1185      FunTmpl->getTemplatedDecl()->setAccess(AS);
1186  }
1187
1188  if (VS.isOverrideSpecified()) {
1189    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1190    if (!MD || !MD->isVirtual()) {
1191      Diag(Member->getLocStart(),
1192           diag::override_keyword_only_allowed_on_virtual_member_functions)
1193        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1194    } else
1195      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1196  }
1197  if (VS.isFinalSpecified()) {
1198    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1199    if (!MD || !MD->isVirtual()) {
1200      Diag(Member->getLocStart(),
1201           diag::override_keyword_only_allowed_on_virtual_member_functions)
1202      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1203    } else
1204      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1205  }
1206
1207  if (VS.getLastLocation().isValid()) {
1208    // Update the end location of a method that has a virt-specifiers.
1209    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1210      MD->setRangeEnd(VS.getLastLocation());
1211  }
1212
1213  CheckOverrideControl(Member);
1214
1215  assert((Name || isInstField) && "No identifier for non-field ?");
1216
1217  if (Init)
1218    AddInitializerToDecl(Member, Init, false,
1219                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1220  else if (DS.getTypeSpecType() == DeclSpec::TST_auto &&
1221           DS.getStorageClassSpec() == DeclSpec::SCS_static) {
1222    // C++0x [dcl.spec.auto]p4: 'auto' can only be used in the type of a static
1223    // data member if a brace-or-equal-initializer is provided.
1224    Diag(Loc, diag::err_auto_var_requires_init)
1225      << Name << cast<ValueDecl>(Member)->getType();
1226    Member->setInvalidDecl();
1227  }
1228
1229  FinalizeDeclaration(Member);
1230
1231  if (isInstField)
1232    FieldCollector->Add(cast<FieldDecl>(Member));
1233  return Member;
1234}
1235
1236/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1237/// in-class initializer for a non-static C++ class member, and after
1238/// instantiating an in-class initializer in a class template. Such actions
1239/// are deferred until the class is complete.
1240void
1241Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1242                                       Expr *InitExpr) {
1243  FieldDecl *FD = cast<FieldDecl>(D);
1244
1245  if (!InitExpr) {
1246    FD->setInvalidDecl();
1247    FD->removeInClassInitializer();
1248    return;
1249  }
1250
1251  ExprResult Init = InitExpr;
1252  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1253    // FIXME: if there is no EqualLoc, this is list-initialization.
1254    Init = PerformCopyInitialization(
1255      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1256    if (Init.isInvalid()) {
1257      FD->setInvalidDecl();
1258      return;
1259    }
1260
1261    CheckImplicitConversions(Init.get(), EqualLoc);
1262  }
1263
1264  // C++0x [class.base.init]p7:
1265  //   The initialization of each base and member constitutes a
1266  //   full-expression.
1267  Init = MaybeCreateExprWithCleanups(Init);
1268  if (Init.isInvalid()) {
1269    FD->setInvalidDecl();
1270    return;
1271  }
1272
1273  InitExpr = Init.release();
1274
1275  FD->setInClassInitializer(InitExpr);
1276}
1277
1278/// \brief Find the direct and/or virtual base specifiers that
1279/// correspond to the given base type, for use in base initialization
1280/// within a constructor.
1281static bool FindBaseInitializer(Sema &SemaRef,
1282                                CXXRecordDecl *ClassDecl,
1283                                QualType BaseType,
1284                                const CXXBaseSpecifier *&DirectBaseSpec,
1285                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1286  // First, check for a direct base class.
1287  DirectBaseSpec = 0;
1288  for (CXXRecordDecl::base_class_const_iterator Base
1289         = ClassDecl->bases_begin();
1290       Base != ClassDecl->bases_end(); ++Base) {
1291    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1292      // We found a direct base of this type. That's what we're
1293      // initializing.
1294      DirectBaseSpec = &*Base;
1295      break;
1296    }
1297  }
1298
1299  // Check for a virtual base class.
1300  // FIXME: We might be able to short-circuit this if we know in advance that
1301  // there are no virtual bases.
1302  VirtualBaseSpec = 0;
1303  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1304    // We haven't found a base yet; search the class hierarchy for a
1305    // virtual base class.
1306    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1307                       /*DetectVirtual=*/false);
1308    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1309                              BaseType, Paths)) {
1310      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1311           Path != Paths.end(); ++Path) {
1312        if (Path->back().Base->isVirtual()) {
1313          VirtualBaseSpec = Path->back().Base;
1314          break;
1315        }
1316      }
1317    }
1318  }
1319
1320  return DirectBaseSpec || VirtualBaseSpec;
1321}
1322
1323/// ActOnMemInitializer - Handle a C++ member initializer.
1324MemInitResult
1325Sema::ActOnMemInitializer(Decl *ConstructorD,
1326                          Scope *S,
1327                          CXXScopeSpec &SS,
1328                          IdentifierInfo *MemberOrBase,
1329                          ParsedType TemplateTypeTy,
1330                          SourceLocation IdLoc,
1331                          SourceLocation LParenLoc,
1332                          ExprTy **Args, unsigned NumArgs,
1333                          SourceLocation RParenLoc,
1334                          SourceLocation EllipsisLoc) {
1335  if (!ConstructorD)
1336    return true;
1337
1338  AdjustDeclIfTemplate(ConstructorD);
1339
1340  CXXConstructorDecl *Constructor
1341    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1342  if (!Constructor) {
1343    // The user wrote a constructor initializer on a function that is
1344    // not a C++ constructor. Ignore the error for now, because we may
1345    // have more member initializers coming; we'll diagnose it just
1346    // once in ActOnMemInitializers.
1347    return true;
1348  }
1349
1350  CXXRecordDecl *ClassDecl = Constructor->getParent();
1351
1352  // C++ [class.base.init]p2:
1353  //   Names in a mem-initializer-id are looked up in the scope of the
1354  //   constructor's class and, if not found in that scope, are looked
1355  //   up in the scope containing the constructor's definition.
1356  //   [Note: if the constructor's class contains a member with the
1357  //   same name as a direct or virtual base class of the class, a
1358  //   mem-initializer-id naming the member or base class and composed
1359  //   of a single identifier refers to the class member. A
1360  //   mem-initializer-id for the hidden base class may be specified
1361  //   using a qualified name. ]
1362  if (!SS.getScopeRep() && !TemplateTypeTy) {
1363    // Look for a member, first.
1364    FieldDecl *Member = 0;
1365    DeclContext::lookup_result Result
1366      = ClassDecl->lookup(MemberOrBase);
1367    if (Result.first != Result.second) {
1368      Member = dyn_cast<FieldDecl>(*Result.first);
1369
1370      if (Member) {
1371        if (EllipsisLoc.isValid())
1372          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1373            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1374
1375        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1376                                    LParenLoc, RParenLoc);
1377      }
1378
1379      // Handle anonymous union case.
1380      if (IndirectFieldDecl* IndirectField
1381            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1382        if (EllipsisLoc.isValid())
1383          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1384            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1385
1386         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1387                                       NumArgs, IdLoc,
1388                                       LParenLoc, RParenLoc);
1389      }
1390    }
1391  }
1392  // It didn't name a member, so see if it names a class.
1393  QualType BaseType;
1394  TypeSourceInfo *TInfo = 0;
1395
1396  if (TemplateTypeTy) {
1397    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1398  } else {
1399    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1400    LookupParsedName(R, S, &SS);
1401
1402    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1403    if (!TyD) {
1404      if (R.isAmbiguous()) return true;
1405
1406      // We don't want access-control diagnostics here.
1407      R.suppressDiagnostics();
1408
1409      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1410        bool NotUnknownSpecialization = false;
1411        DeclContext *DC = computeDeclContext(SS, false);
1412        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1413          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1414
1415        if (!NotUnknownSpecialization) {
1416          // When the scope specifier can refer to a member of an unknown
1417          // specialization, we take it as a type name.
1418          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1419                                       SS.getWithLocInContext(Context),
1420                                       *MemberOrBase, IdLoc);
1421          if (BaseType.isNull())
1422            return true;
1423
1424          R.clear();
1425          R.setLookupName(MemberOrBase);
1426        }
1427      }
1428
1429      // If no results were found, try to correct typos.
1430      TypoCorrection Corr;
1431      if (R.empty() && BaseType.isNull() &&
1432          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1433                              ClassDecl, false, CTC_NoKeywords))) {
1434        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1435        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1436        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1437          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1438            // We have found a non-static data member with a similar
1439            // name to what was typed; complain and initialize that
1440            // member.
1441            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1442              << MemberOrBase << true << CorrectedQuotedStr
1443              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1444            Diag(Member->getLocation(), diag::note_previous_decl)
1445              << CorrectedQuotedStr;
1446
1447            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1448                                          LParenLoc, RParenLoc);
1449          }
1450        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1451          const CXXBaseSpecifier *DirectBaseSpec;
1452          const CXXBaseSpecifier *VirtualBaseSpec;
1453          if (FindBaseInitializer(*this, ClassDecl,
1454                                  Context.getTypeDeclType(Type),
1455                                  DirectBaseSpec, VirtualBaseSpec)) {
1456            // We have found a direct or virtual base class with a
1457            // similar name to what was typed; complain and initialize
1458            // that base class.
1459            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1460              << MemberOrBase << false << CorrectedQuotedStr
1461              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1462
1463            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1464                                                             : VirtualBaseSpec;
1465            Diag(BaseSpec->getSourceRange().getBegin(),
1466                 diag::note_base_class_specified_here)
1467              << BaseSpec->getType()
1468              << BaseSpec->getSourceRange();
1469
1470            TyD = Type;
1471          }
1472        }
1473      }
1474
1475      if (!TyD && BaseType.isNull()) {
1476        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1477          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1478        return true;
1479      }
1480    }
1481
1482    if (BaseType.isNull()) {
1483      BaseType = Context.getTypeDeclType(TyD);
1484      if (SS.isSet()) {
1485        NestedNameSpecifier *Qualifier =
1486          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1487
1488        // FIXME: preserve source range information
1489        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1490      }
1491    }
1492  }
1493
1494  if (!TInfo)
1495    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1496
1497  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1498                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1499}
1500
1501/// Checks an initializer expression for use of uninitialized fields, such as
1502/// containing the field that is being initialized. Returns true if there is an
1503/// uninitialized field was used an updates the SourceLocation parameter; false
1504/// otherwise.
1505static bool InitExprContainsUninitializedFields(const Stmt *S,
1506                                                const ValueDecl *LhsField,
1507                                                SourceLocation *L) {
1508  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1509
1510  if (isa<CallExpr>(S)) {
1511    // Do not descend into function calls or constructors, as the use
1512    // of an uninitialized field may be valid. One would have to inspect
1513    // the contents of the function/ctor to determine if it is safe or not.
1514    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1515    // may be safe, depending on what the function/ctor does.
1516    return false;
1517  }
1518  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1519    const NamedDecl *RhsField = ME->getMemberDecl();
1520
1521    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1522      // The member expression points to a static data member.
1523      assert(VD->isStaticDataMember() &&
1524             "Member points to non-static data member!");
1525      (void)VD;
1526      return false;
1527    }
1528
1529    if (isa<EnumConstantDecl>(RhsField)) {
1530      // The member expression points to an enum.
1531      return false;
1532    }
1533
1534    if (RhsField == LhsField) {
1535      // Initializing a field with itself. Throw a warning.
1536      // But wait; there are exceptions!
1537      // Exception #1:  The field may not belong to this record.
1538      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1539      const Expr *base = ME->getBase();
1540      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1541        // Even though the field matches, it does not belong to this record.
1542        return false;
1543      }
1544      // None of the exceptions triggered; return true to indicate an
1545      // uninitialized field was used.
1546      *L = ME->getMemberLoc();
1547      return true;
1548    }
1549  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
1550    // sizeof/alignof doesn't reference contents, do not warn.
1551    return false;
1552  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1553    // address-of doesn't reference contents (the pointer may be dereferenced
1554    // in the same expression but it would be rare; and weird).
1555    if (UOE->getOpcode() == UO_AddrOf)
1556      return false;
1557  }
1558  for (Stmt::const_child_range it = S->children(); it; ++it) {
1559    if (!*it) {
1560      // An expression such as 'member(arg ?: "")' may trigger this.
1561      continue;
1562    }
1563    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1564      return true;
1565  }
1566  return false;
1567}
1568
1569MemInitResult
1570Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1571                             unsigned NumArgs, SourceLocation IdLoc,
1572                             SourceLocation LParenLoc,
1573                             SourceLocation RParenLoc) {
1574  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1575  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1576  assert((DirectMember || IndirectMember) &&
1577         "Member must be a FieldDecl or IndirectFieldDecl");
1578
1579  if (Member->isInvalidDecl())
1580    return true;
1581
1582  // Diagnose value-uses of fields to initialize themselves, e.g.
1583  //   foo(foo)
1584  // where foo is not also a parameter to the constructor.
1585  // TODO: implement -Wuninitialized and fold this into that framework.
1586  for (unsigned i = 0; i < NumArgs; ++i) {
1587    SourceLocation L;
1588    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1589      // FIXME: Return true in the case when other fields are used before being
1590      // uninitialized. For example, let this field be the i'th field. When
1591      // initializing the i'th field, throw a warning if any of the >= i'th
1592      // fields are used, as they are not yet initialized.
1593      // Right now we are only handling the case where the i'th field uses
1594      // itself in its initializer.
1595      Diag(L, diag::warn_field_is_uninit);
1596    }
1597  }
1598
1599  bool HasDependentArg = false;
1600  for (unsigned i = 0; i < NumArgs; i++)
1601    HasDependentArg |= Args[i]->isTypeDependent();
1602
1603  Expr *Init;
1604  if (Member->getType()->isDependentType() || HasDependentArg) {
1605    // Can't check initialization for a member of dependent type or when
1606    // any of the arguments are type-dependent expressions.
1607    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1608                                       RParenLoc,
1609                                       Member->getType().getNonReferenceType());
1610
1611    DiscardCleanupsInEvaluationContext();
1612  } else {
1613    // Initialize the member.
1614    InitializedEntity MemberEntity =
1615      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1616                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1617    InitializationKind Kind =
1618      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1619
1620    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1621
1622    ExprResult MemberInit =
1623      InitSeq.Perform(*this, MemberEntity, Kind,
1624                      MultiExprArg(*this, Args, NumArgs), 0);
1625    if (MemberInit.isInvalid())
1626      return true;
1627
1628    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1629
1630    // C++0x [class.base.init]p7:
1631    //   The initialization of each base and member constitutes a
1632    //   full-expression.
1633    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1634    if (MemberInit.isInvalid())
1635      return true;
1636
1637    // If we are in a dependent context, template instantiation will
1638    // perform this type-checking again. Just save the arguments that we
1639    // received in a ParenListExpr.
1640    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1641    // of the information that we have about the member
1642    // initializer. However, deconstructing the ASTs is a dicey process,
1643    // and this approach is far more likely to get the corner cases right.
1644    if (CurContext->isDependentContext())
1645      Init = new (Context) ParenListExpr(
1646          Context, LParenLoc, Args, NumArgs, RParenLoc,
1647          Member->getType().getNonReferenceType());
1648    else
1649      Init = MemberInit.get();
1650  }
1651
1652  if (DirectMember) {
1653    return new (Context) CXXCtorInitializer(Context, DirectMember,
1654                                                    IdLoc, LParenLoc, Init,
1655                                                    RParenLoc);
1656  } else {
1657    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1658                                                    IdLoc, LParenLoc, Init,
1659                                                    RParenLoc);
1660  }
1661}
1662
1663MemInitResult
1664Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1665                                 Expr **Args, unsigned NumArgs,
1666                                 SourceLocation NameLoc,
1667                                 SourceLocation LParenLoc,
1668                                 SourceLocation RParenLoc,
1669                                 CXXRecordDecl *ClassDecl) {
1670  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1671  if (!LangOpts.CPlusPlus0x)
1672    return Diag(Loc, diag::err_delegation_0x_only)
1673      << TInfo->getTypeLoc().getLocalSourceRange();
1674
1675  // Initialize the object.
1676  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
1677                                     QualType(ClassDecl->getTypeForDecl(), 0));
1678  InitializationKind Kind =
1679    InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
1680
1681  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
1682
1683  ExprResult DelegationInit =
1684    InitSeq.Perform(*this, DelegationEntity, Kind,
1685                    MultiExprArg(*this, Args, NumArgs), 0);
1686  if (DelegationInit.isInvalid())
1687    return true;
1688
1689  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
1690  CXXConstructorDecl *Constructor
1691    = ConExpr->getConstructor();
1692  assert(Constructor && "Delegating constructor with no target?");
1693
1694  CheckImplicitConversions(DelegationInit.get(), LParenLoc);
1695
1696  // C++0x [class.base.init]p7:
1697  //   The initialization of each base and member constitutes a
1698  //   full-expression.
1699  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
1700  if (DelegationInit.isInvalid())
1701    return true;
1702
1703  assert(!CurContext->isDependentContext());
1704  return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
1705                                          DelegationInit.takeAs<Expr>(),
1706                                          RParenLoc);
1707}
1708
1709MemInitResult
1710Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1711                           Expr **Args, unsigned NumArgs,
1712                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1713                           CXXRecordDecl *ClassDecl,
1714                           SourceLocation EllipsisLoc) {
1715  bool HasDependentArg = false;
1716  for (unsigned i = 0; i < NumArgs; i++)
1717    HasDependentArg |= Args[i]->isTypeDependent();
1718
1719  SourceLocation BaseLoc
1720    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1721
1722  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1723    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1724             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1725
1726  // C++ [class.base.init]p2:
1727  //   [...] Unless the mem-initializer-id names a nonstatic data
1728  //   member of the constructor's class or a direct or virtual base
1729  //   of that class, the mem-initializer is ill-formed. A
1730  //   mem-initializer-list can initialize a base class using any
1731  //   name that denotes that base class type.
1732  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1733
1734  if (EllipsisLoc.isValid()) {
1735    // This is a pack expansion.
1736    if (!BaseType->containsUnexpandedParameterPack())  {
1737      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1738        << SourceRange(BaseLoc, RParenLoc);
1739
1740      EllipsisLoc = SourceLocation();
1741    }
1742  } else {
1743    // Check for any unexpanded parameter packs.
1744    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1745      return true;
1746
1747    for (unsigned I = 0; I != NumArgs; ++I)
1748      if (DiagnoseUnexpandedParameterPack(Args[I]))
1749        return true;
1750  }
1751
1752  // Check for direct and virtual base classes.
1753  const CXXBaseSpecifier *DirectBaseSpec = 0;
1754  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1755  if (!Dependent) {
1756    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1757                                       BaseType))
1758      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
1759                                        LParenLoc, RParenLoc, ClassDecl);
1760
1761    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1762                        VirtualBaseSpec);
1763
1764    // C++ [base.class.init]p2:
1765    // Unless the mem-initializer-id names a nonstatic data member of the
1766    // constructor's class or a direct or virtual base of that class, the
1767    // mem-initializer is ill-formed.
1768    if (!DirectBaseSpec && !VirtualBaseSpec) {
1769      // If the class has any dependent bases, then it's possible that
1770      // one of those types will resolve to the same type as
1771      // BaseType. Therefore, just treat this as a dependent base
1772      // class initialization.  FIXME: Should we try to check the
1773      // initialization anyway? It seems odd.
1774      if (ClassDecl->hasAnyDependentBases())
1775        Dependent = true;
1776      else
1777        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1778          << BaseType << Context.getTypeDeclType(ClassDecl)
1779          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1780    }
1781  }
1782
1783  if (Dependent) {
1784    // Can't check initialization for a base of dependent type or when
1785    // any of the arguments are type-dependent expressions.
1786    ExprResult BaseInit
1787      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1788                                          RParenLoc, BaseType));
1789
1790    DiscardCleanupsInEvaluationContext();
1791
1792    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1793                                                    /*IsVirtual=*/false,
1794                                                    LParenLoc,
1795                                                    BaseInit.takeAs<Expr>(),
1796                                                    RParenLoc,
1797                                                    EllipsisLoc);
1798  }
1799
1800  // C++ [base.class.init]p2:
1801  //   If a mem-initializer-id is ambiguous because it designates both
1802  //   a direct non-virtual base class and an inherited virtual base
1803  //   class, the mem-initializer is ill-formed.
1804  if (DirectBaseSpec && VirtualBaseSpec)
1805    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1806      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1807
1808  CXXBaseSpecifier *BaseSpec
1809    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1810  if (!BaseSpec)
1811    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1812
1813  // Initialize the base.
1814  InitializedEntity BaseEntity =
1815    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1816  InitializationKind Kind =
1817    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1818
1819  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1820
1821  ExprResult BaseInit =
1822    InitSeq.Perform(*this, BaseEntity, Kind,
1823                    MultiExprArg(*this, Args, NumArgs), 0);
1824  if (BaseInit.isInvalid())
1825    return true;
1826
1827  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1828
1829  // C++0x [class.base.init]p7:
1830  //   The initialization of each base and member constitutes a
1831  //   full-expression.
1832  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1833  if (BaseInit.isInvalid())
1834    return true;
1835
1836  // If we are in a dependent context, template instantiation will
1837  // perform this type-checking again. Just save the arguments that we
1838  // received in a ParenListExpr.
1839  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1840  // of the information that we have about the base
1841  // initializer. However, deconstructing the ASTs is a dicey process,
1842  // and this approach is far more likely to get the corner cases right.
1843  if (CurContext->isDependentContext()) {
1844    ExprResult Init
1845      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1846                                          RParenLoc, BaseType));
1847    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1848                                                    BaseSpec->isVirtual(),
1849                                                    LParenLoc,
1850                                                    Init.takeAs<Expr>(),
1851                                                    RParenLoc,
1852                                                    EllipsisLoc);
1853  }
1854
1855  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1856                                                  BaseSpec->isVirtual(),
1857                                                  LParenLoc,
1858                                                  BaseInit.takeAs<Expr>(),
1859                                                  RParenLoc,
1860                                                  EllipsisLoc);
1861}
1862
1863/// ImplicitInitializerKind - How an implicit base or member initializer should
1864/// initialize its base or member.
1865enum ImplicitInitializerKind {
1866  IIK_Default,
1867  IIK_Copy,
1868  IIK_Move
1869};
1870
1871static bool
1872BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1873                             ImplicitInitializerKind ImplicitInitKind,
1874                             CXXBaseSpecifier *BaseSpec,
1875                             bool IsInheritedVirtualBase,
1876                             CXXCtorInitializer *&CXXBaseInit) {
1877  InitializedEntity InitEntity
1878    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1879                                        IsInheritedVirtualBase);
1880
1881  ExprResult BaseInit;
1882
1883  switch (ImplicitInitKind) {
1884  case IIK_Default: {
1885    InitializationKind InitKind
1886      = InitializationKind::CreateDefault(Constructor->getLocation());
1887    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1888    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1889                               MultiExprArg(SemaRef, 0, 0));
1890    break;
1891  }
1892
1893  case IIK_Copy: {
1894    ParmVarDecl *Param = Constructor->getParamDecl(0);
1895    QualType ParamType = Param->getType().getNonReferenceType();
1896
1897    Expr *CopyCtorArg =
1898      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1899                          Constructor->getLocation(), ParamType,
1900                          VK_LValue, 0);
1901
1902    // Cast to the base class to avoid ambiguities.
1903    QualType ArgTy =
1904      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1905                                       ParamType.getQualifiers());
1906
1907    CXXCastPath BasePath;
1908    BasePath.push_back(BaseSpec);
1909    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1910                                            CK_UncheckedDerivedToBase,
1911                                            VK_LValue, &BasePath).take();
1912
1913    InitializationKind InitKind
1914      = InitializationKind::CreateDirect(Constructor->getLocation(),
1915                                         SourceLocation(), SourceLocation());
1916    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1917                                   &CopyCtorArg, 1);
1918    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1919                               MultiExprArg(&CopyCtorArg, 1));
1920    break;
1921  }
1922
1923  case IIK_Move:
1924    assert(false && "Unhandled initializer kind!");
1925  }
1926
1927  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1928  if (BaseInit.isInvalid())
1929    return true;
1930
1931  CXXBaseInit =
1932    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1933               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1934                                                        SourceLocation()),
1935                                             BaseSpec->isVirtual(),
1936                                             SourceLocation(),
1937                                             BaseInit.takeAs<Expr>(),
1938                                             SourceLocation(),
1939                                             SourceLocation());
1940
1941  return false;
1942}
1943
1944static bool
1945BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1946                               ImplicitInitializerKind ImplicitInitKind,
1947                               FieldDecl *Field, IndirectFieldDecl *Indirect,
1948                               CXXCtorInitializer *&CXXMemberInit) {
1949  if (Field->isInvalidDecl())
1950    return true;
1951
1952  SourceLocation Loc = Constructor->getLocation();
1953
1954  if (ImplicitInitKind == IIK_Copy) {
1955    ParmVarDecl *Param = Constructor->getParamDecl(0);
1956    QualType ParamType = Param->getType().getNonReferenceType();
1957
1958    // Suppress copying zero-width bitfields.
1959    if (const Expr *Width = Field->getBitWidth())
1960      if (Width->EvaluateAsInt(SemaRef.Context) == 0)
1961        return false;
1962
1963    Expr *MemberExprBase =
1964      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1965                          Loc, ParamType, VK_LValue, 0);
1966
1967    // Build a reference to this field within the parameter.
1968    CXXScopeSpec SS;
1969    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1970                              Sema::LookupMemberName);
1971    MemberLookup.addDecl(Indirect? cast<ValueDecl>(Indirect) : cast<ValueDecl>(Field), AS_public);
1972    MemberLookup.resolveKind();
1973    ExprResult CopyCtorArg
1974      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1975                                         ParamType, Loc,
1976                                         /*IsArrow=*/false,
1977                                         SS,
1978                                         /*FirstQualifierInScope=*/0,
1979                                         MemberLookup,
1980                                         /*TemplateArgs=*/0);
1981    if (CopyCtorArg.isInvalid())
1982      return true;
1983
1984    // When the field we are copying is an array, create index variables for
1985    // each dimension of the array. We use these index variables to subscript
1986    // the source array, and other clients (e.g., CodeGen) will perform the
1987    // necessary iteration with these index variables.
1988    SmallVector<VarDecl *, 4> IndexVariables;
1989    QualType BaseType = Field->getType();
1990    QualType SizeType = SemaRef.Context.getSizeType();
1991    while (const ConstantArrayType *Array
1992                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1993      // Create the iteration variable for this array index.
1994      IdentifierInfo *IterationVarName = 0;
1995      {
1996        llvm::SmallString<8> Str;
1997        llvm::raw_svector_ostream OS(Str);
1998        OS << "__i" << IndexVariables.size();
1999        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2000      }
2001      VarDecl *IterationVar
2002        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2003                          IterationVarName, SizeType,
2004                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2005                          SC_None, SC_None);
2006      IndexVariables.push_back(IterationVar);
2007
2008      // Create a reference to the iteration variable.
2009      ExprResult IterationVarRef
2010        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
2011      assert(!IterationVarRef.isInvalid() &&
2012             "Reference to invented variable cannot fail!");
2013
2014      // Subscript the array with this iteration variable.
2015      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
2016                                                            Loc,
2017                                                        IterationVarRef.take(),
2018                                                            Loc);
2019      if (CopyCtorArg.isInvalid())
2020        return true;
2021
2022      BaseType = Array->getElementType();
2023    }
2024
2025    // Construct the entity that we will be initializing. For an array, this
2026    // will be first element in the array, which may require several levels
2027    // of array-subscript entities.
2028    SmallVector<InitializedEntity, 4> Entities;
2029    Entities.reserve(1 + IndexVariables.size());
2030    if (Indirect)
2031      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2032    else
2033      Entities.push_back(InitializedEntity::InitializeMember(Field));
2034    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2035      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2036                                                              0,
2037                                                              Entities.back()));
2038
2039    // Direct-initialize to use the copy constructor.
2040    InitializationKind InitKind =
2041      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2042
2043    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
2044    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2045                                   &CopyCtorArgE, 1);
2046
2047    ExprResult MemberInit
2048      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2049                        MultiExprArg(&CopyCtorArgE, 1));
2050    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2051    if (MemberInit.isInvalid())
2052      return true;
2053
2054    if (Indirect) {
2055      assert(IndexVariables.size() == 0 &&
2056             "Indirect field improperly initialized");
2057      CXXMemberInit
2058        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2059                                                   Loc, Loc,
2060                                                   MemberInit.takeAs<Expr>(),
2061                                                   Loc);
2062    } else
2063      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2064                                                 Loc, MemberInit.takeAs<Expr>(),
2065                                                 Loc,
2066                                                 IndexVariables.data(),
2067                                                 IndexVariables.size());
2068    return false;
2069  }
2070
2071  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2072
2073  QualType FieldBaseElementType =
2074    SemaRef.Context.getBaseElementType(Field->getType());
2075
2076  if (FieldBaseElementType->isRecordType()) {
2077    InitializedEntity InitEntity
2078      = Indirect? InitializedEntity::InitializeMember(Indirect)
2079                : InitializedEntity::InitializeMember(Field);
2080    InitializationKind InitKind =
2081      InitializationKind::CreateDefault(Loc);
2082
2083    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2084    ExprResult MemberInit =
2085      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2086
2087    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2088    if (MemberInit.isInvalid())
2089      return true;
2090
2091    if (Indirect)
2092      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2093                                                               Indirect, Loc,
2094                                                               Loc,
2095                                                               MemberInit.get(),
2096                                                               Loc);
2097    else
2098      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2099                                                               Field, Loc, Loc,
2100                                                               MemberInit.get(),
2101                                                               Loc);
2102    return false;
2103  }
2104
2105  if (!Field->getParent()->isUnion()) {
2106    if (FieldBaseElementType->isReferenceType()) {
2107      SemaRef.Diag(Constructor->getLocation(),
2108                   diag::err_uninitialized_member_in_ctor)
2109      << (int)Constructor->isImplicit()
2110      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2111      << 0 << Field->getDeclName();
2112      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2113      return true;
2114    }
2115
2116    if (FieldBaseElementType.isConstQualified()) {
2117      SemaRef.Diag(Constructor->getLocation(),
2118                   diag::err_uninitialized_member_in_ctor)
2119      << (int)Constructor->isImplicit()
2120      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2121      << 1 << Field->getDeclName();
2122      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2123      return true;
2124    }
2125  }
2126
2127  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2128      FieldBaseElementType->isObjCRetainableType() &&
2129      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2130      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2131    // Instant objects:
2132    //   Default-initialize Objective-C pointers to NULL.
2133    CXXMemberInit
2134      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2135                                                 Loc, Loc,
2136                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2137                                                 Loc);
2138    return false;
2139  }
2140
2141  // Nothing to initialize.
2142  CXXMemberInit = 0;
2143  return false;
2144}
2145
2146namespace {
2147struct BaseAndFieldInfo {
2148  Sema &S;
2149  CXXConstructorDecl *Ctor;
2150  bool AnyErrorsInInits;
2151  ImplicitInitializerKind IIK;
2152  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2153  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2154
2155  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2156    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2157    // FIXME: Handle implicit move constructors.
2158    if ((Ctor->isImplicit() || Ctor->isDefaulted()) &&
2159        Ctor->isCopyConstructor())
2160      IIK = IIK_Copy;
2161    else
2162      IIK = IIK_Default;
2163  }
2164};
2165}
2166
2167static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2168                                    FieldDecl *Field,
2169                                    IndirectFieldDecl *Indirect = 0) {
2170
2171  // Overwhelmingly common case: we have a direct initializer for this field.
2172  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2173    Info.AllToInit.push_back(Init);
2174    return false;
2175  }
2176
2177  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2178  // has a brace-or-equal-initializer, the entity is initialized as specified
2179  // in [dcl.init].
2180  if (Field->hasInClassInitializer()) {
2181    CXXCtorInitializer *Init;
2182    if (Indirect)
2183      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2184                                                      SourceLocation(),
2185                                                      SourceLocation(), 0,
2186                                                      SourceLocation());
2187    else
2188      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2189                                                      SourceLocation(),
2190                                                      SourceLocation(), 0,
2191                                                      SourceLocation());
2192    Info.AllToInit.push_back(Init);
2193    return false;
2194  }
2195
2196  // Don't try to build an implicit initializer if there were semantic
2197  // errors in any of the initializers (and therefore we might be
2198  // missing some that the user actually wrote).
2199  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2200    return false;
2201
2202  CXXCtorInitializer *Init = 0;
2203  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2204                                     Indirect, Init))
2205    return true;
2206
2207  if (Init)
2208    Info.AllToInit.push_back(Init);
2209
2210  return false;
2211}
2212
2213bool
2214Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2215                               CXXCtorInitializer *Initializer) {
2216  assert(Initializer->isDelegatingInitializer());
2217  Constructor->setNumCtorInitializers(1);
2218  CXXCtorInitializer **initializer =
2219    new (Context) CXXCtorInitializer*[1];
2220  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2221  Constructor->setCtorInitializers(initializer);
2222
2223  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2224    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2225    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2226  }
2227
2228  DelegatingCtorDecls.push_back(Constructor);
2229
2230  return false;
2231}
2232
2233/// \brief Determine whether the given indirect field declaration is somewhere
2234/// within an anonymous union.
