SemaDeclCXX.cpp revision 162e1c1b487352434552147967c3dd296ebee2f7
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/RecordLayout.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/AST/TypeOrdering.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Basic/PartialDiagnostic.h"
32#include "clang/Lex/Preprocessor.h"
33#include "llvm/ADT/DenseSet.h"
34#include "llvm/ADT/STLExtras.h"
35#include <map>
36#include <set>
37
38using namespace clang;
39
40//===----------------------------------------------------------------------===//
41// CheckDefaultArgumentVisitor
42//===----------------------------------------------------------------------===//
43
44namespace {
45  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
46  /// the default argument of a parameter to determine whether it
47  /// contains any ill-formed subexpressions. For example, this will
48  /// diagnose the use of local variables or parameters within the
49  /// default argument expression.
50  class CheckDefaultArgumentVisitor
51    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
52    Expr *DefaultArg;
53    Sema *S;
54
55  public:
56    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
57      : DefaultArg(defarg), S(s) {}
58
59    bool VisitExpr(Expr *Node);
60    bool VisitDeclRefExpr(DeclRefExpr *DRE);
61    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
62  };
63
64  /// VisitExpr - Visit all of the children of this expression.
65  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
66    bool IsInvalid = false;
67    for (Stmt::child_range I = Node->children(); I; ++I)
68      IsInvalid |= Visit(*I);
69    return IsInvalid;
70  }
71
72  /// VisitDeclRefExpr - Visit a reference to a declaration, to
73  /// determine whether this declaration can be used in the default
74  /// argument expression.
75  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
76    NamedDecl *Decl = DRE->getDecl();
77    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p9
79      //   Default arguments are evaluated each time the function is
80      //   called. The order of evaluation of function arguments is
81      //   unspecified. Consequently, parameters of a function shall not
82      //   be used in default argument expressions, even if they are not
83      //   evaluated. Parameters of a function declared before a default
84      //   argument expression are in scope and can hide namespace and
85      //   class member names.
86      return S->Diag(DRE->getSourceRange().getBegin(),
87                     diag::err_param_default_argument_references_param)
88         << Param->getDeclName() << DefaultArg->getSourceRange();
89    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
90      // C++ [dcl.fct.default]p7
91      //   Local variables shall not be used in default argument
92      //   expressions.
93      if (VDecl->isLocalVarDecl())
94        return S->Diag(DRE->getSourceRange().getBegin(),
95                       diag::err_param_default_argument_references_local)
96          << VDecl->getDeclName() << DefaultArg->getSourceRange();
97    }
98
99    return false;
100  }
101
102  /// VisitCXXThisExpr - Visit a C++ "this" expression.
103  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
104    // C++ [dcl.fct.default]p8:
105    //   The keyword this shall not be used in a default argument of a
106    //   member function.
107    return S->Diag(ThisE->getSourceRange().getBegin(),
108                   diag::err_param_default_argument_references_this)
109               << ThisE->getSourceRange();
110  }
111}
112
113bool
114Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
115                              SourceLocation EqualLoc) {
116  if (RequireCompleteType(Param->getLocation(), Param->getType(),
117                          diag::err_typecheck_decl_incomplete_type)) {
118    Param->setInvalidDecl();
119    return true;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
129                                                                    Param);
130  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
131                                                           EqualLoc);
132  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
133  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
134                                      MultiExprArg(*this, &Arg, 1));
135  if (Result.isInvalid())
136    return true;
137  Arg = Result.takeAs<Expr>();
138
139  CheckImplicitConversions(Arg, EqualLoc);
140  Arg = MaybeCreateExprWithCleanups(Arg);
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(Arg);
144
145  // We have already instantiated this parameter; provide each of the
146  // instantiations with the uninstantiated default argument.
147  UnparsedDefaultArgInstantiationsMap::iterator InstPos
148    = UnparsedDefaultArgInstantiations.find(Param);
149  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
150    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
151      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
152
153    // We're done tracking this parameter's instantiations.
154    UnparsedDefaultArgInstantiations.erase(InstPos);
155  }
156
157  return false;
158}
159
160/// ActOnParamDefaultArgument - Check whether the default argument
161/// provided for a function parameter is well-formed. If so, attach it
162/// to the parameter declaration.
163void
164Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
165                                Expr *DefaultArg) {
166  if (!param || !DefaultArg)
167    return;
168
169  ParmVarDecl *Param = cast<ParmVarDecl>(param);
170  UnparsedDefaultArgLocs.erase(Param);
171
172  // Default arguments are only permitted in C++
173  if (!getLangOptions().CPlusPlus) {
174    Diag(EqualLoc, diag::err_param_default_argument)
175      << DefaultArg->getSourceRange();
176    Param->setInvalidDecl();
177    return;
178  }
179
180  // Check for unexpanded parameter packs.
181  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
182    Param->setInvalidDecl();
183    return;
184  }
185
186  // Check that the default argument is well-formed
187  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
188  if (DefaultArgChecker.Visit(DefaultArg)) {
189    Param->setInvalidDecl();
190    return;
191  }
192
193  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
194}
195
196/// ActOnParamUnparsedDefaultArgument - We've seen a default
197/// argument for a function parameter, but we can't parse it yet
198/// because we're inside a class definition. Note that this default
199/// argument will be parsed later.
200void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
201                                             SourceLocation EqualLoc,
202                                             SourceLocation ArgLoc) {
203  if (!param)
204    return;
205
206  ParmVarDecl *Param = cast<ParmVarDecl>(param);
207  if (Param)
208    Param->setUnparsedDefaultArg();
209
210  UnparsedDefaultArgLocs[Param] = ArgLoc;
211}
212
213/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
214/// the default argument for the parameter param failed.
215void Sema::ActOnParamDefaultArgumentError(Decl *param) {
216  if (!param)
217    return;
218
219  ParmVarDecl *Param = cast<ParmVarDecl>(param);
220
221  Param->setInvalidDecl();
222
223  UnparsedDefaultArgLocs.erase(Param);
224}
225
226/// CheckExtraCXXDefaultArguments - Check for any extra default
227/// arguments in the declarator, which is not a function declaration
228/// or definition and therefore is not permitted to have default
229/// arguments. This routine should be invoked for every declarator
230/// that is not a function declaration or definition.
231void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
232  // C++ [dcl.fct.default]p3
233  //   A default argument expression shall be specified only in the
234  //   parameter-declaration-clause of a function declaration or in a
235  //   template-parameter (14.1). It shall not be specified for a
236  //   parameter pack. If it is specified in a
237  //   parameter-declaration-clause, it shall not occur within a
238  //   declarator or abstract-declarator of a parameter-declaration.
239  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
240    DeclaratorChunk &chunk = D.getTypeObject(i);
241    if (chunk.Kind == DeclaratorChunk::Function) {
242      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
243        ParmVarDecl *Param =
244          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
245        if (Param->hasUnparsedDefaultArg()) {
246          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
247          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
248            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
249          delete Toks;
250          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
251        } else if (Param->getDefaultArg()) {
252          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
253            << Param->getDefaultArg()->getSourceRange();
254          Param->setDefaultArg(0);
255        }
256      }
257    }
258  }
259}
260
261// MergeCXXFunctionDecl - Merge two declarations of the same C++
262// function, once we already know that they have the same
263// type. Subroutine of MergeFunctionDecl. Returns true if there was an
264// error, false otherwise.
265bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
266  bool Invalid = false;
267
268  // C++ [dcl.fct.default]p4:
269  //   For non-template functions, default arguments can be added in
270  //   later declarations of a function in the same
271  //   scope. Declarations in different scopes have completely
272  //   distinct sets of default arguments. That is, declarations in
273  //   inner scopes do not acquire default arguments from
274  //   declarations in outer scopes, and vice versa. In a given
275  //   function declaration, all parameters subsequent to a
276  //   parameter with a default argument shall have default
277  //   arguments supplied in this or previous declarations. A
278  //   default argument shall not be redefined by a later
279  //   declaration (not even to the same value).
280  //
281  // C++ [dcl.fct.default]p6:
282  //   Except for member functions of class templates, the default arguments
283  //   in a member function definition that appears outside of the class
284  //   definition are added to the set of default arguments provided by the
285  //   member function declaration in the class definition.
286  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
287    ParmVarDecl *OldParam = Old->getParamDecl(p);
288    ParmVarDecl *NewParam = New->getParamDecl(p);
289
290    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
291
292      unsigned DiagDefaultParamID =
293        diag::err_param_default_argument_redefinition;
294
295      // MSVC accepts that default parameters be redefined for member functions
296      // of template class. The new default parameter's value is ignored.
297      Invalid = true;
298      if (getLangOptions().Microsoft) {
299        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
300        if (MD && MD->getParent()->getDescribedClassTemplate()) {
301          // Merge the old default argument into the new parameter.
302          NewParam->setHasInheritedDefaultArg();
303          if (OldParam->hasUninstantiatedDefaultArg())
304            NewParam->setUninstantiatedDefaultArg(
305                                      OldParam->getUninstantiatedDefaultArg());
306          else
307            NewParam->setDefaultArg(OldParam->getInit());
308          DiagDefaultParamID = diag::war_param_default_argument_redefinition;
309          Invalid = false;
310        }
311      }
312
313      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
314      // hint here. Alternatively, we could walk the type-source information
315      // for NewParam to find the last source location in the type... but it
316      // isn't worth the effort right now. This is the kind of test case that
317      // is hard to get right:
318      //   int f(int);
319      //   void g(int (*fp)(int) = f);
320      //   void g(int (*fp)(int) = &f);
321      Diag(NewParam->getLocation(), DiagDefaultParamID)
322        << NewParam->getDefaultArgRange();
323
324      // Look for the function declaration where the default argument was
325      // actually written, which may be a declaration prior to Old.
326      for (FunctionDecl *Older = Old->getPreviousDeclaration();
327           Older; Older = Older->getPreviousDeclaration()) {
328        if (!Older->getParamDecl(p)->hasDefaultArg())
329          break;
330
331        OldParam = Older->getParamDecl(p);
332      }
333
334      Diag(OldParam->getLocation(), diag::note_previous_definition)
335        << OldParam->getDefaultArgRange();
336    } else if (OldParam->hasDefaultArg()) {
337      // Merge the old default argument into the new parameter.
338      // It's important to use getInit() here;  getDefaultArg()
339      // strips off any top-level ExprWithCleanups.
340      NewParam->setHasInheritedDefaultArg();
341      if (OldParam->hasUninstantiatedDefaultArg())
342        NewParam->setUninstantiatedDefaultArg(
343                                      OldParam->getUninstantiatedDefaultArg());
344      else
345        NewParam->setDefaultArg(OldParam->getInit());
346    } else if (NewParam->hasDefaultArg()) {
347      if (New->getDescribedFunctionTemplate()) {
348        // Paragraph 4, quoted above, only applies to non-template functions.
349        Diag(NewParam->getLocation(),
350             diag::err_param_default_argument_template_redecl)
351          << NewParam->getDefaultArgRange();
352        Diag(Old->getLocation(), diag::note_template_prev_declaration)
353          << false;
354      } else if (New->getTemplateSpecializationKind()
355                   != TSK_ImplicitInstantiation &&
356                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
357        // C++ [temp.expr.spec]p21:
358        //   Default function arguments shall not be specified in a declaration
359        //   or a definition for one of the following explicit specializations:
360        //     - the explicit specialization of a function template;
361        //     - the explicit specialization of a member function template;
362        //     - the explicit specialization of a member function of a class
363        //       template where the class template specialization to which the
364        //       member function specialization belongs is implicitly
365        //       instantiated.
366        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
367          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
368          << New->getDeclName()
369          << NewParam->getDefaultArgRange();
370      } else if (New->getDeclContext()->isDependentContext()) {
371        // C++ [dcl.fct.default]p6 (DR217):
372        //   Default arguments for a member function of a class template shall
373        //   be specified on the initial declaration of the member function
374        //   within the class template.
375        //
376        // Reading the tea leaves a bit in DR217 and its reference to DR205
377        // leads me to the conclusion that one cannot add default function
378        // arguments for an out-of-line definition of a member function of a
379        // dependent type.
380        int WhichKind = 2;
381        if (CXXRecordDecl *Record
382              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
383          if (Record->getDescribedClassTemplate())
384            WhichKind = 0;
385          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
386            WhichKind = 1;
387          else
388            WhichKind = 2;
389        }
390
391        Diag(NewParam->getLocation(),
392             diag::err_param_default_argument_member_template_redecl)
393          << WhichKind
394          << NewParam->getDefaultArgRange();
395      }
396    }
397  }
398
399  if (CheckEquivalentExceptionSpec(Old, New))
400    Invalid = true;
401
402  return Invalid;
403}
404
405/// \brief Merge the exception specifications of two variable declarations.
406///
407/// This is called when there's a redeclaration of a VarDecl. The function
408/// checks if the redeclaration might have an exception specification and
409/// validates compatibility and merges the specs if necessary.
410void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
411  // Shortcut if exceptions are disabled.
412  if (!getLangOptions().CXXExceptions)
413    return;
414
415  assert(Context.hasSameType(New->getType(), Old->getType()) &&
416         "Should only be called if types are otherwise the same.");
417
418  QualType NewType = New->getType();
419  QualType OldType = Old->getType();
420
421  // We're only interested in pointers and references to functions, as well
422  // as pointers to member functions.
423  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
424    NewType = R->getPointeeType();
425    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
426  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
427    NewType = P->getPointeeType();
428    OldType = OldType->getAs<PointerType>()->getPointeeType();
429  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
430    NewType = M->getPointeeType();
431    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
432  }
433
434  if (!NewType->isFunctionProtoType())
435    return;
436
437  // There's lots of special cases for functions. For function pointers, system
438  // libraries are hopefully not as broken so that we don't need these
439  // workarounds.
440  if (CheckEquivalentExceptionSpec(
441        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
442        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
443    New->setInvalidDecl();
444  }
445}
446
447/// CheckCXXDefaultArguments - Verify that the default arguments for a
448/// function declaration are well-formed according to C++
449/// [dcl.fct.default].
450void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
451  unsigned NumParams = FD->getNumParams();
452  unsigned p;
453
454  // Find first parameter with a default argument
455  for (p = 0; p < NumParams; ++p) {
456    ParmVarDecl *Param = FD->getParamDecl(p);
457    if (Param->hasDefaultArg())
458      break;
459  }
460
461  // C++ [dcl.fct.default]p4:
462  //   In a given function declaration, all parameters
463  //   subsequent to a parameter with a default argument shall
464  //   have default arguments supplied in this or previous
465  //   declarations. A default argument shall not be redefined
466  //   by a later declaration (not even to the same value).
467  unsigned LastMissingDefaultArg = 0;
468  for (; p < NumParams; ++p) {
469    ParmVarDecl *Param = FD->getParamDecl(p);
470    if (!Param->hasDefaultArg()) {
471      if (Param->isInvalidDecl())
472        /* We already complained about this parameter. */;
473      else if (Param->getIdentifier())
474        Diag(Param->getLocation(),
475             diag::err_param_default_argument_missing_name)
476          << Param->getIdentifier();
477      else
478        Diag(Param->getLocation(),
479             diag::err_param_default_argument_missing);
480
481      LastMissingDefaultArg = p;
482    }
483  }
484
485  if (LastMissingDefaultArg > 0) {
486    // Some default arguments were missing. Clear out all of the
487    // default arguments up to (and including) the last missing
488    // default argument, so that we leave the function parameters
489    // in a semantically valid state.
490    for (p = 0; p <= LastMissingDefaultArg; ++p) {
491      ParmVarDecl *Param = FD->getParamDecl(p);
492      if (Param->hasDefaultArg()) {
493        Param->setDefaultArg(0);
494      }
495    }
496  }
497}
498
499/// isCurrentClassName - Determine whether the identifier II is the
500/// name of the class type currently being defined. In the case of
501/// nested classes, this will only return true if II is the name of
502/// the innermost class.
503bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
504                              const CXXScopeSpec *SS) {
505  assert(getLangOptions().CPlusPlus && "No class names in C!");
506
507  CXXRecordDecl *CurDecl;
508  if (SS && SS->isSet() && !SS->isInvalid()) {
509    DeclContext *DC = computeDeclContext(*SS, true);
510    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
511  } else
512    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
513
514  if (CurDecl && CurDecl->getIdentifier())
515    return &II == CurDecl->getIdentifier();
516  else
517    return false;
518}
519
520/// \brief Check the validity of a C++ base class specifier.
521///
522/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
523/// and returns NULL otherwise.
524CXXBaseSpecifier *
525Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
526                         SourceRange SpecifierRange,
527                         bool Virtual, AccessSpecifier Access,
528                         TypeSourceInfo *TInfo,
529                         SourceLocation EllipsisLoc) {
530  QualType BaseType = TInfo->getType();
531
532  // C++ [class.union]p1:
533  //   A union shall not have base classes.
534  if (Class->isUnion()) {
535    Diag(Class->getLocation(), diag::err_base_clause_on_union)
536      << SpecifierRange;
537    return 0;
538  }
539
540  if (EllipsisLoc.isValid() &&
541      !TInfo->getType()->containsUnexpandedParameterPack()) {
542    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
543      << TInfo->getTypeLoc().getSourceRange();
544    EllipsisLoc = SourceLocation();
545  }
546
547  if (BaseType->isDependentType())
548    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
549                                          Class->getTagKind() == TTK_Class,
550                                          Access, TInfo, EllipsisLoc);
551
552  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
553
554  // Base specifiers must be record types.
555  if (!BaseType->isRecordType()) {
556    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
557    return 0;
558  }
559
560  // C++ [class.union]p1:
561  //   A union shall not be used as a base class.
562  if (BaseType->isUnionType()) {
563    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
564    return 0;
565  }
566
567  // C++ [class.derived]p2:
568  //   The class-name in a base-specifier shall not be an incompletely
569  //   defined class.
570  if (RequireCompleteType(BaseLoc, BaseType,
571                          PDiag(diag::err_incomplete_base_class)
572                            << SpecifierRange)) {
573    Class->setInvalidDecl();
574    return 0;
575  }
576
577  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
578  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
579  assert(BaseDecl && "Record type has no declaration");
580  BaseDecl = BaseDecl->getDefinition();
581  assert(BaseDecl && "Base type is not incomplete, but has no definition");
582  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
583  assert(CXXBaseDecl && "Base type is not a C++ type");
584
585  // C++ [class]p3:
586  //   If a class is marked final and it appears as a base-type-specifier in
587  //   base-clause, the program is ill-formed.
588  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
589    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
590      << CXXBaseDecl->getDeclName();
591    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
592      << CXXBaseDecl->getDeclName();
593    return 0;
594  }
595
596  if (BaseDecl->isInvalidDecl())
597    Class->setInvalidDecl();
598
599  // Create the base specifier.
600  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
601                                        Class->getTagKind() == TTK_Class,
602                                        Access, TInfo, EllipsisLoc);
603}
604
605/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
606/// one entry in the base class list of a class specifier, for
607/// example:
608///    class foo : public bar, virtual private baz {
609/// 'public bar' and 'virtual private baz' are each base-specifiers.
610BaseResult
611Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
612                         bool Virtual, AccessSpecifier Access,
613                         ParsedType basetype, SourceLocation BaseLoc,
614                         SourceLocation EllipsisLoc) {
615  if (!classdecl)
616    return true;
617
618  AdjustDeclIfTemplate(classdecl);
619  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
620  if (!Class)
621    return true;
622
623  TypeSourceInfo *TInfo = 0;
624  GetTypeFromParser(basetype, &TInfo);
625
626  if (EllipsisLoc.isInvalid() &&
627      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
628                                      UPPC_BaseType))
629    return true;
630
631  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
632                                                      Virtual, Access, TInfo,
633                                                      EllipsisLoc))
634    return BaseSpec;
635
636  return true;
637}
638
639/// \brief Performs the actual work of attaching the given base class
640/// specifiers to a C++ class.
641bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
642                                unsigned NumBases) {
643 if (NumBases == 0)
644    return false;
645
646  // Used to keep track of which base types we have already seen, so
647  // that we can properly diagnose redundant direct base types. Note
648  // that the key is always the unqualified canonical type of the base
649  // class.
650  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
651
652  // Copy non-redundant base specifiers into permanent storage.
653  unsigned NumGoodBases = 0;
654  bool Invalid = false;
655  for (unsigned idx = 0; idx < NumBases; ++idx) {
656    QualType NewBaseType
657      = Context.getCanonicalType(Bases[idx]->getType());
658    NewBaseType = NewBaseType.getLocalUnqualifiedType();
659    if (!Class->hasObjectMember()) {
660      if (const RecordType *FDTTy =
661            NewBaseType.getTypePtr()->getAs<RecordType>())
662        if (FDTTy->getDecl()->hasObjectMember())
663          Class->setHasObjectMember(true);
664    }
665
666    if (KnownBaseTypes[NewBaseType]) {
667      // C++ [class.mi]p3:
668      //   A class shall not be specified as a direct base class of a
669      //   derived class more than once.
670      Diag(Bases[idx]->getSourceRange().getBegin(),
671           diag::err_duplicate_base_class)
672        << KnownBaseTypes[NewBaseType]->getType()
673        << Bases[idx]->getSourceRange();
674
675      // Delete the duplicate base class specifier; we're going to
676      // overwrite its pointer later.
677      Context.Deallocate(Bases[idx]);
678
679      Invalid = true;
680    } else {
681      // Okay, add this new base class.
682      KnownBaseTypes[NewBaseType] = Bases[idx];
683      Bases[NumGoodBases++] = Bases[idx];
684    }
685  }
686
687  // Attach the remaining base class specifiers to the derived class.
688  Class->setBases(Bases, NumGoodBases);
689
690  // Delete the remaining (good) base class specifiers, since their
691  // data has been copied into the CXXRecordDecl.
692  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
693    Context.Deallocate(Bases[idx]);
694
695  return Invalid;
696}
697
698/// ActOnBaseSpecifiers - Attach the given base specifiers to the
699/// class, after checking whether there are any duplicate base
700/// classes.
701void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
702                               unsigned NumBases) {
703  if (!ClassDecl || !Bases || !NumBases)
704    return;
705
706  AdjustDeclIfTemplate(ClassDecl);
707  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
708                       (CXXBaseSpecifier**)(Bases), NumBases);
709}
710
711static CXXRecordDecl *GetClassForType(QualType T) {
712  if (const RecordType *RT = T->getAs<RecordType>())
713    return cast<CXXRecordDecl>(RT->getDecl());
714  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
715    return ICT->getDecl();
716  else
717    return 0;
718}
719
720/// \brief Determine whether the type \p Derived is a C++ class that is
721/// derived from the type \p Base.
722bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
723  if (!getLangOptions().CPlusPlus)
724    return false;
725
726  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
727  if (!DerivedRD)
728    return false;
729
730  CXXRecordDecl *BaseRD = GetClassForType(Base);
731  if (!BaseRD)
732    return false;
733
734  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
735  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
736}
737
738/// \brief Determine whether the type \p Derived is a C++ class that is
739/// derived from the type \p Base.
740bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
741  if (!getLangOptions().CPlusPlus)
742    return false;
743
744  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
745  if (!DerivedRD)
746    return false;
747
748  CXXRecordDecl *BaseRD = GetClassForType(Base);
749  if (!BaseRD)
750    return false;
751
752  return DerivedRD->isDerivedFrom(BaseRD, Paths);
753}
754
755void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
756                              CXXCastPath &BasePathArray) {
757  assert(BasePathArray.empty() && "Base path array must be empty!");
758  assert(Paths.isRecordingPaths() && "Must record paths!");
759
760  const CXXBasePath &Path = Paths.front();
761
762  // We first go backward and check if we have a virtual base.
763  // FIXME: It would be better if CXXBasePath had the base specifier for
764  // the nearest virtual base.
