SemaDeclCXX.cpp revision 13c7fcceb9fd96f5be03af038ce16b05bb5e9598
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().MicrosoftExt) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDeclaration();
424           Older; Older = Older->getPreviousDeclaration()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
506  // template has a constexpr specifier then all its declarations shall
507  // contain the constexpr specifier. [Note: An explicit specialization can
508  // differ from the template declaration with respect to the constexpr
509  // specifier. -- end note]
510  //
511  // FIXME: Don't reject changes in constexpr in explicit specializations.
512  if (New->isConstexpr() != Old->isConstexpr()) {
513    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
514      << New << New->isConstexpr();
515    Diag(Old->getLocation(), diag::note_previous_declaration);
516    Invalid = true;
517  }
518
519  if (CheckEquivalentExceptionSpec(Old, New))
520    Invalid = true;
521
522  return Invalid;
523}
524
525/// \brief Merge the exception specifications of two variable declarations.
526///
527/// This is called when there's a redeclaration of a VarDecl. The function
528/// checks if the redeclaration might have an exception specification and
529/// validates compatibility and merges the specs if necessary.
530void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
531  // Shortcut if exceptions are disabled.
532  if (!getLangOptions().CXXExceptions)
533    return;
534
535  assert(Context.hasSameType(New->getType(), Old->getType()) &&
536         "Should only be called if types are otherwise the same.");
537
538  QualType NewType = New->getType();
539  QualType OldType = Old->getType();
540
541  // We're only interested in pointers and references to functions, as well
542  // as pointers to member functions.
543  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
544    NewType = R->getPointeeType();
545    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
546  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
547    NewType = P->getPointeeType();
548    OldType = OldType->getAs<PointerType>()->getPointeeType();
549  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
550    NewType = M->getPointeeType();
551    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
552  }
553
554  if (!NewType->isFunctionProtoType())
555    return;
556
557  // There's lots of special cases for functions. For function pointers, system
558  // libraries are hopefully not as broken so that we don't need these
559  // workarounds.
560  if (CheckEquivalentExceptionSpec(
561        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
562        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
563    New->setInvalidDecl();
564  }
565}
566
567/// CheckCXXDefaultArguments - Verify that the default arguments for a
568/// function declaration are well-formed according to C++
569/// [dcl.fct.default].
570void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
571  unsigned NumParams = FD->getNumParams();
572  unsigned p;
573
574  // Find first parameter with a default argument
575  for (p = 0; p < NumParams; ++p) {
576    ParmVarDecl *Param = FD->getParamDecl(p);
577    if (Param->hasDefaultArg())
578      break;
579  }
580
581  // C++ [dcl.fct.default]p4:
582  //   In a given function declaration, all parameters
583  //   subsequent to a parameter with a default argument shall
584  //   have default arguments supplied in this or previous
585  //   declarations. A default argument shall not be redefined
586  //   by a later declaration (not even to the same value).
587  unsigned LastMissingDefaultArg = 0;
588  for (; p < NumParams; ++p) {
589    ParmVarDecl *Param = FD->getParamDecl(p);
590    if (!Param->hasDefaultArg()) {
591      if (Param->isInvalidDecl())
592        /* We already complained about this parameter. */;
593      else if (Param->getIdentifier())
594        Diag(Param->getLocation(),
595             diag::err_param_default_argument_missing_name)
596          << Param->getIdentifier();
597      else
598        Diag(Param->getLocation(),
599             diag::err_param_default_argument_missing);
600
601      LastMissingDefaultArg = p;
602    }
603  }
604
605  if (LastMissingDefaultArg > 0) {
606    // Some default arguments were missing. Clear out all of the
607    // default arguments up to (and including) the last missing
608    // default argument, so that we leave the function parameters
609    // in a semantically valid state.
610    for (p = 0; p <= LastMissingDefaultArg; ++p) {
611      ParmVarDecl *Param = FD->getParamDecl(p);
612      if (Param->hasDefaultArg()) {
613        Param->setDefaultArg(0);
614      }
615    }
616  }
617}
618
619// CheckConstexprParameterTypes - Check whether a function's parameter types
620// are all literal types. If so, return true. If not, produce a suitable
621// diagnostic depending on @p CCK and return false.
622static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
623                                         Sema::CheckConstexprKind CCK) {
624  unsigned ArgIndex = 0;
625  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
626  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
627       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
628    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
629    SourceLocation ParamLoc = PD->getLocation();
630    if (!(*i)->isDependentType() &&
631        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
632                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
633                                     << ArgIndex+1 << PD->getSourceRange()
634                                     << isa<CXXConstructorDecl>(FD) :
635                                   SemaRef.PDiag(),
636                                   /*AllowIncompleteType*/ true)) {
637      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
638        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
639          << ArgIndex+1 << PD->getSourceRange()
640          << isa<CXXConstructorDecl>(FD) << *i;
641      return false;
642    }
643  }
644  return true;
645}
646
647// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
648// the requirements of a constexpr function declaration or a constexpr
649// constructor declaration. Return true if it does, false if not.
650//
651// This implements C++0x [dcl.constexpr]p3,4, as amended by N3308.
652//
653// \param CCK Specifies whether to produce diagnostics if the function does not
654// satisfy the requirements.
655bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
656                                      CheckConstexprKind CCK) {
657  assert((CCK != CCK_NoteNonConstexprInstantiation ||
658          (NewFD->getTemplateInstantiationPattern() &&
659           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
660         "only constexpr templates can be instantiated non-constexpr");
661
662  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(NewFD)) {
663    // C++0x [dcl.constexpr]p4:
664    //  In the definition of a constexpr constructor, each of the parameter
665    //  types shall be a literal type.
666    if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
667      return false;
668
669    //  In addition, either its function-body shall be = delete or = default or
670    //  it shall satisfy the following constraints:
671    //  - the class shall not have any virtual base classes;
672    const CXXRecordDecl *RD = CD->getParent();
673    if (RD->getNumVBases()) {
674      // Note, this is still illegal if the body is = default, since the
675      // implicit body does not satisfy the requirements of a constexpr
676      // constructor. We also reject cases where the body is = delete, as
677      // required by N3308.
678      if (CCK != CCK_Instantiation) {
679        Diag(NewFD->getLocation(),
680             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
681                                    : diag::note_constexpr_tmpl_virtual_base)
682          << RD->isStruct() << RD->getNumVBases();
683        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
684               E = RD->vbases_end(); I != E; ++I)
685          Diag(I->getSourceRange().getBegin(),
686               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
687      }
688      return false;
689    }
690  } else {
691    // C++0x [dcl.constexpr]p3:
692    //  The definition of a constexpr function shall satisfy the following
693    //  constraints:
694    // - it shall not be virtual;
695    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
696    if (Method && Method->isVirtual()) {
697      if (CCK != CCK_Instantiation) {
698        Diag(NewFD->getLocation(),
699             CCK == CCK_Declaration ? diag::err_constexpr_virtual
700                                    : diag::note_constexpr_tmpl_virtual);
701
702        // If it's not obvious why this function is virtual, find an overridden
703        // function which uses the 'virtual' keyword.
704        const CXXMethodDecl *WrittenVirtual = Method;
705        while (!WrittenVirtual->isVirtualAsWritten())
706          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
707        if (WrittenVirtual != Method)
708          Diag(WrittenVirtual->getLocation(),
709               diag::note_overridden_virtual_function);
710      }
711      return false;
712    }
713
714    // - its return type shall be a literal type;
715    QualType RT = NewFD->getResultType();
716    if (!RT->isDependentType() &&
717        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
718                           PDiag(diag::err_constexpr_non_literal_return) :
719                           PDiag(),
720                           /*AllowIncompleteType*/ true)) {
721      if (CCK == CCK_NoteNonConstexprInstantiation)
722        Diag(NewFD->getLocation(),
723             diag::note_constexpr_tmpl_non_literal_return) << RT;
724      return false;
725    }
726
727    // - each of its parameter types shall be a literal type;
728    if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
729      return false;
730  }
731
732  return true;
733}
734
735/// Check the given declaration statement is legal within a constexpr function
736/// body. C++0x [dcl.constexpr]p3,p4.
737///
738/// \return true if the body is OK, false if we have diagnosed a problem.
739static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
740                                   DeclStmt *DS) {
741  // C++0x [dcl.constexpr]p3 and p4:
742  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
743  //  contain only
744  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
745         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
746    switch ((*DclIt)->getKind()) {
747    case Decl::StaticAssert:
748    case Decl::Using:
749    case Decl::UsingShadow:
750    case Decl::UsingDirective:
751    case Decl::UnresolvedUsingTypename:
752      //   - static_assert-declarations
753      //   - using-declarations,
754      //   - using-directives,
755      continue;
756
757    case Decl::Typedef:
758    case Decl::TypeAlias: {
759      //   - typedef declarations and alias-declarations that do not define
760      //     classes or enumerations,
761      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
762      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
763        // Don't allow variably-modified types in constexpr functions.
764        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
765        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
766          << TL.getSourceRange() << TL.getType()
767          << isa<CXXConstructorDecl>(Dcl);
768        return false;
769      }
770      continue;
771    }
772
773    case Decl::Enum:
774    case Decl::CXXRecord:
775      // As an extension, we allow the declaration (but not the definition) of
776      // classes and enumerations in all declarations, not just in typedef and
777      // alias declarations.
778      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
779        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
780          << isa<CXXConstructorDecl>(Dcl);
781        return false;
782      }
783      continue;
784
785    case Decl::Var:
786      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
787        << isa<CXXConstructorDecl>(Dcl);
788      return false;
789
790    default:
791      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
792        << isa<CXXConstructorDecl>(Dcl);
793      return false;
794    }
795  }
796
797  return true;
798}
799
800/// Check that the given field is initialized within a constexpr constructor.
801///
802/// \param Dcl The constexpr constructor being checked.
803/// \param Field The field being checked. This may be a member of an anonymous
804///        struct or union nested within the class being checked.
805/// \param Inits All declarations, including anonymous struct/union members and
806///        indirect members, for which any initialization was provided.
807/// \param Diagnosed Set to true if an error is produced.
808static void CheckConstexprCtorInitializer(Sema &SemaRef,
809                                          const FunctionDecl *Dcl,
810                                          FieldDecl *Field,
811                                          llvm::SmallSet<Decl*, 16> &Inits,
812                                          bool &Diagnosed) {
813  if (Field->isUnnamedBitfield())
814    return;
815
816  if (!Inits.count(Field)) {
817    if (!Diagnosed) {
818      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
819      Diagnosed = true;
820    }
821    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
822  } else if (Field->isAnonymousStructOrUnion()) {
823    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
824    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
825         I != E; ++I)
826      // If an anonymous union contains an anonymous struct of which any member
827      // is initialized, all members must be initialized.
828      if (!RD->isUnion() || Inits.count(*I))
829        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
830  }
831}
832
833/// Check the body for the given constexpr function declaration only contains
834/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
835///
836/// \return true if the body is OK, false if we have diagnosed a problem.
837bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
838  if (isa<CXXTryStmt>(Body)) {
839    // C++0x [dcl.constexpr]p3:
840    //  The definition of a constexpr function shall satisfy the following
841    //  constraints: [...]
842    // - its function-body shall be = delete, = default, or a
843    //   compound-statement
844    //
845    // C++0x [dcl.constexpr]p4:
846    //  In the definition of a constexpr constructor, [...]
847    // - its function-body shall not be a function-try-block;
848    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
849      << isa<CXXConstructorDecl>(Dcl);
850    return false;
851  }
852
853  // - its function-body shall be [...] a compound-statement that contains only
854  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
855
856  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
857  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
858         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
859    switch ((*BodyIt)->getStmtClass()) {
860    case Stmt::NullStmtClass:
861      //   - null statements,
862      continue;
863
864    case Stmt::DeclStmtClass:
865      //   - static_assert-declarations
866      //   - using-declarations,
867      //   - using-directives,
868      //   - typedef declarations and alias-declarations that do not define
869      //     classes or enumerations,
870      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
871        return false;
872      continue;
873
874    case Stmt::ReturnStmtClass:
875      //   - and exactly one return statement;
876      if (isa<CXXConstructorDecl>(Dcl))
877        break;
878
879      ReturnStmts.push_back((*BodyIt)->getLocStart());
880      // FIXME
881      // - every constructor call and implicit conversion used in initializing
882      //   the return value shall be one of those allowed in a constant
883      //   expression.
884      // Deal with this as part of a general check that the function can produce
885      // a constant expression (for [dcl.constexpr]p5).
886      continue;
887
888    default:
889      break;
890    }
891
892    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
893      << isa<CXXConstructorDecl>(Dcl);
894    return false;
895  }
896
897  if (const CXXConstructorDecl *Constructor
898        = dyn_cast<CXXConstructorDecl>(Dcl)) {
899    const CXXRecordDecl *RD = Constructor->getParent();
900    // - every non-static data member and base class sub-object shall be
901    //   initialized;
902    if (RD->isUnion()) {
903      // DR1359: Exactly one member of a union shall be initialized.
904      if (Constructor->getNumCtorInitializers() == 0) {
905        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
906        return false;
907      }
908    } else if (!Constructor->isDependentContext() &&
909               !Constructor->isDelegatingConstructor()) {
910      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
911
912      // Skip detailed checking if we have enough initializers, and we would
913      // allow at most one initializer per member.
914      bool AnyAnonStructUnionMembers = false;
915      unsigned Fields = 0;
916      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
917           E = RD->field_end(); I != E; ++I, ++Fields) {
918        if ((*I)->isAnonymousStructOrUnion()) {
919          AnyAnonStructUnionMembers = true;
920          break;
921        }
922      }
923      if (AnyAnonStructUnionMembers ||
924          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
925        // Check initialization of non-static data members. Base classes are
926        // always initialized so do not need to be checked. Dependent bases
927        // might not have initializers in the member initializer list.
928        llvm::SmallSet<Decl*, 16> Inits;
929        for (CXXConstructorDecl::init_const_iterator
930               I = Constructor->init_begin(), E = Constructor->init_end();
931             I != E; ++I) {
932          if (FieldDecl *FD = (*I)->getMember())
933            Inits.insert(FD);
934          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
935            Inits.insert(ID->chain_begin(), ID->chain_end());
936        }
937
938        bool Diagnosed = false;
939        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
940             E = RD->field_end(); I != E; ++I)
941          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
942        if (Diagnosed)
943          return false;
944      }
945    }
946
947    // FIXME
948    // - every constructor involved in initializing non-static data members
949    //   and base class sub-objects shall be a constexpr constructor;
950    // - every assignment-expression that is an initializer-clause appearing
951    //   directly or indirectly within a brace-or-equal-initializer for
952    //   a non-static data member that is not named by a mem-initializer-id
953    //   shall be a constant expression; and
954    // - every implicit conversion used in converting a constructor argument
955    //   to the corresponding parameter type and converting
956    //   a full-expression to the corresponding member type shall be one of
957    //   those allowed in a constant expression.
958    // Deal with these as part of a general check that the function can produce
959    // a constant expression (for [dcl.constexpr]p5).
960  } else {
961    if (ReturnStmts.empty()) {
962      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
963      return false;
964    }
965    if (ReturnStmts.size() > 1) {
966      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
967      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
968        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
969      return false;
970    }
971  }
972
973  return true;
974}
975
976/// isCurrentClassName - Determine whether the identifier II is the
977/// name of the class type currently being defined. In the case of
978/// nested classes, this will only return true if II is the name of
979/// the innermost class.
980bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
981                              const CXXScopeSpec *SS) {
982  assert(getLangOptions().CPlusPlus && "No class names in C!");
983
984  CXXRecordDecl *CurDecl;
985  if (SS && SS->isSet() && !SS->isInvalid()) {
986    DeclContext *DC = computeDeclContext(*SS, true);
987    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
988  } else
989    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
990
991  if (CurDecl && CurDecl->getIdentifier())
992    return &II == CurDecl->getIdentifier();
993  else
994    return false;
995}
996
997/// \brief Check the validity of a C++ base class specifier.
998///
999/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1000/// and returns NULL otherwise.
1001CXXBaseSpecifier *
1002Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1003                         SourceRange SpecifierRange,
1004                         bool Virtual, AccessSpecifier Access,
1005                         TypeSourceInfo *TInfo,
1006                         SourceLocation EllipsisLoc) {
1007  QualType BaseType = TInfo->getType();
1008
1009  // C++ [class.union]p1:
1010  //   A union shall not have base classes.
1011  if (Class->isUnion()) {
1012    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1013      << SpecifierRange;
1014    return 0;
1015  }
1016
1017  if (EllipsisLoc.isValid() &&
1018      !TInfo->getType()->containsUnexpandedParameterPack()) {
1019    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1020      << TInfo->getTypeLoc().getSourceRange();
1021    EllipsisLoc = SourceLocation();
1022  }
1023
1024  if (BaseType->isDependentType())
1025    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1026                                          Class->getTagKind() == TTK_Class,
1027                                          Access, TInfo, EllipsisLoc);
1028
1029  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1030
1031  // Base specifiers must be record types.
1032  if (!BaseType->isRecordType()) {
1033    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1034    return 0;
1035  }
1036
1037  // C++ [class.union]p1:
1038  //   A union shall not be used as a base class.
1039  if (BaseType->isUnionType()) {
1040    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1041    return 0;
1042  }
1043
1044  // C++ [class.derived]p2:
1045  //   The class-name in a base-specifier shall not be an incompletely
1046  //   defined class.
1047  if (RequireCompleteType(BaseLoc, BaseType,
1048                          PDiag(diag::err_incomplete_base_class)
1049                            << SpecifierRange)) {
1050    Class->setInvalidDecl();
1051    return 0;
1052  }
1053
1054  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1055  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1056  assert(BaseDecl && "Record type has no declaration");
1057  BaseDecl = BaseDecl->getDefinition();
1058  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1059  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1060  assert(CXXBaseDecl && "Base type is not a C++ type");
1061
1062  // C++ [class]p3:
1063  //   If a class is marked final and it appears as a base-type-specifier in
1064  //   base-clause, the program is ill-formed.
1065  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1066    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1067      << CXXBaseDecl->getDeclName();
1068    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1069      << CXXBaseDecl->getDeclName();
1070    return 0;
1071  }
1072
1073  if (BaseDecl->isInvalidDecl())
1074    Class->setInvalidDecl();
1075
1076  // Create the base specifier.
1077  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1078                                        Class->getTagKind() == TTK_Class,
1079                                        Access, TInfo, EllipsisLoc);
1080}
1081
1082/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1083/// one entry in the base class list of a class specifier, for
1084/// example:
1085///    class foo : public bar, virtual private baz {
1086/// 'public bar' and 'virtual private baz' are each base-specifiers.
1087BaseResult
1088Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1089                         bool Virtual, AccessSpecifier Access,
1090                         ParsedType basetype, SourceLocation BaseLoc,
1091                         SourceLocation EllipsisLoc) {
1092  if (!classdecl)
1093    return true;
1094
1095  AdjustDeclIfTemplate(classdecl);
1096  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1097  if (!Class)
1098    return true;
1099
1100  TypeSourceInfo *TInfo = 0;
1101  GetTypeFromParser(basetype, &TInfo);
1102
1103  if (EllipsisLoc.isInvalid() &&
1104      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1105                                      UPPC_BaseType))
1106    return true;
1107
1108  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1109                                                      Virtual, Access, TInfo,
1110                                                      EllipsisLoc))
1111    return BaseSpec;
1112
1113  return true;
1114}
1115
1116/// \brief Performs the actual work of attaching the given base class
1117/// specifiers to a C++ class.
1118bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1119                                unsigned NumBases) {
1120 if (NumBases == 0)
1121    return false;
1122
1123  // Used to keep track of which base types we have already seen, so
1124  // that we can properly diagnose redundant direct base types. Note
1125  // that the key is always the unqualified canonical type of the base
1126  // class.
1127  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1128
1129  // Copy non-redundant base specifiers into permanent storage.
1130  unsigned NumGoodBases = 0;
1131  bool Invalid = false;
1132  for (unsigned idx = 0; idx < NumBases; ++idx) {
1133    QualType NewBaseType
1134      = Context.getCanonicalType(Bases[idx]->getType());
1135    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1136    if (KnownBaseTypes[NewBaseType]) {
1137      // C++ [class.mi]p3:
1138      //   A class shall not be specified as a direct base class of a
1139      //   derived class more than once.
1140      Diag(Bases[idx]->getSourceRange().getBegin(),
1141           diag::err_duplicate_base_class)
1142        << KnownBaseTypes[NewBaseType]->getType()
1143        << Bases[idx]->getSourceRange();
1144
1145      // Delete the duplicate base class specifier; we're going to
1146      // overwrite its pointer later.
1147      Context.Deallocate(Bases[idx]);
1148
1149      Invalid = true;
1150    } else {
1151      // Okay, add this new base class.
1152      KnownBaseTypes[NewBaseType] = Bases[idx];
1153      Bases[NumGoodBases++] = Bases[idx];
1154      if (const RecordType *Record = dyn_cast<RecordType>(NewBaseType))
1155        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1156          if (RD->hasAttr<WeakAttr>())
1157            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1158    }
1159  }
1160
1161  // Attach the remaining base class specifiers to the derived class.
1162  Class->setBases(Bases, NumGoodBases);
1163
1164  // Delete the remaining (good) base class specifiers, since their
1165  // data has been copied into the CXXRecordDecl.
1166  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1167    Context.Deallocate(Bases[idx]);
1168
1169  return Invalid;
1170}
1171
1172/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1173/// class, after checking whether there are any duplicate base
1174/// classes.
1175void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1176                               unsigned NumBases) {
1177  if (!ClassDecl || !Bases || !NumBases)
1178    return;
1179
1180  AdjustDeclIfTemplate(ClassDecl);
1181  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1182                       (CXXBaseSpecifier**)(Bases), NumBases);
1183}
1184
1185static CXXRecordDecl *GetClassForType(QualType T) {
1186  if (const RecordType *RT = T->getAs<RecordType>())
1187    return cast<CXXRecordDecl>(RT->getDecl());
1188  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1189    return ICT->getDecl();
1190  else
1191    return 0;
1192}
1193
1194/// \brief Determine whether the type \p Derived is a C++ class that is
1195/// derived from the type \p Base.
1196bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1197  if (!getLangOptions().CPlusPlus)
1198    return false;
1199
1200  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1201  if (!DerivedRD)
1202    return false;
1203
1204  CXXRecordDecl *BaseRD = GetClassForType(Base);
1205  if (!BaseRD)
1206    return false;
1207
1208  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1209  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1210}
1211
1212/// \brief Determine whether the type \p Derived is a C++ class that is
1213/// derived from the type \p Base.
1214bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1215  if (!getLangOptions().CPlusPlus)
1216    return false;
1217
1218  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1219  if (!DerivedRD)
1220    return false;
1221
1222  CXXRecordDecl *BaseRD = GetClassForType(Base);
1223  if (!BaseRD)
1224    return false;
1225
1226  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1227}
1228
1229void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1230                              CXXCastPath &BasePathArray) {
1231  assert(BasePathArray.empty() && "Base path array must be empty!");
1232  assert(Paths.isRecordingPaths() && "Must record paths!");
1233
1234  const CXXBasePath &Path = Paths.front();
1235
1236  // We first go backward and check if we have a virtual base.
1237  // FIXME: It would be better if CXXBasePath had the base specifier for
1238  // the nearest virtual base.
1239  unsigned Start = 0;
1240  for (unsigned I = Path.size(); I != 0; --I) {
1241    if (Path[I - 1].Base->isVirtual()) {
1242      Start = I - 1;
1243      break;
1244    }
1245  }
1246
1247  // Now add all bases.
1248  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1249    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1250}
1251
1252/// \brief Determine whether the given base path includes a virtual
1253/// base class.
1254bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1255  for (CXXCastPath::const_iterator B = BasePath.begin(),
1256                                BEnd = BasePath.end();
1257       B != BEnd; ++B)
1258    if ((*B)->isVirtual())
1259      return true;
1260
1261  return false;
1262}
1263
1264/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1265/// conversion (where Derived and Base are class types) is
1266/// well-formed, meaning that the conversion is unambiguous (and
1267/// that all of the base classes are accessible). Returns true
1268/// and emits a diagnostic if the code is ill-formed, returns false
1269/// otherwise. Loc is the location where this routine should point to
1270/// if there is an error, and Range is the source range to highlight
1271/// if there is an error.
1272bool
1273Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1274                                   unsigned InaccessibleBaseID,
1275                                   unsigned AmbigiousBaseConvID,
1276                                   SourceLocation Loc, SourceRange Range,
1277                                   DeclarationName Name,
1278                                   CXXCastPath *BasePath) {
1279  // First, determine whether the path from Derived to Base is
1280  // ambiguous. This is slightly more expensive than checking whether
1281  // the Derived to Base conversion exists, because here we need to
1282  // explore multiple paths to determine if there is an ambiguity.
1283  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1284                     /*DetectVirtual=*/false);
1285  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1286  assert(DerivationOkay &&
1287         "Can only be used with a derived-to-base conversion");
1288  (void)DerivationOkay;
1289
1290  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1291    if (InaccessibleBaseID) {
1292      // Check that the base class can be accessed.
1293      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1294                                   InaccessibleBaseID)) {
1295        case AR_inaccessible:
1296          return true;
1297        case AR_accessible:
1298        case AR_dependent:
1299        case AR_delayed:
1300          break;
1301      }
1302    }
1303
1304    // Build a base path if necessary.
1305    if (BasePath)
1306      BuildBasePathArray(Paths, *BasePath);
1307    return false;
1308  }
1309
1310  // We know that the derived-to-base conversion is ambiguous, and
1311  // we're going to produce a diagnostic. Perform the derived-to-base
1312  // search just one more time to compute all of the possible paths so
1313  // that we can print them out. This is more expensive than any of
1314  // the previous derived-to-base checks we've done, but at this point
1315  // performance isn't as much of an issue.
1316  Paths.clear();
1317  Paths.setRecordingPaths(true);
1318  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1319  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1320  (void)StillOkay;
1321
1322  // Build up a textual representation of the ambiguous paths, e.g.,
1323  // D -> B -> A, that will be used to illustrate the ambiguous
1324  // conversions in the diagnostic. We only print one of the paths
1325  // to each base class subobject.
1326  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1327
1328  Diag(Loc, AmbigiousBaseConvID)
1329  << Derived << Base << PathDisplayStr << Range << Name;
1330  return true;
1331}
1332
1333bool
1334Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1335                                   SourceLocation Loc, SourceRange Range,
1336                                   CXXCastPath *BasePath,
1337                                   bool IgnoreAccess) {
1338  return CheckDerivedToBaseConversion(Derived, Base,
1339                                      IgnoreAccess ? 0
1340                                       : diag::err_upcast_to_inaccessible_base,
1341                                      diag::err_ambiguous_derived_to_base_conv,
1342                                      Loc, Range, DeclarationName(),
1343                                      BasePath);
1344}
1345
1346
1347/// @brief Builds a string representing ambiguous paths from a
1348/// specific derived class to different subobjects of the same base
1349/// class.
1350///
1351/// This function builds a string that can be used in error messages
1352/// to show the different paths that one can take through the
1353/// inheritance hierarchy to go from the derived class to different
1354/// subobjects of a base class. The result looks something like this:
1355/// @code
1356/// struct D -> struct B -> struct A
1357/// struct D -> struct C -> struct A
1358/// @endcode
1359std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1360  std::string PathDisplayStr;
1361  std::set<unsigned> DisplayedPaths;
1362  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1363       Path != Paths.end(); ++Path) {
1364    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1365      // We haven't displayed a path to this particular base
1366      // class subobject yet.
1367      PathDisplayStr += "\n    ";
1368      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1369      for (CXXBasePath::const_iterator Element = Path->begin();
1370           Element != Path->end(); ++Element)
1371        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1372    }
1373  }
1374
1375  return PathDisplayStr;
1376}
1377
1378//===----------------------------------------------------------------------===//
1379// C++ class member Handling
1380//===----------------------------------------------------------------------===//
1381
1382/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1383bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1384                                SourceLocation ASLoc,
1385                                SourceLocation ColonLoc,
1386                                AttributeList *Attrs) {
1387  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1388  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1389                                                  ASLoc, ColonLoc);
1390  CurContext->addHiddenDecl(ASDecl);
1391  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1392}
1393
1394/// CheckOverrideControl - Check C++0x override control semantics.
1395void Sema::CheckOverrideControl(const Decl *D) {
1396  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1397  if (!MD || !MD->isVirtual())
1398    return;
1399
1400  if (MD->isDependentContext())
1401    return;
1402
1403  // C++0x [class.virtual]p3:
1404  //   If a virtual function is marked with the virt-specifier override and does
1405  //   not override a member function of a base class,
1406  //   the program is ill-formed.
1407  bool HasOverriddenMethods =
1408    MD->begin_overridden_methods() != MD->end_overridden_methods();
1409  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1410    Diag(MD->getLocation(),
1411                 diag::err_function_marked_override_not_overriding)
1412      << MD->getDeclName();
1413    return;
1414  }
1415}
1416
1417/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1418/// function overrides a virtual member function marked 'final', according to
1419/// C++0x [class.virtual]p3.
1420bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1421                                                  const CXXMethodDecl *Old) {
1422  if (!Old->hasAttr<FinalAttr>())
1423    return false;
1424
1425  Diag(New->getLocation(), diag::err_final_function_overridden)
1426    << New->getDeclName();
1427  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1428  return true;
1429}
1430
1431/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1432/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1433/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1434/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1435/// present but parsing it has been deferred.
1436Decl *
1437Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1438                               MultiTemplateParamsArg TemplateParameterLists,
1439                               Expr *BW, const VirtSpecifiers &VS,
1440                               bool HasDeferredInit) {
1441  const DeclSpec &DS = D.getDeclSpec();
1442  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1443  DeclarationName Name = NameInfo.getName();
1444  SourceLocation Loc = NameInfo.getLoc();
1445
1446  // For anonymous bitfields, the location should point to the type.
1447  if (Loc.isInvalid())
1448    Loc = D.getSourceRange().getBegin();
1449
1450  Expr *BitWidth = static_cast<Expr*>(BW);
1451
1452  assert(isa<CXXRecordDecl>(CurContext));
1453  assert(!DS.isFriendSpecified());
1454
1455  bool isFunc = D.isDeclarationOfFunction();
1456
1457  // C++ 9.2p6: A member shall not be declared to have automatic storage
1458  // duration (auto, register) or with the extern storage-class-specifier.
1459  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1460  // data members and cannot be applied to names declared const or static,
1461  // and cannot be applied to reference members.
1462  switch (DS.getStorageClassSpec()) {
1463    case DeclSpec::SCS_unspecified:
1464    case DeclSpec::SCS_typedef:
1465    case DeclSpec::SCS_static:
1466      // FALL THROUGH.
1467      break;
1468    case DeclSpec::SCS_mutable:
1469      if (isFunc) {
1470        if (DS.getStorageClassSpecLoc().isValid())
1471          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1472        else
1473          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1474
1475        // FIXME: It would be nicer if the keyword was ignored only for this
1476        // declarator. Otherwise we could get follow-up errors.
1477        D.getMutableDeclSpec().ClearStorageClassSpecs();
1478      }
1479      break;
1480    default:
1481      if (DS.getStorageClassSpecLoc().isValid())
1482        Diag(DS.getStorageClassSpecLoc(),
1483             diag::err_storageclass_invalid_for_member);
1484      else
1485        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1486      D.getMutableDeclSpec().ClearStorageClassSpecs();
1487  }
1488
1489  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1490                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1491                      !isFunc);
1492
1493  Decl *Member;
1494  if (isInstField) {
1495    CXXScopeSpec &SS = D.getCXXScopeSpec();
1496
1497    // Data members must have identifiers for names.
1498    if (Name.getNameKind() != DeclarationName::Identifier) {
1499      Diag(Loc, diag::err_bad_variable_name)
1500        << Name;
1501      return 0;
1502    }
1503
1504    IdentifierInfo *II = Name.getAsIdentifierInfo();
1505
1506    // Member field could not be with "template" keyword.
1507    // So TemplateParameterLists should be empty in this case.
1508    if (TemplateParameterLists.size()) {
1509      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1510      if (TemplateParams->size()) {
1511        // There is no such thing as a member field template.
1512        Diag(D.getIdentifierLoc(), diag::err_template_member)
1513            << II
1514            << SourceRange(TemplateParams->getTemplateLoc(),
1515                TemplateParams->getRAngleLoc());
1516      } else {
1517        // There is an extraneous 'template<>' for this member.
1518        Diag(TemplateParams->getTemplateLoc(),
1519            diag::err_template_member_noparams)
1520            << II
1521            << SourceRange(TemplateParams->getTemplateLoc(),
1522                TemplateParams->getRAngleLoc());
1523      }
1524      return 0;
1525    }
1526
1527    if (SS.isSet() && !SS.isInvalid()) {
1528      // The user provided a superfluous scope specifier inside a class
1529      // definition:
1530      //
1531      // class X {
1532      //   int X::member;
1533      // };
1534      DeclContext *DC = 0;
1535      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1536        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1537        << Name << FixItHint::CreateRemoval(SS.getRange());
1538      else
1539        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1540          << Name << SS.getRange();
1541
1542      SS.clear();
1543    }
1544
1545    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1546                         HasDeferredInit, AS);
1547    assert(Member && "HandleField never returns null");
1548  } else {
1549    assert(!HasDeferredInit);
1550
1551    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1552    if (!Member) {
1553      return 0;
1554    }
1555
1556    // Non-instance-fields can't have a bitfield.
1557    if (BitWidth) {
1558      if (Member->isInvalidDecl()) {
1559        // don't emit another diagnostic.
1560      } else if (isa<VarDecl>(Member)) {
1561        // C++ 9.6p3: A bit-field shall not be a static member.
1562        // "static member 'A' cannot be a bit-field"
1563        Diag(Loc, diag::err_static_not_bitfield)
1564          << Name << BitWidth->getSourceRange();
1565      } else if (isa<TypedefDecl>(Member)) {
1566        // "typedef member 'x' cannot be a bit-field"
1567        Diag(Loc, diag::err_typedef_not_bitfield)
1568          << Name << BitWidth->getSourceRange();
1569      } else {
1570        // A function typedef ("typedef int f(); f a;").
1571        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1572        Diag(Loc, diag::err_not_integral_type_bitfield)
1573          << Name << cast<ValueDecl>(Member)->getType()
1574          << BitWidth->getSourceRange();
1575      }
1576
1577      BitWidth = 0;
1578      Member->setInvalidDecl();
1579    }
1580
1581    Member->setAccess(AS);
1582
1583    // If we have declared a member function template, set the access of the
1584    // templated declaration as well.
1585    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1586      FunTmpl->getTemplatedDecl()->setAccess(AS);
1587  }
1588
1589  if (VS.isOverrideSpecified()) {
1590    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1591    if (!MD || !MD->isVirtual()) {
1592      Diag(Member->getLocStart(),
1593           diag::override_keyword_only_allowed_on_virtual_member_functions)
1594        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1595    } else
1596      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1597  }
1598  if (VS.isFinalSpecified()) {
1599    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1600    if (!MD || !MD->isVirtual()) {
1601      Diag(Member->getLocStart(),
1602           diag::override_keyword_only_allowed_on_virtual_member_functions)
1603      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1604    } else
1605      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1606  }
1607
1608  if (VS.getLastLocation().isValid()) {
1609    // Update the end location of a method that has a virt-specifiers.
1610    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1611      MD->setRangeEnd(VS.getLastLocation());
1612  }
1613
1614  CheckOverrideControl(Member);
1615
1616  assert((Name || isInstField) && "No identifier for non-field ?");
1617
1618  if (isInstField)
1619    FieldCollector->Add(cast<FieldDecl>(Member));
1620  return Member;
1621}
1622
1623/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1624/// in-class initializer for a non-static C++ class member, and after
1625/// instantiating an in-class initializer in a class template. Such actions
1626/// are deferred until the class is complete.
1627void
1628Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1629                                       Expr *InitExpr) {
1630  FieldDecl *FD = cast<FieldDecl>(D);
1631
1632  if (!InitExpr) {
1633    FD->setInvalidDecl();
1634    FD->removeInClassInitializer();
1635    return;
1636  }
1637
1638  ExprResult Init = InitExpr;
1639  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1640    // FIXME: if there is no EqualLoc, this is list-initialization.
1641    Init = PerformCopyInitialization(
1642      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1643    if (Init.isInvalid()) {
1644      FD->setInvalidDecl();
1645      return;
1646    }
1647
1648    CheckImplicitConversions(Init.get(), EqualLoc);
1649  }
1650
1651  // C++0x [class.base.init]p7:
1652  //   The initialization of each base and member constitutes a
1653  //   full-expression.
1654  Init = MaybeCreateExprWithCleanups(Init);
1655  if (Init.isInvalid()) {
1656    FD->setInvalidDecl();
1657    return;
1658  }
1659
1660  InitExpr = Init.release();
1661
1662  FD->setInClassInitializer(InitExpr);
1663}
1664
1665/// \brief Find the direct and/or virtual base specifiers that
1666/// correspond to the given base type, for use in base initialization
1667/// within a constructor.
1668static bool FindBaseInitializer(Sema &SemaRef,
1669                                CXXRecordDecl *ClassDecl,
1670                                QualType BaseType,
1671                                const CXXBaseSpecifier *&DirectBaseSpec,
1672                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1673  // First, check for a direct base class.
1674  DirectBaseSpec = 0;
1675  for (CXXRecordDecl::base_class_const_iterator Base
1676         = ClassDecl->bases_begin();
1677       Base != ClassDecl->bases_end(); ++Base) {
1678    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1679      // We found a direct base of this type. That's what we're
1680      // initializing.
1681      DirectBaseSpec = &*Base;
1682      break;
1683    }
1684  }
1685
1686  // Check for a virtual base class.
1687  // FIXME: We might be able to short-circuit this if we know in advance that
1688  // there are no virtual bases.
1689  VirtualBaseSpec = 0;
1690  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1691    // We haven't found a base yet; search the class hierarchy for a
1692    // virtual base class.
1693    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1694                       /*DetectVirtual=*/false);
1695    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1696                              BaseType, Paths)) {
1697      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1698           Path != Paths.end(); ++Path) {
1699        if (Path->back().Base->isVirtual()) {
1700          VirtualBaseSpec = Path->back().Base;
1701          break;
1702        }
1703      }
1704    }
1705  }
1706
1707  return DirectBaseSpec || VirtualBaseSpec;
1708}
1709
1710/// \brief Handle a C++ member initializer using braced-init-list syntax.
1711MemInitResult
1712Sema::ActOnMemInitializer(Decl *ConstructorD,
1713                          Scope *S,
1714                          CXXScopeSpec &SS,
1715                          IdentifierInfo *MemberOrBase,
1716                          ParsedType TemplateTypeTy,
1717                          SourceLocation IdLoc,
1718                          Expr *InitList,
1719                          SourceLocation EllipsisLoc) {
1720  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1721                             IdLoc, MultiInitializer(InitList), EllipsisLoc);
1722}
1723
1724/// \brief Handle a C++ member initializer using parentheses syntax.
1725MemInitResult
1726Sema::ActOnMemInitializer(Decl *ConstructorD,
1727                          Scope *S,
1728                          CXXScopeSpec &SS,
1729                          IdentifierInfo *MemberOrBase,
1730                          ParsedType TemplateTypeTy,
1731                          SourceLocation IdLoc,
1732                          SourceLocation LParenLoc,
1733                          Expr **Args, unsigned NumArgs,
1734                          SourceLocation RParenLoc,
1735                          SourceLocation EllipsisLoc) {
1736  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1737                             IdLoc, MultiInitializer(LParenLoc, Args, NumArgs,
1738                                                     RParenLoc),
1739                             EllipsisLoc);
1740}
1741
1742/// \brief Handle a C++ member initializer.
1743MemInitResult
1744Sema::BuildMemInitializer(Decl *ConstructorD,
1745                          Scope *S,
1746                          CXXScopeSpec &SS,
1747                          IdentifierInfo *MemberOrBase,
1748                          ParsedType TemplateTypeTy,
1749                          SourceLocation IdLoc,
1750                          const MultiInitializer &Args,
1751                          SourceLocation EllipsisLoc) {
1752  if (!ConstructorD)
1753    return true;
1754
1755  AdjustDeclIfTemplate(ConstructorD);
1756
1757  CXXConstructorDecl *Constructor
1758    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1759  if (!Constructor) {
1760    // The user wrote a constructor initializer on a function that is
1761    // not a C++ constructor. Ignore the error for now, because we may
1762    // have more member initializers coming; we'll diagnose it just
1763    // once in ActOnMemInitializers.
1764    return true;
1765  }
1766
1767  CXXRecordDecl *ClassDecl = Constructor->getParent();
1768
1769  // C++ [class.base.init]p2:
1770  //   Names in a mem-initializer-id are looked up in the scope of the
1771  //   constructor's class and, if not found in that scope, are looked
1772  //   up in the scope containing the constructor's definition.