2235static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2236  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2237                                      CEnd = F->chain_end();
2238       C != CEnd; ++C)
2239    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2240      if (Record->isUnion())
2241        return true;
2242
2243  return false;
2244}
2245
2246bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2247                               CXXCtorInitializer **Initializers,
2248                               unsigned NumInitializers,
2249                               bool AnyErrors) {
2250  if (Constructor->getDeclContext()->isDependentContext()) {
2251    // Just store the initializers as written, they will be checked during
2252    // instantiation.
2253    if (NumInitializers > 0) {
2254      Constructor->setNumCtorInitializers(NumInitializers);
2255      CXXCtorInitializer **baseOrMemberInitializers =
2256        new (Context) CXXCtorInitializer*[NumInitializers];
2257      memcpy(baseOrMemberInitializers, Initializers,
2258             NumInitializers * sizeof(CXXCtorInitializer*));
2259      Constructor->setCtorInitializers(baseOrMemberInitializers);
2260    }
2261
2262    return false;
2263  }
2264
2265  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2266
2267  // We need to build the initializer AST according to order of construction
2268  // and not what user specified in the Initializers list.
2269  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2270  if (!ClassDecl)
2271    return true;
2272
2273  bool HadError = false;
2274
2275  for (unsigned i = 0; i < NumInitializers; i++) {
2276    CXXCtorInitializer *Member = Initializers[i];
2277
2278    if (Member->isBaseInitializer())
2279      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2280    else
2281      Info.AllBaseFields[Member->getAnyMember()] = Member;
2282  }
2283
2284  // Keep track of the direct virtual bases.
2285  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2286  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2287       E = ClassDecl->bases_end(); I != E; ++I) {
2288    if (I->isVirtual())
2289      DirectVBases.insert(I);
2290  }
2291
2292  // Push virtual bases before others.
2293  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2294       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2295
2296    if (CXXCtorInitializer *Value
2297        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2298      Info.AllToInit.push_back(Value);
2299    } else if (!AnyErrors) {
2300      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2301      CXXCtorInitializer *CXXBaseInit;
2302      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2303                                       VBase, IsInheritedVirtualBase,
2304                                       CXXBaseInit)) {
2305        HadError = true;
2306        continue;
2307      }
2308
2309      Info.AllToInit.push_back(CXXBaseInit);
2310    }
2311  }
2312
2313  // Non-virtual bases.
2314  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2315       E = ClassDecl->bases_end(); Base != E; ++Base) {
2316    // Virtuals are in the virtual base list and already constructed.
2317    if (Base->isVirtual())
2318      continue;
2319
2320    if (CXXCtorInitializer *Value
2321          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2322      Info.AllToInit.push_back(Value);
2323    } else if (!AnyErrors) {
2324      CXXCtorInitializer *CXXBaseInit;
2325      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2326                                       Base, /*IsInheritedVirtualBase=*/false,
2327                                       CXXBaseInit)) {
2328        HadError = true;
2329        continue;
2330      }
2331
2332      Info.AllToInit.push_back(CXXBaseInit);
2333    }
2334  }
2335
2336  // Fields.
2337  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2338                               MemEnd = ClassDecl->decls_end();
2339       Mem != MemEnd; ++Mem) {
2340    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2341      if (F->getType()->isIncompleteArrayType()) {
2342        assert(ClassDecl->hasFlexibleArrayMember() &&
2343               "Incomplete array type is not valid");
2344        continue;
2345      }
2346
2347      // If we're not generating the implicit copy constructor, then we'll
2348      // handle anonymous struct/union fields based on their individual
2349      // indirect fields.
2350      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2351        continue;
2352
2353      if (CollectFieldInitializer(*this, Info, F))
2354        HadError = true;
2355      continue;
2356    }
2357
2358    // Beyond this point, we only consider default initialization.
2359    if (Info.IIK != IIK_Default)
2360      continue;
2361
2362    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2363      if (F->getType()->isIncompleteArrayType()) {
2364        assert(ClassDecl->hasFlexibleArrayMember() &&
2365               "Incomplete array type is not valid");
2366        continue;
2367      }
2368
2369      // If this field is somewhere within an anonymous union, we only
2370      // initialize it if there's an explicit initializer.
2371      if (isWithinAnonymousUnion(F)) {
2372        if (CXXCtorInitializer *Init
2373              = Info.AllBaseFields.lookup(F->getAnonField())) {
2374          Info.AllToInit.push_back(Init);
2375        }
2376
2377        continue;
2378      }
2379
2380      // Initialize each field of an anonymous struct individually.
2381      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2382        HadError = true;
2383
2384      continue;
2385    }
2386  }
2387
2388  NumInitializers = Info.AllToInit.size();
2389  if (NumInitializers > 0) {
2390    Constructor->setNumCtorInitializers(NumInitializers);
2391    CXXCtorInitializer **baseOrMemberInitializers =
2392      new (Context) CXXCtorInitializer*[NumInitializers];
2393    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2394           NumInitializers * sizeof(CXXCtorInitializer*));
2395    Constructor->setCtorInitializers(baseOrMemberInitializers);
2396
2397    // Constructors implicitly reference the base and member
2398    // destructors.
2399    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2400                                           Constructor->getParent());
2401  }
2402
2403  return HadError;
2404}
2405
2406static void *GetKeyForTopLevelField(FieldDecl *Field) {
2407  // For anonymous unions, use the class declaration as the key.
2408  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2409    if (RT->getDecl()->isAnonymousStructOrUnion())
2410      return static_cast<void *>(RT->getDecl());
2411  }
2412  return static_cast<void *>(Field);
2413}
2414
2415static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2416  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2417}
2418
2419static void *GetKeyForMember(ASTContext &Context,
2420                             CXXCtorInitializer *Member) {
2421  if (!Member->isAnyMemberInitializer())
2422    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2423
2424  // For fields injected into the class via declaration of an anonymous union,
2425  // use its anonymous union class declaration as the unique key.
2426  FieldDecl *Field = Member->getAnyMember();
2427
2428  // If the field is a member of an anonymous struct or union, our key
2429  // is the anonymous record decl that's a direct child of the class.
2430  RecordDecl *RD = Field->getParent();
2431  if (RD->isAnonymousStructOrUnion()) {
2432    while (true) {
2433      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2434      if (Parent->isAnonymousStructOrUnion())
2435        RD = Parent;
2436      else
2437        break;
2438    }
2439
2440    return static_cast<void *>(RD);
2441  }
2442
2443  return static_cast<void *>(Field);
2444}
2445
2446static void
2447DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2448                                  const CXXConstructorDecl *Constructor,
2449                                  CXXCtorInitializer **Inits,
2450                                  unsigned NumInits) {
2451  if (Constructor->getDeclContext()->isDependentContext())
2452    return;
2453
2454  // Don't check initializers order unless the warning is enabled at the
2455  // location of at least one initializer.
2456  bool ShouldCheckOrder = false;
2457  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2458    CXXCtorInitializer *Init = Inits[InitIndex];
2459    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2460                                         Init->getSourceLocation())
2461          != Diagnostic::Ignored) {
2462      ShouldCheckOrder = true;
2463      break;
2464    }
2465  }
2466  if (!ShouldCheckOrder)
2467    return;
2468
2469  // Build the list of bases and members in the order that they'll
2470  // actually be initialized.  The explicit initializers should be in
2471  // this same order but may be missing things.
2472  SmallVector<const void*, 32> IdealInitKeys;
2473
2474  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2475
2476  // 1. Virtual bases.
2477  for (CXXRecordDecl::base_class_const_iterator VBase =
2478       ClassDecl->vbases_begin(),
2479       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2480    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2481
2482  // 2. Non-virtual bases.
2483  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2484       E = ClassDecl->bases_end(); Base != E; ++Base) {
2485    if (Base->isVirtual())
2486      continue;
2487    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2488  }
2489
2490  // 3. Direct fields.
2491  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2492       E = ClassDecl->field_end(); Field != E; ++Field)
2493    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2494
2495  unsigned NumIdealInits = IdealInitKeys.size();
2496  unsigned IdealIndex = 0;
2497
2498  CXXCtorInitializer *PrevInit = 0;
2499  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2500    CXXCtorInitializer *Init = Inits[InitIndex];
2501    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2502
2503    // Scan forward to try to find this initializer in the idealized
2504    // initializers list.
2505    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2506      if (InitKey == IdealInitKeys[IdealIndex])
2507        break;
2508
2509    // If we didn't find this initializer, it must be because we
2510    // scanned past it on a previous iteration.  That can only
2511    // happen if we're out of order;  emit a warning.
2512    if (IdealIndex == NumIdealInits && PrevInit) {
2513      Sema::SemaDiagnosticBuilder D =
2514        SemaRef.Diag(PrevInit->getSourceLocation(),
2515                     diag::warn_initializer_out_of_order);
2516
2517      if (PrevInit->isAnyMemberInitializer())
2518        D << 0 << PrevInit->getAnyMember()->getDeclName();
2519      else
2520        D << 1 << PrevInit->getBaseClassInfo()->getType();
2521
2522      if (Init->isAnyMemberInitializer())
2523        D << 0 << Init->getAnyMember()->getDeclName();
2524      else
2525        D << 1 << Init->getBaseClassInfo()->getType();
2526
2527      // Move back to the initializer's location in the ideal list.
2528      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2529        if (InitKey == IdealInitKeys[IdealIndex])
2530          break;
2531
2532      assert(IdealIndex != NumIdealInits &&
2533             "initializer not found in initializer list");
2534    }
2535
2536    PrevInit = Init;
2537  }
2538}
2539
2540namespace {
2541bool CheckRedundantInit(Sema &S,
2542                        CXXCtorInitializer *Init,
2543                        CXXCtorInitializer *&PrevInit) {
2544  if (!PrevInit) {
2545    PrevInit = Init;
2546    return false;
2547  }
2548
2549  if (FieldDecl *Field = Init->getMember())
2550    S.Diag(Init->getSourceLocation(),
2551           diag::err_multiple_mem_initialization)
2552      << Field->getDeclName()
2553      << Init->getSourceRange();
2554  else {
2555    const Type *BaseClass = Init->getBaseClass();
2556    assert(BaseClass && "neither field nor base");
2557    S.Diag(Init->getSourceLocation(),
2558           diag::err_multiple_base_initialization)
2559      << QualType(BaseClass, 0)
2560      << Init->getSourceRange();
2561  }
2562  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2563    << 0 << PrevInit->getSourceRange();
2564
2565  return true;
2566}
2567
2568typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2569typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2570
2571bool CheckRedundantUnionInit(Sema &S,
2572                             CXXCtorInitializer *Init,
2573                             RedundantUnionMap &Unions) {
2574  FieldDecl *Field = Init->getAnyMember();
2575  RecordDecl *Parent = Field->getParent();
2576  if (!Parent->isAnonymousStructOrUnion())
2577    return false;
2578
2579  NamedDecl *Child = Field;
2580  do {
2581    if (Parent->isUnion()) {
2582      UnionEntry &En = Unions[Parent];
2583      if (En.first && En.first != Child) {
2584        S.Diag(Init->getSourceLocation(),
2585               diag::err_multiple_mem_union_initialization)
2586          << Field->getDeclName()
2587          << Init->getSourceRange();
2588        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2589          << 0 << En.second->getSourceRange();
2590        return true;
2591      } else if (!En.first) {
2592        En.first = Child;
2593        En.second = Init;
2594      }
2595    }
2596
2597    Child = Parent;
2598    Parent = cast<RecordDecl>(Parent->getDeclContext());
2599  } while (Parent->isAnonymousStructOrUnion());
2600
2601  return false;
2602}
2603}
2604
2605/// ActOnMemInitializers - Handle the member initializers for a constructor.
2606void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2607                                SourceLocation ColonLoc,
2608                                MemInitTy **meminits, unsigned NumMemInits,
2609                                bool AnyErrors) {
2610  if (!ConstructorDecl)
2611    return;
2612
2613  AdjustDeclIfTemplate(ConstructorDecl);
2614
2615  CXXConstructorDecl *Constructor
2616    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2617
2618  if (!Constructor) {
2619    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2620    return;
2621  }
2622
2623  CXXCtorInitializer **MemInits =
2624    reinterpret_cast<CXXCtorInitializer **>(meminits);
2625
2626  // Mapping for the duplicate initializers check.
2627  // For member initializers, this is keyed with a FieldDecl*.
2628  // For base initializers, this is keyed with a Type*.
2629  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2630
2631  // Mapping for the inconsistent anonymous-union initializers check.
2632  RedundantUnionMap MemberUnions;
2633
2634  bool HadError = false;
2635  for (unsigned i = 0; i < NumMemInits; i++) {
2636    CXXCtorInitializer *Init = MemInits[i];
2637
2638    // Set the source order index.
2639    Init->setSourceOrder(i);
2640
2641    if (Init->isAnyMemberInitializer()) {
2642      FieldDecl *Field = Init->getAnyMember();
2643      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2644          CheckRedundantUnionInit(*this, Init, MemberUnions))
2645        HadError = true;
2646    } else if (Init->isBaseInitializer()) {
2647      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2648      if (CheckRedundantInit(*this, Init, Members[Key]))
2649        HadError = true;
2650    } else {
2651      assert(Init->isDelegatingInitializer());
2652      // This must be the only initializer
2653      if (i != 0 || NumMemInits > 1) {
2654        Diag(MemInits[0]->getSourceLocation(),
2655             diag::err_delegating_initializer_alone)
2656          << MemInits[0]->getSourceRange();
2657        HadError = true;
2658        // We will treat this as being the only initializer.
2659      }
2660      SetDelegatingInitializer(Constructor, MemInits[i]);
2661      // Return immediately as the initializer is set.
2662      return;
2663    }
2664  }
2665
2666  if (HadError)
2667    return;
2668
2669  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2670
2671  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2672}
2673
2674void
2675Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2676                                             CXXRecordDecl *ClassDecl) {
2677  // Ignore dependent contexts.
2678  if (ClassDecl->isDependentContext())
2679    return;
2680
2681  // FIXME: all the access-control diagnostics are positioned on the
2682  // field/base declaration.  That's probably good; that said, the
2683  // user might reasonably want to know why the destructor is being
2684  // emitted, and we currently don't say.
2685
2686  // Non-static data members.
2687  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2688       E = ClassDecl->field_end(); I != E; ++I) {
2689    FieldDecl *Field = *I;
2690    if (Field->isInvalidDecl())
2691      continue;
2692    QualType FieldType = Context.getBaseElementType(Field->getType());
2693
2694    const RecordType* RT = FieldType->getAs<RecordType>();
2695    if (!RT)
2696      continue;
2697
2698    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2699    if (FieldClassDecl->isInvalidDecl())
2700      continue;
2701    if (FieldClassDecl->hasTrivialDestructor())
2702      continue;
2703
2704    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2705    assert(Dtor && "No dtor found for FieldClassDecl!");
2706    CheckDestructorAccess(Field->getLocation(), Dtor,
2707                          PDiag(diag::err_access_dtor_field)
2708                            << Field->getDeclName()
2709                            << FieldType);
2710
2711    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2712  }
2713
2714  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2715
2716  // Bases.
2717  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2718       E = ClassDecl->bases_end(); Base != E; ++Base) {
2719    // Bases are always records in a well-formed non-dependent class.
2720    const RecordType *RT = Base->getType()->getAs<RecordType>();
2721
2722    // Remember direct virtual bases.
2723    if (Base->isVirtual())
2724      DirectVirtualBases.insert(RT);
2725
2726    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2727    // If our base class is invalid, we probably can't get its dtor anyway.
2728    if (BaseClassDecl->isInvalidDecl())
2729      continue;
2730    // Ignore trivial destructors.
2731    if (BaseClassDecl->hasTrivialDestructor())
2732      continue;
2733
2734    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2735    assert(Dtor && "No dtor found for BaseClassDecl!");
2736
2737    // FIXME: caret should be on the start of the class name
2738    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2739                          PDiag(diag::err_access_dtor_base)
2740                            << Base->getType()
2741                            << Base->getSourceRange());
2742
2743    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2744  }
2745
2746  // Virtual bases.
2747  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2748       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2749
2750    // Bases are always records in a well-formed non-dependent class.
2751    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2752
2753    // Ignore direct virtual bases.
2754    if (DirectVirtualBases.count(RT))
2755      continue;
2756
2757    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2758    // If our base class is invalid, we probably can't get its dtor anyway.
2759    if (BaseClassDecl->isInvalidDecl())
2760      continue;
2761    // Ignore trivial destructors.
2762    if (BaseClassDecl->hasTrivialDestructor())
2763      continue;
2764
2765    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2766    assert(Dtor && "No dtor found for BaseClassDecl!");
2767    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2768                          PDiag(diag::err_access_dtor_vbase)
2769                            << VBase->getType());
2770
2771    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2772  }
2773}
2774
2775void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2776  if (!CDtorDecl)
2777    return;
2778
2779  if (CXXConstructorDecl *Constructor
2780      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2781    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2782}
2783
2784bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2785                                  unsigned DiagID, AbstractDiagSelID SelID) {
2786  if (SelID == -1)
2787    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2788  else
2789    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2790}
2791
2792bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2793                                  const PartialDiagnostic &PD) {
2794  if (!getLangOptions().CPlusPlus)
2795    return false;
2796
2797  if (const ArrayType *AT = Context.getAsArrayType(T))
2798    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2799
2800  if (const PointerType *PT = T->getAs<PointerType>()) {
2801    // Find the innermost pointer type.
2802    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2803      PT = T;
2804
2805    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2806      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2807  }
2808
2809  const RecordType *RT = T->getAs<RecordType>();
2810  if (!RT)
2811    return false;
2812
2813  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2814
2815  // We can't answer whether something is abstract until it has a
2816  // definition.  If it's currently being defined, we'll walk back
2817  // over all the declarations when we have a full definition.
2818  const CXXRecordDecl *Def = RD->getDefinition();
2819  if (!Def || Def->isBeingDefined())
2820    return false;
2821
2822  if (!RD->isAbstract())
2823    return false;
2824
2825  Diag(Loc, PD) << RD->getDeclName();
2826  DiagnoseAbstractType(RD);
2827
2828  return true;
2829}
2830
2831void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2832  // Check if we've already emitted the list of pure virtual functions
2833  // for this class.
2834  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2835    return;
2836
2837  CXXFinalOverriderMap FinalOverriders;
2838  RD->getFinalOverriders(FinalOverriders);
2839
2840  // Keep a set of seen pure methods so we won't diagnose the same method
2841  // more than once.
2842  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2843
2844  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2845                                   MEnd = FinalOverriders.end();
2846       M != MEnd;
2847       ++M) {
2848    for (OverridingMethods::iterator SO = M->second.begin(),
2849                                  SOEnd = M->second.end();
2850         SO != SOEnd; ++SO) {
2851      // C++ [class.abstract]p4:
2852      //   A class is abstract if it contains or inherits at least one
2853      //   pure virtual function for which the final overrider is pure
2854      //   virtual.
2855
2856      //
2857      if (SO->second.size() != 1)
2858        continue;
2859
2860      if (!SO->second.front().Method->isPure())
2861        continue;
2862
2863      if (!SeenPureMethods.insert(SO->second.front().Method))
2864        continue;
2865
2866      Diag(SO->second.front().Method->getLocation(),
2867           diag::note_pure_virtual_function)
2868        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2869    }
2870  }
2871
2872  if (!PureVirtualClassDiagSet)
2873    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2874  PureVirtualClassDiagSet->insert(RD);
2875}
2876
2877namespace {
2878struct AbstractUsageInfo {
2879  Sema &S;
2880  CXXRecordDecl *Record;
2881  CanQualType AbstractType;
2882  bool Invalid;
2883
2884  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2885    : S(S), Record(Record),
2886      AbstractType(S.Context.getCanonicalType(
2887                   S.Context.getTypeDeclType(Record))),
2888      Invalid(false) {}
2889
2890  void DiagnoseAbstractType() {
2891    if (Invalid) return;
2892    S.DiagnoseAbstractType(Record);
2893    Invalid = true;
2894  }
2895
2896  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2897};
2898
2899struct CheckAbstractUsage {
2900  AbstractUsageInfo &Info;
2901  const NamedDecl *Ctx;
2902
2903  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2904    : Info(Info), Ctx(Ctx) {}
2905
2906  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2907    switch (TL.getTypeLocClass()) {
2908#define ABSTRACT_TYPELOC(CLASS, PARENT)
2909#define TYPELOC(CLASS, PARENT) \
2910    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2911#include "clang/AST/TypeLocNodes.def"
2912    }
2913  }
2914
2915  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2916    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2917    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2918      if (!TL.getArg(I))
2919        continue;
2920
2921      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2922      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2923    }
2924  }
2925
2926  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2927    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2928  }
2929
2930  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2931    // Visit the type parameters from a permissive context.
2932    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2933      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2934      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2935        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2936          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2937      // TODO: other template argument types?
2938    }
2939  }
2940
2941  // Visit pointee types from a permissive context.
2942#define CheckPolymorphic(Type) \
2943  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2944    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2945  }
2946  CheckPolymorphic(PointerTypeLoc)
2947  CheckPolymorphic(ReferenceTypeLoc)
2948  CheckPolymorphic(MemberPointerTypeLoc)
2949  CheckPolymorphic(BlockPointerTypeLoc)
2950
2951  /// Handle all the types we haven't given a more specific
2952  /// implementation for above.
2953  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2954    // Every other kind of type that we haven't called out already
2955    // that has an inner type is either (1) sugar or (2) contains that
2956    // inner type in some way as a subobject.
2957    if (TypeLoc Next = TL.getNextTypeLoc())
2958      return Visit(Next, Sel);
2959
2960    // If there's no inner type and we're in a permissive context,
2961    // don't diagnose.
2962    if (Sel == Sema::AbstractNone) return;
2963
2964    // Check whether the type matches the abstract type.
2965    QualType T = TL.getType();
2966    if (T->isArrayType()) {
2967      Sel = Sema::AbstractArrayType;
2968      T = Info.S.Context.getBaseElementType(T);
2969    }
2970    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2971    if (CT != Info.AbstractType) return;
2972
2973    // It matched; do some magic.
2974    if (Sel == Sema::AbstractArrayType) {
2975      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2976        << T << TL.getSourceRange();
2977    } else {
2978      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2979        << Sel << T << TL.getSourceRange();
2980    }
2981    Info.DiagnoseAbstractType();
2982  }
2983};
2984
2985void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2986                                  Sema::AbstractDiagSelID Sel) {
2987  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2988}
2989
2990}
2991
2992/// Check for invalid uses of an abstract type in a method declaration.
2993static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2994                                    CXXMethodDecl *MD) {
2995  // No need to do the check on definitions, which require that
2996  // the return/param types be complete.
2997  if (MD->doesThisDeclarationHaveABody())
2998    return;
2999
3000  // For safety's sake, just ignore it if we don't have type source
3001  // information.  This should never happen for non-implicit methods,
3002  // but...
3003  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3004    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3005}
3006
3007/// Check for invalid uses of an abstract type within a class definition.
3008static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3009                                    CXXRecordDecl *RD) {
3010  for (CXXRecordDecl::decl_iterator
3011         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3012    Decl *D = *I;
3013    if (D->isImplicit()) continue;
3014
3015    // Methods and method templates.
3016    if (isa<CXXMethodDecl>(D)) {
3017      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3018    } else if (isa<FunctionTemplateDecl>(D)) {
3019      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3020      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3021
3022    // Fields and static variables.
3023    } else if (isa<FieldDecl>(D)) {
3024      FieldDecl *FD = cast<FieldDecl>(D);
3025      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3026        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3027    } else if (isa<VarDecl>(D)) {
3028      VarDecl *VD = cast<VarDecl>(D);
3029      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3030        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3031
3032    // Nested classes and class templates.
3033    } else if (isa<CXXRecordDecl>(D)) {
3034      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3035    } else if (isa<ClassTemplateDecl>(D)) {
3036      CheckAbstractClassUsage(Info,
3037                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3038    }
3039  }
3040}
3041
3042/// \brief Perform semantic checks on a class definition that has been
3043/// completing, introducing implicitly-declared members, checking for
3044/// abstract types, etc.
3045void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3046  if (!Record)
3047    return;
3048
3049  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3050    AbstractUsageInfo Info(*this, Record);
3051    CheckAbstractClassUsage(Info, Record);
3052  }
3053
3054  // If this is not an aggregate type and has no user-declared constructor,
3055  // complain about any non-static data members of reference or const scalar
3056  // type, since they will never get initializers.
3057  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3058      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3059    bool Complained = false;
3060    for (RecordDecl::field_iterator F = Record->field_begin(),
3061                                 FEnd = Record->field_end();
3062         F != FEnd; ++F) {
3063      if (F->hasInClassInitializer())
3064        continue;
3065
3066      if (F->getType()->isReferenceType() ||
3067          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3068        if (!Complained) {
3069          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3070            << Record->getTagKind() << Record;
3071          Complained = true;
3072        }
3073
3074        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3075          << F->getType()->isReferenceType()
3076          << F->getDeclName();
3077      }
3078    }
3079  }
3080
3081  if (Record->isDynamicClass() && !Record->isDependentType())
3082    DynamicClasses.push_back(Record);
3083
3084  if (Record->getIdentifier()) {
3085    // C++ [class.mem]p13:
3086    //   If T is the name of a class, then each of the following shall have a
3087    //   name different from T:
3088    //     - every member of every anonymous union that is a member of class T.
3089    //
3090    // C++ [class.mem]p14:
3091    //   In addition, if class T has a user-declared constructor (12.1), every
3092    //   non-static data member of class T shall have a name different from T.
3093    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3094         R.first != R.second; ++R.first) {
3095      NamedDecl *D = *R.first;
3096      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3097          isa<IndirectFieldDecl>(D)) {
3098        Diag(D->getLocation(), diag::err_member_name_of_class)
3099          << D->getDeclName();
3100        break;
3101      }
3102    }
3103  }
3104
3105  // Warn if the class has virtual methods but non-virtual public destructor.
3106  if (Record->isPolymorphic() && !Record->isDependentType()) {
3107    CXXDestructorDecl *dtor = Record->getDestructor();
3108    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3109      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3110           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3111  }
3112
3113  // See if a method overloads virtual methods in a base
3114  /// class without overriding any.
3115  if (!Record->isDependentType()) {
3116    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3117                                     MEnd = Record->method_end();
3118         M != MEnd; ++M) {
3119      if (!(*M)->isStatic())
3120        DiagnoseHiddenVirtualMethods(Record, *M);
3121    }
3122  }
3123
3124  // Declare inherited constructors. We do this eagerly here because:
3125  // - The standard requires an eager diagnostic for conflicting inherited
3126  //   constructors from different classes.
3127  // - The lazy declaration of the other implicit constructors is so as to not
3128  //   waste space and performance on classes that are not meant to be
3129  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3130  //   have inherited constructors.
3131  DeclareInheritedConstructors(Record);
3132
3133  if (!Record->isDependentType())
3134    CheckExplicitlyDefaultedMethods(Record);
3135}
3136
3137void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3138  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3139                                      ME = Record->method_end();
3140       MI != ME; ++MI) {
3141    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3142      switch (getSpecialMember(*MI)) {
3143      case CXXDefaultConstructor:
3144        CheckExplicitlyDefaultedDefaultConstructor(
3145                                                  cast<CXXConstructorDecl>(*MI));
3146        break;
3147
3148      case CXXDestructor:
3149        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3150        break;
3151
3152      case CXXCopyConstructor:
3153        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3154        break;
3155
3156      case CXXCopyAssignment:
3157        CheckExplicitlyDefaultedCopyAssignment(*MI);
3158        break;
3159
3160      case CXXMoveConstructor:
3161      case CXXMoveAssignment:
3162        Diag(MI->getLocation(), diag::err_defaulted_move_unsupported);
3163        break;
3164
3165      default:
3166        // FIXME: Do moves once they exist
3167        llvm_unreachable("non-special member explicitly defaulted!");
3168      }
3169    }
3170  }
3171
3172}
3173
3174void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3175  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3176
3177  // Whether this was the first-declared instance of the constructor.
3178  // This affects whether we implicitly add an exception spec (and, eventually,
3179  // constexpr). It is also ill-formed to explicitly default a constructor such
3180  // that it would be deleted. (C++0x [decl.fct.def.default])
3181  bool First = CD == CD->getCanonicalDecl();
3182
3183  bool HadError = false;
3184  if (CD->getNumParams() != 0) {
3185    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3186      << CD->getSourceRange();
3187    HadError = true;
3188  }
3189
3190  ImplicitExceptionSpecification Spec
3191    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3192  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3193  if (EPI.ExceptionSpecType == EST_Delayed) {
3194    // Exception specification depends on some deferred part of the class. We'll
3195    // try again when the class's definition has been fully processed.
3196    return;
3197  }
3198  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3199                          *ExceptionType = Context.getFunctionType(
3200                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3201
3202  if (CtorType->hasExceptionSpec()) {
3203    if (CheckEquivalentExceptionSpec(
3204          PDiag(diag::err_incorrect_defaulted_exception_spec)
3205            << CXXDefaultConstructor,
3206          PDiag(),
3207          ExceptionType, SourceLocation(),
3208          CtorType, CD->getLocation())) {
3209      HadError = true;
3210    }
3211  } else if (First) {
3212    // We set the declaration to have the computed exception spec here.
3213    // We know there are no parameters.
3214    EPI.ExtInfo = CtorType->getExtInfo();
3215    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3216  }
3217
3218  if (HadError) {
3219    CD->setInvalidDecl();
3220    return;
3221  }
3222
3223  if (ShouldDeleteDefaultConstructor(CD)) {
3224    if (First) {
3225      CD->setDeletedAsWritten();
3226    } else {
3227      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3228        << CXXDefaultConstructor;
3229      CD->setInvalidDecl();
3230    }
3231  }
3232}
3233
3234void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3235  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3236
3237  // Whether this was the first-declared instance of the constructor.
3238  bool First = CD == CD->getCanonicalDecl();
3239
3240  bool HadError = false;
3241  if (CD->getNumParams() != 1) {
3242    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3243      << CD->getSourceRange();
3244    HadError = true;
3245  }
3246
3247  ImplicitExceptionSpecification Spec(Context);
3248  bool Const;
3249  llvm::tie(Spec, Const) =
3250    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3251
3252  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3253  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3254                          *ExceptionType = Context.getFunctionType(
3255                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3256
3257  // Check for parameter type matching.
3258  // This is a copy ctor so we know it's a cv-qualified reference to T.
3259  QualType ArgType = CtorType->getArgType(0);
3260  if (ArgType->getPointeeType().isVolatileQualified()) {
3261    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3262    HadError = true;
3263  }
3264  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3265    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3266    HadError = true;
3267  }
3268
3269  if (CtorType->hasExceptionSpec()) {
3270    if (CheckEquivalentExceptionSpec(
3271          PDiag(diag::err_incorrect_defaulted_exception_spec)
3272            << CXXCopyConstructor,
3273          PDiag(),
3274          ExceptionType, SourceLocation(),
3275          CtorType, CD->getLocation())) {
3276      HadError = true;
3277    }
3278  } else if (First) {
3279    // We set the declaration to have the computed exception spec here.
3280    // We duplicate the one parameter type.
3281    EPI.ExtInfo = CtorType->getExtInfo();
3282    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3283  }
3284
3285  if (HadError) {
3286    CD->setInvalidDecl();
3287    return;
3288  }
3289
3290  if (ShouldDeleteCopyConstructor(CD)) {
3291    if (First) {
3292      CD->setDeletedAsWritten();
3293    } else {
3294      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3295        << CXXCopyConstructor;
3296      CD->setInvalidDecl();
3297    }
3298  }
3299}
3300
3301void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3302  assert(MD->isExplicitlyDefaulted());
3303
3304  // Whether this was the first-declared instance of the operator
3305  bool First = MD == MD->getCanonicalDecl();
3306
3307  bool HadError = false;
3308  if (MD->getNumParams() != 1) {
3309    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3310      << MD->getSourceRange();
3311    HadError = true;
3312  }
3313
3314  QualType ReturnType =
3315    MD->getType()->getAs<FunctionType>()->getResultType();
3316  if (!ReturnType->isLValueReferenceType() ||
3317      !Context.hasSameType(
3318        Context.getCanonicalType(ReturnType->getPointeeType()),
3319        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3320    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3321    HadError = true;
3322  }
3323
3324  ImplicitExceptionSpecification Spec(Context);
3325  bool Const;
3326  llvm::tie(Spec, Const) =
3327    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3328
3329  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3330  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3331                          *ExceptionType = Context.getFunctionType(
3332                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3333
3334  QualType ArgType = OperType->getArgType(0);
3335  if (!ArgType->isReferenceType()) {
3336    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3337    HadError = true;
3338  } else {
3339    if (ArgType->getPointeeType().isVolatileQualified()) {
3340      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3341      HadError = true;
3342    }
3343    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3344      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3345      HadError = true;
3346    }
3347  }
3348
3349  if (OperType->getTypeQuals()) {
3350    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3351    HadError = true;
3352  }
3353
3354  if (OperType->hasExceptionSpec()) {
3355    if (CheckEquivalentExceptionSpec(
3356          PDiag(diag::err_incorrect_defaulted_exception_spec)
3357            << CXXCopyAssignment,
3358          PDiag(),
3359          ExceptionType, SourceLocation(),
3360          OperType, MD->getLocation())) {
3361      HadError = true;
3362    }
3363  } else if (First) {
3364    // We set the declaration to have the computed exception spec here.