765  unsigned Start = 0;
766  for (unsigned I = Path.size(); I != 0; --I) {
767    if (Path[I - 1].Base->isVirtual()) {
768      Start = I - 1;
769      break;
770    }
771  }
772
773  // Now add all bases.
774  for (unsigned I = Start, E = Path.size(); I != E; ++I)
775    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
776}
777
778/// \brief Determine whether the given base path includes a virtual
779/// base class.
780bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
781  for (CXXCastPath::const_iterator B = BasePath.begin(),
782                                BEnd = BasePath.end();
783       B != BEnd; ++B)
784    if ((*B)->isVirtual())
785      return true;
786
787  return false;
788}
789
790/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
791/// conversion (where Derived and Base are class types) is
792/// well-formed, meaning that the conversion is unambiguous (and
793/// that all of the base classes are accessible). Returns true
794/// and emits a diagnostic if the code is ill-formed, returns false
795/// otherwise. Loc is the location where this routine should point to
796/// if there is an error, and Range is the source range to highlight
797/// if there is an error.
798bool
799Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
800                                   unsigned InaccessibleBaseID,
801                                   unsigned AmbigiousBaseConvID,
802                                   SourceLocation Loc, SourceRange Range,
803                                   DeclarationName Name,
804                                   CXXCastPath *BasePath) {
805  // First, determine whether the path from Derived to Base is
806  // ambiguous. This is slightly more expensive than checking whether
807  // the Derived to Base conversion exists, because here we need to
808  // explore multiple paths to determine if there is an ambiguity.
809  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
810                     /*DetectVirtual=*/false);
811  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
812  assert(DerivationOkay &&
813         "Can only be used with a derived-to-base conversion");
814  (void)DerivationOkay;
815
816  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
817    if (InaccessibleBaseID) {
818      // Check that the base class can be accessed.
819      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
820                                   InaccessibleBaseID)) {
821        case AR_inaccessible:
822          return true;
823        case AR_accessible:
824        case AR_dependent:
825        case AR_delayed:
826          break;
827      }
828    }
829
830    // Build a base path if necessary.
831    if (BasePath)
832      BuildBasePathArray(Paths, *BasePath);
833    return false;
834  }
835
836  // We know that the derived-to-base conversion is ambiguous, and
837  // we're going to produce a diagnostic. Perform the derived-to-base
838  // search just one more time to compute all of the possible paths so
839  // that we can print them out. This is more expensive than any of
840  // the previous derived-to-base checks we've done, but at this point
841  // performance isn't as much of an issue.
842  Paths.clear();
843  Paths.setRecordingPaths(true);
844  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
845  assert(StillOkay && "Can only be used with a derived-to-base conversion");
846  (void)StillOkay;
847
848  // Build up a textual representation of the ambiguous paths, e.g.,
849  // D -> B -> A, that will be used to illustrate the ambiguous
850  // conversions in the diagnostic. We only print one of the paths
851  // to each base class subobject.
852  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
853
854  Diag(Loc, AmbigiousBaseConvID)
855  << Derived << Base << PathDisplayStr << Range << Name;
856  return true;
857}
858
859bool
860Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
861                                   SourceLocation Loc, SourceRange Range,
862                                   CXXCastPath *BasePath,
863                                   bool IgnoreAccess) {
864  return CheckDerivedToBaseConversion(Derived, Base,
865                                      IgnoreAccess ? 0
866                                       : diag::err_upcast_to_inaccessible_base,
867                                      diag::err_ambiguous_derived_to_base_conv,
868                                      Loc, Range, DeclarationName(),
869                                      BasePath);
870}
871
872
873/// @brief Builds a string representing ambiguous paths from a
874/// specific derived class to different subobjects of the same base
875/// class.
876///
877/// This function builds a string that can be used in error messages
878/// to show the different paths that one can take through the
879/// inheritance hierarchy to go from the derived class to different
880/// subobjects of a base class. The result looks something like this:
881/// @code
882/// struct D -> struct B -> struct A
883/// struct D -> struct C -> struct A
884/// @endcode
885std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
886  std::string PathDisplayStr;
887  std::set<unsigned> DisplayedPaths;
888  for (CXXBasePaths::paths_iterator Path = Paths.begin();
889       Path != Paths.end(); ++Path) {
890    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
891      // We haven't displayed a path to this particular base
892      // class subobject yet.
893      PathDisplayStr += "\n    ";
894      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
895      for (CXXBasePath::const_iterator Element = Path->begin();
896           Element != Path->end(); ++Element)
897        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
898    }
899  }
900
901  return PathDisplayStr;
902}
903
904//===----------------------------------------------------------------------===//
905// C++ class member Handling
906//===----------------------------------------------------------------------===//
907
908/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
909Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
910                                 SourceLocation ASLoc,
911                                 SourceLocation ColonLoc) {
912  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
913  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
914                                                  ASLoc, ColonLoc);
915  CurContext->addHiddenDecl(ASDecl);
916  return ASDecl;
917}
918
919/// CheckOverrideControl - Check C++0x override control semantics.
920void Sema::CheckOverrideControl(const Decl *D) {
921  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
922  if (!MD || !MD->isVirtual())
923    return;
924
925  if (MD->isDependentContext())
926    return;
927
928  // C++0x [class.virtual]p3:
929  //   If a virtual function is marked with the virt-specifier override and does
930  //   not override a member function of a base class,
931  //   the program is ill-formed.
932  bool HasOverriddenMethods =
933    MD->begin_overridden_methods() != MD->end_overridden_methods();
934  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
935    Diag(MD->getLocation(),
936                 diag::err_function_marked_override_not_overriding)
937      << MD->getDeclName();
938    return;
939  }
940}
941
942/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
943/// function overrides a virtual member function marked 'final', according to
944/// C++0x [class.virtual]p3.
945bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
946                                                  const CXXMethodDecl *Old) {
947  if (!Old->hasAttr<FinalAttr>())
948    return false;
949
950  Diag(New->getLocation(), diag::err_final_function_overridden)
951    << New->getDeclName();
952  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
953  return true;
954}
955
956/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
957/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
958/// bitfield width if there is one and 'InitExpr' specifies the initializer if
959/// any.
960Decl *
961Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
962                               MultiTemplateParamsArg TemplateParameterLists,
963                               ExprTy *BW, const VirtSpecifiers &VS,
964                               ExprTy *InitExpr, bool IsDefinition,
965                               bool Deleted) {
966  const DeclSpec &DS = D.getDeclSpec();
967  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
968  DeclarationName Name = NameInfo.getName();
969  SourceLocation Loc = NameInfo.getLoc();
970
971  // For anonymous bitfields, the location should point to the type.
972  if (Loc.isInvalid())
973    Loc = D.getSourceRange().getBegin();
974
975  Expr *BitWidth = static_cast<Expr*>(BW);
976  Expr *Init = static_cast<Expr*>(InitExpr);
977
978  assert(isa<CXXRecordDecl>(CurContext));
979  assert(!DS.isFriendSpecified());
980
981  bool isFunc = false;
982  if (D.isFunctionDeclarator())
983    isFunc = true;
984  else if (D.getNumTypeObjects() == 0 &&
985           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
986    QualType TDType = GetTypeFromParser(DS.getRepAsType());
987    isFunc = TDType->isFunctionType();
988  }
989
990  // C++ 9.2p6: A member shall not be declared to have automatic storage
991  // duration (auto, register) or with the extern storage-class-specifier.
992  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
993  // data members and cannot be applied to names declared const or static,
994  // and cannot be applied to reference members.
995  switch (DS.getStorageClassSpec()) {
996    case DeclSpec::SCS_unspecified:
997    case DeclSpec::SCS_typedef:
998    case DeclSpec::SCS_static:
999      // FALL THROUGH.
1000      break;
1001    case DeclSpec::SCS_mutable:
1002      if (isFunc) {
1003        if (DS.getStorageClassSpecLoc().isValid())
1004          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1005        else
1006          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1007
1008        // FIXME: It would be nicer if the keyword was ignored only for this
1009        // declarator. Otherwise we could get follow-up errors.
1010        D.getMutableDeclSpec().ClearStorageClassSpecs();
1011      }
1012      break;
1013    default:
1014      if (DS.getStorageClassSpecLoc().isValid())
1015        Diag(DS.getStorageClassSpecLoc(),
1016             diag::err_storageclass_invalid_for_member);
1017      else
1018        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1019      D.getMutableDeclSpec().ClearStorageClassSpecs();
1020  }
1021
1022  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1023                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1024                      !isFunc);
1025
1026  Decl *Member;
1027  if (isInstField) {
1028    CXXScopeSpec &SS = D.getCXXScopeSpec();
1029
1030
1031    if (SS.isSet() && !SS.isInvalid()) {
1032      // The user provided a superfluous scope specifier inside a class
1033      // definition:
1034      //
1035      // class X {
1036      //   int X::member;
1037      // };
1038      DeclContext *DC = 0;
1039      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1040        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1041        << Name << FixItHint::CreateRemoval(SS.getRange());
1042      else
1043        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1044          << Name << SS.getRange();
1045
1046      SS.clear();
1047    }
1048
1049    // FIXME: Check for template parameters!
1050    // FIXME: Check that the name is an identifier!
1051    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1052                         AS);
1053    assert(Member && "HandleField never returns null");
1054  } else {
1055    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1056    if (!Member) {
1057      return 0;
1058    }
1059
1060    // Non-instance-fields can't have a bitfield.
1061    if (BitWidth) {
1062      if (Member->isInvalidDecl()) {
1063        // don't emit another diagnostic.
1064      } else if (isa<VarDecl>(Member)) {
1065        // C++ 9.6p3: A bit-field shall not be a static member.
1066        // "static member 'A' cannot be a bit-field"
1067        Diag(Loc, diag::err_static_not_bitfield)
1068          << Name << BitWidth->getSourceRange();
1069      } else if (isa<TypedefDecl>(Member)) {
1070        // "typedef member 'x' cannot be a bit-field"
1071        Diag(Loc, diag::err_typedef_not_bitfield)
1072          << Name << BitWidth->getSourceRange();
1073      } else {
1074        // A function typedef ("typedef int f(); f a;").
1075        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1076        Diag(Loc, diag::err_not_integral_type_bitfield)
1077          << Name << cast<ValueDecl>(Member)->getType()
1078          << BitWidth->getSourceRange();
1079      }
1080
1081      BitWidth = 0;
1082      Member->setInvalidDecl();
1083    }
1084
1085    Member->setAccess(AS);
1086
1087    // If we have declared a member function template, set the access of the
1088    // templated declaration as well.
1089    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1090      FunTmpl->getTemplatedDecl()->setAccess(AS);
1091  }
1092
1093  if (VS.isOverrideSpecified()) {
1094    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1095    if (!MD || !MD->isVirtual()) {
1096      Diag(Member->getLocStart(),
1097           diag::override_keyword_only_allowed_on_virtual_member_functions)
1098        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1099    } else
1100      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1101  }
1102  if (VS.isFinalSpecified()) {
1103    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1104    if (!MD || !MD->isVirtual()) {
1105      Diag(Member->getLocStart(),
1106           diag::override_keyword_only_allowed_on_virtual_member_functions)
1107      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1108    } else
1109      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1110  }
1111
1112  if (VS.getLastLocation().isValid()) {
1113    // Update the end location of a method that has a virt-specifiers.
1114    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1115      MD->setRangeEnd(VS.getLastLocation());
1116  }
1117
1118  CheckOverrideControl(Member);
1119
1120  assert((Name || isInstField) && "No identifier for non-field ?");
1121
1122  if (Init)
1123    AddInitializerToDecl(Member, Init, false,
1124                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1125  if (Deleted) // FIXME: Source location is not very good.
1126    SetDeclDeleted(Member, D.getSourceRange().getBegin());
1127
1128  FinalizeDeclaration(Member);
1129
1130  if (isInstField)
1131    FieldCollector->Add(cast<FieldDecl>(Member));
1132  return Member;
1133}
1134
1135/// \brief Find the direct and/or virtual base specifiers that
1136/// correspond to the given base type, for use in base initialization
1137/// within a constructor.
1138static bool FindBaseInitializer(Sema &SemaRef,
1139                                CXXRecordDecl *ClassDecl,
1140                                QualType BaseType,
1141                                const CXXBaseSpecifier *&DirectBaseSpec,
1142                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1143  // First, check for a direct base class.
1144  DirectBaseSpec = 0;
1145  for (CXXRecordDecl::base_class_const_iterator Base
1146         = ClassDecl->bases_begin();
1147       Base != ClassDecl->bases_end(); ++Base) {
1148    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1149      // We found a direct base of this type. That's what we're
1150      // initializing.
1151      DirectBaseSpec = &*Base;
1152      break;
1153    }
1154  }
1155
1156  // Check for a virtual base class.
1157  // FIXME: We might be able to short-circuit this if we know in advance that
1158  // there are no virtual bases.
1159  VirtualBaseSpec = 0;
1160  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1161    // We haven't found a base yet; search the class hierarchy for a
1162    // virtual base class.
1163    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1164                       /*DetectVirtual=*/false);
1165    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1166                              BaseType, Paths)) {
1167      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1168           Path != Paths.end(); ++Path) {
1169        if (Path->back().Base->isVirtual()) {
1170          VirtualBaseSpec = Path->back().Base;
1171          break;
1172        }
1173      }
1174    }
1175  }
1176
1177  return DirectBaseSpec || VirtualBaseSpec;
1178}
1179
1180/// ActOnMemInitializer - Handle a C++ member initializer.
1181MemInitResult
1182Sema::ActOnMemInitializer(Decl *ConstructorD,
1183                          Scope *S,
1184                          CXXScopeSpec &SS,
1185                          IdentifierInfo *MemberOrBase,
1186                          ParsedType TemplateTypeTy,
1187                          SourceLocation IdLoc,
1188                          SourceLocation LParenLoc,
1189                          ExprTy **Args, unsigned NumArgs,
1190                          SourceLocation RParenLoc,
1191                          SourceLocation EllipsisLoc) {
1192  if (!ConstructorD)
1193    return true;
1194
1195  AdjustDeclIfTemplate(ConstructorD);
1196
1197  CXXConstructorDecl *Constructor
1198    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1199  if (!Constructor) {
1200    // The user wrote a constructor initializer on a function that is
1201    // not a C++ constructor. Ignore the error for now, because we may
1202    // have more member initializers coming; we'll diagnose it just
1203    // once in ActOnMemInitializers.
1204    return true;
1205  }
1206
1207  CXXRecordDecl *ClassDecl = Constructor->getParent();
1208
1209  // C++ [class.base.init]p2:
1210  //   Names in a mem-initializer-id are looked up in the scope of the
1211  //   constructor's class and, if not found in that scope, are looked
1212  //   up in the scope containing the constructor's definition.
1213  //   [Note: if the constructor's class contains a member with the
1214  //   same name as a direct or virtual base class of the class, a
1215  //   mem-initializer-id naming the member or base class and composed
1216  //   of a single identifier refers to the class member. A
1217  //   mem-initializer-id for the hidden base class may be specified
1218  //   using a qualified name. ]
1219  if (!SS.getScopeRep() && !TemplateTypeTy) {
1220    // Look for a member, first.
1221    FieldDecl *Member = 0;
1222    DeclContext::lookup_result Result
1223      = ClassDecl->lookup(MemberOrBase);
1224    if (Result.first != Result.second) {
1225      Member = dyn_cast<FieldDecl>(*Result.first);
1226
1227      if (Member) {
1228        if (EllipsisLoc.isValid())
1229          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1230            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1231
1232        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1233                                    LParenLoc, RParenLoc);
1234      }
1235
1236      // Handle anonymous union case.
1237      if (IndirectFieldDecl* IndirectField
1238            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1239        if (EllipsisLoc.isValid())
1240          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1241            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1242
1243         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1244                                       NumArgs, IdLoc,
1245                                       LParenLoc, RParenLoc);
1246      }
1247    }
1248  }
1249  // It didn't name a member, so see if it names a class.
1250  QualType BaseType;
1251  TypeSourceInfo *TInfo = 0;
1252
1253  if (TemplateTypeTy) {
1254    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1255  } else {
1256    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1257    LookupParsedName(R, S, &SS);
1258
1259    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1260    if (!TyD) {
1261      if (R.isAmbiguous()) return true;
1262
1263      // We don't want access-control diagnostics here.
1264      R.suppressDiagnostics();
1265
1266      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1267        bool NotUnknownSpecialization = false;
1268        DeclContext *DC = computeDeclContext(SS, false);
1269        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1270          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1271
1272        if (!NotUnknownSpecialization) {
1273          // When the scope specifier can refer to a member of an unknown
1274          // specialization, we take it as a type name.
1275          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1276                                       SS.getWithLocInContext(Context),
1277                                       *MemberOrBase, IdLoc);
1278          if (BaseType.isNull())
1279            return true;
1280
1281          R.clear();
1282          R.setLookupName(MemberOrBase);
1283        }
1284      }
1285
1286      // If no results were found, try to correct typos.
1287      if (R.empty() && BaseType.isNull() &&
1288          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1289          R.isSingleResult()) {
1290        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1291          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1292            // We have found a non-static data member with a similar
1293            // name to what was typed; complain and initialize that
1294            // member.
1295            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1296              << MemberOrBase << true << R.getLookupName()
1297              << FixItHint::CreateReplacement(R.getNameLoc(),
1298                                              R.getLookupName().getAsString());
1299            Diag(Member->getLocation(), diag::note_previous_decl)
1300              << Member->getDeclName();
1301
1302            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1303                                          LParenLoc, RParenLoc);
1304          }
1305        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1306          const CXXBaseSpecifier *DirectBaseSpec;
1307          const CXXBaseSpecifier *VirtualBaseSpec;
1308          if (FindBaseInitializer(*this, ClassDecl,
1309                                  Context.getTypeDeclType(Type),
1310                                  DirectBaseSpec, VirtualBaseSpec)) {
1311            // We have found a direct or virtual base class with a
1312            // similar name to what was typed; complain and initialize
1313            // that base class.
1314            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1315              << MemberOrBase << false << R.getLookupName()
1316              << FixItHint::CreateReplacement(R.getNameLoc(),
1317                                              R.getLookupName().getAsString());
1318
1319            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1320                                                             : VirtualBaseSpec;
1321            Diag(BaseSpec->getSourceRange().getBegin(),
1322                 diag::note_base_class_specified_here)
1323              << BaseSpec->getType()
1324              << BaseSpec->getSourceRange();
1325
1326            TyD = Type;
1327          }
1328        }
1329      }
1330
1331      if (!TyD && BaseType.isNull()) {
1332        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1333          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1334        return true;
1335      }
1336    }
1337
1338    if (BaseType.isNull()) {
1339      BaseType = Context.getTypeDeclType(TyD);
1340      if (SS.isSet()) {
1341        NestedNameSpecifier *Qualifier =
1342          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1343
1344        // FIXME: preserve source range information
1345        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1346      }
1347    }
1348  }
1349
1350  if (!TInfo)
1351    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1352
1353  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1354                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1355}
1356
1357/// Checks an initializer expression for use of uninitialized fields, such as
1358/// containing the field that is being initialized. Returns true if there is an
1359/// uninitialized field was used an updates the SourceLocation parameter; false
1360/// otherwise.
1361static bool InitExprContainsUninitializedFields(const Stmt *S,
1362                                                const ValueDecl *LhsField,
1363                                                SourceLocation *L) {
1364  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1365
1366  if (isa<CallExpr>(S)) {
1367    // Do not descend into function calls or constructors, as the use
1368    // of an uninitialized field may be valid. One would have to inspect
1369    // the contents of the function/ctor to determine if it is safe or not.
1370    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1371    // may be safe, depending on what the function/ctor does.
1372    return false;
1373  }
1374  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1375    const NamedDecl *RhsField = ME->getMemberDecl();
1376
1377    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1378      // The member expression points to a static data member.
1379      assert(VD->isStaticDataMember() &&
1380             "Member points to non-static data member!");
1381      (void)VD;
1382      return false;
1383    }
1384
1385    if (isa<EnumConstantDecl>(RhsField)) {
1386      // The member expression points to an enum.
1387      return false;
1388    }
1389
1390    if (RhsField == LhsField) {
1391      // Initializing a field with itself. Throw a warning.
1392      // But wait; there are exceptions!
1393      // Exception #1:  The field may not belong to this record.
1394      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1395      const Expr *base = ME->getBase();
1396      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1397        // Even though the field matches, it does not belong to this record.
1398        return false;
1399      }
1400      // None of the exceptions triggered; return true to indicate an
1401      // uninitialized field was used.
1402      *L = ME->getMemberLoc();
1403      return true;
1404    }
1405  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
1406    // sizeof/alignof doesn't reference contents, do not warn.
1407    return false;
1408  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1409    // address-of doesn't reference contents (the pointer may be dereferenced
1410    // in the same expression but it would be rare; and weird).
1411    if (UOE->getOpcode() == UO_AddrOf)
1412      return false;
1413  }
1414  for (Stmt::const_child_range it = S->children(); it; ++it) {
1415    if (!*it) {
1416      // An expression such as 'member(arg ?: "")' may trigger this.
1417      continue;
1418    }
1419    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1420      return true;
1421  }
1422  return false;
1423}
1424
1425MemInitResult
1426Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1427                             unsigned NumArgs, SourceLocation IdLoc,
1428                             SourceLocation LParenLoc,
1429                             SourceLocation RParenLoc) {
1430  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1431  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1432  assert((DirectMember || IndirectMember) &&
1433         "Member must be a FieldDecl or IndirectFieldDecl");
1434
1435  if (Member->isInvalidDecl())
1436    return true;
1437
1438  // Diagnose value-uses of fields to initialize themselves, e.g.
1439  //   foo(foo)
1440  // where foo is not also a parameter to the constructor.
1441  // TODO: implement -Wuninitialized and fold this into that framework.
1442  for (unsigned i = 0; i < NumArgs; ++i) {
1443    SourceLocation L;
1444    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1445      // FIXME: Return true in the case when other fields are used before being
1446      // uninitialized. For example, let this field be the i'th field. When
1447      // initializing the i'th field, throw a warning if any of the >= i'th
1448      // fields are used, as they are not yet initialized.
1449      // Right now we are only handling the case where the i'th field uses
1450      // itself in its initializer.
1451      Diag(L, diag::warn_field_is_uninit);
1452    }
1453  }
1454
1455  bool HasDependentArg = false;
1456  for (unsigned i = 0; i < NumArgs; i++)
1457    HasDependentArg |= Args[i]->isTypeDependent();
1458
1459  Expr *Init;
1460  if (Member->getType()->isDependentType() || HasDependentArg) {
1461    // Can't check initialization for a member of dependent type or when
1462    // any of the arguments are type-dependent expressions.
1463    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1464                                       RParenLoc);
1465
1466    // Erase any temporaries within this evaluation context; we're not
1467    // going to track them in the AST, since we'll be rebuilding the
1468    // ASTs during template instantiation.
1469    ExprTemporaries.erase(
1470              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1471                          ExprTemporaries.end());
1472  } else {
1473    // Initialize the member.
1474    InitializedEntity MemberEntity =
1475      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1476                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1477    InitializationKind Kind =
1478      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1479
1480    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1481
1482    ExprResult MemberInit =
1483      InitSeq.Perform(*this, MemberEntity, Kind,
1484                      MultiExprArg(*this, Args, NumArgs), 0);
1485    if (MemberInit.isInvalid())
1486      return true;
1487
1488    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1489
1490    // C++0x [class.base.init]p7:
1491    //   The initialization of each base and member constitutes a
1492    //   full-expression.
1493    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1494    if (MemberInit.isInvalid())
1495      return true;
1496
1497    // If we are in a dependent context, template instantiation will
1498    // perform this type-checking again. Just save the arguments that we
1499    // received in a ParenListExpr.