1773  //   [Note: if the constructor's class contains a member with the
1774  //   same name as a direct or virtual base class of the class, a
1775  //   mem-initializer-id naming the member or base class and composed
1776  //   of a single identifier refers to the class member. A
1777  //   mem-initializer-id for the hidden base class may be specified
1778  //   using a qualified name. ]
1779  if (!SS.getScopeRep() && !TemplateTypeTy) {
1780    // Look for a member, first.
1781    FieldDecl *Member = 0;
1782    DeclContext::lookup_result Result
1783      = ClassDecl->lookup(MemberOrBase);
1784    if (Result.first != Result.second) {
1785      Member = dyn_cast<FieldDecl>(*Result.first);
1786
1787      if (Member) {
1788        if (EllipsisLoc.isValid())
1789          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1790            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1791
1792        return BuildMemberInitializer(Member, Args, IdLoc);
1793      }
1794
1795      // Handle anonymous union case.
1796      if (IndirectFieldDecl* IndirectField
1797            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1798        if (EllipsisLoc.isValid())
1799          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1800            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1801
1802         return BuildMemberInitializer(IndirectField, Args, IdLoc);
1803      }
1804    }
1805  }
1806  // It didn't name a member, so see if it names a class.
1807  QualType BaseType;
1808  TypeSourceInfo *TInfo = 0;
1809
1810  if (TemplateTypeTy) {
1811    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1812  } else {
1813    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1814    LookupParsedName(R, S, &SS);
1815
1816    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1817    if (!TyD) {
1818      if (R.isAmbiguous()) return true;
1819
1820      // We don't want access-control diagnostics here.
1821      R.suppressDiagnostics();
1822
1823      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1824        bool NotUnknownSpecialization = false;
1825        DeclContext *DC = computeDeclContext(SS, false);
1826        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1827          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1828
1829        if (!NotUnknownSpecialization) {
1830          // When the scope specifier can refer to a member of an unknown
1831          // specialization, we take it as a type name.
1832          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1833                                       SS.getWithLocInContext(Context),
1834                                       *MemberOrBase, IdLoc);
1835          if (BaseType.isNull())
1836            return true;
1837
1838          R.clear();
1839          R.setLookupName(MemberOrBase);
1840        }
1841      }
1842
1843      // If no results were found, try to correct typos.
1844      TypoCorrection Corr;
1845      if (R.empty() && BaseType.isNull() &&
1846          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1847                              ClassDecl, false, CTC_NoKeywords))) {
1848        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1849        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1850        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1851          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1852            // We have found a non-static data member with a similar
1853            // name to what was typed; complain and initialize that
1854            // member.
1855            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1856              << MemberOrBase << true << CorrectedQuotedStr
1857              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1858            Diag(Member->getLocation(), diag::note_previous_decl)
1859              << CorrectedQuotedStr;
1860
1861            return BuildMemberInitializer(Member, Args, IdLoc);
1862          }
1863        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1864          const CXXBaseSpecifier *DirectBaseSpec;
1865          const CXXBaseSpecifier *VirtualBaseSpec;
1866          if (FindBaseInitializer(*this, ClassDecl,
1867                                  Context.getTypeDeclType(Type),
1868                                  DirectBaseSpec, VirtualBaseSpec)) {
1869            // We have found a direct or virtual base class with a
1870            // similar name to what was typed; complain and initialize
1871            // that base class.
1872            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1873              << MemberOrBase << false << CorrectedQuotedStr
1874              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1875
1876            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1877                                                             : VirtualBaseSpec;
1878            Diag(BaseSpec->getSourceRange().getBegin(),
1879                 diag::note_base_class_specified_here)
1880              << BaseSpec->getType()
1881              << BaseSpec->getSourceRange();
1882
1883            TyD = Type;
1884          }
1885        }
1886      }
1887
1888      if (!TyD && BaseType.isNull()) {
1889        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1890          << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1891        return true;
1892      }
1893    }
1894
1895    if (BaseType.isNull()) {
1896      BaseType = Context.getTypeDeclType(TyD);
1897      if (SS.isSet()) {
1898        NestedNameSpecifier *Qualifier =
1899          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1900
1901        // FIXME: preserve source range information
1902        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1903      }
1904    }
1905  }
1906
1907  if (!TInfo)
1908    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1909
1910  return BuildBaseInitializer(BaseType, TInfo, Args, ClassDecl, EllipsisLoc);
1911}
1912
1913/// Checks a member initializer expression for cases where reference (or
1914/// pointer) members are bound to by-value parameters (or their addresses).
1915static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1916                                               Expr *Init,
1917                                               SourceLocation IdLoc) {
1918  QualType MemberTy = Member->getType();
1919
1920  // We only handle pointers and references currently.
1921  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1922  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1923    return;
1924
1925  const bool IsPointer = MemberTy->isPointerType();
1926  if (IsPointer) {
1927    if (const UnaryOperator *Op
1928          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1929      // The only case we're worried about with pointers requires taking the
1930      // address.
1931      if (Op->getOpcode() != UO_AddrOf)
1932        return;
1933
1934      Init = Op->getSubExpr();
1935    } else {
1936      // We only handle address-of expression initializers for pointers.
1937      return;
1938    }
1939  }
1940
1941  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1942    // Taking the address of a temporary will be diagnosed as a hard error.
1943    if (IsPointer)
1944      return;
1945
1946    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1947      << Member << Init->getSourceRange();
1948  } else if (const DeclRefExpr *DRE
1949               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1950    // We only warn when referring to a non-reference parameter declaration.
1951    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1952    if (!Parameter || Parameter->getType()->isReferenceType())
1953      return;
1954
1955    S.Diag(Init->getExprLoc(),
1956           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1957                     : diag::warn_bind_ref_member_to_parameter)
1958      << Member << Parameter << Init->getSourceRange();
1959  } else {
1960    // Other initializers are fine.
1961    return;
1962  }
1963
1964  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
1965    << (unsigned)IsPointer;
1966}
1967
1968/// Checks an initializer expression for use of uninitialized fields, such as
1969/// containing the field that is being initialized. Returns true if there is an
1970/// uninitialized field was used an updates the SourceLocation parameter; false
1971/// otherwise.
1972static bool InitExprContainsUninitializedFields(const Stmt *S,
1973                                                const ValueDecl *LhsField,
1974                                                SourceLocation *L) {
1975  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1976
1977  if (isa<CallExpr>(S)) {
1978    // Do not descend into function calls or constructors, as the use
1979    // of an uninitialized field may be valid. One would have to inspect
1980    // the contents of the function/ctor to determine if it is safe or not.
1981    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1982    // may be safe, depending on what the function/ctor does.
1983    return false;
1984  }
1985  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1986    const NamedDecl *RhsField = ME->getMemberDecl();
1987
1988    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1989      // The member expression points to a static data member.
1990      assert(VD->isStaticDataMember() &&
1991             "Member points to non-static data member!");
1992      (void)VD;
1993      return false;
1994    }
1995
1996    if (isa<EnumConstantDecl>(RhsField)) {
1997      // The member expression points to an enum.
1998      return false;
1999    }
2000
2001    if (RhsField == LhsField) {
2002      // Initializing a field with itself. Throw a warning.
2003      // But wait; there are exceptions!
2004      // Exception #1:  The field may not belong to this record.
2005      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2006      const Expr *base = ME->getBase();
2007      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2008        // Even though the field matches, it does not belong to this record.
2009        return false;
2010      }
2011      // None of the exceptions triggered; return true to indicate an
2012      // uninitialized field was used.
2013      *L = ME->getMemberLoc();
2014      return true;
2015    }
2016  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2017    // sizeof/alignof doesn't reference contents, do not warn.
2018    return false;
2019  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2020    // address-of doesn't reference contents (the pointer may be dereferenced
2021    // in the same expression but it would be rare; and weird).
2022    if (UOE->getOpcode() == UO_AddrOf)
2023      return false;
2024  }
2025  for (Stmt::const_child_range it = S->children(); it; ++it) {
2026    if (!*it) {
2027      // An expression such as 'member(arg ?: "")' may trigger this.
2028      continue;
2029    }
2030    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2031      return true;
2032  }
2033  return false;
2034}
2035
2036MemInitResult
2037Sema::BuildMemberInitializer(ValueDecl *Member,
2038                             const MultiInitializer &Args,
2039                             SourceLocation IdLoc) {
2040  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2041  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2042  assert((DirectMember || IndirectMember) &&
2043         "Member must be a FieldDecl or IndirectFieldDecl");
2044
2045  if (Member->isInvalidDecl())
2046    return true;
2047
2048  // Diagnose value-uses of fields to initialize themselves, e.g.
2049  //   foo(foo)
2050  // where foo is not also a parameter to the constructor.
2051  // TODO: implement -Wuninitialized and fold this into that framework.
2052  for (MultiInitializer::iterator I = Args.begin(), E = Args.end();
2053       I != E; ++I) {
2054    SourceLocation L;
2055    Expr *Arg = *I;
2056    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Arg))
2057      Arg = DIE->getInit();
2058    if (InitExprContainsUninitializedFields(Arg, Member, &L)) {
2059      // FIXME: Return true in the case when other fields are used before being
2060      // uninitialized. For example, let this field be the i'th field. When
2061      // initializing the i'th field, throw a warning if any of the >= i'th
2062      // fields are used, as they are not yet initialized.
2063      // Right now we are only handling the case where the i'th field uses
2064      // itself in its initializer.
2065      Diag(L, diag::warn_field_is_uninit);
2066    }
2067  }
2068
2069  bool HasDependentArg = Args.isTypeDependent();
2070
2071  Expr *Init;
2072  if (Member->getType()->isDependentType() || HasDependentArg) {
2073    // Can't check initialization for a member of dependent type or when
2074    // any of the arguments are type-dependent expressions.
2075    Init = Args.CreateInitExpr(Context,Member->getType().getNonReferenceType());
2076
2077    DiscardCleanupsInEvaluationContext();
2078  } else {
2079    // Initialize the member.
2080    InitializedEntity MemberEntity =
2081      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2082                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2083    InitializationKind Kind =
2084      InitializationKind::CreateDirect(IdLoc, Args.getStartLoc(),
2085                                       Args.getEndLoc());
2086
2087    ExprResult MemberInit = Args.PerformInit(*this, MemberEntity, Kind);
2088    if (MemberInit.isInvalid())
2089      return true;
2090
2091    CheckImplicitConversions(MemberInit.get(), Args.getStartLoc());
2092
2093    // C++0x [class.base.init]p7:
2094    //   The initialization of each base and member constitutes a
2095    //   full-expression.
2096    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2097    if (MemberInit.isInvalid())
2098      return true;
2099
2100    // If we are in a dependent context, template instantiation will
2101    // perform this type-checking again. Just save the arguments that we
2102    // received in a ParenListExpr.
2103    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2104    // of the information that we have about the member
2105    // initializer. However, deconstructing the ASTs is a dicey process,
2106    // and this approach is far more likely to get the corner cases right.
2107    if (CurContext->isDependentContext()) {
2108      Init = Args.CreateInitExpr(Context,
2109                                 Member->getType().getNonReferenceType());
2110    } else {
2111      Init = MemberInit.get();
2112      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2113    }
2114  }
2115
2116  if (DirectMember) {
2117    return new (Context) CXXCtorInitializer(Context, DirectMember,
2118                                                    IdLoc, Args.getStartLoc(),
2119                                                    Init, Args.getEndLoc());
2120  } else {
2121    return new (Context) CXXCtorInitializer(Context, IndirectMember,
2122                                                    IdLoc, Args.getStartLoc(),
2123                                                    Init, Args.getEndLoc());
2124  }
2125}
2126
2127MemInitResult
2128Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
2129                                 const MultiInitializer &Args,
2130                                 SourceLocation NameLoc,
2131                                 CXXRecordDecl *ClassDecl) {
2132  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2133  if (!LangOpts.CPlusPlus0x)
2134    return Diag(Loc, diag::err_delegating_ctor)
2135      << TInfo->getTypeLoc().getLocalSourceRange();
2136  Diag(Loc, diag::warn_cxx98_compat_delegating_ctor);
2137
2138  // Initialize the object.
2139  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2140                                     QualType(ClassDecl->getTypeForDecl(), 0));
2141  InitializationKind Kind =
2142    InitializationKind::CreateDirect(NameLoc, Args.getStartLoc(),
2143                                     Args.getEndLoc());
2144
2145  ExprResult DelegationInit = Args.PerformInit(*this, DelegationEntity, Kind);
2146  if (DelegationInit.isInvalid())
2147    return true;
2148
2149  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
2150  CXXConstructorDecl *Constructor
2151    = ConExpr->getConstructor();
2152  assert(Constructor && "Delegating constructor with no target?");
2153
2154  CheckImplicitConversions(DelegationInit.get(), Args.getStartLoc());
2155
2156  // C++0x [class.base.init]p7:
2157  //   The initialization of each base and member constitutes a
2158  //   full-expression.
2159  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2160  if (DelegationInit.isInvalid())
2161    return true;
2162
2163  assert(!CurContext->isDependentContext());
2164  return new (Context) CXXCtorInitializer(Context, Loc, Args.getStartLoc(),
2165                                          Constructor,
2166                                          DelegationInit.takeAs<Expr>(),
2167                                          Args.getEndLoc());
2168}
2169
2170MemInitResult
2171Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2172                           const MultiInitializer &Args,
2173                           CXXRecordDecl *ClassDecl,
2174                           SourceLocation EllipsisLoc) {
2175  bool HasDependentArg = Args.isTypeDependent();
2176
2177  SourceLocation BaseLoc
2178    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2179
2180  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2181    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2182             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2183
2184  // C++ [class.base.init]p2:
2185  //   [...] Unless the mem-initializer-id names a nonstatic data
2186  //   member of the constructor's class or a direct or virtual base
2187  //   of that class, the mem-initializer is ill-formed. A
2188  //   mem-initializer-list can initialize a base class using any
2189  //   name that denotes that base class type.
2190  bool Dependent = BaseType->isDependentType() || HasDependentArg;
2191
2192  if (EllipsisLoc.isValid()) {
2193    // This is a pack expansion.
2194    if (!BaseType->containsUnexpandedParameterPack())  {
2195      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2196        << SourceRange(BaseLoc, Args.getEndLoc());
2197
2198      EllipsisLoc = SourceLocation();
2199    }
2200  } else {
2201    // Check for any unexpanded parameter packs.
2202    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2203      return true;
2204
2205    if (Args.DiagnoseUnexpandedParameterPack(*this))
2206      return true;
2207  }
2208
2209  // Check for direct and virtual base classes.
2210  const CXXBaseSpecifier *DirectBaseSpec = 0;
2211  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2212  if (!Dependent) {
2213    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2214                                       BaseType))
2215      return BuildDelegatingInitializer(BaseTInfo, Args, BaseLoc, ClassDecl);
2216
2217    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2218                        VirtualBaseSpec);
2219
2220    // C++ [base.class.init]p2:
2221    // Unless the mem-initializer-id names a nonstatic data member of the
2222    // constructor's class or a direct or virtual base of that class, the
2223    // mem-initializer is ill-formed.
2224    if (!DirectBaseSpec && !VirtualBaseSpec) {
2225      // If the class has any dependent bases, then it's possible that
2226      // one of those types will resolve to the same type as
2227      // BaseType. Therefore, just treat this as a dependent base
2228      // class initialization.  FIXME: Should we try to check the
2229      // initialization anyway? It seems odd.
2230      if (ClassDecl->hasAnyDependentBases())
2231        Dependent = true;
2232      else
2233        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2234          << BaseType << Context.getTypeDeclType(ClassDecl)
2235          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2236    }
2237  }
2238
2239  if (Dependent) {
2240    // Can't check initialization for a base of dependent type or when
2241    // any of the arguments are type-dependent expressions.
2242    Expr *BaseInit = Args.CreateInitExpr(Context, BaseType);
2243
2244    DiscardCleanupsInEvaluationContext();
2245
2246    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2247                                            /*IsVirtual=*/false,
2248                                            Args.getStartLoc(), BaseInit,
2249                                            Args.getEndLoc(), EllipsisLoc);
2250  }
2251
2252  // C++ [base.class.init]p2:
2253  //   If a mem-initializer-id is ambiguous because it designates both
2254  //   a direct non-virtual base class and an inherited virtual base
2255  //   class, the mem-initializer is ill-formed.
2256  if (DirectBaseSpec && VirtualBaseSpec)
2257    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2258      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2259
2260  CXXBaseSpecifier *BaseSpec
2261    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2262  if (!BaseSpec)
2263    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2264
2265  // Initialize the base.
2266  InitializedEntity BaseEntity =
2267    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2268  InitializationKind Kind =
2269    InitializationKind::CreateDirect(BaseLoc, Args.getStartLoc(),
2270                                     Args.getEndLoc());
2271
2272  ExprResult BaseInit = Args.PerformInit(*this, BaseEntity, Kind);
2273  if (BaseInit.isInvalid())
2274    return true;
2275
2276  CheckImplicitConversions(BaseInit.get(), Args.getStartLoc());
2277
2278  // C++0x [class.base.init]p7:
2279  //   The initialization of each base and member constitutes a
2280  //   full-expression.
2281  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2282  if (BaseInit.isInvalid())
2283    return true;
2284
2285  // If we are in a dependent context, template instantiation will
2286  // perform this type-checking again. Just save the arguments that we
2287  // received in a ParenListExpr.
2288  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2289  // of the information that we have about the base
2290  // initializer. However, deconstructing the ASTs is a dicey process,
2291  // and this approach is far more likely to get the corner cases right.
2292  if (CurContext->isDependentContext())
2293    BaseInit = Owned(Args.CreateInitExpr(Context, BaseType));
2294
2295  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2296                                          BaseSpec->isVirtual(),
2297                                          Args.getStartLoc(),
2298                                          BaseInit.takeAs<Expr>(),
2299                                          Args.getEndLoc(), EllipsisLoc);
2300}
2301
2302// Create a static_cast\<T&&>(expr).
2303static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2304  QualType ExprType = E->getType();
2305  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2306  SourceLocation ExprLoc = E->getLocStart();
2307  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2308      TargetType, ExprLoc);
2309
2310  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2311                                   SourceRange(ExprLoc, ExprLoc),
2312                                   E->getSourceRange()).take();
2313}
2314
2315/// ImplicitInitializerKind - How an implicit base or member initializer should
2316/// initialize its base or member.
2317enum ImplicitInitializerKind {
2318  IIK_Default,
2319  IIK_Copy,
2320  IIK_Move
2321};
2322
2323static bool
2324BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2325                             ImplicitInitializerKind ImplicitInitKind,
2326                             CXXBaseSpecifier *BaseSpec,
2327                             bool IsInheritedVirtualBase,
2328                             CXXCtorInitializer *&CXXBaseInit) {
2329  InitializedEntity InitEntity
2330    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2331                                        IsInheritedVirtualBase);
2332
2333  ExprResult BaseInit;
2334
2335  switch (ImplicitInitKind) {
2336  case IIK_Default: {
2337    InitializationKind InitKind
2338      = InitializationKind::CreateDefault(Constructor->getLocation());
2339    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2340    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2341                               MultiExprArg(SemaRef, 0, 0));
2342    break;
2343  }
2344
2345  case IIK_Move:
2346  case IIK_Copy: {
2347    bool Moving = ImplicitInitKind == IIK_Move;
2348    ParmVarDecl *Param = Constructor->getParamDecl(0);
2349    QualType ParamType = Param->getType().getNonReferenceType();
2350
2351    Expr *CopyCtorArg =
2352      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2353                          Constructor->getLocation(), ParamType,
2354                          VK_LValue, 0);
2355
2356    // Cast to the base class to avoid ambiguities.
2357    QualType ArgTy =
2358      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2359                                       ParamType.getQualifiers());
2360
2361    if (Moving) {
2362      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2363    }
2364
2365    CXXCastPath BasePath;
2366    BasePath.push_back(BaseSpec);
2367    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2368                                            CK_UncheckedDerivedToBase,
2369                                            Moving ? VK_XValue : VK_LValue,
2370                                            &BasePath).take();
2371
2372    InitializationKind InitKind
2373      = InitializationKind::CreateDirect(Constructor->getLocation(),
2374                                         SourceLocation(), SourceLocation());
2375    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2376                                   &CopyCtorArg, 1);
2377    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2378                               MultiExprArg(&CopyCtorArg, 1));
2379    break;
2380  }
2381  }
2382
2383  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2384  if (BaseInit.isInvalid())
2385    return true;
2386
2387  CXXBaseInit =
2388    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2389               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2390                                                        SourceLocation()),
2391                                             BaseSpec->isVirtual(),
2392                                             SourceLocation(),
2393                                             BaseInit.takeAs<Expr>(),
2394                                             SourceLocation(),
2395                                             SourceLocation());
2396
2397  return false;
2398}
2399
2400static bool RefersToRValueRef(Expr *MemRef) {
2401  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2402  return Referenced->getType()->isRValueReferenceType();
2403}
2404
2405static bool
2406BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2407                               ImplicitInitializerKind ImplicitInitKind,
2408                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2409                               CXXCtorInitializer *&CXXMemberInit) {
2410  if (Field->isInvalidDecl())
2411    return true;
2412
2413  SourceLocation Loc = Constructor->getLocation();
2414
2415  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2416    bool Moving = ImplicitInitKind == IIK_Move;
2417    ParmVarDecl *Param = Constructor->getParamDecl(0);
2418    QualType ParamType = Param->getType().getNonReferenceType();
2419
2420    // Suppress copying zero-width bitfields.
2421    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2422      return false;
2423
2424    Expr *MemberExprBase =
2425      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2426                          Loc, ParamType, VK_LValue, 0);
2427
2428    if (Moving) {
2429      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2430    }
2431
2432    // Build a reference to this field within the parameter.
2433    CXXScopeSpec SS;
2434    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2435                              Sema::LookupMemberName);
2436    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2437                                  : cast<ValueDecl>(Field), AS_public);
2438    MemberLookup.resolveKind();
2439    ExprResult CtorArg
2440      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2441                                         ParamType, Loc,
2442                                         /*IsArrow=*/false,
2443                                         SS,
2444                                         /*FirstQualifierInScope=*/0,
2445                                         MemberLookup,
2446                                         /*TemplateArgs=*/0);
2447    if (CtorArg.isInvalid())
2448      return true;
2449
2450    // C++11 [class.copy]p15:
2451    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2452    //     with static_cast<T&&>(x.m);
2453    if (RefersToRValueRef(CtorArg.get())) {
2454      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2455    }
2456
2457    // When the field we are copying is an array, create index variables for
2458    // each dimension of the array. We use these index variables to subscript
2459    // the source array, and other clients (e.g., CodeGen) will perform the
2460    // necessary iteration with these index variables.
2461    SmallVector<VarDecl *, 4> IndexVariables;
2462    QualType BaseType = Field->getType();
2463    QualType SizeType = SemaRef.Context.getSizeType();
2464    bool InitializingArray = false;
2465    while (const ConstantArrayType *Array
2466                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2467      InitializingArray = true;
2468      // Create the iteration variable for this array index.
2469      IdentifierInfo *IterationVarName = 0;
2470      {
2471        llvm::SmallString<8> Str;
2472        llvm::raw_svector_ostream OS(Str);
2473        OS << "__i" << IndexVariables.size();
2474        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2475      }
2476      VarDecl *IterationVar
2477        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2478                          IterationVarName, SizeType,
2479                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2480                          SC_None, SC_None);
2481      IndexVariables.push_back(IterationVar);
2482
2483      // Create a reference to the iteration variable.
2484      ExprResult IterationVarRef
2485        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
2486      assert(!IterationVarRef.isInvalid() &&
2487             "Reference to invented variable cannot fail!");
2488
2489      // Subscript the array with this iteration variable.
2490      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2491                                                        IterationVarRef.take(),
2492                                                        Loc);
2493      if (CtorArg.isInvalid())
2494        return true;
2495
2496      BaseType = Array->getElementType();
2497    }
2498
2499    // The array subscript expression is an lvalue, which is wrong for moving.
2500    if (Moving && InitializingArray)
2501      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2502
2503    // Construct the entity that we will be initializing. For an array, this
2504    // will be first element in the array, which may require several levels
2505    // of array-subscript entities.
2506    SmallVector<InitializedEntity, 4> Entities;
2507    Entities.reserve(1 + IndexVariables.size());
2508    if (Indirect)
2509      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2510    else
2511      Entities.push_back(InitializedEntity::InitializeMember(Field));
2512    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2513      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2514                                                              0,
2515                                                              Entities.back()));
2516
2517    // Direct-initialize to use the copy constructor.
2518    InitializationKind InitKind =
2519      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2520
2521    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2522    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2523                                   &CtorArgE, 1);
2524
2525    ExprResult MemberInit
2526      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2527                        MultiExprArg(&CtorArgE, 1));
2528    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2529    if (MemberInit.isInvalid())
2530      return true;
2531
2532    if (Indirect) {
2533      assert(IndexVariables.size() == 0 &&
2534             "Indirect field improperly initialized");
2535      CXXMemberInit
2536        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2537                                                   Loc, Loc,
2538                                                   MemberInit.takeAs<Expr>(),
2539                                                   Loc);
2540    } else
2541      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2542                                                 Loc, MemberInit.takeAs<Expr>(),
2543                                                 Loc,
2544                                                 IndexVariables.data(),
2545                                                 IndexVariables.size());
2546    return false;
2547  }
2548
2549  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2550
2551  QualType FieldBaseElementType =
2552    SemaRef.Context.getBaseElementType(Field->getType());
2553
2554  if (FieldBaseElementType->isRecordType()) {
2555    InitializedEntity InitEntity
2556      = Indirect? InitializedEntity::InitializeMember(Indirect)
2557                : InitializedEntity::InitializeMember(Field);
2558    InitializationKind InitKind =
2559      InitializationKind::CreateDefault(Loc);
2560
2561    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2562    ExprResult MemberInit =
2563      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2564
2565    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2566    if (MemberInit.isInvalid())
2567      return true;
2568
2569    if (Indirect)
2570      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2571                                                               Indirect, Loc,
2572                                                               Loc,
2573                                                               MemberInit.get(),
2574                                                               Loc);
2575    else
2576      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2577                                                               Field, Loc, Loc,
2578                                                               MemberInit.get(),
2579                                                               Loc);
2580    return false;
2581  }
2582
2583  if (!Field->getParent()->isUnion()) {
2584    if (FieldBaseElementType->isReferenceType()) {
2585      SemaRef.Diag(Constructor->getLocation(),
2586                   diag::err_uninitialized_member_in_ctor)
2587      << (int)Constructor->isImplicit()
2588      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2589      << 0 << Field->getDeclName();
2590      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2591      return true;
2592    }
2593
2594    if (FieldBaseElementType.isConstQualified()) {
2595      SemaRef.Diag(Constructor->getLocation(),
2596                   diag::err_uninitialized_member_in_ctor)
2597      << (int)Constructor->isImplicit()
2598      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2599      << 1 << Field->getDeclName();
2600      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2601      return true;
2602    }
2603  }
2604
2605  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2606      FieldBaseElementType->isObjCRetainableType() &&
2607      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2608      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2609    // Instant objects:
2610    //   Default-initialize Objective-C pointers to NULL.
2611    CXXMemberInit
2612      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2613                                                 Loc, Loc,
2614                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2615                                                 Loc);
2616    return false;
2617  }
2618
2619  // Nothing to initialize.
2620  CXXMemberInit = 0;
2621  return false;
2622}
2623
2624namespace {
2625struct BaseAndFieldInfo {
2626  Sema &S;
2627  CXXConstructorDecl *Ctor;
2628  bool AnyErrorsInInits;
2629  ImplicitInitializerKind IIK;
2630  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2631  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2632
2633  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2634    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2635    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2636    if (Generated && Ctor->isCopyConstructor())
2637      IIK = IIK_Copy;
2638    else if (Generated && Ctor->isMoveConstructor())
2639      IIK = IIK_Move;
2640    else
2641      IIK = IIK_Default;
2642  }
2643};
2644}
2645
2646/// \brief Determine whether the given indirect field declaration is somewhere
2647/// within an anonymous union.
2648static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2649  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2650                                      CEnd = F->chain_end();
2651       C != CEnd; ++C)
2652    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2653      if (Record->isUnion())
2654        return true;
2655
2656  return false;
2657}
2658
2659static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2660                                    FieldDecl *Field,
2661                                    IndirectFieldDecl *Indirect = 0) {
2662
2663  // Overwhelmingly common case: we have a direct initializer for this field.
2664  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2665    Info.AllToInit.push_back(Init);
2666    return false;
2667  }
2668
2669  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2670  // has a brace-or-equal-initializer, the entity is initialized as specified
2671  // in [dcl.init].
2672  if (Field->hasInClassInitializer()) {
2673    CXXCtorInitializer *Init;
2674    if (Indirect)
2675      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2676                                                      SourceLocation(),
2677                                                      SourceLocation(), 0,
2678                                                      SourceLocation());
2679    else
2680      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2681                                                      SourceLocation(),
2682                                                      SourceLocation(), 0,
2683                                                      SourceLocation());
2684    Info.AllToInit.push_back(Init);
2685    return false;
2686  }
2687
2688  // Don't build an implicit initializer for union members if none was
2689  // explicitly specified.
2690  if (Field->getParent()->isUnion() ||
2691      (Indirect && isWithinAnonymousUnion(Indirect)))
2692    return false;
2693
2694  // Don't try to build an implicit initializer if there were semantic
2695  // errors in any of the initializers (and therefore we might be
2696  // missing some that the user actually wrote).
2697  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2698    return false;
2699
2700  CXXCtorInitializer *Init = 0;
2701  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2702                                     Indirect, Init))
2703    return true;
2704
2705  if (Init)
2706    Info.AllToInit.push_back(Init);
2707
2708  return false;
2709}
2710
2711bool
2712Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2713                               CXXCtorInitializer *Initializer) {
2714  assert(Initializer->isDelegatingInitializer());
2715  Constructor->setNumCtorInitializers(1);
2716  CXXCtorInitializer **initializer =
2717    new (Context) CXXCtorInitializer*[1];
2718  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2719  Constructor->setCtorInitializers(initializer);
2720
2721  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2722    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2723    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2724  }
2725
2726  DelegatingCtorDecls.push_back(Constructor);
2727
2728  return false;
2729}
2730
2731bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2732                               CXXCtorInitializer **Initializers,
2733                               unsigned NumInitializers,
2734                               bool AnyErrors) {
2735  if (Constructor->isDependentContext()) {
2736    // Just store the initializers as written, they will be checked during
2737    // instantiation.
2738    if (NumInitializers > 0) {
2739      Constructor->setNumCtorInitializers(NumInitializers);
2740      CXXCtorInitializer **baseOrMemberInitializers =
2741        new (Context) CXXCtorInitializer*[NumInitializers];
2742      memcpy(baseOrMemberInitializers, Initializers,
2743             NumInitializers * sizeof(CXXCtorInitializer*));
2744      Constructor->setCtorInitializers(baseOrMemberInitializers);
2745    }
2746
2747    return false;
2748  }
2749
2750  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2751
2752  // We need to build the initializer AST according to order of construction
2753  // and not what user specified in the Initializers list.
2754  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2755  if (!ClassDecl)
2756    return true;
2757
2758  bool HadError = false;
2759
2760  for (unsigned i = 0; i < NumInitializers; i++) {
2761    CXXCtorInitializer *Member = Initializers[i];
2762
2763    if (Member->isBaseInitializer())
2764      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2765    else
2766      Info.AllBaseFields[Member->getAnyMember()] = Member;
2767  }
2768
2769  // Keep track of the direct virtual bases.
2770  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2771  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2772       E = ClassDecl->bases_end(); I != E; ++I) {
2773    if (I->isVirtual())
2774      DirectVBases.insert(I);
2775  }
2776
2777  // Push virtual bases before others.
2778  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2779       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2780
2781    if (CXXCtorInitializer *Value
2782        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2783      Info.AllToInit.push_back(Value);
2784    } else if (!AnyErrors) {
2785      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2786      CXXCtorInitializer *CXXBaseInit;
2787      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2788                                       VBase, IsInheritedVirtualBase,
2789                                       CXXBaseInit)) {
2790        HadError = true;
2791        continue;
2792      }
2793
2794      Info.AllToInit.push_back(CXXBaseInit);
2795    }
2796  }
2797
2798  // Non-virtual bases.
2799  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2800       E = ClassDecl->bases_end(); Base != E; ++Base) {
2801    // Virtuals are in the virtual base list and already constructed.
2802    if (Base->isVirtual())
2803      continue;
2804
2805    if (CXXCtorInitializer *Value
2806          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2807      Info.AllToInit.push_back(Value);
2808    } else if (!AnyErrors) {
2809      CXXCtorInitializer *CXXBaseInit;
2810      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2811                                       Base, /*IsInheritedVirtualBase=*/false,
2812                                       CXXBaseInit)) {
2813        HadError = true;
2814        continue;
2815      }
2816
2817      Info.AllToInit.push_back(CXXBaseInit);
2818    }
2819  }
2820
2821  // Fields.
2822  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2823                               MemEnd = ClassDecl->decls_end();
2824       Mem != MemEnd; ++Mem) {
2825    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2826      // C++ [class.bit]p2:
2827      //   A declaration for a bit-field that omits the identifier declares an
2828      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2829      //   initialized.
2830      if (F->isUnnamedBitfield())
2831        continue;
2832
2833      if (F->getType()->isIncompleteArrayType()) {
2834        assert(ClassDecl->hasFlexibleArrayMember() &&
2835               "Incomplete array type is not valid");
2836        continue;
2837      }
2838
2839      // If we're not generating the implicit copy/move constructor, then we'll
2840      // handle anonymous struct/union fields based on their individual
2841      // indirect fields.
2842      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2843        continue;
2844
2845      if (CollectFieldInitializer(*this, Info, F))
2846        HadError = true;
2847      continue;
2848    }
2849
2850    // Beyond this point, we only consider default initialization.
2851    if (Info.IIK != IIK_Default)
2852      continue;
2853
2854    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2855      if (F->getType()->isIncompleteArrayType()) {
2856        assert(ClassDecl->hasFlexibleArrayMember() &&
2857               "Incomplete array type is not valid");
2858        continue;
2859      }
2860
2861      // Initialize each field of an anonymous struct individually.
2862      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2863        HadError = true;
2864
2865      continue;
2866    }
2867  }
2868
2869  NumInitializers = Info.AllToInit.size();
2870  if (NumInitializers > 0) {
2871    Constructor->setNumCtorInitializers(NumInitializers);
2872    CXXCtorInitializer **baseOrMemberInitializers =
2873      new (Context) CXXCtorInitializer*[NumInitializers];
2874    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2875           NumInitializers * sizeof(CXXCtorInitializer*));
2876    Constructor->setCtorInitializers(baseOrMemberInitializers);
2877
2878    // Constructors implicitly reference the base and member
2879    // destructors.
2880    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2881                                           Constructor->getParent());
2882  }
2883
2884  return HadError;
2885}
2886
2887static void *GetKeyForTopLevelField(FieldDecl *Field) {
2888  // For anonymous unions, use the class declaration as the key.
2889  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2890    if (RT->getDecl()->isAnonymousStructOrUnion())
2891      return static_cast<void *>(RT->getDecl());
2892  }
2893  return static_cast<void *>(Field);
2894}
2895
2896static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2897  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2898}
2899
2900static void *GetKeyForMember(ASTContext &Context,
2901                             CXXCtorInitializer *Member) {
2902  if (!Member->isAnyMemberInitializer())
2903    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2904
2905  // For fields injected into the class via declaration of an anonymous union,
2906  // use its anonymous union class declaration as the unique key.
2907  FieldDecl *Field = Member->getAnyMember();
2908
2909  // If the field is a member of an anonymous struct or union, our key
2910  // is the anonymous record decl that's a direct child of the class.
2911  RecordDecl *RD = Field->getParent();
2912  if (RD->isAnonymousStructOrUnion()) {
2913    while (true) {
2914      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2915      if (Parent->isAnonymousStructOrUnion())
2916        RD = Parent;
2917      else
2918        break;
2919    }
2920
2921    return static_cast<void *>(RD);
2922  }
2923
2924  return static_cast<void *>(Field);
2925}
2926
2927static void
2928DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2929                                  const CXXConstructorDecl *Constructor,
2930                                  CXXCtorInitializer **Inits,
2931                                  unsigned NumInits) {
2932  if (Constructor->getDeclContext()->isDependentContext())
2933    return;
2934
2935  // Don't check initializers order unless the warning is enabled at the
2936  // location of at least one initializer.
2937  bool ShouldCheckOrder = false;
2938  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2939    CXXCtorInitializer *Init = Inits[InitIndex];
2940    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2941                                         Init->getSourceLocation())
2942          != DiagnosticsEngine::Ignored) {
2943      ShouldCheckOrder = true;
2944      break;
2945    }
2946  }
2947  if (!ShouldCheckOrder)
2948    return;
2949
2950  // Build the list of bases and members in the order that they'll
2951  // actually be initialized.  The explicit initializers should be in
2952  // this same order but may be missing things.
2953  SmallVector<const void*, 32> IdealInitKeys;
2954
2955  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2956
2957  // 1. Virtual bases.
2958  for (CXXRecordDecl::base_class_const_iterator VBase =
2959       ClassDecl->vbases_begin(),
2960       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2961    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2962
2963  // 2. Non-virtual bases.
2964  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2965       E = ClassDecl->bases_end(); Base != E; ++Base) {
2966    if (Base->isVirtual())
2967      continue;
2968    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2969  }
2970
2971  // 3. Direct fields.
2972  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2973       E = ClassDecl->field_end(); Field != E; ++Field) {
2974    if (Field->isUnnamedBitfield())
2975      continue;
2976
2977    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2978  }
2979
2980  unsigned NumIdealInits = IdealInitKeys.size();
2981  unsigned IdealIndex = 0;
2982
2983  CXXCtorInitializer *PrevInit = 0;
2984  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2985    CXXCtorInitializer *Init = Inits[InitIndex];
2986    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2987
2988    // Scan forward to try to find this initializer in the idealized
2989    // initializers list.
2990    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2991      if (InitKey == IdealInitKeys[IdealIndex])
2992        break;
2993
2994    // If we didn't find this initializer, it must be because we
2995    // scanned past it on a previous iteration.  That can only
2996    // happen if we're out of order;  emit a warning.
2997    if (IdealIndex == NumIdealInits && PrevInit) {
2998      Sema::SemaDiagnosticBuilder D =
2999        SemaRef.Diag(PrevInit->getSourceLocation(),
3000                     diag::warn_initializer_out_of_order);
3001
3002      if (PrevInit->isAnyMemberInitializer())
3003        D << 0 << PrevInit->getAnyMember()->getDeclName();
3004      else
3005        D << 1 << PrevInit->getBaseClassInfo()->getType();
3006
3007      if (Init->isAnyMemberInitializer())
3008        D << 0 << Init->getAnyMember()->getDeclName();
3009      else
3010        D << 1 << Init->getBaseClassInfo()->getType();
3011
3012      // Move back to the initializer's location in the ideal list.
3013      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3014        if (InitKey == IdealInitKeys[IdealIndex])
3015          break;
3016
3017      assert(IdealIndex != NumIdealInits &&
3018             "initializer not found in initializer list");
3019    }
3020
3021    PrevInit = Init;
3022  }
3023}
3024
3025namespace {
3026bool CheckRedundantInit(Sema &S,
3027                        CXXCtorInitializer *Init,
3028                        CXXCtorInitializer *&PrevInit) {
3029  if (!PrevInit) {
3030    PrevInit = Init;
3031    return false;
3032  }
3033
3034  if (FieldDecl *Field = Init->getMember())
3035    S.Diag(Init->getSourceLocation(),
3036           diag::err_multiple_mem_initialization)
3037      << Field->getDeclName()
3038      << Init->getSourceRange();
3039  else {
3040    const Type *BaseClass = Init->getBaseClass();
3041    assert(BaseClass && "neither field nor base");
3042    S.Diag(Init->getSourceLocation(),
3043           diag::err_multiple_base_initialization)
3044      << QualType(BaseClass, 0)
3045      << Init->getSourceRange();
3046  }
3047  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3048    << 0 << PrevInit->getSourceRange();
3049
3050  return true;
3051}
3052
3053typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3054typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3055
3056bool CheckRedundantUnionInit(Sema &S,
3057                             CXXCtorInitializer *Init,
3058                             RedundantUnionMap &Unions) {
3059  FieldDecl *Field = Init->getAnyMember();
3060  RecordDecl *Parent = Field->getParent();
3061  if (!Parent->isAnonymousStructOrUnion())
3062    return false;
3063
3064  NamedDecl *Child = Field;
3065  do {
3066    if (Parent->isUnion()) {
3067      UnionEntry &En = Unions[Parent];
3068      if (En.first && En.first != Child) {
3069        S.Diag(Init->getSourceLocation(),
3070               diag::err_multiple_mem_union_initialization)
3071          << Field->getDeclName()
3072          << Init->getSourceRange();
3073        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3074          << 0 << En.second->getSourceRange();
3075        return true;
3076      } else if (!En.first) {
3077        En.first = Child;
3078        En.second = Init;
3079      }
3080    }
3081
3082    Child = Parent;
3083    Parent = cast<RecordDecl>(Parent->getDeclContext());
3084  } while (Parent->isAnonymousStructOrUnion());
3085
3086  return false;
3087}
3088}
3089
3090/// ActOnMemInitializers - Handle the member initializers for a constructor.