3365    // We duplicate the one parameter type.
3366    EPI.RefQualifier = OperType->getRefQualifier();
3367    EPI.ExtInfo = OperType->getExtInfo();
3368    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3369  }
3370
3371  if (HadError) {
3372    MD->setInvalidDecl();
3373    return;
3374  }
3375
3376  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3377    if (First) {
3378      MD->setDeletedAsWritten();
3379    } else {
3380      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3381        << CXXCopyAssignment;
3382      MD->setInvalidDecl();
3383    }
3384  }
3385}
3386
3387void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
3388  assert(DD->isExplicitlyDefaulted());
3389
3390  // Whether this was the first-declared instance of the destructor.
3391  bool First = DD == DD->getCanonicalDecl();
3392
3393  ImplicitExceptionSpecification Spec
3394    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
3395  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3396  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
3397                          *ExceptionType = Context.getFunctionType(
3398                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3399
3400  if (DtorType->hasExceptionSpec()) {
3401    if (CheckEquivalentExceptionSpec(
3402          PDiag(diag::err_incorrect_defaulted_exception_spec)
3403            << CXXDestructor,
3404          PDiag(),
3405          ExceptionType, SourceLocation(),
3406          DtorType, DD->getLocation())) {
3407      DD->setInvalidDecl();
3408      return;
3409    }
3410  } else if (First) {
3411    // We set the declaration to have the computed exception spec here.
3412    // There are no parameters.
3413    EPI.ExtInfo = DtorType->getExtInfo();
3414    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3415  }
3416
3417  if (ShouldDeleteDestructor(DD)) {
3418    if (First) {
3419      DD->setDeletedAsWritten();
3420    } else {
3421      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
3422        << CXXDestructor;
3423      DD->setInvalidDecl();
3424    }
3425  }
3426}
3427
3428bool Sema::ShouldDeleteDefaultConstructor(CXXConstructorDecl *CD) {
3429  CXXRecordDecl *RD = CD->getParent();
3430  assert(!RD->isDependentType() && "do deletion after instantiation");
3431  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
3432    return false;
3433
3434  SourceLocation Loc = CD->getLocation();
3435
3436  // Do access control from the constructor
3437  ContextRAII CtorContext(*this, CD);
3438
3439  bool Union = RD->isUnion();
3440  bool AllConst = true;
3441
3442  // We do this because we should never actually use an anonymous
3443  // union's constructor.
3444  if (Union && RD->isAnonymousStructOrUnion())
3445    return false;
3446
3447  // FIXME: We should put some diagnostic logic right into this function.
3448
3449  // C++0x [class.ctor]/5
3450  //    A defaulted default constructor for class X is defined as deleted if:
3451
3452  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3453                                          BE = RD->bases_end();
3454       BI != BE; ++BI) {
3455    // We'll handle this one later
3456    if (BI->isVirtual())
3457      continue;
3458
3459    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3460    assert(BaseDecl && "base isn't a CXXRecordDecl");
3461
3462    // -- any [direct base class] has a type with a destructor that is
3463    //    deleted or inaccessible from the defaulted default constructor
3464    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3465    if (BaseDtor->isDeleted())
3466      return true;
3467    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3468        AR_accessible)
3469      return true;
3470
3471    // -- any [direct base class either] has no default constructor or
3472    //    overload resolution as applied to [its] default constructor
3473    //    results in an ambiguity or in a function that is deleted or
3474    //    inaccessible from the defaulted default constructor
3475    CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
3476    if (!BaseDefault || BaseDefault->isDeleted())
3477      return true;
3478
3479    if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
3480                               PDiag()) != AR_accessible)
3481      return true;
3482  }
3483
3484  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3485                                          BE = RD->vbases_end();
3486       BI != BE; ++BI) {
3487    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3488    assert(BaseDecl && "base isn't a CXXRecordDecl");
3489
3490    // -- any [virtual base class] has a type with a destructor that is
3491    //    delete or inaccessible from the defaulted default constructor
3492    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3493    if (BaseDtor->isDeleted())
3494      return true;
3495    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3496        AR_accessible)
3497      return true;
3498
3499    // -- any [virtual base class either] has no default constructor or
3500    //    overload resolution as applied to [its] default constructor
3501    //    results in an ambiguity or in a function that is deleted or
3502    //    inaccessible from the defaulted default constructor
3503    CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
3504    if (!BaseDefault || BaseDefault->isDeleted())
3505      return true;
3506
3507    if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
3508                               PDiag()) != AR_accessible)
3509      return true;
3510  }
3511
3512  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3513                                     FE = RD->field_end();
3514       FI != FE; ++FI) {
3515    if (FI->isInvalidDecl())
3516      continue;
3517
3518    QualType FieldType = Context.getBaseElementType(FI->getType());
3519    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3520
3521    // -- any non-static data member with no brace-or-equal-initializer is of
3522    //    reference type
3523    if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
3524      return true;
3525
3526    // -- X is a union and all its variant members are of const-qualified type
3527    //    (or array thereof)
3528    if (Union && !FieldType.isConstQualified())
3529      AllConst = false;
3530
3531    if (FieldRecord) {
3532      // -- X is a union-like class that has a variant member with a non-trivial
3533      //    default constructor
3534      if (Union && !FieldRecord->hasTrivialDefaultConstructor())
3535        return true;
3536
3537      CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3538      if (FieldDtor->isDeleted())
3539        return true;
3540      if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3541          AR_accessible)
3542        return true;
3543
3544      // -- any non-variant non-static data member of const-qualified type (or
3545      //    array thereof) with no brace-or-equal-initializer does not have a
3546      //    user-provided default constructor
3547      if (FieldType.isConstQualified() &&
3548          !FI->hasInClassInitializer() &&
3549          !FieldRecord->hasUserProvidedDefaultConstructor())
3550        return true;
3551
3552      if (!Union && FieldRecord->isUnion() &&
3553          FieldRecord->isAnonymousStructOrUnion()) {
3554        // We're okay to reuse AllConst here since we only care about the
3555        // value otherwise if we're in a union.
3556        AllConst = true;
3557
3558        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3559                                           UE = FieldRecord->field_end();
3560             UI != UE; ++UI) {
3561          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3562          CXXRecordDecl *UnionFieldRecord =
3563            UnionFieldType->getAsCXXRecordDecl();
3564
3565          if (!UnionFieldType.isConstQualified())
3566            AllConst = false;
3567
3568          if (UnionFieldRecord &&
3569              !UnionFieldRecord->hasTrivialDefaultConstructor())
3570            return true;
3571        }
3572
3573        if (AllConst)
3574          return true;
3575
3576        // Don't try to initialize the anonymous union
3577        // This is technically non-conformant, but sanity demands it.
3578        continue;
3579      }
3580
3581      // -- any non-static data member with no brace-or-equal-initializer has
3582      //    class type M (or array thereof) and either M has no default
3583      //    constructor or overload resolution as applied to M's default
3584      //    constructor results in an ambiguity or in a function that is deleted
3585      //    or inaccessible from the defaulted default constructor.
3586      if (!FI->hasInClassInitializer()) {
3587        CXXConstructorDecl *FieldDefault = LookupDefaultConstructor(FieldRecord);
3588        if (!FieldDefault || FieldDefault->isDeleted())
3589          return true;
3590        if (CheckConstructorAccess(Loc, FieldDefault, FieldDefault->getAccess(),
3591                                   PDiag()) != AR_accessible)
3592          return true;
3593      }
3594    } else if (!Union && FieldType.isConstQualified() &&
3595               !FI->hasInClassInitializer()) {
3596      // -- any non-variant non-static data member of const-qualified type (or
3597      //    array thereof) with no brace-or-equal-initializer does not have a
3598      //    user-provided default constructor
3599      return true;
3600    }
3601  }
3602
3603  if (Union && AllConst)
3604    return true;
3605
3606  return false;
3607}
3608
3609bool Sema::ShouldDeleteCopyConstructor(CXXConstructorDecl *CD) {
3610  CXXRecordDecl *RD = CD->getParent();
3611  assert(!RD->isDependentType() && "do deletion after instantiation");
3612  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
3613    return false;
3614
3615  SourceLocation Loc = CD->getLocation();
3616
3617  // Do access control from the constructor
3618  ContextRAII CtorContext(*this, CD);
3619
3620  bool Union = RD->isUnion();
3621
3622  assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() &&
3623         "copy assignment arg has no pointee type");
3624  unsigned ArgQuals =
3625    CD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
3626      Qualifiers::Const : 0;
3627
3628  // We do this because we should never actually use an anonymous
3629  // union's constructor.
3630  if (Union && RD->isAnonymousStructOrUnion())
3631    return false;
3632
3633  // FIXME: We should put some diagnostic logic right into this function.
3634
3635  // C++0x [class.copy]/11
3636  //    A defaulted [copy] constructor for class X is defined as delete if X has:
3637
3638  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3639                                          BE = RD->bases_end();
3640       BI != BE; ++BI) {
3641    // We'll handle this one later
3642    if (BI->isVirtual())
3643      continue;
3644
3645    QualType BaseType = BI->getType();
3646    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3647    assert(BaseDecl && "base isn't a CXXRecordDecl");
3648
3649    // -- any [direct base class] of a type with a destructor that is deleted or
3650    //    inaccessible from the defaulted constructor
3651    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3652    if (BaseDtor->isDeleted())
3653      return true;
3654    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3655        AR_accessible)
3656      return true;
3657
3658    // -- a [direct base class] B that cannot be [copied] because overload
3659    //    resolution, as applied to B's [copy] constructor, results in an
3660    //    ambiguity or a function that is deleted or inaccessible from the
3661    //    defaulted constructor
3662    CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals);
3663    if (!BaseCtor || BaseCtor->isDeleted())
3664      return true;
3665    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
3666        AR_accessible)
3667      return true;
3668  }
3669
3670  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3671                                          BE = RD->vbases_end();
3672       BI != BE; ++BI) {
3673    QualType BaseType = BI->getType();
3674    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3675    assert(BaseDecl && "base isn't a CXXRecordDecl");
3676
3677    // -- any [virtual base class] of a type with a destructor that is deleted or
3678    //    inaccessible from the defaulted constructor
3679    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3680    if (BaseDtor->isDeleted())
3681      return true;
3682    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3683        AR_accessible)
3684      return true;
3685
3686    // -- a [virtual base class] B that cannot be [copied] because overload
3687    //    resolution, as applied to B's [copy] constructor, results in an
3688    //    ambiguity or a function that is deleted or inaccessible from the
3689    //    defaulted constructor
3690    CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals);
3691    if (!BaseCtor || BaseCtor->isDeleted())
3692      return true;
3693    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
3694        AR_accessible)
3695      return true;
3696  }
3697
3698  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3699                                     FE = RD->field_end();
3700       FI != FE; ++FI) {
3701    QualType FieldType = Context.getBaseElementType(FI->getType());
3702
3703    // -- for a copy constructor, a non-static data member of rvalue reference
3704    //    type
3705    if (FieldType->isRValueReferenceType())
3706      return true;
3707
3708    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3709
3710    if (FieldRecord) {
3711      // This is an anonymous union
3712      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3713        // Anonymous unions inside unions do not variant members create
3714        if (!Union) {
3715          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3716                                             UE = FieldRecord->field_end();
3717               UI != UE; ++UI) {
3718            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3719            CXXRecordDecl *UnionFieldRecord =
3720              UnionFieldType->getAsCXXRecordDecl();
3721
3722            // -- a variant member with a non-trivial [copy] constructor and X
3723            //    is a union-like class
3724            if (UnionFieldRecord &&
3725                !UnionFieldRecord->hasTrivialCopyConstructor())
3726              return true;
3727          }
3728        }
3729
3730        // Don't try to initalize an anonymous union
3731        continue;
3732      } else {
3733         // -- a variant member with a non-trivial [copy] constructor and X is a
3734         //    union-like class
3735        if (Union && !FieldRecord->hasTrivialCopyConstructor())
3736          return true;
3737
3738        // -- any [non-static data member] of a type with a destructor that is
3739        //    deleted or inaccessible from the defaulted constructor
3740        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3741        if (FieldDtor->isDeleted())
3742          return true;
3743        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3744            AR_accessible)
3745          return true;
3746      }
3747
3748    // -- a [non-static data member of class type (or array thereof)] B that
3749    //    cannot be [copied] because overload resolution, as applied to B's
3750    //    [copy] constructor, results in an ambiguity or a function that is
3751    //    deleted or inaccessible from the defaulted constructor
3752      CXXConstructorDecl *FieldCtor = LookupCopyingConstructor(FieldRecord,
3753                                                               ArgQuals);
3754      if (!FieldCtor || FieldCtor->isDeleted())
3755        return true;
3756      if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
3757                                 PDiag()) != AR_accessible)
3758        return true;
3759    }
3760  }
3761
3762  return false;
3763}
3764
3765bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
3766  CXXRecordDecl *RD = MD->getParent();
3767  assert(!RD->isDependentType() && "do deletion after instantiation");
3768  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
3769    return false;
3770
3771  SourceLocation Loc = MD->getLocation();
3772
3773  // Do access control from the constructor
3774  ContextRAII MethodContext(*this, MD);
3775
3776  bool Union = RD->isUnion();
3777
3778  unsigned ArgQuals =
3779    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
3780      Qualifiers::Const : 0;
3781
3782  // We do this because we should never actually use an anonymous
3783  // union's constructor.
3784  if (Union && RD->isAnonymousStructOrUnion())
3785    return false;
3786
3787  // FIXME: We should put some diagnostic logic right into this function.
3788
3789  // C++0x [class.copy]/11
3790  //    A defaulted [copy] assignment operator for class X is defined as deleted
3791  //    if X has:
3792
3793  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3794                                          BE = RD->bases_end();
3795       BI != BE; ++BI) {
3796    // We'll handle this one later
3797    if (BI->isVirtual())
3798      continue;
3799
3800    QualType BaseType = BI->getType();
3801    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3802    assert(BaseDecl && "base isn't a CXXRecordDecl");
3803
3804    // -- a [direct base class] B that cannot be [copied] because overload
3805    //    resolution, as applied to B's [copy] assignment operator, results in
3806    //    an ambiguity or a function that is deleted or inaccessible from the
3807    //    assignment operator
3808    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
3809                                                      0);
3810    if (!CopyOper || CopyOper->isDeleted())
3811      return true;
3812    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
3813      return true;
3814  }
3815
3816  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3817                                          BE = RD->vbases_end();
3818       BI != BE; ++BI) {
3819    QualType BaseType = BI->getType();
3820    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3821    assert(BaseDecl && "base isn't a CXXRecordDecl");
3822
3823    // -- a [virtual base class] B that cannot be [copied] because overload
3824    //    resolution, as applied to B's [copy] assignment operator, results in
3825    //    an ambiguity or a function that is deleted or inaccessible from the
3826    //    assignment operator
3827    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
3828                                                      0);
3829    if (!CopyOper || CopyOper->isDeleted())
3830      return true;
3831    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
3832      return true;
3833  }
3834
3835  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3836                                     FE = RD->field_end();
3837       FI != FE; ++FI) {
3838    QualType FieldType = Context.getBaseElementType(FI->getType());
3839
3840    // -- a non-static data member of reference type
3841    if (FieldType->isReferenceType())
3842      return true;
3843
3844    // -- a non-static data member of const non-class type (or array thereof)
3845    if (FieldType.isConstQualified() && !FieldType->isRecordType())
3846      return true;
3847
3848    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3849
3850    if (FieldRecord) {
3851      // This is an anonymous union
3852      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3853        // Anonymous unions inside unions do not variant members create
3854        if (!Union) {
3855          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3856                                             UE = FieldRecord->field_end();
3857               UI != UE; ++UI) {
3858            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3859            CXXRecordDecl *UnionFieldRecord =
3860              UnionFieldType->getAsCXXRecordDecl();
3861
3862            // -- a variant member with a non-trivial [copy] assignment operator
3863            //    and X is a union-like class
3864            if (UnionFieldRecord &&
3865                !UnionFieldRecord->hasTrivialCopyAssignment())
3866              return true;
3867          }
3868        }
3869
3870        // Don't try to initalize an anonymous union
3871        continue;
3872      // -- a variant member with a non-trivial [copy] assignment operator
3873      //    and X is a union-like class
3874      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
3875          return true;
3876      }
3877
3878      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
3879                                                        false, 0);
3880      if (!CopyOper || CopyOper->isDeleted())
3881        return false;
3882      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
3883        return false;
3884    }
3885  }
3886
3887  return false;
3888}
3889
3890bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
3891  CXXRecordDecl *RD = DD->getParent();
3892  assert(!RD->isDependentType() && "do deletion after instantiation");
3893  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
3894    return false;
3895
3896  SourceLocation Loc = DD->getLocation();
3897
3898  // Do access control from the destructor
3899  ContextRAII CtorContext(*this, DD);
3900
3901  bool Union = RD->isUnion();
3902
3903  // We do this because we should never actually use an anonymous
3904  // union's destructor.
3905  if (Union && RD->isAnonymousStructOrUnion())
3906    return false;
3907
3908  // C++0x [class.dtor]p5
3909  //    A defaulted destructor for a class X is defined as deleted if:
3910  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3911                                          BE = RD->bases_end();
3912       BI != BE; ++BI) {
3913    // We'll handle this one later
3914    if (BI->isVirtual())
3915      continue;
3916
3917    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3918    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3919    assert(BaseDtor && "base has no destructor");
3920
3921    // -- any direct or virtual base class has a deleted destructor or
3922    //    a destructor that is inaccessible from the defaulted destructor
3923    if (BaseDtor->isDeleted())
3924      return true;
3925    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3926        AR_accessible)
3927      return true;
3928  }
3929
3930  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3931                                          BE = RD->vbases_end();
3932       BI != BE; ++BI) {
3933    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3934    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3935    assert(BaseDtor && "base has no destructor");
3936
3937    // -- any direct or virtual base class has a deleted destructor or
3938    //    a destructor that is inaccessible from the defaulted destructor
3939    if (BaseDtor->isDeleted())
3940      return true;
3941    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3942        AR_accessible)
3943      return true;
3944  }
3945
3946  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3947                                     FE = RD->field_end();
3948       FI != FE; ++FI) {
3949    QualType FieldType = Context.getBaseElementType(FI->getType());
3950    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3951    if (FieldRecord) {
3952      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3953         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3954                                            UE = FieldRecord->field_end();
3955              UI != UE; ++UI) {
3956           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
3957           CXXRecordDecl *UnionFieldRecord =
3958             UnionFieldType->getAsCXXRecordDecl();
3959
3960           // -- X is a union-like class that has a variant member with a non-
3961           //    trivial destructor.
3962           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
3963             return true;
3964         }
3965      // Technically we are supposed to do this next check unconditionally.
3966      // But that makes absolutely no sense.
3967      } else {
3968        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3969
3970        // -- any of the non-static data members has class type M (or array
3971        //    thereof) and M has a deleted destructor or a destructor that is
3972        //    inaccessible from the defaulted destructor
3973        if (FieldDtor->isDeleted())
3974          return true;
3975        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3976          AR_accessible)
3977        return true;
3978
3979        // -- X is a union-like class that has a variant member with a non-
3980        //    trivial destructor.
3981        if (Union && !FieldDtor->isTrivial())
3982          return true;
3983      }
3984    }
3985  }
3986
3987  if (DD->isVirtual()) {
3988    FunctionDecl *OperatorDelete = 0;
3989    DeclarationName Name =
3990      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3991    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
3992          false))
3993      return true;
3994  }
3995
3996
3997  return false;
3998}
3999
4000/// \brief Data used with FindHiddenVirtualMethod
4001namespace {
4002  struct FindHiddenVirtualMethodData {
4003    Sema *S;
4004    CXXMethodDecl *Method;
4005    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4006    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4007  };
4008}
4009
4010/// \brief Member lookup function that determines whether a given C++
4011/// method overloads virtual methods in a base class without overriding any,
4012/// to be used with CXXRecordDecl::lookupInBases().
4013static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4014                                    CXXBasePath &Path,
4015                                    void *UserData) {
4016  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4017
4018  FindHiddenVirtualMethodData &Data
4019    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4020
4021  DeclarationName Name = Data.Method->getDeclName();
4022  assert(Name.getNameKind() == DeclarationName::Identifier);
4023
4024  bool foundSameNameMethod = false;
4025  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4026  for (Path.Decls = BaseRecord->lookup(Name);
4027       Path.Decls.first != Path.Decls.second;
4028       ++Path.Decls.first) {
4029    NamedDecl *D = *Path.Decls.first;
4030    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4031      MD = MD->getCanonicalDecl();
4032      foundSameNameMethod = true;
4033      // Interested only in hidden virtual methods.
4034      if (!MD->isVirtual())
4035        continue;
4036      // If the method we are checking overrides a method from its base
4037      // don't warn about the other overloaded methods.
4038      if (!Data.S->IsOverload(Data.Method, MD, false))
4039        return true;
4040      // Collect the overload only if its hidden.
4041      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4042        overloadedMethods.push_back(MD);
4043    }
4044  }
4045
4046  if (foundSameNameMethod)
4047    Data.OverloadedMethods.append(overloadedMethods.begin(),
4048                                   overloadedMethods.end());
4049  return foundSameNameMethod;
4050}
4051
4052/// \brief See if a method overloads virtual methods in a base class without
4053/// overriding any.
4054void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4055  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4056                               MD->getLocation()) == Diagnostic::Ignored)
4057    return;
4058  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4059    return;
4060
4061  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4062                     /*bool RecordPaths=*/false,
4063                     /*bool DetectVirtual=*/false);
4064  FindHiddenVirtualMethodData Data;
4065  Data.Method = MD;
4066  Data.S = this;
4067
4068  // Keep the base methods that were overriden or introduced in the subclass
4069  // by 'using' in a set. A base method not in this set is hidden.
4070  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4071       res.first != res.second; ++res.first) {
4072    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4073      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4074                                          E = MD->end_overridden_methods();
4075           I != E; ++I)
4076        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4077    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4078      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4079        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4080  }
4081
4082  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4083      !Data.OverloadedMethods.empty()) {
4084    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4085      << MD << (Data.OverloadedMethods.size() > 1);
4086
4087    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4088      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4089      Diag(overloadedMD->getLocation(),
4090           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4091    }
4092  }
4093}
4094
4095void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4096                                             Decl *TagDecl,
4097                                             SourceLocation LBrac,
4098                                             SourceLocation RBrac,
4099                                             AttributeList *AttrList) {
4100  if (!TagDecl)
4101    return;
4102
4103  AdjustDeclIfTemplate(TagDecl);
4104
4105  ActOnFields(S, RLoc, TagDecl,
4106              // strict aliasing violation!
4107              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4108              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
4109
4110  CheckCompletedCXXClass(
4111                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4112}
4113
4114/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4115/// special functions, such as the default constructor, copy
4116/// constructor, or destructor, to the given C++ class (C++
4117/// [special]p1).  This routine can only be executed just before the
4118/// definition of the class is complete.
4119void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4120  if (!ClassDecl->hasUserDeclaredConstructor())
4121    ++ASTContext::NumImplicitDefaultConstructors;
4122
4123  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4124    ++ASTContext::NumImplicitCopyConstructors;
4125
4126  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4127    ++ASTContext::NumImplicitCopyAssignmentOperators;
4128
4129    // If we have a dynamic class, then the copy assignment operator may be
4130    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4131    // it shows up in the right place in the vtable and that we diagnose
4132    // problems with the implicit exception specification.
4133    if (ClassDecl->isDynamicClass())
4134      DeclareImplicitCopyAssignment(ClassDecl);
4135  }
4136
4137  if (!ClassDecl->hasUserDeclaredDestructor()) {
4138    ++ASTContext::NumImplicitDestructors;
4139
4140    // If we have a dynamic class, then the destructor may be virtual, so we
4141    // have to declare the destructor immediately. This ensures that, e.g., it
4142    // shows up in the right place in the vtable and that we diagnose problems
4143    // with the implicit exception specification.
4144    if (ClassDecl->isDynamicClass())
4145      DeclareImplicitDestructor(ClassDecl);
4146  }
4147}
4148
4149void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4150  if (!D)
4151    return;
4152
4153  int NumParamList = D->getNumTemplateParameterLists();
4154  for (int i = 0; i < NumParamList; i++) {
4155    TemplateParameterList* Params = D->getTemplateParameterList(i);
4156    for (TemplateParameterList::iterator Param = Params->begin(),
4157                                      ParamEnd = Params->end();
4158          Param != ParamEnd; ++Param) {
4159      NamedDecl *Named = cast<NamedDecl>(*Param);
4160      if (Named->getDeclName()) {
4161        S->AddDecl(Named);
4162        IdResolver.AddDecl(Named);
4163      }
4164    }
4165  }
4166}
4167
4168void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4169  if (!D)
4170    return;
4171
4172  TemplateParameterList *Params = 0;
4173  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4174    Params = Template->getTemplateParameters();
4175  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4176           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4177    Params = PartialSpec->getTemplateParameters();
4178  else
4179    return;
4180
4181  for (TemplateParameterList::iterator Param = Params->begin(),
4182                                    ParamEnd = Params->end();
4183       Param != ParamEnd; ++Param) {
4184    NamedDecl *Named = cast<NamedDecl>(*Param);
4185    if (Named->getDeclName()) {
4186      S->AddDecl(Named);
4187      IdResolver.AddDecl(Named);
4188    }
4189  }
4190}
4191
4192void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4193  if (!RecordD) return;
4194  AdjustDeclIfTemplate(RecordD);
4195  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4196  PushDeclContext(S, Record);
4197}
4198
4199void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4200  if (!RecordD) return;
4201  PopDeclContext();
4202}
4203
4204/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4205/// parsing a top-level (non-nested) C++ class, and we are now
4206/// parsing those parts of the given Method declaration that could
4207/// not be parsed earlier (C++ [class.mem]p2), such as default
4208/// arguments. This action should enter the scope of the given
4209/// Method declaration as if we had just parsed the qualified method
4210/// name. However, it should not bring the parameters into scope;
4211/// that will be performed by ActOnDelayedCXXMethodParameter.
4212void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4213}
4214
4215/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4216/// C++ method declaration. We're (re-)introducing the given
4217/// function parameter into scope for use in parsing later parts of
4218/// the method declaration. For example, we could see an
4219/// ActOnParamDefaultArgument event for this parameter.
4220void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4221  if (!ParamD)
4222    return;
4223
4224  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4225
4226  // If this parameter has an unparsed default argument, clear it out
4227  // to make way for the parsed default argument.
4228  if (Param->hasUnparsedDefaultArg())
4229    Param->setDefaultArg(0);
4230
4231  S->AddDecl(Param);
4232  if (Param->getDeclName())
4233    IdResolver.AddDecl(Param);
4234}
4235
4236/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4237/// processing the delayed method declaration for Method. The method
4238/// declaration is now considered finished. There may be a separate
4239/// ActOnStartOfFunctionDef action later (not necessarily
4240/// immediately!) for this method, if it was also defined inside the
4241/// class body.
4242void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4243  if (!MethodD)
4244    return;
4245
4246  AdjustDeclIfTemplate(MethodD);
4247
4248  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4249
4250  // Now that we have our default arguments, check the constructor
4251  // again. It could produce additional diagnostics or affect whether
4252  // the class has implicitly-declared destructors, among other
4253  // things.
4254  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4255    CheckConstructor(Constructor);
4256
4257  // Check the default arguments, which we may have added.
4258  if (!Method->isInvalidDecl())
4259    CheckCXXDefaultArguments(Method);
4260}
4261
4262/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4263/// the well-formedness of the constructor declarator @p D with type @p
4264/// R. If there are any errors in the declarator, this routine will
4265/// emit diagnostics and set the invalid bit to true.  In any case, the type
4266/// will be updated to reflect a well-formed type for the constructor and
4267/// returned.
4268QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4269                                          StorageClass &SC) {
4270  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4271
4272  // C++ [class.ctor]p3:
4273  //   A constructor shall not be virtual (10.3) or static (9.4). A
4274  //   constructor can be invoked for a const, volatile or const
4275  //   volatile object. A constructor shall not be declared const,
4276  //   volatile, or const volatile (9.3.2).
4277  if (isVirtual) {
4278    if (!D.isInvalidType())
4279      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4280        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4281        << SourceRange(D.getIdentifierLoc());
4282    D.setInvalidType();
4283  }
4284  if (SC == SC_Static) {
4285    if (!D.isInvalidType())
4286      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4287        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4288        << SourceRange(D.getIdentifierLoc());
4289    D.setInvalidType();
4290    SC = SC_None;
4291  }
4292
4293  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4294  if (FTI.TypeQuals != 0) {
4295    if (FTI.TypeQuals & Qualifiers::Const)
4296      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4297        << "const" << SourceRange(D.getIdentifierLoc());
4298    if (FTI.TypeQuals & Qualifiers::Volatile)
4299      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4300        << "volatile" << SourceRange(D.getIdentifierLoc());
4301    if (FTI.TypeQuals & Qualifiers::Restrict)
4302      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4303        << "restrict" << SourceRange(D.getIdentifierLoc());
4304    D.setInvalidType();
4305  }
4306
4307  // C++0x [class.ctor]p4:
4308  //   A constructor shall not be declared with a ref-qualifier.
4309  if (FTI.hasRefQualifier()) {
4310    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4311      << FTI.RefQualifierIsLValueRef
4312      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4313    D.setInvalidType();
4314  }
4315
4316  // Rebuild the function type "R" without any type qualifiers (in
4317  // case any of the errors above fired) and with "void" as the
4318  // return type, since constructors don't have return types.
4319  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4320  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4321    return R;
4322
4323  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4324  EPI.TypeQuals = 0;
4325  EPI.RefQualifier = RQ_None;
4326
4327  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
4328                                 Proto->getNumArgs(), EPI);
4329}
4330
4331/// CheckConstructor - Checks a fully-formed constructor for
4332/// well-formedness, issuing any diagnostics required. Returns true if
4333/// the constructor declarator is invalid.
4334void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
4335  CXXRecordDecl *ClassDecl
4336    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
4337  if (!ClassDecl)
4338    return Constructor->setInvalidDecl();
4339
4340  // C++ [class.copy]p3:
4341  //   A declaration of a constructor for a class X is ill-formed if
4342  //   its first parameter is of type (optionally cv-qualified) X and
4343  //   either there are no other parameters or else all other
4344  //   parameters have default arguments.
4345  if (!Constructor->isInvalidDecl() &&
4346      ((Constructor->getNumParams() == 1) ||
4347       (Constructor->getNumParams() > 1 &&
4348        Constructor->getParamDecl(1)->hasDefaultArg())) &&
4349      Constructor->getTemplateSpecializationKind()
4350                                              != TSK_ImplicitInstantiation) {
4351    QualType ParamType = Constructor->getParamDecl(0)->getType();
4352    QualType ClassTy = Context.getTagDeclType(ClassDecl);
4353    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
4354      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
4355      const char *ConstRef
4356        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
4357                                                        : " const &";
4358      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
4359        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
4360
4361      // FIXME: Rather that making the constructor invalid, we should endeavor
4362      // to fix the type.
4363      Constructor->setInvalidDecl();
4364    }
4365  }
4366}
4367
4368/// CheckDestructor - Checks a fully-formed destructor definition for
4369/// well-formedness, issuing any diagnostics required.  Returns true
4370/// on error.
4371bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
4372  CXXRecordDecl *RD = Destructor->getParent();
4373
4374  if (Destructor->isVirtual()) {
4375    SourceLocation Loc;
4376
4377    if (!Destructor->isImplicit())
4378      Loc = Destructor->getLocation();
4379    else
4380      Loc = RD->getLocation();
4381
4382    // If we have a virtual destructor, look up the deallocation function
4383    FunctionDecl *OperatorDelete = 0;
4384    DeclarationName Name =
4385    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4386    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
4387      return true;
4388
4389    MarkDeclarationReferenced(Loc, OperatorDelete);
4390
4391    Destructor->setOperatorDelete(OperatorDelete);
4392  }
4393
4394  return false;
4395}
4396
4397static inline bool
4398FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
4399  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4400          FTI.ArgInfo[0].Param &&
4401          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
4402}
4403
4404/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
4405/// the well-formednes of the destructor declarator @p D with type @p
4406/// R. If there are any errors in the declarator, this routine will
4407/// emit diagnostics and set the declarator to invalid.  Even if this happens,
4408/// will be updated to reflect a well-formed type for the destructor and
4409/// returned.