1500    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1501    // of the information that we have about the member
1502    // initializer. However, deconstructing the ASTs is a dicey process,
1503    // and this approach is far more likely to get the corner cases right.
1504    if (CurContext->isDependentContext())
1505      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1506                                               RParenLoc);
1507    else
1508      Init = MemberInit.get();
1509  }
1510
1511  if (DirectMember) {
1512    return new (Context) CXXCtorInitializer(Context, DirectMember,
1513                                                    IdLoc, LParenLoc, Init,
1514                                                    RParenLoc);
1515  } else {
1516    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1517                                                    IdLoc, LParenLoc, Init,
1518                                                    RParenLoc);
1519  }
1520}
1521
1522MemInitResult
1523Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1524                                 Expr **Args, unsigned NumArgs,
1525                                 SourceLocation NameLoc,
1526                                 SourceLocation LParenLoc,
1527                                 SourceLocation RParenLoc,
1528                                 CXXRecordDecl *ClassDecl) {
1529  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1530  if (!LangOpts.CPlusPlus0x)
1531    return Diag(Loc, diag::err_delegation_0x_only)
1532      << TInfo->getTypeLoc().getLocalSourceRange();
1533
1534  // Initialize the object.
1535  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
1536                                     QualType(ClassDecl->getTypeForDecl(), 0));
1537  InitializationKind Kind =
1538    InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
1539
1540  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
1541
1542  ExprResult DelegationInit =
1543    InitSeq.Perform(*this, DelegationEntity, Kind,
1544                    MultiExprArg(*this, Args, NumArgs), 0);
1545  if (DelegationInit.isInvalid())
1546    return true;
1547
1548  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
1549  CXXConstructorDecl *Constructor = ConExpr->getConstructor();
1550  assert(Constructor && "Delegating constructor with no target?");
1551
1552  CheckImplicitConversions(DelegationInit.get(), LParenLoc);
1553
1554  // C++0x [class.base.init]p7:
1555  //   The initialization of each base and member constitutes a
1556  //   full-expression.
1557  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
1558  if (DelegationInit.isInvalid())
1559    return true;
1560
1561  // If we are in a dependent context, template instantiation will
1562  // perform this type-checking again. Just save the arguments that we
1563  // received in a ParenListExpr.
1564  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1565  // of the information that we have about the base
1566  // initializer. However, deconstructing the ASTs is a dicey process,
1567  // and this approach is far more likely to get the corner cases right.
1568  if (CurContext->isDependentContext()) {
1569    ExprResult Init
1570      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args,
1571                                          NumArgs, RParenLoc));
1572    return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc,
1573                                            Constructor, Init.takeAs<Expr>(),
1574                                            RParenLoc);
1575  }
1576
1577  return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
1578                                          DelegationInit.takeAs<Expr>(),
1579                                          RParenLoc);
1580}
1581
1582MemInitResult
1583Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1584                           Expr **Args, unsigned NumArgs,
1585                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1586                           CXXRecordDecl *ClassDecl,
1587                           SourceLocation EllipsisLoc) {
1588  bool HasDependentArg = false;
1589  for (unsigned i = 0; i < NumArgs; i++)
1590    HasDependentArg |= Args[i]->isTypeDependent();
1591
1592  SourceLocation BaseLoc
1593    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1594
1595  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1596    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1597             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1598
1599  // C++ [class.base.init]p2:
1600  //   [...] Unless the mem-initializer-id names a nonstatic data
1601  //   member of the constructor's class or a direct or virtual base
1602  //   of that class, the mem-initializer is ill-formed. A
1603  //   mem-initializer-list can initialize a base class using any
1604  //   name that denotes that base class type.
1605  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1606
1607  if (EllipsisLoc.isValid()) {
1608    // This is a pack expansion.
1609    if (!BaseType->containsUnexpandedParameterPack())  {
1610      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1611        << SourceRange(BaseLoc, RParenLoc);
1612
1613      EllipsisLoc = SourceLocation();
1614    }
1615  } else {
1616    // Check for any unexpanded parameter packs.
1617    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1618      return true;
1619
1620    for (unsigned I = 0; I != NumArgs; ++I)
1621      if (DiagnoseUnexpandedParameterPack(Args[I]))
1622        return true;
1623  }
1624
1625  // Check for direct and virtual base classes.
1626  const CXXBaseSpecifier *DirectBaseSpec = 0;
1627  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1628  if (!Dependent) {
1629    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1630                                       BaseType))
1631      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
1632                                        LParenLoc, RParenLoc, ClassDecl);
1633
1634    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1635                        VirtualBaseSpec);
1636
1637    // C++ [base.class.init]p2:
1638    // Unless the mem-initializer-id names a nonstatic data member of the
1639    // constructor's class or a direct or virtual base of that class, the
1640    // mem-initializer is ill-formed.
1641    if (!DirectBaseSpec && !VirtualBaseSpec) {
1642      // If the class has any dependent bases, then it's possible that
1643      // one of those types will resolve to the same type as
1644      // BaseType. Therefore, just treat this as a dependent base
1645      // class initialization.  FIXME: Should we try to check the
1646      // initialization anyway? It seems odd.
1647      if (ClassDecl->hasAnyDependentBases())
1648        Dependent = true;
1649      else
1650        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1651          << BaseType << Context.getTypeDeclType(ClassDecl)
1652          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1653    }
1654  }
1655
1656  if (Dependent) {
1657    // Can't check initialization for a base of dependent type or when
1658    // any of the arguments are type-dependent expressions.
1659    ExprResult BaseInit
1660      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1661                                          RParenLoc));
1662
1663    // Erase any temporaries within this evaluation context; we're not
1664    // going to track them in the AST, since we'll be rebuilding the
1665    // ASTs during template instantiation.
1666    ExprTemporaries.erase(
1667              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1668                          ExprTemporaries.end());
1669
1670    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1671                                                    /*IsVirtual=*/false,
1672                                                    LParenLoc,
1673                                                    BaseInit.takeAs<Expr>(),
1674                                                    RParenLoc,
1675                                                    EllipsisLoc);
1676  }
1677
1678  // C++ [base.class.init]p2:
1679  //   If a mem-initializer-id is ambiguous because it designates both
1680  //   a direct non-virtual base class and an inherited virtual base
1681  //   class, the mem-initializer is ill-formed.
1682  if (DirectBaseSpec && VirtualBaseSpec)
1683    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1684      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1685
1686  CXXBaseSpecifier *BaseSpec
1687    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1688  if (!BaseSpec)
1689    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1690
1691  // Initialize the base.
1692  InitializedEntity BaseEntity =
1693    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1694  InitializationKind Kind =
1695    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1696
1697  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1698
1699  ExprResult BaseInit =
1700    InitSeq.Perform(*this, BaseEntity, Kind,
1701                    MultiExprArg(*this, Args, NumArgs), 0);
1702  if (BaseInit.isInvalid())
1703    return true;
1704
1705  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1706
1707  // C++0x [class.base.init]p7:
1708  //   The initialization of each base and member constitutes a
1709  //   full-expression.
1710  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1711  if (BaseInit.isInvalid())
1712    return true;
1713
1714  // If we are in a dependent context, template instantiation will
1715  // perform this type-checking again. Just save the arguments that we
1716  // received in a ParenListExpr.
1717  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1718  // of the information that we have about the base
1719  // initializer. However, deconstructing the ASTs is a dicey process,
1720  // and this approach is far more likely to get the corner cases right.
1721  if (CurContext->isDependentContext()) {
1722    ExprResult Init
1723      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1724                                          RParenLoc));
1725    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1726                                                    BaseSpec->isVirtual(),
1727                                                    LParenLoc,
1728                                                    Init.takeAs<Expr>(),
1729                                                    RParenLoc,
1730                                                    EllipsisLoc);
1731  }
1732
1733  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1734                                                  BaseSpec->isVirtual(),
1735                                                  LParenLoc,
1736                                                  BaseInit.takeAs<Expr>(),
1737                                                  RParenLoc,
1738                                                  EllipsisLoc);
1739}
1740
1741/// ImplicitInitializerKind - How an implicit base or member initializer should
1742/// initialize its base or member.
1743enum ImplicitInitializerKind {
1744  IIK_Default,
1745  IIK_Copy,
1746  IIK_Move
1747};
1748
1749static bool
1750BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1751                             ImplicitInitializerKind ImplicitInitKind,
1752                             CXXBaseSpecifier *BaseSpec,
1753                             bool IsInheritedVirtualBase,
1754                             CXXCtorInitializer *&CXXBaseInit) {
1755  InitializedEntity InitEntity
1756    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1757                                        IsInheritedVirtualBase);
1758
1759  ExprResult BaseInit;
1760
1761  switch (ImplicitInitKind) {
1762  case IIK_Default: {
1763    InitializationKind InitKind
1764      = InitializationKind::CreateDefault(Constructor->getLocation());
1765    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1766    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1767                               MultiExprArg(SemaRef, 0, 0));
1768    break;
1769  }
1770
1771  case IIK_Copy: {
1772    ParmVarDecl *Param = Constructor->getParamDecl(0);
1773    QualType ParamType = Param->getType().getNonReferenceType();
1774
1775    Expr *CopyCtorArg =
1776      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1777                          Constructor->getLocation(), ParamType,
1778                          VK_LValue, 0);
1779
1780    // Cast to the base class to avoid ambiguities.
1781    QualType ArgTy =
1782      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1783                                       ParamType.getQualifiers());
1784
1785    CXXCastPath BasePath;
1786    BasePath.push_back(BaseSpec);
1787    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1788                                            CK_UncheckedDerivedToBase,
1789                                            VK_LValue, &BasePath).take();
1790
1791    InitializationKind InitKind
1792      = InitializationKind::CreateDirect(Constructor->getLocation(),
1793                                         SourceLocation(), SourceLocation());
1794    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1795                                   &CopyCtorArg, 1);
1796    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1797                               MultiExprArg(&CopyCtorArg, 1));
1798    break;
1799  }
1800
1801  case IIK_Move:
1802    assert(false && "Unhandled initializer kind!");
1803  }
1804
1805  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1806  if (BaseInit.isInvalid())
1807    return true;
1808
1809  CXXBaseInit =
1810    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1811               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1812                                                        SourceLocation()),
1813                                             BaseSpec->isVirtual(),
1814                                             SourceLocation(),
1815                                             BaseInit.takeAs<Expr>(),
1816                                             SourceLocation(),
1817                                             SourceLocation());
1818
1819  return false;
1820}
1821
1822static bool
1823BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1824                               ImplicitInitializerKind ImplicitInitKind,
1825                               FieldDecl *Field,
1826                               CXXCtorInitializer *&CXXMemberInit) {
1827  if (Field->isInvalidDecl())
1828    return true;
1829
1830  SourceLocation Loc = Constructor->getLocation();
1831
1832  if (ImplicitInitKind == IIK_Copy) {
1833    ParmVarDecl *Param = Constructor->getParamDecl(0);
1834    QualType ParamType = Param->getType().getNonReferenceType();
1835
1836    Expr *MemberExprBase =
1837      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1838                          Loc, ParamType, VK_LValue, 0);
1839
1840    // Build a reference to this field within the parameter.
1841    CXXScopeSpec SS;
1842    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1843                              Sema::LookupMemberName);
1844    MemberLookup.addDecl(Field, AS_public);
1845    MemberLookup.resolveKind();
1846    ExprResult CopyCtorArg
1847      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1848                                         ParamType, Loc,
1849                                         /*IsArrow=*/false,
1850                                         SS,
1851                                         /*FirstQualifierInScope=*/0,
1852                                         MemberLookup,
1853                                         /*TemplateArgs=*/0);
1854    if (CopyCtorArg.isInvalid())
1855      return true;
1856
1857    // When the field we are copying is an array, create index variables for
1858    // each dimension of the array. We use these index variables to subscript
1859    // the source array, and other clients (e.g., CodeGen) will perform the
1860    // necessary iteration with these index variables.
1861    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1862    QualType BaseType = Field->getType();
1863    QualType SizeType = SemaRef.Context.getSizeType();
1864    while (const ConstantArrayType *Array
1865                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1866      // Create the iteration variable for this array index.
1867      IdentifierInfo *IterationVarName = 0;
1868      {
1869        llvm::SmallString<8> Str;
1870        llvm::raw_svector_ostream OS(Str);
1871        OS << "__i" << IndexVariables.size();
1872        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1873      }
1874      VarDecl *IterationVar
1875        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
1876                          IterationVarName, SizeType,
1877                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1878                          SC_None, SC_None);
1879      IndexVariables.push_back(IterationVar);
1880
1881      // Create a reference to the iteration variable.
1882      ExprResult IterationVarRef
1883        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1884      assert(!IterationVarRef.isInvalid() &&
1885             "Reference to invented variable cannot fail!");
1886
1887      // Subscript the array with this iteration variable.
1888      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1889                                                            Loc,
1890                                                        IterationVarRef.take(),
1891                                                            Loc);
1892      if (CopyCtorArg.isInvalid())
1893        return true;
1894
1895      BaseType = Array->getElementType();
1896    }
1897
1898    // Construct the entity that we will be initializing. For an array, this
1899    // will be first element in the array, which may require several levels
1900    // of array-subscript entities.
1901    llvm::SmallVector<InitializedEntity, 4> Entities;
1902    Entities.reserve(1 + IndexVariables.size());
1903    Entities.push_back(InitializedEntity::InitializeMember(Field));
1904    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1905      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1906                                                              0,
1907                                                              Entities.back()));
1908
1909    // Direct-initialize to use the copy constructor.
1910    InitializationKind InitKind =
1911      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1912
1913    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1914    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1915                                   &CopyCtorArgE, 1);
1916
1917    ExprResult MemberInit
1918      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1919                        MultiExprArg(&CopyCtorArgE, 1));
1920    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1921    if (MemberInit.isInvalid())
1922      return true;
1923
1924    CXXMemberInit
1925      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1926                                           MemberInit.takeAs<Expr>(), Loc,
1927                                           IndexVariables.data(),
1928                                           IndexVariables.size());
1929    return false;
1930  }
1931
1932  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1933
1934  QualType FieldBaseElementType =
1935    SemaRef.Context.getBaseElementType(Field->getType());
1936
1937  if (FieldBaseElementType->isRecordType()) {
1938    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1939    InitializationKind InitKind =
1940      InitializationKind::CreateDefault(Loc);
1941
1942    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1943    ExprResult MemberInit =
1944      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1945
1946    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1947    if (MemberInit.isInvalid())
1948      return true;
1949
1950    CXXMemberInit =
1951      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1952                                                       Field, Loc, Loc,
1953                                                       MemberInit.get(),
1954                                                       Loc);
1955    return false;
1956  }
1957
1958  if (FieldBaseElementType->isReferenceType()) {
1959    SemaRef.Diag(Constructor->getLocation(),
1960                 diag::err_uninitialized_member_in_ctor)
1961    << (int)Constructor->isImplicit()
1962    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1963    << 0 << Field->getDeclName();
1964    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1965    return true;
1966  }
1967
1968  if (FieldBaseElementType.isConstQualified()) {
1969    SemaRef.Diag(Constructor->getLocation(),
1970                 diag::err_uninitialized_member_in_ctor)
1971    << (int)Constructor->isImplicit()
1972    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1973    << 1 << Field->getDeclName();
1974    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1975    return true;
1976  }
1977
1978  // Nothing to initialize.
1979  CXXMemberInit = 0;
1980  return false;
1981}
1982
1983namespace {
1984struct BaseAndFieldInfo {
1985  Sema &S;
1986  CXXConstructorDecl *Ctor;
1987  bool AnyErrorsInInits;
1988  ImplicitInitializerKind IIK;
1989  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
1990  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
1991
1992  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1993    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1994    // FIXME: Handle implicit move constructors.
1995    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1996      IIK = IIK_Copy;
1997    else
1998      IIK = IIK_Default;
1999  }
2000};
2001}
2002
2003static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
2004                                    FieldDecl *Top, FieldDecl *Field) {
2005
2006  // Overwhelmingly common case: we have a direct initializer for this field.
2007  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2008    Info.AllToInit.push_back(Init);
2009    return false;
2010  }
2011
2012  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
2013    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
2014    assert(FieldClassType && "anonymous struct/union without record type");
2015    CXXRecordDecl *FieldClassDecl
2016      = cast<CXXRecordDecl>(FieldClassType->getDecl());
2017
2018    // Even though union members never have non-trivial default
2019    // constructions in C++03, we still build member initializers for aggregate
2020    // record types which can be union members, and C++0x allows non-trivial
2021    // default constructors for union members, so we ensure that only one
2022    // member is initialized for these.
2023    if (FieldClassDecl->isUnion()) {
2024      // First check for an explicit initializer for one field.
2025      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2026           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2027        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
2028          Info.AllToInit.push_back(Init);
2029
2030          // Once we've initialized a field of an anonymous union, the union
2031          // field in the class is also initialized, so exit immediately.
2032          return false;
2033        } else if ((*FA)->isAnonymousStructOrUnion()) {
2034          if (CollectFieldInitializer(Info, Top, *FA))
2035            return true;
2036        }
2037      }
2038
2039      // Fallthrough and construct a default initializer for the union as
2040      // a whole, which can call its default constructor if such a thing exists
2041      // (C++0x perhaps). FIXME: It's not clear that this is the correct
2042      // behavior going forward with C++0x, when anonymous unions there are
2043      // finalized, we should revisit this.
2044    } else {
2045      // For structs, we simply descend through to initialize all members where
2046      // necessary.
2047      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2048           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2049        if (CollectFieldInitializer(Info, Top, *FA))
2050          return true;
2051      }
2052    }
2053  }
2054
2055  // Don't try to build an implicit initializer if there were semantic
2056  // errors in any of the initializers (and therefore we might be
2057  // missing some that the user actually wrote).
2058  if (Info.AnyErrorsInInits)
2059    return false;
2060
2061  CXXCtorInitializer *Init = 0;
2062  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
2063    return true;
2064
2065  if (Init)
2066    Info.AllToInit.push_back(Init);
2067
2068  return false;
2069}
2070
2071bool
2072Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2073                                  CXXCtorInitializer **Initializers,
2074                                  unsigned NumInitializers,
2075                                  bool AnyErrors) {
2076  if (Constructor->getDeclContext()->isDependentContext()) {
2077    // Just store the initializers as written, they will be checked during
2078    // instantiation.
2079    if (NumInitializers > 0) {
2080      Constructor->setNumCtorInitializers(NumInitializers);
2081      CXXCtorInitializer **baseOrMemberInitializers =
2082        new (Context) CXXCtorInitializer*[NumInitializers];
2083      memcpy(baseOrMemberInitializers, Initializers,
2084             NumInitializers * sizeof(CXXCtorInitializer*));
2085      Constructor->setCtorInitializers(baseOrMemberInitializers);
2086    }
2087
2088    return false;
2089  }
2090
2091  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2092
2093  // We need to build the initializer AST according to order of construction
2094  // and not what user specified in the Initializers list.
2095  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2096  if (!ClassDecl)
2097    return true;
2098
2099  bool HadError = false;
2100
2101  for (unsigned i = 0; i < NumInitializers; i++) {
2102    CXXCtorInitializer *Member = Initializers[i];
2103
2104    if (Member->isBaseInitializer())
2105      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2106    else
2107      Info.AllBaseFields[Member->getAnyMember()] = Member;
2108  }
2109
2110  // Keep track of the direct virtual bases.
2111  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2112  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2113       E = ClassDecl->bases_end(); I != E; ++I) {
2114    if (I->isVirtual())
2115      DirectVBases.insert(I);
2116  }
2117
2118  // Push virtual bases before others.
2119  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2120       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2121
2122    if (CXXCtorInitializer *Value
2123        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2124      Info.AllToInit.push_back(Value);
2125    } else if (!AnyErrors) {
2126      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2127      CXXCtorInitializer *CXXBaseInit;
2128      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2129                                       VBase, IsInheritedVirtualBase,
2130                                       CXXBaseInit)) {
2131        HadError = true;
2132        continue;
2133      }
2134
2135      Info.AllToInit.push_back(CXXBaseInit);
2136    }
2137  }
2138
2139  // Non-virtual bases.
2140  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2141       E = ClassDecl->bases_end(); Base != E; ++Base) {
2142    // Virtuals are in the virtual base list and already constructed.
2143    if (Base->isVirtual())
2144      continue;
2145
2146    if (CXXCtorInitializer *Value
2147          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2148      Info.AllToInit.push_back(Value);
2149    } else if (!AnyErrors) {
2150      CXXCtorInitializer *CXXBaseInit;
2151      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2152                                       Base, /*IsInheritedVirtualBase=*/false,
2153                                       CXXBaseInit)) {
2154        HadError = true;
2155        continue;
2156      }
2157
2158      Info.AllToInit.push_back(CXXBaseInit);
2159    }
2160  }
2161
2162  // Fields.
2163  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2164       E = ClassDecl->field_end(); Field != E; ++Field) {
2165    if ((*Field)->getType()->isIncompleteArrayType()) {
2166      assert(ClassDecl->hasFlexibleArrayMember() &&
2167             "Incomplete array type is not valid");
2168      continue;
2169    }
2170    if (CollectFieldInitializer(Info, *Field, *Field))
2171      HadError = true;
2172  }
2173
2174  NumInitializers = Info.AllToInit.size();
2175  if (NumInitializers > 0) {
2176    Constructor->setNumCtorInitializers(NumInitializers);
2177    CXXCtorInitializer **baseOrMemberInitializers =
2178      new (Context) CXXCtorInitializer*[NumInitializers];
2179    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2180           NumInitializers * sizeof(CXXCtorInitializer*));
2181    Constructor->setCtorInitializers(baseOrMemberInitializers);
2182
2183    // Constructors implicitly reference the base and member
2184    // destructors.
2185    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2186                                           Constructor->getParent());
2187  }
2188
2189  return HadError;
2190}
2191
2192static void *GetKeyForTopLevelField(FieldDecl *Field) {
2193  // For anonymous unions, use the class declaration as the key.
2194  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2195    if (RT->getDecl()->isAnonymousStructOrUnion())
2196      return static_cast<void *>(RT->getDecl());
2197  }
2198  return static_cast<void *>(Field);
2199}
2200
2201static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2202  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2203}
2204
2205static void *GetKeyForMember(ASTContext &Context,
2206                             CXXCtorInitializer *Member) {
2207  if (!Member->isAnyMemberInitializer())
2208    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2209
2210  // For fields injected into the class via declaration of an anonymous union,
2211  // use its anonymous union class declaration as the unique key.
2212  FieldDecl *Field = Member->getAnyMember();
2213
2214  // If the field is a member of an anonymous struct or union, our key
2215  // is the anonymous record decl that's a direct child of the class.
2216  RecordDecl *RD = Field->getParent();
2217  if (RD->isAnonymousStructOrUnion()) {
2218    while (true) {
2219      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2220      if (Parent->isAnonymousStructOrUnion())
2221        RD = Parent;
2222      else
2223        break;
2224    }
2225
2226    return static_cast<void *>(RD);
2227  }
2228
2229  return static_cast<void *>(Field);
2230}
2231
2232static void
2233DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2234                                  const CXXConstructorDecl *Constructor,
2235                                  CXXCtorInitializer **Inits,
2236                                  unsigned NumInits) {
2237  if (Constructor->getDeclContext()->isDependentContext())
2238    return;
2239
2240  // Don't check initializers order unless the warning is enabled at the
2241  // location of at least one initializer.
2242  bool ShouldCheckOrder = false;
2243  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2244    CXXCtorInitializer *Init = Inits[InitIndex];
2245    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2246                                         Init->getSourceLocation())
2247          != Diagnostic::Ignored) {
2248      ShouldCheckOrder = true;
2249      break;
2250    }
2251  }
2252  if (!ShouldCheckOrder)
2253    return;
2254
2255  // Build the list of bases and members in the order that they'll
2256  // actually be initialized.  The explicit initializers should be in
2257  // this same order but may be missing things.