3091void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3092                                SourceLocation ColonLoc,
3093                                CXXCtorInitializer **meminits,
3094                                unsigned NumMemInits,
3095                                bool AnyErrors) {
3096  if (!ConstructorDecl)
3097    return;
3098
3099  AdjustDeclIfTemplate(ConstructorDecl);
3100
3101  CXXConstructorDecl *Constructor
3102    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3103
3104  if (!Constructor) {
3105    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3106    return;
3107  }
3108
3109  CXXCtorInitializer **MemInits =
3110    reinterpret_cast<CXXCtorInitializer **>(meminits);
3111
3112  // Mapping for the duplicate initializers check.
3113  // For member initializers, this is keyed with a FieldDecl*.
3114  // For base initializers, this is keyed with a Type*.
3115  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3116
3117  // Mapping for the inconsistent anonymous-union initializers check.
3118  RedundantUnionMap MemberUnions;
3119
3120  bool HadError = false;
3121  for (unsigned i = 0; i < NumMemInits; i++) {
3122    CXXCtorInitializer *Init = MemInits[i];
3123
3124    // Set the source order index.
3125    Init->setSourceOrder(i);
3126
3127    if (Init->isAnyMemberInitializer()) {
3128      FieldDecl *Field = Init->getAnyMember();
3129      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3130          CheckRedundantUnionInit(*this, Init, MemberUnions))
3131        HadError = true;
3132    } else if (Init->isBaseInitializer()) {
3133      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3134      if (CheckRedundantInit(*this, Init, Members[Key]))
3135        HadError = true;
3136    } else {
3137      assert(Init->isDelegatingInitializer());
3138      // This must be the only initializer
3139      if (i != 0 || NumMemInits > 1) {
3140        Diag(MemInits[0]->getSourceLocation(),
3141             diag::err_delegating_initializer_alone)
3142          << MemInits[0]->getSourceRange();
3143        HadError = true;
3144        // We will treat this as being the only initializer.
3145      }
3146      SetDelegatingInitializer(Constructor, MemInits[i]);
3147      // Return immediately as the initializer is set.
3148      return;
3149    }
3150  }
3151
3152  if (HadError)
3153    return;
3154
3155  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3156
3157  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3158}
3159
3160void
3161Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3162                                             CXXRecordDecl *ClassDecl) {
3163  // Ignore dependent contexts. Also ignore unions, since their members never
3164  // have destructors implicitly called.
3165  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3166    return;
3167
3168  // FIXME: all the access-control diagnostics are positioned on the
3169  // field/base declaration.  That's probably good; that said, the
3170  // user might reasonably want to know why the destructor is being
3171  // emitted, and we currently don't say.
3172
3173  // Non-static data members.
3174  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3175       E = ClassDecl->field_end(); I != E; ++I) {
3176    FieldDecl *Field = *I;
3177    if (Field->isInvalidDecl())
3178      continue;
3179    QualType FieldType = Context.getBaseElementType(Field->getType());
3180
3181    const RecordType* RT = FieldType->getAs<RecordType>();
3182    if (!RT)
3183      continue;
3184
3185    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3186    if (FieldClassDecl->isInvalidDecl())
3187      continue;
3188    if (FieldClassDecl->hasTrivialDestructor())
3189      continue;
3190
3191    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3192    assert(Dtor && "No dtor found for FieldClassDecl!");
3193    CheckDestructorAccess(Field->getLocation(), Dtor,
3194                          PDiag(diag::err_access_dtor_field)
3195                            << Field->getDeclName()
3196                            << FieldType);
3197
3198    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3199  }
3200
3201  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3202
3203  // Bases.
3204  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3205       E = ClassDecl->bases_end(); Base != E; ++Base) {
3206    // Bases are always records in a well-formed non-dependent class.
3207    const RecordType *RT = Base->getType()->getAs<RecordType>();
3208
3209    // Remember direct virtual bases.
3210    if (Base->isVirtual())
3211      DirectVirtualBases.insert(RT);
3212
3213    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3214    // If our base class is invalid, we probably can't get its dtor anyway.
3215    if (BaseClassDecl->isInvalidDecl())
3216      continue;
3217    // Ignore trivial destructors.
3218    if (BaseClassDecl->hasTrivialDestructor())
3219      continue;
3220
3221    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3222    assert(Dtor && "No dtor found for BaseClassDecl!");
3223
3224    // FIXME: caret should be on the start of the class name
3225    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3226                          PDiag(diag::err_access_dtor_base)
3227                            << Base->getType()
3228                            << Base->getSourceRange());
3229
3230    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3231  }
3232
3233  // Virtual bases.
3234  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3235       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3236
3237    // Bases are always records in a well-formed non-dependent class.
3238    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3239
3240    // Ignore direct virtual bases.
3241    if (DirectVirtualBases.count(RT))
3242      continue;
3243
3244    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3245    // If our base class is invalid, we probably can't get its dtor anyway.
3246    if (BaseClassDecl->isInvalidDecl())
3247      continue;
3248    // Ignore trivial destructors.
3249    if (BaseClassDecl->hasTrivialDestructor())
3250      continue;
3251
3252    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3253    assert(Dtor && "No dtor found for BaseClassDecl!");
3254    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3255                          PDiag(diag::err_access_dtor_vbase)
3256                            << VBase->getType());
3257
3258    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3259  }
3260}
3261
3262void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3263  if (!CDtorDecl)
3264    return;
3265
3266  if (CXXConstructorDecl *Constructor
3267      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3268    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3269}
3270
3271bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3272                                  unsigned DiagID, AbstractDiagSelID SelID) {
3273  if (SelID == -1)
3274    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3275  else
3276    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3277}
3278
3279bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3280                                  const PartialDiagnostic &PD) {
3281  if (!getLangOptions().CPlusPlus)
3282    return false;
3283
3284  if (const ArrayType *AT = Context.getAsArrayType(T))
3285    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3286
3287  if (const PointerType *PT = T->getAs<PointerType>()) {
3288    // Find the innermost pointer type.
3289    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3290      PT = T;
3291
3292    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3293      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3294  }
3295
3296  const RecordType *RT = T->getAs<RecordType>();
3297  if (!RT)
3298    return false;
3299
3300  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3301
3302  // We can't answer whether something is abstract until it has a
3303  // definition.  If it's currently being defined, we'll walk back
3304  // over all the declarations when we have a full definition.
3305  const CXXRecordDecl *Def = RD->getDefinition();
3306  if (!Def || Def->isBeingDefined())
3307    return false;
3308
3309  if (!RD->isAbstract())
3310    return false;
3311
3312  Diag(Loc, PD) << RD->getDeclName();
3313  DiagnoseAbstractType(RD);
3314
3315  return true;
3316}
3317
3318void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3319  // Check if we've already emitted the list of pure virtual functions
3320  // for this class.
3321  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3322    return;
3323
3324  CXXFinalOverriderMap FinalOverriders;
3325  RD->getFinalOverriders(FinalOverriders);
3326
3327  // Keep a set of seen pure methods so we won't diagnose the same method
3328  // more than once.
3329  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3330
3331  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3332                                   MEnd = FinalOverriders.end();
3333       M != MEnd;
3334       ++M) {
3335    for (OverridingMethods::iterator SO = M->second.begin(),
3336                                  SOEnd = M->second.end();
3337         SO != SOEnd; ++SO) {
3338      // C++ [class.abstract]p4:
3339      //   A class is abstract if it contains or inherits at least one
3340      //   pure virtual function for which the final overrider is pure
3341      //   virtual.
3342
3343      //
3344      if (SO->second.size() != 1)
3345        continue;
3346
3347      if (!SO->second.front().Method->isPure())
3348        continue;
3349
3350      if (!SeenPureMethods.insert(SO->second.front().Method))
3351        continue;
3352
3353      Diag(SO->second.front().Method->getLocation(),
3354           diag::note_pure_virtual_function)
3355        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3356    }
3357  }
3358
3359  if (!PureVirtualClassDiagSet)
3360    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3361  PureVirtualClassDiagSet->insert(RD);
3362}
3363
3364namespace {
3365struct AbstractUsageInfo {
3366  Sema &S;
3367  CXXRecordDecl *Record;
3368  CanQualType AbstractType;
3369  bool Invalid;
3370
3371  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3372    : S(S), Record(Record),
3373      AbstractType(S.Context.getCanonicalType(
3374                   S.Context.getTypeDeclType(Record))),
3375      Invalid(false) {}
3376
3377  void DiagnoseAbstractType() {
3378    if (Invalid) return;
3379    S.DiagnoseAbstractType(Record);
3380    Invalid = true;
3381  }
3382
3383  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3384};
3385
3386struct CheckAbstractUsage {
3387  AbstractUsageInfo &Info;
3388  const NamedDecl *Ctx;
3389
3390  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3391    : Info(Info), Ctx(Ctx) {}
3392
3393  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3394    switch (TL.getTypeLocClass()) {
3395#define ABSTRACT_TYPELOC(CLASS, PARENT)
3396#define TYPELOC(CLASS, PARENT) \
3397    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3398#include "clang/AST/TypeLocNodes.def"
3399    }
3400  }
3401
3402  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3403    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3404    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3405      if (!TL.getArg(I))
3406        continue;
3407
3408      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3409      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3410    }
3411  }
3412
3413  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3414    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3415  }
3416
3417  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3418    // Visit the type parameters from a permissive context.
3419    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3420      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3421      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3422        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3423          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3424      // TODO: other template argument types?
3425    }
3426  }
3427
3428  // Visit pointee types from a permissive context.
3429#define CheckPolymorphic(Type) \
3430  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3431    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3432  }
3433  CheckPolymorphic(PointerTypeLoc)
3434  CheckPolymorphic(ReferenceTypeLoc)
3435  CheckPolymorphic(MemberPointerTypeLoc)
3436  CheckPolymorphic(BlockPointerTypeLoc)
3437  CheckPolymorphic(AtomicTypeLoc)
3438
3439  /// Handle all the types we haven't given a more specific
3440  /// implementation for above.
3441  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3442    // Every other kind of type that we haven't called out already
3443    // that has an inner type is either (1) sugar or (2) contains that
3444    // inner type in some way as a subobject.
3445    if (TypeLoc Next = TL.getNextTypeLoc())
3446      return Visit(Next, Sel);
3447
3448    // If there's no inner type and we're in a permissive context,
3449    // don't diagnose.
3450    if (Sel == Sema::AbstractNone) return;
3451
3452    // Check whether the type matches the abstract type.
3453    QualType T = TL.getType();
3454    if (T->isArrayType()) {
3455      Sel = Sema::AbstractArrayType;
3456      T = Info.S.Context.getBaseElementType(T);
3457    }
3458    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3459    if (CT != Info.AbstractType) return;
3460
3461    // It matched; do some magic.
3462    if (Sel == Sema::AbstractArrayType) {
3463      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3464        << T << TL.getSourceRange();
3465    } else {
3466      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3467        << Sel << T << TL.getSourceRange();
3468    }
3469    Info.DiagnoseAbstractType();
3470  }
3471};
3472
3473void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3474                                  Sema::AbstractDiagSelID Sel) {
3475  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3476}
3477
3478}
3479
3480/// Check for invalid uses of an abstract type in a method declaration.
3481static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3482                                    CXXMethodDecl *MD) {
3483  // No need to do the check on definitions, which require that
3484  // the return/param types be complete.
3485  if (MD->doesThisDeclarationHaveABody())
3486    return;
3487
3488  // For safety's sake, just ignore it if we don't have type source
3489  // information.  This should never happen for non-implicit methods,
3490  // but...
3491  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3492    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3493}
3494
3495/// Check for invalid uses of an abstract type within a class definition.
3496static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3497                                    CXXRecordDecl *RD) {
3498  for (CXXRecordDecl::decl_iterator
3499         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3500    Decl *D = *I;
3501    if (D->isImplicit()) continue;
3502
3503    // Methods and method templates.
3504    if (isa<CXXMethodDecl>(D)) {
3505      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3506    } else if (isa<FunctionTemplateDecl>(D)) {
3507      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3508      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3509
3510    // Fields and static variables.
3511    } else if (isa<FieldDecl>(D)) {
3512      FieldDecl *FD = cast<FieldDecl>(D);
3513      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3514        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3515    } else if (isa<VarDecl>(D)) {
3516      VarDecl *VD = cast<VarDecl>(D);
3517      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3518        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3519
3520    // Nested classes and class templates.
3521    } else if (isa<CXXRecordDecl>(D)) {
3522      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3523    } else if (isa<ClassTemplateDecl>(D)) {
3524      CheckAbstractClassUsage(Info,
3525                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3526    }
3527  }
3528}
3529
3530/// \brief Perform semantic checks on a class definition that has been
3531/// completing, introducing implicitly-declared members, checking for
3532/// abstract types, etc.
3533void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3534  if (!Record)
3535    return;
3536
3537  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3538    AbstractUsageInfo Info(*this, Record);
3539    CheckAbstractClassUsage(Info, Record);
3540  }
3541
3542  // If this is not an aggregate type and has no user-declared constructor,
3543  // complain about any non-static data members of reference or const scalar
3544  // type, since they will never get initializers.
3545  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3546      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3547    bool Complained = false;
3548    for (RecordDecl::field_iterator F = Record->field_begin(),
3549                                 FEnd = Record->field_end();
3550         F != FEnd; ++F) {
3551      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3552        continue;
3553
3554      if (F->getType()->isReferenceType() ||
3555          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3556        if (!Complained) {
3557          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3558            << Record->getTagKind() << Record;
3559          Complained = true;
3560        }
3561
3562        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3563          << F->getType()->isReferenceType()
3564          << F->getDeclName();
3565      }
3566    }
3567  }
3568
3569  if (Record->isDynamicClass() && !Record->isDependentType())
3570    DynamicClasses.push_back(Record);
3571
3572  if (Record->getIdentifier()) {
3573    // C++ [class.mem]p13:
3574    //   If T is the name of a class, then each of the following shall have a
3575    //   name different from T:
3576    //     - every member of every anonymous union that is a member of class T.
3577    //
3578    // C++ [class.mem]p14:
3579    //   In addition, if class T has a user-declared constructor (12.1), every
3580    //   non-static data member of class T shall have a name different from T.
3581    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3582         R.first != R.second; ++R.first) {
3583      NamedDecl *D = *R.first;
3584      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3585          isa<IndirectFieldDecl>(D)) {
3586        Diag(D->getLocation(), diag::err_member_name_of_class)
3587          << D->getDeclName();
3588        break;
3589      }
3590    }
3591  }
3592
3593  // Warn if the class has virtual methods but non-virtual public destructor.
3594  if (Record->isPolymorphic() && !Record->isDependentType()) {
3595    CXXDestructorDecl *dtor = Record->getDestructor();
3596    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3597      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3598           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3599  }
3600
3601  // See if a method overloads virtual methods in a base
3602  /// class without overriding any.
3603  if (!Record->isDependentType()) {
3604    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3605                                     MEnd = Record->method_end();
3606         M != MEnd; ++M) {
3607      if (!(*M)->isStatic())
3608        DiagnoseHiddenVirtualMethods(Record, *M);
3609    }
3610  }
3611
3612  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3613  // function that is not a constructor declares that member function to be
3614  // const. [...] The class of which that function is a member shall be
3615  // a literal type.
3616  //
3617  // It's fine to diagnose constructors here too: such constructors cannot
3618  // produce a constant expression, so are ill-formed (no diagnostic required).
3619  //
3620  // If the class has virtual bases, any constexpr members will already have
3621  // been diagnosed by the checks performed on the member declaration, so
3622  // suppress this (less useful) diagnostic.
3623  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3624      !Record->isLiteral() && !Record->getNumVBases()) {
3625    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3626                                     MEnd = Record->method_end();
3627         M != MEnd; ++M) {
3628      if ((*M)->isConstexpr()) {
3629        switch (Record->getTemplateSpecializationKind()) {
3630        case TSK_ImplicitInstantiation:
3631        case TSK_ExplicitInstantiationDeclaration:
3632        case TSK_ExplicitInstantiationDefinition:
3633          // If a template instantiates to a non-literal type, but its members
3634          // instantiate to constexpr functions, the template is technically
3635          // ill-formed, but we allow it for sanity. Such members are treated as
3636          // non-constexpr.
3637          (*M)->setConstexpr(false);
3638          continue;
3639
3640        case TSK_Undeclared:
3641        case TSK_ExplicitSpecialization:
3642          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3643                             PDiag(diag::err_constexpr_method_non_literal));
3644          break;
3645        }
3646
3647        // Only produce one error per class.
3648        break;
3649      }
3650    }
3651  }
3652
3653  // Declare inherited constructors. We do this eagerly here because:
3654  // - The standard requires an eager diagnostic for conflicting inherited
3655  //   constructors from different classes.
3656  // - The lazy declaration of the other implicit constructors is so as to not
3657  //   waste space and performance on classes that are not meant to be
3658  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3659  //   have inherited constructors.
3660  DeclareInheritedConstructors(Record);
3661
3662  if (!Record->isDependentType())
3663    CheckExplicitlyDefaultedMethods(Record);
3664}
3665
3666void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3667  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3668                                      ME = Record->method_end();
3669       MI != ME; ++MI) {
3670    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3671      switch (getSpecialMember(*MI)) {
3672      case CXXDefaultConstructor:
3673        CheckExplicitlyDefaultedDefaultConstructor(
3674                                                  cast<CXXConstructorDecl>(*MI));
3675        break;
3676
3677      case CXXDestructor:
3678        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3679        break;
3680
3681      case CXXCopyConstructor:
3682        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3683        break;
3684
3685      case CXXCopyAssignment:
3686        CheckExplicitlyDefaultedCopyAssignment(*MI);
3687        break;
3688
3689      case CXXMoveConstructor:
3690        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3691        break;
3692
3693      case CXXMoveAssignment:
3694        CheckExplicitlyDefaultedMoveAssignment(*MI);
3695        break;
3696
3697      case CXXInvalid:
3698        llvm_unreachable("non-special member explicitly defaulted!");
3699      }
3700    }
3701  }
3702
3703}
3704
3705void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3706  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3707
3708  // Whether this was the first-declared instance of the constructor.
3709  // This affects whether we implicitly add an exception spec (and, eventually,
3710  // constexpr). It is also ill-formed to explicitly default a constructor such
3711  // that it would be deleted. (C++0x [decl.fct.def.default])
3712  bool First = CD == CD->getCanonicalDecl();
3713
3714  bool HadError = false;
3715  if (CD->getNumParams() != 0) {
3716    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3717      << CD->getSourceRange();
3718    HadError = true;
3719  }
3720
3721  ImplicitExceptionSpecification Spec
3722    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3723  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3724  if (EPI.ExceptionSpecType == EST_Delayed) {
3725    // Exception specification depends on some deferred part of the class. We'll
3726    // try again when the class's definition has been fully processed.
3727    return;
3728  }
3729  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3730                          *ExceptionType = Context.getFunctionType(
3731                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3732
3733  if (CtorType->hasExceptionSpec()) {
3734    if (CheckEquivalentExceptionSpec(
3735          PDiag(diag::err_incorrect_defaulted_exception_spec)
3736            << CXXDefaultConstructor,
3737          PDiag(),
3738          ExceptionType, SourceLocation(),
3739          CtorType, CD->getLocation())) {
3740      HadError = true;
3741    }
3742  } else if (First) {
3743    // We set the declaration to have the computed exception spec here.
3744    // We know there are no parameters.
3745    EPI.ExtInfo = CtorType->getExtInfo();
3746    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3747  }
3748
3749  if (HadError) {
3750    CD->setInvalidDecl();
3751    return;
3752  }
3753
3754  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3755    if (First) {
3756      CD->setDeletedAsWritten();
3757    } else {
3758      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3759        << CXXDefaultConstructor;
3760      CD->setInvalidDecl();
3761    }
3762  }
3763}
3764
3765void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3766  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3767
3768  // Whether this was the first-declared instance of the constructor.
3769  bool First = CD == CD->getCanonicalDecl();
3770
3771  bool HadError = false;
3772  if (CD->getNumParams() != 1) {
3773    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3774      << CD->getSourceRange();
3775    HadError = true;
3776  }
3777
3778  ImplicitExceptionSpecification Spec(Context);
3779  bool Const;
3780  llvm::tie(Spec, Const) =
3781    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3782
3783  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3784  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3785                          *ExceptionType = Context.getFunctionType(
3786                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3787
3788  // Check for parameter type matching.
3789  // This is a copy ctor so we know it's a cv-qualified reference to T.
3790  QualType ArgType = CtorType->getArgType(0);
3791  if (ArgType->getPointeeType().isVolatileQualified()) {
3792    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3793    HadError = true;
3794  }
3795  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3796    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3797    HadError = true;
3798  }
3799
3800  if (CtorType->hasExceptionSpec()) {
3801    if (CheckEquivalentExceptionSpec(
3802          PDiag(diag::err_incorrect_defaulted_exception_spec)
3803            << CXXCopyConstructor,
3804          PDiag(),
3805          ExceptionType, SourceLocation(),
3806          CtorType, CD->getLocation())) {
3807      HadError = true;
3808    }
3809  } else if (First) {
3810    // We set the declaration to have the computed exception spec here.
3811    // We duplicate the one parameter type.
3812    EPI.ExtInfo = CtorType->getExtInfo();
3813    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3814  }
3815
3816  if (HadError) {
3817    CD->setInvalidDecl();
3818    return;
3819  }
3820
3821  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3822    if (First) {
3823      CD->setDeletedAsWritten();
3824    } else {
3825      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3826        << CXXCopyConstructor;
3827      CD->setInvalidDecl();
3828    }
3829  }
3830}
3831
3832void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3833  assert(MD->isExplicitlyDefaulted());
3834
3835  // Whether this was the first-declared instance of the operator
3836  bool First = MD == MD->getCanonicalDecl();
3837
3838  bool HadError = false;
3839  if (MD->getNumParams() != 1) {
3840    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3841      << MD->getSourceRange();
3842    HadError = true;
3843  }
3844
3845  QualType ReturnType =
3846    MD->getType()->getAs<FunctionType>()->getResultType();
3847  if (!ReturnType->isLValueReferenceType() ||
3848      !Context.hasSameType(
3849        Context.getCanonicalType(ReturnType->getPointeeType()),
3850        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3851    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3852    HadError = true;
3853  }
3854
3855  ImplicitExceptionSpecification Spec(Context);
3856  bool Const;
3857  llvm::tie(Spec, Const) =
3858    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3859
3860  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3861  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3862                          *ExceptionType = Context.getFunctionType(
3863                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3864
3865  QualType ArgType = OperType->getArgType(0);
3866  if (!ArgType->isLValueReferenceType()) {
3867    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3868    HadError = true;
3869  } else {
3870    if (ArgType->getPointeeType().isVolatileQualified()) {
3871      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3872      HadError = true;
3873    }
3874    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3875      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3876      HadError = true;
3877    }
3878  }
3879
3880  if (OperType->getTypeQuals()) {
3881    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3882    HadError = true;
3883  }
3884
3885  if (OperType->hasExceptionSpec()) {
3886    if (CheckEquivalentExceptionSpec(
3887          PDiag(diag::err_incorrect_defaulted_exception_spec)
3888            << CXXCopyAssignment,
3889          PDiag(),
3890          ExceptionType, SourceLocation(),
3891          OperType, MD->getLocation())) {
3892      HadError = true;
3893    }
3894  } else if (First) {
3895    // We set the declaration to have the computed exception spec here.
3896    // We duplicate the one parameter type.
3897    EPI.RefQualifier = OperType->getRefQualifier();
3898    EPI.ExtInfo = OperType->getExtInfo();
3899    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3900  }
3901
3902  if (HadError) {
3903    MD->setInvalidDecl();
3904    return;
3905  }
3906
3907  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3908    if (First) {
3909      MD->setDeletedAsWritten();
3910    } else {
3911      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3912        << CXXCopyAssignment;
3913      MD->setInvalidDecl();
3914    }
3915  }
3916}
3917
3918void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
3919  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
3920
3921  // Whether this was the first-declared instance of the constructor.
3922  bool First = CD == CD->getCanonicalDecl();
3923
3924  bool HadError = false;
3925  if (CD->getNumParams() != 1) {
3926    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
3927      << CD->getSourceRange();
3928    HadError = true;
3929  }
3930
3931  ImplicitExceptionSpecification Spec(
3932      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
3933
3934  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3935  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3936                          *ExceptionType = Context.getFunctionType(
3937                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3938
3939  // Check for parameter type matching.
3940  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
3941  QualType ArgType = CtorType->getArgType(0);
3942  if (ArgType->getPointeeType().isVolatileQualified()) {
3943    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
3944    HadError = true;
3945  }
3946  if (ArgType->getPointeeType().isConstQualified()) {
3947    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
3948    HadError = true;
3949  }
3950
3951  if (CtorType->hasExceptionSpec()) {
3952    if (CheckEquivalentExceptionSpec(
3953          PDiag(diag::err_incorrect_defaulted_exception_spec)
3954            << CXXMoveConstructor,
3955          PDiag(),
3956          ExceptionType, SourceLocation(),
3957          CtorType, CD->getLocation())) {
3958      HadError = true;
3959    }
3960  } else if (First) {
3961    // We set the declaration to have the computed exception spec here.
3962    // We duplicate the one parameter type.
3963    EPI.ExtInfo = CtorType->getExtInfo();
3964    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3965  }
3966
3967  if (HadError) {
3968    CD->setInvalidDecl();
3969    return;
3970  }
3971
3972  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
3973    if (First) {
3974      CD->setDeletedAsWritten();
3975    } else {
3976      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3977        << CXXMoveConstructor;
3978      CD->setInvalidDecl();
3979    }
3980  }
3981}
3982
3983void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
3984  assert(MD->isExplicitlyDefaulted());
3985
3986  // Whether this was the first-declared instance of the operator
3987  bool First = MD == MD->getCanonicalDecl();
3988
3989  bool HadError = false;
3990  if (MD->getNumParams() != 1) {
3991    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
3992      << MD->getSourceRange();
3993    HadError = true;
3994  }
3995
3996  QualType ReturnType =
3997    MD->getType()->getAs<FunctionType>()->getResultType();
3998  if (!ReturnType->isLValueReferenceType() ||
3999      !Context.hasSameType(
4000        Context.getCanonicalType(ReturnType->getPointeeType()),
4001        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4002    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4003    HadError = true;
4004  }
4005
4006  ImplicitExceptionSpecification Spec(
4007      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4008
4009  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4010  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4011                          *ExceptionType = Context.getFunctionType(
4012                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4013
4014  QualType ArgType = OperType->getArgType(0);
4015  if (!ArgType->isRValueReferenceType()) {
4016    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4017    HadError = true;
4018  } else {
4019    if (ArgType->getPointeeType().isVolatileQualified()) {
4020      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4021      HadError = true;
4022    }
4023    if (ArgType->getPointeeType().isConstQualified()) {
4024      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4025      HadError = true;
4026    }
4027  }
4028
4029  if (OperType->getTypeQuals()) {
4030    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4031    HadError = true;
4032  }
4033
4034  if (OperType->hasExceptionSpec()) {
4035    if (CheckEquivalentExceptionSpec(
4036          PDiag(diag::err_incorrect_defaulted_exception_spec)
4037            << CXXMoveAssignment,
4038          PDiag(),
4039          ExceptionType, SourceLocation(),
4040          OperType, MD->getLocation())) {
4041      HadError = true;
4042    }
4043  } else if (First) {
4044    // We set the declaration to have the computed exception spec here.
4045    // We duplicate the one parameter type.
4046    EPI.RefQualifier = OperType->getRefQualifier();
4047    EPI.ExtInfo = OperType->getExtInfo();
4048    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4049  }
4050
4051  if (HadError) {
4052    MD->setInvalidDecl();
4053    return;
4054  }
4055
4056  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4057    if (First) {
4058      MD->setDeletedAsWritten();
4059    } else {
4060      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4061        << CXXMoveAssignment;
4062      MD->setInvalidDecl();
4063    }
4064  }
4065}
4066
4067void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4068  assert(DD->isExplicitlyDefaulted());
4069
4070  // Whether this was the first-declared instance of the destructor.
4071  bool First = DD == DD->getCanonicalDecl();
4072
4073  ImplicitExceptionSpecification Spec
4074    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4075  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4076  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4077                          *ExceptionType = Context.getFunctionType(
4078                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4079
4080  if (DtorType->hasExceptionSpec()) {
4081    if (CheckEquivalentExceptionSpec(
4082          PDiag(diag::err_incorrect_defaulted_exception_spec)
4083            << CXXDestructor,
4084          PDiag(),
4085          ExceptionType, SourceLocation(),
4086          DtorType, DD->getLocation())) {
4087      DD->setInvalidDecl();
4088      return;
4089    }
4090  } else if (First) {
4091    // We set the declaration to have the computed exception spec here.
4092    // There are no parameters.
4093    EPI.ExtInfo = DtorType->getExtInfo();
4094    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4095  }
4096
4097  if (ShouldDeleteDestructor(DD)) {
4098    if (First) {
4099      DD->setDeletedAsWritten();
4100    } else {
4101      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4102        << CXXDestructor;
4103      DD->setInvalidDecl();
4104    }
4105  }
4106}
4107
4108/// This function implements the following C++0x paragraphs:
4109///  - [class.ctor]/5
4110///  - [class.copy]/11
4111bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4112  assert(!MD->isInvalidDecl());
4113  CXXRecordDecl *RD = MD->getParent();
4114  assert(!RD->isDependentType() && "do deletion after instantiation");
4115  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4116    return false;
4117
4118  bool IsUnion = RD->isUnion();
4119  bool IsConstructor = false;
4120  bool IsAssignment = false;
4121  bool IsMove = false;
4122
4123  bool ConstArg = false;
4124
4125  switch (CSM) {
4126  case CXXDefaultConstructor:
4127    IsConstructor = true;
4128    break;
4129  case CXXCopyConstructor:
4130    IsConstructor = true;
4131    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4132    break;
4133  case CXXMoveConstructor:
4134    IsConstructor = true;
4135    IsMove = true;
4136    break;
4137  default:
4138    llvm_unreachable("function only currently implemented for default ctors");
4139  }
4140
4141  SourceLocation Loc = MD->getLocation();
4142
4143  // Do access control from the special member function
4144  ContextRAII MethodContext(*this, MD);
4145
4146  bool AllConst = true;
4147
4148  // We do this because we should never actually use an anonymous
4149  // union's constructor.
4150  if (IsUnion && RD->isAnonymousStructOrUnion())
4151    return false;
4152
4153  // FIXME: We should put some diagnostic logic right into this function.
4154
4155  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4156                                          BE = RD->bases_end();
4157       BI != BE; ++BI) {
4158    // We'll handle this one later
4159    if (BI->isVirtual())
4160      continue;
4161
4162    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4163    assert(BaseDecl && "base isn't a CXXRecordDecl");
4164
4165    // Unless we have an assignment operator, the base's destructor must
4166    // be accessible and not deleted.
4167    if (!IsAssignment) {
4168      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4169      if (BaseDtor->isDeleted())
4170        return true;
4171      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4172          AR_accessible)
4173        return true;
4174    }
4175
4176    // Finding the corresponding member in the base should lead to a
4177    // unique, accessible, non-deleted function. If we are doing
4178    // a destructor, we have already checked this case.
4179    if (CSM != CXXDestructor) {
4180      SpecialMemberOverloadResult *SMOR =
4181        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4182                            false);
4183      if (!SMOR->hasSuccess())
4184        return true;
4185      CXXMethodDecl *BaseMember = SMOR->getMethod();
4186      if (IsConstructor) {
4187        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4188        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4189                                   PDiag()) != AR_accessible)
4190          return true;
4191
4192        // For a move operation, the corresponding operation must actually
4193        // be a move operation (and not a copy selected by overload
4194        // resolution) unless we are working on a trivially copyable class.
4195        if (IsMove && !BaseCtor->isMoveConstructor() &&
4196            !BaseDecl->isTriviallyCopyable())
4197          return true;
4198      }
4199    }
4200  }
4201
4202  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4203                                          BE = RD->vbases_end();
4204       BI != BE; ++BI) {
4205    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4206    assert(BaseDecl && "base isn't a CXXRecordDecl");
4207
4208    // Unless we have an assignment operator, the base's destructor must
4209    // be accessible and not deleted.
4210    if (!IsAssignment) {
4211      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4212      if (BaseDtor->isDeleted())
4213        return true;
4214      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4215          AR_accessible)
4216        return true;
4217    }
4218
4219    // Finding the corresponding member in the base should lead to a
4220    // unique, accessible, non-deleted function.
4221    if (CSM != CXXDestructor) {
4222      SpecialMemberOverloadResult *SMOR =
4223        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4224                            false);
4225      if (!SMOR->hasSuccess())
4226        return true;
4227      CXXMethodDecl *BaseMember = SMOR->getMethod();
4228      if (IsConstructor) {
4229        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4230        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4231                                   PDiag()) != AR_accessible)
4232          return true;
4233
4234        // For a move operation, the corresponding operation must actually
4235        // be a move operation (and not a copy selected by overload
4236        // resolution) unless we are working on a trivially copyable class.
4237        if (IsMove && !BaseCtor->isMoveConstructor() &&
4238            !BaseDecl->isTriviallyCopyable())
4239          return true;
4240      }
4241    }
4242  }
4243
4244  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4245                                     FE = RD->field_end();
4246       FI != FE; ++FI) {
4247    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4248      continue;
4249
4250    QualType FieldType = Context.getBaseElementType(FI->getType());
4251    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4252
4253    // For a default constructor, all references must be initialized in-class
4254    // and, if a union, it must have a non-const member.
4255    if (CSM == CXXDefaultConstructor) {
4256      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4257        return true;
4258
4259      if (IsUnion && !FieldType.isConstQualified())
4260        AllConst = false;
4261    // For a copy constructor, data members must not be of rvalue reference
4262    // type.
4263    } else if (CSM == CXXCopyConstructor) {
4264      if (FieldType->isRValueReferenceType())
4265        return true;
4266    }
4267
4268    if (FieldRecord) {
4269      // For a default constructor, a const member must have a user-provided
4270      // default constructor or else be explicitly initialized.
4271      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4272          !FI->hasInClassInitializer() &&
4273          !FieldRecord->hasUserProvidedDefaultConstructor())
4274        return true;
4275
4276      // Some additional restrictions exist on the variant members.
4277      if (!IsUnion && FieldRecord->isUnion() &&
4278          FieldRecord->isAnonymousStructOrUnion()) {
4279        // We're okay to reuse AllConst here since we only care about the
4280        // value otherwise if we're in a union.
4281        AllConst = true;
4282
4283        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4284                                           UE = FieldRecord->field_end();
4285             UI != UE; ++UI) {
4286          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4287          CXXRecordDecl *UnionFieldRecord =
4288            UnionFieldType->getAsCXXRecordDecl();
4289
4290          if (!UnionFieldType.isConstQualified())
4291            AllConst = false;
4292
4293          if (UnionFieldRecord) {
4294            // FIXME: Checking for accessibility and validity of this
4295            //        destructor is technically going beyond the
4296            //        standard, but this is believed to be a defect.
4297            if (!IsAssignment) {
4298              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4299              if (FieldDtor->isDeleted())
4300                return true;
4301              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4302                  AR_accessible)
4303                return true;
4304              if (!FieldDtor->isTrivial())
4305                return true;
4306            }
4307
4308            if (CSM != CXXDestructor) {
4309              SpecialMemberOverloadResult *SMOR =
4310                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4311                                    false, false, false);
4312              // FIXME: Checking for accessibility and validity of this
4313              //        corresponding member is technically going beyond the
4314              //        standard, but this is believed to be a defect.
4315              if (!SMOR->hasSuccess())
4316                return true;
4317
4318              CXXMethodDecl *FieldMember = SMOR->getMethod();
4319              // A member of a union must have a trivial corresponding
4320              // constructor.
4321              if (!FieldMember->isTrivial())
4322                return true;
4323
4324              if (IsConstructor) {
4325                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4326                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4327                                           PDiag()) != AR_accessible)
4328                return true;
4329              }
4330            }
4331          }
4332        }
4333
4334        // At least one member in each anonymous union must be non-const
4335        if (CSM == CXXDefaultConstructor && AllConst)
4336          return true;
4337
4338        // Don't try to initialize the anonymous union
4339        // This is technically non-conformant, but sanity demands it.
4340        continue;
4341      }
4342
4343      // Unless we're doing assignment, the field's destructor must be
4344      // accessible and not deleted.
4345      if (!IsAssignment) {
4346        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4347        if (FieldDtor->isDeleted())
4348          return true;
4349        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4350            AR_accessible)
4351          return true;
4352      }
4353
4354      // Check that the corresponding member of the field is accessible,
4355      // unique, and non-deleted. We don't do this if it has an explicit
4356      // initialization when default-constructing.
4357      if (CSM != CXXDestructor &&
4358          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4359        SpecialMemberOverloadResult *SMOR =
4360          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4361                              false);
4362        if (!SMOR->hasSuccess())
4363          return true;
4364
4365        CXXMethodDecl *FieldMember = SMOR->getMethod();
4366        if (IsConstructor) {
4367          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4368          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4369                                     PDiag()) != AR_accessible)
4370          return true;
4371
4372          // For a move operation, the corresponding operation must actually
4373          // be a move operation (and not a copy selected by overload
4374          // resolution) unless we are working on a trivially copyable class.
4375          if (IsMove && !FieldCtor->isMoveConstructor() &&
4376              !FieldRecord->isTriviallyCopyable())
4377            return true;
4378        }
4379
4380        // We need the corresponding member of a union to be trivial so that
4381        // we can safely copy them all simultaneously.
4382        // FIXME: Note that performing the check here (where we rely on the lack
4383        // of an in-class initializer) is technically ill-formed. However, this
4384        // seems most obviously to be a bug in the standard.
4385        if (IsUnion && !FieldMember->isTrivial())
4386          return true;
4387      }
4388    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4389               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4390      // We can't initialize a const member of non-class type to any value.
4391      return true;
4392    }
4393  }
4394
4395  // We can't have all const members in a union when default-constructing,
4396  // or else they're all nonsensical garbage values that can't be changed.
4397  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4398    return true;
4399
4400  return false;
4401}
4402
4403bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4404  CXXRecordDecl *RD = MD->getParent();
4405  assert(!RD->isDependentType() && "do deletion after instantiation");
4406  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4407    return false;
4408
4409  SourceLocation Loc = MD->getLocation();
4410
4411  // Do access control from the constructor
4412  ContextRAII MethodContext(*this, MD);
4413
4414  bool Union = RD->isUnion();
4415
4416  unsigned ArgQuals =
4417    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4418      Qualifiers::Const : 0;
4419
4420  // We do this because we should never actually use an anonymous
4421  // union's constructor.
4422  if (Union && RD->isAnonymousStructOrUnion())
4423    return false;
4424
4425  // FIXME: We should put some diagnostic logic right into this function.
4426
4427  // C++0x [class.copy]/20
4428  //    A defaulted [copy] assignment operator for class X is defined as deleted
4429  //    if X has:
4430
4431  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4432                                          BE = RD->bases_end();
4433       BI != BE; ++BI) {
4434    // We'll handle this one later
4435    if (BI->isVirtual())
4436      continue;
4437
4438    QualType BaseType = BI->getType();
4439    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4440    assert(BaseDecl && "base isn't a CXXRecordDecl");
4441
4442    // -- a [direct base class] B that cannot be [copied] because overload
4443    //    resolution, as applied to B's [copy] assignment operator, results in
4444    //    an ambiguity or a function that is deleted or inaccessible from the
4445    //    assignment operator
4446    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4447                                                      0);
4448    if (!CopyOper || CopyOper->isDeleted())
4449      return true;
4450    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4451      return true;
4452  }
4453
4454  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4455                                          BE = RD->vbases_end();
4456       BI != BE; ++BI) {
4457    QualType BaseType = BI->getType();
4458    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4459    assert(BaseDecl && "base isn't a CXXRecordDecl");
4460
4461    // -- a [virtual base class] B that cannot be [copied] because overload
4462    //    resolution, as applied to B's [copy] assignment operator, results in
4463    //    an ambiguity or a function that is deleted or inaccessible from the
4464    //    assignment operator
4465    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4466                                                      0);
4467    if (!CopyOper || CopyOper->isDeleted())
4468      return true;
4469    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4470      return true;
4471  }
4472
4473  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4474                                     FE = RD->field_end();
4475       FI != FE; ++FI) {
4476    if (FI->isUnnamedBitfield())
4477      continue;
4478
4479    QualType FieldType = Context.getBaseElementType(FI->getType());
4480
4481    // -- a non-static data member of reference type
4482    if (FieldType->isReferenceType())
4483      return true;
4484
4485    // -- a non-static data member of const non-class type (or array thereof)
4486    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4487      return true;
4488
4489    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4490
4491    if (FieldRecord) {
4492      // This is an anonymous union
4493      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4494        // Anonymous unions inside unions do not variant members create
4495        if (!Union) {
4496          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4497                                             UE = FieldRecord->field_end();
4498               UI != UE; ++UI) {
4499            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4500            CXXRecordDecl *UnionFieldRecord =
4501              UnionFieldType->getAsCXXRecordDecl();
4502
4503            // -- a variant member with a non-trivial [copy] assignment operator
4504            //    and X is a union-like class
4505            if (UnionFieldRecord &&
4506                !UnionFieldRecord->hasTrivialCopyAssignment())
4507              return true;
4508          }
4509        }
4510
4511        // Don't try to initalize an anonymous union
4512        continue;
4513      // -- a variant member with a non-trivial [copy] assignment operator
4514      //    and X is a union-like class
4515      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4516          return true;
4517      }
4518
4519      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4520                                                        false, 0);
4521      if (!CopyOper || CopyOper->isDeleted())
4522        return true;
4523      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4524        return true;
4525    }
4526  }
4527
4528  return false;
4529}
4530
4531bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4532  CXXRecordDecl *RD = MD->getParent();
4533  assert(!RD->isDependentType() && "do deletion after instantiation");
4534  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4535    return false;
4536
4537  SourceLocation Loc = MD->getLocation();
4538
4539  // Do access control from the constructor
4540  ContextRAII MethodContext(*this, MD);
4541
4542  bool Union = RD->isUnion();
4543
4544  // We do this because we should never actually use an anonymous
4545  // union's constructor.