4410QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
4411                                         StorageClass& SC) {
4412  // C++ [class.dtor]p1:
4413  //   [...] A typedef-name that names a class is a class-name
4414  //   (7.1.3); however, a typedef-name that names a class shall not
4415  //   be used as the identifier in the declarator for a destructor
4416  //   declaration.
4417  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
4418  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
4419    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4420      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
4421  else if (const TemplateSpecializationType *TST =
4422             DeclaratorType->getAs<TemplateSpecializationType>())
4423    if (TST->isTypeAlias())
4424      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4425        << DeclaratorType << 1;
4426
4427  // C++ [class.dtor]p2:
4428  //   A destructor is used to destroy objects of its class type. A
4429  //   destructor takes no parameters, and no return type can be
4430  //   specified for it (not even void). The address of a destructor
4431  //   shall not be taken. A destructor shall not be static. A
4432  //   destructor can be invoked for a const, volatile or const
4433  //   volatile object. A destructor shall not be declared const,
4434  //   volatile or const volatile (9.3.2).
4435  if (SC == SC_Static) {
4436    if (!D.isInvalidType())
4437      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
4438        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4439        << SourceRange(D.getIdentifierLoc())
4440        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4441
4442    SC = SC_None;
4443  }
4444  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4445    // Destructors don't have return types, but the parser will
4446    // happily parse something like:
4447    //
4448    //   class X {
4449    //     float ~X();
4450    //   };
4451    //
4452    // The return type will be eliminated later.
4453    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
4454      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4455      << SourceRange(D.getIdentifierLoc());
4456  }
4457
4458  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4459  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
4460    if (FTI.TypeQuals & Qualifiers::Const)
4461      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4462        << "const" << SourceRange(D.getIdentifierLoc());
4463    if (FTI.TypeQuals & Qualifiers::Volatile)
4464      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4465        << "volatile" << SourceRange(D.getIdentifierLoc());
4466    if (FTI.TypeQuals & Qualifiers::Restrict)
4467      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4468        << "restrict" << SourceRange(D.getIdentifierLoc());
4469    D.setInvalidType();
4470  }
4471
4472  // C++0x [class.dtor]p2:
4473  //   A destructor shall not be declared with a ref-qualifier.
4474  if (FTI.hasRefQualifier()) {
4475    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
4476      << FTI.RefQualifierIsLValueRef
4477      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4478    D.setInvalidType();
4479  }
4480
4481  // Make sure we don't have any parameters.
4482  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
4483    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
4484
4485    // Delete the parameters.
4486    FTI.freeArgs();
4487    D.setInvalidType();
4488  }
4489
4490  // Make sure the destructor isn't variadic.
4491  if (FTI.isVariadic) {
4492    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
4493    D.setInvalidType();
4494  }
4495
4496  // Rebuild the function type "R" without any type qualifiers or
4497  // parameters (in case any of the errors above fired) and with
4498  // "void" as the return type, since destructors don't have return
4499  // types.
4500  if (!D.isInvalidType())
4501    return R;
4502
4503  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4504  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4505  EPI.Variadic = false;
4506  EPI.TypeQuals = 0;
4507  EPI.RefQualifier = RQ_None;
4508  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4509}
4510
4511/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
4512/// well-formednes of the conversion function declarator @p D with
4513/// type @p R. If there are any errors in the declarator, this routine
4514/// will emit diagnostics and return true. Otherwise, it will return
4515/// false. Either way, the type @p R will be updated to reflect a
4516/// well-formed type for the conversion operator.
4517void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
4518                                     StorageClass& SC) {
4519  // C++ [class.conv.fct]p1:
4520  //   Neither parameter types nor return type can be specified. The
4521  //   type of a conversion function (8.3.5) is "function taking no
4522  //   parameter returning conversion-type-id."
4523  if (SC == SC_Static) {
4524    if (!D.isInvalidType())
4525      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
4526        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4527        << SourceRange(D.getIdentifierLoc());
4528    D.setInvalidType();
4529    SC = SC_None;
4530  }
4531
4532  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
4533
4534  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4535    // Conversion functions don't have return types, but the parser will
4536    // happily parse something like:
4537    //
4538    //   class X {
4539    //     float operator bool();
4540    //   };
4541    //
4542    // The return type will be changed later anyway.
4543    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
4544      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4545      << SourceRange(D.getIdentifierLoc());
4546    D.setInvalidType();
4547  }
4548
4549  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4550
4551  // Make sure we don't have any parameters.
4552  if (Proto->getNumArgs() > 0) {
4553    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
4554
4555    // Delete the parameters.
4556    D.getFunctionTypeInfo().freeArgs();
4557    D.setInvalidType();
4558  } else if (Proto->isVariadic()) {
4559    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
4560    D.setInvalidType();
4561  }
4562
4563  // Diagnose "&operator bool()" and other such nonsense.  This
4564  // is actually a gcc extension which we don't support.
4565  if (Proto->getResultType() != ConvType) {
4566    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
4567      << Proto->getResultType();
4568    D.setInvalidType();
4569    ConvType = Proto->getResultType();
4570  }
4571
4572  // C++ [class.conv.fct]p4:
4573  //   The conversion-type-id shall not represent a function type nor
4574  //   an array type.
4575  if (ConvType->isArrayType()) {
4576    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
4577    ConvType = Context.getPointerType(ConvType);
4578    D.setInvalidType();
4579  } else if (ConvType->isFunctionType()) {
4580    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
4581    ConvType = Context.getPointerType(ConvType);
4582    D.setInvalidType();
4583  }
4584
4585  // Rebuild the function type "R" without any parameters (in case any
4586  // of the errors above fired) and with the conversion type as the
4587  // return type.
4588  if (D.isInvalidType())
4589    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
4590
4591  // C++0x explicit conversion operators.
4592  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
4593    Diag(D.getDeclSpec().getExplicitSpecLoc(),
4594         diag::warn_explicit_conversion_functions)
4595      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
4596}
4597
4598/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
4599/// the declaration of the given C++ conversion function. This routine
4600/// is responsible for recording the conversion function in the C++
4601/// class, if possible.
4602Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
4603  assert(Conversion && "Expected to receive a conversion function declaration");
4604
4605  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
4606
4607  // Make sure we aren't redeclaring the conversion function.
4608  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
4609
4610  // C++ [class.conv.fct]p1:
4611  //   [...] A conversion function is never used to convert a
4612  //   (possibly cv-qualified) object to the (possibly cv-qualified)
4613  //   same object type (or a reference to it), to a (possibly
4614  //   cv-qualified) base class of that type (or a reference to it),
4615  //   or to (possibly cv-qualified) void.
4616  // FIXME: Suppress this warning if the conversion function ends up being a
4617  // virtual function that overrides a virtual function in a base class.
4618  QualType ClassType
4619    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4620  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
4621    ConvType = ConvTypeRef->getPointeeType();
4622  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
4623      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4624    /* Suppress diagnostics for instantiations. */;
4625  else if (ConvType->isRecordType()) {
4626    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
4627    if (ConvType == ClassType)
4628      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
4629        << ClassType;
4630    else if (IsDerivedFrom(ClassType, ConvType))
4631      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
4632        <<  ClassType << ConvType;
4633  } else if (ConvType->isVoidType()) {
4634    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
4635      << ClassType << ConvType;
4636  }
4637
4638  if (FunctionTemplateDecl *ConversionTemplate
4639                                = Conversion->getDescribedFunctionTemplate())
4640    return ConversionTemplate;
4641
4642  return Conversion;
4643}
4644
4645//===----------------------------------------------------------------------===//
4646// Namespace Handling
4647//===----------------------------------------------------------------------===//
4648
4649
4650
4651/// ActOnStartNamespaceDef - This is called at the start of a namespace
4652/// definition.
4653Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
4654                                   SourceLocation InlineLoc,
4655                                   SourceLocation NamespaceLoc,
4656                                   SourceLocation IdentLoc,
4657                                   IdentifierInfo *II,
4658                                   SourceLocation LBrace,
4659                                   AttributeList *AttrList) {
4660  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
4661  // For anonymous namespace, take the location of the left brace.
4662  SourceLocation Loc = II ? IdentLoc : LBrace;
4663  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
4664                                                 StartLoc, Loc, II);
4665  Namespc->setInline(InlineLoc.isValid());
4666
4667  Scope *DeclRegionScope = NamespcScope->getParent();
4668
4669  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
4670
4671  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
4672    PushNamespaceVisibilityAttr(Attr);
4673
4674  if (II) {
4675    // C++ [namespace.def]p2:
4676    //   The identifier in an original-namespace-definition shall not
4677    //   have been previously defined in the declarative region in
4678    //   which the original-namespace-definition appears. The
4679    //   identifier in an original-namespace-definition is the name of
4680    //   the namespace. Subsequently in that declarative region, it is
4681    //   treated as an original-namespace-name.
4682    //
4683    // Since namespace names are unique in their scope, and we don't
4684    // look through using directives, just look for any ordinary names.
4685
4686    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
4687      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
4688      Decl::IDNS_Namespace;
4689    NamedDecl *PrevDecl = 0;
4690    for (DeclContext::lookup_result R
4691            = CurContext->getRedeclContext()->lookup(II);
4692         R.first != R.second; ++R.first) {
4693      if ((*R.first)->getIdentifierNamespace() & IDNS) {
4694        PrevDecl = *R.first;
4695        break;
4696      }
4697    }
4698
4699    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
4700      // This is an extended namespace definition.
4701      if (Namespc->isInline() != OrigNS->isInline()) {
4702        // inline-ness must match
4703        if (OrigNS->isInline()) {
4704          // The user probably just forgot the 'inline', so suggest that it
4705          // be added back.
4706          Diag(Namespc->getLocation(),
4707               diag::warn_inline_namespace_reopened_noninline)
4708            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
4709        } else {
4710          Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4711            << Namespc->isInline();
4712        }
4713        Diag(OrigNS->getLocation(), diag::note_previous_definition);
4714
4715        // Recover by ignoring the new namespace's inline status.
4716        Namespc->setInline(OrigNS->isInline());
4717      }
4718
4719      // Attach this namespace decl to the chain of extended namespace
4720      // definitions.
4721      OrigNS->setNextNamespace(Namespc);
4722      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
4723
4724      // Remove the previous declaration from the scope.
4725      if (DeclRegionScope->isDeclScope(OrigNS)) {
4726        IdResolver.RemoveDecl(OrigNS);
4727        DeclRegionScope->RemoveDecl(OrigNS);
4728      }
4729    } else if (PrevDecl) {
4730      // This is an invalid name redefinition.
4731      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
4732       << Namespc->getDeclName();
4733      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4734      Namespc->setInvalidDecl();
4735      // Continue on to push Namespc as current DeclContext and return it.
4736    } else if (II->isStr("std") &&
4737               CurContext->getRedeclContext()->isTranslationUnit()) {
4738      // This is the first "real" definition of the namespace "std", so update
4739      // our cache of the "std" namespace to point at this definition.
4740      if (NamespaceDecl *StdNS = getStdNamespace()) {
4741        // We had already defined a dummy namespace "std". Link this new
4742        // namespace definition to the dummy namespace "std".
4743        StdNS->setNextNamespace(Namespc);
4744        StdNS->setLocation(IdentLoc);
4745        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
4746      }
4747
4748      // Make our StdNamespace cache point at the first real definition of the
4749      // "std" namespace.
4750      StdNamespace = Namespc;
4751
4752      // Add this instance of "std" to the set of known namespaces
4753      KnownNamespaces[Namespc] = false;
4754    } else if (!Namespc->isInline()) {
4755      // Since this is an "original" namespace, add it to the known set of
4756      // namespaces if it is not an inline namespace.
4757      KnownNamespaces[Namespc] = false;
4758    }
4759
4760    PushOnScopeChains(Namespc, DeclRegionScope);
4761  } else {
4762    // Anonymous namespaces.
4763    assert(Namespc->isAnonymousNamespace());
4764
4765    // Link the anonymous namespace into its parent.
4766    NamespaceDecl *PrevDecl;
4767    DeclContext *Parent = CurContext->getRedeclContext();
4768    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
4769      PrevDecl = TU->getAnonymousNamespace();
4770      TU->setAnonymousNamespace(Namespc);
4771    } else {
4772      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
4773      PrevDecl = ND->getAnonymousNamespace();
4774      ND->setAnonymousNamespace(Namespc);
4775    }
4776
4777    // Link the anonymous namespace with its previous declaration.
4778    if (PrevDecl) {
4779      assert(PrevDecl->isAnonymousNamespace());
4780      assert(!PrevDecl->getNextNamespace());
4781      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
4782      PrevDecl->setNextNamespace(Namespc);
4783
4784      if (Namespc->isInline() != PrevDecl->isInline()) {
4785        // inline-ness must match
4786        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4787          << Namespc->isInline();
4788        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4789        Namespc->setInvalidDecl();
4790        // Recover by ignoring the new namespace's inline status.
4791        Namespc->setInline(PrevDecl->isInline());
4792      }
4793    }
4794
4795    CurContext->addDecl(Namespc);
4796
4797    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
4798    //   behaves as if it were replaced by
4799    //     namespace unique { /* empty body */ }
4800    //     using namespace unique;
4801    //     namespace unique { namespace-body }
4802    //   where all occurrences of 'unique' in a translation unit are
4803    //   replaced by the same identifier and this identifier differs
4804    //   from all other identifiers in the entire program.
4805
4806    // We just create the namespace with an empty name and then add an
4807    // implicit using declaration, just like the standard suggests.
4808    //
4809    // CodeGen enforces the "universally unique" aspect by giving all
4810    // declarations semantically contained within an anonymous
4811    // namespace internal linkage.
4812
4813    if (!PrevDecl) {
4814      UsingDirectiveDecl* UD
4815        = UsingDirectiveDecl::Create(Context, CurContext,
4816                                     /* 'using' */ LBrace,
4817                                     /* 'namespace' */ SourceLocation(),
4818                                     /* qualifier */ NestedNameSpecifierLoc(),
4819                                     /* identifier */ SourceLocation(),
4820                                     Namespc,
4821                                     /* Ancestor */ CurContext);
4822      UD->setImplicit();
4823      CurContext->addDecl(UD);
4824    }
4825  }
4826
4827  // Although we could have an invalid decl (i.e. the namespace name is a
4828  // redefinition), push it as current DeclContext and try to continue parsing.
4829  // FIXME: We should be able to push Namespc here, so that the each DeclContext
4830  // for the namespace has the declarations that showed up in that particular
4831  // namespace definition.
4832  PushDeclContext(NamespcScope, Namespc);
4833  return Namespc;
4834}
4835
4836/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
4837/// is a namespace alias, returns the namespace it points to.
4838static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
4839  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
4840    return AD->getNamespace();
4841  return dyn_cast_or_null<NamespaceDecl>(D);
4842}
4843
4844/// ActOnFinishNamespaceDef - This callback is called after a namespace is
4845/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
4846void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
4847  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
4848  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
4849  Namespc->setRBraceLoc(RBrace);
4850  PopDeclContext();
4851  if (Namespc->hasAttr<VisibilityAttr>())
4852    PopPragmaVisibility();
4853}
4854
4855CXXRecordDecl *Sema::getStdBadAlloc() const {
4856  return cast_or_null<CXXRecordDecl>(
4857                                  StdBadAlloc.get(Context.getExternalSource()));
4858}
4859
4860NamespaceDecl *Sema::getStdNamespace() const {
4861  return cast_or_null<NamespaceDecl>(
4862                                 StdNamespace.get(Context.getExternalSource()));
4863}
4864
4865/// \brief Retrieve the special "std" namespace, which may require us to
4866/// implicitly define the namespace.
4867NamespaceDecl *Sema::getOrCreateStdNamespace() {
4868  if (!StdNamespace) {
4869    // The "std" namespace has not yet been defined, so build one implicitly.
4870    StdNamespace = NamespaceDecl::Create(Context,
4871                                         Context.getTranslationUnitDecl(),
4872                                         SourceLocation(), SourceLocation(),
4873                                         &PP.getIdentifierTable().get("std"));
4874    getStdNamespace()->setImplicit(true);
4875  }
4876
4877  return getStdNamespace();
4878}
4879
4880/// \brief Determine whether a using statement is in a context where it will be
4881/// apply in all contexts.
4882static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
4883  switch (CurContext->getDeclKind()) {
4884    case Decl::TranslationUnit:
4885      return true;
4886    case Decl::LinkageSpec:
4887      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
4888    default:
4889      return false;
4890  }
4891}
4892
4893static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
4894                                       CXXScopeSpec &SS,
4895                                       SourceLocation IdentLoc,
4896                                       IdentifierInfo *Ident) {
4897  R.clear();
4898  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
4899                                               R.getLookupKind(), Sc, &SS, NULL,
4900                                               false, S.CTC_NoKeywords, NULL)) {
4901    if (Corrected.getCorrectionDeclAs<NamespaceDecl>() ||
4902        Corrected.getCorrectionDeclAs<NamespaceAliasDecl>()) {
4903      std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
4904      std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
4905      if (DeclContext *DC = S.computeDeclContext(SS, false))
4906        S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
4907          << Ident << DC << CorrectedQuotedStr << SS.getRange()
4908          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
4909      else
4910        S.Diag(IdentLoc, diag::err_using_directive_suggest)
4911          << Ident << CorrectedQuotedStr
4912          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
4913
4914      S.Diag(Corrected.getCorrectionDecl()->getLocation(),
4915           diag::note_namespace_defined_here) << CorrectedQuotedStr;
4916
4917      Ident = Corrected.getCorrectionAsIdentifierInfo();
4918      R.addDecl(Corrected.getCorrectionDecl());
4919      return true;
4920    }
4921    R.setLookupName(Ident);
4922  }
4923  return false;
4924}
4925
4926Decl *Sema::ActOnUsingDirective(Scope *S,
4927                                          SourceLocation UsingLoc,
4928                                          SourceLocation NamespcLoc,
4929                                          CXXScopeSpec &SS,
4930                                          SourceLocation IdentLoc,
4931                                          IdentifierInfo *NamespcName,
4932                                          AttributeList *AttrList) {
4933  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4934  assert(NamespcName && "Invalid NamespcName.");
4935  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
4936
4937  // This can only happen along a recovery path.
4938  while (S->getFlags() & Scope::TemplateParamScope)
4939    S = S->getParent();
4940  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4941
4942  UsingDirectiveDecl *UDir = 0;
4943  NestedNameSpecifier *Qualifier = 0;
4944  if (SS.isSet())
4945    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4946
4947  // Lookup namespace name.
4948  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
4949  LookupParsedName(R, S, &SS);
4950  if (R.isAmbiguous())
4951    return 0;
4952
4953  if (R.empty()) {
4954    R.clear();
4955    // Allow "using namespace std;" or "using namespace ::std;" even if
4956    // "std" hasn't been defined yet, for GCC compatibility.
4957    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
4958        NamespcName->isStr("std")) {
4959      Diag(IdentLoc, diag::ext_using_undefined_std);
4960      R.addDecl(getOrCreateStdNamespace());
4961      R.resolveKind();
4962    }
4963    // Otherwise, attempt typo correction.
4964    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
4965  }
4966
4967  if (!R.empty()) {
4968    NamedDecl *Named = R.getFoundDecl();
4969    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
4970        && "expected namespace decl");
4971    // C++ [namespace.udir]p1:
4972    //   A using-directive specifies that the names in the nominated
4973    //   namespace can be used in the scope in which the
4974    //   using-directive appears after the using-directive. During
4975    //   unqualified name lookup (3.4.1), the names appear as if they
4976    //   were declared in the nearest enclosing namespace which
4977    //   contains both the using-directive and the nominated
4978    //   namespace. [Note: in this context, "contains" means "contains
4979    //   directly or indirectly". ]
4980
4981    // Find enclosing context containing both using-directive and
4982    // nominated namespace.
4983    NamespaceDecl *NS = getNamespaceDecl(Named);
4984    DeclContext *CommonAncestor = cast<DeclContext>(NS);
4985    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
4986      CommonAncestor = CommonAncestor->getParent();
4987
4988    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
4989                                      SS.getWithLocInContext(Context),
4990                                      IdentLoc, Named, CommonAncestor);
4991
4992    if (IsUsingDirectiveInToplevelContext(CurContext) &&
4993        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
4994      Diag(IdentLoc, diag::warn_using_directive_in_header);
4995    }
4996
4997    PushUsingDirective(S, UDir);
4998  } else {
4999    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5000  }
5001
5002  // FIXME: We ignore attributes for now.
5003  return UDir;
5004}
5005
5006void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5007  // If scope has associated entity, then using directive is at namespace
5008  // or translation unit scope. We add UsingDirectiveDecls, into
5009  // it's lookup structure.
5010  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
5011    Ctx->addDecl(UDir);
5012  else
5013    // Otherwise it is block-sope. using-directives will affect lookup
5014    // only to the end of scope.
5015    S->PushUsingDirective(UDir);
5016}
5017
5018
5019Decl *Sema::ActOnUsingDeclaration(Scope *S,
5020                                  AccessSpecifier AS,
5021                                  bool HasUsingKeyword,
5022                                  SourceLocation UsingLoc,
5023                                  CXXScopeSpec &SS,
5024                                  UnqualifiedId &Name,
5025                                  AttributeList *AttrList,
5026                                  bool IsTypeName,
5027                                  SourceLocation TypenameLoc) {
5028  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5029
5030  switch (Name.getKind()) {
5031  case UnqualifiedId::IK_ImplicitSelfParam:
5032  case UnqualifiedId::IK_Identifier:
5033  case UnqualifiedId::IK_OperatorFunctionId:
5034  case UnqualifiedId::IK_LiteralOperatorId:
5035  case UnqualifiedId::IK_ConversionFunctionId:
5036    break;
5037
5038  case UnqualifiedId::IK_ConstructorName:
5039  case UnqualifiedId::IK_ConstructorTemplateId:
5040    // C++0x inherited constructors.
5041    if (getLangOptions().CPlusPlus0x) break;
5042
5043    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
5044      << SS.getRange();
5045    return 0;
5046
5047  case UnqualifiedId::IK_DestructorName:
5048    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5049      << SS.getRange();
5050    return 0;
5051
5052  case UnqualifiedId::IK_TemplateId:
5053    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5054      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5055    return 0;
5056  }
5057
5058  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5059  DeclarationName TargetName = TargetNameInfo.getName();
5060  if (!TargetName)
5061    return 0;
5062
5063  // Warn about using declarations.
5064  // TODO: store that the declaration was written without 'using' and
5065  // talk about access decls instead of using decls in the
5066  // diagnostics.
5067  if (!HasUsingKeyword) {
5068    UsingLoc = Name.getSourceRange().getBegin();
5069
5070    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5071      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5072  }
5073
5074  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5075      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5076    return 0;
5077
5078  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5079                                        TargetNameInfo, AttrList,
5080                                        /* IsInstantiation */ false,
5081                                        IsTypeName, TypenameLoc);
5082  if (UD)
5083    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5084
5085  return UD;
5086}
5087
5088/// \brief Determine whether a using declaration considers the given
5089/// declarations as "equivalent", e.g., if they are redeclarations of
5090/// the same entity or are both typedefs of the same type.
5091static bool
5092IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5093                         bool &SuppressRedeclaration) {
5094  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5095    SuppressRedeclaration = false;
5096    return true;
5097  }
5098
5099  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5100    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5101      SuppressRedeclaration = true;
5102      return Context.hasSameType(TD1->getUnderlyingType(),
5103                                 TD2->getUnderlyingType());
5104    }
5105
5106  return false;
5107}
5108
5109
5110/// Determines whether to create a using shadow decl for a particular
5111/// decl, given the set of decls existing prior to this using lookup.
5112bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5113                                const LookupResult &Previous) {
5114  // Diagnose finding a decl which is not from a base class of the
5115  // current class.  We do this now because there are cases where this
5116  // function will silently decide not to build a shadow decl, which
5117  // will pre-empt further diagnostics.
5118  //
5119  // We don't need to do this in C++0x because we do the check once on
5120  // the qualifier.
5121  //
5122  // FIXME: diagnose the following if we care enough:
5123  //   struct A { int foo; };
5124  //   struct B : A { using A::foo; };
5125  //   template <class T> struct C : A {};
5126  //   template <class T> struct D : C<T> { using B::foo; } // <---
5127  // This is invalid (during instantiation) in C++03 because B::foo
5128  // resolves to the using decl in B, which is not a base class of D<T>.
5129  // We can't diagnose it immediately because C<T> is an unknown
5130  // specialization.  The UsingShadowDecl in D<T> then points directly
5131  // to A::foo, which will look well-formed when we instantiate.
5132  // The right solution is to not collapse the shadow-decl chain.
5133  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5134    DeclContext *OrigDC = Orig->getDeclContext();
5135
5136    // Handle enums and anonymous structs.
5137    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5138    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5139    while (OrigRec->isAnonymousStructOrUnion())
5140      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5141
5142    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5143      if (OrigDC == CurContext) {
5144        Diag(Using->getLocation(),
5145             diag::err_using_decl_nested_name_specifier_is_current_class)
5146          << Using->getQualifierLoc().getSourceRange();
5147        Diag(Orig->getLocation(), diag::note_using_decl_target);
5148        return true;
5149      }
5150
5151      Diag(Using->getQualifierLoc().getBeginLoc(),
5152           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5153        << Using->getQualifier()
5154        << cast<CXXRecordDecl>(CurContext)
5155        << Using->getQualifierLoc().getSourceRange();
5156      Diag(Orig->getLocation(), diag::note_using_decl_target);
5157      return true;
5158    }
5159  }
5160
5161  if (Previous.empty()) return false;
5162
5163  NamedDecl *Target = Orig;
5164  if (isa<UsingShadowDecl>(Target))
5165    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5166
5167  // If the target happens to be one of the previous declarations, we
5168  // don't have a conflict.
5169  //
5170  // FIXME: but we might be increasing its access, in which case we
5171  // should redeclare it.
5172  NamedDecl *NonTag = 0, *Tag = 0;
5173  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5174         I != E; ++I) {
5175    NamedDecl *D = (*I)->getUnderlyingDecl();
5176    bool Result;
5177    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5178      return Result;
5179
5180    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5181  }
5182
5183  if (Target->isFunctionOrFunctionTemplate()) {
5184    FunctionDecl *FD;
5185    if (isa<FunctionTemplateDecl>(Target))
5186      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5187    else
5188      FD = cast<FunctionDecl>(Target);
5189
5190    NamedDecl *OldDecl = 0;
5191    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5192    case Ovl_Overload:
5193      return false;
5194
5195    case Ovl_NonFunction:
5196      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5197      break;
5198
5199    // We found a decl with the exact signature.
5200    case Ovl_Match:
5201      // If we're in a record, we want to hide the target, so we
5202      // return true (without a diagnostic) to tell the caller not to
5203      // build a shadow decl.
5204      if (CurContext->isRecord())
5205        return true;
5206
5207      // If we're not in a record, this is an error.
5208      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5209      break;
5210    }
5211
5212    Diag(Target->getLocation(), diag::note_using_decl_target);
5213    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5214    return true;
5215  }
5216
5217  // Target is not a function.
5218
5219  if (isa<TagDecl>(Target)) {
5220    // No conflict between a tag and a non-tag.
5221    if (!Tag) return false;
5222
5223    Diag(Using->getLocation(), diag::err_using_decl_conflict);
5224    Diag(Target->getLocation(), diag::note_using_decl_target);
5225    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5226    return true;
5227  }
5228
5229  // No conflict between a tag and a non-tag.
5230  if (!NonTag) return false;
5231
5232  Diag(Using->getLocation(), diag::err_using_decl_conflict);
5233  Diag(Target->getLocation(), diag::note_using_decl_target);
5234  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5235  return true;
5236}
5237
5238/// Builds a shadow declaration corresponding to a 'using' declaration.
5239UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
5240                                            UsingDecl *UD,
5241                                            NamedDecl *Orig) {
5242
5243  // If we resolved to another shadow declaration, just coalesce them.
5244  NamedDecl *Target = Orig;
5245  if (isa<UsingShadowDecl>(Target)) {
5246    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5247    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
5248  }
5249
5250  UsingShadowDecl *Shadow
5251    = UsingShadowDecl::Create(Context, CurContext,
5252                              UD->getLocation(), UD, Target);
5253  UD->addShadowDecl(Shadow);
5254
5255  Shadow->setAccess(UD->getAccess());
5256  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
5257    Shadow->setInvalidDecl();
5258
5259  if (S)
5260    PushOnScopeChains(Shadow, S);
5261  else
5262    CurContext->addDecl(Shadow);
5263
5264
5265  return Shadow;
5266}
5267
5268/// Hides a using shadow declaration.  This is required by the current
5269/// using-decl implementation when a resolvable using declaration in a
5270/// class is followed by a declaration which would hide or override
5271/// one or more of the using decl's targets; for example:
5272///
5273///   struct Base { void foo(int); };
5274///   struct Derived : Base {
5275///     using Base::foo;
5276///     void foo(int);
5277///   };
5278///
5279/// The governing language is C++03 [namespace.udecl]p12:
5280///
5281///   When a using-declaration brings names from a base class into a
5282///   derived class scope, member functions in the derived class
5283///   override and/or hide member functions with the same name and
5284///   parameter types in a base class (rather than conflicting).
5285///
5286/// There are two ways to implement this:
5287///   (1) optimistically create shadow decls when they're not hidden
5288///       by existing declarations, or
5289///   (2) don't create any shadow decls (or at least don't make them
5290///       visible) until we've fully parsed/instantiated the class.
5291/// The problem with (1) is that we might have to retroactively remove
5292/// a shadow decl, which requires several O(n) operations because the
5293/// decl structures are (very reasonably) not designed for removal.
5294/// (2) avoids this but is very fiddly and phase-dependent.
5295void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
5296  if (Shadow->getDeclName().getNameKind() ==
5297        DeclarationName::CXXConversionFunctionName)
5298    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
5299
5300  // Remove it from the DeclContext...
5301  Shadow->getDeclContext()->removeDecl(Shadow);
5302
5303  // ...and the scope, if applicable...
5304  if (S) {
5305    S->RemoveDecl(Shadow);
5306    IdResolver.RemoveDecl(Shadow);
5307  }
5308
5309  // ...and the using decl.
5310  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
5311
5312  // TODO: complain somehow if Shadow was used.  It shouldn't
5313  // be possible for this to happen, because...?
5314}
5315
5316/// Builds a using declaration.
5317///
5318/// \param IsInstantiation - Whether this call arises from an
5319///   instantiation of an unresolved using declaration.  We treat
5320///   the lookup differently for these declarations.
5321NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
5322                                       SourceLocation UsingLoc,
5323                                       CXXScopeSpec &SS,
5324                                       const DeclarationNameInfo &NameInfo,
5325                                       AttributeList *AttrList,
5326                                       bool IsInstantiation,
5327                                       bool IsTypeName,
5328                                       SourceLocation TypenameLoc) {
5329  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5330  SourceLocation IdentLoc = NameInfo.getLoc();
5331  assert(IdentLoc.isValid() && "Invalid TargetName location.");
5332
5333  // FIXME: We ignore attributes for now.
5334
5335  if (SS.isEmpty()) {
5336    Diag(IdentLoc, diag::err_using_requires_qualname);
5337    return 0;
5338  }
5339
5340  // Do the redeclaration lookup in the current scope.
5341  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
5342                        ForRedeclaration);
5343  Previous.setHideTags(false);
5344  if (S) {
5345    LookupName(Previous, S);
5346
5347    // It is really dumb that we have to do this.
5348    LookupResult::Filter F = Previous.makeFilter();
5349    while (F.hasNext()) {
5350      NamedDecl *D = F.next();
5351      if (!isDeclInScope(D, CurContext, S))
5352        F.erase();
5353    }
5354    F.done();
5355  } else {
5356    assert(IsInstantiation && "no scope in non-instantiation");
5357    assert(CurContext->isRecord() && "scope not record in instantiation");
5358    LookupQualifiedName(Previous, CurContext);
5359  }
5360
5361  // Check for invalid redeclarations.
5362  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
5363    return 0;
5364
5365  // Check for bad qualifiers.
5366  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
5367    return 0;
5368
5369  DeclContext *LookupContext = computeDeclContext(SS);
5370  NamedDecl *D;
5371  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
5372  if (!LookupContext) {
5373    if (IsTypeName) {
5374      // FIXME: not all declaration name kinds are legal here
5375      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
5376                                              UsingLoc, TypenameLoc,
5377                                              QualifierLoc,
5378                                              IdentLoc, NameInfo.getName());
5379    } else {
5380      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
5381                                           QualifierLoc, NameInfo);
5382    }
5383  } else {
5384    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
5385                          NameInfo, IsTypeName);
5386  }
5387  D->setAccess(AS);
5388  CurContext->addDecl(D);
5389
5390  if (!LookupContext) return D;
5391  UsingDecl *UD = cast<UsingDecl>(D);
5392
5393  if (RequireCompleteDeclContext(SS, LookupContext)) {
5394    UD->setInvalidDecl();
5395    return UD;
5396  }
5397
5398  // Constructor inheriting using decls get special treatment.