2258  llvm::SmallVector<const void*, 32> IdealInitKeys;
2259
2260  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2261
2262  // 1. Virtual bases.
2263  for (CXXRecordDecl::base_class_const_iterator VBase =
2264       ClassDecl->vbases_begin(),
2265       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2266    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2267
2268  // 2. Non-virtual bases.
2269  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2270       E = ClassDecl->bases_end(); Base != E; ++Base) {
2271    if (Base->isVirtual())
2272      continue;
2273    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2274  }
2275
2276  // 3. Direct fields.
2277  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2278       E = ClassDecl->field_end(); Field != E; ++Field)
2279    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2280
2281  unsigned NumIdealInits = IdealInitKeys.size();
2282  unsigned IdealIndex = 0;
2283
2284  CXXCtorInitializer *PrevInit = 0;
2285  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2286    CXXCtorInitializer *Init = Inits[InitIndex];
2287    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2288
2289    // Scan forward to try to find this initializer in the idealized
2290    // initializers list.
2291    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2292      if (InitKey == IdealInitKeys[IdealIndex])
2293        break;
2294
2295    // If we didn't find this initializer, it must be because we
2296    // scanned past it on a previous iteration.  That can only
2297    // happen if we're out of order;  emit a warning.
2298    if (IdealIndex == NumIdealInits && PrevInit) {
2299      Sema::SemaDiagnosticBuilder D =
2300        SemaRef.Diag(PrevInit->getSourceLocation(),
2301                     diag::warn_initializer_out_of_order);
2302
2303      if (PrevInit->isAnyMemberInitializer())
2304        D << 0 << PrevInit->getAnyMember()->getDeclName();
2305      else
2306        D << 1 << PrevInit->getBaseClassInfo()->getType();
2307
2308      if (Init->isAnyMemberInitializer())
2309        D << 0 << Init->getAnyMember()->getDeclName();
2310      else
2311        D << 1 << Init->getBaseClassInfo()->getType();
2312
2313      // Move back to the initializer's location in the ideal list.
2314      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2315        if (InitKey == IdealInitKeys[IdealIndex])
2316          break;
2317
2318      assert(IdealIndex != NumIdealInits &&
2319             "initializer not found in initializer list");
2320    }
2321
2322    PrevInit = Init;
2323  }
2324}
2325
2326namespace {
2327bool CheckRedundantInit(Sema &S,
2328                        CXXCtorInitializer *Init,
2329                        CXXCtorInitializer *&PrevInit) {
2330  if (!PrevInit) {
2331    PrevInit = Init;
2332    return false;
2333  }
2334
2335  if (FieldDecl *Field = Init->getMember())
2336    S.Diag(Init->getSourceLocation(),
2337           diag::err_multiple_mem_initialization)
2338      << Field->getDeclName()
2339      << Init->getSourceRange();
2340  else {
2341    const Type *BaseClass = Init->getBaseClass();
2342    assert(BaseClass && "neither field nor base");
2343    S.Diag(Init->getSourceLocation(),
2344           diag::err_multiple_base_initialization)
2345      << QualType(BaseClass, 0)
2346      << Init->getSourceRange();
2347  }
2348  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2349    << 0 << PrevInit->getSourceRange();
2350
2351  return true;
2352}
2353
2354typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2355typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2356
2357bool CheckRedundantUnionInit(Sema &S,
2358                             CXXCtorInitializer *Init,
2359                             RedundantUnionMap &Unions) {
2360  FieldDecl *Field = Init->getAnyMember();
2361  RecordDecl *Parent = Field->getParent();
2362  if (!Parent->isAnonymousStructOrUnion())
2363    return false;
2364
2365  NamedDecl *Child = Field;
2366  do {
2367    if (Parent->isUnion()) {
2368      UnionEntry &En = Unions[Parent];
2369      if (En.first && En.first != Child) {
2370        S.Diag(Init->getSourceLocation(),
2371               diag::err_multiple_mem_union_initialization)
2372          << Field->getDeclName()
2373          << Init->getSourceRange();
2374        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2375          << 0 << En.second->getSourceRange();
2376        return true;
2377      } else if (!En.first) {
2378        En.first = Child;
2379        En.second = Init;
2380      }
2381    }
2382
2383    Child = Parent;
2384    Parent = cast<RecordDecl>(Parent->getDeclContext());
2385  } while (Parent->isAnonymousStructOrUnion());
2386
2387  return false;
2388}
2389}
2390
2391/// ActOnMemInitializers - Handle the member initializers for a constructor.
2392void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2393                                SourceLocation ColonLoc,
2394                                MemInitTy **meminits, unsigned NumMemInits,
2395                                bool AnyErrors) {
2396  if (!ConstructorDecl)
2397    return;
2398
2399  AdjustDeclIfTemplate(ConstructorDecl);
2400
2401  CXXConstructorDecl *Constructor
2402    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2403
2404  if (!Constructor) {
2405    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2406    return;
2407  }
2408
2409  CXXCtorInitializer **MemInits =
2410    reinterpret_cast<CXXCtorInitializer **>(meminits);
2411
2412  // Mapping for the duplicate initializers check.
2413  // For member initializers, this is keyed with a FieldDecl*.
2414  // For base initializers, this is keyed with a Type*.
2415  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2416
2417  // Mapping for the inconsistent anonymous-union initializers check.
2418  RedundantUnionMap MemberUnions;
2419
2420  bool HadError = false;
2421  for (unsigned i = 0; i < NumMemInits; i++) {
2422    CXXCtorInitializer *Init = MemInits[i];
2423
2424    // Set the source order index.
2425    Init->setSourceOrder(i);
2426
2427    if (Init->isAnyMemberInitializer()) {
2428      FieldDecl *Field = Init->getAnyMember();
2429      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2430          CheckRedundantUnionInit(*this, Init, MemberUnions))
2431        HadError = true;
2432    } else if (Init->isBaseInitializer()) {
2433      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2434      if (CheckRedundantInit(*this, Init, Members[Key]))
2435        HadError = true;
2436    } else {
2437      assert(Init->isDelegatingInitializer());
2438      // This must be the only initializer
2439      if (i != 0 || NumMemInits > 1) {
2440        Diag(MemInits[0]->getSourceLocation(),
2441             diag::err_delegating_initializer_alone)
2442          << MemInits[0]->getSourceRange();
2443        HadError = true;
2444      }
2445    }
2446  }
2447
2448  if (HadError)
2449    return;
2450
2451  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2452
2453  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2454}
2455
2456void
2457Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2458                                             CXXRecordDecl *ClassDecl) {
2459  // Ignore dependent contexts.
2460  if (ClassDecl->isDependentContext())
2461    return;
2462
2463  // FIXME: all the access-control diagnostics are positioned on the
2464  // field/base declaration.  That's probably good; that said, the
2465  // user might reasonably want to know why the destructor is being
2466  // emitted, and we currently don't say.
2467
2468  // Non-static data members.
2469  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2470       E = ClassDecl->field_end(); I != E; ++I) {
2471    FieldDecl *Field = *I;
2472    if (Field->isInvalidDecl())
2473      continue;
2474    QualType FieldType = Context.getBaseElementType(Field->getType());
2475
2476    const RecordType* RT = FieldType->getAs<RecordType>();
2477    if (!RT)
2478      continue;
2479
2480    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2481    if (FieldClassDecl->isInvalidDecl())
2482      continue;
2483    if (FieldClassDecl->hasTrivialDestructor())
2484      continue;
2485
2486    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2487    assert(Dtor && "No dtor found for FieldClassDecl!");
2488    CheckDestructorAccess(Field->getLocation(), Dtor,
2489                          PDiag(diag::err_access_dtor_field)
2490                            << Field->getDeclName()
2491                            << FieldType);
2492
2493    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2494  }
2495
2496  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2497
2498  // Bases.
2499  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2500       E = ClassDecl->bases_end(); Base != E; ++Base) {
2501    // Bases are always records in a well-formed non-dependent class.
2502    const RecordType *RT = Base->getType()->getAs<RecordType>();
2503
2504    // Remember direct virtual bases.
2505    if (Base->isVirtual())
2506      DirectVirtualBases.insert(RT);
2507
2508    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2509    // If our base class is invalid, we probably can't get its dtor anyway.
2510    if (BaseClassDecl->isInvalidDecl())
2511      continue;
2512    // Ignore trivial destructors.
2513    if (BaseClassDecl->hasTrivialDestructor())
2514      continue;
2515
2516    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2517    assert(Dtor && "No dtor found for BaseClassDecl!");
2518
2519    // FIXME: caret should be on the start of the class name
2520    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2521                          PDiag(diag::err_access_dtor_base)
2522                            << Base->getType()
2523                            << Base->getSourceRange());
2524
2525    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2526  }
2527
2528  // Virtual bases.
2529  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2530       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2531
2532    // Bases are always records in a well-formed non-dependent class.
2533    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2534
2535    // Ignore direct virtual bases.
2536    if (DirectVirtualBases.count(RT))
2537      continue;
2538
2539    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2540    // If our base class is invalid, we probably can't get its dtor anyway.
2541    if (BaseClassDecl->isInvalidDecl())
2542      continue;
2543    // Ignore trivial destructors.
2544    if (BaseClassDecl->hasTrivialDestructor())
2545      continue;
2546
2547    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2548    assert(Dtor && "No dtor found for BaseClassDecl!");
2549    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2550                          PDiag(diag::err_access_dtor_vbase)
2551                            << VBase->getType());
2552
2553    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2554  }
2555}
2556
2557void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2558  if (!CDtorDecl)
2559    return;
2560
2561  if (CXXConstructorDecl *Constructor
2562      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2563    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2564}
2565
2566bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2567                                  unsigned DiagID, AbstractDiagSelID SelID) {
2568  if (SelID == -1)
2569    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2570  else
2571    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2572}
2573
2574bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2575                                  const PartialDiagnostic &PD) {
2576  if (!getLangOptions().CPlusPlus)
2577    return false;
2578
2579  if (const ArrayType *AT = Context.getAsArrayType(T))
2580    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2581
2582  if (const PointerType *PT = T->getAs<PointerType>()) {
2583    // Find the innermost pointer type.
2584    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2585      PT = T;
2586
2587    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2588      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2589  }
2590
2591  const RecordType *RT = T->getAs<RecordType>();
2592  if (!RT)
2593    return false;
2594
2595  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2596
2597  // We can't answer whether something is abstract until it has a
2598  // definition.  If it's currently being defined, we'll walk back
2599  // over all the declarations when we have a full definition.
2600  const CXXRecordDecl *Def = RD->getDefinition();
2601  if (!Def || Def->isBeingDefined())
2602    return false;
2603
2604  if (!RD->isAbstract())
2605    return false;
2606
2607  Diag(Loc, PD) << RD->getDeclName();
2608  DiagnoseAbstractType(RD);
2609
2610  return true;
2611}
2612
2613void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2614  // Check if we've already emitted the list of pure virtual functions
2615  // for this class.
2616  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2617    return;
2618
2619  CXXFinalOverriderMap FinalOverriders;
2620  RD->getFinalOverriders(FinalOverriders);
2621
2622  // Keep a set of seen pure methods so we won't diagnose the same method
2623  // more than once.
2624  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2625
2626  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2627                                   MEnd = FinalOverriders.end();
2628       M != MEnd;
2629       ++M) {
2630    for (OverridingMethods::iterator SO = M->second.begin(),
2631                                  SOEnd = M->second.end();
2632         SO != SOEnd; ++SO) {
2633      // C++ [class.abstract]p4:
2634      //   A class is abstract if it contains or inherits at least one
2635      //   pure virtual function for which the final overrider is pure
2636      //   virtual.
2637
2638      //
2639      if (SO->second.size() != 1)
2640        continue;
2641
2642      if (!SO->second.front().Method->isPure())
2643        continue;
2644
2645      if (!SeenPureMethods.insert(SO->second.front().Method))
2646        continue;
2647
2648      Diag(SO->second.front().Method->getLocation(),
2649           diag::note_pure_virtual_function)
2650        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2651    }
2652  }
2653
2654  if (!PureVirtualClassDiagSet)
2655    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2656  PureVirtualClassDiagSet->insert(RD);
2657}
2658
2659namespace {
2660struct AbstractUsageInfo {
2661  Sema &S;
2662  CXXRecordDecl *Record;
2663  CanQualType AbstractType;
2664  bool Invalid;
2665
2666  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2667    : S(S), Record(Record),
2668      AbstractType(S.Context.getCanonicalType(
2669                   S.Context.getTypeDeclType(Record))),
2670      Invalid(false) {}
2671
2672  void DiagnoseAbstractType() {
2673    if (Invalid) return;
2674    S.DiagnoseAbstractType(Record);
2675    Invalid = true;
2676  }
2677
2678  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2679};
2680
2681struct CheckAbstractUsage {
2682  AbstractUsageInfo &Info;
2683  const NamedDecl *Ctx;
2684
2685  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2686    : Info(Info), Ctx(Ctx) {}
2687
2688  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2689    switch (TL.getTypeLocClass()) {
2690#define ABSTRACT_TYPELOC(CLASS, PARENT)
2691#define TYPELOC(CLASS, PARENT) \
2692    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2693#include "clang/AST/TypeLocNodes.def"
2694    }
2695  }
2696
2697  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2698    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2699    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2700      if (!TL.getArg(I))
2701        continue;
2702
2703      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2704      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2705    }
2706  }
2707
2708  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2709    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2710  }
2711
2712  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2713    // Visit the type parameters from a permissive context.
2714    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2715      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2716      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2717        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2718          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2719      // TODO: other template argument types?
2720    }
2721  }
2722
2723  // Visit pointee types from a permissive context.
2724#define CheckPolymorphic(Type) \
2725  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2726    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2727  }
2728  CheckPolymorphic(PointerTypeLoc)
2729  CheckPolymorphic(ReferenceTypeLoc)
2730  CheckPolymorphic(MemberPointerTypeLoc)
2731  CheckPolymorphic(BlockPointerTypeLoc)
2732
2733  /// Handle all the types we haven't given a more specific
2734  /// implementation for above.
2735  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2736    // Every other kind of type that we haven't called out already
2737    // that has an inner type is either (1) sugar or (2) contains that
2738    // inner type in some way as a subobject.
2739    if (TypeLoc Next = TL.getNextTypeLoc())
2740      return Visit(Next, Sel);
2741
2742    // If there's no inner type and we're in a permissive context,
2743    // don't diagnose.
2744    if (Sel == Sema::AbstractNone) return;
2745
2746    // Check whether the type matches the abstract type.
2747    QualType T = TL.getType();
2748    if (T->isArrayType()) {
2749      Sel = Sema::AbstractArrayType;
2750      T = Info.S.Context.getBaseElementType(T);
2751    }
2752    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2753    if (CT != Info.AbstractType) return;
2754
2755    // It matched; do some magic.
2756    if (Sel == Sema::AbstractArrayType) {
2757      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2758        << T << TL.getSourceRange();
2759    } else {
2760      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2761        << Sel << T << TL.getSourceRange();
2762    }
2763    Info.DiagnoseAbstractType();
2764  }
2765};
2766
2767void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2768                                  Sema::AbstractDiagSelID Sel) {
2769  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2770}
2771
2772}
2773
2774/// Check for invalid uses of an abstract type in a method declaration.
2775static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2776                                    CXXMethodDecl *MD) {
2777  // No need to do the check on definitions, which require that
2778  // the return/param types be complete.
2779  if (MD->isThisDeclarationADefinition())
2780    return;
2781
2782  // For safety's sake, just ignore it if we don't have type source
2783  // information.  This should never happen for non-implicit methods,
2784  // but...
2785  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2786    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2787}
2788
2789/// Check for invalid uses of an abstract type within a class definition.
2790static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2791                                    CXXRecordDecl *RD) {
2792  for (CXXRecordDecl::decl_iterator
2793         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2794    Decl *D = *I;
2795    if (D->isImplicit()) continue;
2796
2797    // Methods and method templates.
2798    if (isa<CXXMethodDecl>(D)) {
2799      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2800    } else if (isa<FunctionTemplateDecl>(D)) {
2801      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2802      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2803
2804    // Fields and static variables.
2805    } else if (isa<FieldDecl>(D)) {
2806      FieldDecl *FD = cast<FieldDecl>(D);
2807      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2808        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2809    } else if (isa<VarDecl>(D)) {
2810      VarDecl *VD = cast<VarDecl>(D);
2811      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2812        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2813
2814    // Nested classes and class templates.
2815    } else if (isa<CXXRecordDecl>(D)) {
2816      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2817    } else if (isa<ClassTemplateDecl>(D)) {
2818      CheckAbstractClassUsage(Info,
2819                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2820    }
2821  }
2822}
2823
2824/// \brief Perform semantic checks on a class definition that has been
2825/// completing, introducing implicitly-declared members, checking for
2826/// abstract types, etc.
2827void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2828  if (!Record)
2829    return;
2830
2831  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2832    AbstractUsageInfo Info(*this, Record);
2833    CheckAbstractClassUsage(Info, Record);
2834  }
2835
2836  // If this is not an aggregate type and has no user-declared constructor,
2837  // complain about any non-static data members of reference or const scalar
2838  // type, since they will never get initializers.
2839  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2840      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2841    bool Complained = false;
2842    for (RecordDecl::field_iterator F = Record->field_begin(),
2843                                 FEnd = Record->field_end();
2844         F != FEnd; ++F) {
2845      if (F->getType()->isReferenceType() ||
2846          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2847        if (!Complained) {
2848          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2849            << Record->getTagKind() << Record;
2850          Complained = true;
2851        }
2852
2853        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2854          << F->getType()->isReferenceType()
2855          << F->getDeclName();
2856      }
2857    }
2858  }
2859
2860  if (Record->isDynamicClass() && !Record->isDependentType())
2861    DynamicClasses.push_back(Record);
2862
2863  if (Record->getIdentifier()) {
2864    // C++ [class.mem]p13:
2865    //   If T is the name of a class, then each of the following shall have a
2866    //   name different from T:
2867    //     - every member of every anonymous union that is a member of class T.
2868    //
2869    // C++ [class.mem]p14:
2870    //   In addition, if class T has a user-declared constructor (12.1), every
2871    //   non-static data member of class T shall have a name different from T.
2872    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2873         R.first != R.second; ++R.first) {
2874      NamedDecl *D = *R.first;
2875      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2876          isa<IndirectFieldDecl>(D)) {
2877        Diag(D->getLocation(), diag::err_member_name_of_class)
2878          << D->getDeclName();
2879        break;
2880      }
2881    }
2882  }
2883
2884  // Warn if the class has virtual methods but non-virtual public destructor.
2885  if (Record->isPolymorphic() && !Record->isDependentType()) {
2886    CXXDestructorDecl *dtor = Record->getDestructor();
2887    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
2888      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
2889           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
2890  }
2891
2892  // See if a method overloads virtual methods in a base
2893  /// class without overriding any.
2894  if (!Record->isDependentType()) {
2895    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
2896                                     MEnd = Record->method_end();
2897         M != MEnd; ++M) {
2898      if (!(*M)->isStatic())
2899        DiagnoseHiddenVirtualMethods(Record, *M);
2900    }
2901  }
2902
2903  // Declare inherited constructors. We do this eagerly here because:
2904  // - The standard requires an eager diagnostic for conflicting inherited
2905  //   constructors from different classes.
2906  // - The lazy declaration of the other implicit constructors is so as to not
2907  //   waste space and performance on classes that are not meant to be
2908  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
2909  //   have inherited constructors.
2910  DeclareInheritedConstructors(Record);
2911}
2912
2913/// \brief Data used with FindHiddenVirtualMethod
2914namespace {
2915  struct FindHiddenVirtualMethodData {
2916    Sema *S;
2917    CXXMethodDecl *Method;
2918    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
2919    llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2920  };
2921}
2922
2923/// \brief Member lookup function that determines whether a given C++
2924/// method overloads virtual methods in a base class without overriding any,
2925/// to be used with CXXRecordDecl::lookupInBases().
2926static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
2927                                    CXXBasePath &Path,
2928                                    void *UserData) {
2929  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2930
2931  FindHiddenVirtualMethodData &Data
2932    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
2933
2934  DeclarationName Name = Data.Method->getDeclName();
2935  assert(Name.getNameKind() == DeclarationName::Identifier);
2936
2937  bool foundSameNameMethod = false;
2938  llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
2939  for (Path.Decls = BaseRecord->lookup(Name);
2940       Path.Decls.first != Path.Decls.second;
2941       ++Path.Decls.first) {
2942    NamedDecl *D = *Path.Decls.first;
2943    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
2944      MD = MD->getCanonicalDecl();
2945      foundSameNameMethod = true;
2946      // Interested only in hidden virtual methods.
2947      if (!MD->isVirtual())
2948        continue;
2949      // If the method we are checking overrides a method from its base
2950      // don't warn about the other overloaded methods.
2951      if (!Data.S->IsOverload(Data.Method, MD, false))
2952        return true;
2953      // Collect the overload only if its hidden.
2954      if (!Data.OverridenAndUsingBaseMethods.count(MD))
2955        overloadedMethods.push_back(MD);
2956    }
2957  }
2958
2959  if (foundSameNameMethod)
2960    Data.OverloadedMethods.append(overloadedMethods.begin(),
2961                                   overloadedMethods.end());
2962  return foundSameNameMethod;
2963}
2964
2965/// \brief See if a method overloads virtual methods in a base class without
2966/// overriding any.
2967void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2968  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
2969                               MD->getLocation()) == Diagnostic::Ignored)
2970    return;
2971  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
2972    return;
2973
2974  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
2975                     /*bool RecordPaths=*/false,
2976                     /*bool DetectVirtual=*/false);
2977  FindHiddenVirtualMethodData Data;
2978  Data.Method = MD;
2979  Data.S = this;
2980
2981  // Keep the base methods that were overriden or introduced in the subclass
2982  // by 'using' in a set. A base method not in this set is hidden.
2983  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
2984       res.first != res.second; ++res.first) {
2985    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
2986      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
2987                                          E = MD->end_overridden_methods();
2988           I != E; ++I)
2989        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
2990    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
2991      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
2992        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
2993  }
2994
2995  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
2996      !Data.OverloadedMethods.empty()) {
2997    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
2998      << MD << (Data.OverloadedMethods.size() > 1);
2999
3000    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
3001      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
3002      Diag(overloadedMD->getLocation(),
3003           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
3004    }
3005  }
3006}
3007
3008void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
3009                                             Decl *TagDecl,
3010                                             SourceLocation LBrac,
3011                                             SourceLocation RBrac,
3012                                             AttributeList *AttrList) {
3013  if (!TagDecl)
3014    return;
3015
3016  AdjustDeclIfTemplate(TagDecl);
3017
3018  ActOnFields(S, RLoc, TagDecl,
3019              // strict aliasing violation!
3020              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
3021              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
3022
3023  CheckCompletedCXXClass(
3024                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
3025}
3026
3027namespace {
3028  /// \brief Helper class that collects exception specifications for
3029  /// implicitly-declared special member functions.
3030  class ImplicitExceptionSpecification {
3031    ASTContext &Context;
3032    // We order exception specifications thus:
3033    // noexcept is the most restrictive, but is only used in C++0x.
3034    // throw() comes next.
3035    // Then a throw(collected exceptions)
3036    // Finally no specification.
3037    // throw(...) is used instead if any called function uses it.