4546  if (Union && RD->isAnonymousStructOrUnion())
4547    return false;
4548
4549  // C++0x [class.copy]/20
4550  //    A defaulted [move] assignment operator for class X is defined as deleted
4551  //    if X has:
4552
4553  //    -- for the move constructor, [...] any direct or indirect virtual base
4554  //       class.
4555  if (RD->getNumVBases() != 0)
4556    return true;
4557
4558  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4559                                          BE = RD->bases_end();
4560       BI != BE; ++BI) {
4561
4562    QualType BaseType = BI->getType();
4563    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4564    assert(BaseDecl && "base isn't a CXXRecordDecl");
4565
4566    // -- a [direct base class] B that cannot be [moved] because overload
4567    //    resolution, as applied to B's [move] assignment operator, results in
4568    //    an ambiguity or a function that is deleted or inaccessible from the
4569    //    assignment operator
4570    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4571    if (!MoveOper || MoveOper->isDeleted())
4572      return true;
4573    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4574      return true;
4575
4576    // -- for the move assignment operator, a [direct base class] with a type
4577    //    that does not have a move assignment operator and is not trivially
4578    //    copyable.
4579    if (!MoveOper->isMoveAssignmentOperator() &&
4580        !BaseDecl->isTriviallyCopyable())
4581      return true;
4582  }
4583
4584  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4585                                     FE = RD->field_end();
4586       FI != FE; ++FI) {
4587    if (FI->isUnnamedBitfield())
4588      continue;
4589
4590    QualType FieldType = Context.getBaseElementType(FI->getType());
4591
4592    // -- a non-static data member of reference type
4593    if (FieldType->isReferenceType())
4594      return true;
4595
4596    // -- a non-static data member of const non-class type (or array thereof)
4597    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4598      return true;
4599
4600    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4601
4602    if (FieldRecord) {
4603      // This is an anonymous union
4604      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4605        // Anonymous unions inside unions do not variant members create
4606        if (!Union) {
4607          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4608                                             UE = FieldRecord->field_end();
4609               UI != UE; ++UI) {
4610            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4611            CXXRecordDecl *UnionFieldRecord =
4612              UnionFieldType->getAsCXXRecordDecl();
4613
4614            // -- a variant member with a non-trivial [move] assignment operator
4615            //    and X is a union-like class
4616            if (UnionFieldRecord &&
4617                !UnionFieldRecord->hasTrivialMoveAssignment())
4618              return true;
4619          }
4620        }
4621
4622        // Don't try to initalize an anonymous union
4623        continue;
4624      // -- a variant member with a non-trivial [move] assignment operator
4625      //    and X is a union-like class
4626      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4627          return true;
4628      }
4629
4630      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4631      if (!MoveOper || MoveOper->isDeleted())
4632        return true;
4633      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4634        return true;
4635
4636      // -- for the move assignment operator, a [non-static data member] with a
4637      //    type that does not have a move assignment operator and is not
4638      //    trivially copyable.
4639      if (!MoveOper->isMoveAssignmentOperator() &&
4640          !FieldRecord->isTriviallyCopyable())
4641        return true;
4642    }
4643  }
4644
4645  return false;
4646}
4647
4648bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4649  CXXRecordDecl *RD = DD->getParent();
4650  assert(!RD->isDependentType() && "do deletion after instantiation");
4651  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4652    return false;
4653
4654  SourceLocation Loc = DD->getLocation();
4655
4656  // Do access control from the destructor
4657  ContextRAII CtorContext(*this, DD);
4658
4659  bool Union = RD->isUnion();
4660
4661  // We do this because we should never actually use an anonymous
4662  // union's destructor.
4663  if (Union && RD->isAnonymousStructOrUnion())
4664    return false;
4665
4666  // C++0x [class.dtor]p5
4667  //    A defaulted destructor for a class X is defined as deleted if:
4668  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4669                                          BE = RD->bases_end();
4670       BI != BE; ++BI) {
4671    // We'll handle this one later
4672    if (BI->isVirtual())
4673      continue;
4674
4675    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4676    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4677    assert(BaseDtor && "base has no destructor");
4678
4679    // -- any direct or virtual base class has a deleted destructor or
4680    //    a destructor that is inaccessible from the defaulted destructor
4681    if (BaseDtor->isDeleted())
4682      return true;
4683    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4684        AR_accessible)
4685      return true;
4686  }
4687
4688  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4689                                          BE = RD->vbases_end();
4690       BI != BE; ++BI) {
4691    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4692    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4693    assert(BaseDtor && "base has no destructor");
4694
4695    // -- any direct or virtual base class has a deleted destructor or
4696    //    a destructor that is inaccessible from the defaulted destructor
4697    if (BaseDtor->isDeleted())
4698      return true;
4699    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4700        AR_accessible)
4701      return true;
4702  }
4703
4704  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4705                                     FE = RD->field_end();
4706       FI != FE; ++FI) {
4707    QualType FieldType = Context.getBaseElementType(FI->getType());
4708    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4709    if (FieldRecord) {
4710      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4711         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4712                                            UE = FieldRecord->field_end();
4713              UI != UE; ++UI) {
4714           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4715           CXXRecordDecl *UnionFieldRecord =
4716             UnionFieldType->getAsCXXRecordDecl();
4717
4718           // -- X is a union-like class that has a variant member with a non-
4719           //    trivial destructor.
4720           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4721             return true;
4722         }
4723      // Technically we are supposed to do this next check unconditionally.
4724      // But that makes absolutely no sense.
4725      } else {
4726        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4727
4728        // -- any of the non-static data members has class type M (or array
4729        //    thereof) and M has a deleted destructor or a destructor that is
4730        //    inaccessible from the defaulted destructor
4731        if (FieldDtor->isDeleted())
4732          return true;
4733        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4734          AR_accessible)
4735        return true;
4736
4737        // -- X is a union-like class that has a variant member with a non-
4738        //    trivial destructor.
4739        if (Union && !FieldDtor->isTrivial())
4740          return true;
4741      }
4742    }
4743  }
4744
4745  if (DD->isVirtual()) {
4746    FunctionDecl *OperatorDelete = 0;
4747    DeclarationName Name =
4748      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4749    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4750          false))
4751      return true;
4752  }
4753
4754
4755  return false;
4756}
4757
4758/// \brief Data used with FindHiddenVirtualMethod
4759namespace {
4760  struct FindHiddenVirtualMethodData {
4761    Sema *S;
4762    CXXMethodDecl *Method;
4763    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4764    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4765  };
4766}
4767
4768/// \brief Member lookup function that determines whether a given C++
4769/// method overloads virtual methods in a base class without overriding any,
4770/// to be used with CXXRecordDecl::lookupInBases().
4771static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4772                                    CXXBasePath &Path,
4773                                    void *UserData) {
4774  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4775
4776  FindHiddenVirtualMethodData &Data
4777    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4778
4779  DeclarationName Name = Data.Method->getDeclName();
4780  assert(Name.getNameKind() == DeclarationName::Identifier);
4781
4782  bool foundSameNameMethod = false;
4783  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4784  for (Path.Decls = BaseRecord->lookup(Name);
4785       Path.Decls.first != Path.Decls.second;
4786       ++Path.Decls.first) {
4787    NamedDecl *D = *Path.Decls.first;
4788    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4789      MD = MD->getCanonicalDecl();
4790      foundSameNameMethod = true;
4791      // Interested only in hidden virtual methods.
4792      if (!MD->isVirtual())
4793        continue;
4794      // If the method we are checking overrides a method from its base
4795      // don't warn about the other overloaded methods.
4796      if (!Data.S->IsOverload(Data.Method, MD, false))
4797        return true;
4798      // Collect the overload only if its hidden.
4799      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4800        overloadedMethods.push_back(MD);
4801    }
4802  }
4803
4804  if (foundSameNameMethod)
4805    Data.OverloadedMethods.append(overloadedMethods.begin(),
4806                                   overloadedMethods.end());
4807  return foundSameNameMethod;
4808}
4809
4810/// \brief See if a method overloads virtual methods in a base class without
4811/// overriding any.
4812void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4813  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4814                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4815    return;
4816  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4817    return;
4818
4819  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4820                     /*bool RecordPaths=*/false,
4821                     /*bool DetectVirtual=*/false);
4822  FindHiddenVirtualMethodData Data;
4823  Data.Method = MD;
4824  Data.S = this;
4825
4826  // Keep the base methods that were overriden or introduced in the subclass
4827  // by 'using' in a set. A base method not in this set is hidden.
4828  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4829       res.first != res.second; ++res.first) {
4830    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4831      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4832                                          E = MD->end_overridden_methods();
4833           I != E; ++I)
4834        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4835    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4836      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4837        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4838  }
4839
4840  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4841      !Data.OverloadedMethods.empty()) {
4842    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4843      << MD << (Data.OverloadedMethods.size() > 1);
4844
4845    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4846      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4847      Diag(overloadedMD->getLocation(),
4848           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4849    }
4850  }
4851}
4852
4853void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4854                                             Decl *TagDecl,
4855                                             SourceLocation LBrac,
4856                                             SourceLocation RBrac,
4857                                             AttributeList *AttrList) {
4858  if (!TagDecl)
4859    return;
4860
4861  AdjustDeclIfTemplate(TagDecl);
4862
4863  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4864              // strict aliasing violation!
4865              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4866              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4867
4868  CheckCompletedCXXClass(
4869                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4870}
4871
4872/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4873/// special functions, such as the default constructor, copy
4874/// constructor, or destructor, to the given C++ class (C++
4875/// [special]p1).  This routine can only be executed just before the
4876/// definition of the class is complete.
4877void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4878  if (!ClassDecl->hasUserDeclaredConstructor())
4879    ++ASTContext::NumImplicitDefaultConstructors;
4880
4881  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4882    ++ASTContext::NumImplicitCopyConstructors;
4883
4884  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4885    ++ASTContext::NumImplicitCopyAssignmentOperators;
4886
4887    // If we have a dynamic class, then the copy assignment operator may be
4888    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4889    // it shows up in the right place in the vtable and that we diagnose
4890    // problems with the implicit exception specification.
4891    if (ClassDecl->isDynamicClass())
4892      DeclareImplicitCopyAssignment(ClassDecl);
4893  }
4894
4895  if (!ClassDecl->hasUserDeclaredDestructor()) {
4896    ++ASTContext::NumImplicitDestructors;
4897
4898    // If we have a dynamic class, then the destructor may be virtual, so we
4899    // have to declare the destructor immediately. This ensures that, e.g., it
4900    // shows up in the right place in the vtable and that we diagnose problems
4901    // with the implicit exception specification.
4902    if (ClassDecl->isDynamicClass())
4903      DeclareImplicitDestructor(ClassDecl);
4904  }
4905}
4906
4907void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4908  if (!D)
4909    return;
4910
4911  int NumParamList = D->getNumTemplateParameterLists();
4912  for (int i = 0; i < NumParamList; i++) {
4913    TemplateParameterList* Params = D->getTemplateParameterList(i);
4914    for (TemplateParameterList::iterator Param = Params->begin(),
4915                                      ParamEnd = Params->end();
4916          Param != ParamEnd; ++Param) {
4917      NamedDecl *Named = cast<NamedDecl>(*Param);
4918      if (Named->getDeclName()) {
4919        S->AddDecl(Named);
4920        IdResolver.AddDecl(Named);
4921      }
4922    }
4923  }
4924}
4925
4926void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4927  if (!D)
4928    return;
4929
4930  TemplateParameterList *Params = 0;
4931  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4932    Params = Template->getTemplateParameters();
4933  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4934           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4935    Params = PartialSpec->getTemplateParameters();
4936  else
4937    return;
4938
4939  for (TemplateParameterList::iterator Param = Params->begin(),
4940                                    ParamEnd = Params->end();
4941       Param != ParamEnd; ++Param) {
4942    NamedDecl *Named = cast<NamedDecl>(*Param);
4943    if (Named->getDeclName()) {
4944      S->AddDecl(Named);
4945      IdResolver.AddDecl(Named);
4946    }
4947  }
4948}
4949
4950void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4951  if (!RecordD) return;
4952  AdjustDeclIfTemplate(RecordD);
4953  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4954  PushDeclContext(S, Record);
4955}
4956
4957void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4958  if (!RecordD) return;
4959  PopDeclContext();
4960}
4961
4962/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4963/// parsing a top-level (non-nested) C++ class, and we are now
4964/// parsing those parts of the given Method declaration that could
4965/// not be parsed earlier (C++ [class.mem]p2), such as default
4966/// arguments. This action should enter the scope of the given
4967/// Method declaration as if we had just parsed the qualified method
4968/// name. However, it should not bring the parameters into scope;
4969/// that will be performed by ActOnDelayedCXXMethodParameter.
4970void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4971}
4972
4973/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4974/// C++ method declaration. We're (re-)introducing the given
4975/// function parameter into scope for use in parsing later parts of
4976/// the method declaration. For example, we could see an
4977/// ActOnParamDefaultArgument event for this parameter.
4978void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4979  if (!ParamD)
4980    return;
4981
4982  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4983
4984  // If this parameter has an unparsed default argument, clear it out
4985  // to make way for the parsed default argument.
4986  if (Param->hasUnparsedDefaultArg())
4987    Param->setDefaultArg(0);
4988
4989  S->AddDecl(Param);
4990  if (Param->getDeclName())
4991    IdResolver.AddDecl(Param);
4992}
4993
4994/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4995/// processing the delayed method declaration for Method. The method
4996/// declaration is now considered finished. There may be a separate
4997/// ActOnStartOfFunctionDef action later (not necessarily
4998/// immediately!) for this method, if it was also defined inside the
4999/// class body.
5000void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5001  if (!MethodD)
5002    return;
5003
5004  AdjustDeclIfTemplate(MethodD);
5005
5006  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5007
5008  // Now that we have our default arguments, check the constructor
5009  // again. It could produce additional diagnostics or affect whether
5010  // the class has implicitly-declared destructors, among other
5011  // things.
5012  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5013    CheckConstructor(Constructor);
5014
5015  // Check the default arguments, which we may have added.
5016  if (!Method->isInvalidDecl())
5017    CheckCXXDefaultArguments(Method);
5018}
5019
5020/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5021/// the well-formedness of the constructor declarator @p D with type @p
5022/// R. If there are any errors in the declarator, this routine will
5023/// emit diagnostics and set the invalid bit to true.  In any case, the type
5024/// will be updated to reflect a well-formed type for the constructor and
5025/// returned.
5026QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5027                                          StorageClass &SC) {
5028  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5029
5030  // C++ [class.ctor]p3:
5031  //   A constructor shall not be virtual (10.3) or static (9.4). A
5032  //   constructor can be invoked for a const, volatile or const
5033  //   volatile object. A constructor shall not be declared const,
5034  //   volatile, or const volatile (9.3.2).
5035  if (isVirtual) {
5036    if (!D.isInvalidType())
5037      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5038        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5039        << SourceRange(D.getIdentifierLoc());
5040    D.setInvalidType();
5041  }
5042  if (SC == SC_Static) {
5043    if (!D.isInvalidType())
5044      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5045        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5046        << SourceRange(D.getIdentifierLoc());
5047    D.setInvalidType();
5048    SC = SC_None;
5049  }
5050
5051  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5052  if (FTI.TypeQuals != 0) {
5053    if (FTI.TypeQuals & Qualifiers::Const)
5054      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5055        << "const" << SourceRange(D.getIdentifierLoc());
5056    if (FTI.TypeQuals & Qualifiers::Volatile)
5057      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5058        << "volatile" << SourceRange(D.getIdentifierLoc());
5059    if (FTI.TypeQuals & Qualifiers::Restrict)
5060      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5061        << "restrict" << SourceRange(D.getIdentifierLoc());
5062    D.setInvalidType();
5063  }
5064
5065  // C++0x [class.ctor]p4:
5066  //   A constructor shall not be declared with a ref-qualifier.
5067  if (FTI.hasRefQualifier()) {
5068    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5069      << FTI.RefQualifierIsLValueRef
5070      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5071    D.setInvalidType();
5072  }
5073
5074  // Rebuild the function type "R" without any type qualifiers (in
5075  // case any of the errors above fired) and with "void" as the
5076  // return type, since constructors don't have return types.
5077  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5078  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5079    return R;
5080
5081  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5082  EPI.TypeQuals = 0;
5083  EPI.RefQualifier = RQ_None;
5084
5085  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5086                                 Proto->getNumArgs(), EPI);
5087}
5088
5089/// CheckConstructor - Checks a fully-formed constructor for
5090/// well-formedness, issuing any diagnostics required. Returns true if
5091/// the constructor declarator is invalid.
5092void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5093  CXXRecordDecl *ClassDecl
5094    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5095  if (!ClassDecl)
5096    return Constructor->setInvalidDecl();
5097
5098  // C++ [class.copy]p3:
5099  //   A declaration of a constructor for a class X is ill-formed if
5100  //   its first parameter is of type (optionally cv-qualified) X and
5101  //   either there are no other parameters or else all other
5102  //   parameters have default arguments.
5103  if (!Constructor->isInvalidDecl() &&
5104      ((Constructor->getNumParams() == 1) ||
5105       (Constructor->getNumParams() > 1 &&
5106        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5107      Constructor->getTemplateSpecializationKind()
5108                                              != TSK_ImplicitInstantiation) {
5109    QualType ParamType = Constructor->getParamDecl(0)->getType();
5110    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5111    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5112      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5113      const char *ConstRef
5114        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5115                                                        : " const &";
5116      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5117        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5118
5119      // FIXME: Rather that making the constructor invalid, we should endeavor
5120      // to fix the type.
5121      Constructor->setInvalidDecl();
5122    }
5123  }
5124}
5125
5126/// CheckDestructor - Checks a fully-formed destructor definition for
5127/// well-formedness, issuing any diagnostics required.  Returns true
5128/// on error.
5129bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5130  CXXRecordDecl *RD = Destructor->getParent();
5131
5132  if (Destructor->isVirtual()) {
5133    SourceLocation Loc;
5134
5135    if (!Destructor->isImplicit())
5136      Loc = Destructor->getLocation();
5137    else
5138      Loc = RD->getLocation();
5139
5140    // If we have a virtual destructor, look up the deallocation function
5141    FunctionDecl *OperatorDelete = 0;
5142    DeclarationName Name =
5143    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5144    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5145      return true;
5146
5147    MarkDeclarationReferenced(Loc, OperatorDelete);
5148
5149    Destructor->setOperatorDelete(OperatorDelete);
5150  }
5151
5152  return false;
5153}
5154
5155static inline bool
5156FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5157  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5158          FTI.ArgInfo[0].Param &&
5159          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5160}
5161
5162/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5163/// the well-formednes of the destructor declarator @p D with type @p
5164/// R. If there are any errors in the declarator, this routine will
5165/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5166/// will be updated to reflect a well-formed type for the destructor and
5167/// returned.
5168QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5169                                         StorageClass& SC) {
5170  // C++ [class.dtor]p1:
5171  //   [...] A typedef-name that names a class is a class-name
5172  //   (7.1.3); however, a typedef-name that names a class shall not
5173  //   be used as the identifier in the declarator for a destructor
5174  //   declaration.
5175  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5176  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5177    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5178      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5179  else if (const TemplateSpecializationType *TST =
5180             DeclaratorType->getAs<TemplateSpecializationType>())
5181    if (TST->isTypeAlias())
5182      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5183        << DeclaratorType << 1;
5184
5185  // C++ [class.dtor]p2:
5186  //   A destructor is used to destroy objects of its class type. A
5187  //   destructor takes no parameters, and no return type can be
5188  //   specified for it (not even void). The address of a destructor
5189  //   shall not be taken. A destructor shall not be static. A
5190  //   destructor can be invoked for a const, volatile or const
5191  //   volatile object. A destructor shall not be declared const,
5192  //   volatile or const volatile (9.3.2).
5193  if (SC == SC_Static) {
5194    if (!D.isInvalidType())
5195      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5196        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5197        << SourceRange(D.getIdentifierLoc())
5198        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5199
5200    SC = SC_None;
5201  }
5202  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5203    // Destructors don't have return types, but the parser will
5204    // happily parse something like:
5205    //
5206    //   class X {
5207    //     float ~X();
5208    //   };
5209    //
5210    // The return type will be eliminated later.
5211    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5212      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5213      << SourceRange(D.getIdentifierLoc());
5214  }
5215
5216  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5217  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5218    if (FTI.TypeQuals & Qualifiers::Const)
5219      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5220        << "const" << SourceRange(D.getIdentifierLoc());
5221    if (FTI.TypeQuals & Qualifiers::Volatile)
5222      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5223        << "volatile" << SourceRange(D.getIdentifierLoc());
5224    if (FTI.TypeQuals & Qualifiers::Restrict)
5225      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5226        << "restrict" << SourceRange(D.getIdentifierLoc());
5227    D.setInvalidType();
5228  }
5229
5230  // C++0x [class.dtor]p2:
5231  //   A destructor shall not be declared with a ref-qualifier.
5232  if (FTI.hasRefQualifier()) {
5233    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5234      << FTI.RefQualifierIsLValueRef
5235      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5236    D.setInvalidType();
5237  }
5238
5239  // Make sure we don't have any parameters.
5240  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5241    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5242
5243    // Delete the parameters.
5244    FTI.freeArgs();
5245    D.setInvalidType();
5246  }
5247
5248  // Make sure the destructor isn't variadic.
5249  if (FTI.isVariadic) {
5250    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5251    D.setInvalidType();
5252  }
5253
5254  // Rebuild the function type "R" without any type qualifiers or
5255  // parameters (in case any of the errors above fired) and with
5256  // "void" as the return type, since destructors don't have return
5257  // types.
5258  if (!D.isInvalidType())
5259    return R;
5260
5261  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5262  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5263  EPI.Variadic = false;
5264  EPI.TypeQuals = 0;
5265  EPI.RefQualifier = RQ_None;
5266  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5267}
5268
5269/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5270/// well-formednes of the conversion function declarator @p D with
5271/// type @p R. If there are any errors in the declarator, this routine
5272/// will emit diagnostics and return true. Otherwise, it will return
5273/// false. Either way, the type @p R will be updated to reflect a
5274/// well-formed type for the conversion operator.
5275void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5276                                     StorageClass& SC) {
5277  // C++ [class.conv.fct]p1:
5278  //   Neither parameter types nor return type can be specified. The
5279  //   type of a conversion function (8.3.5) is "function taking no
5280  //   parameter returning conversion-type-id."
5281  if (SC == SC_Static) {
5282    if (!D.isInvalidType())
5283      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5284        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5285        << SourceRange(D.getIdentifierLoc());
5286    D.setInvalidType();
5287    SC = SC_None;
5288  }
5289
5290  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5291
5292  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5293    // Conversion functions don't have return types, but the parser will
5294    // happily parse something like:
5295    //
5296    //   class X {
5297    //     float operator bool();
5298    //   };
5299    //
5300    // The return type will be changed later anyway.
5301    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5302      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5303      << SourceRange(D.getIdentifierLoc());
5304    D.setInvalidType();
5305  }
5306
5307  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5308
5309  // Make sure we don't have any parameters.
5310  if (Proto->getNumArgs() > 0) {
5311    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5312
5313    // Delete the parameters.
5314    D.getFunctionTypeInfo().freeArgs();
5315    D.setInvalidType();
5316  } else if (Proto->isVariadic()) {
5317    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5318    D.setInvalidType();
5319  }
5320
5321  // Diagnose "&operator bool()" and other such nonsense.  This
5322  // is actually a gcc extension which we don't support.
5323  if (Proto->getResultType() != ConvType) {
5324    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5325      << Proto->getResultType();
5326    D.setInvalidType();
5327    ConvType = Proto->getResultType();
5328  }
5329
5330  // C++ [class.conv.fct]p4:
5331  //   The conversion-type-id shall not represent a function type nor
5332  //   an array type.
5333  if (ConvType->isArrayType()) {
5334    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5335    ConvType = Context.getPointerType(ConvType);
5336    D.setInvalidType();
5337  } else if (ConvType->isFunctionType()) {
5338    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5339    ConvType = Context.getPointerType(ConvType);
5340    D.setInvalidType();
5341  }
5342
5343  // Rebuild the function type "R" without any parameters (in case any
5344  // of the errors above fired) and with the conversion type as the
5345  // return type.
5346  if (D.isInvalidType())
5347    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5348
5349  // C++0x explicit conversion operators.
5350  if (D.getDeclSpec().isExplicitSpecified())
5351    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5352         getLangOptions().CPlusPlus0x ?
5353           diag::warn_cxx98_compat_explicit_conversion_functions :
5354           diag::ext_explicit_conversion_functions)
5355      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5356}
5357
5358/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5359/// the declaration of the given C++ conversion function. This routine
5360/// is responsible for recording the conversion function in the C++
5361/// class, if possible.
5362Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5363  assert(Conversion && "Expected to receive a conversion function declaration");
5364
5365  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5366
5367  // Make sure we aren't redeclaring the conversion function.
5368  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5369
5370  // C++ [class.conv.fct]p1:
5371  //   [...] A conversion function is never used to convert a
5372  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5373  //   same object type (or a reference to it), to a (possibly
5374  //   cv-qualified) base class of that type (or a reference to it),
5375  //   or to (possibly cv-qualified) void.
5376  // FIXME: Suppress this warning if the conversion function ends up being a
5377  // virtual function that overrides a virtual function in a base class.
5378  QualType ClassType
5379    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5380  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5381    ConvType = ConvTypeRef->getPointeeType();
5382  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5383      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5384    /* Suppress diagnostics for instantiations. */;
5385  else if (ConvType->isRecordType()) {
5386    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5387    if (ConvType == ClassType)
5388      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5389        << ClassType;
5390    else if (IsDerivedFrom(ClassType, ConvType))
5391      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5392        <<  ClassType << ConvType;
5393  } else if (ConvType->isVoidType()) {
5394    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5395      << ClassType << ConvType;
5396  }
5397
5398  if (FunctionTemplateDecl *ConversionTemplate
5399                                = Conversion->getDescribedFunctionTemplate())
5400    return ConversionTemplate;
5401
5402  return Conversion;
5403}
5404
5405//===----------------------------------------------------------------------===//
5406// Namespace Handling
5407//===----------------------------------------------------------------------===//
5408
5409
5410
5411/// ActOnStartNamespaceDef - This is called at the start of a namespace
5412/// definition.
5413Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5414                                   SourceLocation InlineLoc,
5415                                   SourceLocation NamespaceLoc,
5416                                   SourceLocation IdentLoc,
5417                                   IdentifierInfo *II,
5418                                   SourceLocation LBrace,
5419                                   AttributeList *AttrList) {
5420  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5421  // For anonymous namespace, take the location of the left brace.
5422  SourceLocation Loc = II ? IdentLoc : LBrace;
5423  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
5424                                                 StartLoc, Loc, II);
5425  Namespc->setInline(InlineLoc.isValid());
5426
5427  Scope *DeclRegionScope = NamespcScope->getParent();
5428
5429  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5430
5431  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5432    PushNamespaceVisibilityAttr(Attr);
5433
5434  if (II) {
5435    // C++ [namespace.def]p2:
5436    //   The identifier in an original-namespace-definition shall not
5437    //   have been previously defined in the declarative region in
5438    //   which the original-namespace-definition appears. The
5439    //   identifier in an original-namespace-definition is the name of
5440    //   the namespace. Subsequently in that declarative region, it is
5441    //   treated as an original-namespace-name.
5442    //
5443    // Since namespace names are unique in their scope, and we don't
5444    // look through using directives, just look for any ordinary names.
5445
5446    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5447      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5448      Decl::IDNS_Namespace;
5449    NamedDecl *PrevDecl = 0;
5450    for (DeclContext::lookup_result R
5451            = CurContext->getRedeclContext()->lookup(II);
5452         R.first != R.second; ++R.first) {
5453      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5454        PrevDecl = *R.first;
5455        break;
5456      }
5457    }
5458
5459    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
5460      // This is an extended namespace definition.
5461      if (Namespc->isInline() != OrigNS->isInline()) {
5462        // inline-ness must match
5463        if (OrigNS->isInline()) {
5464          // The user probably just forgot the 'inline', so suggest that it
5465          // be added back.
5466          Diag(Namespc->getLocation(),
5467               diag::warn_inline_namespace_reopened_noninline)
5468            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5469        } else {
5470          Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
5471            << Namespc->isInline();
5472        }
5473        Diag(OrigNS->getLocation(), diag::note_previous_definition);
5474
5475        // Recover by ignoring the new namespace's inline status.
5476        Namespc->setInline(OrigNS->isInline());
5477      }
5478
5479      // Attach this namespace decl to the chain of extended namespace
5480      // definitions.
5481      OrigNS->setNextNamespace(Namespc);
5482      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
5483
5484      // Remove the previous declaration from the scope.
5485      if (DeclRegionScope->isDeclScope(OrigNS)) {
5486        IdResolver.RemoveDecl(OrigNS);
5487        DeclRegionScope->RemoveDecl(OrigNS);
5488      }
5489    } else if (PrevDecl) {
5490      // This is an invalid name redefinition.
5491      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
5492       << Namespc->getDeclName();
5493      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5494      Namespc->setInvalidDecl();
5495      // Continue on to push Namespc as current DeclContext and return it.
5496    } else if (II->isStr("std") &&
5497               CurContext->getRedeclContext()->isTranslationUnit()) {
5498      // This is the first "real" definition of the namespace "std", so update
5499      // our cache of the "std" namespace to point at this definition.
5500      if (NamespaceDecl *StdNS = getStdNamespace()) {
5501        // We had already defined a dummy namespace "std". Link this new
5502        // namespace definition to the dummy namespace "std".
5503        StdNS->setNextNamespace(Namespc);
5504        StdNS->setLocation(IdentLoc);
5505        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
5506      }
5507
5508      // Make our StdNamespace cache point at the first real definition of the
5509      // "std" namespace.
5510      StdNamespace = Namespc;
5511
5512      // Add this instance of "std" to the set of known namespaces
5513      KnownNamespaces[Namespc] = false;
5514    } else if (!Namespc->isInline()) {
5515      // Since this is an "original" namespace, add it to the known set of
5516      // namespaces if it is not an inline namespace.
5517      KnownNamespaces[Namespc] = false;
5518    }
5519
5520    PushOnScopeChains(Namespc, DeclRegionScope);
5521  } else {
5522    // Anonymous namespaces.
5523    assert(Namespc->isAnonymousNamespace());
5524
5525    // Link the anonymous namespace into its parent.
5526    NamespaceDecl *PrevDecl;
5527    DeclContext *Parent = CurContext->getRedeclContext();
5528    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5529      PrevDecl = TU->getAnonymousNamespace();
5530      TU->setAnonymousNamespace(Namespc);
5531    } else {
5532      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5533      PrevDecl = ND->getAnonymousNamespace();
5534      ND->setAnonymousNamespace(Namespc);
5535    }
5536
5537    // Link the anonymous namespace with its previous declaration.
5538    if (PrevDecl) {
5539      assert(PrevDecl->isAnonymousNamespace());
5540      assert(!PrevDecl->getNextNamespace());
5541      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
5542      PrevDecl->setNextNamespace(Namespc);
5543
5544      if (Namespc->isInline() != PrevDecl->isInline()) {
5545        // inline-ness must match
5546        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
5547          << Namespc->isInline();
5548        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5549        Namespc->setInvalidDecl();
5550        // Recover by ignoring the new namespace's inline status.
5551        Namespc->setInline(PrevDecl->isInline());
5552      }
5553    }
5554
5555    CurContext->addDecl(Namespc);
5556
5557    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5558    //   behaves as if it were replaced by
5559    //     namespace unique { /* empty body */ }
5560    //     using namespace unique;
5561    //     namespace unique { namespace-body }
5562    //   where all occurrences of 'unique' in a translation unit are
5563    //   replaced by the same identifier and this identifier differs
5564    //   from all other identifiers in the entire program.
5565
5566    // We just create the namespace with an empty name and then add an
5567    // implicit using declaration, just like the standard suggests.
5568    //
5569    // CodeGen enforces the "universally unique" aspect by giving all
5570    // declarations semantically contained within an anonymous
5571    // namespace internal linkage.
5572
5573    if (!PrevDecl) {
5574      UsingDirectiveDecl* UD
5575        = UsingDirectiveDecl::Create(Context, CurContext,
5576                                     /* 'using' */ LBrace,
5577                                     /* 'namespace' */ SourceLocation(),
5578                                     /* qualifier */ NestedNameSpecifierLoc(),
5579                                     /* identifier */ SourceLocation(),
5580                                     Namespc,
5581                                     /* Ancestor */ CurContext);
5582      UD->setImplicit();
5583      CurContext->addDecl(UD);
5584    }
5585  }
5586
5587  // Although we could have an invalid decl (i.e. the namespace name is a
5588  // redefinition), push it as current DeclContext and try to continue parsing.
5589  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5590  // for the namespace has the declarations that showed up in that particular
5591  // namespace definition.
5592  PushDeclContext(NamespcScope, Namespc);
5593  return Namespc;
5594}
5595
5596/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5597/// is a namespace alias, returns the namespace it points to.
5598static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5599  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5600    return AD->getNamespace();
5601  return dyn_cast_or_null<NamespaceDecl>(D);
5602}
5603
5604/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5605/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5606void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5607  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5608  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5609  Namespc->setRBraceLoc(RBrace);
5610  PopDeclContext();
5611  if (Namespc->hasAttr<VisibilityAttr>())
5612    PopPragmaVisibility();
5613}
5614
5615CXXRecordDecl *Sema::getStdBadAlloc() const {
5616  return cast_or_null<CXXRecordDecl>(
5617                                  StdBadAlloc.get(Context.getExternalSource()));
5618}
5619
5620NamespaceDecl *Sema::getStdNamespace() const {
5621  return cast_or_null<NamespaceDecl>(
5622                                 StdNamespace.get(Context.getExternalSource()));
5623}
5624
5625/// \brief Retrieve the special "std" namespace, which may require us to
5626/// implicitly define the namespace.
5627NamespaceDecl *Sema::getOrCreateStdNamespace() {
5628  if (!StdNamespace) {
5629    // The "std" namespace has not yet been defined, so build one implicitly.
5630    StdNamespace = NamespaceDecl::Create(Context,
5631                                         Context.getTranslationUnitDecl(),
5632                                         SourceLocation(), SourceLocation(),
5633                                         &PP.getIdentifierTable().get("std"));
5634    getStdNamespace()->setImplicit(true);
5635  }
5636
5637  return getStdNamespace();
5638}
5639
5640/// \brief Determine whether a using statement is in a context where it will be
5641/// apply in all contexts.
5642static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5643  switch (CurContext->getDeclKind()) {
5644    case Decl::TranslationUnit:
5645      return true;
5646    case Decl::LinkageSpec:
5647      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5648    default:
5649      return false;
5650  }
5651}
5652
5653static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5654                                       CXXScopeSpec &SS,
5655                                       SourceLocation IdentLoc,
5656                                       IdentifierInfo *Ident) {
5657  R.clear();
5658  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5659                                               R.getLookupKind(), Sc, &SS, NULL,
5660                                               false, S.CTC_NoKeywords, NULL)) {
5661    if (Corrected.getCorrectionDeclAs<NamespaceDecl>() ||
5662        Corrected.getCorrectionDeclAs<NamespaceAliasDecl>()) {
5663      std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5664      std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5665      if (DeclContext *DC = S.computeDeclContext(SS, false))
5666        S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5667          << Ident << DC << CorrectedQuotedStr << SS.getRange()
5668          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5669      else
5670        S.Diag(IdentLoc, diag::err_using_directive_suggest)
5671          << Ident << CorrectedQuotedStr
5672          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5673
5674      S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5675           diag::note_namespace_defined_here) << CorrectedQuotedStr;
5676
5677      Ident = Corrected.getCorrectionAsIdentifierInfo();
5678      R.addDecl(Corrected.getCorrectionDecl());
5679      return true;
5680    }
5681    R.setLookupName(Ident);
5682  }
5683  return false;
5684}
5685
5686Decl *Sema::ActOnUsingDirective(Scope *S,
5687                                          SourceLocation UsingLoc,
5688                                          SourceLocation NamespcLoc,
5689                                          CXXScopeSpec &SS,
5690                                          SourceLocation IdentLoc,
5691                                          IdentifierInfo *NamespcName,
5692                                          AttributeList *AttrList) {
5693  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5694  assert(NamespcName && "Invalid NamespcName.");
5695  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5696
5697  // This can only happen along a recovery path.
5698  while (S->getFlags() & Scope::TemplateParamScope)
5699    S = S->getParent();
5700  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5701
5702  UsingDirectiveDecl *UDir = 0;
5703  NestedNameSpecifier *Qualifier = 0;
5704  if (SS.isSet())
5705    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5706
5707  // Lookup namespace name.
5708  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5709  LookupParsedName(R, S, &SS);
5710  if (R.isAmbiguous())
5711    return 0;
5712
5713  if (R.empty()) {
5714    R.clear();
5715    // Allow "using namespace std;" or "using namespace ::std;" even if
5716    // "std" hasn't been defined yet, for GCC compatibility.
5717    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5718        NamespcName->isStr("std")) {
5719      Diag(IdentLoc, diag::ext_using_undefined_std);
5720      R.addDecl(getOrCreateStdNamespace());
5721      R.resolveKind();
5722    }
5723    // Otherwise, attempt typo correction.
5724    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5725  }
5726
5727  if (!R.empty()) {
5728    NamedDecl *Named = R.getFoundDecl();
5729    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5730        && "expected namespace decl");
5731    // C++ [namespace.udir]p1:
5732    //   A using-directive specifies that the names in the nominated
5733    //   namespace can be used in the scope in which the
5734    //   using-directive appears after the using-directive. During
5735    //   unqualified name lookup (3.4.1), the names appear as if they
5736    //   were declared in the nearest enclosing namespace which
5737    //   contains both the using-directive and the nominated
5738    //   namespace. [Note: in this context, "contains" means "contains
5739    //   directly or indirectly". ]
5740
5741    // Find enclosing context containing both using-directive and
5742    // nominated namespace.
5743    NamespaceDecl *NS = getNamespaceDecl(Named);
5744    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5745    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5746      CommonAncestor = CommonAncestor->getParent();
5747
5748    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5749                                      SS.getWithLocInContext(Context),
5750                                      IdentLoc, Named, CommonAncestor);
5751
5752    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5753        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5754      Diag(IdentLoc, diag::warn_using_directive_in_header);
5755    }
5756
5757    PushUsingDirective(S, UDir);
5758  } else {
5759    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5760  }
5761
5762  // FIXME: We ignore attributes for now.
5763  return UDir;
5764}
5765
5766void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5767  // If scope has associated entity, then using directive is at namespace
5768  // or translation unit scope. We add UsingDirectiveDecls, into
5769  // it's lookup structure.
5770  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
5771    Ctx->addDecl(UDir);
5772  else
5773    // Otherwise it is block-sope. using-directives will affect lookup
5774    // only to the end of scope.