5399  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
5400    if (CheckInheritedConstructorUsingDecl(UD))
5401      UD->setInvalidDecl();
5402    return UD;
5403  }
5404
5405  // Otherwise, look up the target name.
5406
5407  LookupResult R(*this, NameInfo, LookupOrdinaryName);
5408  R.setUsingDeclaration(true);
5409
5410  // Unlike most lookups, we don't always want to hide tag
5411  // declarations: tag names are visible through the using declaration
5412  // even if hidden by ordinary names, *except* in a dependent context
5413  // where it's important for the sanity of two-phase lookup.
5414  if (!IsInstantiation)
5415    R.setHideTags(false);
5416
5417  LookupQualifiedName(R, LookupContext);
5418
5419  if (R.empty()) {
5420    Diag(IdentLoc, diag::err_no_member)
5421      << NameInfo.getName() << LookupContext << SS.getRange();
5422    UD->setInvalidDecl();
5423    return UD;
5424  }
5425
5426  if (R.isAmbiguous()) {
5427    UD->setInvalidDecl();
5428    return UD;
5429  }
5430
5431  if (IsTypeName) {
5432    // If we asked for a typename and got a non-type decl, error out.
5433    if (!R.getAsSingle<TypeDecl>()) {
5434      Diag(IdentLoc, diag::err_using_typename_non_type);
5435      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
5436        Diag((*I)->getUnderlyingDecl()->getLocation(),
5437             diag::note_using_decl_target);
5438      UD->setInvalidDecl();
5439      return UD;
5440    }
5441  } else {
5442    // If we asked for a non-typename and we got a type, error out,
5443    // but only if this is an instantiation of an unresolved using
5444    // decl.  Otherwise just silently find the type name.
5445    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
5446      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
5447      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
5448      UD->setInvalidDecl();
5449      return UD;
5450    }
5451  }
5452
5453  // C++0x N2914 [namespace.udecl]p6:
5454  // A using-declaration shall not name a namespace.
5455  if (R.getAsSingle<NamespaceDecl>()) {
5456    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
5457      << SS.getRange();
5458    UD->setInvalidDecl();
5459    return UD;
5460  }
5461
5462  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
5463    if (!CheckUsingShadowDecl(UD, *I, Previous))
5464      BuildUsingShadowDecl(S, UD, *I);
5465  }
5466
5467  return UD;
5468}
5469
5470/// Additional checks for a using declaration referring to a constructor name.
5471bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
5472  if (UD->isTypeName()) {
5473    // FIXME: Cannot specify typename when specifying constructor
5474    return true;
5475  }
5476
5477  const Type *SourceType = UD->getQualifier()->getAsType();
5478  assert(SourceType &&
5479         "Using decl naming constructor doesn't have type in scope spec.");
5480  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
5481
5482  // Check whether the named type is a direct base class.
5483  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
5484  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
5485  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
5486       BaseIt != BaseE; ++BaseIt) {
5487    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
5488    if (CanonicalSourceType == BaseType)
5489      break;
5490  }
5491
5492  if (BaseIt == BaseE) {
5493    // Did not find SourceType in the bases.
5494    Diag(UD->getUsingLocation(),
5495         diag::err_using_decl_constructor_not_in_direct_base)
5496      << UD->getNameInfo().getSourceRange()
5497      << QualType(SourceType, 0) << TargetClass;
5498    return true;
5499  }
5500
5501  BaseIt->setInheritConstructors();
5502
5503  return false;
5504}
5505
5506/// Checks that the given using declaration is not an invalid
5507/// redeclaration.  Note that this is checking only for the using decl
5508/// itself, not for any ill-formedness among the UsingShadowDecls.
5509bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
5510                                       bool isTypeName,
5511                                       const CXXScopeSpec &SS,
5512                                       SourceLocation NameLoc,
5513                                       const LookupResult &Prev) {
5514  // C++03 [namespace.udecl]p8:
5515  // C++0x [namespace.udecl]p10:
5516  //   A using-declaration is a declaration and can therefore be used
5517  //   repeatedly where (and only where) multiple declarations are
5518  //   allowed.
5519  //
5520  // That's in non-member contexts.
5521  if (!CurContext->getRedeclContext()->isRecord())
5522    return false;
5523
5524  NestedNameSpecifier *Qual
5525    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5526
5527  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
5528    NamedDecl *D = *I;
5529
5530    bool DTypename;
5531    NestedNameSpecifier *DQual;
5532    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
5533      DTypename = UD->isTypeName();
5534      DQual = UD->getQualifier();
5535    } else if (UnresolvedUsingValueDecl *UD
5536                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
5537      DTypename = false;
5538      DQual = UD->getQualifier();
5539    } else if (UnresolvedUsingTypenameDecl *UD
5540                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
5541      DTypename = true;
5542      DQual = UD->getQualifier();
5543    } else continue;
5544
5545    // using decls differ if one says 'typename' and the other doesn't.
5546    // FIXME: non-dependent using decls?
5547    if (isTypeName != DTypename) continue;
5548
5549    // using decls differ if they name different scopes (but note that
5550    // template instantiation can cause this check to trigger when it
5551    // didn't before instantiation).
5552    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
5553        Context.getCanonicalNestedNameSpecifier(DQual))
5554      continue;
5555
5556    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
5557    Diag(D->getLocation(), diag::note_using_decl) << 1;
5558    return true;
5559  }
5560
5561  return false;
5562}
5563
5564
5565/// Checks that the given nested-name qualifier used in a using decl
5566/// in the current context is appropriately related to the current
5567/// scope.  If an error is found, diagnoses it and returns true.
5568bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
5569                                   const CXXScopeSpec &SS,
5570                                   SourceLocation NameLoc) {
5571  DeclContext *NamedContext = computeDeclContext(SS);
5572
5573  if (!CurContext->isRecord()) {
5574    // C++03 [namespace.udecl]p3:
5575    // C++0x [namespace.udecl]p8:
5576    //   A using-declaration for a class member shall be a member-declaration.
5577
5578    // If we weren't able to compute a valid scope, it must be a
5579    // dependent class scope.
5580    if (!NamedContext || NamedContext->isRecord()) {
5581      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
5582        << SS.getRange();
5583      return true;
5584    }
5585
5586    // Otherwise, everything is known to be fine.
5587    return false;
5588  }
5589
5590  // The current scope is a record.
5591
5592  // If the named context is dependent, we can't decide much.
5593  if (!NamedContext) {
5594    // FIXME: in C++0x, we can diagnose if we can prove that the
5595    // nested-name-specifier does not refer to a base class, which is
5596    // still possible in some cases.
5597
5598    // Otherwise we have to conservatively report that things might be
5599    // okay.
5600    return false;
5601  }
5602
5603  if (!NamedContext->isRecord()) {
5604    // Ideally this would point at the last name in the specifier,
5605    // but we don't have that level of source info.
5606    Diag(SS.getRange().getBegin(),
5607         diag::err_using_decl_nested_name_specifier_is_not_class)
5608      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
5609    return true;
5610  }
5611
5612  if (!NamedContext->isDependentContext() &&
5613      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
5614    return true;
5615
5616  if (getLangOptions().CPlusPlus0x) {
5617    // C++0x [namespace.udecl]p3:
5618    //   In a using-declaration used as a member-declaration, the
5619    //   nested-name-specifier shall name a base class of the class
5620    //   being defined.
5621
5622    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
5623                                 cast<CXXRecordDecl>(NamedContext))) {
5624      if (CurContext == NamedContext) {
5625        Diag(NameLoc,
5626             diag::err_using_decl_nested_name_specifier_is_current_class)
5627          << SS.getRange();
5628        return true;
5629      }
5630
5631      Diag(SS.getRange().getBegin(),
5632           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5633        << (NestedNameSpecifier*) SS.getScopeRep()
5634        << cast<CXXRecordDecl>(CurContext)
5635        << SS.getRange();
5636      return true;
5637    }
5638
5639    return false;
5640  }
5641
5642  // C++03 [namespace.udecl]p4:
5643  //   A using-declaration used as a member-declaration shall refer
5644  //   to a member of a base class of the class being defined [etc.].
5645
5646  // Salient point: SS doesn't have to name a base class as long as
5647  // lookup only finds members from base classes.  Therefore we can
5648  // diagnose here only if we can prove that that can't happen,
5649  // i.e. if the class hierarchies provably don't intersect.
5650
5651  // TODO: it would be nice if "definitely valid" results were cached
5652  // in the UsingDecl and UsingShadowDecl so that these checks didn't
5653  // need to be repeated.
5654
5655  struct UserData {
5656    llvm::DenseSet<const CXXRecordDecl*> Bases;
5657
5658    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
5659      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5660      Data->Bases.insert(Base);
5661      return true;
5662    }
5663
5664    bool hasDependentBases(const CXXRecordDecl *Class) {
5665      return !Class->forallBases(collect, this);
5666    }
5667
5668    /// Returns true if the base is dependent or is one of the
5669    /// accumulated base classes.
5670    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
5671      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5672      return !Data->Bases.count(Base);
5673    }
5674
5675    bool mightShareBases(const CXXRecordDecl *Class) {
5676      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
5677    }
5678  };
5679
5680  UserData Data;
5681
5682  // Returns false if we find a dependent base.
5683  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
5684    return false;
5685
5686  // Returns false if the class has a dependent base or if it or one
5687  // of its bases is present in the base set of the current context.
5688  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
5689    return false;
5690
5691  Diag(SS.getRange().getBegin(),
5692       diag::err_using_decl_nested_name_specifier_is_not_base_class)
5693    << (NestedNameSpecifier*) SS.getScopeRep()
5694    << cast<CXXRecordDecl>(CurContext)
5695    << SS.getRange();
5696
5697  return true;
5698}
5699
5700Decl *Sema::ActOnAliasDeclaration(Scope *S,
5701                                  AccessSpecifier AS,
5702                                  MultiTemplateParamsArg TemplateParamLists,
5703                                  SourceLocation UsingLoc,
5704                                  UnqualifiedId &Name,
5705                                  TypeResult Type) {
5706  // Skip up to the relevant declaration scope.
5707  while (S->getFlags() & Scope::TemplateParamScope)
5708    S = S->getParent();
5709  assert((S->getFlags() & Scope::DeclScope) &&
5710         "got alias-declaration outside of declaration scope");
5711
5712  if (Type.isInvalid())
5713    return 0;
5714
5715  bool Invalid = false;
5716  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
5717  TypeSourceInfo *TInfo = 0;
5718  GetTypeFromParser(Type.get(), &TInfo);
5719
5720  if (DiagnoseClassNameShadow(CurContext, NameInfo))
5721    return 0;
5722
5723  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
5724                                      UPPC_DeclarationType)) {
5725    Invalid = true;
5726    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
5727                                             TInfo->getTypeLoc().getBeginLoc());
5728  }
5729
5730  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
5731  LookupName(Previous, S);
5732
5733  // Warn about shadowing the name of a template parameter.
5734  if (Previous.isSingleResult() &&
5735      Previous.getFoundDecl()->isTemplateParameter()) {
5736    if (DiagnoseTemplateParameterShadow(Name.StartLocation,
5737                                        Previous.getFoundDecl()))
5738      Invalid = true;
5739    Previous.clear();
5740  }
5741
5742  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
5743         "name in alias declaration must be an identifier");
5744  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
5745                                               Name.StartLocation,
5746                                               Name.Identifier, TInfo);
5747
5748  NewTD->setAccess(AS);
5749
5750  if (Invalid)
5751    NewTD->setInvalidDecl();
5752
5753  CheckTypedefForVariablyModifiedType(S, NewTD);
5754  Invalid |= NewTD->isInvalidDecl();
5755
5756  bool Redeclaration = false;
5757
5758  NamedDecl *NewND;
5759  if (TemplateParamLists.size()) {
5760    TypeAliasTemplateDecl *OldDecl = 0;
5761    TemplateParameterList *OldTemplateParams = 0;
5762
5763    if (TemplateParamLists.size() != 1) {
5764      Diag(UsingLoc, diag::err_alias_template_extra_headers)
5765        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
5766         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
5767    }
5768    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
5769
5770    // Only consider previous declarations in the same scope.
5771    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
5772                         /*ExplicitInstantiationOrSpecialization*/false);
5773    if (!Previous.empty()) {
5774      Redeclaration = true;
5775
5776      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
5777      if (!OldDecl && !Invalid) {
5778        Diag(UsingLoc, diag::err_redefinition_different_kind)
5779          << Name.Identifier;
5780
5781        NamedDecl *OldD = Previous.getRepresentativeDecl();
5782        if (OldD->getLocation().isValid())
5783          Diag(OldD->getLocation(), diag::note_previous_definition);
5784
5785        Invalid = true;
5786      }
5787
5788      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
5789        if (TemplateParameterListsAreEqual(TemplateParams,
5790                                           OldDecl->getTemplateParameters(),
5791                                           /*Complain=*/true,
5792                                           TPL_TemplateMatch))
5793          OldTemplateParams = OldDecl->getTemplateParameters();
5794        else
5795          Invalid = true;
5796
5797        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
5798        if (!Invalid &&
5799            !Context.hasSameType(OldTD->getUnderlyingType(),
5800                                 NewTD->getUnderlyingType())) {
5801          // FIXME: The C++0x standard does not clearly say this is ill-formed,
5802          // but we can't reasonably accept it.
5803          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
5804            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
5805          if (OldTD->getLocation().isValid())
5806            Diag(OldTD->getLocation(), diag::note_previous_definition);
5807          Invalid = true;
5808        }
5809      }
5810    }
5811
5812    // Merge any previous default template arguments into our parameters,
5813    // and check the parameter list.
5814    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
5815                                   TPC_TypeAliasTemplate))
5816      return 0;
5817
5818    TypeAliasTemplateDecl *NewDecl =
5819      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
5820                                    Name.Identifier, TemplateParams,
5821                                    NewTD);
5822
5823    NewDecl->setAccess(AS);
5824
5825    if (Invalid)
5826      NewDecl->setInvalidDecl();
5827    else if (OldDecl)
5828      NewDecl->setPreviousDeclaration(OldDecl);
5829
5830    NewND = NewDecl;
5831  } else {
5832    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
5833    NewND = NewTD;
5834  }
5835
5836  if (!Redeclaration)
5837    PushOnScopeChains(NewND, S);
5838
5839  return NewND;
5840}
5841
5842Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
5843                                             SourceLocation NamespaceLoc,
5844                                             SourceLocation AliasLoc,
5845                                             IdentifierInfo *Alias,
5846                                             CXXScopeSpec &SS,
5847                                             SourceLocation IdentLoc,
5848                                             IdentifierInfo *Ident) {
5849
5850  // Lookup the namespace name.
5851  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
5852  LookupParsedName(R, S, &SS);
5853
5854  // Check if we have a previous declaration with the same name.
5855  NamedDecl *PrevDecl
5856    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
5857                       ForRedeclaration);
5858  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
5859    PrevDecl = 0;
5860
5861  if (PrevDecl) {
5862    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
5863      // We already have an alias with the same name that points to the same
5864      // namespace, so don't create a new one.
5865      // FIXME: At some point, we'll want to create the (redundant)
5866      // declaration to maintain better source information.
5867      if (!R.isAmbiguous() && !R.empty() &&
5868          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
5869        return 0;
5870    }
5871
5872    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
5873      diag::err_redefinition_different_kind;
5874    Diag(AliasLoc, DiagID) << Alias;
5875    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5876    return 0;
5877  }
5878
5879  if (R.isAmbiguous())
5880    return 0;
5881
5882  if (R.empty()) {
5883    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
5884      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
5885      return 0;
5886    }
5887  }
5888
5889  NamespaceAliasDecl *AliasDecl =
5890    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
5891                               Alias, SS.getWithLocInContext(Context),
5892                               IdentLoc, R.getFoundDecl());
5893
5894  PushOnScopeChains(AliasDecl, S);
5895  return AliasDecl;
5896}
5897
5898namespace {
5899  /// \brief Scoped object used to handle the state changes required in Sema
5900  /// to implicitly define the body of a C++ member function;
5901  class ImplicitlyDefinedFunctionScope {
5902    Sema &S;
5903    Sema::ContextRAII SavedContext;
5904
5905  public:
5906    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
5907      : S(S), SavedContext(S, Method)
5908    {
5909      S.PushFunctionScope();
5910      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
5911    }
5912
5913    ~ImplicitlyDefinedFunctionScope() {
5914      S.PopExpressionEvaluationContext();
5915      S.PopFunctionOrBlockScope();
5916    }
5917  };
5918}
5919
5920Sema::ImplicitExceptionSpecification
5921Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
5922  // C++ [except.spec]p14:
5923  //   An implicitly declared special member function (Clause 12) shall have an
5924  //   exception-specification. [...]
5925  ImplicitExceptionSpecification ExceptSpec(Context);
5926  if (ClassDecl->isInvalidDecl())
5927    return ExceptSpec;
5928
5929  // Direct base-class constructors.
5930  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
5931                                       BEnd = ClassDecl->bases_end();
5932       B != BEnd; ++B) {
5933    if (B->isVirtual()) // Handled below.
5934      continue;
5935
5936    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5937      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5938      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
5939      // If this is a deleted function, add it anyway. This might be conformant
5940      // with the standard. This might not. I'm not sure. It might not matter.
5941      if (Constructor)
5942        ExceptSpec.CalledDecl(Constructor);
5943    }
5944  }
5945
5946  // Virtual base-class constructors.
5947  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
5948                                       BEnd = ClassDecl->vbases_end();
5949       B != BEnd; ++B) {
5950    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5951      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5952      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
5953      // If this is a deleted function, add it anyway. This might be conformant
5954      // with the standard. This might not. I'm not sure. It might not matter.
5955      if (Constructor)
5956        ExceptSpec.CalledDecl(Constructor);
5957    }
5958  }
5959
5960  // Field constructors.
5961  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
5962                               FEnd = ClassDecl->field_end();
5963       F != FEnd; ++F) {
5964    if (F->hasInClassInitializer()) {
5965      if (Expr *E = F->getInClassInitializer())
5966        ExceptSpec.CalledExpr(E);
5967      else if (!F->isInvalidDecl())
5968        ExceptSpec.SetDelayed();
5969    } else if (const RecordType *RecordTy
5970              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
5971      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5972      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
5973      // If this is a deleted function, add it anyway. This might be conformant
5974      // with the standard. This might not. I'm not sure. It might not matter.
5975      // In particular, the problem is that this function never gets called. It
5976      // might just be ill-formed because this function attempts to refer to
5977      // a deleted function here.
5978      if (Constructor)
5979        ExceptSpec.CalledDecl(Constructor);
5980    }
5981  }
5982
5983  return ExceptSpec;
5984}
5985
5986CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
5987                                                     CXXRecordDecl *ClassDecl) {
5988  // C++ [class.ctor]p5:
5989  //   A default constructor for a class X is a constructor of class X
5990  //   that can be called without an argument. If there is no
5991  //   user-declared constructor for class X, a default constructor is
5992  //   implicitly declared. An implicitly-declared default constructor
5993  //   is an inline public member of its class.
5994  assert(!ClassDecl->hasUserDeclaredConstructor() &&
5995         "Should not build implicit default constructor!");
5996
5997  ImplicitExceptionSpecification Spec =
5998    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
5999  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6000
6001  // Create the actual constructor declaration.
6002  CanQualType ClassType
6003    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6004  SourceLocation ClassLoc = ClassDecl->getLocation();
6005  DeclarationName Name
6006    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6007  DeclarationNameInfo NameInfo(Name, ClassLoc);
6008  CXXConstructorDecl *DefaultCon
6009    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6010                                 Context.getFunctionType(Context.VoidTy,
6011                                                         0, 0, EPI),
6012                                 /*TInfo=*/0,
6013                                 /*isExplicit=*/false,
6014                                 /*isInline=*/true,
6015                                 /*isImplicitlyDeclared=*/true);
6016  DefaultCon->setAccess(AS_public);
6017  DefaultCon->setDefaulted();
6018  DefaultCon->setImplicit();
6019  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6020
6021  // Note that we have declared this constructor.
6022  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6023
6024  if (Scope *S = getScopeForContext(ClassDecl))
6025    PushOnScopeChains(DefaultCon, S, false);
6026  ClassDecl->addDecl(DefaultCon);
6027
6028  if (ShouldDeleteDefaultConstructor(DefaultCon))
6029    DefaultCon->setDeletedAsWritten();
6030
6031  return DefaultCon;
6032}
6033
6034void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6035                                            CXXConstructorDecl *Constructor) {
6036  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6037          !Constructor->doesThisDeclarationHaveABody() &&
6038          !Constructor->isDeleted()) &&
6039    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6040
6041  CXXRecordDecl *ClassDecl = Constructor->getParent();
6042  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6043
6044  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6045  DiagnosticErrorTrap Trap(Diags);
6046  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6047      Trap.hasErrorOccurred()) {
6048    Diag(CurrentLocation, diag::note_member_synthesized_at)
6049      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6050    Constructor->setInvalidDecl();
6051    return;
6052  }
6053
6054  SourceLocation Loc = Constructor->getLocation();
6055  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6056
6057  Constructor->setUsed();
6058  MarkVTableUsed(CurrentLocation, ClassDecl);
6059
6060  if (ASTMutationListener *L = getASTMutationListener()) {
6061    L->CompletedImplicitDefinition(Constructor);
6062  }
6063}
6064
6065/// Get any existing defaulted default constructor for the given class. Do not
6066/// implicitly define one if it does not exist.
6067static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6068                                                             CXXRecordDecl *D) {
6069  ASTContext &Context = Self.Context;
6070  QualType ClassType = Context.getTypeDeclType(D);
6071  DeclarationName ConstructorName
6072    = Context.DeclarationNames.getCXXConstructorName(
6073                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6074
6075  DeclContext::lookup_const_iterator Con, ConEnd;
6076  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6077       Con != ConEnd; ++Con) {
6078    // A function template cannot be defaulted.
6079    if (isa<FunctionTemplateDecl>(*Con))
6080      continue;
6081
6082    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6083    if (Constructor->isDefaultConstructor())
6084      return Constructor->isDefaulted() ? Constructor : 0;
6085  }
6086  return 0;
6087}
6088
6089void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6090  if (!D) return;
6091  AdjustDeclIfTemplate(D);
6092
6093  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6094  CXXConstructorDecl *CtorDecl
6095    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6096
6097  if (!CtorDecl) return;
6098
6099  // Compute the exception specification for the default constructor.
6100  const FunctionProtoType *CtorTy =
6101    CtorDecl->getType()->castAs<FunctionProtoType>();
6102  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6103    ImplicitExceptionSpecification Spec =
6104      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6105    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6106    assert(EPI.ExceptionSpecType != EST_Delayed);
6107
6108    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6109  }
6110
6111  // If the default constructor is explicitly defaulted, checking the exception
6112  // specification is deferred until now.
6113  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6114      !ClassDecl->isDependentType())
6115    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
6116}
6117
6118void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6119  // We start with an initial pass over the base classes to collect those that
6120  // inherit constructors from. If there are none, we can forgo all further
6121  // processing.
6122  typedef SmallVector<const RecordType *, 4> BasesVector;
6123  BasesVector BasesToInheritFrom;
6124  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6125                                          BaseE = ClassDecl->bases_end();
6126         BaseIt != BaseE; ++BaseIt) {
6127    if (BaseIt->getInheritConstructors()) {
6128      QualType Base = BaseIt->getType();
6129      if (Base->isDependentType()) {
6130        // If we inherit constructors from anything that is dependent, just
6131        // abort processing altogether. We'll get another chance for the
6132        // instantiations.
6133        return;
6134      }
6135      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6136    }
6137  }
6138  if (BasesToInheritFrom.empty())
6139    return;
6140
6141  // Now collect the constructors that we already have in the current class.
6142  // Those take precedence over inherited constructors.
6143  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6144  //   unless there is a user-declared constructor with the same signature in
6145  //   the class where the using-declaration appears.
6146  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6147  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6148                                    CtorE = ClassDecl->ctor_end();
6149       CtorIt != CtorE; ++CtorIt) {
6150    ExistingConstructors.insert(
6151        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6152  }
6153
6154  Scope *S = getScopeForContext(ClassDecl);
6155  DeclarationName CreatedCtorName =
6156      Context.DeclarationNames.getCXXConstructorName(
6157          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6158
6159  // Now comes the true work.
6160  // First, we keep a map from constructor types to the base that introduced
6161  // them. Needed for finding conflicting constructors. We also keep the
6162  // actually inserted declarations in there, for pretty diagnostics.
6163  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6164  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6165  ConstructorToSourceMap InheritedConstructors;
6166  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6167                             BaseE = BasesToInheritFrom.end();
6168       BaseIt != BaseE; ++BaseIt) {
6169    const RecordType *Base = *BaseIt;
6170    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6171    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6172    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6173                                      CtorE = BaseDecl->ctor_end();
6174         CtorIt != CtorE; ++CtorIt) {
6175      // Find the using declaration for inheriting this base's constructors.
6176      DeclarationName Name =
6177          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6178      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6179          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6180      SourceLocation UsingLoc = UD ? UD->getLocation() :
6181                                     ClassDecl->getLocation();
6182
6183      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6184      //   from the class X named in the using-declaration consists of actual
6185      //   constructors and notional constructors that result from the
6186      //   transformation of defaulted parameters as follows:
6187      //   - all non-template default constructors of X, and
6188      //   - for each non-template constructor of X that has at least one
6189      //     parameter with a default argument, the set of constructors that
6190      //     results from omitting any ellipsis parameter specification and
6191      //     successively omitting parameters with a default argument from the
6192      //     end of the parameter-type-list.
6193      CXXConstructorDecl *BaseCtor = *CtorIt;
6194      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6195      const FunctionProtoType *BaseCtorType =
6196          BaseCtor->getType()->getAs<FunctionProtoType>();
6197
6198      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6199                    maxParams = BaseCtor->getNumParams();
6200           params <= maxParams; ++params) {
6201        // Skip default constructors. They're never inherited.
6202        if (params == 0)
6203          continue;
6204        // Skip copy and move constructors for the same reason.
6205        if (CanBeCopyOrMove && params == 1)
6206          continue;
6207
6208        // Build up a function type for this particular constructor.
6209        // FIXME: The working paper does not consider that the exception spec
6210        // for the inheriting constructor might be larger than that of the
6211        // source. This code doesn't yet, either. When it does, this code will
6212        // need to be delayed until after exception specifications and in-class
6213        // member initializers are attached.
6214        const Type *NewCtorType;
6215        if (params == maxParams)
6216          NewCtorType = BaseCtorType;
6217        else {
6218          SmallVector<QualType, 16> Args;
6219          for (unsigned i = 0; i < params; ++i) {
6220            Args.push_back(BaseCtorType->getArgType(i));
6221          }
6222          FunctionProtoType::ExtProtoInfo ExtInfo =
6223              BaseCtorType->getExtProtoInfo();
6224          ExtInfo.Variadic = false;
6225          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6226                                                Args.data(), params, ExtInfo)
6227                       .getTypePtr();
6228        }
6229        const Type *CanonicalNewCtorType =
6230            Context.getCanonicalType(NewCtorType);
6231
6232        // Now that we have the type, first check if the class already has a
6233        // constructor with this signature.
6234        if (ExistingConstructors.count(CanonicalNewCtorType))
6235          continue;
6236
6237        // Then we check if we have already declared an inherited constructor
6238        // with this signature.
6239        std::pair<ConstructorToSourceMap::iterator, bool> result =
6240            InheritedConstructors.insert(std::make_pair(
6241                CanonicalNewCtorType,
6242                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
6243        if (!result.second) {
6244          // Already in the map. If it came from a different class, that's an
6245          // error. Not if it's from the same.
6246          CanQualType PreviousBase = result.first->second.first;
6247          if (CanonicalBase != PreviousBase) {
6248            const CXXConstructorDecl *PrevCtor = result.first->second.second;
6249            const CXXConstructorDecl *PrevBaseCtor =
6250                PrevCtor->getInheritedConstructor();
6251            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
6252
6253            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
6254            Diag(BaseCtor->getLocation(),
6255                 diag::note_using_decl_constructor_conflict_current_ctor);
6256            Diag(PrevBaseCtor->getLocation(),
6257                 diag::note_using_decl_constructor_conflict_previous_ctor);
6258            Diag(PrevCtor->getLocation(),
6259                 diag::note_using_decl_constructor_conflict_previous_using);
6260          }
6261          continue;
6262        }
6263
6264        // OK, we're there, now add the constructor.
6265        // C++0x [class.inhctor]p8: [...] that would be performed by a
6266        //   user-writtern inline constructor [...]
6267        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
6268        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
6269            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
6270            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
6271            /*ImplicitlyDeclared=*/true);
6272        NewCtor->setAccess(BaseCtor->getAccess());
6273
6274        // Build up the parameter decls and add them.
6275        SmallVector<ParmVarDecl *, 16> ParamDecls;
6276        for (unsigned i = 0; i < params; ++i) {
6277          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
6278                                                   UsingLoc, UsingLoc,
6279                                                   /*IdentifierInfo=*/0,
6280                                                   BaseCtorType->getArgType(i),
6281                                                   /*TInfo=*/0, SC_None,
6282                                                   SC_None, /*DefaultArg=*/0));
6283        }
6284        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
6285        NewCtor->setInheritedConstructor(BaseCtor);
6286
6287        PushOnScopeChains(NewCtor, S, false);
6288        ClassDecl->addDecl(NewCtor);
6289        result.first->second.second = NewCtor;
6290      }
6291    }
6292  }
6293}
6294
6295Sema::ImplicitExceptionSpecification
6296Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6297  // C++ [except.spec]p14:
6298  //   An implicitly declared special member function (Clause 12) shall have
6299  //   an exception-specification.
6300  ImplicitExceptionSpecification ExceptSpec(Context);
6301  if (ClassDecl->isInvalidDecl())
6302    return ExceptSpec;
6303
6304  // Direct base-class destructors.
6305  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6306                                       BEnd = ClassDecl->bases_end();
6307       B != BEnd; ++B) {
6308    if (B->isVirtual()) // Handled below.
6309      continue;
6310
6311    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6312      ExceptSpec.CalledDecl(
6313                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6314  }
6315
6316  // Virtual base-class destructors.
6317  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6318                                       BEnd = ClassDecl->vbases_end();
6319       B != BEnd; ++B) {
6320    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6321      ExceptSpec.CalledDecl(
6322                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6323  }
6324
6325  // Field destructors.
6326  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6327                               FEnd = ClassDecl->field_end();
6328       F != FEnd; ++F) {
6329    if (const RecordType *RecordTy
6330        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
6331      ExceptSpec.CalledDecl(
6332                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
6333  }
6334
6335  return ExceptSpec;
6336}
6337
6338CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
6339  // C++ [class.dtor]p2:
6340  //   If a class has no user-declared destructor, a destructor is
6341  //   declared implicitly. An implicitly-declared destructor is an
6342  //   inline public member of its class.
6343
6344  ImplicitExceptionSpecification Spec =
6345      ComputeDefaultedDtorExceptionSpec(ClassDecl);
6346  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6347
6348  // Create the actual destructor declaration.
6349  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
6350
6351  CanQualType ClassType
6352    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6353  SourceLocation ClassLoc = ClassDecl->getLocation();
6354  DeclarationName Name
6355    = Context.DeclarationNames.getCXXDestructorName(ClassType);
6356  DeclarationNameInfo NameInfo(Name, ClassLoc);
6357  CXXDestructorDecl *Destructor
6358      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
6359                                  /*isInline=*/true,
6360                                  /*isImplicitlyDeclared=*/true);
6361  Destructor->setAccess(AS_public);
6362  Destructor->setDefaulted();
6363  Destructor->setImplicit();
6364  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
6365
6366  // Note that we have declared this destructor.
6367  ++ASTContext::NumImplicitDestructorsDeclared;
6368
6369  // Introduce this destructor into its scope.
6370  if (Scope *S = getScopeForContext(ClassDecl))
6371    PushOnScopeChains(Destructor, S, false);
6372  ClassDecl->addDecl(Destructor);
6373
6374  // This could be uniqued if it ever proves significant.