3038    ExceptionSpecificationType ComputedEST;
3039    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
3040    llvm::SmallVector<QualType, 4> Exceptions;
3041
3042    void ClearExceptions() {
3043      ExceptionsSeen.clear();
3044      Exceptions.clear();
3045    }
3046
3047  public:
3048    explicit ImplicitExceptionSpecification(ASTContext &Context)
3049      : Context(Context), ComputedEST(EST_BasicNoexcept) {
3050      if (!Context.getLangOptions().CPlusPlus0x)
3051        ComputedEST = EST_DynamicNone;
3052    }
3053
3054    /// \brief Get the computed exception specification type.
3055    ExceptionSpecificationType getExceptionSpecType() const {
3056      assert(ComputedEST != EST_ComputedNoexcept &&
3057             "noexcept(expr) should not be a possible result");
3058      return ComputedEST;
3059    }
3060
3061    /// \brief The number of exceptions in the exception specification.
3062    unsigned size() const { return Exceptions.size(); }
3063
3064    /// \brief The set of exceptions in the exception specification.
3065    const QualType *data() const { return Exceptions.data(); }
3066
3067    /// \brief Integrate another called method into the collected data.
3068    void CalledDecl(CXXMethodDecl *Method) {
3069      // If we have an MSAny spec already, don't bother.
3070      if (!Method || ComputedEST == EST_MSAny)
3071        return;
3072
3073      const FunctionProtoType *Proto
3074        = Method->getType()->getAs<FunctionProtoType>();
3075
3076      ExceptionSpecificationType EST = Proto->getExceptionSpecType();
3077
3078      // If this function can throw any exceptions, make a note of that.
3079      if (EST == EST_MSAny || EST == EST_None) {
3080        ClearExceptions();
3081        ComputedEST = EST;
3082        return;
3083      }
3084
3085      // If this function has a basic noexcept, it doesn't affect the outcome.
3086      if (EST == EST_BasicNoexcept)
3087        return;
3088
3089      // If we have a throw-all spec at this point, ignore the function.
3090      if (ComputedEST == EST_None)
3091        return;
3092
3093      // If we're still at noexcept(true) and there's a nothrow() callee,
3094      // change to that specification.
3095      if (EST == EST_DynamicNone) {
3096        if (ComputedEST == EST_BasicNoexcept)
3097          ComputedEST = EST_DynamicNone;
3098        return;
3099      }
3100
3101      // Check out noexcept specs.
3102      if (EST == EST_ComputedNoexcept) {
3103        FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(Context);
3104        assert(NR != FunctionProtoType::NR_NoNoexcept &&
3105               "Must have noexcept result for EST_ComputedNoexcept.");
3106        assert(NR != FunctionProtoType::NR_Dependent &&
3107               "Should not generate implicit declarations for dependent cases, "
3108               "and don't know how to handle them anyway.");
3109
3110        // noexcept(false) -> no spec on the new function
3111        if (NR == FunctionProtoType::NR_Throw) {
3112          ClearExceptions();
3113          ComputedEST = EST_None;
3114        }
3115        // noexcept(true) won't change anything either.
3116        return;
3117      }
3118
3119      assert(EST == EST_Dynamic && "EST case not considered earlier.");
3120      assert(ComputedEST != EST_None &&
3121             "Shouldn't collect exceptions when throw-all is guaranteed.");
3122      ComputedEST = EST_Dynamic;
3123      // Record the exceptions in this function's exception specification.
3124      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
3125                                              EEnd = Proto->exception_end();
3126           E != EEnd; ++E)
3127        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
3128          Exceptions.push_back(*E);
3129    }
3130  };
3131}
3132
3133
3134/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
3135/// special functions, such as the default constructor, copy
3136/// constructor, or destructor, to the given C++ class (C++
3137/// [special]p1).  This routine can only be executed just before the
3138/// definition of the class is complete.
3139void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
3140  if (!ClassDecl->hasUserDeclaredConstructor())
3141    ++ASTContext::NumImplicitDefaultConstructors;
3142
3143  if (!ClassDecl->hasUserDeclaredCopyConstructor())
3144    ++ASTContext::NumImplicitCopyConstructors;
3145
3146  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
3147    ++ASTContext::NumImplicitCopyAssignmentOperators;
3148
3149    // If we have a dynamic class, then the copy assignment operator may be
3150    // virtual, so we have to declare it immediately. This ensures that, e.g.,
3151    // it shows up in the right place in the vtable and that we diagnose
3152    // problems with the implicit exception specification.
3153    if (ClassDecl->isDynamicClass())
3154      DeclareImplicitCopyAssignment(ClassDecl);
3155  }
3156
3157  if (!ClassDecl->hasUserDeclaredDestructor()) {
3158    ++ASTContext::NumImplicitDestructors;
3159
3160    // If we have a dynamic class, then the destructor may be virtual, so we
3161    // have to declare the destructor immediately. This ensures that, e.g., it
3162    // shows up in the right place in the vtable and that we diagnose problems
3163    // with the implicit exception specification.
3164    if (ClassDecl->isDynamicClass())
3165      DeclareImplicitDestructor(ClassDecl);
3166  }
3167}
3168
3169void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
3170  if (!D)
3171    return;
3172
3173  TemplateParameterList *Params = 0;
3174  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
3175    Params = Template->getTemplateParameters();
3176  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
3177           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
3178    Params = PartialSpec->getTemplateParameters();
3179  else
3180    return;
3181
3182  for (TemplateParameterList::iterator Param = Params->begin(),
3183                                    ParamEnd = Params->end();
3184       Param != ParamEnd; ++Param) {
3185    NamedDecl *Named = cast<NamedDecl>(*Param);
3186    if (Named->getDeclName()) {
3187      S->AddDecl(Named);
3188      IdResolver.AddDecl(Named);
3189    }
3190  }
3191}
3192
3193void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3194  if (!RecordD) return;
3195  AdjustDeclIfTemplate(RecordD);
3196  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
3197  PushDeclContext(S, Record);
3198}
3199
3200void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3201  if (!RecordD) return;
3202  PopDeclContext();
3203}
3204
3205/// ActOnStartDelayedCXXMethodDeclaration - We have completed
3206/// parsing a top-level (non-nested) C++ class, and we are now
3207/// parsing those parts of the given Method declaration that could
3208/// not be parsed earlier (C++ [class.mem]p2), such as default
3209/// arguments. This action should enter the scope of the given
3210/// Method declaration as if we had just parsed the qualified method
3211/// name. However, it should not bring the parameters into scope;
3212/// that will be performed by ActOnDelayedCXXMethodParameter.
3213void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3214}
3215
3216/// ActOnDelayedCXXMethodParameter - We've already started a delayed
3217/// C++ method declaration. We're (re-)introducing the given
3218/// function parameter into scope for use in parsing later parts of
3219/// the method declaration. For example, we could see an
3220/// ActOnParamDefaultArgument event for this parameter.
3221void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
3222  if (!ParamD)
3223    return;
3224
3225  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
3226
3227  // If this parameter has an unparsed default argument, clear it out
3228  // to make way for the parsed default argument.
3229  if (Param->hasUnparsedDefaultArg())
3230    Param->setDefaultArg(0);
3231
3232  S->AddDecl(Param);
3233  if (Param->getDeclName())
3234    IdResolver.AddDecl(Param);
3235}
3236
3237/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
3238/// processing the delayed method declaration for Method. The method
3239/// declaration is now considered finished. There may be a separate
3240/// ActOnStartOfFunctionDef action later (not necessarily
3241/// immediately!) for this method, if it was also defined inside the
3242/// class body.
3243void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3244  if (!MethodD)
3245    return;
3246
3247  AdjustDeclIfTemplate(MethodD);
3248
3249  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
3250
3251  // Now that we have our default arguments, check the constructor
3252  // again. It could produce additional diagnostics or affect whether
3253  // the class has implicitly-declared destructors, among other
3254  // things.
3255  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
3256    CheckConstructor(Constructor);
3257
3258  // Check the default arguments, which we may have added.
3259  if (!Method->isInvalidDecl())
3260    CheckCXXDefaultArguments(Method);
3261}
3262
3263/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
3264/// the well-formedness of the constructor declarator @p D with type @p
3265/// R. If there are any errors in the declarator, this routine will
3266/// emit diagnostics and set the invalid bit to true.  In any case, the type
3267/// will be updated to reflect a well-formed type for the constructor and
3268/// returned.
3269QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
3270                                          StorageClass &SC) {
3271  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3272
3273  // C++ [class.ctor]p3:
3274  //   A constructor shall not be virtual (10.3) or static (9.4). A
3275  //   constructor can be invoked for a const, volatile or const
3276  //   volatile object. A constructor shall not be declared const,
3277  //   volatile, or const volatile (9.3.2).
3278  if (isVirtual) {
3279    if (!D.isInvalidType())
3280      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3281        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
3282        << SourceRange(D.getIdentifierLoc());
3283    D.setInvalidType();
3284  }
3285  if (SC == SC_Static) {
3286    if (!D.isInvalidType())
3287      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3288        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3289        << SourceRange(D.getIdentifierLoc());
3290    D.setInvalidType();
3291    SC = SC_None;
3292  }
3293
3294  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3295  if (FTI.TypeQuals != 0) {
3296    if (FTI.TypeQuals & Qualifiers::Const)
3297      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3298        << "const" << SourceRange(D.getIdentifierLoc());
3299    if (FTI.TypeQuals & Qualifiers::Volatile)
3300      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3301        << "volatile" << SourceRange(D.getIdentifierLoc());
3302    if (FTI.TypeQuals & Qualifiers::Restrict)
3303      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3304        << "restrict" << SourceRange(D.getIdentifierLoc());
3305    D.setInvalidType();
3306  }
3307
3308  // C++0x [class.ctor]p4:
3309  //   A constructor shall not be declared with a ref-qualifier.
3310  if (FTI.hasRefQualifier()) {
3311    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
3312      << FTI.RefQualifierIsLValueRef
3313      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3314    D.setInvalidType();
3315  }
3316
3317  // Rebuild the function type "R" without any type qualifiers (in
3318  // case any of the errors above fired) and with "void" as the
3319  // return type, since constructors don't have return types.
3320  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3321  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
3322    return R;
3323
3324  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3325  EPI.TypeQuals = 0;
3326  EPI.RefQualifier = RQ_None;
3327
3328  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
3329                                 Proto->getNumArgs(), EPI);
3330}
3331
3332/// CheckConstructor - Checks a fully-formed constructor for
3333/// well-formedness, issuing any diagnostics required. Returns true if
3334/// the constructor declarator is invalid.
3335void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
3336  CXXRecordDecl *ClassDecl
3337    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
3338  if (!ClassDecl)
3339    return Constructor->setInvalidDecl();
3340
3341  // C++ [class.copy]p3:
3342  //   A declaration of a constructor for a class X is ill-formed if
3343  //   its first parameter is of type (optionally cv-qualified) X and
3344  //   either there are no other parameters or else all other
3345  //   parameters have default arguments.
3346  if (!Constructor->isInvalidDecl() &&
3347      ((Constructor->getNumParams() == 1) ||
3348       (Constructor->getNumParams() > 1 &&
3349        Constructor->getParamDecl(1)->hasDefaultArg())) &&
3350      Constructor->getTemplateSpecializationKind()
3351                                              != TSK_ImplicitInstantiation) {
3352    QualType ParamType = Constructor->getParamDecl(0)->getType();
3353    QualType ClassTy = Context.getTagDeclType(ClassDecl);
3354    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
3355      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
3356      const char *ConstRef
3357        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
3358                                                        : " const &";
3359      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
3360        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
3361
3362      // FIXME: Rather that making the constructor invalid, we should endeavor
3363      // to fix the type.
3364      Constructor->setInvalidDecl();
3365    }
3366  }
3367}
3368
3369/// CheckDestructor - Checks a fully-formed destructor definition for
3370/// well-formedness, issuing any diagnostics required.  Returns true
3371/// on error.
3372bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3373  CXXRecordDecl *RD = Destructor->getParent();
3374
3375  if (Destructor->isVirtual()) {
3376    SourceLocation Loc;
3377
3378    if (!Destructor->isImplicit())
3379      Loc = Destructor->getLocation();
3380    else
3381      Loc = RD->getLocation();
3382
3383    // If we have a virtual destructor, look up the deallocation function
3384    FunctionDecl *OperatorDelete = 0;
3385    DeclarationName Name =
3386    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3387    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3388      return true;
3389
3390    MarkDeclarationReferenced(Loc, OperatorDelete);
3391
3392    Destructor->setOperatorDelete(OperatorDelete);
3393  }
3394
3395  return false;
3396}
3397
3398static inline bool
3399FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3400  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3401          FTI.ArgInfo[0].Param &&
3402          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
3403}
3404
3405/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3406/// the well-formednes of the destructor declarator @p D with type @p
3407/// R. If there are any errors in the declarator, this routine will
3408/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3409/// will be updated to reflect a well-formed type for the destructor and
3410/// returned.
3411QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3412                                         StorageClass& SC) {
3413  // C++ [class.dtor]p1:
3414  //   [...] A typedef-name that names a class is a class-name
3415  //   (7.1.3); however, a typedef-name that names a class shall not
3416  //   be used as the identifier in the declarator for a destructor
3417  //   declaration.
3418  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3419  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
3420    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3421      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
3422
3423  // C++ [class.dtor]p2:
3424  //   A destructor is used to destroy objects of its class type. A
3425  //   destructor takes no parameters, and no return type can be
3426  //   specified for it (not even void). The address of a destructor
3427  //   shall not be taken. A destructor shall not be static. A
3428  //   destructor can be invoked for a const, volatile or const
3429  //   volatile object. A destructor shall not be declared const,
3430  //   volatile or const volatile (9.3.2).
3431  if (SC == SC_Static) {
3432    if (!D.isInvalidType())
3433      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3434        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3435        << SourceRange(D.getIdentifierLoc())
3436        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3437
3438    SC = SC_None;
3439  }
3440  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3441    // Destructors don't have return types, but the parser will
3442    // happily parse something like:
3443    //
3444    //   class X {
3445    //     float ~X();
3446    //   };
3447    //
3448    // The return type will be eliminated later.
3449    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3450      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3451      << SourceRange(D.getIdentifierLoc());
3452  }
3453
3454  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3455  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3456    if (FTI.TypeQuals & Qualifiers::Const)
3457      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3458        << "const" << SourceRange(D.getIdentifierLoc());
3459    if (FTI.TypeQuals & Qualifiers::Volatile)
3460      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3461        << "volatile" << SourceRange(D.getIdentifierLoc());
3462    if (FTI.TypeQuals & Qualifiers::Restrict)
3463      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3464        << "restrict" << SourceRange(D.getIdentifierLoc());
3465    D.setInvalidType();
3466  }
3467
3468  // C++0x [class.dtor]p2:
3469  //   A destructor shall not be declared with a ref-qualifier.
3470  if (FTI.hasRefQualifier()) {
3471    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
3472      << FTI.RefQualifierIsLValueRef
3473      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3474    D.setInvalidType();
3475  }
3476
3477  // Make sure we don't have any parameters.
3478  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3479    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3480
3481    // Delete the parameters.
3482    FTI.freeArgs();
3483    D.setInvalidType();
3484  }
3485
3486  // Make sure the destructor isn't variadic.
3487  if (FTI.isVariadic) {
3488    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3489    D.setInvalidType();
3490  }
3491
3492  // Rebuild the function type "R" without any type qualifiers or
3493  // parameters (in case any of the errors above fired) and with
3494  // "void" as the return type, since destructors don't have return
3495  // types.
3496  if (!D.isInvalidType())
3497    return R;
3498
3499  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3500  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3501  EPI.Variadic = false;
3502  EPI.TypeQuals = 0;
3503  EPI.RefQualifier = RQ_None;
3504  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
3505}
3506
3507/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3508/// well-formednes of the conversion function declarator @p D with
3509/// type @p R. If there are any errors in the declarator, this routine
3510/// will emit diagnostics and return true. Otherwise, it will return
3511/// false. Either way, the type @p R will be updated to reflect a
3512/// well-formed type for the conversion operator.
3513void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3514                                     StorageClass& SC) {
3515  // C++ [class.conv.fct]p1:
3516  //   Neither parameter types nor return type can be specified. The
3517  //   type of a conversion function (8.3.5) is "function taking no
3518  //   parameter returning conversion-type-id."
3519  if (SC == SC_Static) {
3520    if (!D.isInvalidType())
3521      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3522        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3523        << SourceRange(D.getIdentifierLoc());
3524    D.setInvalidType();
3525    SC = SC_None;
3526  }
3527
3528  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3529
3530  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3531    // Conversion functions don't have return types, but the parser will
3532    // happily parse something like:
3533    //
3534    //   class X {
3535    //     float operator bool();
3536    //   };
3537    //
3538    // The return type will be changed later anyway.
3539    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3540      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3541      << SourceRange(D.getIdentifierLoc());
3542    D.setInvalidType();
3543  }
3544
3545  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3546
3547  // Make sure we don't have any parameters.
3548  if (Proto->getNumArgs() > 0) {
3549    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3550
3551    // Delete the parameters.
3552    D.getFunctionTypeInfo().freeArgs();
3553    D.setInvalidType();
3554  } else if (Proto->isVariadic()) {
3555    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3556    D.setInvalidType();
3557  }
3558
3559  // Diagnose "&operator bool()" and other such nonsense.  This
3560  // is actually a gcc extension which we don't support.
3561  if (Proto->getResultType() != ConvType) {
3562    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3563      << Proto->getResultType();
3564    D.setInvalidType();
3565    ConvType = Proto->getResultType();
3566  }
3567
3568  // C++ [class.conv.fct]p4:
3569  //   The conversion-type-id shall not represent a function type nor
3570  //   an array type.
3571  if (ConvType->isArrayType()) {
3572    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3573    ConvType = Context.getPointerType(ConvType);
3574    D.setInvalidType();
3575  } else if (ConvType->isFunctionType()) {
3576    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3577    ConvType = Context.getPointerType(ConvType);
3578    D.setInvalidType();
3579  }
3580
3581  // Rebuild the function type "R" without any parameters (in case any
3582  // of the errors above fired) and with the conversion type as the
3583  // return type.
3584  if (D.isInvalidType())
3585    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
3586
3587  // C++0x explicit conversion operators.
3588  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3589    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3590         diag::warn_explicit_conversion_functions)
3591      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3592}
3593
3594/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3595/// the declaration of the given C++ conversion function. This routine
3596/// is responsible for recording the conversion function in the C++
3597/// class, if possible.
3598Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3599  assert(Conversion && "Expected to receive a conversion function declaration");
3600
3601  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3602
3603  // Make sure we aren't redeclaring the conversion function.
3604  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3605
3606  // C++ [class.conv.fct]p1:
3607  //   [...] A conversion function is never used to convert a
3608  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3609  //   same object type (or a reference to it), to a (possibly
3610  //   cv-qualified) base class of that type (or a reference to it),
3611  //   or to (possibly cv-qualified) void.
3612  // FIXME: Suppress this warning if the conversion function ends up being a
3613  // virtual function that overrides a virtual function in a base class.
3614  QualType ClassType
3615    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3616  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3617    ConvType = ConvTypeRef->getPointeeType();
3618  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3619      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3620    /* Suppress diagnostics for instantiations. */;
3621  else if (ConvType->isRecordType()) {
3622    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3623    if (ConvType == ClassType)
3624      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3625        << ClassType;
3626    else if (IsDerivedFrom(ClassType, ConvType))
3627      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3628        <<  ClassType << ConvType;
3629  } else if (ConvType->isVoidType()) {
3630    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3631      << ClassType << ConvType;
3632  }
3633
3634  if (FunctionTemplateDecl *ConversionTemplate
3635                                = Conversion->getDescribedFunctionTemplate())
3636    return ConversionTemplate;
3637
3638  return Conversion;
3639}
3640
3641//===----------------------------------------------------------------------===//
3642// Namespace Handling
3643//===----------------------------------------------------------------------===//
3644
3645
3646
3647/// ActOnStartNamespaceDef - This is called at the start of a namespace
3648/// definition.
3649Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3650                                   SourceLocation InlineLoc,
3651                                   SourceLocation NamespaceLoc,
3652                                   SourceLocation IdentLoc,
3653                                   IdentifierInfo *II,
3654                                   SourceLocation LBrace,
3655                                   AttributeList *AttrList) {
3656  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
3657  // For anonymous namespace, take the location of the left brace.
3658  SourceLocation Loc = II ? IdentLoc : LBrace;
3659  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3660                                                 StartLoc, Loc, II);
3661  Namespc->setInline(InlineLoc.isValid());
3662
3663  Scope *DeclRegionScope = NamespcScope->getParent();
3664
3665  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3666
3667  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
3668    PushNamespaceVisibilityAttr(Attr);
3669
3670  if (II) {
3671    // C++ [namespace.def]p2:
3672    //   The identifier in an original-namespace-definition shall not
3673    //   have been previously defined in the declarative region in
3674    //   which the original-namespace-definition appears. The
3675    //   identifier in an original-namespace-definition is the name of
3676    //   the namespace. Subsequently in that declarative region, it is
3677    //   treated as an original-namespace-name.
3678    //
3679    // Since namespace names are unique in their scope, and we don't
3680    // look through using directives, just
3681    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
3682    NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
3683
3684    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3685      // This is an extended namespace definition.
3686      if (Namespc->isInline() != OrigNS->isInline()) {
3687        // inline-ness must match
3688        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3689          << Namespc->isInline();
3690        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3691        Namespc->setInvalidDecl();
3692        // Recover by ignoring the new namespace's inline status.
3693        Namespc->setInline(OrigNS->isInline());
3694      }
3695
3696      // Attach this namespace decl to the chain of extended namespace
3697      // definitions.
3698      OrigNS->setNextNamespace(Namespc);
3699      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3700
3701      // Remove the previous declaration from the scope.
3702      if (DeclRegionScope->isDeclScope(OrigNS)) {
3703        IdResolver.RemoveDecl(OrigNS);
3704        DeclRegionScope->RemoveDecl(OrigNS);
3705      }
3706    } else if (PrevDecl) {
3707      // This is an invalid name redefinition.
3708      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3709       << Namespc->getDeclName();
3710      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3711      Namespc->setInvalidDecl();
3712      // Continue on to push Namespc as current DeclContext and return it.
3713    } else if (II->isStr("std") &&
3714               CurContext->getRedeclContext()->isTranslationUnit()) {
3715      // This is the first "real" definition of the namespace "std", so update
3716      // our cache of the "std" namespace to point at this definition.
3717      if (NamespaceDecl *StdNS = getStdNamespace()) {
3718        // We had already defined a dummy namespace "std". Link this new
3719        // namespace definition to the dummy namespace "std".
3720        StdNS->setNextNamespace(Namespc);
3721        StdNS->setLocation(IdentLoc);
3722        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3723      }
3724
3725      // Make our StdNamespace cache point at the first real definition of the
3726      // "std" namespace.
3727      StdNamespace = Namespc;
3728    }
3729
3730    PushOnScopeChains(Namespc, DeclRegionScope);
3731  } else {
3732    // Anonymous namespaces.
3733    assert(Namespc->isAnonymousNamespace());
3734
3735    // Link the anonymous namespace into its parent.
3736    NamespaceDecl *PrevDecl;
3737    DeclContext *Parent = CurContext->getRedeclContext();
3738    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3739      PrevDecl = TU->getAnonymousNamespace();
3740      TU->setAnonymousNamespace(Namespc);
3741    } else {
3742      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3743      PrevDecl = ND->getAnonymousNamespace();
3744      ND->setAnonymousNamespace(Namespc);
3745    }
3746
3747    // Link the anonymous namespace with its previous declaration.
3748    if (PrevDecl) {
3749      assert(PrevDecl->isAnonymousNamespace());
3750      assert(!PrevDecl->getNextNamespace());
3751      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3752      PrevDecl->setNextNamespace(Namespc);
3753
3754      if (Namespc->isInline() != PrevDecl->isInline()) {
3755        // inline-ness must match
3756        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3757          << Namespc->isInline();
3758        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3759        Namespc->setInvalidDecl();
3760        // Recover by ignoring the new namespace's inline status.