5775    S->PushUsingDirective(UDir);
5776}
5777
5778
5779Decl *Sema::ActOnUsingDeclaration(Scope *S,
5780                                  AccessSpecifier AS,
5781                                  bool HasUsingKeyword,
5782                                  SourceLocation UsingLoc,
5783                                  CXXScopeSpec &SS,
5784                                  UnqualifiedId &Name,
5785                                  AttributeList *AttrList,
5786                                  bool IsTypeName,
5787                                  SourceLocation TypenameLoc) {
5788  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5789
5790  switch (Name.getKind()) {
5791  case UnqualifiedId::IK_ImplicitSelfParam:
5792  case UnqualifiedId::IK_Identifier:
5793  case UnqualifiedId::IK_OperatorFunctionId:
5794  case UnqualifiedId::IK_LiteralOperatorId:
5795  case UnqualifiedId::IK_ConversionFunctionId:
5796    break;
5797
5798  case UnqualifiedId::IK_ConstructorName:
5799  case UnqualifiedId::IK_ConstructorTemplateId:
5800    // C++0x inherited constructors.
5801    Diag(Name.getSourceRange().getBegin(),
5802         getLangOptions().CPlusPlus0x ?
5803           diag::warn_cxx98_compat_using_decl_constructor :
5804           diag::err_using_decl_constructor)
5805      << SS.getRange();
5806
5807    if (getLangOptions().CPlusPlus0x) break;
5808
5809    return 0;
5810
5811  case UnqualifiedId::IK_DestructorName:
5812    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5813      << SS.getRange();
5814    return 0;
5815
5816  case UnqualifiedId::IK_TemplateId:
5817    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5818      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5819    return 0;
5820  }
5821
5822  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5823  DeclarationName TargetName = TargetNameInfo.getName();
5824  if (!TargetName)
5825    return 0;
5826
5827  // Warn about using declarations.
5828  // TODO: store that the declaration was written without 'using' and
5829  // talk about access decls instead of using decls in the
5830  // diagnostics.
5831  if (!HasUsingKeyword) {
5832    UsingLoc = Name.getSourceRange().getBegin();
5833
5834    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5835      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5836  }
5837
5838  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5839      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5840    return 0;
5841
5842  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5843                                        TargetNameInfo, AttrList,
5844                                        /* IsInstantiation */ false,
5845                                        IsTypeName, TypenameLoc);
5846  if (UD)
5847    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5848
5849  return UD;
5850}
5851
5852/// \brief Determine whether a using declaration considers the given
5853/// declarations as "equivalent", e.g., if they are redeclarations of
5854/// the same entity or are both typedefs of the same type.
5855static bool
5856IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5857                         bool &SuppressRedeclaration) {
5858  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5859    SuppressRedeclaration = false;
5860    return true;
5861  }
5862
5863  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5864    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5865      SuppressRedeclaration = true;
5866      return Context.hasSameType(TD1->getUnderlyingType(),
5867                                 TD2->getUnderlyingType());
5868    }
5869
5870  return false;
5871}
5872
5873
5874/// Determines whether to create a using shadow decl for a particular
5875/// decl, given the set of decls existing prior to this using lookup.
5876bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5877                                const LookupResult &Previous) {
5878  // Diagnose finding a decl which is not from a base class of the
5879  // current class.  We do this now because there are cases where this
5880  // function will silently decide not to build a shadow decl, which
5881  // will pre-empt further diagnostics.
5882  //
5883  // We don't need to do this in C++0x because we do the check once on
5884  // the qualifier.
5885  //
5886  // FIXME: diagnose the following if we care enough:
5887  //   struct A { int foo; };
5888  //   struct B : A { using A::foo; };
5889  //   template <class T> struct C : A {};
5890  //   template <class T> struct D : C<T> { using B::foo; } // <---
5891  // This is invalid (during instantiation) in C++03 because B::foo
5892  // resolves to the using decl in B, which is not a base class of D<T>.
5893  // We can't diagnose it immediately because C<T> is an unknown
5894  // specialization.  The UsingShadowDecl in D<T> then points directly
5895  // to A::foo, which will look well-formed when we instantiate.
5896  // The right solution is to not collapse the shadow-decl chain.
5897  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5898    DeclContext *OrigDC = Orig->getDeclContext();
5899
5900    // Handle enums and anonymous structs.
5901    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5902    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5903    while (OrigRec->isAnonymousStructOrUnion())
5904      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5905
5906    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5907      if (OrigDC == CurContext) {
5908        Diag(Using->getLocation(),
5909             diag::err_using_decl_nested_name_specifier_is_current_class)
5910          << Using->getQualifierLoc().getSourceRange();
5911        Diag(Orig->getLocation(), diag::note_using_decl_target);
5912        return true;
5913      }
5914
5915      Diag(Using->getQualifierLoc().getBeginLoc(),
5916           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5917        << Using->getQualifier()
5918        << cast<CXXRecordDecl>(CurContext)
5919        << Using->getQualifierLoc().getSourceRange();
5920      Diag(Orig->getLocation(), diag::note_using_decl_target);
5921      return true;
5922    }
5923  }
5924
5925  if (Previous.empty()) return false;
5926
5927  NamedDecl *Target = Orig;
5928  if (isa<UsingShadowDecl>(Target))
5929    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5930
5931  // If the target happens to be one of the previous declarations, we
5932  // don't have a conflict.
5933  //
5934  // FIXME: but we might be increasing its access, in which case we
5935  // should redeclare it.
5936  NamedDecl *NonTag = 0, *Tag = 0;
5937  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5938         I != E; ++I) {
5939    NamedDecl *D = (*I)->getUnderlyingDecl();
5940    bool Result;
5941    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5942      return Result;
5943
5944    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5945  }
5946
5947  if (Target->isFunctionOrFunctionTemplate()) {
5948    FunctionDecl *FD;
5949    if (isa<FunctionTemplateDecl>(Target))
5950      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5951    else
5952      FD = cast<FunctionDecl>(Target);
5953
5954    NamedDecl *OldDecl = 0;
5955    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5956    case Ovl_Overload:
5957      return false;
5958
5959    case Ovl_NonFunction:
5960      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5961      break;
5962
5963    // We found a decl with the exact signature.
5964    case Ovl_Match:
5965      // If we're in a record, we want to hide the target, so we
5966      // return true (without a diagnostic) to tell the caller not to
5967      // build a shadow decl.
5968      if (CurContext->isRecord())
5969        return true;
5970
5971      // If we're not in a record, this is an error.
5972      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5973      break;
5974    }
5975
5976    Diag(Target->getLocation(), diag::note_using_decl_target);
5977    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5978    return true;
5979  }
5980
5981  // Target is not a function.
5982
5983  if (isa<TagDecl>(Target)) {
5984    // No conflict between a tag and a non-tag.
5985    if (!Tag) return false;
5986
5987    Diag(Using->getLocation(), diag::err_using_decl_conflict);
5988    Diag(Target->getLocation(), diag::note_using_decl_target);
5989    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5990    return true;
5991  }
5992
5993  // No conflict between a tag and a non-tag.
5994  if (!NonTag) return false;
5995
5996  Diag(Using->getLocation(), diag::err_using_decl_conflict);
5997  Diag(Target->getLocation(), diag::note_using_decl_target);
5998  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5999  return true;
6000}
6001
6002/// Builds a shadow declaration corresponding to a 'using' declaration.
6003UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6004                                            UsingDecl *UD,
6005                                            NamedDecl *Orig) {
6006
6007  // If we resolved to another shadow declaration, just coalesce them.
6008  NamedDecl *Target = Orig;
6009  if (isa<UsingShadowDecl>(Target)) {
6010    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6011    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6012  }
6013
6014  UsingShadowDecl *Shadow
6015    = UsingShadowDecl::Create(Context, CurContext,
6016                              UD->getLocation(), UD, Target);
6017  UD->addShadowDecl(Shadow);
6018
6019  Shadow->setAccess(UD->getAccess());
6020  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6021    Shadow->setInvalidDecl();
6022
6023  if (S)
6024    PushOnScopeChains(Shadow, S);
6025  else
6026    CurContext->addDecl(Shadow);
6027
6028
6029  return Shadow;
6030}
6031
6032/// Hides a using shadow declaration.  This is required by the current
6033/// using-decl implementation when a resolvable using declaration in a
6034/// class is followed by a declaration which would hide or override
6035/// one or more of the using decl's targets; for example:
6036///
6037///   struct Base { void foo(int); };
6038///   struct Derived : Base {
6039///     using Base::foo;
6040///     void foo(int);
6041///   };
6042///
6043/// The governing language is C++03 [namespace.udecl]p12:
6044///
6045///   When a using-declaration brings names from a base class into a
6046///   derived class scope, member functions in the derived class
6047///   override and/or hide member functions with the same name and
6048///   parameter types in a base class (rather than conflicting).
6049///
6050/// There are two ways to implement this:
6051///   (1) optimistically create shadow decls when they're not hidden
6052///       by existing declarations, or
6053///   (2) don't create any shadow decls (or at least don't make them
6054///       visible) until we've fully parsed/instantiated the class.
6055/// The problem with (1) is that we might have to retroactively remove
6056/// a shadow decl, which requires several O(n) operations because the
6057/// decl structures are (very reasonably) not designed for removal.
6058/// (2) avoids this but is very fiddly and phase-dependent.
6059void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6060  if (Shadow->getDeclName().getNameKind() ==
6061        DeclarationName::CXXConversionFunctionName)
6062    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6063
6064  // Remove it from the DeclContext...
6065  Shadow->getDeclContext()->removeDecl(Shadow);
6066
6067  // ...and the scope, if applicable...
6068  if (S) {
6069    S->RemoveDecl(Shadow);
6070    IdResolver.RemoveDecl(Shadow);
6071  }
6072
6073  // ...and the using decl.
6074  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6075
6076  // TODO: complain somehow if Shadow was used.  It shouldn't
6077  // be possible for this to happen, because...?
6078}
6079
6080/// Builds a using declaration.
6081///
6082/// \param IsInstantiation - Whether this call arises from an
6083///   instantiation of an unresolved using declaration.  We treat
6084///   the lookup differently for these declarations.
6085NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6086                                       SourceLocation UsingLoc,
6087                                       CXXScopeSpec &SS,
6088                                       const DeclarationNameInfo &NameInfo,
6089                                       AttributeList *AttrList,
6090                                       bool IsInstantiation,
6091                                       bool IsTypeName,
6092                                       SourceLocation TypenameLoc) {
6093  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6094  SourceLocation IdentLoc = NameInfo.getLoc();
6095  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6096
6097  // FIXME: We ignore attributes for now.
6098
6099  if (SS.isEmpty()) {
6100    Diag(IdentLoc, diag::err_using_requires_qualname);
6101    return 0;
6102  }
6103
6104  // Do the redeclaration lookup in the current scope.
6105  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6106                        ForRedeclaration);
6107  Previous.setHideTags(false);
6108  if (S) {
6109    LookupName(Previous, S);
6110
6111    // It is really dumb that we have to do this.
6112    LookupResult::Filter F = Previous.makeFilter();
6113    while (F.hasNext()) {
6114      NamedDecl *D = F.next();
6115      if (!isDeclInScope(D, CurContext, S))
6116        F.erase();
6117    }
6118    F.done();
6119  } else {
6120    assert(IsInstantiation && "no scope in non-instantiation");
6121    assert(CurContext->isRecord() && "scope not record in instantiation");
6122    LookupQualifiedName(Previous, CurContext);
6123  }
6124
6125  // Check for invalid redeclarations.
6126  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6127    return 0;
6128
6129  // Check for bad qualifiers.
6130  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6131    return 0;
6132
6133  DeclContext *LookupContext = computeDeclContext(SS);
6134  NamedDecl *D;
6135  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6136  if (!LookupContext) {
6137    if (IsTypeName) {
6138      // FIXME: not all declaration name kinds are legal here
6139      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6140                                              UsingLoc, TypenameLoc,
6141                                              QualifierLoc,
6142                                              IdentLoc, NameInfo.getName());
6143    } else {
6144      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6145                                           QualifierLoc, NameInfo);
6146    }
6147  } else {
6148    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6149                          NameInfo, IsTypeName);
6150  }
6151  D->setAccess(AS);
6152  CurContext->addDecl(D);
6153
6154  if (!LookupContext) return D;
6155  UsingDecl *UD = cast<UsingDecl>(D);
6156
6157  if (RequireCompleteDeclContext(SS, LookupContext)) {
6158    UD->setInvalidDecl();
6159    return UD;
6160  }
6161
6162  // Constructor inheriting using decls get special treatment.
6163  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6164    if (CheckInheritedConstructorUsingDecl(UD))
6165      UD->setInvalidDecl();
6166    return UD;
6167  }
6168
6169  // Otherwise, look up the target name.
6170
6171  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6172
6173  // Unlike most lookups, we don't always want to hide tag
6174  // declarations: tag names are visible through the using declaration
6175  // even if hidden by ordinary names, *except* in a dependent context
6176  // where it's important for the sanity of two-phase lookup.
6177  if (!IsInstantiation)
6178    R.setHideTags(false);
6179
6180  LookupQualifiedName(R, LookupContext);
6181
6182  if (R.empty()) {
6183    Diag(IdentLoc, diag::err_no_member)
6184      << NameInfo.getName() << LookupContext << SS.getRange();
6185    UD->setInvalidDecl();
6186    return UD;
6187  }
6188
6189  if (R.isAmbiguous()) {
6190    UD->setInvalidDecl();
6191    return UD;
6192  }
6193
6194  if (IsTypeName) {
6195    // If we asked for a typename and got a non-type decl, error out.
6196    if (!R.getAsSingle<TypeDecl>()) {
6197      Diag(IdentLoc, diag::err_using_typename_non_type);
6198      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6199        Diag((*I)->getUnderlyingDecl()->getLocation(),
6200             diag::note_using_decl_target);
6201      UD->setInvalidDecl();
6202      return UD;
6203    }
6204  } else {
6205    // If we asked for a non-typename and we got a type, error out,
6206    // but only if this is an instantiation of an unresolved using
6207    // decl.  Otherwise just silently find the type name.
6208    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6209      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6210      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6211      UD->setInvalidDecl();
6212      return UD;
6213    }
6214  }
6215
6216  // C++0x N2914 [namespace.udecl]p6:
6217  // A using-declaration shall not name a namespace.
6218  if (R.getAsSingle<NamespaceDecl>()) {
6219    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6220      << SS.getRange();
6221    UD->setInvalidDecl();
6222    return UD;
6223  }
6224
6225  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6226    if (!CheckUsingShadowDecl(UD, *I, Previous))
6227      BuildUsingShadowDecl(S, UD, *I);
6228  }
6229
6230  return UD;
6231}
6232
6233/// Additional checks for a using declaration referring to a constructor name.
6234bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6235  if (UD->isTypeName()) {
6236    // FIXME: Cannot specify typename when specifying constructor
6237    return true;
6238  }
6239
6240  const Type *SourceType = UD->getQualifier()->getAsType();
6241  assert(SourceType &&
6242         "Using decl naming constructor doesn't have type in scope spec.");
6243  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6244
6245  // Check whether the named type is a direct base class.
6246  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6247  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6248  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6249       BaseIt != BaseE; ++BaseIt) {
6250    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6251    if (CanonicalSourceType == BaseType)
6252      break;
6253  }
6254
6255  if (BaseIt == BaseE) {
6256    // Did not find SourceType in the bases.
6257    Diag(UD->getUsingLocation(),
6258         diag::err_using_decl_constructor_not_in_direct_base)
6259      << UD->getNameInfo().getSourceRange()
6260      << QualType(SourceType, 0) << TargetClass;
6261    return true;
6262  }
6263
6264  BaseIt->setInheritConstructors();
6265
6266  return false;
6267}
6268
6269/// Checks that the given using declaration is not an invalid
6270/// redeclaration.  Note that this is checking only for the using decl
6271/// itself, not for any ill-formedness among the UsingShadowDecls.
6272bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6273                                       bool isTypeName,
6274                                       const CXXScopeSpec &SS,
6275                                       SourceLocation NameLoc,
6276                                       const LookupResult &Prev) {
6277  // C++03 [namespace.udecl]p8:
6278  // C++0x [namespace.udecl]p10:
6279  //   A using-declaration is a declaration and can therefore be used
6280  //   repeatedly where (and only where) multiple declarations are
6281  //   allowed.
6282  //
6283  // That's in non-member contexts.
6284  if (!CurContext->getRedeclContext()->isRecord())
6285    return false;
6286
6287  NestedNameSpecifier *Qual
6288    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6289
6290  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6291    NamedDecl *D = *I;
6292
6293    bool DTypename;
6294    NestedNameSpecifier *DQual;
6295    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6296      DTypename = UD->isTypeName();
6297      DQual = UD->getQualifier();
6298    } else if (UnresolvedUsingValueDecl *UD
6299                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6300      DTypename = false;
6301      DQual = UD->getQualifier();
6302    } else if (UnresolvedUsingTypenameDecl *UD
6303                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6304      DTypename = true;
6305      DQual = UD->getQualifier();
6306    } else continue;
6307
6308    // using decls differ if one says 'typename' and the other doesn't.
6309    // FIXME: non-dependent using decls?
6310    if (isTypeName != DTypename) continue;
6311
6312    // using decls differ if they name different scopes (but note that
6313    // template instantiation can cause this check to trigger when it
6314    // didn't before instantiation).
6315    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6316        Context.getCanonicalNestedNameSpecifier(DQual))
6317      continue;
6318
6319    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6320    Diag(D->getLocation(), diag::note_using_decl) << 1;
6321    return true;
6322  }
6323
6324  return false;
6325}
6326
6327
6328/// Checks that the given nested-name qualifier used in a using decl
6329/// in the current context is appropriately related to the current
6330/// scope.  If an error is found, diagnoses it and returns true.
6331bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6332                                   const CXXScopeSpec &SS,
6333                                   SourceLocation NameLoc) {
6334  DeclContext *NamedContext = computeDeclContext(SS);
6335
6336  if (!CurContext->isRecord()) {
6337    // C++03 [namespace.udecl]p3:
6338    // C++0x [namespace.udecl]p8:
6339    //   A using-declaration for a class member shall be a member-declaration.
6340
6341    // If we weren't able to compute a valid scope, it must be a
6342    // dependent class scope.
6343    if (!NamedContext || NamedContext->isRecord()) {
6344      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6345        << SS.getRange();
6346      return true;
6347    }
6348
6349    // Otherwise, everything is known to be fine.
6350    return false;
6351  }
6352
6353  // The current scope is a record.
6354
6355  // If the named context is dependent, we can't decide much.
6356  if (!NamedContext) {
6357    // FIXME: in C++0x, we can diagnose if we can prove that the
6358    // nested-name-specifier does not refer to a base class, which is
6359    // still possible in some cases.
6360
6361    // Otherwise we have to conservatively report that things might be
6362    // okay.
6363    return false;
6364  }
6365
6366  if (!NamedContext->isRecord()) {
6367    // Ideally this would point at the last name in the specifier,
6368    // but we don't have that level of source info.
6369    Diag(SS.getRange().getBegin(),
6370         diag::err_using_decl_nested_name_specifier_is_not_class)
6371      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6372    return true;
6373  }
6374
6375  if (!NamedContext->isDependentContext() &&
6376      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6377    return true;
6378
6379  if (getLangOptions().CPlusPlus0x) {
6380    // C++0x [namespace.udecl]p3:
6381    //   In a using-declaration used as a member-declaration, the
6382    //   nested-name-specifier shall name a base class of the class
6383    //   being defined.
6384
6385    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6386                                 cast<CXXRecordDecl>(NamedContext))) {
6387      if (CurContext == NamedContext) {
6388        Diag(NameLoc,
6389             diag::err_using_decl_nested_name_specifier_is_current_class)
6390          << SS.getRange();
6391        return true;
6392      }
6393
6394      Diag(SS.getRange().getBegin(),
6395           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6396        << (NestedNameSpecifier*) SS.getScopeRep()
6397        << cast<CXXRecordDecl>(CurContext)
6398        << SS.getRange();
6399      return true;
6400    }
6401
6402    return false;
6403  }
6404
6405  // C++03 [namespace.udecl]p4:
6406  //   A using-declaration used as a member-declaration shall refer
6407  //   to a member of a base class of the class being defined [etc.].
6408
6409  // Salient point: SS doesn't have to name a base class as long as
6410  // lookup only finds members from base classes.  Therefore we can
6411  // diagnose here only if we can prove that that can't happen,
6412  // i.e. if the class hierarchies provably don't intersect.
6413
6414  // TODO: it would be nice if "definitely valid" results were cached
6415  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6416  // need to be repeated.
6417
6418  struct UserData {
6419    llvm::DenseSet<const CXXRecordDecl*> Bases;
6420
6421    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6422      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6423      Data->Bases.insert(Base);
6424      return true;
6425    }
6426
6427    bool hasDependentBases(const CXXRecordDecl *Class) {
6428      return !Class->forallBases(collect, this);
6429    }
6430
6431    /// Returns true if the base is dependent or is one of the
6432    /// accumulated base classes.
6433    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6434      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6435      return !Data->Bases.count(Base);
6436    }
6437
6438    bool mightShareBases(const CXXRecordDecl *Class) {
6439      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6440    }
6441  };
6442
6443  UserData Data;
6444
6445  // Returns false if we find a dependent base.
6446  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6447    return false;
6448
6449  // Returns false if the class has a dependent base or if it or one
6450  // of its bases is present in the base set of the current context.
6451  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6452    return false;
6453
6454  Diag(SS.getRange().getBegin(),
6455       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6456    << (NestedNameSpecifier*) SS.getScopeRep()
6457    << cast<CXXRecordDecl>(CurContext)
6458    << SS.getRange();
6459
6460  return true;
6461}
6462
6463Decl *Sema::ActOnAliasDeclaration(Scope *S,
6464                                  AccessSpecifier AS,
6465                                  MultiTemplateParamsArg TemplateParamLists,
6466                                  SourceLocation UsingLoc,
6467                                  UnqualifiedId &Name,
6468                                  TypeResult Type) {
6469  // Skip up to the relevant declaration scope.
6470  while (S->getFlags() & Scope::TemplateParamScope)
6471    S = S->getParent();
6472  assert((S->getFlags() & Scope::DeclScope) &&
6473         "got alias-declaration outside of declaration scope");
6474
6475  if (Type.isInvalid())
6476    return 0;
6477
6478  bool Invalid = false;
6479  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6480  TypeSourceInfo *TInfo = 0;
6481  GetTypeFromParser(Type.get(), &TInfo);
6482
6483  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6484    return 0;
6485
6486  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6487                                      UPPC_DeclarationType)) {
6488    Invalid = true;
6489    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6490                                             TInfo->getTypeLoc().getBeginLoc());
6491  }
6492
6493  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6494  LookupName(Previous, S);
6495
6496  // Warn about shadowing the name of a template parameter.
6497  if (Previous.isSingleResult() &&
6498      Previous.getFoundDecl()->isTemplateParameter()) {
6499    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6500    Previous.clear();
6501  }
6502
6503  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6504         "name in alias declaration must be an identifier");
6505  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6506                                               Name.StartLocation,
6507                                               Name.Identifier, TInfo);
6508
6509  NewTD->setAccess(AS);
6510
6511  if (Invalid)
6512    NewTD->setInvalidDecl();
6513
6514  CheckTypedefForVariablyModifiedType(S, NewTD);
6515  Invalid |= NewTD->isInvalidDecl();
6516
6517  bool Redeclaration = false;
6518
6519  NamedDecl *NewND;
6520  if (TemplateParamLists.size()) {
6521    TypeAliasTemplateDecl *OldDecl = 0;
6522    TemplateParameterList *OldTemplateParams = 0;
6523
6524    if (TemplateParamLists.size() != 1) {
6525      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6526        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6527         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6528    }
6529    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6530
6531    // Only consider previous declarations in the same scope.
6532    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6533                         /*ExplicitInstantiationOrSpecialization*/false);
6534    if (!Previous.empty()) {
6535      Redeclaration = true;
6536
6537      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6538      if (!OldDecl && !Invalid) {
6539        Diag(UsingLoc, diag::err_redefinition_different_kind)
6540          << Name.Identifier;
6541
6542        NamedDecl *OldD = Previous.getRepresentativeDecl();
6543        if (OldD->getLocation().isValid())
6544          Diag(OldD->getLocation(), diag::note_previous_definition);
6545
6546        Invalid = true;
6547      }
6548
6549      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6550        if (TemplateParameterListsAreEqual(TemplateParams,
6551                                           OldDecl->getTemplateParameters(),
6552                                           /*Complain=*/true,
6553                                           TPL_TemplateMatch))
6554          OldTemplateParams = OldDecl->getTemplateParameters();
6555        else
6556          Invalid = true;
6557
6558        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6559        if (!Invalid &&
6560            !Context.hasSameType(OldTD->getUnderlyingType(),
6561                                 NewTD->getUnderlyingType())) {
6562          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6563          // but we can't reasonably accept it.
6564          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6565            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6566          if (OldTD->getLocation().isValid())
6567            Diag(OldTD->getLocation(), diag::note_previous_definition);
6568          Invalid = true;
6569        }
6570      }
6571    }
6572
6573    // Merge any previous default template arguments into our parameters,
6574    // and check the parameter list.
6575    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6576                                   TPC_TypeAliasTemplate))
6577      return 0;
6578
6579    TypeAliasTemplateDecl *NewDecl =
6580      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6581                                    Name.Identifier, TemplateParams,
6582                                    NewTD);
6583
6584    NewDecl->setAccess(AS);
6585
6586    if (Invalid)
6587      NewDecl->setInvalidDecl();
6588    else if (OldDecl)
6589      NewDecl->setPreviousDeclaration(OldDecl);
6590
6591    NewND = NewDecl;
6592  } else {
6593    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6594    NewND = NewTD;
6595  }
6596
6597  if (!Redeclaration)
6598    PushOnScopeChains(NewND, S);
6599
6600  return NewND;
6601}
6602
6603Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6604                                             SourceLocation NamespaceLoc,
6605                                             SourceLocation AliasLoc,
6606                                             IdentifierInfo *Alias,
6607                                             CXXScopeSpec &SS,
6608                                             SourceLocation IdentLoc,
6609                                             IdentifierInfo *Ident) {
6610
6611  // Lookup the namespace name.
6612  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6613  LookupParsedName(R, S, &SS);
6614
6615  // Check if we have a previous declaration with the same name.
6616  NamedDecl *PrevDecl
6617    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6618                       ForRedeclaration);
6619  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6620    PrevDecl = 0;
6621
6622  if (PrevDecl) {
6623    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6624      // We already have an alias with the same name that points to the same
6625      // namespace, so don't create a new one.
6626      // FIXME: At some point, we'll want to create the (redundant)
6627      // declaration to maintain better source information.
6628      if (!R.isAmbiguous() && !R.empty() &&
6629          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6630        return 0;
6631    }
6632
6633    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6634      diag::err_redefinition_different_kind;
6635    Diag(AliasLoc, DiagID) << Alias;
6636    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6637    return 0;
6638  }
6639
6640  if (R.isAmbiguous())
6641    return 0;
6642
6643  if (R.empty()) {
6644    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6645      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6646      return 0;
6647    }
6648  }
6649
6650  NamespaceAliasDecl *AliasDecl =
6651    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6652                               Alias, SS.getWithLocInContext(Context),
6653                               IdentLoc, R.getFoundDecl());
6654
6655  PushOnScopeChains(AliasDecl, S);
6656  return AliasDecl;
6657}
6658
6659namespace {
6660  /// \brief Scoped object used to handle the state changes required in Sema
6661  /// to implicitly define the body of a C++ member function;
6662  class ImplicitlyDefinedFunctionScope {
6663    Sema &S;
6664    Sema::ContextRAII SavedContext;
6665
6666  public:
6667    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6668      : S(S), SavedContext(S, Method)
6669    {
6670      S.PushFunctionScope();
6671      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6672    }
6673
6674    ~ImplicitlyDefinedFunctionScope() {
6675      S.PopExpressionEvaluationContext();
6676      S.PopFunctionOrBlockScope();
6677    }
6678  };
6679}
6680
6681Sema::ImplicitExceptionSpecification
6682Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6683  // C++ [except.spec]p14:
6684  //   An implicitly declared special member function (Clause 12) shall have an
6685  //   exception-specification. [...]
6686  ImplicitExceptionSpecification ExceptSpec(Context);
6687  if (ClassDecl->isInvalidDecl())
6688    return ExceptSpec;
6689
6690  // Direct base-class constructors.
6691  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6692                                       BEnd = ClassDecl->bases_end();
6693       B != BEnd; ++B) {
6694    if (B->isVirtual()) // Handled below.
6695      continue;
6696
6697    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6698      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6699      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6700      // If this is a deleted function, add it anyway. This might be conformant
6701      // with the standard. This might not. I'm not sure. It might not matter.
6702      if (Constructor)
6703        ExceptSpec.CalledDecl(Constructor);
6704    }
6705  }
6706
6707  // Virtual base-class constructors.
6708  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6709                                       BEnd = ClassDecl->vbases_end();
6710       B != BEnd; ++B) {
6711    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6712      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6713      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6714      // If this is a deleted function, add it anyway. This might be conformant
6715      // with the standard. This might not. I'm not sure. It might not matter.
6716      if (Constructor)
6717        ExceptSpec.CalledDecl(Constructor);
6718    }
6719  }
6720
6721  // Field constructors.
6722  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6723                               FEnd = ClassDecl->field_end();
6724       F != FEnd; ++F) {
6725    if (F->hasInClassInitializer()) {
6726      if (Expr *E = F->getInClassInitializer())
6727        ExceptSpec.CalledExpr(E);
6728      else if (!F->isInvalidDecl())
6729        ExceptSpec.SetDelayed();
6730    } else if (const RecordType *RecordTy
6731              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6732      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6733      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6734      // If this is a deleted function, add it anyway. This might be conformant
6735      // with the standard. This might not. I'm not sure. It might not matter.
6736      // In particular, the problem is that this function never gets called. It
6737      // might just be ill-formed because this function attempts to refer to
6738      // a deleted function here.
6739      if (Constructor)
6740        ExceptSpec.CalledDecl(Constructor);
6741    }
6742  }
6743
6744  return ExceptSpec;
6745}
6746
6747CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6748                                                     CXXRecordDecl *ClassDecl) {
6749  // C++ [class.ctor]p5:
6750  //   A default constructor for a class X is a constructor of class X
6751  //   that can be called without an argument. If there is no
6752  //   user-declared constructor for class X, a default constructor is
6753  //   implicitly declared. An implicitly-declared default constructor
6754  //   is an inline public member of its class.
6755  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6756         "Should not build implicit default constructor!");
6757
6758  ImplicitExceptionSpecification Spec =
6759    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6760  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6761
6762  // Create the actual constructor declaration.
6763  CanQualType ClassType
6764    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6765  SourceLocation ClassLoc = ClassDecl->getLocation();
6766  DeclarationName Name
6767    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6768  DeclarationNameInfo NameInfo(Name, ClassLoc);
6769  CXXConstructorDecl *DefaultCon
6770    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6771                                 Context.getFunctionType(Context.VoidTy,
6772                                                         0, 0, EPI),
6773                                 /*TInfo=*/0,
6774                                 /*isExplicit=*/false,
6775                                 /*isInline=*/true,
6776                                 /*isImplicitlyDeclared=*/true,
6777                                 // FIXME: apply the rules for definitions here
6778                                 /*isConstexpr=*/false);
6779  DefaultCon->setAccess(AS_public);
6780  DefaultCon->setDefaulted();
6781  DefaultCon->setImplicit();
6782  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6783
6784  // Note that we have declared this constructor.
6785  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6786
6787  if (Scope *S = getScopeForContext(ClassDecl))
6788    PushOnScopeChains(DefaultCon, S, false);
6789  ClassDecl->addDecl(DefaultCon);
6790
6791  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6792    DefaultCon->setDeletedAsWritten();
6793
6794  return DefaultCon;
6795}
6796
6797void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6798                                            CXXConstructorDecl *Constructor) {
6799  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6800          !Constructor->doesThisDeclarationHaveABody() &&
6801          !Constructor->isDeleted()) &&
6802    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6803
6804  CXXRecordDecl *ClassDecl = Constructor->getParent();
6805  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6806
6807  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6808  DiagnosticErrorTrap Trap(Diags);
6809  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6810      Trap.hasErrorOccurred()) {
6811    Diag(CurrentLocation, diag::note_member_synthesized_at)
6812      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6813    Constructor->setInvalidDecl();
6814    return;
6815  }
6816
6817  SourceLocation Loc = Constructor->getLocation();
6818  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6819
6820  Constructor->setUsed();
6821  MarkVTableUsed(CurrentLocation, ClassDecl);
6822
6823  if (ASTMutationListener *L = getASTMutationListener()) {
6824    L->CompletedImplicitDefinition(Constructor);
6825  }
6826}
6827
6828/// Get any existing defaulted default constructor for the given class. Do not
6829/// implicitly define one if it does not exist.
6830static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6831                                                             CXXRecordDecl *D) {
6832  ASTContext &Context = Self.Context;
6833  QualType ClassType = Context.getTypeDeclType(D);
6834  DeclarationName ConstructorName
6835    = Context.DeclarationNames.getCXXConstructorName(
6836                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6837
6838  DeclContext::lookup_const_iterator Con, ConEnd;
6839  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6840       Con != ConEnd; ++Con) {
6841    // A function template cannot be defaulted.
6842    if (isa<FunctionTemplateDecl>(*Con))
6843      continue;
6844
6845    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6846    if (Constructor->isDefaultConstructor())
6847      return Constructor->isDefaulted() ? Constructor : 0;
6848  }
6849  return 0;
6850}
6851
6852void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6853  if (!D) return;
6854  AdjustDeclIfTemplate(D);
6855
6856  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6857  CXXConstructorDecl *CtorDecl
6858    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6859
6860  if (!CtorDecl) return;
6861
6862  // Compute the exception specification for the default constructor.
6863  const FunctionProtoType *CtorTy =
6864    CtorDecl->getType()->castAs<FunctionProtoType>();
6865  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6866    ImplicitExceptionSpecification Spec =
6867      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6868    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6869    assert(EPI.ExceptionSpecType != EST_Delayed);
6870
6871    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6872  }
6873
6874  // If the default constructor is explicitly defaulted, checking the exception
6875  // specification is deferred until now.
6876  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6877      !ClassDecl->isDependentType())
6878    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
6879}
6880
6881void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6882  // We start with an initial pass over the base classes to collect those that
6883  // inherit constructors from. If there are none, we can forgo all further
6884  // processing.
6885  typedef SmallVector<const RecordType *, 4> BasesVector;
6886  BasesVector BasesToInheritFrom;
6887  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6888                                          BaseE = ClassDecl->bases_end();
6889         BaseIt != BaseE; ++BaseIt) {
6890    if (BaseIt->getInheritConstructors()) {
6891      QualType Base = BaseIt->getType();
6892      if (Base->isDependentType()) {
6893        // If we inherit constructors from anything that is dependent, just
6894        // abort processing altogether. We'll get another chance for the
6895        // instantiations.
6896        return;
6897      }
6898      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6899    }
6900  }
6901  if (BasesToInheritFrom.empty())
6902    return;
6903
6904  // Now collect the constructors that we already have in the current class.
6905  // Those take precedence over inherited constructors.
6906  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6907  //   unless there is a user-declared constructor with the same signature in
6908  //   the class where the using-declaration appears.
6909  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6910  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6911                                    CtorE = ClassDecl->ctor_end();
6912       CtorIt != CtorE; ++CtorIt) {
6913    ExistingConstructors.insert(
6914        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6915  }
6916
6917  Scope *S = getScopeForContext(ClassDecl);
6918  DeclarationName CreatedCtorName =
6919      Context.DeclarationNames.getCXXConstructorName(
6920          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6921
6922  // Now comes the true work.
6923  // First, we keep a map from constructor types to the base that introduced
6924  // them. Needed for finding conflicting constructors. We also keep the
6925  // actually inserted declarations in there, for pretty diagnostics.
6926  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6927  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6928  ConstructorToSourceMap InheritedConstructors;
6929  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6930                             BaseE = BasesToInheritFrom.end();
6931       BaseIt != BaseE; ++BaseIt) {
6932    const RecordType *Base = *BaseIt;
6933    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6934    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6935    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6936                                      CtorE = BaseDecl->ctor_end();
6937         CtorIt != CtorE; ++CtorIt) {
6938      // Find the using declaration for inheriting this base's constructors.
6939      DeclarationName Name =
6940          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6941      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6942          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6943      SourceLocation UsingLoc = UD ? UD->getLocation() :
6944                                     ClassDecl->getLocation();
6945
6946      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6947      //   from the class X named in the using-declaration consists of actual
6948      //   constructors and notional constructors that result from the
6949      //   transformation of defaulted parameters as follows:
6950      //   - all non-template default constructors of X, and
6951      //   - for each non-template constructor of X that has at least one
6952      //     parameter with a default argument, the set of constructors that
6953      //     results from omitting any ellipsis parameter specification and
6954      //     successively omitting parameters with a default argument from the
6955      //     end of the parameter-type-list.
6956      CXXConstructorDecl *BaseCtor = *CtorIt;
6957      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6958      const FunctionProtoType *BaseCtorType =
6959          BaseCtor->getType()->getAs<FunctionProtoType>();
6960
6961      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6962                    maxParams = BaseCtor->getNumParams();
6963           params <= maxParams; ++params) {
6964        // Skip default constructors. They're never inherited.
6965        if (params == 0)
6966          continue;
6967        // Skip copy and move constructors for the same reason.
6968        if (CanBeCopyOrMove && params == 1)
6969          continue;
6970
6971        // Build up a function type for this particular constructor.
6972        // FIXME: The working paper does not consider that the exception spec
6973        // for the inheriting constructor might be larger than that of the
6974        // source. This code doesn't yet, either. When it does, this code will
6975        // need to be delayed until after exception specifications and in-class
6976        // member initializers are attached.
6977        const Type *NewCtorType;
6978        if (params == maxParams)
6979          NewCtorType = BaseCtorType;
6980        else {
6981          SmallVector<QualType, 16> Args;
6982          for (unsigned i = 0; i < params; ++i) {
6983            Args.push_back(BaseCtorType->getArgType(i));
6984          }
6985          FunctionProtoType::ExtProtoInfo ExtInfo =
6986              BaseCtorType->getExtProtoInfo();
6987          ExtInfo.Variadic = false;
6988          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6989                                                Args.data(), params, ExtInfo)
6990                       .getTypePtr();
6991        }
6992        const Type *CanonicalNewCtorType =
6993            Context.getCanonicalType(NewCtorType);
6994
6995        // Now that we have the type, first check if the class already has a
6996        // constructor with this signature.
6997        if (ExistingConstructors.count(CanonicalNewCtorType))
6998          continue;
6999
7000        // Then we check if we have already declared an inherited constructor
7001        // with this signature.
7002        std::pair<ConstructorToSourceMap::iterator, bool> result =
7003            InheritedConstructors.insert(std::make_pair(
7004                CanonicalNewCtorType,
7005                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7006        if (!result.second) {
7007          // Already in the map. If it came from a different class, that's an
7008          // error. Not if it's from the same.
7009          CanQualType PreviousBase = result.first->second.first;
7010          if (CanonicalBase != PreviousBase) {
7011            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7012            const CXXConstructorDecl *PrevBaseCtor =
7013                PrevCtor->getInheritedConstructor();
7014            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7015
7016            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7017            Diag(BaseCtor->getLocation(),
7018                 diag::note_using_decl_constructor_conflict_current_ctor);
7019            Diag(PrevBaseCtor->getLocation(),
7020                 diag::note_using_decl_constructor_conflict_previous_ctor);
7021            Diag(PrevCtor->getLocation(),
7022                 diag::note_using_decl_constructor_conflict_previous_using);
7023          }
7024          continue;
7025        }
7026
7027        // OK, we're there, now add the constructor.
7028        // C++0x [class.inhctor]p8: [...] that would be performed by a
7029        //   user-written inline constructor [...]
7030        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7031        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7032            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7033            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7034            /*ImplicitlyDeclared=*/true,
7035            // FIXME: Due to a defect in the standard, we treat inherited
7036            // constructors as constexpr even if that makes them ill-formed.
7037            /*Constexpr=*/BaseCtor->isConstexpr());
7038        NewCtor->setAccess(BaseCtor->getAccess());
7039
7040        // Build up the parameter decls and add them.
7041        SmallVector<ParmVarDecl *, 16> ParamDecls;
7042        for (unsigned i = 0; i < params; ++i) {
7043          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7044                                                   UsingLoc, UsingLoc,
7045                                                   /*IdentifierInfo=*/0,
7046                                                   BaseCtorType->getArgType(i),
7047                                                   /*TInfo=*/0, SC_None,
7048                                                   SC_None, /*DefaultArg=*/0));
7049        }
7050        NewCtor->setParams(ParamDecls);
7051        NewCtor->setInheritedConstructor(BaseCtor);
7052
7053        PushOnScopeChains(NewCtor, S, false);
7054        ClassDecl->addDecl(NewCtor);
7055        result.first->second.second = NewCtor;
7056      }
7057    }
7058  }
7059}
7060
7061Sema::ImplicitExceptionSpecification
7062Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7063  // C++ [except.spec]p14:
7064  //   An implicitly declared special member function (Clause 12) shall have
7065  //   an exception-specification.