6375  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
6376
6377  if (ShouldDeleteDestructor(Destructor))
6378    Destructor->setDeletedAsWritten();
6379
6380  AddOverriddenMethods(ClassDecl, Destructor);
6381
6382  return Destructor;
6383}
6384
6385void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
6386                                    CXXDestructorDecl *Destructor) {
6387  assert((Destructor->isDefaulted() &&
6388          !Destructor->doesThisDeclarationHaveABody()) &&
6389         "DefineImplicitDestructor - call it for implicit default dtor");
6390  CXXRecordDecl *ClassDecl = Destructor->getParent();
6391  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
6392
6393  if (Destructor->isInvalidDecl())
6394    return;
6395
6396  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
6397
6398  DiagnosticErrorTrap Trap(Diags);
6399  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6400                                         Destructor->getParent());
6401
6402  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
6403    Diag(CurrentLocation, diag::note_member_synthesized_at)
6404      << CXXDestructor << Context.getTagDeclType(ClassDecl);
6405
6406    Destructor->setInvalidDecl();
6407    return;
6408  }
6409
6410  SourceLocation Loc = Destructor->getLocation();
6411  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6412
6413  Destructor->setUsed();
6414  MarkVTableUsed(CurrentLocation, ClassDecl);
6415
6416  if (ASTMutationListener *L = getASTMutationListener()) {
6417    L->CompletedImplicitDefinition(Destructor);
6418  }
6419}
6420
6421void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
6422                                         CXXDestructorDecl *destructor) {
6423  // C++11 [class.dtor]p3:
6424  //   A declaration of a destructor that does not have an exception-
6425  //   specification is implicitly considered to have the same exception-
6426  //   specification as an implicit declaration.
6427  const FunctionProtoType *dtorType = destructor->getType()->
6428                                        getAs<FunctionProtoType>();
6429  if (dtorType->hasExceptionSpec())
6430    return;
6431
6432  ImplicitExceptionSpecification exceptSpec =
6433      ComputeDefaultedDtorExceptionSpec(classDecl);
6434
6435  // Replace the destructor's type.
6436  FunctionProtoType::ExtProtoInfo epi;
6437  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
6438  epi.NumExceptions = exceptSpec.size();
6439  epi.Exceptions = exceptSpec.data();
6440  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
6441
6442  destructor->setType(ty);
6443
6444  // FIXME: If the destructor has a body that could throw, and the newly created
6445  // spec doesn't allow exceptions, we should emit a warning, because this
6446  // change in behavior can break conforming C++03 programs at runtime.
6447  // However, we don't have a body yet, so it needs to be done somewhere else.
6448}
6449
6450/// \brief Builds a statement that copies the given entity from \p From to
6451/// \c To.
6452///
6453/// This routine is used to copy the members of a class with an
6454/// implicitly-declared copy assignment operator. When the entities being
6455/// copied are arrays, this routine builds for loops to copy them.
6456///
6457/// \param S The Sema object used for type-checking.
6458///
6459/// \param Loc The location where the implicit copy is being generated.
6460///
6461/// \param T The type of the expressions being copied. Both expressions must
6462/// have this type.
6463///
6464/// \param To The expression we are copying to.
6465///
6466/// \param From The expression we are copying from.
6467///
6468/// \param CopyingBaseSubobject Whether we're copying a base subobject.
6469/// Otherwise, it's a non-static member subobject.
6470///
6471/// \param Depth Internal parameter recording the depth of the recursion.
6472///
6473/// \returns A statement or a loop that copies the expressions.
6474static StmtResult
6475BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
6476                      Expr *To, Expr *From,
6477                      bool CopyingBaseSubobject, unsigned Depth = 0) {
6478  // C++0x [class.copy]p30:
6479  //   Each subobject is assigned in the manner appropriate to its type:
6480  //
6481  //     - if the subobject is of class type, the copy assignment operator
6482  //       for the class is used (as if by explicit qualification; that is,
6483  //       ignoring any possible virtual overriding functions in more derived
6484  //       classes);
6485  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
6486    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6487
6488    // Look for operator=.
6489    DeclarationName Name
6490      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6491    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
6492    S.LookupQualifiedName(OpLookup, ClassDecl, false);
6493
6494    // Filter out any result that isn't a copy-assignment operator.
6495    LookupResult::Filter F = OpLookup.makeFilter();
6496    while (F.hasNext()) {
6497      NamedDecl *D = F.next();
6498      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
6499        if (Method->isCopyAssignmentOperator())
6500          continue;
6501
6502      F.erase();
6503    }
6504    F.done();
6505
6506    // Suppress the protected check (C++ [class.protected]) for each of the
6507    // assignment operators we found. This strange dance is required when
6508    // we're assigning via a base classes's copy-assignment operator. To
6509    // ensure that we're getting the right base class subobject (without
6510    // ambiguities), we need to cast "this" to that subobject type; to
6511    // ensure that we don't go through the virtual call mechanism, we need
6512    // to qualify the operator= name with the base class (see below). However,
6513    // this means that if the base class has a protected copy assignment
6514    // operator, the protected member access check will fail. So, we
6515    // rewrite "protected" access to "public" access in this case, since we
6516    // know by construction that we're calling from a derived class.
6517    if (CopyingBaseSubobject) {
6518      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
6519           L != LEnd; ++L) {
6520        if (L.getAccess() == AS_protected)
6521          L.setAccess(AS_public);
6522      }
6523    }
6524
6525    // Create the nested-name-specifier that will be used to qualify the
6526    // reference to operator=; this is required to suppress the virtual
6527    // call mechanism.
6528    CXXScopeSpec SS;
6529    SS.MakeTrivial(S.Context,
6530                   NestedNameSpecifier::Create(S.Context, 0, false,
6531                                               T.getTypePtr()),
6532                   Loc);
6533
6534    // Create the reference to operator=.
6535    ExprResult OpEqualRef
6536      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
6537                                   /*FirstQualifierInScope=*/0, OpLookup,
6538                                   /*TemplateArgs=*/0,
6539                                   /*SuppressQualifierCheck=*/true);
6540    if (OpEqualRef.isInvalid())
6541      return StmtError();
6542
6543    // Build the call to the assignment operator.
6544
6545    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
6546                                                  OpEqualRef.takeAs<Expr>(),
6547                                                  Loc, &From, 1, Loc);
6548    if (Call.isInvalid())
6549      return StmtError();
6550
6551    return S.Owned(Call.takeAs<Stmt>());
6552  }
6553
6554  //     - if the subobject is of scalar type, the built-in assignment
6555  //       operator is used.
6556  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
6557  if (!ArrayTy) {
6558    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
6559    if (Assignment.isInvalid())
6560      return StmtError();
6561
6562    return S.Owned(Assignment.takeAs<Stmt>());
6563  }
6564
6565  //     - if the subobject is an array, each element is assigned, in the
6566  //       manner appropriate to the element type;
6567
6568  // Construct a loop over the array bounds, e.g.,
6569  //
6570  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
6571  //
6572  // that will copy each of the array elements.
6573  QualType SizeType = S.Context.getSizeType();
6574
6575  // Create the iteration variable.
6576  IdentifierInfo *IterationVarName = 0;
6577  {
6578    llvm::SmallString<8> Str;
6579    llvm::raw_svector_ostream OS(Str);
6580    OS << "__i" << Depth;
6581    IterationVarName = &S.Context.Idents.get(OS.str());
6582  }
6583  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
6584                                          IterationVarName, SizeType,
6585                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
6586                                          SC_None, SC_None);
6587
6588  // Initialize the iteration variable to zero.
6589  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
6590  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
6591
6592  // Create a reference to the iteration variable; we'll use this several
6593  // times throughout.
6594  Expr *IterationVarRef
6595    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
6596  assert(IterationVarRef && "Reference to invented variable cannot fail!");
6597
6598  // Create the DeclStmt that holds the iteration variable.
6599  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
6600
6601  // Create the comparison against the array bound.
6602  llvm::APInt Upper
6603    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
6604  Expr *Comparison
6605    = new (S.Context) BinaryOperator(IterationVarRef,
6606                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
6607                                     BO_NE, S.Context.BoolTy,
6608                                     VK_RValue, OK_Ordinary, Loc);
6609
6610  // Create the pre-increment of the iteration variable.
6611  Expr *Increment
6612    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
6613                                    VK_LValue, OK_Ordinary, Loc);
6614
6615  // Subscript the "from" and "to" expressions with the iteration variable.
6616  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
6617                                                         IterationVarRef, Loc));
6618  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
6619                                                       IterationVarRef, Loc));
6620
6621  // Build the copy for an individual element of the array.
6622  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
6623                                          To, From, CopyingBaseSubobject,
6624                                          Depth + 1);
6625  if (Copy.isInvalid())
6626    return StmtError();
6627
6628  // Construct the loop that copies all elements of this array.
6629  return S.ActOnForStmt(Loc, Loc, InitStmt,
6630                        S.MakeFullExpr(Comparison),
6631                        0, S.MakeFullExpr(Increment),
6632                        Loc, Copy.take());
6633}
6634
6635std::pair<Sema::ImplicitExceptionSpecification, bool>
6636Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
6637                                                   CXXRecordDecl *ClassDecl) {
6638  if (ClassDecl->isInvalidDecl())
6639    return std::make_pair(ImplicitExceptionSpecification(Context), false);
6640
6641  // C++ [class.copy]p10:
6642  //   If the class definition does not explicitly declare a copy
6643  //   assignment operator, one is declared implicitly.
6644  //   The implicitly-defined copy assignment operator for a class X
6645  //   will have the form
6646  //
6647  //       X& X::operator=(const X&)
6648  //
6649  //   if
6650  bool HasConstCopyAssignment = true;
6651
6652  //       -- each direct base class B of X has a copy assignment operator
6653  //          whose parameter is of type const B&, const volatile B& or B,
6654  //          and
6655  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6656                                       BaseEnd = ClassDecl->bases_end();
6657       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
6658    // We'll handle this below
6659    if (LangOpts.CPlusPlus0x && Base->isVirtual())
6660      continue;
6661
6662    assert(!Base->getType()->isDependentType() &&
6663           "Cannot generate implicit members for class with dependent bases.");
6664    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
6665    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
6666                            &HasConstCopyAssignment);
6667  }
6668
6669  // In C++0x, the above citation has "or virtual added"
6670  if (LangOpts.CPlusPlus0x) {
6671    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
6672                                         BaseEnd = ClassDecl->vbases_end();
6673         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
6674      assert(!Base->getType()->isDependentType() &&
6675             "Cannot generate implicit members for class with dependent bases.");
6676      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
6677      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
6678                              &HasConstCopyAssignment);
6679    }
6680  }
6681
6682  //       -- for all the nonstatic data members of X that are of a class
6683  //          type M (or array thereof), each such class type has a copy
6684  //          assignment operator whose parameter is of type const M&,
6685  //          const volatile M& or M.
6686  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6687                                  FieldEnd = ClassDecl->field_end();
6688       HasConstCopyAssignment && Field != FieldEnd;
6689       ++Field) {
6690    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6691    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
6692      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
6693                              &HasConstCopyAssignment);
6694    }
6695  }
6696
6697  //   Otherwise, the implicitly declared copy assignment operator will
6698  //   have the form
6699  //
6700  //       X& X::operator=(X&)
6701
6702  // C++ [except.spec]p14:
6703  //   An implicitly declared special member function (Clause 12) shall have an
6704  //   exception-specification. [...]
6705
6706  // It is unspecified whether or not an implicit copy assignment operator
6707  // attempts to deduplicate calls to assignment operators of virtual bases are
6708  // made. As such, this exception specification is effectively unspecified.
6709  // Based on a similar decision made for constness in C++0x, we're erring on
6710  // the side of assuming such calls to be made regardless of whether they
6711  // actually happen.
6712  ImplicitExceptionSpecification ExceptSpec(Context);
6713  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
6714  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6715                                       BaseEnd = ClassDecl->bases_end();
6716       Base != BaseEnd; ++Base) {
6717    if (Base->isVirtual())
6718      continue;
6719
6720    CXXRecordDecl *BaseClassDecl
6721      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6722    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
6723                                                            ArgQuals, false, 0))
6724      ExceptSpec.CalledDecl(CopyAssign);
6725  }
6726
6727  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
6728                                       BaseEnd = ClassDecl->vbases_end();
6729       Base != BaseEnd; ++Base) {
6730    CXXRecordDecl *BaseClassDecl
6731      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6732    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
6733                                                            ArgQuals, false, 0))
6734      ExceptSpec.CalledDecl(CopyAssign);
6735  }
6736
6737  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6738                                  FieldEnd = ClassDecl->field_end();
6739       Field != FieldEnd;
6740       ++Field) {
6741    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6742    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
6743      if (CXXMethodDecl *CopyAssign =
6744          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
6745        ExceptSpec.CalledDecl(CopyAssign);
6746    }
6747  }
6748
6749  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
6750}
6751
6752CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
6753  // Note: The following rules are largely analoguous to the copy
6754  // constructor rules. Note that virtual bases are not taken into account
6755  // for determining the argument type of the operator. Note also that
6756  // operators taking an object instead of a reference are allowed.
6757
6758  ImplicitExceptionSpecification Spec(Context);
6759  bool Const;
6760  llvm::tie(Spec, Const) =
6761    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
6762
6763  QualType ArgType = Context.getTypeDeclType(ClassDecl);
6764  QualType RetType = Context.getLValueReferenceType(ArgType);
6765  if (Const)
6766    ArgType = ArgType.withConst();
6767  ArgType = Context.getLValueReferenceType(ArgType);
6768
6769  //   An implicitly-declared copy assignment operator is an inline public
6770  //   member of its class.
6771  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6772  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6773  SourceLocation ClassLoc = ClassDecl->getLocation();
6774  DeclarationNameInfo NameInfo(Name, ClassLoc);
6775  CXXMethodDecl *CopyAssignment
6776    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6777                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
6778                            /*TInfo=*/0, /*isStatic=*/false,
6779                            /*StorageClassAsWritten=*/SC_None,
6780                            /*isInline=*/true,
6781                            SourceLocation());
6782  CopyAssignment->setAccess(AS_public);
6783  CopyAssignment->setDefaulted();
6784  CopyAssignment->setImplicit();
6785  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
6786
6787  // Add the parameter to the operator.
6788  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
6789                                               ClassLoc, ClassLoc, /*Id=*/0,
6790                                               ArgType, /*TInfo=*/0,
6791                                               SC_None,
6792                                               SC_None, 0);
6793  CopyAssignment->setParams(&FromParam, 1);
6794
6795  // Note that we have added this copy-assignment operator.
6796  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
6797
6798  if (Scope *S = getScopeForContext(ClassDecl))
6799    PushOnScopeChains(CopyAssignment, S, false);
6800  ClassDecl->addDecl(CopyAssignment);
6801
6802  // C++0x [class.copy]p18:
6803  //   ... If the class definition declares a move constructor or move
6804  //   assignment operator, the implicitly declared copy assignment operator is
6805  //   defined as deleted; ...
6806  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
6807      ClassDecl->hasUserDeclaredMoveAssignment() ||
6808      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
6809    CopyAssignment->setDeletedAsWritten();
6810
6811  AddOverriddenMethods(ClassDecl, CopyAssignment);
6812  return CopyAssignment;
6813}
6814
6815void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
6816                                        CXXMethodDecl *CopyAssignOperator) {
6817  assert((CopyAssignOperator->isDefaulted() &&
6818          CopyAssignOperator->isOverloadedOperator() &&
6819          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
6820          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
6821         "DefineImplicitCopyAssignment called for wrong function");
6822
6823  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
6824
6825  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
6826    CopyAssignOperator->setInvalidDecl();
6827    return;
6828  }
6829
6830  CopyAssignOperator->setUsed();
6831
6832  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
6833  DiagnosticErrorTrap Trap(Diags);
6834
6835  // C++0x [class.copy]p30:
6836  //   The implicitly-defined or explicitly-defaulted copy assignment operator
6837  //   for a non-union class X performs memberwise copy assignment of its
6838  //   subobjects. The direct base classes of X are assigned first, in the
6839  //   order of their declaration in the base-specifier-list, and then the
6840  //   immediate non-static data members of X are assigned, in the order in
6841  //   which they were declared in the class definition.
6842
6843  // The statements that form the synthesized function body.
6844  ASTOwningVector<Stmt*> Statements(*this);
6845
6846  // The parameter for the "other" object, which we are copying from.
6847  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
6848  Qualifiers OtherQuals = Other->getType().getQualifiers();
6849  QualType OtherRefType = Other->getType();
6850  if (const LValueReferenceType *OtherRef
6851                                = OtherRefType->getAs<LValueReferenceType>()) {
6852    OtherRefType = OtherRef->getPointeeType();
6853    OtherQuals = OtherRefType.getQualifiers();
6854  }
6855
6856  // Our location for everything implicitly-generated.
6857  SourceLocation Loc = CopyAssignOperator->getLocation();
6858
6859  // Construct a reference to the "other" object. We'll be using this
6860  // throughout the generated ASTs.
6861  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
6862  assert(OtherRef && "Reference to parameter cannot fail!");
6863
6864  // Construct the "this" pointer. We'll be using this throughout the generated
6865  // ASTs.
6866  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
6867  assert(This && "Reference to this cannot fail!");
6868
6869  // Assign base classes.
6870  bool Invalid = false;
6871  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6872       E = ClassDecl->bases_end(); Base != E; ++Base) {
6873    // Form the assignment:
6874    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
6875    QualType BaseType = Base->getType().getUnqualifiedType();
6876    if (!BaseType->isRecordType()) {
6877      Invalid = true;
6878      continue;
6879    }
6880
6881    CXXCastPath BasePath;
6882    BasePath.push_back(Base);
6883
6884    // Construct the "from" expression, which is an implicit cast to the
6885    // appropriately-qualified base type.
6886    Expr *From = OtherRef;
6887    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
6888                             CK_UncheckedDerivedToBase,
6889                             VK_LValue, &BasePath).take();
6890
6891    // Dereference "this".
6892    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
6893
6894    // Implicitly cast "this" to the appropriately-qualified base type.
6895    To = ImpCastExprToType(To.take(),
6896                           Context.getCVRQualifiedType(BaseType,
6897                                     CopyAssignOperator->getTypeQualifiers()),
6898                           CK_UncheckedDerivedToBase,
6899                           VK_LValue, &BasePath);
6900
6901    // Build the copy.
6902    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
6903                                            To.get(), From,
6904                                            /*CopyingBaseSubobject=*/true);
6905    if (Copy.isInvalid()) {
6906      Diag(CurrentLocation, diag::note_member_synthesized_at)
6907        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6908      CopyAssignOperator->setInvalidDecl();
6909      return;
6910    }
6911
6912    // Success! Record the copy.
6913    Statements.push_back(Copy.takeAs<Expr>());
6914  }
6915
6916  // \brief Reference to the __builtin_memcpy function.
6917  Expr *BuiltinMemCpyRef = 0;
6918  // \brief Reference to the __builtin_objc_memmove_collectable function.
6919  Expr *CollectableMemCpyRef = 0;
6920
6921  // Assign non-static members.
6922  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6923                                  FieldEnd = ClassDecl->field_end();
6924       Field != FieldEnd; ++Field) {
6925    // Check for members of reference type; we can't copy those.
6926    if (Field->getType()->isReferenceType()) {
6927      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6928        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
6929      Diag(Field->getLocation(), diag::note_declared_at);
6930      Diag(CurrentLocation, diag::note_member_synthesized_at)
6931        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6932      Invalid = true;
6933      continue;
6934    }
6935
6936    // Check for members of const-qualified, non-class type.
6937    QualType BaseType = Context.getBaseElementType(Field->getType());
6938    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
6939      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6940        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
6941      Diag(Field->getLocation(), diag::note_declared_at);
6942      Diag(CurrentLocation, diag::note_member_synthesized_at)
6943        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6944      Invalid = true;
6945      continue;
6946    }
6947
6948    // Suppress assigning zero-width bitfields.
6949    if (const Expr *Width = Field->getBitWidth())
6950      if (Width->EvaluateAsInt(Context) == 0)
6951        continue;
6952
6953    QualType FieldType = Field->getType().getNonReferenceType();
6954    if (FieldType->isIncompleteArrayType()) {
6955      assert(ClassDecl->hasFlexibleArrayMember() &&
6956             "Incomplete array type is not valid");
6957      continue;
6958    }
6959
6960    // Build references to the field in the object we're copying from and to.
6961    CXXScopeSpec SS; // Intentionally empty
6962    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
6963                              LookupMemberName);
6964    MemberLookup.addDecl(*Field);
6965    MemberLookup.resolveKind();
6966    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
6967                                               Loc, /*IsArrow=*/false,
6968                                               SS, 0, MemberLookup, 0);
6969    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
6970                                             Loc, /*IsArrow=*/true,
6971                                             SS, 0, MemberLookup, 0);
6972    assert(!From.isInvalid() && "Implicit field reference cannot fail");
6973    assert(!To.isInvalid() && "Implicit field reference cannot fail");
6974
6975    // If the field should be copied with __builtin_memcpy rather than via
6976    // explicit assignments, do so. This optimization only applies for arrays
6977    // of scalars and arrays of class type with trivial copy-assignment
6978    // operators.
6979    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
6980        && BaseType.hasTrivialCopyAssignment(Context)) {
6981      // Compute the size of the memory buffer to be copied.
6982      QualType SizeType = Context.getSizeType();
6983      llvm::APInt Size(Context.getTypeSize(SizeType),
6984                       Context.getTypeSizeInChars(BaseType).getQuantity());
6985      for (const ConstantArrayType *Array
6986              = Context.getAsConstantArrayType(FieldType);
6987           Array;
6988           Array = Context.getAsConstantArrayType(Array->getElementType())) {
6989        llvm::APInt ArraySize
6990          = Array->getSize().zextOrTrunc(Size.getBitWidth());
6991        Size *= ArraySize;
6992      }
6993
6994      // Take the address of the field references for "from" and "to".
6995      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
6996      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
6997
6998      bool NeedsCollectableMemCpy =
6999          (BaseType->isRecordType() &&
7000           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7001
7002      if (NeedsCollectableMemCpy) {
7003        if (!CollectableMemCpyRef) {
7004          // Create a reference to the __builtin_objc_memmove_collectable function.
7005          LookupResult R(*this,
7006                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7007                         Loc, LookupOrdinaryName);
7008          LookupName(R, TUScope, true);
7009
7010          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7011          if (!CollectableMemCpy) {
7012            // Something went horribly wrong earlier, and we will have
7013            // complained about it.
7014            Invalid = true;
7015            continue;
7016          }
7017
7018          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7019                                                  CollectableMemCpy->getType(),
7020                                                  VK_LValue, Loc, 0).take();
7021          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7022        }
7023      }
7024      // Create a reference to the __builtin_memcpy builtin function.
7025      else if (!BuiltinMemCpyRef) {
7026        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7027                       LookupOrdinaryName);
7028        LookupName(R, TUScope, true);
7029
7030        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7031        if (!BuiltinMemCpy) {
7032          // Something went horribly wrong earlier, and we will have complained
7033          // about it.
7034          Invalid = true;
7035          continue;
7036        }
7037
7038        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7039                                            BuiltinMemCpy->getType(),
7040                                            VK_LValue, Loc, 0).take();
7041        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7042      }
7043
7044      ASTOwningVector<Expr*> CallArgs(*this);
7045      CallArgs.push_back(To.takeAs<Expr>());
7046      CallArgs.push_back(From.takeAs<Expr>());
7047      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7048      ExprResult Call = ExprError();
7049      if (NeedsCollectableMemCpy)
7050        Call = ActOnCallExpr(/*Scope=*/0,
7051                             CollectableMemCpyRef,
7052                             Loc, move_arg(CallArgs),
7053                             Loc);
7054      else
7055        Call = ActOnCallExpr(/*Scope=*/0,
7056                             BuiltinMemCpyRef,
7057                             Loc, move_arg(CallArgs),
7058                             Loc);
7059
7060      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7061      Statements.push_back(Call.takeAs<Expr>());
7062      continue;
7063    }
7064
7065    // Build the copy of this field.
7066    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7067                                                  To.get(), From.get(),
7068                                              /*CopyingBaseSubobject=*/false);
7069    if (Copy.isInvalid()) {
7070      Diag(CurrentLocation, diag::note_member_synthesized_at)
7071        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7072      CopyAssignOperator->setInvalidDecl();
7073      return;
7074    }
7075
7076    // Success! Record the copy.
7077    Statements.push_back(Copy.takeAs<Stmt>());
7078  }
7079
7080  if (!Invalid) {
7081    // Add a "return *this;"
7082    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7083
7084    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7085    if (Return.isInvalid())
7086      Invalid = true;
7087    else {
7088      Statements.push_back(Return.takeAs<Stmt>());
7089
7090      if (Trap.hasErrorOccurred()) {
7091        Diag(CurrentLocation, diag::note_member_synthesized_at)
7092          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7093        Invalid = true;
7094      }
7095    }
7096  }
7097
7098  if (Invalid) {
7099    CopyAssignOperator->setInvalidDecl();
7100    return;
7101  }
7102
7103  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7104                                            /*isStmtExpr=*/false);
7105  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7106  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7107
7108  if (ASTMutationListener *L = getASTMutationListener()) {
7109    L->CompletedImplicitDefinition(CopyAssignOperator);
7110  }
7111}
7112
7113std::pair<Sema::ImplicitExceptionSpecification, bool>
7114Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
7115  if (ClassDecl->isInvalidDecl())
7116    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7117
7118  // C++ [class.copy]p5:
7119  //   The implicitly-declared copy constructor for a class X will
7120  //   have the form
7121  //
7122  //       X::X(const X&)
7123  //
7124  //   if
7125  // FIXME: It ought to be possible to store this on the record.
7126  bool HasConstCopyConstructor = true;
7127
7128  //     -- each direct or virtual base class B of X has a copy
7129  //        constructor whose first parameter is of type const B& or
7130  //        const volatile B&, and
7131  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7132                                       BaseEnd = ClassDecl->bases_end();
7133       HasConstCopyConstructor && Base != BaseEnd;
7134       ++Base) {
7135    // Virtual bases are handled below.
7136    if (Base->isVirtual())
7137      continue;
7138
7139    CXXRecordDecl *BaseClassDecl
7140      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7141    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
7142                             &HasConstCopyConstructor);
7143  }
7144
7145  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7146                                       BaseEnd = ClassDecl->vbases_end();
7147       HasConstCopyConstructor && Base != BaseEnd;
7148       ++Base) {
7149    CXXRecordDecl *BaseClassDecl
7150      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7151    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
7152                             &HasConstCopyConstructor);
7153  }
7154
7155  //     -- for all the nonstatic data members of X that are of a
7156  //        class type M (or array thereof), each such class type
7157  //        has a copy constructor whose first parameter is of type
7158  //        const M& or const volatile M&.
7159  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7160                                  FieldEnd = ClassDecl->field_end();
7161       HasConstCopyConstructor && Field != FieldEnd;
7162       ++Field) {
7163    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7164    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7165      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
7166                               &HasConstCopyConstructor);
7167    }
7168  }
7169  //   Otherwise, the implicitly declared copy constructor will have
7170  //   the form
7171  //
7172  //       X::X(X&)
7173
7174  // C++ [except.spec]p14:
7175  //   An implicitly declared special member function (Clause 12) shall have an
7176  //   exception-specification. [...]
7177  ImplicitExceptionSpecification ExceptSpec(Context);
7178  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
7179  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7180                                       BaseEnd = ClassDecl->bases_end();
7181       Base != BaseEnd;
7182       ++Base) {
7183    // Virtual bases are handled below.
7184    if (Base->isVirtual())
7185      continue;
7186
7187    CXXRecordDecl *BaseClassDecl
7188      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7189    if (CXXConstructorDecl *CopyConstructor =
7190          LookupCopyingConstructor(BaseClassDecl, Quals))
7191      ExceptSpec.CalledDecl(CopyConstructor);
7192  }
7193  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7194                                       BaseEnd = ClassDecl->vbases_end();
7195       Base != BaseEnd;
7196       ++Base) {
7197    CXXRecordDecl *BaseClassDecl
7198      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7199    if (CXXConstructorDecl *CopyConstructor =
7200          LookupCopyingConstructor(BaseClassDecl, Quals))
7201      ExceptSpec.CalledDecl(CopyConstructor);
7202  }
7203  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7204                                  FieldEnd = ClassDecl->field_end();
7205       Field != FieldEnd;
7206       ++Field) {
7207    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7208    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7209      if (CXXConstructorDecl *CopyConstructor =
7210        LookupCopyingConstructor(FieldClassDecl, Quals))
7211      ExceptSpec.CalledDecl(CopyConstructor);
7212    }
7213  }
7214
7215  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
7216}
7217
7218CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
7219                                                    CXXRecordDecl *ClassDecl) {
7220  // C++ [class.copy]p4:
7221  //   If the class definition does not explicitly declare a copy
7222  //   constructor, one is declared implicitly.
7223
7224  ImplicitExceptionSpecification Spec(Context);
7225  bool Const;
7226  llvm::tie(Spec, Const) =
7227    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
7228
7229  QualType ClassType = Context.getTypeDeclType(ClassDecl);
7230  QualType ArgType = ClassType;
7231  if (Const)
7232    ArgType = ArgType.withConst();
7233  ArgType = Context.getLValueReferenceType(ArgType);
7234
7235  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7236
7237  DeclarationName Name
7238    = Context.DeclarationNames.getCXXConstructorName(
7239                                           Context.getCanonicalType(ClassType));
7240  SourceLocation ClassLoc = ClassDecl->getLocation();
7241  DeclarationNameInfo NameInfo(Name, ClassLoc);
7242
7243  //   An implicitly-declared copy constructor is an inline public
7244  //   member of its class.
7245  CXXConstructorDecl *CopyConstructor
7246    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7247                                 Context.getFunctionType(Context.VoidTy,
7248                                                         &ArgType, 1, EPI),
7249                                 /*TInfo=*/0,
7250                                 /*isExplicit=*/false,
7251                                 /*isInline=*/true,
7252                                 /*isImplicitlyDeclared=*/true);
7253  CopyConstructor->setAccess(AS_public);
7254  CopyConstructor->setDefaulted();
7255  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
7256
7257  // Note that we have declared this constructor.
7258  ++ASTContext::NumImplicitCopyConstructorsDeclared;
7259
7260  // Add the parameter to the constructor.
7261  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
7262                                               ClassLoc, ClassLoc,
7263                                               /*IdentifierInfo=*/0,
7264                                               ArgType, /*TInfo=*/0,
7265                                               SC_None,
7266                                               SC_None, 0);
7267  CopyConstructor->setParams(&FromParam, 1);
7268
7269  if (Scope *S = getScopeForContext(ClassDecl))
7270    PushOnScopeChains(CopyConstructor, S, false);
7271  ClassDecl->addDecl(CopyConstructor);
7272
7273  // C++0x [class.copy]p7:
7274  //   ... If the class definition declares a move constructor or move
7275  //   assignment operator, the implicitly declared constructor is defined as
7276  //   deleted; ...
7277  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
7278      ClassDecl->hasUserDeclaredMoveAssignment() ||
7279      ShouldDeleteCopyConstructor(CopyConstructor))
7280    CopyConstructor->setDeletedAsWritten();
7281
7282  return CopyConstructor;
7283}
7284
7285void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
7286                                   CXXConstructorDecl *CopyConstructor) {
7287  assert((CopyConstructor->isDefaulted() &&
7288          CopyConstructor->isCopyConstructor() &&
7289          !CopyConstructor->doesThisDeclarationHaveABody()) &&
7290         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
7291
7292  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
7293  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
7294
7295  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
7296  DiagnosticErrorTrap Trap(Diags);
7297
7298  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
7299      Trap.hasErrorOccurred()) {
7300    Diag(CurrentLocation, diag::note_member_synthesized_at)
7301      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
7302    CopyConstructor->setInvalidDecl();
7303  }  else {
7304    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
7305                                               CopyConstructor->getLocation(),
7306                                               MultiStmtArg(*this, 0, 0),
7307                                               /*isStmtExpr=*/false)
7308                                                              .takeAs<Stmt>());
7309  }
7310
7311  CopyConstructor->setUsed();
7312
7313  if (ASTMutationListener *L = getASTMutationListener()) {
7314    L->CompletedImplicitDefinition(CopyConstructor);
7315  }
7316}
7317
7318ExprResult
7319Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7320                            CXXConstructorDecl *Constructor,
7321                            MultiExprArg ExprArgs,
7322                            bool RequiresZeroInit,
7323                            unsigned ConstructKind,
7324                            SourceRange ParenRange) {
7325  bool Elidable = false;
7326
7327  // C++0x [class.copy]p34:
7328  //   When certain criteria are met, an implementation is allowed to
7329  //   omit the copy/move construction of a class object, even if the
7330  //   copy/move constructor and/or destructor for the object have
7331  //   side effects. [...]
7332  //     - when a temporary class object that has not been bound to a
7333  //       reference (12.2) would be copied/moved to a class object
7334  //       with the same cv-unqualified type, the copy/move operation
7335  //       can be omitted by constructing the temporary object
7336  //       directly into the target of the omitted copy/move
7337  if (ConstructKind == CXXConstructExpr::CK_Complete &&
7338      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
7339    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
7340    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
7341  }
7342
7343  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
7344                               Elidable, move(ExprArgs), RequiresZeroInit,
7345                               ConstructKind, ParenRange);
7346}
7347
7348/// BuildCXXConstructExpr - Creates a complete call to a constructor,
7349/// including handling of its default argument expressions.