3761        Namespc->setInline(PrevDecl->isInline());
3762      }
3763    }
3764
3765    CurContext->addDecl(Namespc);
3766
3767    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3768    //   behaves as if it were replaced by
3769    //     namespace unique { /* empty body */ }
3770    //     using namespace unique;
3771    //     namespace unique { namespace-body }
3772    //   where all occurrences of 'unique' in a translation unit are
3773    //   replaced by the same identifier and this identifier differs
3774    //   from all other identifiers in the entire program.
3775
3776    // We just create the namespace with an empty name and then add an
3777    // implicit using declaration, just like the standard suggests.
3778    //
3779    // CodeGen enforces the "universally unique" aspect by giving all
3780    // declarations semantically contained within an anonymous
3781    // namespace internal linkage.
3782
3783    if (!PrevDecl) {
3784      UsingDirectiveDecl* UD
3785        = UsingDirectiveDecl::Create(Context, CurContext,
3786                                     /* 'using' */ LBrace,
3787                                     /* 'namespace' */ SourceLocation(),
3788                                     /* qualifier */ NestedNameSpecifierLoc(),
3789                                     /* identifier */ SourceLocation(),
3790                                     Namespc,
3791                                     /* Ancestor */ CurContext);
3792      UD->setImplicit();
3793      CurContext->addDecl(UD);
3794    }
3795  }
3796
3797  // Although we could have an invalid decl (i.e. the namespace name is a
3798  // redefinition), push it as current DeclContext and try to continue parsing.
3799  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3800  // for the namespace has the declarations that showed up in that particular
3801  // namespace definition.
3802  PushDeclContext(NamespcScope, Namespc);
3803  return Namespc;
3804}
3805
3806/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3807/// is a namespace alias, returns the namespace it points to.
3808static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3809  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3810    return AD->getNamespace();
3811  return dyn_cast_or_null<NamespaceDecl>(D);
3812}
3813
3814/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3815/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3816void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3817  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3818  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3819  Namespc->setRBraceLoc(RBrace);
3820  PopDeclContext();
3821  if (Namespc->hasAttr<VisibilityAttr>())
3822    PopPragmaVisibility();
3823}
3824
3825CXXRecordDecl *Sema::getStdBadAlloc() const {
3826  return cast_or_null<CXXRecordDecl>(
3827                                  StdBadAlloc.get(Context.getExternalSource()));
3828}
3829
3830NamespaceDecl *Sema::getStdNamespace() const {
3831  return cast_or_null<NamespaceDecl>(
3832                                 StdNamespace.get(Context.getExternalSource()));
3833}
3834
3835/// \brief Retrieve the special "std" namespace, which may require us to
3836/// implicitly define the namespace.
3837NamespaceDecl *Sema::getOrCreateStdNamespace() {
3838  if (!StdNamespace) {
3839    // The "std" namespace has not yet been defined, so build one implicitly.
3840    StdNamespace = NamespaceDecl::Create(Context,
3841                                         Context.getTranslationUnitDecl(),
3842                                         SourceLocation(), SourceLocation(),
3843                                         &PP.getIdentifierTable().get("std"));
3844    getStdNamespace()->setImplicit(true);
3845  }
3846
3847  return getStdNamespace();
3848}
3849
3850/// \brief Determine whether a using statement is in a context where it will be
3851/// apply in all contexts.
3852static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
3853  switch (CurContext->getDeclKind()) {
3854    case Decl::TranslationUnit:
3855      return true;
3856    case Decl::LinkageSpec:
3857      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
3858    default:
3859      return false;
3860  }
3861}
3862
3863Decl *Sema::ActOnUsingDirective(Scope *S,
3864                                          SourceLocation UsingLoc,
3865                                          SourceLocation NamespcLoc,
3866                                          CXXScopeSpec &SS,
3867                                          SourceLocation IdentLoc,
3868                                          IdentifierInfo *NamespcName,
3869                                          AttributeList *AttrList) {
3870  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3871  assert(NamespcName && "Invalid NamespcName.");
3872  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3873
3874  // This can only happen along a recovery path.
3875  while (S->getFlags() & Scope::TemplateParamScope)
3876    S = S->getParent();
3877  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3878
3879  UsingDirectiveDecl *UDir = 0;
3880  NestedNameSpecifier *Qualifier = 0;
3881  if (SS.isSet())
3882    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3883
3884  // Lookup namespace name.
3885  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3886  LookupParsedName(R, S, &SS);
3887  if (R.isAmbiguous())
3888    return 0;
3889
3890  if (R.empty()) {
3891    // Allow "using namespace std;" or "using namespace ::std;" even if
3892    // "std" hasn't been defined yet, for GCC compatibility.
3893    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3894        NamespcName->isStr("std")) {
3895      Diag(IdentLoc, diag::ext_using_undefined_std);
3896      R.addDecl(getOrCreateStdNamespace());
3897      R.resolveKind();
3898    }
3899    // Otherwise, attempt typo correction.
3900    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3901                                                       CTC_NoKeywords, 0)) {
3902      if (R.getAsSingle<NamespaceDecl>() ||
3903          R.getAsSingle<NamespaceAliasDecl>()) {
3904        if (DeclContext *DC = computeDeclContext(SS, false))
3905          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3906            << NamespcName << DC << Corrected << SS.getRange()
3907            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3908        else
3909          Diag(IdentLoc, diag::err_using_directive_suggest)
3910            << NamespcName << Corrected
3911            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3912        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3913          << Corrected;
3914
3915        NamespcName = Corrected.getAsIdentifierInfo();
3916      } else {
3917        R.clear();
3918        R.setLookupName(NamespcName);
3919      }
3920    }
3921  }
3922
3923  if (!R.empty()) {
3924    NamedDecl *Named = R.getFoundDecl();
3925    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3926        && "expected namespace decl");
3927    // C++ [namespace.udir]p1:
3928    //   A using-directive specifies that the names in the nominated
3929    //   namespace can be used in the scope in which the
3930    //   using-directive appears after the using-directive. During
3931    //   unqualified name lookup (3.4.1), the names appear as if they
3932    //   were declared in the nearest enclosing namespace which
3933    //   contains both the using-directive and the nominated
3934    //   namespace. [Note: in this context, "contains" means "contains
3935    //   directly or indirectly". ]
3936
3937    // Find enclosing context containing both using-directive and
3938    // nominated namespace.
3939    NamespaceDecl *NS = getNamespaceDecl(Named);
3940    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3941    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3942      CommonAncestor = CommonAncestor->getParent();
3943
3944    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3945                                      SS.getWithLocInContext(Context),
3946                                      IdentLoc, Named, CommonAncestor);
3947
3948    if (IsUsingDirectiveInToplevelContext(CurContext) &&
3949        !SourceMgr.isFromMainFile(SourceMgr.getInstantiationLoc(IdentLoc))) {
3950      Diag(IdentLoc, diag::warn_using_directive_in_header);
3951    }
3952
3953    PushUsingDirective(S, UDir);
3954  } else {
3955    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3956  }
3957
3958  // FIXME: We ignore attributes for now.
3959  return UDir;
3960}
3961
3962void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3963  // If scope has associated entity, then using directive is at namespace
3964  // or translation unit scope. We add UsingDirectiveDecls, into
3965  // it's lookup structure.
3966  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3967    Ctx->addDecl(UDir);
3968  else
3969    // Otherwise it is block-sope. using-directives will affect lookup
3970    // only to the end of scope.
3971    S->PushUsingDirective(UDir);
3972}
3973
3974
3975Decl *Sema::ActOnUsingDeclaration(Scope *S,
3976                                  AccessSpecifier AS,
3977                                  bool HasUsingKeyword,
3978                                  SourceLocation UsingLoc,
3979                                  CXXScopeSpec &SS,
3980                                  UnqualifiedId &Name,
3981                                  AttributeList *AttrList,
3982                                  bool IsTypeName,
3983                                  SourceLocation TypenameLoc) {
3984  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3985
3986  switch (Name.getKind()) {
3987  case UnqualifiedId::IK_Identifier:
3988  case UnqualifiedId::IK_OperatorFunctionId:
3989  case UnqualifiedId::IK_LiteralOperatorId:
3990  case UnqualifiedId::IK_ConversionFunctionId:
3991    break;
3992
3993  case UnqualifiedId::IK_ConstructorName:
3994  case UnqualifiedId::IK_ConstructorTemplateId:
3995    // C++0x inherited constructors.
3996    if (getLangOptions().CPlusPlus0x) break;
3997
3998    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3999      << SS.getRange();
4000    return 0;
4001
4002  case UnqualifiedId::IK_DestructorName:
4003    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
4004      << SS.getRange();
4005    return 0;
4006
4007  case UnqualifiedId::IK_TemplateId:
4008    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
4009      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
4010    return 0;
4011  }
4012
4013  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
4014  DeclarationName TargetName = TargetNameInfo.getName();
4015  if (!TargetName)
4016    return 0;
4017
4018  // Warn about using declarations.
4019  // TODO: store that the declaration was written without 'using' and
4020  // talk about access decls instead of using decls in the
4021  // diagnostics.
4022  if (!HasUsingKeyword) {
4023    UsingLoc = Name.getSourceRange().getBegin();
4024
4025    Diag(UsingLoc, diag::warn_access_decl_deprecated)
4026      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
4027  }
4028
4029  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
4030      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
4031    return 0;
4032
4033  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
4034                                        TargetNameInfo, AttrList,
4035                                        /* IsInstantiation */ false,
4036                                        IsTypeName, TypenameLoc);
4037  if (UD)
4038    PushOnScopeChains(UD, S, /*AddToContext*/ false);
4039
4040  return UD;
4041}
4042
4043/// \brief Determine whether a using declaration considers the given
4044/// declarations as "equivalent", e.g., if they are redeclarations of
4045/// the same entity or are both typedefs of the same type.
4046static bool
4047IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
4048                         bool &SuppressRedeclaration) {
4049  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
4050    SuppressRedeclaration = false;
4051    return true;
4052  }
4053
4054  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
4055    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
4056      SuppressRedeclaration = true;
4057      return Context.hasSameType(TD1->getUnderlyingType(),
4058                                 TD2->getUnderlyingType());
4059    }
4060
4061  return false;
4062}
4063
4064
4065/// Determines whether to create a using shadow decl for a particular
4066/// decl, given the set of decls existing prior to this using lookup.
4067bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
4068                                const LookupResult &Previous) {
4069  // Diagnose finding a decl which is not from a base class of the
4070  // current class.  We do this now because there are cases where this
4071  // function will silently decide not to build a shadow decl, which
4072  // will pre-empt further diagnostics.
4073  //
4074  // We don't need to do this in C++0x because we do the check once on
4075  // the qualifier.
4076  //
4077  // FIXME: diagnose the following if we care enough:
4078  //   struct A { int foo; };
4079  //   struct B : A { using A::foo; };
4080  //   template <class T> struct C : A {};
4081  //   template <class T> struct D : C<T> { using B::foo; } // <---
4082  // This is invalid (during instantiation) in C++03 because B::foo
4083  // resolves to the using decl in B, which is not a base class of D<T>.
4084  // We can't diagnose it immediately because C<T> is an unknown
4085  // specialization.  The UsingShadowDecl in D<T> then points directly
4086  // to A::foo, which will look well-formed when we instantiate.
4087  // The right solution is to not collapse the shadow-decl chain.
4088  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
4089    DeclContext *OrigDC = Orig->getDeclContext();
4090
4091    // Handle enums and anonymous structs.
4092    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
4093    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
4094    while (OrigRec->isAnonymousStructOrUnion())
4095      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
4096
4097    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
4098      if (OrigDC == CurContext) {
4099        Diag(Using->getLocation(),
4100             diag::err_using_decl_nested_name_specifier_is_current_class)
4101          << Using->getQualifierLoc().getSourceRange();
4102        Diag(Orig->getLocation(), diag::note_using_decl_target);
4103        return true;
4104      }
4105
4106      Diag(Using->getQualifierLoc().getBeginLoc(),
4107           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4108        << Using->getQualifier()
4109        << cast<CXXRecordDecl>(CurContext)
4110        << Using->getQualifierLoc().getSourceRange();
4111      Diag(Orig->getLocation(), diag::note_using_decl_target);
4112      return true;
4113    }
4114  }
4115
4116  if (Previous.empty()) return false;
4117
4118  NamedDecl *Target = Orig;
4119  if (isa<UsingShadowDecl>(Target))
4120    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
4121
4122  // If the target happens to be one of the previous declarations, we
4123  // don't have a conflict.
4124  //
4125  // FIXME: but we might be increasing its access, in which case we
4126  // should redeclare it.
4127  NamedDecl *NonTag = 0, *Tag = 0;
4128  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4129         I != E; ++I) {
4130    NamedDecl *D = (*I)->getUnderlyingDecl();
4131    bool Result;
4132    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
4133      return Result;
4134
4135    (isa<TagDecl>(D) ? Tag : NonTag) = D;
4136  }
4137
4138  if (Target->isFunctionOrFunctionTemplate()) {
4139    FunctionDecl *FD;
4140    if (isa<FunctionTemplateDecl>(Target))
4141      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
4142    else
4143      FD = cast<FunctionDecl>(Target);
4144
4145    NamedDecl *OldDecl = 0;
4146    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
4147    case Ovl_Overload:
4148      return false;
4149
4150    case Ovl_NonFunction:
4151      Diag(Using->getLocation(), diag::err_using_decl_conflict);
4152      break;
4153
4154    // We found a decl with the exact signature.
4155    case Ovl_Match:
4156      // If we're in a record, we want to hide the target, so we
4157      // return true (without a diagnostic) to tell the caller not to
4158      // build a shadow decl.
4159      if (CurContext->isRecord())
4160        return true;
4161
4162      // If we're not in a record, this is an error.
4163      Diag(Using->getLocation(), diag::err_using_decl_conflict);
4164      break;
4165    }
4166
4167    Diag(Target->getLocation(), diag::note_using_decl_target);
4168    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
4169    return true;
4170  }
4171
4172  // Target is not a function.
4173
4174  if (isa<TagDecl>(Target)) {
4175    // No conflict between a tag and a non-tag.
4176    if (!Tag) return false;
4177
4178    Diag(Using->getLocation(), diag::err_using_decl_conflict);
4179    Diag(Target->getLocation(), diag::note_using_decl_target);
4180    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
4181    return true;
4182  }
4183
4184  // No conflict between a tag and a non-tag.
4185  if (!NonTag) return false;
4186
4187  Diag(Using->getLocation(), diag::err_using_decl_conflict);
4188  Diag(Target->getLocation(), diag::note_using_decl_target);
4189  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
4190  return true;
4191}
4192
4193/// Builds a shadow declaration corresponding to a 'using' declaration.
4194UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
4195                                            UsingDecl *UD,
4196                                            NamedDecl *Orig) {
4197
4198  // If we resolved to another shadow declaration, just coalesce them.
4199  NamedDecl *Target = Orig;
4200  if (isa<UsingShadowDecl>(Target)) {
4201    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
4202    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
4203  }
4204
4205  UsingShadowDecl *Shadow
4206    = UsingShadowDecl::Create(Context, CurContext,
4207                              UD->getLocation(), UD, Target);
4208  UD->addShadowDecl(Shadow);
4209
4210  Shadow->setAccess(UD->getAccess());
4211  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
4212    Shadow->setInvalidDecl();
4213
4214  if (S)
4215    PushOnScopeChains(Shadow, S);
4216  else
4217    CurContext->addDecl(Shadow);
4218
4219
4220  return Shadow;
4221}
4222
4223/// Hides a using shadow declaration.  This is required by the current
4224/// using-decl implementation when a resolvable using declaration in a
4225/// class is followed by a declaration which would hide or override
4226/// one or more of the using decl's targets; for example:
4227///
4228///   struct Base { void foo(int); };
4229///   struct Derived : Base {
4230///     using Base::foo;
4231///     void foo(int);
4232///   };
4233///
4234/// The governing language is C++03 [namespace.udecl]p12:
4235///
4236///   When a using-declaration brings names from a base class into a
4237///   derived class scope, member functions in the derived class
4238///   override and/or hide member functions with the same name and
4239///   parameter types in a base class (rather than conflicting).
4240///
4241/// There are two ways to implement this:
4242///   (1) optimistically create shadow decls when they're not hidden
4243///       by existing declarations, or
4244///   (2) don't create any shadow decls (or at least don't make them
4245///       visible) until we've fully parsed/instantiated the class.
4246/// The problem with (1) is that we might have to retroactively remove
4247/// a shadow decl, which requires several O(n) operations because the
4248/// decl structures are (very reasonably) not designed for removal.
4249/// (2) avoids this but is very fiddly and phase-dependent.
4250void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
4251  if (Shadow->getDeclName().getNameKind() ==
4252        DeclarationName::CXXConversionFunctionName)
4253    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
4254
4255  // Remove it from the DeclContext...
4256  Shadow->getDeclContext()->removeDecl(Shadow);
4257
4258  // ...and the scope, if applicable...
4259  if (S) {
4260    S->RemoveDecl(Shadow);
4261    IdResolver.RemoveDecl(Shadow);
4262  }
4263
4264  // ...and the using decl.
4265  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
4266
4267  // TODO: complain somehow if Shadow was used.  It shouldn't
4268  // be possible for this to happen, because...?
4269}
4270
4271/// Builds a using declaration.
4272///
4273/// \param IsInstantiation - Whether this call arises from an
4274///   instantiation of an unresolved using declaration.  We treat
4275///   the lookup differently for these declarations.
4276NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
4277                                       SourceLocation UsingLoc,
4278                                       CXXScopeSpec &SS,
4279                                       const DeclarationNameInfo &NameInfo,
4280                                       AttributeList *AttrList,
4281                                       bool IsInstantiation,
4282                                       bool IsTypeName,
4283                                       SourceLocation TypenameLoc) {
4284  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4285  SourceLocation IdentLoc = NameInfo.getLoc();
4286  assert(IdentLoc.isValid() && "Invalid TargetName location.");
4287
4288  // FIXME: We ignore attributes for now.
4289
4290  if (SS.isEmpty()) {
4291    Diag(IdentLoc, diag::err_using_requires_qualname);
4292    return 0;
4293  }
4294
4295  // Do the redeclaration lookup in the current scope.
4296  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
4297                        ForRedeclaration);
4298  Previous.setHideTags(false);
4299  if (S) {
4300    LookupName(Previous, S);
4301
4302    // It is really dumb that we have to do this.
4303    LookupResult::Filter F = Previous.makeFilter();
4304    while (F.hasNext()) {
4305      NamedDecl *D = F.next();
4306      if (!isDeclInScope(D, CurContext, S))
4307        F.erase();
4308    }
4309    F.done();
4310  } else {
4311    assert(IsInstantiation && "no scope in non-instantiation");
4312    assert(CurContext->isRecord() && "scope not record in instantiation");
4313    LookupQualifiedName(Previous, CurContext);
4314  }
4315
4316  // Check for invalid redeclarations.
4317  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
4318    return 0;
4319
4320  // Check for bad qualifiers.
4321  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
4322    return 0;
4323
4324  DeclContext *LookupContext = computeDeclContext(SS);
4325  NamedDecl *D;
4326  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
4327  if (!LookupContext) {
4328    if (IsTypeName) {
4329      // FIXME: not all declaration name kinds are legal here
4330      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
4331                                              UsingLoc, TypenameLoc,
4332                                              QualifierLoc,
4333                                              IdentLoc, NameInfo.getName());
4334    } else {
4335      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
4336                                           QualifierLoc, NameInfo);
4337    }
4338  } else {
4339    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
4340                          NameInfo, IsTypeName);
4341  }
4342  D->setAccess(AS);
4343  CurContext->addDecl(D);
4344
4345  if (!LookupContext) return D;
4346  UsingDecl *UD = cast<UsingDecl>(D);
4347
4348  if (RequireCompleteDeclContext(SS, LookupContext)) {
4349    UD->setInvalidDecl();
4350    return UD;
4351  }
4352
4353  // Constructor inheriting using decls get special treatment.
4354  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
4355    if (CheckInheritedConstructorUsingDecl(UD))
4356      UD->setInvalidDecl();
4357    return UD;
4358  }
4359
4360  // Otherwise, look up the target name.
4361
4362  LookupResult R(*this, NameInfo, LookupOrdinaryName);
4363
4364  // Unlike most lookups, we don't always want to hide tag
4365  // declarations: tag names are visible through the using declaration
4366  // even if hidden by ordinary names, *except* in a dependent context
4367  // where it's important for the sanity of two-phase lookup.
4368  if (!IsInstantiation)
4369    R.setHideTags(false);
4370
4371  LookupQualifiedName(R, LookupContext);
4372
4373  if (R.empty()) {
4374    Diag(IdentLoc, diag::err_no_member)
4375      << NameInfo.getName() << LookupContext << SS.getRange();
4376    UD->setInvalidDecl();
4377    return UD;
4378  }
4379
4380  if (R.isAmbiguous()) {
4381    UD->setInvalidDecl();
4382    return UD;
4383  }
4384
4385  if (IsTypeName) {
4386    // If we asked for a typename and got a non-type decl, error out.
4387    if (!R.getAsSingle<TypeDecl>()) {
4388      Diag(IdentLoc, diag::err_using_typename_non_type);
4389      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
4390        Diag((*I)->getUnderlyingDecl()->getLocation(),
4391             diag::note_using_decl_target);
4392      UD->setInvalidDecl();
4393      return UD;
4394    }
4395  } else {
4396    // If we asked for a non-typename and we got a type, error out,
4397    // but only if this is an instantiation of an unresolved using
4398    // decl.  Otherwise just silently find the type name.
4399    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
4400      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
4401      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
4402      UD->setInvalidDecl();
4403      return UD;
4404    }
4405  }
4406
4407  // C++0x N2914 [namespace.udecl]p6:
4408  // A using-declaration shall not name a namespace.
4409  if (R.getAsSingle<NamespaceDecl>()) {
4410    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
4411      << SS.getRange();
4412    UD->setInvalidDecl();
4413    return UD;
4414  }
4415
4416  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
4417    if (!CheckUsingShadowDecl(UD, *I, Previous))
4418      BuildUsingShadowDecl(S, UD, *I);
4419  }
4420
4421  return UD;
4422}
4423
4424/// Additional checks for a using declaration referring to a constructor name.
4425bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
4426  if (UD->isTypeName()) {
4427    // FIXME: Cannot specify typename when specifying constructor
4428    return true;
4429  }
4430
4431  const Type *SourceType = UD->getQualifier()->getAsType();
4432  assert(SourceType &&
4433         "Using decl naming constructor doesn't have type in scope spec.");
4434  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
4435
4436  // Check whether the named type is a direct base class.
4437  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
4438  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
4439  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
4440       BaseIt != BaseE; ++BaseIt) {
4441    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
4442    if (CanonicalSourceType == BaseType)
4443      break;
4444  }
4445
4446  if (BaseIt == BaseE) {
4447    // Did not find SourceType in the bases.
4448    Diag(UD->getUsingLocation(),
4449         diag::err_using_decl_constructor_not_in_direct_base)
4450      << UD->getNameInfo().getSourceRange()
4451      << QualType(SourceType, 0) << TargetClass;
4452    return true;
4453  }
4454
4455  BaseIt->setInheritConstructors();
4456
4457  return false;
4458}
4459
4460/// Checks that the given using declaration is not an invalid
4461/// redeclaration.  Note that this is checking only for the using decl
4462/// itself, not for any ill-formedness among the UsingShadowDecls.