7066  ImplicitExceptionSpecification ExceptSpec(Context);
7067  if (ClassDecl->isInvalidDecl())
7068    return ExceptSpec;
7069
7070  // Direct base-class destructors.
7071  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7072                                       BEnd = ClassDecl->bases_end();
7073       B != BEnd; ++B) {
7074    if (B->isVirtual()) // Handled below.
7075      continue;
7076
7077    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7078      ExceptSpec.CalledDecl(
7079                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7080  }
7081
7082  // Virtual base-class destructors.
7083  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7084                                       BEnd = ClassDecl->vbases_end();
7085       B != BEnd; ++B) {
7086    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7087      ExceptSpec.CalledDecl(
7088                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7089  }
7090
7091  // Field destructors.
7092  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7093                               FEnd = ClassDecl->field_end();
7094       F != FEnd; ++F) {
7095    if (const RecordType *RecordTy
7096        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7097      ExceptSpec.CalledDecl(
7098                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7099  }
7100
7101  return ExceptSpec;
7102}
7103
7104CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7105  // C++ [class.dtor]p2:
7106  //   If a class has no user-declared destructor, a destructor is
7107  //   declared implicitly. An implicitly-declared destructor is an
7108  //   inline public member of its class.
7109
7110  ImplicitExceptionSpecification Spec =
7111      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7112  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7113
7114  // Create the actual destructor declaration.
7115  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7116
7117  CanQualType ClassType
7118    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7119  SourceLocation ClassLoc = ClassDecl->getLocation();
7120  DeclarationName Name
7121    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7122  DeclarationNameInfo NameInfo(Name, ClassLoc);
7123  CXXDestructorDecl *Destructor
7124      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7125                                  /*isInline=*/true,
7126                                  /*isImplicitlyDeclared=*/true);
7127  Destructor->setAccess(AS_public);
7128  Destructor->setDefaulted();
7129  Destructor->setImplicit();
7130  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7131
7132  // Note that we have declared this destructor.
7133  ++ASTContext::NumImplicitDestructorsDeclared;
7134
7135  // Introduce this destructor into its scope.
7136  if (Scope *S = getScopeForContext(ClassDecl))
7137    PushOnScopeChains(Destructor, S, false);
7138  ClassDecl->addDecl(Destructor);
7139
7140  // This could be uniqued if it ever proves significant.
7141  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7142
7143  if (ShouldDeleteDestructor(Destructor))
7144    Destructor->setDeletedAsWritten();
7145
7146  AddOverriddenMethods(ClassDecl, Destructor);
7147
7148  return Destructor;
7149}
7150
7151void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7152                                    CXXDestructorDecl *Destructor) {
7153  assert((Destructor->isDefaulted() &&
7154          !Destructor->doesThisDeclarationHaveABody()) &&
7155         "DefineImplicitDestructor - call it for implicit default dtor");
7156  CXXRecordDecl *ClassDecl = Destructor->getParent();
7157  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7158
7159  if (Destructor->isInvalidDecl())
7160    return;
7161
7162  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7163
7164  DiagnosticErrorTrap Trap(Diags);
7165  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7166                                         Destructor->getParent());
7167
7168  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7169    Diag(CurrentLocation, diag::note_member_synthesized_at)
7170      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7171
7172    Destructor->setInvalidDecl();
7173    return;
7174  }
7175
7176  SourceLocation Loc = Destructor->getLocation();
7177  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7178  Destructor->setImplicitlyDefined(true);
7179  Destructor->setUsed();
7180  MarkVTableUsed(CurrentLocation, ClassDecl);
7181
7182  if (ASTMutationListener *L = getASTMutationListener()) {
7183    L->CompletedImplicitDefinition(Destructor);
7184  }
7185}
7186
7187void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7188                                         CXXDestructorDecl *destructor) {
7189  // C++11 [class.dtor]p3:
7190  //   A declaration of a destructor that does not have an exception-
7191  //   specification is implicitly considered to have the same exception-
7192  //   specification as an implicit declaration.
7193  const FunctionProtoType *dtorType = destructor->getType()->
7194                                        getAs<FunctionProtoType>();
7195  if (dtorType->hasExceptionSpec())
7196    return;
7197
7198  ImplicitExceptionSpecification exceptSpec =
7199      ComputeDefaultedDtorExceptionSpec(classDecl);
7200
7201  // Replace the destructor's type, building off the existing one. Fortunately,
7202  // the only thing of interest in the destructor type is its extended info.
7203  // The return and arguments are fixed.
7204  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7205  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7206  epi.NumExceptions = exceptSpec.size();
7207  epi.Exceptions = exceptSpec.data();
7208  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7209
7210  destructor->setType(ty);
7211
7212  // FIXME: If the destructor has a body that could throw, and the newly created
7213  // spec doesn't allow exceptions, we should emit a warning, because this
7214  // change in behavior can break conforming C++03 programs at runtime.
7215  // However, we don't have a body yet, so it needs to be done somewhere else.
7216}
7217
7218/// \brief Builds a statement that copies/moves the given entity from \p From to
7219/// \c To.
7220///
7221/// This routine is used to copy/move the members of a class with an
7222/// implicitly-declared copy/move assignment operator. When the entities being
7223/// copied are arrays, this routine builds for loops to copy them.
7224///
7225/// \param S The Sema object used for type-checking.
7226///
7227/// \param Loc The location where the implicit copy/move is being generated.
7228///
7229/// \param T The type of the expressions being copied/moved. Both expressions
7230/// must have this type.
7231///
7232/// \param To The expression we are copying/moving to.
7233///
7234/// \param From The expression we are copying/moving from.
7235///
7236/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7237/// Otherwise, it's a non-static member subobject.
7238///
7239/// \param Copying Whether we're copying or moving.
7240///
7241/// \param Depth Internal parameter recording the depth of the recursion.
7242///
7243/// \returns A statement or a loop that copies the expressions.
7244static StmtResult
7245BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7246                      Expr *To, Expr *From,
7247                      bool CopyingBaseSubobject, bool Copying,
7248                      unsigned Depth = 0) {
7249  // C++0x [class.copy]p28:
7250  //   Each subobject is assigned in the manner appropriate to its type:
7251  //
7252  //     - if the subobject is of class type, as if by a call to operator= with
7253  //       the subobject as the object expression and the corresponding
7254  //       subobject of x as a single function argument (as if by explicit
7255  //       qualification; that is, ignoring any possible virtual overriding
7256  //       functions in more derived classes);
7257  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7258    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7259
7260    // Look for operator=.
7261    DeclarationName Name
7262      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7263    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7264    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7265
7266    // Filter out any result that isn't a copy/move-assignment operator.
7267    LookupResult::Filter F = OpLookup.makeFilter();
7268    while (F.hasNext()) {
7269      NamedDecl *D = F.next();
7270      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7271        if (Copying ? Method->isCopyAssignmentOperator() :
7272                      Method->isMoveAssignmentOperator())
7273          continue;
7274
7275      F.erase();
7276    }
7277    F.done();
7278
7279    // Suppress the protected check (C++ [class.protected]) for each of the
7280    // assignment operators we found. This strange dance is required when
7281    // we're assigning via a base classes's copy-assignment operator. To
7282    // ensure that we're getting the right base class subobject (without
7283    // ambiguities), we need to cast "this" to that subobject type; to
7284    // ensure that we don't go through the virtual call mechanism, we need
7285    // to qualify the operator= name with the base class (see below). However,
7286    // this means that if the base class has a protected copy assignment
7287    // operator, the protected member access check will fail. So, we
7288    // rewrite "protected" access to "public" access in this case, since we
7289    // know by construction that we're calling from a derived class.
7290    if (CopyingBaseSubobject) {
7291      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7292           L != LEnd; ++L) {
7293        if (L.getAccess() == AS_protected)
7294          L.setAccess(AS_public);
7295      }
7296    }
7297
7298    // Create the nested-name-specifier that will be used to qualify the
7299    // reference to operator=; this is required to suppress the virtual
7300    // call mechanism.
7301    CXXScopeSpec SS;
7302    SS.MakeTrivial(S.Context,
7303                   NestedNameSpecifier::Create(S.Context, 0, false,
7304                                               T.getTypePtr()),
7305                   Loc);
7306
7307    // Create the reference to operator=.
7308    ExprResult OpEqualRef
7309      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7310                                   /*FirstQualifierInScope=*/0, OpLookup,
7311                                   /*TemplateArgs=*/0,
7312                                   /*SuppressQualifierCheck=*/true);
7313    if (OpEqualRef.isInvalid())
7314      return StmtError();
7315
7316    // Build the call to the assignment operator.
7317
7318    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7319                                                  OpEqualRef.takeAs<Expr>(),
7320                                                  Loc, &From, 1, Loc);
7321    if (Call.isInvalid())
7322      return StmtError();
7323
7324    return S.Owned(Call.takeAs<Stmt>());
7325  }
7326
7327  //     - if the subobject is of scalar type, the built-in assignment
7328  //       operator is used.
7329  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7330  if (!ArrayTy) {
7331    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7332    if (Assignment.isInvalid())
7333      return StmtError();
7334
7335    return S.Owned(Assignment.takeAs<Stmt>());
7336  }
7337
7338  //     - if the subobject is an array, each element is assigned, in the
7339  //       manner appropriate to the element type;
7340
7341  // Construct a loop over the array bounds, e.g.,
7342  //
7343  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7344  //
7345  // that will copy each of the array elements.
7346  QualType SizeType = S.Context.getSizeType();
7347
7348  // Create the iteration variable.
7349  IdentifierInfo *IterationVarName = 0;
7350  {
7351    llvm::SmallString<8> Str;
7352    llvm::raw_svector_ostream OS(Str);
7353    OS << "__i" << Depth;
7354    IterationVarName = &S.Context.Idents.get(OS.str());
7355  }
7356  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7357                                          IterationVarName, SizeType,
7358                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7359                                          SC_None, SC_None);
7360
7361  // Initialize the iteration variable to zero.
7362  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7363  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7364
7365  // Create a reference to the iteration variable; we'll use this several
7366  // times throughout.
7367  Expr *IterationVarRef
7368    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
7369  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7370
7371  // Create the DeclStmt that holds the iteration variable.
7372  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7373
7374  // Create the comparison against the array bound.
7375  llvm::APInt Upper
7376    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7377  Expr *Comparison
7378    = new (S.Context) BinaryOperator(IterationVarRef,
7379                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7380                                     BO_NE, S.Context.BoolTy,
7381                                     VK_RValue, OK_Ordinary, Loc);
7382
7383  // Create the pre-increment of the iteration variable.
7384  Expr *Increment
7385    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7386                                    VK_LValue, OK_Ordinary, Loc);
7387
7388  // Subscript the "from" and "to" expressions with the iteration variable.
7389  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7390                                                         IterationVarRef, Loc));
7391  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7392                                                       IterationVarRef, Loc));
7393  if (!Copying) // Cast to rvalue
7394    From = CastForMoving(S, From);
7395
7396  // Build the copy/move for an individual element of the array.
7397  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7398                                          To, From, CopyingBaseSubobject,
7399                                          Copying, Depth + 1);
7400  if (Copy.isInvalid())
7401    return StmtError();
7402
7403  // Construct the loop that copies all elements of this array.
7404  return S.ActOnForStmt(Loc, Loc, InitStmt,
7405                        S.MakeFullExpr(Comparison),
7406                        0, S.MakeFullExpr(Increment),
7407                        Loc, Copy.take());
7408}
7409
7410std::pair<Sema::ImplicitExceptionSpecification, bool>
7411Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7412                                                   CXXRecordDecl *ClassDecl) {
7413  if (ClassDecl->isInvalidDecl())
7414    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7415
7416  // C++ [class.copy]p10:
7417  //   If the class definition does not explicitly declare a copy
7418  //   assignment operator, one is declared implicitly.
7419  //   The implicitly-defined copy assignment operator for a class X
7420  //   will have the form
7421  //
7422  //       X& X::operator=(const X&)
7423  //
7424  //   if
7425  bool HasConstCopyAssignment = true;
7426
7427  //       -- each direct base class B of X has a copy assignment operator
7428  //          whose parameter is of type const B&, const volatile B& or B,
7429  //          and
7430  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7431                                       BaseEnd = ClassDecl->bases_end();
7432       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7433    // We'll handle this below
7434    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7435      continue;
7436
7437    assert(!Base->getType()->isDependentType() &&
7438           "Cannot generate implicit members for class with dependent bases.");
7439    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7440    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7441                            &HasConstCopyAssignment);
7442  }
7443
7444  // In C++11, the above citation has "or virtual" added
7445  if (LangOpts.CPlusPlus0x) {
7446    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7447                                         BaseEnd = ClassDecl->vbases_end();
7448         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7449      assert(!Base->getType()->isDependentType() &&
7450             "Cannot generate implicit members for class with dependent bases.");
7451      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7452      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7453                              &HasConstCopyAssignment);
7454    }
7455  }
7456
7457  //       -- for all the nonstatic data members of X that are of a class
7458  //          type M (or array thereof), each such class type has a copy
7459  //          assignment operator whose parameter is of type const M&,
7460  //          const volatile M& or M.
7461  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7462                                  FieldEnd = ClassDecl->field_end();
7463       HasConstCopyAssignment && Field != FieldEnd;
7464       ++Field) {
7465    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7466    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7467      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7468                              &HasConstCopyAssignment);
7469    }
7470  }
7471
7472  //   Otherwise, the implicitly declared copy assignment operator will
7473  //   have the form
7474  //
7475  //       X& X::operator=(X&)
7476
7477  // C++ [except.spec]p14:
7478  //   An implicitly declared special member function (Clause 12) shall have an
7479  //   exception-specification. [...]
7480
7481  // It is unspecified whether or not an implicit copy assignment operator
7482  // attempts to deduplicate calls to assignment operators of virtual bases are
7483  // made. As such, this exception specification is effectively unspecified.
7484  // Based on a similar decision made for constness in C++0x, we're erring on
7485  // the side of assuming such calls to be made regardless of whether they
7486  // actually happen.
7487  ImplicitExceptionSpecification ExceptSpec(Context);
7488  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7489  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7490                                       BaseEnd = ClassDecl->bases_end();
7491       Base != BaseEnd; ++Base) {
7492    if (Base->isVirtual())
7493      continue;
7494
7495    CXXRecordDecl *BaseClassDecl
7496      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7497    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7498                                                            ArgQuals, false, 0))
7499      ExceptSpec.CalledDecl(CopyAssign);
7500  }
7501
7502  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7503                                       BaseEnd = ClassDecl->vbases_end();
7504       Base != BaseEnd; ++Base) {
7505    CXXRecordDecl *BaseClassDecl
7506      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7507    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7508                                                            ArgQuals, false, 0))
7509      ExceptSpec.CalledDecl(CopyAssign);
7510  }
7511
7512  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7513                                  FieldEnd = ClassDecl->field_end();
7514       Field != FieldEnd;
7515       ++Field) {
7516    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7517    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7518      if (CXXMethodDecl *CopyAssign =
7519          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7520        ExceptSpec.CalledDecl(CopyAssign);
7521    }
7522  }
7523
7524  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7525}
7526
7527CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7528  // Note: The following rules are largely analoguous to the copy
7529  // constructor rules. Note that virtual bases are not taken into account
7530  // for determining the argument type of the operator. Note also that
7531  // operators taking an object instead of a reference are allowed.
7532
7533  ImplicitExceptionSpecification Spec(Context);
7534  bool Const;
7535  llvm::tie(Spec, Const) =
7536    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7537
7538  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7539  QualType RetType = Context.getLValueReferenceType(ArgType);
7540  if (Const)
7541    ArgType = ArgType.withConst();
7542  ArgType = Context.getLValueReferenceType(ArgType);
7543
7544  //   An implicitly-declared copy assignment operator is an inline public
7545  //   member of its class.
7546  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7547  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7548  SourceLocation ClassLoc = ClassDecl->getLocation();
7549  DeclarationNameInfo NameInfo(Name, ClassLoc);
7550  CXXMethodDecl *CopyAssignment
7551    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7552                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7553                            /*TInfo=*/0, /*isStatic=*/false,
7554                            /*StorageClassAsWritten=*/SC_None,
7555                            /*isInline=*/true, /*isConstexpr=*/false,
7556                            SourceLocation());
7557  CopyAssignment->setAccess(AS_public);
7558  CopyAssignment->setDefaulted();
7559  CopyAssignment->setImplicit();
7560  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7561
7562  // Add the parameter to the operator.
7563  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7564                                               ClassLoc, ClassLoc, /*Id=*/0,
7565                                               ArgType, /*TInfo=*/0,
7566                                               SC_None,
7567                                               SC_None, 0);
7568  CopyAssignment->setParams(FromParam);
7569
7570  // Note that we have added this copy-assignment operator.
7571  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7572
7573  if (Scope *S = getScopeForContext(ClassDecl))
7574    PushOnScopeChains(CopyAssignment, S, false);
7575  ClassDecl->addDecl(CopyAssignment);
7576
7577  // C++0x [class.copy]p18:
7578  //   ... If the class definition declares a move constructor or move
7579  //   assignment operator, the implicitly declared copy assignment operator is
7580  //   defined as deleted; ...
7581  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
7582      ClassDecl->hasUserDeclaredMoveAssignment() ||
7583      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7584    CopyAssignment->setDeletedAsWritten();
7585
7586  AddOverriddenMethods(ClassDecl, CopyAssignment);
7587  return CopyAssignment;
7588}
7589
7590void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7591                                        CXXMethodDecl *CopyAssignOperator) {
7592  assert((CopyAssignOperator->isDefaulted() &&
7593          CopyAssignOperator->isOverloadedOperator() &&
7594          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7595          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7596         "DefineImplicitCopyAssignment called for wrong function");
7597
7598  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7599
7600  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7601    CopyAssignOperator->setInvalidDecl();
7602    return;
7603  }
7604
7605  CopyAssignOperator->setUsed();
7606
7607  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7608  DiagnosticErrorTrap Trap(Diags);
7609
7610  // C++0x [class.copy]p30:
7611  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7612  //   for a non-union class X performs memberwise copy assignment of its
7613  //   subobjects. The direct base classes of X are assigned first, in the
7614  //   order of their declaration in the base-specifier-list, and then the
7615  //   immediate non-static data members of X are assigned, in the order in
7616  //   which they were declared in the class definition.
7617
7618  // The statements that form the synthesized function body.
7619  ASTOwningVector<Stmt*> Statements(*this);
7620
7621  // The parameter for the "other" object, which we are copying from.
7622  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7623  Qualifiers OtherQuals = Other->getType().getQualifiers();
7624  QualType OtherRefType = Other->getType();
7625  if (const LValueReferenceType *OtherRef
7626                                = OtherRefType->getAs<LValueReferenceType>()) {
7627    OtherRefType = OtherRef->getPointeeType();
7628    OtherQuals = OtherRefType.getQualifiers();
7629  }
7630
7631  // Our location for everything implicitly-generated.
7632  SourceLocation Loc = CopyAssignOperator->getLocation();
7633
7634  // Construct a reference to the "other" object. We'll be using this
7635  // throughout the generated ASTs.
7636  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7637  assert(OtherRef && "Reference to parameter cannot fail!");
7638
7639  // Construct the "this" pointer. We'll be using this throughout the generated
7640  // ASTs.
7641  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7642  assert(This && "Reference to this cannot fail!");
7643
7644  // Assign base classes.
7645  bool Invalid = false;
7646  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7647       E = ClassDecl->bases_end(); Base != E; ++Base) {
7648    // Form the assignment:
7649    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7650    QualType BaseType = Base->getType().getUnqualifiedType();
7651    if (!BaseType->isRecordType()) {
7652      Invalid = true;
7653      continue;
7654    }
7655
7656    CXXCastPath BasePath;
7657    BasePath.push_back(Base);
7658
7659    // Construct the "from" expression, which is an implicit cast to the
7660    // appropriately-qualified base type.
7661    Expr *From = OtherRef;
7662    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7663                             CK_UncheckedDerivedToBase,
7664                             VK_LValue, &BasePath).take();
7665
7666    // Dereference "this".
7667    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7668
7669    // Implicitly cast "this" to the appropriately-qualified base type.
7670    To = ImpCastExprToType(To.take(),
7671                           Context.getCVRQualifiedType(BaseType,
7672                                     CopyAssignOperator->getTypeQualifiers()),
7673                           CK_UncheckedDerivedToBase,
7674                           VK_LValue, &BasePath);
7675
7676    // Build the copy.
7677    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7678                                            To.get(), From,
7679                                            /*CopyingBaseSubobject=*/true,
7680                                            /*Copying=*/true);
7681    if (Copy.isInvalid()) {
7682      Diag(CurrentLocation, diag::note_member_synthesized_at)
7683        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7684      CopyAssignOperator->setInvalidDecl();
7685      return;
7686    }
7687
7688    // Success! Record the copy.
7689    Statements.push_back(Copy.takeAs<Expr>());
7690  }
7691
7692  // \brief Reference to the __builtin_memcpy function.
7693  Expr *BuiltinMemCpyRef = 0;
7694  // \brief Reference to the __builtin_objc_memmove_collectable function.
7695  Expr *CollectableMemCpyRef = 0;
7696
7697  // Assign non-static members.
7698  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7699                                  FieldEnd = ClassDecl->field_end();
7700       Field != FieldEnd; ++Field) {
7701    if (Field->isUnnamedBitfield())
7702      continue;
7703
7704    // Check for members of reference type; we can't copy those.
7705    if (Field->getType()->isReferenceType()) {
7706      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7707        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7708      Diag(Field->getLocation(), diag::note_declared_at);
7709      Diag(CurrentLocation, diag::note_member_synthesized_at)
7710        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7711      Invalid = true;
7712      continue;
7713    }
7714
7715    // Check for members of const-qualified, non-class type.
7716    QualType BaseType = Context.getBaseElementType(Field->getType());
7717    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7718      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7719        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7720      Diag(Field->getLocation(), diag::note_declared_at);
7721      Diag(CurrentLocation, diag::note_member_synthesized_at)
7722        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7723      Invalid = true;
7724      continue;
7725    }
7726
7727    // Suppress assigning zero-width bitfields.
7728    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7729      continue;
7730
7731    QualType FieldType = Field->getType().getNonReferenceType();
7732    if (FieldType->isIncompleteArrayType()) {
7733      assert(ClassDecl->hasFlexibleArrayMember() &&
7734             "Incomplete array type is not valid");
7735      continue;
7736    }
7737
7738    // Build references to the field in the object we're copying from and to.
7739    CXXScopeSpec SS; // Intentionally empty
7740    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7741                              LookupMemberName);
7742    MemberLookup.addDecl(*Field);
7743    MemberLookup.resolveKind();
7744    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7745                                               Loc, /*IsArrow=*/false,
7746                                               SS, 0, MemberLookup, 0);
7747    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7748                                             Loc, /*IsArrow=*/true,
7749                                             SS, 0, MemberLookup, 0);
7750    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7751    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7752
7753    // If the field should be copied with __builtin_memcpy rather than via
7754    // explicit assignments, do so. This optimization only applies for arrays
7755    // of scalars and arrays of class type with trivial copy-assignment
7756    // operators.
7757    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7758        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7759      // Compute the size of the memory buffer to be copied.
7760      QualType SizeType = Context.getSizeType();
7761      llvm::APInt Size(Context.getTypeSize(SizeType),
7762                       Context.getTypeSizeInChars(BaseType).getQuantity());
7763      for (const ConstantArrayType *Array
7764              = Context.getAsConstantArrayType(FieldType);
7765           Array;
7766           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7767        llvm::APInt ArraySize
7768          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7769        Size *= ArraySize;
7770      }
7771
7772      // Take the address of the field references for "from" and "to".
7773      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7774      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7775
7776      bool NeedsCollectableMemCpy =
7777          (BaseType->isRecordType() &&
7778           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7779
7780      if (NeedsCollectableMemCpy) {
7781        if (!CollectableMemCpyRef) {
7782          // Create a reference to the __builtin_objc_memmove_collectable function.
7783          LookupResult R(*this,
7784                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7785                         Loc, LookupOrdinaryName);
7786          LookupName(R, TUScope, true);
7787
7788          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7789          if (!CollectableMemCpy) {
7790            // Something went horribly wrong earlier, and we will have
7791            // complained about it.
7792            Invalid = true;
7793            continue;
7794          }
7795
7796          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7797                                                  CollectableMemCpy->getType(),
7798                                                  VK_LValue, Loc, 0).take();
7799          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7800        }
7801      }
7802      // Create a reference to the __builtin_memcpy builtin function.
7803      else if (!BuiltinMemCpyRef) {
7804        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7805                       LookupOrdinaryName);
7806        LookupName(R, TUScope, true);
7807
7808        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7809        if (!BuiltinMemCpy) {
7810          // Something went horribly wrong earlier, and we will have complained
7811          // about it.
7812          Invalid = true;
7813          continue;
7814        }
7815
7816        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7817                                            BuiltinMemCpy->getType(),
7818                                            VK_LValue, Loc, 0).take();
7819        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7820      }
7821
7822      ASTOwningVector<Expr*> CallArgs(*this);
7823      CallArgs.push_back(To.takeAs<Expr>());
7824      CallArgs.push_back(From.takeAs<Expr>());
7825      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7826      ExprResult Call = ExprError();
7827      if (NeedsCollectableMemCpy)
7828        Call = ActOnCallExpr(/*Scope=*/0,
7829                             CollectableMemCpyRef,
7830                             Loc, move_arg(CallArgs),
7831                             Loc);
7832      else
7833        Call = ActOnCallExpr(/*Scope=*/0,
7834                             BuiltinMemCpyRef,
7835                             Loc, move_arg(CallArgs),
7836                             Loc);
7837
7838      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7839      Statements.push_back(Call.takeAs<Expr>());
7840      continue;
7841    }
7842
7843    // Build the copy of this field.
7844    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7845                                            To.get(), From.get(),
7846                                            /*CopyingBaseSubobject=*/false,
7847                                            /*Copying=*/true);
7848    if (Copy.isInvalid()) {
7849      Diag(CurrentLocation, diag::note_member_synthesized_at)
7850        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7851      CopyAssignOperator->setInvalidDecl();
7852      return;
7853    }
7854
7855    // Success! Record the copy.
7856    Statements.push_back(Copy.takeAs<Stmt>());
7857  }
7858
7859  if (!Invalid) {
7860    // Add a "return *this;"
7861    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7862
7863    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7864    if (Return.isInvalid())
7865      Invalid = true;
7866    else {
7867      Statements.push_back(Return.takeAs<Stmt>());
7868
7869      if (Trap.hasErrorOccurred()) {
7870        Diag(CurrentLocation, diag::note_member_synthesized_at)
7871          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7872        Invalid = true;
7873      }
7874    }
7875  }
7876
7877  if (Invalid) {
7878    CopyAssignOperator->setInvalidDecl();
7879    return;
7880  }
7881
7882  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7883                                            /*isStmtExpr=*/false);
7884  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7885  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7886
7887  if (ASTMutationListener *L = getASTMutationListener()) {
7888    L->CompletedImplicitDefinition(CopyAssignOperator);
7889  }
7890}
7891
7892Sema::ImplicitExceptionSpecification
7893Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
7894  ImplicitExceptionSpecification ExceptSpec(Context);
7895
7896  if (ClassDecl->isInvalidDecl())
7897    return ExceptSpec;
7898
7899  // C++0x [except.spec]p14:
7900  //   An implicitly declared special member function (Clause 12) shall have an
7901  //   exception-specification. [...]
7902
7903  // It is unspecified whether or not an implicit move assignment operator
7904  // attempts to deduplicate calls to assignment operators of virtual bases are
7905  // made. As such, this exception specification is effectively unspecified.
7906  // Based on a similar decision made for constness in C++0x, we're erring on
7907  // the side of assuming such calls to be made regardless of whether they
7908  // actually happen.
7909  // Note that a move constructor is not implicitly declared when there are
7910  // virtual bases, but it can still be user-declared and explicitly defaulted.
7911  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7912                                       BaseEnd = ClassDecl->bases_end();
7913       Base != BaseEnd; ++Base) {
7914    if (Base->isVirtual())
7915      continue;
7916
7917    CXXRecordDecl *BaseClassDecl
7918      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7919    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7920                                                           false, 0))
7921      ExceptSpec.CalledDecl(MoveAssign);
7922  }
7923
7924  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7925                                       BaseEnd = ClassDecl->vbases_end();
7926       Base != BaseEnd; ++Base) {
7927    CXXRecordDecl *BaseClassDecl
7928      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7929    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7930                                                           false, 0))
7931      ExceptSpec.CalledDecl(MoveAssign);
7932  }
7933
7934  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7935                                  FieldEnd = ClassDecl->field_end();
7936       Field != FieldEnd;
7937       ++Field) {
7938    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7939    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7940      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
7941                                                             false, 0))
7942        ExceptSpec.CalledDecl(MoveAssign);
7943    }
7944  }
7945
7946  return ExceptSpec;
7947}
7948
7949CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
7950  // Note: The following rules are largely analoguous to the move
7951  // constructor rules.
7952
7953  ImplicitExceptionSpecification Spec(
7954      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
7955
7956  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7957  QualType RetType = Context.getLValueReferenceType(ArgType);
7958  ArgType = Context.getRValueReferenceType(ArgType);
7959
7960  //   An implicitly-declared move assignment operator is an inline public
7961  //   member of its class.
7962  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7963  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7964  SourceLocation ClassLoc = ClassDecl->getLocation();
7965  DeclarationNameInfo NameInfo(Name, ClassLoc);
7966  CXXMethodDecl *MoveAssignment
7967    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7968                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7969                            /*TInfo=*/0, /*isStatic=*/false,
7970                            /*StorageClassAsWritten=*/SC_None,
7971                            /*isInline=*/true,
7972                            /*isConstexpr=*/false,
7973                            SourceLocation());
7974  MoveAssignment->setAccess(AS_public);
7975  MoveAssignment->setDefaulted();
7976  MoveAssignment->setImplicit();
7977  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
7978
7979  // Add the parameter to the operator.
7980  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
7981                                               ClassLoc, ClassLoc, /*Id=*/0,
7982                                               ArgType, /*TInfo=*/0,
7983                                               SC_None,
7984                                               SC_None, 0);
7985  MoveAssignment->setParams(FromParam);
7986
7987  // Note that we have added this copy-assignment operator.
7988  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
7989
7990  // C++0x [class.copy]p9:
7991  //   If the definition of a class X does not explicitly declare a move
7992  //   assignment operator, one will be implicitly declared as defaulted if and
7993  //   only if:
7994  //   [...]
7995  //   - the move assignment operator would not be implicitly defined as
7996  //     deleted.
7997  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
7998    // Cache this result so that we don't try to generate this over and over
7999    // on every lookup, leaking memory and wasting time.
8000    ClassDecl->setFailedImplicitMoveAssignment();
8001    return 0;
8002  }
8003
8004  if (Scope *S = getScopeForContext(ClassDecl))
8005    PushOnScopeChains(MoveAssignment, S, false);
8006  ClassDecl->addDecl(MoveAssignment);
8007
8008  AddOverriddenMethods(ClassDecl, MoveAssignment);
8009  return MoveAssignment;
8010}
8011
8012void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8013                                        CXXMethodDecl *MoveAssignOperator) {
8014  assert((MoveAssignOperator->isDefaulted() &&
8015          MoveAssignOperator->isOverloadedOperator() &&
8016          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8017          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8018         "DefineImplicitMoveAssignment called for wrong function");
8019
8020  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8021
8022  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8023    MoveAssignOperator->setInvalidDecl();
8024    return;
8025  }
8026
8027  MoveAssignOperator->setUsed();
8028
8029  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8030  DiagnosticErrorTrap Trap(Diags);
8031
8032  // C++0x [class.copy]p28:
8033  //   The implicitly-defined or move assignment operator for a non-union class
8034  //   X performs memberwise move assignment of its subobjects. The direct base
8035  //   classes of X are assigned first, in the order of their declaration in the
8036  //   base-specifier-list, and then the immediate non-static data members of X
8037  //   are assigned, in the order in which they were declared in the class
8038  //   definition.
8039
8040  // The statements that form the synthesized function body.
8041  ASTOwningVector<Stmt*> Statements(*this);
8042
8043  // The parameter for the "other" object, which we are move from.
8044  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8045  QualType OtherRefType = Other->getType()->
8046      getAs<RValueReferenceType>()->getPointeeType();
8047  assert(OtherRefType.getQualifiers() == 0 &&
8048         "Bad argument type of defaulted move assignment");
8049
8050  // Our location for everything implicitly-generated.
8051  SourceLocation Loc = MoveAssignOperator->getLocation();
8052
8053  // Construct a reference to the "other" object. We'll be using this
8054  // throughout the generated ASTs.
8055  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8056  assert(OtherRef && "Reference to parameter cannot fail!");
8057  // Cast to rvalue.
8058  OtherRef = CastForMoving(*this, OtherRef);
8059
8060  // Construct the "this" pointer. We'll be using this throughout the generated
8061  // ASTs.
8062  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8063  assert(This && "Reference to this cannot fail!");
8064
8065  // Assign base classes.
8066  bool Invalid = false;
8067  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8068       E = ClassDecl->bases_end(); Base != E; ++Base) {
8069    // Form the assignment:
8070    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8071    QualType BaseType = Base->getType().getUnqualifiedType();
8072    if (!BaseType->isRecordType()) {
8073      Invalid = true;
8074      continue;
8075    }
8076
8077    CXXCastPath BasePath;
8078    BasePath.push_back(Base);
8079
8080    // Construct the "from" expression, which is an implicit cast to the
8081    // appropriately-qualified base type.
8082    Expr *From = OtherRef;
8083    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8084                             VK_XValue, &BasePath).take();
8085
8086    // Dereference "this".
8087    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8088
8089    // Implicitly cast "this" to the appropriately-qualified base type.
8090    To = ImpCastExprToType(To.take(),
8091                           Context.getCVRQualifiedType(BaseType,
8092                                     MoveAssignOperator->getTypeQualifiers()),
8093                           CK_UncheckedDerivedToBase,
8094                           VK_LValue, &BasePath);
8095
8096    // Build the move.
8097    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8098                                            To.get(), From,
8099                                            /*CopyingBaseSubobject=*/true,
8100                                            /*Copying=*/false);
8101    if (Move.isInvalid()) {
8102      Diag(CurrentLocation, diag::note_member_synthesized_at)
8103        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8104      MoveAssignOperator->setInvalidDecl();
8105      return;
8106    }
8107
8108    // Success! Record the move.
8109    Statements.push_back(Move.takeAs<Expr>());
8110  }
8111
8112  // \brief Reference to the __builtin_memcpy function.
8113  Expr *BuiltinMemCpyRef = 0;
8114  // \brief Reference to the __builtin_objc_memmove_collectable function.
8115  Expr *CollectableMemCpyRef = 0;
8116
8117  // Assign non-static members.
8118  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8119                                  FieldEnd = ClassDecl->field_end();
8120       Field != FieldEnd; ++Field) {
8121    if (Field->isUnnamedBitfield())
8122      continue;
8123
8124    // Check for members of reference type; we can't move those.
8125    if (Field->getType()->isReferenceType()) {
8126      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8127        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8128      Diag(Field->getLocation(), diag::note_declared_at);
8129      Diag(CurrentLocation, diag::note_member_synthesized_at)
8130        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8131      Invalid = true;
8132      continue;
8133    }
8134
8135    // Check for members of const-qualified, non-class type.
8136    QualType BaseType = Context.getBaseElementType(Field->getType());
8137    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8138      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8139        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8140      Diag(Field->getLocation(), diag::note_declared_at);
8141      Diag(CurrentLocation, diag::note_member_synthesized_at)
8142        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8143      Invalid = true;
8144      continue;
8145    }
8146
8147    // Suppress assigning zero-width bitfields.
8148    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8149      continue;
8150
8151    QualType FieldType = Field->getType().getNonReferenceType();
8152    if (FieldType->isIncompleteArrayType()) {
8153      assert(ClassDecl->hasFlexibleArrayMember() &&
8154             "Incomplete array type is not valid");
8155      continue;
8156    }
8157
8158    // Build references to the field in the object we're copying from and to.
8159    CXXScopeSpec SS; // Intentionally empty
8160    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8161                              LookupMemberName);
8162    MemberLookup.addDecl(*Field);
8163    MemberLookup.resolveKind();
8164    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8165                                               Loc, /*IsArrow=*/false,
8166                                               SS, 0, MemberLookup, 0);
8167    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8168                                             Loc, /*IsArrow=*/true,
8169                                             SS, 0, MemberLookup, 0);
8170    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8171    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8172
8173    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8174        "Member reference with rvalue base must be rvalue except for reference "
8175        "members, which aren't allowed for move assignment.");
8176
8177    // If the field should be copied with __builtin_memcpy rather than via
8178    // explicit assignments, do so. This optimization only applies for arrays
8179    // of scalars and arrays of class type with trivial move-assignment
8180    // operators.
8181    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8182        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8183      // Compute the size of the memory buffer to be copied.
8184      QualType SizeType = Context.getSizeType();
8185      llvm::APInt Size(Context.getTypeSize(SizeType),
8186                       Context.getTypeSizeInChars(BaseType).getQuantity());
8187      for (const ConstantArrayType *Array
8188              = Context.getAsConstantArrayType(FieldType);
8189           Array;
8190           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8191        llvm::APInt ArraySize
8192          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8193        Size *= ArraySize;
8194      }
8195
8196      // Take the address of the field references for "from" and "to". We
8197      // directly construct UnaryOperators here because semantic analysis
8198      // does not permit us to take the address of an xvalue.
8199      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8200                             Context.getPointerType(From.get()->getType()),
8201                             VK_RValue, OK_Ordinary, Loc);
8202      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8203                           Context.getPointerType(To.get()->getType()),
8204                           VK_RValue, OK_Ordinary, Loc);
8205
8206      bool NeedsCollectableMemCpy =
8207          (BaseType->isRecordType() &&
8208           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8209
8210      if (NeedsCollectableMemCpy) {
8211        if (!CollectableMemCpyRef) {
8212          // Create a reference to the __builtin_objc_memmove_collectable function.
8213          LookupResult R(*this,
8214                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8215                         Loc, LookupOrdinaryName);
8216          LookupName(R, TUScope, true);
8217
8218          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8219          if (!CollectableMemCpy) {
8220            // Something went horribly wrong earlier, and we will have
8221            // complained about it.
8222            Invalid = true;
8223            continue;
8224          }
8225
8226          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8227                                                  CollectableMemCpy->getType(),
8228                                                  VK_LValue, Loc, 0).take();
8229          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8230        }
8231      }
8232      // Create a reference to the __builtin_memcpy builtin function.
8233      else if (!BuiltinMemCpyRef) {
8234        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8235                       LookupOrdinaryName);
8236        LookupName(R, TUScope, true);
8237
8238        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8239        if (!BuiltinMemCpy) {
8240          // Something went horribly wrong earlier, and we will have complained
8241          // about it.
8242          Invalid = true;
8243          continue;
8244        }
8245
8246        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8247                                            BuiltinMemCpy->getType(),
8248                                            VK_LValue, Loc, 0).take();
8249        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8250      }
8251
8252      ASTOwningVector<Expr*> CallArgs(*this);
8253      CallArgs.push_back(To.takeAs<Expr>());
8254      CallArgs.push_back(From.takeAs<Expr>());
8255      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8256      ExprResult Call = ExprError();
8257      if (NeedsCollectableMemCpy)
8258        Call = ActOnCallExpr(/*Scope=*/0,
8259                             CollectableMemCpyRef,
8260                             Loc, move_arg(CallArgs),
8261                             Loc);
8262      else
8263        Call = ActOnCallExpr(/*Scope=*/0,
8264                             BuiltinMemCpyRef,
8265                             Loc, move_arg(CallArgs),
8266                             Loc);
8267
8268      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8269      Statements.push_back(Call.takeAs<Expr>());
8270      continue;
8271    }
8272
8273    // Build the move of this field.
8274    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8275                                            To.get(), From.get(),
8276                                            /*CopyingBaseSubobject=*/false,
8277                                            /*Copying=*/false);
8278    if (Move.isInvalid()) {
8279      Diag(CurrentLocation, diag::note_member_synthesized_at)
8280        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8281      MoveAssignOperator->setInvalidDecl();
8282      return;
8283    }
8284
8285    // Success! Record the copy.
8286    Statements.push_back(Move.takeAs<Stmt>());
8287  }
8288
8289  if (!Invalid) {
8290    // Add a "return *this;"
8291    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8292
8293    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8294    if (Return.isInvalid())
8295      Invalid = true;
8296    else {
8297      Statements.push_back(Return.takeAs<Stmt>());
8298
8299      if (Trap.hasErrorOccurred()) {
8300        Diag(CurrentLocation, diag::note_member_synthesized_at)
8301          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8302        Invalid = true;
8303      }
8304    }
8305  }
8306
8307  if (Invalid) {
8308    MoveAssignOperator->setInvalidDecl();
8309    return;
8310  }
8311
8312  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8313                                            /*isStmtExpr=*/false);
8314  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8315  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8316
8317  if (ASTMutationListener *L = getASTMutationListener()) {
8318    L->CompletedImplicitDefinition(MoveAssignOperator);
8319  }
8320}
8321
8322std::pair<Sema::ImplicitExceptionSpecification, bool>
8323Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8324  if (ClassDecl->isInvalidDecl())
8325    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8326
8327  // C++ [class.copy]p5:
8328  //   The implicitly-declared copy constructor for a class X will
8329  //   have the form
8330  //
8331  //       X::X(const X&)
8332  //
8333  //   if
8334  // FIXME: It ought to be possible to store this on the record.