7350ExprResult
7351Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7352                            CXXConstructorDecl *Constructor, bool Elidable,
7353                            MultiExprArg ExprArgs,
7354                            bool RequiresZeroInit,
7355                            unsigned ConstructKind,
7356                            SourceRange ParenRange) {
7357  unsigned NumExprs = ExprArgs.size();
7358  Expr **Exprs = (Expr **)ExprArgs.release();
7359
7360  for (specific_attr_iterator<NonNullAttr>
7361           i = Constructor->specific_attr_begin<NonNullAttr>(),
7362           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
7363    const NonNullAttr *NonNull = *i;
7364    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
7365  }
7366
7367  MarkDeclarationReferenced(ConstructLoc, Constructor);
7368  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
7369                                        Constructor, Elidable, Exprs, NumExprs,
7370                                        RequiresZeroInit,
7371              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
7372                                        ParenRange));
7373}
7374
7375bool Sema::InitializeVarWithConstructor(VarDecl *VD,
7376                                        CXXConstructorDecl *Constructor,
7377                                        MultiExprArg Exprs) {
7378  // FIXME: Provide the correct paren SourceRange when available.
7379  ExprResult TempResult =
7380    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
7381                          move(Exprs), false, CXXConstructExpr::CK_Complete,
7382                          SourceRange());
7383  if (TempResult.isInvalid())
7384    return true;
7385
7386  Expr *Temp = TempResult.takeAs<Expr>();
7387  CheckImplicitConversions(Temp, VD->getLocation());
7388  MarkDeclarationReferenced(VD->getLocation(), Constructor);
7389  Temp = MaybeCreateExprWithCleanups(Temp);
7390  VD->setInit(Temp);
7391
7392  return false;
7393}
7394
7395void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
7396  if (VD->isInvalidDecl()) return;
7397
7398  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
7399  if (ClassDecl->isInvalidDecl()) return;
7400  if (ClassDecl->hasTrivialDestructor()) return;
7401  if (ClassDecl->isDependentContext()) return;
7402
7403  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
7404  MarkDeclarationReferenced(VD->getLocation(), Destructor);
7405  CheckDestructorAccess(VD->getLocation(), Destructor,
7406                        PDiag(diag::err_access_dtor_var)
7407                        << VD->getDeclName()
7408                        << VD->getType());
7409
7410  if (!VD->hasGlobalStorage()) return;
7411
7412  // Emit warning for non-trivial dtor in global scope (a real global,
7413  // class-static, function-static).
7414  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
7415
7416  // TODO: this should be re-enabled for static locals by !CXAAtExit
7417  if (!VD->isStaticLocal())
7418    Diag(VD->getLocation(), diag::warn_global_destructor);
7419}
7420
7421/// AddCXXDirectInitializerToDecl - This action is called immediately after
7422/// ActOnDeclarator, when a C++ direct initializer is present.
7423/// e.g: "int x(1);"
7424void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
7425                                         SourceLocation LParenLoc,
7426                                         MultiExprArg Exprs,
7427                                         SourceLocation RParenLoc,
7428                                         bool TypeMayContainAuto) {
7429  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
7430
7431  // If there is no declaration, there was an error parsing it.  Just ignore
7432  // the initializer.
7433  if (RealDecl == 0)
7434    return;
7435
7436  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7437  if (!VDecl) {
7438    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7439    RealDecl->setInvalidDecl();
7440    return;
7441  }
7442
7443  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7444  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
7445    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
7446    if (Exprs.size() > 1) {
7447      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
7448           diag::err_auto_var_init_multiple_expressions)
7449        << VDecl->getDeclName() << VDecl->getType()
7450        << VDecl->getSourceRange();
7451      RealDecl->setInvalidDecl();
7452      return;
7453    }
7454
7455    Expr *Init = Exprs.get()[0];
7456    TypeSourceInfo *DeducedType = 0;
7457    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
7458      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
7459        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
7460        << Init->getSourceRange();
7461    if (!DeducedType) {
7462      RealDecl->setInvalidDecl();
7463      return;
7464    }
7465    VDecl->setTypeSourceInfo(DeducedType);
7466    VDecl->setType(DeducedType->getType());
7467
7468    // In ARC, infer lifetime.
7469    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7470      VDecl->setInvalidDecl();
7471
7472    // If this is a redeclaration, check that the type we just deduced matches
7473    // the previously declared type.
7474    if (VarDecl *Old = VDecl->getPreviousDeclaration())
7475      MergeVarDeclTypes(VDecl, Old);
7476  }
7477
7478  // We will represent direct-initialization similarly to copy-initialization:
7479  //    int x(1);  -as-> int x = 1;
7480  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7481  //
7482  // Clients that want to distinguish between the two forms, can check for
7483  // direct initializer using VarDecl::hasCXXDirectInitializer().
7484  // A major benefit is that clients that don't particularly care about which
7485  // exactly form was it (like the CodeGen) can handle both cases without
7486  // special case code.
7487
7488  // C++ 8.5p11:
7489  // The form of initialization (using parentheses or '=') is generally
7490  // insignificant, but does matter when the entity being initialized has a
7491  // class type.
7492
7493  if (!VDecl->getType()->isDependentType() &&
7494      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
7495                          diag::err_typecheck_decl_incomplete_type)) {
7496    VDecl->setInvalidDecl();
7497    return;
7498  }
7499
7500  // The variable can not have an abstract class type.
7501  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7502                             diag::err_abstract_type_in_decl,
7503                             AbstractVariableType))
7504    VDecl->setInvalidDecl();
7505
7506  const VarDecl *Def;
7507  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7508    Diag(VDecl->getLocation(), diag::err_redefinition)
7509    << VDecl->getDeclName();
7510    Diag(Def->getLocation(), diag::note_previous_definition);
7511    VDecl->setInvalidDecl();
7512    return;
7513  }
7514
7515  // C++ [class.static.data]p4
7516  //   If a static data member is of const integral or const
7517  //   enumeration type, its declaration in the class definition can
7518  //   specify a constant-initializer which shall be an integral
7519  //   constant expression (5.19). In that case, the member can appear
7520  //   in integral constant expressions. The member shall still be
7521  //   defined in a namespace scope if it is used in the program and the
7522  //   namespace scope definition shall not contain an initializer.
7523  //
7524  // We already performed a redefinition check above, but for static
7525  // data members we also need to check whether there was an in-class
7526  // declaration with an initializer.
7527  const VarDecl* PrevInit = 0;
7528  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7529    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
7530    Diag(PrevInit->getLocation(), diag::note_previous_definition);
7531    return;
7532  }
7533
7534  bool IsDependent = false;
7535  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
7536    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
7537      VDecl->setInvalidDecl();
7538      return;
7539    }
7540
7541    if (Exprs.get()[I]->isTypeDependent())
7542      IsDependent = true;
7543  }
7544
7545  // If either the declaration has a dependent type or if any of the
7546  // expressions is type-dependent, we represent the initialization
7547  // via a ParenListExpr for later use during template instantiation.
7548  if (VDecl->getType()->isDependentType() || IsDependent) {
7549    // Let clients know that initialization was done with a direct initializer.
7550    VDecl->setCXXDirectInitializer(true);
7551
7552    // Store the initialization expressions as a ParenListExpr.
7553    unsigned NumExprs = Exprs.size();
7554    VDecl->setInit(new (Context) ParenListExpr(
7555        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
7556        VDecl->getType().getNonReferenceType()));
7557    return;
7558  }
7559
7560  // Capture the variable that is being initialized and the style of
7561  // initialization.
7562  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7563
7564  // FIXME: Poor source location information.
7565  InitializationKind Kind
7566    = InitializationKind::CreateDirect(VDecl->getLocation(),
7567                                       LParenLoc, RParenLoc);
7568
7569  InitializationSequence InitSeq(*this, Entity, Kind,
7570                                 Exprs.get(), Exprs.size());
7571  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
7572  if (Result.isInvalid()) {
7573    VDecl->setInvalidDecl();
7574    return;
7575  }
7576
7577  CheckImplicitConversions(Result.get(), LParenLoc);
7578
7579  Result = MaybeCreateExprWithCleanups(Result);
7580  VDecl->setInit(Result.takeAs<Expr>());
7581  VDecl->setCXXDirectInitializer(true);
7582
7583  CheckCompleteVariableDeclaration(VDecl);
7584}
7585
7586/// \brief Given a constructor and the set of arguments provided for the
7587/// constructor, convert the arguments and add any required default arguments
7588/// to form a proper call to this constructor.
7589///
7590/// \returns true if an error occurred, false otherwise.
7591bool
7592Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
7593                              MultiExprArg ArgsPtr,
7594                              SourceLocation Loc,
7595                              ASTOwningVector<Expr*> &ConvertedArgs) {
7596  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
7597  unsigned NumArgs = ArgsPtr.size();
7598  Expr **Args = (Expr **)ArgsPtr.get();
7599
7600  const FunctionProtoType *Proto
7601    = Constructor->getType()->getAs<FunctionProtoType>();
7602  assert(Proto && "Constructor without a prototype?");
7603  unsigned NumArgsInProto = Proto->getNumArgs();
7604
7605  // If too few arguments are available, we'll fill in the rest with defaults.
7606  if (NumArgs < NumArgsInProto)
7607    ConvertedArgs.reserve(NumArgsInProto);
7608  else
7609    ConvertedArgs.reserve(NumArgs);
7610
7611  VariadicCallType CallType =
7612    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
7613  SmallVector<Expr *, 8> AllArgs;
7614  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
7615                                        Proto, 0, Args, NumArgs, AllArgs,
7616                                        CallType);
7617  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
7618    ConvertedArgs.push_back(AllArgs[i]);
7619  return Invalid;
7620}
7621
7622static inline bool
7623CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
7624                                       const FunctionDecl *FnDecl) {
7625  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
7626  if (isa<NamespaceDecl>(DC)) {
7627    return SemaRef.Diag(FnDecl->getLocation(),
7628                        diag::err_operator_new_delete_declared_in_namespace)
7629      << FnDecl->getDeclName();
7630  }
7631
7632  if (isa<TranslationUnitDecl>(DC) &&
7633      FnDecl->getStorageClass() == SC_Static) {
7634    return SemaRef.Diag(FnDecl->getLocation(),
7635                        diag::err_operator_new_delete_declared_static)
7636      << FnDecl->getDeclName();
7637  }
7638
7639  return false;
7640}
7641
7642static inline bool
7643CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
7644                            CanQualType ExpectedResultType,
7645                            CanQualType ExpectedFirstParamType,
7646                            unsigned DependentParamTypeDiag,
7647                            unsigned InvalidParamTypeDiag) {
7648  QualType ResultType =
7649    FnDecl->getType()->getAs<FunctionType>()->getResultType();
7650
7651  // Check that the result type is not dependent.
7652  if (ResultType->isDependentType())
7653    return SemaRef.Diag(FnDecl->getLocation(),
7654                        diag::err_operator_new_delete_dependent_result_type)
7655    << FnDecl->getDeclName() << ExpectedResultType;
7656
7657  // Check that the result type is what we expect.
7658  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
7659    return SemaRef.Diag(FnDecl->getLocation(),
7660                        diag::err_operator_new_delete_invalid_result_type)
7661    << FnDecl->getDeclName() << ExpectedResultType;
7662
7663  // A function template must have at least 2 parameters.
7664  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
7665    return SemaRef.Diag(FnDecl->getLocation(),
7666                      diag::err_operator_new_delete_template_too_few_parameters)
7667        << FnDecl->getDeclName();
7668
7669  // The function decl must have at least 1 parameter.
7670  if (FnDecl->getNumParams() == 0)
7671    return SemaRef.Diag(FnDecl->getLocation(),
7672                        diag::err_operator_new_delete_too_few_parameters)
7673      << FnDecl->getDeclName();
7674
7675  // Check the the first parameter type is not dependent.
7676  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
7677  if (FirstParamType->isDependentType())
7678    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
7679      << FnDecl->getDeclName() << ExpectedFirstParamType;
7680
7681  // Check that the first parameter type is what we expect.
7682  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
7683      ExpectedFirstParamType)
7684    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
7685    << FnDecl->getDeclName() << ExpectedFirstParamType;
7686
7687  return false;
7688}
7689
7690static bool
7691CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7692  // C++ [basic.stc.dynamic.allocation]p1:
7693  //   A program is ill-formed if an allocation function is declared in a
7694  //   namespace scope other than global scope or declared static in global
7695  //   scope.
7696  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7697    return true;
7698
7699  CanQualType SizeTy =
7700    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
7701
7702  // C++ [basic.stc.dynamic.allocation]p1:
7703  //  The return type shall be void*. The first parameter shall have type
7704  //  std::size_t.
7705  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
7706                                  SizeTy,
7707                                  diag::err_operator_new_dependent_param_type,
7708                                  diag::err_operator_new_param_type))
7709    return true;
7710
7711  // C++ [basic.stc.dynamic.allocation]p1:
7712  //  The first parameter shall not have an associated default argument.
7713  if (FnDecl->getParamDecl(0)->hasDefaultArg())
7714    return SemaRef.Diag(FnDecl->getLocation(),
7715                        diag::err_operator_new_default_arg)
7716      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
7717
7718  return false;
7719}
7720
7721static bool
7722CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7723  // C++ [basic.stc.dynamic.deallocation]p1:
7724  //   A program is ill-formed if deallocation functions are declared in a
7725  //   namespace scope other than global scope or declared static in global
7726  //   scope.
7727  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7728    return true;
7729
7730  // C++ [basic.stc.dynamic.deallocation]p2:
7731  //   Each deallocation function shall return void and its first parameter
7732  //   shall be void*.
7733  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
7734                                  SemaRef.Context.VoidPtrTy,
7735                                 diag::err_operator_delete_dependent_param_type,
7736                                 diag::err_operator_delete_param_type))
7737    return true;
7738
7739  return false;
7740}
7741
7742/// CheckOverloadedOperatorDeclaration - Check whether the declaration
7743/// of this overloaded operator is well-formed. If so, returns false;
7744/// otherwise, emits appropriate diagnostics and returns true.
7745bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
7746  assert(FnDecl && FnDecl->isOverloadedOperator() &&
7747         "Expected an overloaded operator declaration");
7748
7749  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
7750
7751  // C++ [over.oper]p5:
7752  //   The allocation and deallocation functions, operator new,
7753  //   operator new[], operator delete and operator delete[], are
7754  //   described completely in 3.7.3. The attributes and restrictions
7755  //   found in the rest of this subclause do not apply to them unless
7756  //   explicitly stated in 3.7.3.
7757  if (Op == OO_Delete || Op == OO_Array_Delete)
7758    return CheckOperatorDeleteDeclaration(*this, FnDecl);
7759
7760  if (Op == OO_New || Op == OO_Array_New)
7761    return CheckOperatorNewDeclaration(*this, FnDecl);
7762
7763  // C++ [over.oper]p6:
7764  //   An operator function shall either be a non-static member
7765  //   function or be a non-member function and have at least one
7766  //   parameter whose type is a class, a reference to a class, an
7767  //   enumeration, or a reference to an enumeration.
7768  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
7769    if (MethodDecl->isStatic())
7770      return Diag(FnDecl->getLocation(),
7771                  diag::err_operator_overload_static) << FnDecl->getDeclName();
7772  } else {
7773    bool ClassOrEnumParam = false;
7774    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
7775                                   ParamEnd = FnDecl->param_end();
7776         Param != ParamEnd; ++Param) {
7777      QualType ParamType = (*Param)->getType().getNonReferenceType();
7778      if (ParamType->isDependentType() || ParamType->isRecordType() ||
7779          ParamType->isEnumeralType()) {
7780        ClassOrEnumParam = true;
7781        break;
7782      }
7783    }
7784
7785    if (!ClassOrEnumParam)
7786      return Diag(FnDecl->getLocation(),
7787                  diag::err_operator_overload_needs_class_or_enum)
7788        << FnDecl->getDeclName();
7789  }
7790
7791  // C++ [over.oper]p8:
7792  //   An operator function cannot have default arguments (8.3.6),
7793  //   except where explicitly stated below.
7794  //
7795  // Only the function-call operator allows default arguments
7796  // (C++ [over.call]p1).
7797  if (Op != OO_Call) {
7798    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
7799         Param != FnDecl->param_end(); ++Param) {
7800      if ((*Param)->hasDefaultArg())
7801        return Diag((*Param)->getLocation(),
7802                    diag::err_operator_overload_default_arg)
7803          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
7804    }
7805  }
7806
7807  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
7808    { false, false, false }
7809#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
7810    , { Unary, Binary, MemberOnly }
7811#include "clang/Basic/OperatorKinds.def"
7812  };
7813
7814  bool CanBeUnaryOperator = OperatorUses[Op][0];
7815  bool CanBeBinaryOperator = OperatorUses[Op][1];
7816  bool MustBeMemberOperator = OperatorUses[Op][2];
7817
7818  // C++ [over.oper]p8:
7819  //   [...] Operator functions cannot have more or fewer parameters
7820  //   than the number required for the corresponding operator, as
7821  //   described in the rest of this subclause.
7822  unsigned NumParams = FnDecl->getNumParams()
7823                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
7824  if (Op != OO_Call &&
7825      ((NumParams == 1 && !CanBeUnaryOperator) ||
7826       (NumParams == 2 && !CanBeBinaryOperator) ||
7827       (NumParams < 1) || (NumParams > 2))) {
7828    // We have the wrong number of parameters.
7829    unsigned ErrorKind;
7830    if (CanBeUnaryOperator && CanBeBinaryOperator) {
7831      ErrorKind = 2;  // 2 -> unary or binary.
7832    } else if (CanBeUnaryOperator) {
7833      ErrorKind = 0;  // 0 -> unary
7834    } else {
7835      assert(CanBeBinaryOperator &&
7836             "All non-call overloaded operators are unary or binary!");
7837      ErrorKind = 1;  // 1 -> binary
7838    }
7839
7840    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
7841      << FnDecl->getDeclName() << NumParams << ErrorKind;
7842  }
7843
7844  // Overloaded operators other than operator() cannot be variadic.
7845  if (Op != OO_Call &&
7846      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
7847    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
7848      << FnDecl->getDeclName();
7849  }
7850
7851  // Some operators must be non-static member functions.
7852  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
7853    return Diag(FnDecl->getLocation(),
7854                diag::err_operator_overload_must_be_member)
7855      << FnDecl->getDeclName();
7856  }
7857
7858  // C++ [over.inc]p1:
7859  //   The user-defined function called operator++ implements the
7860  //   prefix and postfix ++ operator. If this function is a member
7861  //   function with no parameters, or a non-member function with one
7862  //   parameter of class or enumeration type, it defines the prefix
7863  //   increment operator ++ for objects of that type. If the function
7864  //   is a member function with one parameter (which shall be of type
7865  //   int) or a non-member function with two parameters (the second
7866  //   of which shall be of type int), it defines the postfix
7867  //   increment operator ++ for objects of that type.
7868  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
7869    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
7870    bool ParamIsInt = false;
7871    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
7872      ParamIsInt = BT->getKind() == BuiltinType::Int;
7873
7874    if (!ParamIsInt)
7875      return Diag(LastParam->getLocation(),
7876                  diag::err_operator_overload_post_incdec_must_be_int)
7877        << LastParam->getType() << (Op == OO_MinusMinus);
7878  }
7879
7880  return false;
7881}
7882
7883/// CheckLiteralOperatorDeclaration - Check whether the declaration
7884/// of this literal operator function is well-formed. If so, returns
7885/// false; otherwise, emits appropriate diagnostics and returns true.
7886bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
7887  DeclContext *DC = FnDecl->getDeclContext();
7888  Decl::Kind Kind = DC->getDeclKind();
7889  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
7890      Kind != Decl::LinkageSpec) {
7891    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
7892      << FnDecl->getDeclName();
7893    return true;
7894  }
7895
7896  bool Valid = false;
7897
7898  // template <char...> type operator "" name() is the only valid template
7899  // signature, and the only valid signature with no parameters.
7900  if (FnDecl->param_size() == 0) {
7901    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
7902      // Must have only one template parameter
7903      TemplateParameterList *Params = TpDecl->getTemplateParameters();
7904      if (Params->size() == 1) {
7905        NonTypeTemplateParmDecl *PmDecl =
7906          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
7907
7908        // The template parameter must be a char parameter pack.
7909        if (PmDecl && PmDecl->isTemplateParameterPack() &&
7910            Context.hasSameType(PmDecl->getType(), Context.CharTy))
7911          Valid = true;
7912      }
7913    }
7914  } else {
7915    // Check the first parameter
7916    FunctionDecl::param_iterator Param = FnDecl->param_begin();
7917
7918    QualType T = (*Param)->getType();
7919
7920    // unsigned long long int, long double, and any character type are allowed
7921    // as the only parameters.
7922    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
7923        Context.hasSameType(T, Context.LongDoubleTy) ||
7924        Context.hasSameType(T, Context.CharTy) ||
7925        Context.hasSameType(T, Context.WCharTy) ||
7926        Context.hasSameType(T, Context.Char16Ty) ||
7927        Context.hasSameType(T, Context.Char32Ty)) {
7928      if (++Param == FnDecl->param_end())
7929        Valid = true;
7930      goto FinishedParams;
7931    }
7932
7933    // Otherwise it must be a pointer to const; let's strip those qualifiers.
7934    const PointerType *PT = T->getAs<PointerType>();
7935    if (!PT)
7936      goto FinishedParams;
7937    T = PT->getPointeeType();
7938    if (!T.isConstQualified())
7939      goto FinishedParams;
7940    T = T.getUnqualifiedType();
7941
7942    // Move on to the second parameter;
7943    ++Param;
7944
7945    // If there is no second parameter, the first must be a const char *
7946    if (Param == FnDecl->param_end()) {
7947      if (Context.hasSameType(T, Context.CharTy))
7948        Valid = true;
7949      goto FinishedParams;
7950    }
7951
7952    // const char *, const wchar_t*, const char16_t*, and const char32_t*
7953    // are allowed as the first parameter to a two-parameter function
7954    if (!(Context.hasSameType(T, Context.CharTy) ||
7955          Context.hasSameType(T, Context.WCharTy) ||
7956          Context.hasSameType(T, Context.Char16Ty) ||
7957          Context.hasSameType(T, Context.Char32Ty)))
7958      goto FinishedParams;
7959
7960    // The second and final parameter must be an std::size_t
7961    T = (*Param)->getType().getUnqualifiedType();
7962    if (Context.hasSameType(T, Context.getSizeType()) &&
7963        ++Param == FnDecl->param_end())
7964      Valid = true;
7965  }
7966
7967  // FIXME: This diagnostic is absolutely terrible.
7968FinishedParams:
7969  if (!Valid) {
7970    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
7971      << FnDecl->getDeclName();
7972    return true;
7973  }
7974
7975  return false;
7976}
7977
7978/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
7979/// linkage specification, including the language and (if present)
7980/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
7981/// the location of the language string literal, which is provided
7982/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
7983/// the '{' brace. Otherwise, this linkage specification does not
7984/// have any braces.
7985Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
7986                                           SourceLocation LangLoc,
7987                                           StringRef Lang,
7988                                           SourceLocation LBraceLoc) {
7989  LinkageSpecDecl::LanguageIDs Language;
7990  if (Lang == "\"C\"")
7991    Language = LinkageSpecDecl::lang_c;
7992  else if (Lang == "\"C++\"")
7993    Language = LinkageSpecDecl::lang_cxx;
7994  else {
7995    Diag(LangLoc, diag::err_bad_language);
7996    return 0;
7997  }
7998
7999  // FIXME: Add all the various semantics of linkage specifications
8000
8001  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
8002                                               ExternLoc, LangLoc, Language);
8003  CurContext->addDecl(D);
8004  PushDeclContext(S, D);
8005  return D;
8006}
8007
8008/// ActOnFinishLinkageSpecification - Complete the definition of
8009/// the C++ linkage specification LinkageSpec. If RBraceLoc is
8010/// valid, it's the position of the closing '}' brace in a linkage
8011/// specification that uses braces.
8012Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
8013                                            Decl *LinkageSpec,
8014                                            SourceLocation RBraceLoc) {
8015  if (LinkageSpec) {
8016    if (RBraceLoc.isValid()) {
8017      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
8018      LSDecl->setRBraceLoc(RBraceLoc);
8019    }
8020    PopDeclContext();
8021  }
8022  return LinkageSpec;
8023}
8024
8025/// \brief Perform semantic analysis for the variable declaration that
8026/// occurs within a C++ catch clause, returning the newly-created
8027/// variable.
8028VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
8029                                         TypeSourceInfo *TInfo,
8030                                         SourceLocation StartLoc,
8031                                         SourceLocation Loc,
8032                                         IdentifierInfo *Name) {
8033  bool Invalid = false;
8034  QualType ExDeclType = TInfo->getType();
8035
8036  // Arrays and functions decay.
8037  if (ExDeclType->isArrayType())
8038    ExDeclType = Context.getArrayDecayedType(ExDeclType);
8039  else if (ExDeclType->isFunctionType())
8040    ExDeclType = Context.getPointerType(ExDeclType);
8041
8042  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
8043  // The exception-declaration shall not denote a pointer or reference to an
8044  // incomplete type, other than [cv] void*.
8045  // N2844 forbids rvalue references.
8046  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
8047    Diag(Loc, diag::err_catch_rvalue_ref);
8048    Invalid = true;
8049  }
8050
8051  // GCC allows catching pointers and references to incomplete types
8052  // as an extension; so do we, but we warn by default.
8053
8054  QualType BaseType = ExDeclType;
8055  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
8056  unsigned DK = diag::err_catch_incomplete;
8057  bool IncompleteCatchIsInvalid = true;
8058  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
8059    BaseType = Ptr->getPointeeType();
8060    Mode = 1;
8061    DK = diag::ext_catch_incomplete_ptr;
8062    IncompleteCatchIsInvalid = false;
8063  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
8064    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
8065    BaseType = Ref->getPointeeType();
8066    Mode = 2;
8067    DK = diag::ext_catch_incomplete_ref;
8068    IncompleteCatchIsInvalid = false;
8069  }
8070  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
8071      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
8072      IncompleteCatchIsInvalid)
8073    Invalid = true;
8074
8075  if (!Invalid && !ExDeclType->isDependentType() &&
8076      RequireNonAbstractType(Loc, ExDeclType,
8077                             diag::err_abstract_type_in_decl,
8078                             AbstractVariableType))
8079    Invalid = true;
8080
8081  // Only the non-fragile NeXT runtime currently supports C++ catches
8082  // of ObjC types, and no runtime supports catching ObjC types by value.
8083  if (!Invalid && getLangOptions().ObjC1) {
8084    QualType T = ExDeclType;
8085    if (const ReferenceType *RT = T->getAs<ReferenceType>())
8086      T = RT->getPointeeType();
8087
8088    if (T->isObjCObjectType()) {
8089      Diag(Loc, diag::err_objc_object_catch);
8090      Invalid = true;
8091    } else if (T->isObjCObjectPointerType()) {
8092      if (!getLangOptions().ObjCNonFragileABI)
8093        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
8094    }
8095  }
8096
8097  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
8098                                    ExDeclType, TInfo, SC_None, SC_None);
8099  ExDecl->setExceptionVariable(true);
8100
8101  if (!Invalid && !ExDeclType->isDependentType()) {
8102    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
8103      // C++ [except.handle]p16:
8104      //   The object declared in an exception-declaration or, if the
8105      //   exception-declaration does not specify a name, a temporary (12.2) is
8106      //   copy-initialized (8.5) from the exception object. [...]
8107      //   The object is destroyed when the handler exits, after the destruction
8108      //   of any automatic objects initialized within the handler.
8109      //
8110      // We just pretend to initialize the object with itself, then make sure
8111      // it can be destroyed later.
8112      QualType initType = ExDeclType;
8113
8114      InitializedEntity entity =
8115        InitializedEntity::InitializeVariable(ExDecl);
8116      InitializationKind initKind =
8117        InitializationKind::CreateCopy(Loc, SourceLocation());
8118
8119      Expr *opaqueValue =
8120        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
8121      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
8122      ExprResult result = sequence.Perform(*this, entity, initKind,
8123                                           MultiExprArg(&opaqueValue, 1));
8124      if (result.isInvalid())
8125        Invalid = true;
8126      else {
8127        // If the constructor used was non-trivial, set this as the
8128        // "initializer".
8129        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
8130        if (!construct->getConstructor()->isTrivial()) {
8131          Expr *init = MaybeCreateExprWithCleanups(construct);
8132          ExDecl->setInit(init);
8133        }
8134
8135        // And make sure it's destructable.
8136        FinalizeVarWithDestructor(ExDecl, recordType);
8137      }
8138    }
8139  }
8140
8141  if (Invalid)
8142    ExDecl->setInvalidDecl();
8143
8144  return ExDecl;
8145}
8146
8147/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
8148/// handler.
8149Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
8150  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8151  bool Invalid = D.isInvalidType();
8152
8153  // Check for unexpanded parameter packs.
8154  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8155                                               UPPC_ExceptionType)) {
8156    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
8157                                             D.getIdentifierLoc());
8158    Invalid = true;
8159  }
8160
8161  IdentifierInfo *II = D.getIdentifier();
8162  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
8163                                             LookupOrdinaryName,
8164                                             ForRedeclaration)) {
8165    // The scope should be freshly made just for us. There is just no way
8166    // it contains any previous declaration.
8167    assert(!S->isDeclScope(PrevDecl));
8168    if (PrevDecl->isTemplateParameter()) {
8169      // Maybe we will complain about the shadowed template parameter.
8170      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8171    }
8172  }
8173
8174  if (D.getCXXScopeSpec().isSet() && !Invalid) {
8175    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
8176      << D.getCXXScopeSpec().getRange();
8177    Invalid = true;
8178  }
8179
8180  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
8181                                              D.getSourceRange().getBegin(),
8182                                              D.getIdentifierLoc(),
8183                                              D.getIdentifier());
8184  if (Invalid)
8185    ExDecl->setInvalidDecl();
8186
8187  // Add the exception declaration into this scope.
8188  if (II)
8189    PushOnScopeChains(ExDecl, S);
8190  else
8191    CurContext->addDecl(ExDecl);
8192
8193  ProcessDeclAttributes(S, ExDecl, D);
8194  return ExDecl;
8195}
8196
8197Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
8198                                         Expr *AssertExpr,
8199                                         Expr *AssertMessageExpr_,
8200                                         SourceLocation RParenLoc) {
8201  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
8202
8203  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
8204    llvm::APSInt Value(32);
8205    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
8206      Diag(StaticAssertLoc,
8207           diag::err_static_assert_expression_is_not_constant) <<
8208        AssertExpr->getSourceRange();
8209      return 0;
8210    }
8211
8212    if (Value == 0) {
8213      Diag(StaticAssertLoc, diag::err_static_assert_failed)
8214        << AssertMessage->getString() << AssertExpr->getSourceRange();
8215    }
8216  }
8217
8218  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
8219    return 0;
8220
8221  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
8222                                        AssertExpr, AssertMessage, RParenLoc);
8223
8224  CurContext->addDecl(Decl);
8225  return Decl;
8226}
8227
8228/// \brief Perform semantic analysis of the given friend type declaration.
8229///
8230/// \returns A friend declaration that.
8231FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
8232                                      TypeSourceInfo *TSInfo) {
8233  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
8234
8235  QualType T = TSInfo->getType();
8236  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
8237
8238  if (!getLangOptions().CPlusPlus0x) {
8239    // C++03 [class.friend]p2:
8240    //   An elaborated-type-specifier shall be used in a friend declaration
8241    //   for a class.*
8242    //
8243    //   * The class-key of the elaborated-type-specifier is required.
8244    if (!ActiveTemplateInstantiations.empty()) {
8245      // Do not complain about the form of friend template types during
8246      // template instantiation; we will already have complained when the
8247      // template was declared.
8248    } else if (!T->isElaboratedTypeSpecifier()) {
8249      // If we evaluated the type to a record type, suggest putting
8250      // a tag in front.
8251      if (const RecordType *RT = T->getAs<RecordType>()) {
8252        RecordDecl *RD = RT->getDecl();
8253
8254        std::string InsertionText = std::string(" ") + RD->getKindName();
8255
8256        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
8257          << (unsigned) RD->getTagKind()
8258          << T
8259          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
8260                                        InsertionText);
8261      } else {
8262        Diag(FriendLoc, diag::ext_nonclass_type_friend)
8263          << T
8264          << SourceRange(FriendLoc, TypeRange.getEnd());
8265      }
8266    } else if (T->getAs<EnumType>()) {
8267      Diag(FriendLoc, diag::ext_enum_friend)
8268        << T
8269        << SourceRange(FriendLoc, TypeRange.getEnd());
8270    }
8271  }
8272
8273  // C++0x [class.friend]p3:
8274  //   If the type specifier in a friend declaration designates a (possibly
8275  //   cv-qualified) class type, that class is declared as a friend; otherwise,
8276  //   the friend declaration is ignored.