4463bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4464                                       bool isTypeName,
4465                                       const CXXScopeSpec &SS,
4466                                       SourceLocation NameLoc,
4467                                       const LookupResult &Prev) {
4468  // C++03 [namespace.udecl]p8:
4469  // C++0x [namespace.udecl]p10:
4470  //   A using-declaration is a declaration and can therefore be used
4471  //   repeatedly where (and only where) multiple declarations are
4472  //   allowed.
4473  //
4474  // That's in non-member contexts.
4475  if (!CurContext->getRedeclContext()->isRecord())
4476    return false;
4477
4478  NestedNameSpecifier *Qual
4479    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4480
4481  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4482    NamedDecl *D = *I;
4483
4484    bool DTypename;
4485    NestedNameSpecifier *DQual;
4486    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4487      DTypename = UD->isTypeName();
4488      DQual = UD->getQualifier();
4489    } else if (UnresolvedUsingValueDecl *UD
4490                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4491      DTypename = false;
4492      DQual = UD->getQualifier();
4493    } else if (UnresolvedUsingTypenameDecl *UD
4494                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4495      DTypename = true;
4496      DQual = UD->getQualifier();
4497    } else continue;
4498
4499    // using decls differ if one says 'typename' and the other doesn't.
4500    // FIXME: non-dependent using decls?
4501    if (isTypeName != DTypename) continue;
4502
4503    // using decls differ if they name different scopes (but note that
4504    // template instantiation can cause this check to trigger when it
4505    // didn't before instantiation).
4506    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4507        Context.getCanonicalNestedNameSpecifier(DQual))
4508      continue;
4509
4510    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4511    Diag(D->getLocation(), diag::note_using_decl) << 1;
4512    return true;
4513  }
4514
4515  return false;
4516}
4517
4518
4519/// Checks that the given nested-name qualifier used in a using decl
4520/// in the current context is appropriately related to the current
4521/// scope.  If an error is found, diagnoses it and returns true.
4522bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4523                                   const CXXScopeSpec &SS,
4524                                   SourceLocation NameLoc) {
4525  DeclContext *NamedContext = computeDeclContext(SS);
4526
4527  if (!CurContext->isRecord()) {
4528    // C++03 [namespace.udecl]p3:
4529    // C++0x [namespace.udecl]p8:
4530    //   A using-declaration for a class member shall be a member-declaration.
4531
4532    // If we weren't able to compute a valid scope, it must be a
4533    // dependent class scope.
4534    if (!NamedContext || NamedContext->isRecord()) {
4535      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4536        << SS.getRange();
4537      return true;
4538    }
4539
4540    // Otherwise, everything is known to be fine.
4541    return false;
4542  }
4543
4544  // The current scope is a record.
4545
4546  // If the named context is dependent, we can't decide much.
4547  if (!NamedContext) {
4548    // FIXME: in C++0x, we can diagnose if we can prove that the
4549    // nested-name-specifier does not refer to a base class, which is
4550    // still possible in some cases.
4551
4552    // Otherwise we have to conservatively report that things might be
4553    // okay.
4554    return false;
4555  }
4556
4557  if (!NamedContext->isRecord()) {
4558    // Ideally this would point at the last name in the specifier,
4559    // but we don't have that level of source info.
4560    Diag(SS.getRange().getBegin(),
4561         diag::err_using_decl_nested_name_specifier_is_not_class)
4562      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4563    return true;
4564  }
4565
4566  if (!NamedContext->isDependentContext() &&
4567      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
4568    return true;
4569
4570  if (getLangOptions().CPlusPlus0x) {
4571    // C++0x [namespace.udecl]p3:
4572    //   In a using-declaration used as a member-declaration, the
4573    //   nested-name-specifier shall name a base class of the class
4574    //   being defined.
4575
4576    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4577                                 cast<CXXRecordDecl>(NamedContext))) {
4578      if (CurContext == NamedContext) {
4579        Diag(NameLoc,
4580             diag::err_using_decl_nested_name_specifier_is_current_class)
4581          << SS.getRange();
4582        return true;
4583      }
4584
4585      Diag(SS.getRange().getBegin(),
4586           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4587        << (NestedNameSpecifier*) SS.getScopeRep()
4588        << cast<CXXRecordDecl>(CurContext)
4589        << SS.getRange();
4590      return true;
4591    }
4592
4593    return false;
4594  }
4595
4596  // C++03 [namespace.udecl]p4:
4597  //   A using-declaration used as a member-declaration shall refer
4598  //   to a member of a base class of the class being defined [etc.].
4599
4600  // Salient point: SS doesn't have to name a base class as long as
4601  // lookup only finds members from base classes.  Therefore we can
4602  // diagnose here only if we can prove that that can't happen,
4603  // i.e. if the class hierarchies provably don't intersect.
4604
4605  // TODO: it would be nice if "definitely valid" results were cached
4606  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4607  // need to be repeated.
4608
4609  struct UserData {
4610    llvm::DenseSet<const CXXRecordDecl*> Bases;
4611
4612    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4613      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4614      Data->Bases.insert(Base);
4615      return true;
4616    }
4617
4618    bool hasDependentBases(const CXXRecordDecl *Class) {
4619      return !Class->forallBases(collect, this);
4620    }
4621
4622    /// Returns true if the base is dependent or is one of the
4623    /// accumulated base classes.
4624    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4625      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4626      return !Data->Bases.count(Base);
4627    }
4628
4629    bool mightShareBases(const CXXRecordDecl *Class) {
4630      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4631    }
4632  };
4633
4634  UserData Data;
4635
4636  // Returns false if we find a dependent base.
4637  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4638    return false;
4639
4640  // Returns false if the class has a dependent base or if it or one
4641  // of its bases is present in the base set of the current context.
4642  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4643    return false;
4644
4645  Diag(SS.getRange().getBegin(),
4646       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4647    << (NestedNameSpecifier*) SS.getScopeRep()
4648    << cast<CXXRecordDecl>(CurContext)
4649    << SS.getRange();
4650
4651  return true;
4652}
4653
4654Decl *Sema::ActOnAliasDeclaration(Scope *S,
4655                                  AccessSpecifier AS,
4656                                  SourceLocation UsingLoc,
4657                                  UnqualifiedId &Name,
4658                                  TypeResult Type) {
4659  assert((S->getFlags() & Scope::DeclScope) &&
4660         "got alias-declaration outside of declaration scope");
4661
4662  if (Type.isInvalid())
4663    return 0;
4664
4665  bool Invalid = false;
4666  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
4667  TypeSourceInfo *TInfo = 0;
4668  QualType T = GetTypeFromParser(Type.get(), &TInfo);
4669
4670  if (DiagnoseClassNameShadow(CurContext, NameInfo))
4671    return 0;
4672
4673  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
4674                                      UPPC_DeclarationType))
4675    Invalid = true;
4676
4677  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
4678  LookupName(Previous, S);
4679
4680  // Warn about shadowing the name of a template parameter.
4681  if (Previous.isSingleResult() &&
4682      Previous.getFoundDecl()->isTemplateParameter()) {
4683    if (DiagnoseTemplateParameterShadow(Name.StartLocation,
4684                                        Previous.getFoundDecl()))
4685      Invalid = true;
4686    Previous.clear();
4687  }
4688
4689  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
4690         "name in alias declaration must be an identifier");
4691  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
4692                                               Name.StartLocation,
4693                                               Name.Identifier, TInfo);
4694
4695  NewTD->setAccess(AS);
4696
4697  if (Invalid)
4698    NewTD->setInvalidDecl();
4699
4700  bool Redeclaration = false;
4701  ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
4702
4703  if (!Redeclaration)
4704    PushOnScopeChains(NewTD, S);
4705
4706  return NewTD;
4707}
4708
4709Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4710                                             SourceLocation NamespaceLoc,
4711                                             SourceLocation AliasLoc,
4712                                             IdentifierInfo *Alias,
4713                                             CXXScopeSpec &SS,
4714                                             SourceLocation IdentLoc,
4715                                             IdentifierInfo *Ident) {
4716
4717  // Lookup the namespace name.
4718  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4719  LookupParsedName(R, S, &SS);
4720
4721  // Check if we have a previous declaration with the same name.
4722  NamedDecl *PrevDecl
4723    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4724                       ForRedeclaration);
4725  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4726    PrevDecl = 0;
4727
4728  if (PrevDecl) {
4729    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4730      // We already have an alias with the same name that points to the same
4731      // namespace, so don't create a new one.
4732      // FIXME: At some point, we'll want to create the (redundant)
4733      // declaration to maintain better source information.
4734      if (!R.isAmbiguous() && !R.empty() &&
4735          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4736        return 0;
4737    }
4738
4739    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4740      diag::err_redefinition_different_kind;
4741    Diag(AliasLoc, DiagID) << Alias;
4742    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4743    return 0;
4744  }
4745
4746  if (R.isAmbiguous())
4747    return 0;
4748
4749  if (R.empty()) {
4750    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4751                                                CTC_NoKeywords, 0)) {
4752      if (R.getAsSingle<NamespaceDecl>() ||
4753          R.getAsSingle<NamespaceAliasDecl>()) {
4754        if (DeclContext *DC = computeDeclContext(SS, false))
4755          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4756            << Ident << DC << Corrected << SS.getRange()
4757            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4758        else
4759          Diag(IdentLoc, diag::err_using_directive_suggest)
4760            << Ident << Corrected
4761            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4762
4763        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4764          << Corrected;
4765
4766        Ident = Corrected.getAsIdentifierInfo();
4767      } else {
4768        R.clear();
4769        R.setLookupName(Ident);
4770      }
4771    }
4772
4773    if (R.empty()) {
4774      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4775      return 0;
4776    }
4777  }
4778
4779  NamespaceAliasDecl *AliasDecl =
4780    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4781                               Alias, SS.getWithLocInContext(Context),
4782                               IdentLoc, R.getFoundDecl());
4783
4784  PushOnScopeChains(AliasDecl, S);
4785  return AliasDecl;
4786}
4787
4788namespace {
4789  /// \brief Scoped object used to handle the state changes required in Sema
4790  /// to implicitly define the body of a C++ member function;
4791  class ImplicitlyDefinedFunctionScope {
4792    Sema &S;
4793    Sema::ContextRAII SavedContext;
4794
4795  public:
4796    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4797      : S(S), SavedContext(S, Method)
4798    {
4799      S.PushFunctionScope();
4800      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4801    }
4802
4803    ~ImplicitlyDefinedFunctionScope() {
4804      S.PopExpressionEvaluationContext();
4805      S.PopFunctionOrBlockScope();
4806    }
4807  };
4808}
4809
4810static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4811                                                       CXXRecordDecl *D) {
4812  ASTContext &Context = Self.Context;
4813  QualType ClassType = Context.getTypeDeclType(D);
4814  DeclarationName ConstructorName
4815    = Context.DeclarationNames.getCXXConstructorName(
4816                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4817
4818  DeclContext::lookup_const_iterator Con, ConEnd;
4819  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4820       Con != ConEnd; ++Con) {
4821    // FIXME: In C++0x, a constructor template can be a default constructor.
4822    if (isa<FunctionTemplateDecl>(*Con))
4823      continue;
4824
4825    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4826    if (Constructor->isDefaultConstructor())
4827      return Constructor;
4828  }
4829  return 0;
4830}
4831
4832CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4833                                                     CXXRecordDecl *ClassDecl) {
4834  // C++ [class.ctor]p5:
4835  //   A default constructor for a class X is a constructor of class X
4836  //   that can be called without an argument. If there is no
4837  //   user-declared constructor for class X, a default constructor is
4838  //   implicitly declared. An implicitly-declared default constructor
4839  //   is an inline public member of its class.
4840  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4841         "Should not build implicit default constructor!");
4842
4843  // C++ [except.spec]p14:
4844  //   An implicitly declared special member function (Clause 12) shall have an
4845  //   exception-specification. [...]
4846  ImplicitExceptionSpecification ExceptSpec(Context);
4847
4848  // Direct base-class constructors.
4849  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4850                                       BEnd = ClassDecl->bases_end();
4851       B != BEnd; ++B) {
4852    if (B->isVirtual()) // Handled below.
4853      continue;
4854
4855    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4856      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4857      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4858        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4859      else if (CXXConstructorDecl *Constructor
4860                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4861        ExceptSpec.CalledDecl(Constructor);
4862    }
4863  }
4864
4865  // Virtual base-class constructors.
4866  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4867                                       BEnd = ClassDecl->vbases_end();
4868       B != BEnd; ++B) {
4869    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4870      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4871      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4872        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4873      else if (CXXConstructorDecl *Constructor
4874                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4875        ExceptSpec.CalledDecl(Constructor);
4876    }
4877  }
4878
4879  // Field constructors.
4880  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4881                               FEnd = ClassDecl->field_end();
4882       F != FEnd; ++F) {
4883    if (const RecordType *RecordTy
4884              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4885      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4886      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4887        ExceptSpec.CalledDecl(
4888                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4889      else if (CXXConstructorDecl *Constructor
4890                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4891        ExceptSpec.CalledDecl(Constructor);
4892    }
4893  }
4894
4895  FunctionProtoType::ExtProtoInfo EPI;
4896  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
4897  EPI.NumExceptions = ExceptSpec.size();
4898  EPI.Exceptions = ExceptSpec.data();
4899
4900  // Create the actual constructor declaration.
4901  CanQualType ClassType
4902    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4903  SourceLocation ClassLoc = ClassDecl->getLocation();
4904  DeclarationName Name
4905    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4906  DeclarationNameInfo NameInfo(Name, ClassLoc);
4907  CXXConstructorDecl *DefaultCon
4908    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
4909                                 Context.getFunctionType(Context.VoidTy,
4910                                                         0, 0, EPI),
4911                                 /*TInfo=*/0,
4912                                 /*isExplicit=*/false,
4913                                 /*isInline=*/true,
4914                                 /*isImplicitlyDeclared=*/true);
4915  DefaultCon->setAccess(AS_public);
4916  DefaultCon->setImplicit();
4917  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4918
4919  // Note that we have declared this constructor.
4920  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4921
4922  if (Scope *S = getScopeForContext(ClassDecl))
4923    PushOnScopeChains(DefaultCon, S, false);
4924  ClassDecl->addDecl(DefaultCon);
4925
4926  return DefaultCon;
4927}
4928
4929void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4930                                            CXXConstructorDecl *Constructor) {
4931  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4932          !Constructor->isUsed(false)) &&
4933    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4934
4935  CXXRecordDecl *ClassDecl = Constructor->getParent();
4936  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4937
4938  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4939  DiagnosticErrorTrap Trap(Diags);
4940  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4941      Trap.hasErrorOccurred()) {
4942    Diag(CurrentLocation, diag::note_member_synthesized_at)
4943      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4944    Constructor->setInvalidDecl();
4945    return;
4946  }
4947
4948  SourceLocation Loc = Constructor->getLocation();
4949  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4950
4951  Constructor->setUsed();
4952  MarkVTableUsed(CurrentLocation, ClassDecl);
4953}
4954
4955void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
4956  // We start with an initial pass over the base classes to collect those that
4957  // inherit constructors from. If there are none, we can forgo all further
4958  // processing.
4959  typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
4960  BasesVector BasesToInheritFrom;
4961  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
4962                                          BaseE = ClassDecl->bases_end();
4963         BaseIt != BaseE; ++BaseIt) {
4964    if (BaseIt->getInheritConstructors()) {
4965      QualType Base = BaseIt->getType();
4966      if (Base->isDependentType()) {
4967        // If we inherit constructors from anything that is dependent, just
4968        // abort processing altogether. We'll get another chance for the
4969        // instantiations.
4970        return;
4971      }
4972      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
4973    }
4974  }
4975  if (BasesToInheritFrom.empty())
4976    return;
4977
4978  // Now collect the constructors that we already have in the current class.
4979  // Those take precedence over inherited constructors.
4980  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
4981  //   unless there is a user-declared constructor with the same signature in
4982  //   the class where the using-declaration appears.
4983  llvm::SmallSet<const Type *, 8> ExistingConstructors;
4984  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
4985                                    CtorE = ClassDecl->ctor_end();
4986       CtorIt != CtorE; ++CtorIt) {
4987    ExistingConstructors.insert(
4988        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
4989  }
4990
4991  Scope *S = getScopeForContext(ClassDecl);
4992  DeclarationName CreatedCtorName =
4993      Context.DeclarationNames.getCXXConstructorName(
4994          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
4995
4996  // Now comes the true work.
4997  // First, we keep a map from constructor types to the base that introduced
4998  // them. Needed for finding conflicting constructors. We also keep the
4999  // actually inserted declarations in there, for pretty diagnostics.
5000  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
5001  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
5002  ConstructorToSourceMap InheritedConstructors;
5003  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
5004                             BaseE = BasesToInheritFrom.end();
5005       BaseIt != BaseE; ++BaseIt) {
5006    const RecordType *Base = *BaseIt;
5007    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
5008    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
5009    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
5010                                      CtorE = BaseDecl->ctor_end();
5011         CtorIt != CtorE; ++CtorIt) {
5012      // Find the using declaration for inheriting this base's constructors.
5013      DeclarationName Name =
5014          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
5015      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
5016          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
5017      SourceLocation UsingLoc = UD ? UD->getLocation() :
5018                                     ClassDecl->getLocation();
5019
5020      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
5021      //   from the class X named in the using-declaration consists of actual
5022      //   constructors and notional constructors that result from the
5023      //   transformation of defaulted parameters as follows:
5024      //   - all non-template default constructors of X, and
5025      //   - for each non-template constructor of X that has at least one
5026      //     parameter with a default argument, the set of constructors that
5027      //     results from omitting any ellipsis parameter specification and
5028      //     successively omitting parameters with a default argument from the
5029      //     end of the parameter-type-list.
5030      CXXConstructorDecl *BaseCtor = *CtorIt;
5031      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
5032      const FunctionProtoType *BaseCtorType =
5033          BaseCtor->getType()->getAs<FunctionProtoType>();
5034
5035      for (unsigned params = BaseCtor->getMinRequiredArguments(),
5036                    maxParams = BaseCtor->getNumParams();
5037           params <= maxParams; ++params) {
5038        // Skip default constructors. They're never inherited.
5039        if (params == 0)
5040          continue;
5041        // Skip copy and move constructors for the same reason.
5042        if (CanBeCopyOrMove && params == 1)
5043          continue;
5044
5045        // Build up a function type for this particular constructor.
5046        // FIXME: The working paper does not consider that the exception spec
5047        // for the inheriting constructor might be larger than that of the
5048        // source. This code doesn't yet, either.
5049        const Type *NewCtorType;
5050        if (params == maxParams)
5051          NewCtorType = BaseCtorType;
5052        else {
5053          llvm::SmallVector<QualType, 16> Args;
5054          for (unsigned i = 0; i < params; ++i) {
5055            Args.push_back(BaseCtorType->getArgType(i));
5056          }
5057          FunctionProtoType::ExtProtoInfo ExtInfo =
5058              BaseCtorType->getExtProtoInfo();
5059          ExtInfo.Variadic = false;
5060          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
5061                                                Args.data(), params, ExtInfo)
5062                       .getTypePtr();
5063        }
5064        const Type *CanonicalNewCtorType =
5065            Context.getCanonicalType(NewCtorType);
5066
5067        // Now that we have the type, first check if the class already has a
5068        // constructor with this signature.
5069        if (ExistingConstructors.count(CanonicalNewCtorType))
5070          continue;
5071
5072        // Then we check if we have already declared an inherited constructor
5073        // with this signature.
5074        std::pair<ConstructorToSourceMap::iterator, bool> result =
5075            InheritedConstructors.insert(std::make_pair(
5076                CanonicalNewCtorType,
5077                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
5078        if (!result.second) {
5079          // Already in the map. If it came from a different class, that's an
5080          // error. Not if it's from the same.
5081          CanQualType PreviousBase = result.first->second.first;
5082          if (CanonicalBase != PreviousBase) {
5083            const CXXConstructorDecl *PrevCtor = result.first->second.second;
5084            const CXXConstructorDecl *PrevBaseCtor =
5085                PrevCtor->getInheritedConstructor();
5086            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
5087
5088            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
5089            Diag(BaseCtor->getLocation(),
5090                 diag::note_using_decl_constructor_conflict_current_ctor);
5091            Diag(PrevBaseCtor->getLocation(),
5092                 diag::note_using_decl_constructor_conflict_previous_ctor);
5093            Diag(PrevCtor->getLocation(),
5094                 diag::note_using_decl_constructor_conflict_previous_using);
5095          }
5096          continue;
5097        }
5098
5099        // OK, we're there, now add the constructor.
5100        // C++0x [class.inhctor]p8: [...] that would be performed by a
5101        //   user-writtern inline constructor [...]
5102        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
5103        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
5104            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
5105            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
5106            /*ImplicitlyDeclared=*/true);
5107        NewCtor->setAccess(BaseCtor->getAccess());
5108
5109        // Build up the parameter decls and add them.
5110        llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
5111        for (unsigned i = 0; i < params; ++i) {
5112          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
5113                                                   UsingLoc, UsingLoc,
5114                                                   /*IdentifierInfo=*/0,
5115                                                   BaseCtorType->getArgType(i),
5116                                                   /*TInfo=*/0, SC_None,
5117                                                   SC_None, /*DefaultArg=*/0));
5118        }
5119        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
5120        NewCtor->setInheritedConstructor(BaseCtor);
5121
5122        PushOnScopeChains(NewCtor, S, false);
5123        ClassDecl->addDecl(NewCtor);
5124        result.first->second.second = NewCtor;
5125      }
5126    }
5127  }
5128}
5129
5130CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
5131  // C++ [class.dtor]p2:
5132  //   If a class has no user-declared destructor, a destructor is
5133  //   declared implicitly. An implicitly-declared destructor is an
5134  //   inline public member of its class.
5135
5136  // C++ [except.spec]p14:
5137  //   An implicitly declared special member function (Clause 12) shall have
5138  //   an exception-specification.
5139  ImplicitExceptionSpecification ExceptSpec(Context);
5140
5141  // Direct base-class destructors.
5142  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
5143                                       BEnd = ClassDecl->bases_end();
5144       B != BEnd; ++B) {
5145    if (B->isVirtual()) // Handled below.
5146      continue;
5147
5148    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
5149      ExceptSpec.CalledDecl(
5150                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
5151  }
5152
5153  // Virtual base-class destructors.
5154  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
5155                                       BEnd = ClassDecl->vbases_end();
5156       B != BEnd; ++B) {
5157    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
5158      ExceptSpec.CalledDecl(
5159                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
5160  }
5161
5162  // Field destructors.
5163  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
5164                               FEnd = ClassDecl->field_end();
5165       F != FEnd; ++F) {
5166    if (const RecordType *RecordTy
5167        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
5168      ExceptSpec.CalledDecl(
5169                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
5170  }
5171
5172  // Create the actual destructor declaration.
5173  FunctionProtoType::ExtProtoInfo EPI;
5174  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
5175  EPI.NumExceptions = ExceptSpec.size();
5176  EPI.Exceptions = ExceptSpec.data();
5177  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5178
5179  CanQualType ClassType
5180    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5181  SourceLocation ClassLoc = ClassDecl->getLocation();
5182  DeclarationName Name
5183    = Context.DeclarationNames.getCXXDestructorName(ClassType);
5184  DeclarationNameInfo NameInfo(Name, ClassLoc);
5185  CXXDestructorDecl *Destructor
5186      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
5187                                  /*isInline=*/true,
5188                                  /*isImplicitlyDeclared=*/true);
5189  Destructor->setAccess(AS_public);
5190  Destructor->setImplicit();
5191  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
5192
5193  // Note that we have declared this destructor.
5194  ++ASTContext::NumImplicitDestructorsDeclared;
5195
5196  // Introduce this destructor into its scope.