8335  bool HasConstCopyConstructor = true;
8336
8337  //     -- each direct or virtual base class B of X has a copy
8338  //        constructor whose first parameter is of type const B& or
8339  //        const volatile B&, and
8340  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8341                                       BaseEnd = ClassDecl->bases_end();
8342       HasConstCopyConstructor && Base != BaseEnd;
8343       ++Base) {
8344    // Virtual bases are handled below.
8345    if (Base->isVirtual())
8346      continue;
8347
8348    CXXRecordDecl *BaseClassDecl
8349      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8350    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8351                             &HasConstCopyConstructor);
8352  }
8353
8354  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8355                                       BaseEnd = ClassDecl->vbases_end();
8356       HasConstCopyConstructor && Base != BaseEnd;
8357       ++Base) {
8358    CXXRecordDecl *BaseClassDecl
8359      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8360    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8361                             &HasConstCopyConstructor);
8362  }
8363
8364  //     -- for all the nonstatic data members of X that are of a
8365  //        class type M (or array thereof), each such class type
8366  //        has a copy constructor whose first parameter is of type
8367  //        const M& or const volatile M&.
8368  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8369                                  FieldEnd = ClassDecl->field_end();
8370       HasConstCopyConstructor && Field != FieldEnd;
8371       ++Field) {
8372    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8373    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8374      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8375                               &HasConstCopyConstructor);
8376    }
8377  }
8378  //   Otherwise, the implicitly declared copy constructor will have
8379  //   the form
8380  //
8381  //       X::X(X&)
8382
8383  // C++ [except.spec]p14:
8384  //   An implicitly declared special member function (Clause 12) shall have an
8385  //   exception-specification. [...]
8386  ImplicitExceptionSpecification ExceptSpec(Context);
8387  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8388  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8389                                       BaseEnd = ClassDecl->bases_end();
8390       Base != BaseEnd;
8391       ++Base) {
8392    // Virtual bases are handled below.
8393    if (Base->isVirtual())
8394      continue;
8395
8396    CXXRecordDecl *BaseClassDecl
8397      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8398    if (CXXConstructorDecl *CopyConstructor =
8399          LookupCopyingConstructor(BaseClassDecl, Quals))
8400      ExceptSpec.CalledDecl(CopyConstructor);
8401  }
8402  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8403                                       BaseEnd = ClassDecl->vbases_end();
8404       Base != BaseEnd;
8405       ++Base) {
8406    CXXRecordDecl *BaseClassDecl
8407      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8408    if (CXXConstructorDecl *CopyConstructor =
8409          LookupCopyingConstructor(BaseClassDecl, Quals))
8410      ExceptSpec.CalledDecl(CopyConstructor);
8411  }
8412  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8413                                  FieldEnd = ClassDecl->field_end();
8414       Field != FieldEnd;
8415       ++Field) {
8416    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8417    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8418      if (CXXConstructorDecl *CopyConstructor =
8419        LookupCopyingConstructor(FieldClassDecl, Quals))
8420      ExceptSpec.CalledDecl(CopyConstructor);
8421    }
8422  }
8423
8424  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8425}
8426
8427CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8428                                                    CXXRecordDecl *ClassDecl) {
8429  // C++ [class.copy]p4:
8430  //   If the class definition does not explicitly declare a copy
8431  //   constructor, one is declared implicitly.
8432
8433  ImplicitExceptionSpecification Spec(Context);
8434  bool Const;
8435  llvm::tie(Spec, Const) =
8436    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8437
8438  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8439  QualType ArgType = ClassType;
8440  if (Const)
8441    ArgType = ArgType.withConst();
8442  ArgType = Context.getLValueReferenceType(ArgType);
8443
8444  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8445
8446  DeclarationName Name
8447    = Context.DeclarationNames.getCXXConstructorName(
8448                                           Context.getCanonicalType(ClassType));
8449  SourceLocation ClassLoc = ClassDecl->getLocation();
8450  DeclarationNameInfo NameInfo(Name, ClassLoc);
8451
8452  //   An implicitly-declared copy constructor is an inline public
8453  //   member of its class.
8454  CXXConstructorDecl *CopyConstructor
8455    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8456                                 Context.getFunctionType(Context.VoidTy,
8457                                                         &ArgType, 1, EPI),
8458                                 /*TInfo=*/0,
8459                                 /*isExplicit=*/false,
8460                                 /*isInline=*/true,
8461                                 /*isImplicitlyDeclared=*/true,
8462                                 // FIXME: apply the rules for definitions here
8463                                 /*isConstexpr=*/false);
8464  CopyConstructor->setAccess(AS_public);
8465  CopyConstructor->setDefaulted();
8466  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8467
8468  // Note that we have declared this constructor.
8469  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8470
8471  // Add the parameter to the constructor.
8472  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8473                                               ClassLoc, ClassLoc,
8474                                               /*IdentifierInfo=*/0,
8475                                               ArgType, /*TInfo=*/0,
8476                                               SC_None,
8477                                               SC_None, 0);
8478  CopyConstructor->setParams(FromParam);
8479
8480  if (Scope *S = getScopeForContext(ClassDecl))
8481    PushOnScopeChains(CopyConstructor, S, false);
8482  ClassDecl->addDecl(CopyConstructor);
8483
8484  // C++0x [class.copy]p7:
8485  //   ... If the class definition declares a move constructor or move
8486  //   assignment operator, the implicitly declared constructor is defined as
8487  //   deleted; ...
8488  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8489      ClassDecl->hasUserDeclaredMoveAssignment() ||
8490      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8491    CopyConstructor->setDeletedAsWritten();
8492
8493  return CopyConstructor;
8494}
8495
8496void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8497                                   CXXConstructorDecl *CopyConstructor) {
8498  assert((CopyConstructor->isDefaulted() &&
8499          CopyConstructor->isCopyConstructor() &&
8500          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8501         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8502
8503  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8504  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8505
8506  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8507  DiagnosticErrorTrap Trap(Diags);
8508
8509  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8510      Trap.hasErrorOccurred()) {
8511    Diag(CurrentLocation, diag::note_member_synthesized_at)
8512      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8513    CopyConstructor->setInvalidDecl();
8514  }  else {
8515    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8516                                               CopyConstructor->getLocation(),
8517                                               MultiStmtArg(*this, 0, 0),
8518                                               /*isStmtExpr=*/false)
8519                                                              .takeAs<Stmt>());
8520    CopyConstructor->setImplicitlyDefined(true);
8521  }
8522
8523  CopyConstructor->setUsed();
8524  if (ASTMutationListener *L = getASTMutationListener()) {
8525    L->CompletedImplicitDefinition(CopyConstructor);
8526  }
8527}
8528
8529Sema::ImplicitExceptionSpecification
8530Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8531  // C++ [except.spec]p14:
8532  //   An implicitly declared special member function (Clause 12) shall have an
8533  //   exception-specification. [...]
8534  ImplicitExceptionSpecification ExceptSpec(Context);
8535  if (ClassDecl->isInvalidDecl())
8536    return ExceptSpec;
8537
8538  // Direct base-class constructors.
8539  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8540                                       BEnd = ClassDecl->bases_end();
8541       B != BEnd; ++B) {
8542    if (B->isVirtual()) // Handled below.
8543      continue;
8544
8545    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8546      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8547      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8548      // If this is a deleted function, add it anyway. This might be conformant
8549      // with the standard. This might not. I'm not sure. It might not matter.
8550      if (Constructor)
8551        ExceptSpec.CalledDecl(Constructor);
8552    }
8553  }
8554
8555  // Virtual base-class constructors.
8556  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8557                                       BEnd = ClassDecl->vbases_end();
8558       B != BEnd; ++B) {
8559    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8560      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8561      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8562      // If this is a deleted function, add it anyway. This might be conformant
8563      // with the standard. This might not. I'm not sure. It might not matter.
8564      if (Constructor)
8565        ExceptSpec.CalledDecl(Constructor);
8566    }
8567  }
8568
8569  // Field constructors.
8570  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8571                               FEnd = ClassDecl->field_end();
8572       F != FEnd; ++F) {
8573    if (F->hasInClassInitializer()) {
8574      if (Expr *E = F->getInClassInitializer())
8575        ExceptSpec.CalledExpr(E);
8576      else if (!F->isInvalidDecl())
8577        ExceptSpec.SetDelayed();
8578    } else if (const RecordType *RecordTy
8579              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8580      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8581      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8582      // If this is a deleted function, add it anyway. This might be conformant
8583      // with the standard. This might not. I'm not sure. It might not matter.
8584      // In particular, the problem is that this function never gets called. It
8585      // might just be ill-formed because this function attempts to refer to
8586      // a deleted function here.
8587      if (Constructor)
8588        ExceptSpec.CalledDecl(Constructor);
8589    }
8590  }
8591
8592  return ExceptSpec;
8593}
8594
8595CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8596                                                    CXXRecordDecl *ClassDecl) {
8597  ImplicitExceptionSpecification Spec(
8598      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8599
8600  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8601  QualType ArgType = Context.getRValueReferenceType(ClassType);
8602
8603  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8604
8605  DeclarationName Name
8606    = Context.DeclarationNames.getCXXConstructorName(
8607                                           Context.getCanonicalType(ClassType));
8608  SourceLocation ClassLoc = ClassDecl->getLocation();
8609  DeclarationNameInfo NameInfo(Name, ClassLoc);
8610
8611  // C++0x [class.copy]p11:
8612  //   An implicitly-declared copy/move constructor is an inline public
8613  //   member of its class.
8614  CXXConstructorDecl *MoveConstructor
8615    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8616                                 Context.getFunctionType(Context.VoidTy,
8617                                                         &ArgType, 1, EPI),
8618                                 /*TInfo=*/0,
8619                                 /*isExplicit=*/false,
8620                                 /*isInline=*/true,
8621                                 /*isImplicitlyDeclared=*/true,
8622                                 // FIXME: apply the rules for definitions here
8623                                 /*isConstexpr=*/false);
8624  MoveConstructor->setAccess(AS_public);
8625  MoveConstructor->setDefaulted();
8626  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8627
8628  // Add the parameter to the constructor.
8629  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8630                                               ClassLoc, ClassLoc,
8631                                               /*IdentifierInfo=*/0,
8632                                               ArgType, /*TInfo=*/0,
8633                                               SC_None,
8634                                               SC_None, 0);
8635  MoveConstructor->setParams(FromParam);
8636
8637  // C++0x [class.copy]p9:
8638  //   If the definition of a class X does not explicitly declare a move
8639  //   constructor, one will be implicitly declared as defaulted if and only if:
8640  //   [...]
8641  //   - the move constructor would not be implicitly defined as deleted.
8642  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8643    // Cache this result so that we don't try to generate this over and over
8644    // on every lookup, leaking memory and wasting time.
8645    ClassDecl->setFailedImplicitMoveConstructor();
8646    return 0;
8647  }
8648
8649  // Note that we have declared this constructor.
8650  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8651
8652  if (Scope *S = getScopeForContext(ClassDecl))
8653    PushOnScopeChains(MoveConstructor, S, false);
8654  ClassDecl->addDecl(MoveConstructor);
8655
8656  return MoveConstructor;
8657}
8658
8659void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8660                                   CXXConstructorDecl *MoveConstructor) {
8661  assert((MoveConstructor->isDefaulted() &&
8662          MoveConstructor->isMoveConstructor() &&
8663          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8664         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8665
8666  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8667  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8668
8669  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8670  DiagnosticErrorTrap Trap(Diags);
8671
8672  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8673      Trap.hasErrorOccurred()) {
8674    Diag(CurrentLocation, diag::note_member_synthesized_at)
8675      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8676    MoveConstructor->setInvalidDecl();
8677  }  else {
8678    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8679                                               MoveConstructor->getLocation(),
8680                                               MultiStmtArg(*this, 0, 0),
8681                                               /*isStmtExpr=*/false)
8682                                                              .takeAs<Stmt>());
8683    MoveConstructor->setImplicitlyDefined(true);
8684  }
8685
8686  MoveConstructor->setUsed();
8687
8688  if (ASTMutationListener *L = getASTMutationListener()) {
8689    L->CompletedImplicitDefinition(MoveConstructor);
8690  }
8691}
8692
8693ExprResult
8694Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8695                            CXXConstructorDecl *Constructor,
8696                            MultiExprArg ExprArgs,
8697                            bool HadMultipleCandidates,
8698                            bool RequiresZeroInit,
8699                            unsigned ConstructKind,
8700                            SourceRange ParenRange) {
8701  bool Elidable = false;
8702
8703  // C++0x [class.copy]p34:
8704  //   When certain criteria are met, an implementation is allowed to
8705  //   omit the copy/move construction of a class object, even if the
8706  //   copy/move constructor and/or destructor for the object have
8707  //   side effects. [...]
8708  //     - when a temporary class object that has not been bound to a
8709  //       reference (12.2) would be copied/moved to a class object
8710  //       with the same cv-unqualified type, the copy/move operation
8711  //       can be omitted by constructing the temporary object
8712  //       directly into the target of the omitted copy/move
8713  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8714      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
8715    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8716    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8717  }
8718
8719  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8720                               Elidable, move(ExprArgs), HadMultipleCandidates,
8721                               RequiresZeroInit, ConstructKind, ParenRange);
8722}
8723
8724/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8725/// including handling of its default argument expressions.
8726ExprResult
8727Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8728                            CXXConstructorDecl *Constructor, bool Elidable,
8729                            MultiExprArg ExprArgs,
8730                            bool HadMultipleCandidates,
8731                            bool RequiresZeroInit,
8732                            unsigned ConstructKind,
8733                            SourceRange ParenRange) {
8734  unsigned NumExprs = ExprArgs.size();
8735  Expr **Exprs = (Expr **)ExprArgs.release();
8736
8737  for (specific_attr_iterator<NonNullAttr>
8738           i = Constructor->specific_attr_begin<NonNullAttr>(),
8739           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
8740    const NonNullAttr *NonNull = *i;
8741    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
8742  }
8743
8744  MarkDeclarationReferenced(ConstructLoc, Constructor);
8745  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
8746                                        Constructor, Elidable, Exprs, NumExprs,
8747                                        HadMultipleCandidates, RequiresZeroInit,
8748              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
8749                                        ParenRange));
8750}
8751
8752bool Sema::InitializeVarWithConstructor(VarDecl *VD,
8753                                        CXXConstructorDecl *Constructor,
8754                                        MultiExprArg Exprs,
8755                                        bool HadMultipleCandidates) {
8756  // FIXME: Provide the correct paren SourceRange when available.
8757  ExprResult TempResult =
8758    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
8759                          move(Exprs), HadMultipleCandidates, false,
8760                          CXXConstructExpr::CK_Complete, SourceRange());
8761  if (TempResult.isInvalid())
8762    return true;
8763
8764  Expr *Temp = TempResult.takeAs<Expr>();
8765  CheckImplicitConversions(Temp, VD->getLocation());
8766  MarkDeclarationReferenced(VD->getLocation(), Constructor);
8767  Temp = MaybeCreateExprWithCleanups(Temp);
8768  VD->setInit(Temp);
8769
8770  return false;
8771}
8772
8773void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
8774  if (VD->isInvalidDecl()) return;
8775
8776  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
8777  if (ClassDecl->isInvalidDecl()) return;
8778  if (ClassDecl->hasTrivialDestructor()) return;
8779  if (ClassDecl->isDependentContext()) return;
8780
8781  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
8782  MarkDeclarationReferenced(VD->getLocation(), Destructor);
8783  CheckDestructorAccess(VD->getLocation(), Destructor,
8784                        PDiag(diag::err_access_dtor_var)
8785                        << VD->getDeclName()
8786                        << VD->getType());
8787
8788  if (!VD->hasGlobalStorage()) return;
8789
8790  // Emit warning for non-trivial dtor in global scope (a real global,
8791  // class-static, function-static).
8792  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
8793
8794  // TODO: this should be re-enabled for static locals by !CXAAtExit
8795  if (!VD->isStaticLocal())
8796    Diag(VD->getLocation(), diag::warn_global_destructor);
8797}
8798
8799/// AddCXXDirectInitializerToDecl - This action is called immediately after
8800/// ActOnDeclarator, when a C++ direct initializer is present.
8801/// e.g: "int x(1);"
8802void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
8803                                         SourceLocation LParenLoc,
8804                                         MultiExprArg Exprs,
8805                                         SourceLocation RParenLoc,
8806                                         bool TypeMayContainAuto) {
8807  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
8808
8809  // If there is no declaration, there was an error parsing it.  Just ignore
8810  // the initializer.
8811  if (RealDecl == 0)
8812    return;
8813
8814  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
8815  if (!VDecl) {
8816    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
8817    RealDecl->setInvalidDecl();
8818    return;
8819  }
8820
8821  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
8822  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
8823    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
8824    if (Exprs.size() > 1) {
8825      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
8826           diag::err_auto_var_init_multiple_expressions)
8827        << VDecl->getDeclName() << VDecl->getType()
8828        << VDecl->getSourceRange();
8829      RealDecl->setInvalidDecl();
8830      return;
8831    }
8832
8833    Expr *Init = Exprs.get()[0];
8834    TypeSourceInfo *DeducedType = 0;
8835    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
8836      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
8837        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
8838        << Init->getSourceRange();
8839    if (!DeducedType) {
8840      RealDecl->setInvalidDecl();
8841      return;
8842    }
8843    VDecl->setTypeSourceInfo(DeducedType);
8844    VDecl->setType(DeducedType->getType());
8845
8846    // In ARC, infer lifetime.
8847    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
8848      VDecl->setInvalidDecl();
8849
8850    // If this is a redeclaration, check that the type we just deduced matches
8851    // the previously declared type.
8852    if (VarDecl *Old = VDecl->getPreviousDeclaration())
8853      MergeVarDeclTypes(VDecl, Old);
8854  }
8855
8856  // We will represent direct-initialization similarly to copy-initialization:
8857  //    int x(1);  -as-> int x = 1;
8858  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
8859  //
8860  // Clients that want to distinguish between the two forms, can check for
8861  // direct initializer using VarDecl::hasCXXDirectInitializer().
8862  // A major benefit is that clients that don't particularly care about which
8863  // exactly form was it (like the CodeGen) can handle both cases without
8864  // special case code.
8865
8866  // C++ 8.5p11:
8867  // The form of initialization (using parentheses or '=') is generally
8868  // insignificant, but does matter when the entity being initialized has a
8869  // class type.
8870
8871  if (!VDecl->getType()->isDependentType() &&
8872      !VDecl->getType()->isIncompleteArrayType() &&
8873      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
8874                          diag::err_typecheck_decl_incomplete_type)) {
8875    VDecl->setInvalidDecl();
8876    return;
8877  }
8878
8879  // The variable can not have an abstract class type.
8880  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
8881                             diag::err_abstract_type_in_decl,
8882                             AbstractVariableType))
8883    VDecl->setInvalidDecl();
8884
8885  const VarDecl *Def;
8886  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
8887    Diag(VDecl->getLocation(), diag::err_redefinition)
8888    << VDecl->getDeclName();
8889    Diag(Def->getLocation(), diag::note_previous_definition);
8890    VDecl->setInvalidDecl();
8891    return;
8892  }
8893
8894  // C++ [class.static.data]p4
8895  //   If a static data member is of const integral or const
8896  //   enumeration type, its declaration in the class definition can
8897  //   specify a constant-initializer which shall be an integral
8898  //   constant expression (5.19). In that case, the member can appear
8899  //   in integral constant expressions. The member shall still be
8900  //   defined in a namespace scope if it is used in the program and the
8901  //   namespace scope definition shall not contain an initializer.
8902  //
8903  // We already performed a redefinition check above, but for static
8904  // data members we also need to check whether there was an in-class
8905  // declaration with an initializer.
8906  const VarDecl* PrevInit = 0;
8907  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
8908    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
8909    Diag(PrevInit->getLocation(), diag::note_previous_definition);
8910    return;
8911  }
8912
8913  bool IsDependent = false;
8914  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
8915    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
8916      VDecl->setInvalidDecl();
8917      return;
8918    }
8919
8920    if (Exprs.get()[I]->isTypeDependent())
8921      IsDependent = true;
8922  }
8923
8924  // If either the declaration has a dependent type or if any of the
8925  // expressions is type-dependent, we represent the initialization
8926  // via a ParenListExpr for later use during template instantiation.
8927  if (VDecl->getType()->isDependentType() || IsDependent) {
8928    // Let clients know that initialization was done with a direct initializer.
8929    VDecl->setCXXDirectInitializer(true);
8930
8931    // Store the initialization expressions as a ParenListExpr.
8932    unsigned NumExprs = Exprs.size();
8933    VDecl->setInit(new (Context) ParenListExpr(
8934        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
8935        VDecl->getType().getNonReferenceType()));
8936    return;
8937  }
8938
8939  // Capture the variable that is being initialized and the style of
8940  // initialization.
8941  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
8942
8943  // FIXME: Poor source location information.
8944  InitializationKind Kind
8945    = InitializationKind::CreateDirect(VDecl->getLocation(),
8946                                       LParenLoc, RParenLoc);
8947
8948  QualType T = VDecl->getType();
8949  InitializationSequence InitSeq(*this, Entity, Kind,
8950                                 Exprs.get(), Exprs.size());
8951  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs), &T);
8952  if (Result.isInvalid()) {
8953    VDecl->setInvalidDecl();
8954    return;
8955  } else if (T != VDecl->getType()) {
8956    VDecl->setType(T);
8957    Result.get()->setType(T);
8958  }
8959
8960
8961  Expr *Init = Result.get();
8962  CheckImplicitConversions(Init, LParenLoc);
8963
8964  if (VDecl->isConstexpr() && !VDecl->isInvalidDecl() &&
8965      !Init->isValueDependent() &&
8966      !Init->isConstantInitializer(Context,
8967                                   VDecl->getType()->isReferenceType())) {
8968    // FIXME: Improve this diagnostic to explain why the initializer is not
8969    // a constant expression.
8970    Diag(VDecl->getLocation(), diag::err_constexpr_var_requires_const_init)
8971      << VDecl << Init->getSourceRange();
8972  }
8973
8974  Init = MaybeCreateExprWithCleanups(Init);
8975  VDecl->setInit(Init);
8976  VDecl->setCXXDirectInitializer(true);
8977
8978  CheckCompleteVariableDeclaration(VDecl);
8979}
8980
8981/// \brief Given a constructor and the set of arguments provided for the
8982/// constructor, convert the arguments and add any required default arguments
8983/// to form a proper call to this constructor.
8984///
8985/// \returns true if an error occurred, false otherwise.
8986bool
8987Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
8988                              MultiExprArg ArgsPtr,
8989                              SourceLocation Loc,
8990                              ASTOwningVector<Expr*> &ConvertedArgs) {
8991  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
8992  unsigned NumArgs = ArgsPtr.size();
8993  Expr **Args = (Expr **)ArgsPtr.get();
8994
8995  const FunctionProtoType *Proto
8996    = Constructor->getType()->getAs<FunctionProtoType>();
8997  assert(Proto && "Constructor without a prototype?");
8998  unsigned NumArgsInProto = Proto->getNumArgs();
8999
9000  // If too few arguments are available, we'll fill in the rest with defaults.
9001  if (NumArgs < NumArgsInProto)
9002    ConvertedArgs.reserve(NumArgsInProto);
9003  else
9004    ConvertedArgs.reserve(NumArgs);
9005
9006  VariadicCallType CallType =
9007    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9008  SmallVector<Expr *, 8> AllArgs;
9009  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9010                                        Proto, 0, Args, NumArgs, AllArgs,
9011                                        CallType);
9012  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9013    ConvertedArgs.push_back(AllArgs[i]);
9014  return Invalid;
9015}
9016
9017static inline bool
9018CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9019                                       const FunctionDecl *FnDecl) {
9020  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9021  if (isa<NamespaceDecl>(DC)) {
9022    return SemaRef.Diag(FnDecl->getLocation(),
9023                        diag::err_operator_new_delete_declared_in_namespace)
9024      << FnDecl->getDeclName();
9025  }
9026
9027  if (isa<TranslationUnitDecl>(DC) &&
9028      FnDecl->getStorageClass() == SC_Static) {
9029    return SemaRef.Diag(FnDecl->getLocation(),
9030                        diag::err_operator_new_delete_declared_static)
9031      << FnDecl->getDeclName();
9032  }
9033
9034  return false;
9035}
9036
9037static inline bool
9038CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9039                            CanQualType ExpectedResultType,
9040                            CanQualType ExpectedFirstParamType,
9041                            unsigned DependentParamTypeDiag,
9042                            unsigned InvalidParamTypeDiag) {
9043  QualType ResultType =
9044    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9045
9046  // Check that the result type is not dependent.
9047  if (ResultType->isDependentType())
9048    return SemaRef.Diag(FnDecl->getLocation(),
9049                        diag::err_operator_new_delete_dependent_result_type)
9050    << FnDecl->getDeclName() << ExpectedResultType;
9051
9052  // Check that the result type is what we expect.
9053  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9054    return SemaRef.Diag(FnDecl->getLocation(),
9055                        diag::err_operator_new_delete_invalid_result_type)
9056    << FnDecl->getDeclName() << ExpectedResultType;
9057
9058  // A function template must have at least 2 parameters.
9059  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9060    return SemaRef.Diag(FnDecl->getLocation(),
9061                      diag::err_operator_new_delete_template_too_few_parameters)
9062        << FnDecl->getDeclName();
9063
9064  // The function decl must have at least 1 parameter.
9065  if (FnDecl->getNumParams() == 0)
9066    return SemaRef.Diag(FnDecl->getLocation(),
9067                        diag::err_operator_new_delete_too_few_parameters)
9068      << FnDecl->getDeclName();
9069
9070  // Check the the first parameter type is not dependent.
9071  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9072  if (FirstParamType->isDependentType())
9073    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9074      << FnDecl->getDeclName() << ExpectedFirstParamType;
9075
9076  // Check that the first parameter type is what we expect.
9077  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9078      ExpectedFirstParamType)
9079    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9080    << FnDecl->getDeclName() << ExpectedFirstParamType;
9081
9082  return false;
9083}
9084
9085static bool
9086CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9087  // C++ [basic.stc.dynamic.allocation]p1:
9088  //   A program is ill-formed if an allocation function is declared in a
9089  //   namespace scope other than global scope or declared static in global
9090  //   scope.
9091  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9092    return true;
9093
9094  CanQualType SizeTy =
9095    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9096
9097  // C++ [basic.stc.dynamic.allocation]p1:
9098  //  The return type shall be void*. The first parameter shall have type
9099  //  std::size_t.
9100  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9101                                  SizeTy,
9102                                  diag::err_operator_new_dependent_param_type,
9103                                  diag::err_operator_new_param_type))
9104    return true;
9105
9106  // C++ [basic.stc.dynamic.allocation]p1:
9107  //  The first parameter shall not have an associated default argument.
9108  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9109    return SemaRef.Diag(FnDecl->getLocation(),
9110                        diag::err_operator_new_default_arg)
9111      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9112
9113  return false;
9114}
9115
9116static bool
9117CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9118  // C++ [basic.stc.dynamic.deallocation]p1:
9119  //   A program is ill-formed if deallocation functions are declared in a
9120  //   namespace scope other than global scope or declared static in global
9121  //   scope.
9122  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9123    return true;
9124
9125  // C++ [basic.stc.dynamic.deallocation]p2:
9126  //   Each deallocation function shall return void and its first parameter
9127  //   shall be void*.
9128  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9129                                  SemaRef.Context.VoidPtrTy,
9130                                 diag::err_operator_delete_dependent_param_type,
9131                                 diag::err_operator_delete_param_type))
9132    return true;
9133
9134  return false;
9135}
9136
9137/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9138/// of this overloaded operator is well-formed. If so, returns false;
9139/// otherwise, emits appropriate diagnostics and returns true.
9140bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9141  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9142         "Expected an overloaded operator declaration");
9143
9144  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9145
9146  // C++ [over.oper]p5:
9147  //   The allocation and deallocation functions, operator new,
9148  //   operator new[], operator delete and operator delete[], are
9149  //   described completely in 3.7.3. The attributes and restrictions
9150  //   found in the rest of this subclause do not apply to them unless
9151  //   explicitly stated in 3.7.3.
9152  if (Op == OO_Delete || Op == OO_Array_Delete)
9153    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9154
9155  if (Op == OO_New || Op == OO_Array_New)
9156    return CheckOperatorNewDeclaration(*this, FnDecl);
9157
9158  // C++ [over.oper]p6:
9159  //   An operator function shall either be a non-static member
9160  //   function or be a non-member function and have at least one
9161  //   parameter whose type is a class, a reference to a class, an
9162  //   enumeration, or a reference to an enumeration.
9163  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9164    if (MethodDecl->isStatic())
9165      return Diag(FnDecl->getLocation(),
9166                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9167  } else {
9168    bool ClassOrEnumParam = false;
9169    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9170                                   ParamEnd = FnDecl->param_end();
9171         Param != ParamEnd; ++Param) {
9172      QualType ParamType = (*Param)->getType().getNonReferenceType();
9173      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9174          ParamType->isEnumeralType()) {
9175        ClassOrEnumParam = true;
9176        break;
9177      }
9178    }
9179
9180    if (!ClassOrEnumParam)
9181      return Diag(FnDecl->getLocation(),
9182                  diag::err_operator_overload_needs_class_or_enum)
9183        << FnDecl->getDeclName();
9184  }
9185
9186  // C++ [over.oper]p8:
9187  //   An operator function cannot have default arguments (8.3.6),
9188  //   except where explicitly stated below.
9189  //
9190  // Only the function-call operator allows default arguments
9191  // (C++ [over.call]p1).
9192  if (Op != OO_Call) {
9193    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9194         Param != FnDecl->param_end(); ++Param) {
9195      if ((*Param)->hasDefaultArg())
9196        return Diag((*Param)->getLocation(),
9197                    diag::err_operator_overload_default_arg)
9198          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9199    }
9200  }
9201
9202  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9203    { false, false, false }
9204#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9205    , { Unary, Binary, MemberOnly }
9206#include "clang/Basic/OperatorKinds.def"
9207  };
9208
9209  bool CanBeUnaryOperator = OperatorUses[Op][0];
9210  bool CanBeBinaryOperator = OperatorUses[Op][1];
9211  bool MustBeMemberOperator = OperatorUses[Op][2];
9212
9213  // C++ [over.oper]p8:
9214  //   [...] Operator functions cannot have more or fewer parameters
9215  //   than the number required for the corresponding operator, as
9216  //   described in the rest of this subclause.
9217  unsigned NumParams = FnDecl->getNumParams()
9218                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9219  if (Op != OO_Call &&
9220      ((NumParams == 1 && !CanBeUnaryOperator) ||
9221       (NumParams == 2 && !CanBeBinaryOperator) ||
9222       (NumParams < 1) || (NumParams > 2))) {
9223    // We have the wrong number of parameters.
9224    unsigned ErrorKind;
9225    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9226      ErrorKind = 2;  // 2 -> unary or binary.
9227    } else if (CanBeUnaryOperator) {
9228      ErrorKind = 0;  // 0 -> unary
9229    } else {
9230      assert(CanBeBinaryOperator &&
9231             "All non-call overloaded operators are unary or binary!");
9232      ErrorKind = 1;  // 1 -> binary
9233    }
9234
9235    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9236      << FnDecl->getDeclName() << NumParams << ErrorKind;
9237  }
9238
9239  // Overloaded operators other than operator() cannot be variadic.
9240  if (Op != OO_Call &&
9241      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9242    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9243      << FnDecl->getDeclName();
9244  }
9245
9246  // Some operators must be non-static member functions.
9247  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9248    return Diag(FnDecl->getLocation(),
9249                diag::err_operator_overload_must_be_member)
9250      << FnDecl->getDeclName();
9251  }
9252
9253  // C++ [over.inc]p1:
9254  //   The user-defined function called operator++ implements the
9255  //   prefix and postfix ++ operator. If this function is a member
9256  //   function with no parameters, or a non-member function with one
9257  //   parameter of class or enumeration type, it defines the prefix
9258  //   increment operator ++ for objects of that type. If the function
9259  //   is a member function with one parameter (which shall be of type
9260  //   int) or a non-member function with two parameters (the second
9261  //   of which shall be of type int), it defines the postfix
9262  //   increment operator ++ for objects of that type.
9263  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9264    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9265    bool ParamIsInt = false;
9266    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9267      ParamIsInt = BT->getKind() == BuiltinType::Int;
9268
9269    if (!ParamIsInt)
9270      return Diag(LastParam->getLocation(),
9271                  diag::err_operator_overload_post_incdec_must_be_int)
9272        << LastParam->getType() << (Op == OO_MinusMinus);
9273  }
9274
9275  return false;
9276}
9277
9278/// CheckLiteralOperatorDeclaration - Check whether the declaration
9279/// of this literal operator function is well-formed. If so, returns
9280/// false; otherwise, emits appropriate diagnostics and returns true.
9281bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9282  DeclContext *DC = FnDecl->getDeclContext();
9283  Decl::Kind Kind = DC->getDeclKind();
9284  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9285      Kind != Decl::LinkageSpec) {
9286    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9287      << FnDecl->getDeclName();
9288    return true;
9289  }
9290
9291  bool Valid = false;
9292
9293  // template <char...> type operator "" name() is the only valid template
9294  // signature, and the only valid signature with no parameters.
9295  if (FnDecl->param_size() == 0) {
9296    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9297      // Must have only one template parameter
9298      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9299      if (Params->size() == 1) {
9300        NonTypeTemplateParmDecl *PmDecl =
9301          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9302
9303        // The template parameter must be a char parameter pack.
9304        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9305            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9306          Valid = true;
9307      }
9308    }
9309  } else {
9310    // Check the first parameter
9311    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9312
9313    QualType T = (*Param)->getType();
9314
9315    // unsigned long long int, long double, and any character type are allowed
9316    // as the only parameters.
9317    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9318        Context.hasSameType(T, Context.LongDoubleTy) ||
9319        Context.hasSameType(T, Context.CharTy) ||
9320        Context.hasSameType(T, Context.WCharTy) ||
9321        Context.hasSameType(T, Context.Char16Ty) ||
9322        Context.hasSameType(T, Context.Char32Ty)) {
9323      if (++Param == FnDecl->param_end())
9324        Valid = true;
9325      goto FinishedParams;
9326    }
9327
9328    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9329    const PointerType *PT = T->getAs<PointerType>();
9330    if (!PT)
9331      goto FinishedParams;
9332    T = PT->getPointeeType();
9333    if (!T.isConstQualified())
9334      goto FinishedParams;
9335    T = T.getUnqualifiedType();
9336
9337    // Move on to the second parameter;
9338    ++Param;
9339
9340    // If there is no second parameter, the first must be a const char *
9341    if (Param == FnDecl->param_end()) {
9342      if (Context.hasSameType(T, Context.CharTy))
9343        Valid = true;
9344      goto FinishedParams;
9345    }
9346
9347    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9348    // are allowed as the first parameter to a two-parameter function
9349    if (!(Context.hasSameType(T, Context.CharTy) ||
9350          Context.hasSameType(T, Context.WCharTy) ||
9351          Context.hasSameType(T, Context.Char16Ty) ||
9352          Context.hasSameType(T, Context.Char32Ty)))
9353      goto FinishedParams;
9354
9355    // The second and final parameter must be an std::size_t
9356    T = (*Param)->getType().getUnqualifiedType();
9357    if (Context.hasSameType(T, Context.getSizeType()) &&
9358        ++Param == FnDecl->param_end())
9359      Valid = true;
9360  }
9361
9362  // FIXME: This diagnostic is absolutely terrible.
9363FinishedParams:
9364  if (!Valid) {
9365    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9366      << FnDecl->getDeclName();
9367    return true;
9368  }
9369
9370  StringRef LiteralName
9371    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9372  if (LiteralName[0] != '_') {
9373    // C++0x [usrlit.suffix]p1:
9374    //   Literal suffix identifiers that do not start with an underscore are
9375    //   reserved for future standardization.
9376    bool IsHexFloat = true;
9377    if (LiteralName.size() > 1 &&
9378        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9379      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9380        if (!isdigit(LiteralName[I])) {
9381          IsHexFloat = false;
9382          break;
9383        }
9384      }
9385    }
9386
9387    if (IsHexFloat)
9388      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9389        << LiteralName;
9390    else
9391      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9392  }
9393
9394  return false;
9395}
9396
9397/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9398/// linkage specification, including the language and (if present)
9399/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9400/// the location of the language string literal, which is provided
9401/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9402/// the '{' brace. Otherwise, this linkage specification does not
9403/// have any braces.
9404Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9405                                           SourceLocation LangLoc,
9406                                           StringRef Lang,
9407                                           SourceLocation LBraceLoc) {
9408  LinkageSpecDecl::LanguageIDs Language;
9409  if (Lang == "\"C\"")
9410    Language = LinkageSpecDecl::lang_c;
9411  else if (Lang == "\"C++\"")
9412    Language = LinkageSpecDecl::lang_cxx;
9413  else {
9414    Diag(LangLoc, diag::err_bad_language);
9415    return 0;
9416  }
9417
9418  // FIXME: Add all the various semantics of linkage specifications
9419
9420  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9421                                               ExternLoc, LangLoc, Language);
9422  CurContext->addDecl(D);
9423  PushDeclContext(S, D);
9424  return D;
9425}
9426
9427/// ActOnFinishLinkageSpecification - Complete the definition of
9428/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9429/// valid, it's the position of the closing '}' brace in a linkage
9430/// specification that uses braces.
9431Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9432                                            Decl *LinkageSpec,
9433                                            SourceLocation RBraceLoc) {
9434  if (LinkageSpec) {
9435    if (RBraceLoc.isValid()) {
9436      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9437      LSDecl->setRBraceLoc(RBraceLoc);
9438    }
9439    PopDeclContext();
9440  }
9441  return LinkageSpec;
9442}
9443
9444/// \brief Perform semantic analysis for the variable declaration that
9445/// occurs within a C++ catch clause, returning the newly-created
9446/// variable.
9447VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9448                                         TypeSourceInfo *TInfo,
9449                                         SourceLocation StartLoc,
9450                                         SourceLocation Loc,
9451                                         IdentifierInfo *Name) {
9452  bool Invalid = false;
9453  QualType ExDeclType = TInfo->getType();
9454
9455  // Arrays and functions decay.
9456  if (ExDeclType->isArrayType())
9457    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9458  else if (ExDeclType->isFunctionType())
9459    ExDeclType = Context.getPointerType(ExDeclType);
9460
9461  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9462  // The exception-declaration shall not denote a pointer or reference to an
9463  // incomplete type, other than [cv] void*.
9464  // N2844 forbids rvalue references.
9465  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9466    Diag(Loc, diag::err_catch_rvalue_ref);
9467    Invalid = true;
9468  }
9469
9470  // GCC allows catching pointers and references to incomplete types
9471  // as an extension; so do we, but we warn by default.
9472
9473  QualType BaseType = ExDeclType;
9474  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9475  unsigned DK = diag::err_catch_incomplete;
9476  bool IncompleteCatchIsInvalid = true;
9477  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9478    BaseType = Ptr->getPointeeType();
9479    Mode = 1;
9480    DK = diag::ext_catch_incomplete_ptr;
9481    IncompleteCatchIsInvalid = false;
9482  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9483    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9484    BaseType = Ref->getPointeeType();
9485    Mode = 2;
9486    DK = diag::ext_catch_incomplete_ref;
9487    IncompleteCatchIsInvalid = false;
9488  }
9489  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9490      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
9491      IncompleteCatchIsInvalid)
9492    Invalid = true;
9493
9494  if (!Invalid && !ExDeclType->isDependentType() &&
9495      RequireNonAbstractType(Loc, ExDeclType,
9496                             diag::err_abstract_type_in_decl,
9497                             AbstractVariableType))
9498    Invalid = true;
9499
9500  // Only the non-fragile NeXT runtime currently supports C++ catches
9501  // of ObjC types, and no runtime supports catching ObjC types by value.