8277
8278  // FIXME: C++0x has some syntactic restrictions on friend type declarations
8279  // in [class.friend]p3 that we do not implement.
8280
8281  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
8282}
8283
8284/// Handle a friend tag declaration where the scope specifier was
8285/// templated.
8286Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
8287                                    unsigned TagSpec, SourceLocation TagLoc,
8288                                    CXXScopeSpec &SS,
8289                                    IdentifierInfo *Name, SourceLocation NameLoc,
8290                                    AttributeList *Attr,
8291                                    MultiTemplateParamsArg TempParamLists) {
8292  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8293
8294  bool isExplicitSpecialization = false;
8295  bool Invalid = false;
8296
8297  if (TemplateParameterList *TemplateParams
8298        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
8299                                                  TempParamLists.get(),
8300                                                  TempParamLists.size(),
8301                                                  /*friend*/ true,
8302                                                  isExplicitSpecialization,
8303                                                  Invalid)) {
8304    if (TemplateParams->size() > 0) {
8305      // This is a declaration of a class template.
8306      if (Invalid)
8307        return 0;
8308
8309      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
8310                                SS, Name, NameLoc, Attr,
8311                                TemplateParams, AS_public,
8312                                TempParamLists.size() - 1,
8313                   (TemplateParameterList**) TempParamLists.release()).take();
8314    } else {
8315      // The "template<>" header is extraneous.
8316      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8317        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8318      isExplicitSpecialization = true;
8319    }
8320  }
8321
8322  if (Invalid) return 0;
8323
8324  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
8325
8326  bool isAllExplicitSpecializations = true;
8327  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
8328    if (TempParamLists.get()[I]->size()) {
8329      isAllExplicitSpecializations = false;
8330      break;
8331    }
8332  }
8333
8334  // FIXME: don't ignore attributes.
8335
8336  // If it's explicit specializations all the way down, just forget
8337  // about the template header and build an appropriate non-templated
8338  // friend.  TODO: for source fidelity, remember the headers.
8339  if (isAllExplicitSpecializations) {
8340    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8341    ElaboratedTypeKeyword Keyword
8342      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8343    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
8344                                   *Name, NameLoc);
8345    if (T.isNull())
8346      return 0;
8347
8348    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8349    if (isa<DependentNameType>(T)) {
8350      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8351      TL.setKeywordLoc(TagLoc);
8352      TL.setQualifierLoc(QualifierLoc);
8353      TL.setNameLoc(NameLoc);
8354    } else {
8355      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
8356      TL.setKeywordLoc(TagLoc);
8357      TL.setQualifierLoc(QualifierLoc);
8358      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
8359    }
8360
8361    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8362                                            TSI, FriendLoc);
8363    Friend->setAccess(AS_public);
8364    CurContext->addDecl(Friend);
8365    return Friend;
8366  }
8367
8368  // Handle the case of a templated-scope friend class.  e.g.
8369  //   template <class T> class A<T>::B;
8370  // FIXME: we don't support these right now.
8371  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8372  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
8373  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8374  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8375  TL.setKeywordLoc(TagLoc);
8376  TL.setQualifierLoc(SS.getWithLocInContext(Context));
8377  TL.setNameLoc(NameLoc);
8378
8379  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8380                                          TSI, FriendLoc);
8381  Friend->setAccess(AS_public);
8382  Friend->setUnsupportedFriend(true);
8383  CurContext->addDecl(Friend);
8384  return Friend;
8385}
8386
8387
8388/// Handle a friend type declaration.  This works in tandem with
8389/// ActOnTag.
8390///
8391/// Notes on friend class templates:
8392///
8393/// We generally treat friend class declarations as if they were
8394/// declaring a class.  So, for example, the elaborated type specifier
8395/// in a friend declaration is required to obey the restrictions of a
8396/// class-head (i.e. no typedefs in the scope chain), template
8397/// parameters are required to match up with simple template-ids, &c.
8398/// However, unlike when declaring a template specialization, it's
8399/// okay to refer to a template specialization without an empty
8400/// template parameter declaration, e.g.
8401///   friend class A<T>::B<unsigned>;
8402/// We permit this as a special case; if there are any template
8403/// parameters present at all, require proper matching, i.e.
8404///   template <> template <class T> friend class A<int>::B;
8405Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
8406                                MultiTemplateParamsArg TempParams) {
8407  SourceLocation Loc = DS.getSourceRange().getBegin();
8408
8409  assert(DS.isFriendSpecified());
8410  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8411
8412  // Try to convert the decl specifier to a type.  This works for
8413  // friend templates because ActOnTag never produces a ClassTemplateDecl
8414  // for a TUK_Friend.
8415  Declarator TheDeclarator(DS, Declarator::MemberContext);
8416  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
8417  QualType T = TSI->getType();
8418  if (TheDeclarator.isInvalidType())
8419    return 0;
8420
8421  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
8422    return 0;
8423
8424  // This is definitely an error in C++98.  It's probably meant to
8425  // be forbidden in C++0x, too, but the specification is just
8426  // poorly written.
8427  //
8428  // The problem is with declarations like the following:
8429  //   template <T> friend A<T>::foo;
8430  // where deciding whether a class C is a friend or not now hinges
8431  // on whether there exists an instantiation of A that causes
8432  // 'foo' to equal C.  There are restrictions on class-heads
8433  // (which we declare (by fiat) elaborated friend declarations to
8434  // be) that makes this tractable.
8435  //
8436  // FIXME: handle "template <> friend class A<T>;", which
8437  // is possibly well-formed?  Who even knows?
8438  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
8439    Diag(Loc, diag::err_tagless_friend_type_template)
8440      << DS.getSourceRange();
8441    return 0;
8442  }
8443
8444  // C++98 [class.friend]p1: A friend of a class is a function
8445  //   or class that is not a member of the class . . .
8446  // This is fixed in DR77, which just barely didn't make the C++03
8447  // deadline.  It's also a very silly restriction that seriously
8448  // affects inner classes and which nobody else seems to implement;
8449  // thus we never diagnose it, not even in -pedantic.
8450  //
8451  // But note that we could warn about it: it's always useless to
8452  // friend one of your own members (it's not, however, worthless to
8453  // friend a member of an arbitrary specialization of your template).
8454
8455  Decl *D;
8456  if (unsigned NumTempParamLists = TempParams.size())
8457    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
8458                                   NumTempParamLists,
8459                                   TempParams.release(),
8460                                   TSI,
8461                                   DS.getFriendSpecLoc());
8462  else
8463    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
8464
8465  if (!D)
8466    return 0;
8467
8468  D->setAccess(AS_public);
8469  CurContext->addDecl(D);
8470
8471  return D;
8472}
8473
8474Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
8475                                    MultiTemplateParamsArg TemplateParams) {
8476  const DeclSpec &DS = D.getDeclSpec();
8477
8478  assert(DS.isFriendSpecified());
8479  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8480
8481  SourceLocation Loc = D.getIdentifierLoc();
8482  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8483  QualType T = TInfo->getType();
8484
8485  // C++ [class.friend]p1
8486  //   A friend of a class is a function or class....
8487  // Note that this sees through typedefs, which is intended.
8488  // It *doesn't* see through dependent types, which is correct
8489  // according to [temp.arg.type]p3:
8490  //   If a declaration acquires a function type through a
8491  //   type dependent on a template-parameter and this causes
8492  //   a declaration that does not use the syntactic form of a
8493  //   function declarator to have a function type, the program
8494  //   is ill-formed.
8495  if (!T->isFunctionType()) {
8496    Diag(Loc, diag::err_unexpected_friend);
8497
8498    // It might be worthwhile to try to recover by creating an
8499    // appropriate declaration.
8500    return 0;
8501  }
8502
8503  // C++ [namespace.memdef]p3
8504  //  - If a friend declaration in a non-local class first declares a
8505  //    class or function, the friend class or function is a member
8506  //    of the innermost enclosing namespace.
8507  //  - The name of the friend is not found by simple name lookup
8508  //    until a matching declaration is provided in that namespace
8509  //    scope (either before or after the class declaration granting
8510  //    friendship).
8511  //  - If a friend function is called, its name may be found by the
8512  //    name lookup that considers functions from namespaces and
8513  //    classes associated with the types of the function arguments.
8514  //  - When looking for a prior declaration of a class or a function
8515  //    declared as a friend, scopes outside the innermost enclosing
8516  //    namespace scope are not considered.
8517
8518  CXXScopeSpec &SS = D.getCXXScopeSpec();
8519  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8520  DeclarationName Name = NameInfo.getName();
8521  assert(Name);
8522
8523  // Check for unexpanded parameter packs.
8524  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
8525      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
8526      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
8527    return 0;
8528
8529  // The context we found the declaration in, or in which we should
8530  // create the declaration.
8531  DeclContext *DC;
8532  Scope *DCScope = S;
8533  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8534                        ForRedeclaration);
8535
8536  // FIXME: there are different rules in local classes
8537
8538  // There are four cases here.
8539  //   - There's no scope specifier, in which case we just go to the
8540  //     appropriate scope and look for a function or function template
8541  //     there as appropriate.
8542  // Recover from invalid scope qualifiers as if they just weren't there.
8543  if (SS.isInvalid() || !SS.isSet()) {
8544    // C++0x [namespace.memdef]p3:
8545    //   If the name in a friend declaration is neither qualified nor
8546    //   a template-id and the declaration is a function or an
8547    //   elaborated-type-specifier, the lookup to determine whether
8548    //   the entity has been previously declared shall not consider
8549    //   any scopes outside the innermost enclosing namespace.
8550    // C++0x [class.friend]p11:
8551    //   If a friend declaration appears in a local class and the name
8552    //   specified is an unqualified name, a prior declaration is
8553    //   looked up without considering scopes that are outside the
8554    //   innermost enclosing non-class scope. For a friend function
8555    //   declaration, if there is no prior declaration, the program is
8556    //   ill-formed.
8557    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
8558    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
8559
8560    // Find the appropriate context according to the above.
8561    DC = CurContext;
8562    while (true) {
8563      // Skip class contexts.  If someone can cite chapter and verse
8564      // for this behavior, that would be nice --- it's what GCC and
8565      // EDG do, and it seems like a reasonable intent, but the spec
8566      // really only says that checks for unqualified existing
8567      // declarations should stop at the nearest enclosing namespace,
8568      // not that they should only consider the nearest enclosing
8569      // namespace.
8570      while (DC->isRecord())
8571        DC = DC->getParent();
8572
8573      LookupQualifiedName(Previous, DC);
8574
8575      // TODO: decide what we think about using declarations.
8576      if (isLocal || !Previous.empty())
8577        break;
8578
8579      if (isTemplateId) {
8580        if (isa<TranslationUnitDecl>(DC)) break;
8581      } else {
8582        if (DC->isFileContext()) break;
8583      }
8584      DC = DC->getParent();
8585    }
8586
8587    // C++ [class.friend]p1: A friend of a class is a function or
8588    //   class that is not a member of the class . . .
8589    // C++0x changes this for both friend types and functions.
8590    // Most C++ 98 compilers do seem to give an error here, so
8591    // we do, too.
8592    if (!Previous.empty() && DC->Equals(CurContext)
8593        && !getLangOptions().CPlusPlus0x)
8594      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8595
8596    DCScope = getScopeForDeclContext(S, DC);
8597
8598  //   - There's a non-dependent scope specifier, in which case we
8599  //     compute it and do a previous lookup there for a function
8600  //     or function template.
8601  } else if (!SS.getScopeRep()->isDependent()) {
8602    DC = computeDeclContext(SS);
8603    if (!DC) return 0;
8604
8605    if (RequireCompleteDeclContext(SS, DC)) return 0;
8606
8607    LookupQualifiedName(Previous, DC);
8608
8609    // Ignore things found implicitly in the wrong scope.
8610    // TODO: better diagnostics for this case.  Suggesting the right
8611    // qualified scope would be nice...
8612    LookupResult::Filter F = Previous.makeFilter();
8613    while (F.hasNext()) {
8614      NamedDecl *D = F.next();
8615      if (!DC->InEnclosingNamespaceSetOf(
8616              D->getDeclContext()->getRedeclContext()))
8617        F.erase();
8618    }
8619    F.done();
8620
8621    if (Previous.empty()) {
8622      D.setInvalidType();
8623      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
8624      return 0;
8625    }
8626
8627    // C++ [class.friend]p1: A friend of a class is a function or
8628    //   class that is not a member of the class . . .
8629    if (DC->Equals(CurContext))
8630      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8631
8632  //   - There's a scope specifier that does not match any template
8633  //     parameter lists, in which case we use some arbitrary context,
8634  //     create a method or method template, and wait for instantiation.
8635  //   - There's a scope specifier that does match some template
8636  //     parameter lists, which we don't handle right now.
8637  } else {
8638    DC = CurContext;
8639    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
8640  }
8641
8642  if (!DC->isRecord()) {
8643    // This implies that it has to be an operator or function.
8644    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
8645        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
8646        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
8647      Diag(Loc, diag::err_introducing_special_friend) <<
8648        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
8649         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
8650      return 0;
8651    }
8652  }
8653
8654  bool Redeclaration = false;
8655  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
8656                                          move(TemplateParams),
8657                                          IsDefinition,
8658                                          Redeclaration);
8659  if (!ND) return 0;
8660
8661  assert(ND->getDeclContext() == DC);
8662  assert(ND->getLexicalDeclContext() == CurContext);
8663
8664  // Add the function declaration to the appropriate lookup tables,
8665  // adjusting the redeclarations list as necessary.  We don't
8666  // want to do this yet if the friending class is dependent.
8667  //
8668  // Also update the scope-based lookup if the target context's
8669  // lookup context is in lexical scope.
8670  if (!CurContext->isDependentContext()) {
8671    DC = DC->getRedeclContext();
8672    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
8673    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8674      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
8675  }
8676
8677  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
8678                                       D.getIdentifierLoc(), ND,
8679                                       DS.getFriendSpecLoc());
8680  FrD->setAccess(AS_public);
8681  CurContext->addDecl(FrD);
8682
8683  if (ND->isInvalidDecl())
8684    FrD->setInvalidDecl();
8685  else {
8686    FunctionDecl *FD;
8687    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
8688      FD = FTD->getTemplatedDecl();
8689    else
8690      FD = cast<FunctionDecl>(ND);
8691
8692    // Mark templated-scope function declarations as unsupported.
8693    if (FD->getNumTemplateParameterLists())
8694      FrD->setUnsupportedFriend(true);
8695  }
8696
8697  return ND;
8698}
8699
8700void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
8701  AdjustDeclIfTemplate(Dcl);
8702
8703  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
8704  if (!Fn) {
8705    Diag(DelLoc, diag::err_deleted_non_function);
8706    return;
8707  }
8708  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
8709    Diag(DelLoc, diag::err_deleted_decl_not_first);
8710    Diag(Prev->getLocation(), diag::note_previous_declaration);
8711    // If the declaration wasn't the first, we delete the function anyway for
8712    // recovery.
8713  }
8714  Fn->setDeletedAsWritten();
8715}
8716
8717void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
8718  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
8719
8720  if (MD) {
8721    if (MD->getParent()->isDependentType()) {
8722      MD->setDefaulted();
8723      MD->setExplicitlyDefaulted();
8724      return;
8725    }
8726
8727    CXXSpecialMember Member = getSpecialMember(MD);
8728    if (Member == CXXInvalid) {
8729      Diag(DefaultLoc, diag::err_default_special_members);
8730      return;
8731    }
8732
8733    MD->setDefaulted();
8734    MD->setExplicitlyDefaulted();
8735
8736    // If this definition appears within the record, do the checking when
8737    // the record is complete.
8738    const FunctionDecl *Primary = MD;
8739    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
8740      // Find the uninstantiated declaration that actually had the '= default'
8741      // on it.
8742      MD->getTemplateInstantiationPattern()->isDefined(Primary);
8743
8744    if (Primary == Primary->getCanonicalDecl())
8745      return;
8746
8747    switch (Member) {
8748    case CXXDefaultConstructor: {
8749      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8750      CheckExplicitlyDefaultedDefaultConstructor(CD);
8751      if (!CD->isInvalidDecl())
8752        DefineImplicitDefaultConstructor(DefaultLoc, CD);
8753      break;
8754    }
8755
8756    case CXXCopyConstructor: {
8757      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8758      CheckExplicitlyDefaultedCopyConstructor(CD);
8759      if (!CD->isInvalidDecl())
8760        DefineImplicitCopyConstructor(DefaultLoc, CD);
8761      break;
8762    }
8763
8764    case CXXCopyAssignment: {
8765      CheckExplicitlyDefaultedCopyAssignment(MD);
8766      if (!MD->isInvalidDecl())
8767        DefineImplicitCopyAssignment(DefaultLoc, MD);
8768      break;
8769    }
8770
8771    case CXXDestructor: {
8772      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
8773      CheckExplicitlyDefaultedDestructor(DD);
8774      if (!DD->isInvalidDecl())
8775        DefineImplicitDestructor(DefaultLoc, DD);
8776      break;
8777    }
8778
8779    case CXXMoveConstructor:
8780    case CXXMoveAssignment:
8781      Diag(Dcl->getLocation(), diag::err_defaulted_move_unsupported);
8782      break;
8783
8784    default:
8785      // FIXME: Do the rest once we have move functions
8786      break;
8787    }
8788  } else {
8789    Diag(DefaultLoc, diag::err_default_special_members);
8790  }
8791}
8792
8793static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
8794  for (Stmt::child_range CI = S->children(); CI; ++CI) {
8795    Stmt *SubStmt = *CI;
8796    if (!SubStmt)
8797      continue;
8798    if (isa<ReturnStmt>(SubStmt))
8799      Self.Diag(SubStmt->getSourceRange().getBegin(),
8800           diag::err_return_in_constructor_handler);
8801    if (!isa<Expr>(SubStmt))
8802      SearchForReturnInStmt(Self, SubStmt);
8803  }
8804}
8805
8806void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
8807  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
8808    CXXCatchStmt *Handler = TryBlock->getHandler(I);
8809    SearchForReturnInStmt(*this, Handler);
8810  }
8811}
8812
8813bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
8814                                             const CXXMethodDecl *Old) {
8815  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
8816  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
8817
8818  if (Context.hasSameType(NewTy, OldTy) ||
8819      NewTy->isDependentType() || OldTy->isDependentType())
8820    return false;
8821
8822  // Check if the return types are covariant
8823  QualType NewClassTy, OldClassTy;
8824
8825  /// Both types must be pointers or references to classes.
8826  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
8827    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
8828      NewClassTy = NewPT->getPointeeType();
8829      OldClassTy = OldPT->getPointeeType();
8830    }
8831  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
8832    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
8833      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
8834        NewClassTy = NewRT->getPointeeType();
8835        OldClassTy = OldRT->getPointeeType();
8836      }
8837    }
8838  }
8839
8840  // The return types aren't either both pointers or references to a class type.
8841  if (NewClassTy.isNull()) {
8842    Diag(New->getLocation(),
8843         diag::err_different_return_type_for_overriding_virtual_function)
8844      << New->getDeclName() << NewTy << OldTy;
8845    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8846
8847    return true;
8848  }
8849
8850  // C++ [class.virtual]p6:
8851  //   If the return type of D::f differs from the return type of B::f, the
8852  //   class type in the return type of D::f shall be complete at the point of
8853  //   declaration of D::f or shall be the class type D.
8854  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
8855    if (!RT->isBeingDefined() &&
8856        RequireCompleteType(New->getLocation(), NewClassTy,
8857                            PDiag(diag::err_covariant_return_incomplete)
8858                              << New->getDeclName()))
8859    return true;
8860  }
8861
8862  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
8863    // Check if the new class derives from the old class.
8864    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
8865      Diag(New->getLocation(),
8866           diag::err_covariant_return_not_derived)
8867      << New->getDeclName() << NewTy << OldTy;
8868      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8869      return true;
8870    }
8871
8872    // Check if we the conversion from derived to base is valid.
8873    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
8874                    diag::err_covariant_return_inaccessible_base,
8875                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
8876                    // FIXME: Should this point to the return type?
8877                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
8878      // FIXME: this note won't trigger for delayed access control
8879      // diagnostics, and it's impossible to get an undelayed error
8880      // here from access control during the original parse because
8881      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
8882      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8883      return true;
8884    }
8885  }
8886
8887  // The qualifiers of the return types must be the same.
8888  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
8889    Diag(New->getLocation(),
8890         diag::err_covariant_return_type_different_qualifications)
8891    << New->getDeclName() << NewTy << OldTy;
8892    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8893    return true;
8894  };
8895
8896
8897  // The new class type must have the same or less qualifiers as the old type.
8898  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
8899    Diag(New->getLocation(),
8900         diag::err_covariant_return_type_class_type_more_qualified)
8901    << New->getDeclName() << NewTy << OldTy;
8902    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8903    return true;
8904  };
8905
8906  return false;
8907}
8908
8909/// \brief Mark the given method pure.
8910///
8911/// \param Method the method to be marked pure.
8912///
8913/// \param InitRange the source range that covers the "0" initializer.
8914bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
8915  SourceLocation EndLoc = InitRange.getEnd();
8916  if (EndLoc.isValid())
8917    Method->setRangeEnd(EndLoc);
8918
8919  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
8920    Method->setPure();
8921    return false;
8922  }
8923
8924  if (!Method->isInvalidDecl())
8925    Diag(Method->getLocation(), diag::err_non_virtual_pure)
8926      << Method->getDeclName() << InitRange;
8927  return true;
8928}
8929
8930/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
8931/// an initializer for the out-of-line declaration 'Dcl'.  The scope
8932/// is a fresh scope pushed for just this purpose.
8933///
8934/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
8935/// static data member of class X, names should be looked up in the scope of
8936/// class X.
8937void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
8938  // If there is no declaration, there was an error parsing it.
8939  if (D == 0 || D->isInvalidDecl()) return;
8940
8941  // We should only get called for declarations with scope specifiers, like:
8942  //   int foo::bar;
8943  assert(D->isOutOfLine());
8944  EnterDeclaratorContext(S, D->getDeclContext());
8945}
8946
8947/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
8948/// initializer for the out-of-line declaration 'D'.
8949void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
8950  // If there is no declaration, there was an error parsing it.
8951  if (D == 0 || D->isInvalidDecl()) return;
8952
8953  assert(D->isOutOfLine());
8954  ExitDeclaratorContext(S);
8955}
8956
8957/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
8958/// C++ if/switch/while/for statement.
8959/// e.g: "if (int x = f()) {...}"
8960DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
8961  // C++ 6.4p2:
8962  // The declarator shall not specify a function or an array.
8963  // The type-specifier-seq shall not contain typedef and shall not declare a
8964  // new class or enumeration.
8965  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
8966         "Parser allowed 'typedef' as storage class of condition decl.");
8967
8968  Decl *Dcl = ActOnDeclarator(S, D);
8969  if (!Dcl)
8970    return true;
8971
8972  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
8973    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
8974      << D.getSourceRange();
8975    return true;
8976  }
8977
8978  return Dcl;
8979}
8980
8981void Sema::LoadExternalVTableUses() {
8982  if (!ExternalSource)
8983    return;
8984
8985  SmallVector<ExternalVTableUse, 4> VTables;
8986  ExternalSource->ReadUsedVTables(VTables);
8987  SmallVector<VTableUse, 4> NewUses;
8988  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
8989    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
8990      = VTablesUsed.find(VTables[I].Record);
8991    // Even if a definition wasn't required before, it may be required now.
8992    if (Pos != VTablesUsed.end()) {
8993      if (!Pos->second && VTables[I].DefinitionRequired)
8994        Pos->second = true;
8995      continue;
8996    }
8997
8998    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
8999    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
9000  }
9001
9002  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
9003}
9004
9005void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
9006                          bool DefinitionRequired) {
9007  // Ignore any vtable uses in unevaluated operands or for classes that do
9008  // not have a vtable.
9009  if (!Class->isDynamicClass() || Class->isDependentContext() ||
9010      CurContext->isDependentContext() ||
9011      ExprEvalContexts.back().Context == Unevaluated)
9012    return;
9013
9014  // Try to insert this class into the map.
9015  LoadExternalVTableUses();
9016  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
9017  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
9018    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
9019  if (!Pos.second) {
9020    // If we already had an entry, check to see if we are promoting this vtable
9021    // to required a definition. If so, we need to reappend to the VTableUses
9022    // list, since we may have already processed the first entry.
9023    if (DefinitionRequired && !Pos.first->second) {
9024      Pos.first->second = true;
9025    } else {
9026      // Otherwise, we can early exit.
9027      return;
9028    }
9029  }
9030
9031  // Local classes need to have their virtual members marked
9032  // immediately. For all other classes, we mark their virtual members
9033  // at the end of the translation unit.
9034  if (Class->isLocalClass())
9035    MarkVirtualMembersReferenced(Loc, Class);
9036  else
9037    VTableUses.push_back(std::make_pair(Class, Loc));
9038}
9039
9040bool Sema::DefineUsedVTables() {
9041  LoadExternalVTableUses();
9042  if (VTableUses.empty())
9043    return false;
9044
9045  // Note: The VTableUses vector could grow as a result of marking
9046  // the members of a class as "used", so we check the size each
9047  // time through the loop and prefer indices (with are stable) to
9048  // iterators (which are not).
9049  bool DefinedAnything = false;
9050  for (unsigned I = 0; I != VTableUses.size(); ++I) {
9051    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
9052    if (!Class)
9053      continue;
9054
9055    SourceLocation Loc = VTableUses[I].second;
9056
9057    // If this class has a key function, but that key function is
9058    // defined in another translation unit, we don't need to emit the
9059    // vtable even though we're using it.
9060    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
9061    if (KeyFunction && !KeyFunction->hasBody()) {
9062      switch (KeyFunction->getTemplateSpecializationKind()) {
9063      case TSK_Undeclared:
9064      case TSK_ExplicitSpecialization:
9065      case TSK_ExplicitInstantiationDeclaration:
9066        // The key function is in another translation unit.
9067        continue;
9068
9069      case TSK_ExplicitInstantiationDefinition:
9070      case TSK_ImplicitInstantiation:
9071        // We will be instantiating the key function.
9072        break;
9073      }
9074    } else if (!KeyFunction) {
9075      // If we have a class with no key function that is the subject
9076      // of an explicit instantiation declaration, suppress the
9077      // vtable; it will live with the explicit instantiation
9078      // definition.
9079      bool IsExplicitInstantiationDeclaration
9080        = Class->getTemplateSpecializationKind()
9081                                      == TSK_ExplicitInstantiationDeclaration;
9082      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
9083                                 REnd = Class->redecls_end();
9084           R != REnd; ++R) {
9085        TemplateSpecializationKind TSK
9086          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
9087        if (TSK == TSK_ExplicitInstantiationDeclaration)
9088          IsExplicitInstantiationDeclaration = true;
9089        else if (TSK == TSK_ExplicitInstantiationDefinition) {
9090          IsExplicitInstantiationDeclaration = false;
9091          break;
9092        }
9093      }
9094
9095      if (IsExplicitInstantiationDeclaration)
9096        continue;
9097    }
9098
9099    // Mark all of the virtual members of this class as referenced, so
9100    // that we can build a vtable. Then, tell the AST consumer that a
9101    // vtable for this class is required.
9102    DefinedAnything = true;
9103    MarkVirtualMembersReferenced(Loc, Class);
9104    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
9105    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
9106
9107    // Optionally warn if we're emitting a weak vtable.
9108    if (Class->getLinkage() == ExternalLinkage &&
9109        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
9110      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
9111        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
9112    }
9113  }
9114  VTableUses.clear();
9115
9116  return DefinedAnything;
9117}
9118
9119void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
9120                                        const CXXRecordDecl *RD) {
9121  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
9122       e = RD->method_end(); i != e; ++i) {
9123    CXXMethodDecl *MD = *i;
9124
9125    // C++ [basic.def.odr]p2:
9126    //   [...] A virtual member function is used if it is not pure. [...]
9127    if (MD->isVirtual() && !MD->isPure())
9128      MarkDeclarationReferenced(Loc, MD);
9129  }
9130
9131  // Only classes that have virtual bases need a VTT.
9132  if (RD->getNumVBases() == 0)
9133    return;
9134
9135  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
9136           e = RD->bases_end(); i != e; ++i) {
9137    const CXXRecordDecl *Base =
9138        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
9139    if (Base->getNumVBases() == 0)
9140      continue;
9141    MarkVirtualMembersReferenced(Loc, Base);
9142  }
9143}
9144
9145/// SetIvarInitializers - This routine builds initialization ASTs for the
9146/// Objective-C implementation whose ivars need be initialized.
9147void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
9148  if (!getLangOptions().CPlusPlus)
9149    return;
9150  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
9151    SmallVector<ObjCIvarDecl*, 8> ivars;
9152    CollectIvarsToConstructOrDestruct(OID, ivars);
9153    if (ivars.empty())
9154      return;
9155    SmallVector<CXXCtorInitializer*, 32> AllToInit;
9156    for (unsigned i = 0; i < ivars.size(); i++) {
9157      FieldDecl *Field = ivars[i];
9158      if (Field->isInvalidDecl())
9159        continue;
9160
9161      CXXCtorInitializer *Member;
9162      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
9163      InitializationKind InitKind =
9164        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
9165
9166      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
9167      ExprResult MemberInit =
9168        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
9169      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
9170      // Note, MemberInit could actually come back empty if no initialization
9171      // is required (e.g., because it would call a trivial default constructor)
9172      if (!MemberInit.get() || MemberInit.isInvalid())
9173        continue;
9174
9175      Member =
9176        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
9177                                         SourceLocation(),
9178                                         MemberInit.takeAs<Expr>(),
9179                                         SourceLocation());
9180      AllToInit.push_back(Member);
9181
9182      // Be sure that the destructor is accessible and is marked as referenced.
9183      if (const RecordType *RecordTy
9184                  = Context.getBaseElementType(Field->getType())
9185                                                        ->getAs<RecordType>()) {
9186                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
9187        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
9188          MarkDeclarationReferenced(Field->getLocation(), Destructor);
9189          CheckDestructorAccess(Field->getLocation(), Destructor,
9190                            PDiag(diag::err_access_dtor_ivar)
9191                              << Context.getBaseElementType(Field->getType()));
9192        }
9193      }
9194    }
9195    ObjCImplementation->setIvarInitializers(Context,
9196                                            AllToInit.data(), AllToInit.size());
9197  }
9198}
9199
9200static
9201void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
9202                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
9203                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
9204                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
9205                           Sema &S) {
9206  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9207                                                   CE = Current.end();
9208  if (Ctor->isInvalidDecl())
9209    return;
9210
9211  const FunctionDecl *FNTarget = 0;
9212  CXXConstructorDecl *Target;
9213
9214  // We ignore the result here since if we don't have a body, Target will be
9215  // null below.
9216  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
9217  Target
9218= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
9219
9220  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
9221                     // Avoid dereferencing a null pointer here.
9222                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
9223
9224  if (!Current.insert(Canonical))
9225    return;
9226
9227  // We know that beyond here, we aren't chaining into a cycle.
9228  if (!Target || !Target->isDelegatingConstructor() ||
9229      Target->isInvalidDecl() || Valid.count(TCanonical)) {
9230    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9231      Valid.insert(*CI);
9232    Current.clear();
9233  // We've hit a cycle.
9234  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
9235             Current.count(TCanonical)) {
9236    // If we haven't diagnosed this cycle yet, do so now.
9237    if (!Invalid.count(TCanonical)) {
9238      S.Diag((*Ctor->init_begin())->getSourceLocation(),
9239             diag::warn_delegating_ctor_cycle)
9240        << Ctor;
9241
9242      // Don't add a note for a function delegating directo to itself.
9243      if (TCanonical != Canonical)
9244        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
9245
9246      CXXConstructorDecl *C = Target;
9247      while (C->getCanonicalDecl() != Canonical) {
9248        (void)C->getTargetConstructor()->hasBody(FNTarget);
9249        assert(FNTarget && "Ctor cycle through bodiless function");
9250
9251        C
9252       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
9253        S.Diag(C->getLocation(), diag::note_which_delegates_to);
9254      }
9255    }
9256
9257    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9258      Invalid.insert(*CI);
9259    Current.clear();
9260  } else {
9261    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
9262  }
9263}
9264
9265
9266void Sema::CheckDelegatingCtorCycles() {
9267  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
9268
9269  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9270                                                   CE = Current.end();
9271
9272  for (DelegatingCtorDeclsType::iterator
9273         I = DelegatingCtorDecls.begin(ExternalSource),
9274         E = DelegatingCtorDecls.end();
9275       I != E; ++I) {
9276   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
9277  }
9278
9279  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
9280    (*CI)->setInvalidDecl();
9281}
9282