9502  if (!Invalid && getLangOptions().ObjC1) {
9503    QualType T = ExDeclType;
9504    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9505      T = RT->getPointeeType();
9506
9507    if (T->isObjCObjectType()) {
9508      Diag(Loc, diag::err_objc_object_catch);
9509      Invalid = true;
9510    } else if (T->isObjCObjectPointerType()) {
9511      if (!getLangOptions().ObjCNonFragileABI)
9512        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9513    }
9514  }
9515
9516  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9517                                    ExDeclType, TInfo, SC_None, SC_None);
9518  ExDecl->setExceptionVariable(true);
9519
9520  if (!Invalid && !ExDeclType->isDependentType()) {
9521    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9522      // C++ [except.handle]p16:
9523      //   The object declared in an exception-declaration or, if the
9524      //   exception-declaration does not specify a name, a temporary (12.2) is
9525      //   copy-initialized (8.5) from the exception object. [...]
9526      //   The object is destroyed when the handler exits, after the destruction
9527      //   of any automatic objects initialized within the handler.
9528      //
9529      // We just pretend to initialize the object with itself, then make sure
9530      // it can be destroyed later.
9531      QualType initType = ExDeclType;
9532
9533      InitializedEntity entity =
9534        InitializedEntity::InitializeVariable(ExDecl);
9535      InitializationKind initKind =
9536        InitializationKind::CreateCopy(Loc, SourceLocation());
9537
9538      Expr *opaqueValue =
9539        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9540      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9541      ExprResult result = sequence.Perform(*this, entity, initKind,
9542                                           MultiExprArg(&opaqueValue, 1));
9543      if (result.isInvalid())
9544        Invalid = true;
9545      else {
9546        // If the constructor used was non-trivial, set this as the
9547        // "initializer".
9548        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9549        if (!construct->getConstructor()->isTrivial()) {
9550          Expr *init = MaybeCreateExprWithCleanups(construct);
9551          ExDecl->setInit(init);
9552        }
9553
9554        // And make sure it's destructable.
9555        FinalizeVarWithDestructor(ExDecl, recordType);
9556      }
9557    }
9558  }
9559
9560  if (Invalid)
9561    ExDecl->setInvalidDecl();
9562
9563  return ExDecl;
9564}
9565
9566/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9567/// handler.
9568Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9569  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9570  bool Invalid = D.isInvalidType();
9571
9572  // Check for unexpanded parameter packs.
9573  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9574                                               UPPC_ExceptionType)) {
9575    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9576                                             D.getIdentifierLoc());
9577    Invalid = true;
9578  }
9579
9580  IdentifierInfo *II = D.getIdentifier();
9581  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9582                                             LookupOrdinaryName,
9583                                             ForRedeclaration)) {
9584    // The scope should be freshly made just for us. There is just no way
9585    // it contains any previous declaration.
9586    assert(!S->isDeclScope(PrevDecl));
9587    if (PrevDecl->isTemplateParameter()) {
9588      // Maybe we will complain about the shadowed template parameter.
9589      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9590      PrevDecl = 0;
9591    }
9592  }
9593
9594  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9595    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9596      << D.getCXXScopeSpec().getRange();
9597    Invalid = true;
9598  }
9599
9600  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9601                                              D.getSourceRange().getBegin(),
9602                                              D.getIdentifierLoc(),
9603                                              D.getIdentifier());
9604  if (Invalid)
9605    ExDecl->setInvalidDecl();
9606
9607  // Add the exception declaration into this scope.
9608  if (II)
9609    PushOnScopeChains(ExDecl, S);
9610  else
9611    CurContext->addDecl(ExDecl);
9612
9613  ProcessDeclAttributes(S, ExDecl, D);
9614  return ExDecl;
9615}
9616
9617Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9618                                         Expr *AssertExpr,
9619                                         Expr *AssertMessageExpr_,
9620                                         SourceLocation RParenLoc) {
9621  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9622
9623  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9624    llvm::APSInt Value(32);
9625    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
9626      Diag(StaticAssertLoc,
9627           diag::err_static_assert_expression_is_not_constant) <<
9628        AssertExpr->getSourceRange();
9629      return 0;
9630    }
9631
9632    if (Value == 0) {
9633      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9634        << AssertMessage->getString() << AssertExpr->getSourceRange();
9635    }
9636  }
9637
9638  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9639    return 0;
9640
9641  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9642                                        AssertExpr, AssertMessage, RParenLoc);
9643
9644  CurContext->addDecl(Decl);
9645  return Decl;
9646}
9647
9648/// \brief Perform semantic analysis of the given friend type declaration.
9649///
9650/// \returns A friend declaration that.
9651FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
9652                                      TypeSourceInfo *TSInfo) {
9653  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9654
9655  QualType T = TSInfo->getType();
9656  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9657
9658  // C++03 [class.friend]p2:
9659  //   An elaborated-type-specifier shall be used in a friend declaration
9660  //   for a class.*
9661  //
9662  //   * The class-key of the elaborated-type-specifier is required.
9663  if (!ActiveTemplateInstantiations.empty()) {
9664    // Do not complain about the form of friend template types during
9665    // template instantiation; we will already have complained when the
9666    // template was declared.
9667  } else if (!T->isElaboratedTypeSpecifier()) {
9668    // If we evaluated the type to a record type, suggest putting
9669    // a tag in front.
9670    if (const RecordType *RT = T->getAs<RecordType>()) {
9671      RecordDecl *RD = RT->getDecl();
9672
9673      std::string InsertionText = std::string(" ") + RD->getKindName();
9674
9675      Diag(TypeRange.getBegin(),
9676           getLangOptions().CPlusPlus0x ?
9677             diag::warn_cxx98_compat_unelaborated_friend_type :
9678             diag::ext_unelaborated_friend_type)
9679        << (unsigned) RD->getTagKind()
9680        << T
9681        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9682                                      InsertionText);
9683    } else {
9684      Diag(FriendLoc,
9685           getLangOptions().CPlusPlus0x ?
9686             diag::warn_cxx98_compat_nonclass_type_friend :
9687             diag::ext_nonclass_type_friend)
9688        << T
9689        << SourceRange(FriendLoc, TypeRange.getEnd());
9690    }
9691  } else if (T->getAs<EnumType>()) {
9692    Diag(FriendLoc,
9693         getLangOptions().CPlusPlus0x ?
9694           diag::warn_cxx98_compat_enum_friend :
9695           diag::ext_enum_friend)
9696      << T
9697      << SourceRange(FriendLoc, TypeRange.getEnd());
9698  }
9699
9700  // C++0x [class.friend]p3:
9701  //   If the type specifier in a friend declaration designates a (possibly
9702  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9703  //   the friend declaration is ignored.
9704
9705  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9706  // in [class.friend]p3 that we do not implement.
9707
9708  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
9709}
9710
9711/// Handle a friend tag declaration where the scope specifier was
9712/// templated.
9713Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9714                                    unsigned TagSpec, SourceLocation TagLoc,
9715                                    CXXScopeSpec &SS,
9716                                    IdentifierInfo *Name, SourceLocation NameLoc,
9717                                    AttributeList *Attr,
9718                                    MultiTemplateParamsArg TempParamLists) {
9719  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9720
9721  bool isExplicitSpecialization = false;
9722  bool Invalid = false;
9723
9724  if (TemplateParameterList *TemplateParams
9725        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9726                                                  TempParamLists.get(),
9727                                                  TempParamLists.size(),
9728                                                  /*friend*/ true,
9729                                                  isExplicitSpecialization,
9730                                                  Invalid)) {
9731    if (TemplateParams->size() > 0) {
9732      // This is a declaration of a class template.
9733      if (Invalid)
9734        return 0;
9735
9736      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9737                                SS, Name, NameLoc, Attr,
9738                                TemplateParams, AS_public,
9739                                /*ModulePrivateLoc=*/SourceLocation(),
9740                                TempParamLists.size() - 1,
9741                   (TemplateParameterList**) TempParamLists.release()).take();
9742    } else {
9743      // The "template<>" header is extraneous.
9744      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9745        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9746      isExplicitSpecialization = true;
9747    }
9748  }
9749
9750  if (Invalid) return 0;
9751
9752  bool isAllExplicitSpecializations = true;
9753  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9754    if (TempParamLists.get()[I]->size()) {
9755      isAllExplicitSpecializations = false;
9756      break;
9757    }
9758  }
9759
9760  // FIXME: don't ignore attributes.
9761
9762  // If it's explicit specializations all the way down, just forget
9763  // about the template header and build an appropriate non-templated
9764  // friend.  TODO: for source fidelity, remember the headers.
9765  if (isAllExplicitSpecializations) {
9766    if (SS.isEmpty()) {
9767      bool Owned = false;
9768      bool IsDependent = false;
9769      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9770                      Attr, AS_public,
9771                      /*ModulePrivateLoc=*/SourceLocation(),
9772                      MultiTemplateParamsArg(), Owned, IsDependent,
9773                      /*ScopedEnum=*/false,
9774                      /*ScopedEnumUsesClassTag=*/false,
9775                      /*UnderlyingType=*/TypeResult());
9776    }
9777
9778    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9779    ElaboratedTypeKeyword Keyword
9780      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9781    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9782                                   *Name, NameLoc);
9783    if (T.isNull())
9784      return 0;
9785
9786    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9787    if (isa<DependentNameType>(T)) {
9788      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9789      TL.setKeywordLoc(TagLoc);
9790      TL.setQualifierLoc(QualifierLoc);
9791      TL.setNameLoc(NameLoc);
9792    } else {
9793      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9794      TL.setKeywordLoc(TagLoc);
9795      TL.setQualifierLoc(QualifierLoc);
9796      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9797    }
9798
9799    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9800                                            TSI, FriendLoc);
9801    Friend->setAccess(AS_public);
9802    CurContext->addDecl(Friend);
9803    return Friend;
9804  }
9805
9806  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9807
9808
9809
9810  // Handle the case of a templated-scope friend class.  e.g.
9811  //   template <class T> class A<T>::B;
9812  // FIXME: we don't support these right now.
9813  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9814  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9815  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9816  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9817  TL.setKeywordLoc(TagLoc);
9818  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9819  TL.setNameLoc(NameLoc);
9820
9821  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9822                                          TSI, FriendLoc);
9823  Friend->setAccess(AS_public);
9824  Friend->setUnsupportedFriend(true);
9825  CurContext->addDecl(Friend);
9826  return Friend;
9827}
9828
9829
9830/// Handle a friend type declaration.  This works in tandem with
9831/// ActOnTag.
9832///
9833/// Notes on friend class templates:
9834///
9835/// We generally treat friend class declarations as if they were
9836/// declaring a class.  So, for example, the elaborated type specifier
9837/// in a friend declaration is required to obey the restrictions of a
9838/// class-head (i.e. no typedefs in the scope chain), template
9839/// parameters are required to match up with simple template-ids, &c.
9840/// However, unlike when declaring a template specialization, it's
9841/// okay to refer to a template specialization without an empty
9842/// template parameter declaration, e.g.
9843///   friend class A<T>::B<unsigned>;
9844/// We permit this as a special case; if there are any template
9845/// parameters present at all, require proper matching, i.e.
9846///   template <> template <class T> friend class A<int>::B;
9847Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
9848                                MultiTemplateParamsArg TempParams) {
9849  SourceLocation Loc = DS.getSourceRange().getBegin();
9850
9851  assert(DS.isFriendSpecified());
9852  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9853
9854  // Try to convert the decl specifier to a type.  This works for
9855  // friend templates because ActOnTag never produces a ClassTemplateDecl
9856  // for a TUK_Friend.
9857  Declarator TheDeclarator(DS, Declarator::MemberContext);
9858  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
9859  QualType T = TSI->getType();
9860  if (TheDeclarator.isInvalidType())
9861    return 0;
9862
9863  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
9864    return 0;
9865
9866  // This is definitely an error in C++98.  It's probably meant to
9867  // be forbidden in C++0x, too, but the specification is just
9868  // poorly written.
9869  //
9870  // The problem is with declarations like the following:
9871  //   template <T> friend A<T>::foo;
9872  // where deciding whether a class C is a friend or not now hinges
9873  // on whether there exists an instantiation of A that causes
9874  // 'foo' to equal C.  There are restrictions on class-heads
9875  // (which we declare (by fiat) elaborated friend declarations to
9876  // be) that makes this tractable.
9877  //
9878  // FIXME: handle "template <> friend class A<T>;", which
9879  // is possibly well-formed?  Who even knows?
9880  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
9881    Diag(Loc, diag::err_tagless_friend_type_template)
9882      << DS.getSourceRange();
9883    return 0;
9884  }
9885
9886  // C++98 [class.friend]p1: A friend of a class is a function
9887  //   or class that is not a member of the class . . .
9888  // This is fixed in DR77, which just barely didn't make the C++03
9889  // deadline.  It's also a very silly restriction that seriously
9890  // affects inner classes and which nobody else seems to implement;
9891  // thus we never diagnose it, not even in -pedantic.
9892  //
9893  // But note that we could warn about it: it's always useless to
9894  // friend one of your own members (it's not, however, worthless to
9895  // friend a member of an arbitrary specialization of your template).
9896
9897  Decl *D;
9898  if (unsigned NumTempParamLists = TempParams.size())
9899    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
9900                                   NumTempParamLists,
9901                                   TempParams.release(),
9902                                   TSI,
9903                                   DS.getFriendSpecLoc());
9904  else
9905    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
9906
9907  if (!D)
9908    return 0;
9909
9910  D->setAccess(AS_public);
9911  CurContext->addDecl(D);
9912
9913  return D;
9914}
9915
9916Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
9917                                    MultiTemplateParamsArg TemplateParams) {
9918  const DeclSpec &DS = D.getDeclSpec();
9919
9920  assert(DS.isFriendSpecified());
9921  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9922
9923  SourceLocation Loc = D.getIdentifierLoc();
9924  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9925
9926  // C++ [class.friend]p1
9927  //   A friend of a class is a function or class....
9928  // Note that this sees through typedefs, which is intended.
9929  // It *doesn't* see through dependent types, which is correct
9930  // according to [temp.arg.type]p3:
9931  //   If a declaration acquires a function type through a
9932  //   type dependent on a template-parameter and this causes
9933  //   a declaration that does not use the syntactic form of a
9934  //   function declarator to have a function type, the program
9935  //   is ill-formed.
9936  if (!TInfo->getType()->isFunctionType()) {
9937    Diag(Loc, diag::err_unexpected_friend);
9938
9939    // It might be worthwhile to try to recover by creating an
9940    // appropriate declaration.
9941    return 0;
9942  }
9943
9944  // C++ [namespace.memdef]p3
9945  //  - If a friend declaration in a non-local class first declares a
9946  //    class or function, the friend class or function is a member
9947  //    of the innermost enclosing namespace.
9948  //  - The name of the friend is not found by simple name lookup
9949  //    until a matching declaration is provided in that namespace
9950  //    scope (either before or after the class declaration granting
9951  //    friendship).
9952  //  - If a friend function is called, its name may be found by the
9953  //    name lookup that considers functions from namespaces and
9954  //    classes associated with the types of the function arguments.
9955  //  - When looking for a prior declaration of a class or a function
9956  //    declared as a friend, scopes outside the innermost enclosing
9957  //    namespace scope are not considered.
9958
9959  CXXScopeSpec &SS = D.getCXXScopeSpec();
9960  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9961  DeclarationName Name = NameInfo.getName();
9962  assert(Name);
9963
9964  // Check for unexpanded parameter packs.
9965  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
9966      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
9967      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
9968    return 0;
9969
9970  // The context we found the declaration in, or in which we should
9971  // create the declaration.
9972  DeclContext *DC;
9973  Scope *DCScope = S;
9974  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
9975                        ForRedeclaration);
9976
9977  // FIXME: there are different rules in local classes
9978
9979  // There are four cases here.
9980  //   - There's no scope specifier, in which case we just go to the
9981  //     appropriate scope and look for a function or function template
9982  //     there as appropriate.
9983  // Recover from invalid scope qualifiers as if they just weren't there.
9984  if (SS.isInvalid() || !SS.isSet()) {
9985    // C++0x [namespace.memdef]p3:
9986    //   If the name in a friend declaration is neither qualified nor
9987    //   a template-id and the declaration is a function or an
9988    //   elaborated-type-specifier, the lookup to determine whether
9989    //   the entity has been previously declared shall not consider
9990    //   any scopes outside the innermost enclosing namespace.
9991    // C++0x [class.friend]p11:
9992    //   If a friend declaration appears in a local class and the name
9993    //   specified is an unqualified name, a prior declaration is
9994    //   looked up without considering scopes that are outside the
9995    //   innermost enclosing non-class scope. For a friend function
9996    //   declaration, if there is no prior declaration, the program is
9997    //   ill-formed.
9998    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
9999    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10000
10001    // Find the appropriate context according to the above.
10002    DC = CurContext;
10003    while (true) {
10004      // Skip class contexts.  If someone can cite chapter and verse
10005      // for this behavior, that would be nice --- it's what GCC and
10006      // EDG do, and it seems like a reasonable intent, but the spec
10007      // really only says that checks for unqualified existing
10008      // declarations should stop at the nearest enclosing namespace,
10009      // not that they should only consider the nearest enclosing
10010      // namespace.
10011      while (DC->isRecord())
10012        DC = DC->getParent();
10013
10014      LookupQualifiedName(Previous, DC);
10015
10016      // TODO: decide what we think about using declarations.
10017      if (isLocal || !Previous.empty())
10018        break;
10019
10020      if (isTemplateId) {
10021        if (isa<TranslationUnitDecl>(DC)) break;
10022      } else {
10023        if (DC->isFileContext()) break;
10024      }
10025      DC = DC->getParent();
10026    }
10027
10028    // C++ [class.friend]p1: A friend of a class is a function or
10029    //   class that is not a member of the class . . .
10030    // C++11 changes this for both friend types and functions.
10031    // Most C++ 98 compilers do seem to give an error here, so
10032    // we do, too.
10033    if (!Previous.empty() && DC->Equals(CurContext))
10034      Diag(DS.getFriendSpecLoc(),
10035           getLangOptions().CPlusPlus0x ?
10036             diag::warn_cxx98_compat_friend_is_member :
10037             diag::err_friend_is_member);
10038
10039    DCScope = getScopeForDeclContext(S, DC);
10040
10041    // C++ [class.friend]p6:
10042    //   A function can be defined in a friend declaration of a class if and
10043    //   only if the class is a non-local class (9.8), the function name is
10044    //   unqualified, and the function has namespace scope.
10045    if (isLocal && D.isFunctionDefinition()) {
10046      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10047    }
10048
10049  //   - There's a non-dependent scope specifier, in which case we
10050  //     compute it and do a previous lookup there for a function
10051  //     or function template.
10052  } else if (!SS.getScopeRep()->isDependent()) {
10053    DC = computeDeclContext(SS);
10054    if (!DC) return 0;
10055
10056    if (RequireCompleteDeclContext(SS, DC)) return 0;
10057
10058    LookupQualifiedName(Previous, DC);
10059
10060    // Ignore things found implicitly in the wrong scope.
10061    // TODO: better diagnostics for this case.  Suggesting the right
10062    // qualified scope would be nice...
10063    LookupResult::Filter F = Previous.makeFilter();
10064    while (F.hasNext()) {
10065      NamedDecl *D = F.next();
10066      if (!DC->InEnclosingNamespaceSetOf(
10067              D->getDeclContext()->getRedeclContext()))
10068        F.erase();
10069    }
10070    F.done();
10071
10072    if (Previous.empty()) {
10073      D.setInvalidType();
10074      Diag(Loc, diag::err_qualified_friend_not_found)
10075          << Name << TInfo->getType();
10076      return 0;
10077    }
10078
10079    // C++ [class.friend]p1: A friend of a class is a function or
10080    //   class that is not a member of the class . . .
10081    if (DC->Equals(CurContext))
10082      Diag(DS.getFriendSpecLoc(),
10083           getLangOptions().CPlusPlus0x ?
10084             diag::warn_cxx98_compat_friend_is_member :
10085             diag::err_friend_is_member);
10086
10087    if (D.isFunctionDefinition()) {
10088      // C++ [class.friend]p6:
10089      //   A function can be defined in a friend declaration of a class if and
10090      //   only if the class is a non-local class (9.8), the function name is
10091      //   unqualified, and the function has namespace scope.
10092      SemaDiagnosticBuilder DB
10093        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10094
10095      DB << SS.getScopeRep();
10096      if (DC->isFileContext())
10097        DB << FixItHint::CreateRemoval(SS.getRange());
10098      SS.clear();
10099    }
10100
10101  //   - There's a scope specifier that does not match any template
10102  //     parameter lists, in which case we use some arbitrary context,
10103  //     create a method or method template, and wait for instantiation.
10104  //   - There's a scope specifier that does match some template
10105  //     parameter lists, which we don't handle right now.
10106  } else {
10107    if (D.isFunctionDefinition()) {
10108      // C++ [class.friend]p6:
10109      //   A function can be defined in a friend declaration of a class if and
10110      //   only if the class is a non-local class (9.8), the function name is
10111      //   unqualified, and the function has namespace scope.
10112      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10113        << SS.getScopeRep();
10114    }
10115
10116    DC = CurContext;
10117    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10118  }
10119
10120  if (!DC->isRecord()) {
10121    // This implies that it has to be an operator or function.
10122    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10123        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10124        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10125      Diag(Loc, diag::err_introducing_special_friend) <<
10126        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10127         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10128      return 0;
10129    }
10130  }
10131
10132  bool AddToScope = true;
10133  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10134                                          move(TemplateParams), AddToScope);
10135  if (!ND) return 0;
10136
10137  assert(ND->getDeclContext() == DC);
10138  assert(ND->getLexicalDeclContext() == CurContext);
10139
10140  // Add the function declaration to the appropriate lookup tables,
10141  // adjusting the redeclarations list as necessary.  We don't
10142  // want to do this yet if the friending class is dependent.
10143  //
10144  // Also update the scope-based lookup if the target context's
10145  // lookup context is in lexical scope.
10146  if (!CurContext->isDependentContext()) {
10147    DC = DC->getRedeclContext();
10148    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10149    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10150      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10151  }
10152
10153  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10154                                       D.getIdentifierLoc(), ND,
10155                                       DS.getFriendSpecLoc());
10156  FrD->setAccess(AS_public);
10157  CurContext->addDecl(FrD);
10158
10159  if (ND->isInvalidDecl())
10160    FrD->setInvalidDecl();
10161  else {
10162    FunctionDecl *FD;
10163    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10164      FD = FTD->getTemplatedDecl();
10165    else
10166      FD = cast<FunctionDecl>(ND);
10167
10168    // Mark templated-scope function declarations as unsupported.
10169    if (FD->getNumTemplateParameterLists())
10170      FrD->setUnsupportedFriend(true);
10171  }
10172
10173  return ND;
10174}
10175
10176void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10177  AdjustDeclIfTemplate(Dcl);
10178
10179  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10180  if (!Fn) {
10181    Diag(DelLoc, diag::err_deleted_non_function);
10182    return;
10183  }
10184  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
10185    Diag(DelLoc, diag::err_deleted_decl_not_first);
10186    Diag(Prev->getLocation(), diag::note_previous_declaration);
10187    // If the declaration wasn't the first, we delete the function anyway for
10188    // recovery.
10189  }
10190  Fn->setDeletedAsWritten();
10191}
10192
10193void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10194  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10195
10196  if (MD) {
10197    if (MD->getParent()->isDependentType()) {
10198      MD->setDefaulted();
10199      MD->setExplicitlyDefaulted();
10200      return;
10201    }
10202
10203    CXXSpecialMember Member = getSpecialMember(MD);
10204    if (Member == CXXInvalid) {
10205      Diag(DefaultLoc, diag::err_default_special_members);
10206      return;
10207    }
10208
10209    MD->setDefaulted();
10210    MD->setExplicitlyDefaulted();
10211
10212    // If this definition appears within the record, do the checking when
10213    // the record is complete.
10214    const FunctionDecl *Primary = MD;
10215    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10216      // Find the uninstantiated declaration that actually had the '= default'
10217      // on it.
10218      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10219
10220    if (Primary == Primary->getCanonicalDecl())
10221      return;
10222
10223    switch (Member) {
10224    case CXXDefaultConstructor: {
10225      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10226      CheckExplicitlyDefaultedDefaultConstructor(CD);
10227      if (!CD->isInvalidDecl())
10228        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10229      break;
10230    }
10231
10232    case CXXCopyConstructor: {
10233      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10234      CheckExplicitlyDefaultedCopyConstructor(CD);
10235      if (!CD->isInvalidDecl())
10236        DefineImplicitCopyConstructor(DefaultLoc, CD);
10237      break;
10238    }
10239
10240    case CXXCopyAssignment: {
10241      CheckExplicitlyDefaultedCopyAssignment(MD);
10242      if (!MD->isInvalidDecl())
10243        DefineImplicitCopyAssignment(DefaultLoc, MD);
10244      break;
10245    }
10246
10247    case CXXDestructor: {
10248      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10249      CheckExplicitlyDefaultedDestructor(DD);
10250      if (!DD->isInvalidDecl())
10251        DefineImplicitDestructor(DefaultLoc, DD);
10252      break;
10253    }
10254
10255    case CXXMoveConstructor: {
10256      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10257      CheckExplicitlyDefaultedMoveConstructor(CD);
10258      if (!CD->isInvalidDecl())
10259        DefineImplicitMoveConstructor(DefaultLoc, CD);
10260      break;
10261    }
10262
10263    case CXXMoveAssignment: {
10264      CheckExplicitlyDefaultedMoveAssignment(MD);
10265      if (!MD->isInvalidDecl())
10266        DefineImplicitMoveAssignment(DefaultLoc, MD);
10267      break;
10268    }
10269
10270    case CXXInvalid:
10271      llvm_unreachable("Invalid special member.");
10272    }
10273  } else {
10274    Diag(DefaultLoc, diag::err_default_special_members);
10275  }
10276}
10277
10278static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10279  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10280    Stmt *SubStmt = *CI;
10281    if (!SubStmt)
10282      continue;
10283    if (isa<ReturnStmt>(SubStmt))
10284      Self.Diag(SubStmt->getSourceRange().getBegin(),
10285           diag::err_return_in_constructor_handler);
10286    if (!isa<Expr>(SubStmt))
10287      SearchForReturnInStmt(Self, SubStmt);
10288  }
10289}
10290
10291void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10292  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10293    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10294    SearchForReturnInStmt(*this, Handler);
10295  }
10296}
10297
10298bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10299                                             const CXXMethodDecl *Old) {
10300  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10301  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10302
10303  if (Context.hasSameType(NewTy, OldTy) ||
10304      NewTy->isDependentType() || OldTy->isDependentType())
10305    return false;
10306
10307  // Check if the return types are covariant
10308  QualType NewClassTy, OldClassTy;
10309
10310  /// Both types must be pointers or references to classes.
10311  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10312    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10313      NewClassTy = NewPT->getPointeeType();
10314      OldClassTy = OldPT->getPointeeType();
10315    }
10316  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10317    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10318      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10319        NewClassTy = NewRT->getPointeeType();
10320        OldClassTy = OldRT->getPointeeType();
10321      }
10322    }
10323  }
10324
10325  // The return types aren't either both pointers or references to a class type.
10326  if (NewClassTy.isNull()) {
10327    Diag(New->getLocation(),
10328         diag::err_different_return_type_for_overriding_virtual_function)
10329      << New->getDeclName() << NewTy << OldTy;
10330    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10331
10332    return true;
10333  }
10334
10335  // C++ [class.virtual]p6:
10336  //   If the return type of D::f differs from the return type of B::f, the
10337  //   class type in the return type of D::f shall be complete at the point of
10338  //   declaration of D::f or shall be the class type D.
10339  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10340    if (!RT->isBeingDefined() &&
10341        RequireCompleteType(New->getLocation(), NewClassTy,
10342                            PDiag(diag::err_covariant_return_incomplete)
10343                              << New->getDeclName()))
10344    return true;
10345  }
10346
10347  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10348    // Check if the new class derives from the old class.
10349    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10350      Diag(New->getLocation(),
10351           diag::err_covariant_return_not_derived)
10352      << New->getDeclName() << NewTy << OldTy;
10353      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10354      return true;
10355    }
10356
10357    // Check if we the conversion from derived to base is valid.
10358    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10359                    diag::err_covariant_return_inaccessible_base,
10360                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10361                    // FIXME: Should this point to the return type?
10362                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10363      // FIXME: this note won't trigger for delayed access control
10364      // diagnostics, and it's impossible to get an undelayed error
10365      // here from access control during the original parse because
10366      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10367      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10368      return true;
10369    }
10370  }
10371
10372  // The qualifiers of the return types must be the same.
10373  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10374    Diag(New->getLocation(),
10375         diag::err_covariant_return_type_different_qualifications)
10376    << New->getDeclName() << NewTy << OldTy;
10377    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10378    return true;
10379  };
10380
10381
10382  // The new class type must have the same or less qualifiers as the old type.
10383  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10384    Diag(New->getLocation(),
10385         diag::err_covariant_return_type_class_type_more_qualified)
10386    << New->getDeclName() << NewTy << OldTy;
10387    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10388    return true;
10389  };
10390
10391  return false;
10392}
10393
10394/// \brief Mark the given method pure.
10395///
10396/// \param Method the method to be marked pure.
10397///
10398/// \param InitRange the source range that covers the "0" initializer.
10399bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10400  SourceLocation EndLoc = InitRange.getEnd();
10401  if (EndLoc.isValid())
10402    Method->setRangeEnd(EndLoc);
10403
10404  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10405    Method->setPure();
10406    return false;
10407  }
10408
10409  if (!Method->isInvalidDecl())
10410    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10411      << Method->getDeclName() << InitRange;
10412  return true;
10413}
10414
10415/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10416/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10417/// is a fresh scope pushed for just this purpose.
10418///
10419/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10420/// static data member of class X, names should be looked up in the scope of
10421/// class X.
10422void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10423  // If there is no declaration, there was an error parsing it.
10424  if (D == 0 || D->isInvalidDecl()) return;
10425
10426  // We should only get called for declarations with scope specifiers, like:
10427  //   int foo::bar;
10428  assert(D->isOutOfLine());
10429  EnterDeclaratorContext(S, D->getDeclContext());
10430}
10431
10432/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10433/// initializer for the out-of-line declaration 'D'.
10434void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10435  // If there is no declaration, there was an error parsing it.
10436  if (D == 0 || D->isInvalidDecl()) return;
10437
10438  assert(D->isOutOfLine());
10439  ExitDeclaratorContext(S);
10440}
10441
10442/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10443/// C++ if/switch/while/for statement.
10444/// e.g: "if (int x = f()) {...}"
10445DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10446  // C++ 6.4p2:
10447  // The declarator shall not specify a function or an array.
10448  // The type-specifier-seq shall not contain typedef and shall not declare a
10449  // new class or enumeration.
10450  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10451         "Parser allowed 'typedef' as storage class of condition decl.");
10452
10453  Decl *Dcl = ActOnDeclarator(S, D);
10454  if (!Dcl)
10455    return true;
10456
10457  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10458    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10459      << D.getSourceRange();
10460    return true;
10461  }
10462
10463  return Dcl;
10464}
10465
10466void Sema::LoadExternalVTableUses() {
10467  if (!ExternalSource)
10468    return;
10469
10470  SmallVector<ExternalVTableUse, 4> VTables;
10471  ExternalSource->ReadUsedVTables(VTables);
10472  SmallVector<VTableUse, 4> NewUses;
10473  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10474    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10475      = VTablesUsed.find(VTables[I].Record);
10476    // Even if a definition wasn't required before, it may be required now.
10477    if (Pos != VTablesUsed.end()) {
10478      if (!Pos->second && VTables[I].DefinitionRequired)
10479        Pos->second = true;
10480      continue;
10481    }
10482
10483    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10484    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10485  }
10486
10487  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10488}
10489
10490void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10491                          bool DefinitionRequired) {
10492  // Ignore any vtable uses in unevaluated operands or for classes that do
10493  // not have a vtable.
10494  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10495      CurContext->isDependentContext() ||
10496      ExprEvalContexts.back().Context == Unevaluated)
10497    return;
10498
10499  // Try to insert this class into the map.
10500  LoadExternalVTableUses();
10501  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10502  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10503    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10504  if (!Pos.second) {
10505    // If we already had an entry, check to see if we are promoting this vtable
10506    // to required a definition. If so, we need to reappend to the VTableUses
10507    // list, since we may have already processed the first entry.
10508    if (DefinitionRequired && !Pos.first->second) {
10509      Pos.first->second = true;
10510    } else {
10511      // Otherwise, we can early exit.
10512      return;
10513    }
10514  }
10515
10516  // Local classes need to have their virtual members marked
10517  // immediately. For all other classes, we mark their virtual members
10518  // at the end of the translation unit.
10519  if (Class->isLocalClass())
10520    MarkVirtualMembersReferenced(Loc, Class);
10521  else
10522    VTableUses.push_back(std::make_pair(Class, Loc));
10523}
10524
10525bool Sema::DefineUsedVTables() {
10526  LoadExternalVTableUses();
10527  if (VTableUses.empty())
10528    return false;
10529
10530  // Note: The VTableUses vector could grow as a result of marking
10531  // the members of a class as "used", so we check the size each
10532  // time through the loop and prefer indices (with are stable) to
10533  // iterators (which are not).
10534  bool DefinedAnything = false;
10535  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10536    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10537    if (!Class)
10538      continue;
10539
10540    SourceLocation Loc = VTableUses[I].second;
10541
10542    // If this class has a key function, but that key function is
10543    // defined in another translation unit, we don't need to emit the
10544    // vtable even though we're using it.
10545    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10546    if (KeyFunction && !KeyFunction->hasBody()) {
10547      switch (KeyFunction->getTemplateSpecializationKind()) {
10548      case TSK_Undeclared:
10549      case TSK_ExplicitSpecialization:
10550      case TSK_ExplicitInstantiationDeclaration:
10551        // The key function is in another translation unit.
10552        continue;
10553
10554      case TSK_ExplicitInstantiationDefinition:
10555      case TSK_ImplicitInstantiation:
10556        // We will be instantiating the key function.
10557        break;
10558      }
10559    } else if (!KeyFunction) {
10560      // If we have a class with no key function that is the subject
10561      // of an explicit instantiation declaration, suppress the
10562      // vtable; it will live with the explicit instantiation
10563      // definition.
10564      bool IsExplicitInstantiationDeclaration
10565        = Class->getTemplateSpecializationKind()
10566                                      == TSK_ExplicitInstantiationDeclaration;
10567      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10568                                 REnd = Class->redecls_end();
10569           R != REnd; ++R) {
10570        TemplateSpecializationKind TSK
10571          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10572        if (TSK == TSK_ExplicitInstantiationDeclaration)
10573          IsExplicitInstantiationDeclaration = true;
10574        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10575          IsExplicitInstantiationDeclaration = false;
10576          break;
10577        }
10578      }
10579
10580      if (IsExplicitInstantiationDeclaration)
10581        continue;
10582    }
10583
10584    // Mark all of the virtual members of this class as referenced, so
10585    // that we can build a vtable. Then, tell the AST consumer that a
10586    // vtable for this class is required.
10587    DefinedAnything = true;
10588    MarkVirtualMembersReferenced(Loc, Class);
10589    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10590    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10591
10592    // Optionally warn if we're emitting a weak vtable.
10593    if (Class->getLinkage() == ExternalLinkage &&
10594        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10595      const FunctionDecl *KeyFunctionDef = 0;
10596      if (!KeyFunction ||
10597          (KeyFunction->hasBody(KeyFunctionDef) &&
10598           KeyFunctionDef->isInlined()))
10599        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
10600    }
10601  }
10602  VTableUses.clear();
10603
10604  return DefinedAnything;
10605}
10606
10607void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10608                                        const CXXRecordDecl *RD) {
10609  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10610       e = RD->method_end(); i != e; ++i) {
10611    CXXMethodDecl *MD = *i;
10612
10613    // C++ [basic.def.odr]p2:
10614    //   [...] A virtual member function is used if it is not pure. [...]
10615    if (MD->isVirtual() && !MD->isPure())
10616      MarkDeclarationReferenced(Loc, MD);
10617  }
10618
10619  // Only classes that have virtual bases need a VTT.
10620  if (RD->getNumVBases() == 0)
10621    return;
10622
10623  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10624           e = RD->bases_end(); i != e; ++i) {
10625    const CXXRecordDecl *Base =
10626        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10627    if (Base->getNumVBases() == 0)
10628      continue;
10629    MarkVirtualMembersReferenced(Loc, Base);
10630  }
10631}
10632
10633/// SetIvarInitializers - This routine builds initialization ASTs for the
10634/// Objective-C implementation whose ivars need be initialized.
10635void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10636  if (!getLangOptions().CPlusPlus)
10637    return;
10638  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10639    SmallVector<ObjCIvarDecl*, 8> ivars;
10640    CollectIvarsToConstructOrDestruct(OID, ivars);
10641    if (ivars.empty())
10642      return;
10643    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10644    for (unsigned i = 0; i < ivars.size(); i++) {
10645      FieldDecl *Field = ivars[i];
10646      if (Field->isInvalidDecl())
10647        continue;
10648
10649      CXXCtorInitializer *Member;
10650      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10651      InitializationKind InitKind =
10652        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10653
10654      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10655      ExprResult MemberInit =
10656        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10657      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10658      // Note, MemberInit could actually come back empty if no initialization
10659      // is required (e.g., because it would call a trivial default constructor)
10660      if (!MemberInit.get() || MemberInit.isInvalid())
10661        continue;
10662
10663      Member =
10664        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10665                                         SourceLocation(),
10666                                         MemberInit.takeAs<Expr>(),
10667                                         SourceLocation());
10668      AllToInit.push_back(Member);
10669
10670      // Be sure that the destructor is accessible and is marked as referenced.
10671      if (const RecordType *RecordTy
10672                  = Context.getBaseElementType(Field->getType())
10673                                                        ->getAs<RecordType>()) {
10674                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10675        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10676          MarkDeclarationReferenced(Field->getLocation(), Destructor);
10677          CheckDestructorAccess(Field->getLocation(), Destructor,
10678                            PDiag(diag::err_access_dtor_ivar)
10679                              << Context.getBaseElementType(Field->getType()));
10680        }
10681      }
10682    }
10683    ObjCImplementation->setIvarInitializers(Context,
10684                                            AllToInit.data(), AllToInit.size());
10685  }
10686}
10687
10688static
10689void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10690                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10691                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10692                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10693                           Sema &S) {
10694  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10695                                                   CE = Current.end();
10696  if (Ctor->isInvalidDecl())
10697    return;
10698
10699  const FunctionDecl *FNTarget = 0;
10700  CXXConstructorDecl *Target;
10701
10702  // We ignore the result here since if we don't have a body, Target will be
10703  // null below.
10704  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10705  Target
10706= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10707
10708  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10709                     // Avoid dereferencing a null pointer here.
10710                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10711
10712  if (!Current.insert(Canonical))
10713    return;
10714
10715  // We know that beyond here, we aren't chaining into a cycle.
10716  if (!Target || !Target->isDelegatingConstructor() ||
10717      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10718    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10719      Valid.insert(*CI);
10720    Current.clear();
10721  // We've hit a cycle.
10722  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10723             Current.count(TCanonical)) {
10724    // If we haven't diagnosed this cycle yet, do so now.
10725    if (!Invalid.count(TCanonical)) {
10726      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10727             diag::warn_delegating_ctor_cycle)
10728        << Ctor;
10729
10730      // Don't add a note for a function delegating directo to itself.
10731      if (TCanonical != Canonical)
10732        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10733
10734      CXXConstructorDecl *C = Target;
10735      while (C->getCanonicalDecl() != Canonical) {
10736        (void)C->getTargetConstructor()->hasBody(FNTarget);
10737        assert(FNTarget && "Ctor cycle through bodiless function");
10738
10739        C
10740       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10741        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10742      }
10743    }
10744
10745    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10746      Invalid.insert(*CI);
10747    Current.clear();
10748  } else {
10749    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10750  }
10751}
10752
10753
10754void Sema::CheckDelegatingCtorCycles() {
10755  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10756
10757  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10758                                                   CE = Current.end();
10759
10760  for (DelegatingCtorDeclsType::iterator
10761         I = DelegatingCtorDecls.begin(ExternalSource),
10762         E = DelegatingCtorDecls.end();
10763       I != E; ++I) {
10764   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10765  }
10766
10767  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10768    (*CI)->setInvalidDecl();
10769}
10770
10771/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
10772Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
10773  // Implicitly declared functions (e.g. copy constructors) are
10774  // __host__ __device__
10775  if (D->isImplicit())
10776    return CFT_HostDevice;
10777
10778  if (D->hasAttr<CUDAGlobalAttr>())
10779    return CFT_Global;
10780
10781  if (D->hasAttr<CUDADeviceAttr>()) {
10782    if (D->hasAttr<CUDAHostAttr>())
10783      return CFT_HostDevice;
10784    else
10785      return CFT_Device;
10786  }
10787
10788  return CFT_Host;
10789}
10790
10791bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
10792                           CUDAFunctionTarget CalleeTarget) {
10793  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
10794  // Callable from the device only."
10795  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
10796    return true;
10797
10798  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
10799  // Callable from the host only."
10800  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
10801  // Callable from the host only."
10802  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
10803      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
10804    return true;
10805
10806  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
10807    return true;
10808
10809  return false;
10810}
10811