5197  if (Scope *S = getScopeForContext(ClassDecl))
5198    PushOnScopeChains(Destructor, S, false);
5199  ClassDecl->addDecl(Destructor);
5200
5201  // This could be uniqued if it ever proves significant.
5202  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
5203
5204  AddOverriddenMethods(ClassDecl, Destructor);
5205
5206  return Destructor;
5207}
5208
5209void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
5210                                    CXXDestructorDecl *Destructor) {
5211  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
5212         "DefineImplicitDestructor - call it for implicit default dtor");
5213  CXXRecordDecl *ClassDecl = Destructor->getParent();
5214  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
5215
5216  if (Destructor->isInvalidDecl())
5217    return;
5218
5219  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
5220
5221  DiagnosticErrorTrap Trap(Diags);
5222  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5223                                         Destructor->getParent());
5224
5225  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
5226    Diag(CurrentLocation, diag::note_member_synthesized_at)
5227      << CXXDestructor << Context.getTagDeclType(ClassDecl);
5228
5229    Destructor->setInvalidDecl();
5230    return;
5231  }
5232
5233  SourceLocation Loc = Destructor->getLocation();
5234  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
5235
5236  Destructor->setUsed();
5237  MarkVTableUsed(CurrentLocation, ClassDecl);
5238}
5239
5240/// \brief Builds a statement that copies the given entity from \p From to
5241/// \c To.
5242///
5243/// This routine is used to copy the members of a class with an
5244/// implicitly-declared copy assignment operator. When the entities being
5245/// copied are arrays, this routine builds for loops to copy them.
5246///
5247/// \param S The Sema object used for type-checking.
5248///
5249/// \param Loc The location where the implicit copy is being generated.
5250///
5251/// \param T The type of the expressions being copied. Both expressions must
5252/// have this type.
5253///
5254/// \param To The expression we are copying to.
5255///
5256/// \param From The expression we are copying from.
5257///
5258/// \param CopyingBaseSubobject Whether we're copying a base subobject.
5259/// Otherwise, it's a non-static member subobject.
5260///
5261/// \param Depth Internal parameter recording the depth of the recursion.
5262///
5263/// \returns A statement or a loop that copies the expressions.
5264static StmtResult
5265BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
5266                      Expr *To, Expr *From,
5267                      bool CopyingBaseSubobject, unsigned Depth = 0) {
5268  // C++0x [class.copy]p30:
5269  //   Each subobject is assigned in the manner appropriate to its type:
5270  //
5271  //     - if the subobject is of class type, the copy assignment operator
5272  //       for the class is used (as if by explicit qualification; that is,
5273  //       ignoring any possible virtual overriding functions in more derived
5274  //       classes);
5275  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
5276    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5277
5278    // Look for operator=.
5279    DeclarationName Name
5280      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5281    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
5282    S.LookupQualifiedName(OpLookup, ClassDecl, false);
5283
5284    // Filter out any result that isn't a copy-assignment operator.
5285    LookupResult::Filter F = OpLookup.makeFilter();
5286    while (F.hasNext()) {
5287      NamedDecl *D = F.next();
5288      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
5289        if (Method->isCopyAssignmentOperator())
5290          continue;
5291
5292      F.erase();
5293    }
5294    F.done();
5295
5296    // Suppress the protected check (C++ [class.protected]) for each of the
5297    // assignment operators we found. This strange dance is required when
5298    // we're assigning via a base classes's copy-assignment operator. To
5299    // ensure that we're getting the right base class subobject (without
5300    // ambiguities), we need to cast "this" to that subobject type; to
5301    // ensure that we don't go through the virtual call mechanism, we need
5302    // to qualify the operator= name with the base class (see below). However,
5303    // this means that if the base class has a protected copy assignment
5304    // operator, the protected member access check will fail. So, we
5305    // rewrite "protected" access to "public" access in this case, since we
5306    // know by construction that we're calling from a derived class.
5307    if (CopyingBaseSubobject) {
5308      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
5309           L != LEnd; ++L) {
5310        if (L.getAccess() == AS_protected)
5311          L.setAccess(AS_public);
5312      }
5313    }
5314
5315    // Create the nested-name-specifier that will be used to qualify the
5316    // reference to operator=; this is required to suppress the virtual
5317    // call mechanism.
5318    CXXScopeSpec SS;
5319    SS.MakeTrivial(S.Context,
5320                   NestedNameSpecifier::Create(S.Context, 0, false,
5321                                               T.getTypePtr()),
5322                   Loc);
5323
5324    // Create the reference to operator=.
5325    ExprResult OpEqualRef
5326      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
5327                                   /*FirstQualifierInScope=*/0, OpLookup,
5328                                   /*TemplateArgs=*/0,
5329                                   /*SuppressQualifierCheck=*/true);
5330    if (OpEqualRef.isInvalid())
5331      return StmtError();
5332
5333    // Build the call to the assignment operator.
5334
5335    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
5336                                                  OpEqualRef.takeAs<Expr>(),
5337                                                  Loc, &From, 1, Loc);
5338    if (Call.isInvalid())
5339      return StmtError();
5340
5341    return S.Owned(Call.takeAs<Stmt>());
5342  }
5343
5344  //     - if the subobject is of scalar type, the built-in assignment
5345  //       operator is used.
5346  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
5347  if (!ArrayTy) {
5348    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
5349    if (Assignment.isInvalid())
5350      return StmtError();
5351
5352    return S.Owned(Assignment.takeAs<Stmt>());
5353  }
5354
5355  //     - if the subobject is an array, each element is assigned, in the
5356  //       manner appropriate to the element type;
5357
5358  // Construct a loop over the array bounds, e.g.,
5359  //
5360  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
5361  //
5362  // that will copy each of the array elements.
5363  QualType SizeType = S.Context.getSizeType();
5364
5365  // Create the iteration variable.
5366  IdentifierInfo *IterationVarName = 0;
5367  {
5368    llvm::SmallString<8> Str;
5369    llvm::raw_svector_ostream OS(Str);
5370    OS << "__i" << Depth;
5371    IterationVarName = &S.Context.Idents.get(OS.str());
5372  }
5373  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
5374                                          IterationVarName, SizeType,
5375                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
5376                                          SC_None, SC_None);
5377
5378  // Initialize the iteration variable to zero.
5379  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
5380  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
5381
5382  // Create a reference to the iteration variable; we'll use this several
5383  // times throughout.
5384  Expr *IterationVarRef
5385    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
5386  assert(IterationVarRef && "Reference to invented variable cannot fail!");
5387
5388  // Create the DeclStmt that holds the iteration variable.
5389  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
5390
5391  // Create the comparison against the array bound.
5392  llvm::APInt Upper
5393    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
5394  Expr *Comparison
5395    = new (S.Context) BinaryOperator(IterationVarRef,
5396                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
5397                                     BO_NE, S.Context.BoolTy,
5398                                     VK_RValue, OK_Ordinary, Loc);
5399
5400  // Create the pre-increment of the iteration variable.
5401  Expr *Increment
5402    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
5403                                    VK_LValue, OK_Ordinary, Loc);
5404
5405  // Subscript the "from" and "to" expressions with the iteration variable.
5406  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
5407                                                         IterationVarRef, Loc));
5408  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
5409                                                       IterationVarRef, Loc));
5410
5411  // Build the copy for an individual element of the array.
5412  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
5413                                          To, From, CopyingBaseSubobject,
5414                                          Depth + 1);
5415  if (Copy.isInvalid())
5416    return StmtError();
5417
5418  // Construct the loop that copies all elements of this array.
5419  return S.ActOnForStmt(Loc, Loc, InitStmt,
5420                        S.MakeFullExpr(Comparison),
5421                        0, S.MakeFullExpr(Increment),
5422                        Loc, Copy.take());
5423}
5424
5425/// \brief Determine whether the given class has a copy assignment operator
5426/// that accepts a const-qualified argument.
5427static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
5428  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
5429
5430  if (!Class->hasDeclaredCopyAssignment())
5431    S.DeclareImplicitCopyAssignment(Class);
5432
5433  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
5434  DeclarationName OpName
5435    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5436
5437  DeclContext::lookup_const_iterator Op, OpEnd;
5438  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
5439    // C++ [class.copy]p9:
5440    //   A user-declared copy assignment operator is a non-static non-template
5441    //   member function of class X with exactly one parameter of type X, X&,
5442    //   const X&, volatile X& or const volatile X&.
5443    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
5444    if (!Method)
5445      continue;
5446
5447    if (Method->isStatic())
5448      continue;
5449    if (Method->getPrimaryTemplate())
5450      continue;
5451    const FunctionProtoType *FnType =
5452    Method->getType()->getAs<FunctionProtoType>();
5453    assert(FnType && "Overloaded operator has no prototype.");
5454    // Don't assert on this; an invalid decl might have been left in the AST.
5455    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
5456      continue;
5457    bool AcceptsConst = true;
5458    QualType ArgType = FnType->getArgType(0);
5459    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
5460      ArgType = Ref->getPointeeType();
5461      // Is it a non-const lvalue reference?
5462      if (!ArgType.isConstQualified())
5463        AcceptsConst = false;
5464    }
5465    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
5466      continue;
5467
5468    // We have a single argument of type cv X or cv X&, i.e. we've found the
5469    // copy assignment operator. Return whether it accepts const arguments.
5470    return AcceptsConst;
5471  }
5472  assert(Class->isInvalidDecl() &&
5473         "No copy assignment operator declared in valid code.");
5474  return false;
5475}
5476
5477CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
5478  // Note: The following rules are largely analoguous to the copy
5479  // constructor rules. Note that virtual bases are not taken into account
5480  // for determining the argument type of the operator. Note also that
5481  // operators taking an object instead of a reference are allowed.
5482
5483
5484  // C++ [class.copy]p10:
5485  //   If the class definition does not explicitly declare a copy
5486  //   assignment operator, one is declared implicitly.
5487  //   The implicitly-defined copy assignment operator for a class X
5488  //   will have the form
5489  //
5490  //       X& X::operator=(const X&)
5491  //
5492  //   if
5493  bool HasConstCopyAssignment = true;
5494
5495  //       -- each direct base class B of X has a copy assignment operator
5496  //          whose parameter is of type const B&, const volatile B& or B,
5497  //          and
5498  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5499                                       BaseEnd = ClassDecl->bases_end();
5500       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
5501    assert(!Base->getType()->isDependentType() &&
5502           "Cannot generate implicit members for class with dependent bases.");
5503    const CXXRecordDecl *BaseClassDecl
5504      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5505    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
5506  }
5507
5508  //       -- for all the nonstatic data members of X that are of a class
5509  //          type M (or array thereof), each such class type has a copy
5510  //          assignment operator whose parameter is of type const M&,
5511  //          const volatile M& or M.
5512  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5513                                  FieldEnd = ClassDecl->field_end();
5514       HasConstCopyAssignment && Field != FieldEnd;
5515       ++Field) {
5516    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5517    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5518      const CXXRecordDecl *FieldClassDecl
5519        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5520      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
5521    }
5522  }
5523
5524  //   Otherwise, the implicitly declared copy assignment operator will
5525  //   have the form
5526  //
5527  //       X& X::operator=(X&)
5528  QualType ArgType = Context.getTypeDeclType(ClassDecl);
5529  QualType RetType = Context.getLValueReferenceType(ArgType);
5530  if (HasConstCopyAssignment)
5531    ArgType = ArgType.withConst();
5532  ArgType = Context.getLValueReferenceType(ArgType);
5533
5534  // C++ [except.spec]p14:
5535  //   An implicitly declared special member function (Clause 12) shall have an
5536  //   exception-specification. [...]
5537  ImplicitExceptionSpecification ExceptSpec(Context);
5538  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5539                                       BaseEnd = ClassDecl->bases_end();
5540       Base != BaseEnd; ++Base) {
5541    CXXRecordDecl *BaseClassDecl
5542      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5543
5544    if (!BaseClassDecl->hasDeclaredCopyAssignment())
5545      DeclareImplicitCopyAssignment(BaseClassDecl);
5546
5547    if (CXXMethodDecl *CopyAssign
5548           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5549      ExceptSpec.CalledDecl(CopyAssign);
5550  }
5551  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5552                                  FieldEnd = ClassDecl->field_end();
5553       Field != FieldEnd;
5554       ++Field) {
5555    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5556    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5557      CXXRecordDecl *FieldClassDecl
5558        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5559
5560      if (!FieldClassDecl->hasDeclaredCopyAssignment())
5561        DeclareImplicitCopyAssignment(FieldClassDecl);
5562
5563      if (CXXMethodDecl *CopyAssign
5564            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5565        ExceptSpec.CalledDecl(CopyAssign);
5566    }
5567  }
5568
5569  //   An implicitly-declared copy assignment operator is an inline public
5570  //   member of its class.
5571  FunctionProtoType::ExtProtoInfo EPI;
5572  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
5573  EPI.NumExceptions = ExceptSpec.size();
5574  EPI.Exceptions = ExceptSpec.data();
5575  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5576  SourceLocation ClassLoc = ClassDecl->getLocation();
5577  DeclarationNameInfo NameInfo(Name, ClassLoc);
5578  CXXMethodDecl *CopyAssignment
5579    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
5580                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
5581                            /*TInfo=*/0, /*isStatic=*/false,
5582                            /*StorageClassAsWritten=*/SC_None,
5583                            /*isInline=*/true,
5584                            SourceLocation());
5585  CopyAssignment->setAccess(AS_public);
5586  CopyAssignment->setImplicit();
5587  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
5588
5589  // Add the parameter to the operator.
5590  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
5591                                               ClassLoc, ClassLoc, /*Id=*/0,
5592                                               ArgType, /*TInfo=*/0,
5593                                               SC_None,
5594                                               SC_None, 0);
5595  CopyAssignment->setParams(&FromParam, 1);
5596
5597  // Note that we have added this copy-assignment operator.
5598  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
5599
5600  if (Scope *S = getScopeForContext(ClassDecl))
5601    PushOnScopeChains(CopyAssignment, S, false);
5602  ClassDecl->addDecl(CopyAssignment);
5603
5604  AddOverriddenMethods(ClassDecl, CopyAssignment);
5605  return CopyAssignment;
5606}
5607
5608void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
5609                                        CXXMethodDecl *CopyAssignOperator) {
5610  assert((CopyAssignOperator->isImplicit() &&
5611          CopyAssignOperator->isOverloadedOperator() &&
5612          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
5613          !CopyAssignOperator->isUsed(false)) &&
5614         "DefineImplicitCopyAssignment called for wrong function");
5615
5616  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
5617
5618  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
5619    CopyAssignOperator->setInvalidDecl();
5620    return;
5621  }
5622
5623  CopyAssignOperator->setUsed();
5624
5625  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
5626  DiagnosticErrorTrap Trap(Diags);
5627
5628  // C++0x [class.copy]p30:
5629  //   The implicitly-defined or explicitly-defaulted copy assignment operator
5630  //   for a non-union class X performs memberwise copy assignment of its
5631  //   subobjects. The direct base classes of X are assigned first, in the
5632  //   order of their declaration in the base-specifier-list, and then the
5633  //   immediate non-static data members of X are assigned, in the order in
5634  //   which they were declared in the class definition.
5635
5636  // The statements that form the synthesized function body.
5637  ASTOwningVector<Stmt*> Statements(*this);
5638
5639  // The parameter for the "other" object, which we are copying from.
5640  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
5641  Qualifiers OtherQuals = Other->getType().getQualifiers();
5642  QualType OtherRefType = Other->getType();
5643  if (const LValueReferenceType *OtherRef
5644                                = OtherRefType->getAs<LValueReferenceType>()) {
5645    OtherRefType = OtherRef->getPointeeType();
5646    OtherQuals = OtherRefType.getQualifiers();
5647  }
5648
5649  // Our location for everything implicitly-generated.
5650  SourceLocation Loc = CopyAssignOperator->getLocation();
5651
5652  // Construct a reference to the "other" object. We'll be using this
5653  // throughout the generated ASTs.
5654  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
5655  assert(OtherRef && "Reference to parameter cannot fail!");
5656
5657  // Construct the "this" pointer. We'll be using this throughout the generated
5658  // ASTs.
5659  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
5660  assert(This && "Reference to this cannot fail!");
5661
5662  // Assign base classes.
5663  bool Invalid = false;
5664  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5665       E = ClassDecl->bases_end(); Base != E; ++Base) {
5666    // Form the assignment:
5667    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
5668    QualType BaseType = Base->getType().getUnqualifiedType();
5669    if (!BaseType->isRecordType()) {
5670      Invalid = true;
5671      continue;
5672    }
5673
5674    CXXCastPath BasePath;
5675    BasePath.push_back(Base);
5676
5677    // Construct the "from" expression, which is an implicit cast to the
5678    // appropriately-qualified base type.
5679    Expr *From = OtherRef;
5680    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
5681                             CK_UncheckedDerivedToBase,
5682                             VK_LValue, &BasePath).take();
5683
5684    // Dereference "this".
5685    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5686
5687    // Implicitly cast "this" to the appropriately-qualified base type.
5688    To = ImpCastExprToType(To.take(),
5689                           Context.getCVRQualifiedType(BaseType,
5690                                     CopyAssignOperator->getTypeQualifiers()),
5691                           CK_UncheckedDerivedToBase,
5692                           VK_LValue, &BasePath);
5693
5694    // Build the copy.
5695    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
5696                                            To.get(), From,
5697                                            /*CopyingBaseSubobject=*/true);
5698    if (Copy.isInvalid()) {
5699      Diag(CurrentLocation, diag::note_member_synthesized_at)
5700        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5701      CopyAssignOperator->setInvalidDecl();
5702      return;
5703    }
5704
5705    // Success! Record the copy.
5706    Statements.push_back(Copy.takeAs<Expr>());
5707  }
5708
5709  // \brief Reference to the __builtin_memcpy function.
5710  Expr *BuiltinMemCpyRef = 0;
5711  // \brief Reference to the __builtin_objc_memmove_collectable function.
5712  Expr *CollectableMemCpyRef = 0;
5713
5714  // Assign non-static members.
5715  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5716                                  FieldEnd = ClassDecl->field_end();
5717       Field != FieldEnd; ++Field) {
5718    // Check for members of reference type; we can't copy those.
5719    if (Field->getType()->isReferenceType()) {
5720      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5721        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5722      Diag(Field->getLocation(), diag::note_declared_at);
5723      Diag(CurrentLocation, diag::note_member_synthesized_at)
5724        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5725      Invalid = true;
5726      continue;
5727    }
5728
5729    // Check for members of const-qualified, non-class type.
5730    QualType BaseType = Context.getBaseElementType(Field->getType());
5731    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5732      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5733        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5734      Diag(Field->getLocation(), diag::note_declared_at);
5735      Diag(CurrentLocation, diag::note_member_synthesized_at)
5736        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5737      Invalid = true;
5738      continue;
5739    }
5740
5741    QualType FieldType = Field->getType().getNonReferenceType();
5742    if (FieldType->isIncompleteArrayType()) {
5743      assert(ClassDecl->hasFlexibleArrayMember() &&
5744             "Incomplete array type is not valid");
5745      continue;
5746    }
5747
5748    // Build references to the field in the object we're copying from and to.
5749    CXXScopeSpec SS; // Intentionally empty
5750    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5751                              LookupMemberName);
5752    MemberLookup.addDecl(*Field);
5753    MemberLookup.resolveKind();
5754    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5755                                               Loc, /*IsArrow=*/false,
5756                                               SS, 0, MemberLookup, 0);
5757    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5758                                             Loc, /*IsArrow=*/true,
5759                                             SS, 0, MemberLookup, 0);
5760    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5761    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5762
5763    // If the field should be copied with __builtin_memcpy rather than via
5764    // explicit assignments, do so. This optimization only applies for arrays
5765    // of scalars and arrays of class type with trivial copy-assignment
5766    // operators.
5767    if (FieldType->isArrayType() &&
5768        (!BaseType->isRecordType() ||
5769         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5770           ->hasTrivialCopyAssignment())) {
5771      // Compute the size of the memory buffer to be copied.
5772      QualType SizeType = Context.getSizeType();
5773      llvm::APInt Size(Context.getTypeSize(SizeType),
5774                       Context.getTypeSizeInChars(BaseType).getQuantity());
5775      for (const ConstantArrayType *Array
5776              = Context.getAsConstantArrayType(FieldType);
5777           Array;
5778           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5779        llvm::APInt ArraySize
5780          = Array->getSize().zextOrTrunc(Size.getBitWidth());
5781        Size *= ArraySize;
5782      }
5783
5784      // Take the address of the field references for "from" and "to".
5785      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5786      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5787
5788      bool NeedsCollectableMemCpy =
5789          (BaseType->isRecordType() &&
5790           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5791
5792      if (NeedsCollectableMemCpy) {
5793        if (!CollectableMemCpyRef) {
5794          // Create a reference to the __builtin_objc_memmove_collectable function.
5795          LookupResult R(*this,
5796                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5797                         Loc, LookupOrdinaryName);
5798          LookupName(R, TUScope, true);
5799
5800          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5801          if (!CollectableMemCpy) {
5802            // Something went horribly wrong earlier, and we will have
5803            // complained about it.
5804            Invalid = true;
5805            continue;
5806          }
5807
5808          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5809                                                  CollectableMemCpy->getType(),
5810                                                  VK_LValue, Loc, 0).take();
5811          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5812        }
5813      }
5814      // Create a reference to the __builtin_memcpy builtin function.
5815      else if (!BuiltinMemCpyRef) {
5816        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5817                       LookupOrdinaryName);
5818        LookupName(R, TUScope, true);
5819
5820        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5821        if (!BuiltinMemCpy) {
5822          // Something went horribly wrong earlier, and we will have complained
5823          // about it.
5824          Invalid = true;
5825          continue;
5826        }
5827
5828        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5829                                            BuiltinMemCpy->getType(),
5830                                            VK_LValue, Loc, 0).take();
5831        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5832      }
5833
5834      ASTOwningVector<Expr*> CallArgs(*this);
5835      CallArgs.push_back(To.takeAs<Expr>());
5836      CallArgs.push_back(From.takeAs<Expr>());
5837      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5838      ExprResult Call = ExprError();
5839      if (NeedsCollectableMemCpy)
5840        Call = ActOnCallExpr(/*Scope=*/0,
5841                             CollectableMemCpyRef,
5842                             Loc, move_arg(CallArgs),
5843                             Loc);
5844      else
5845        Call = ActOnCallExpr(/*Scope=*/0,
5846                             BuiltinMemCpyRef,
5847                             Loc, move_arg(CallArgs),
5848                             Loc);
5849
5850      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5851      Statements.push_back(Call.takeAs<Expr>());
5852      continue;
5853    }
5854
5855    // Build the copy of this field.
5856    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5857                                                  To.get(), From.get(),
5858                                              /*CopyingBaseSubobject=*/false);
5859    if (Copy.isInvalid()) {
5860      Diag(CurrentLocation, diag::note_member_synthesized_at)
5861        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5862      CopyAssignOperator->setInvalidDecl();
5863      return;
5864    }
5865
5866    // Success! Record the copy.
5867    Statements.push_back(Copy.takeAs<Stmt>());
5868  }
5869
5870  if (!Invalid) {
5871    // Add a "return *this;"
5872    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5873
5874    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5875    if (Return.isInvalid())
5876      Invalid = true;
5877    else {
5878      Statements.push_back(Return.takeAs<Stmt>());
5879
5880      if (Trap.hasErrorOccurred()) {
5881        Diag(CurrentLocation, diag::note_member_synthesized_at)
5882          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5883        Invalid = true;
5884      }
5885    }
5886  }
5887
5888  if (Invalid) {
5889    CopyAssignOperator->setInvalidDecl();
5890    return;
5891  }
5892
5893  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5894                                            /*isStmtExpr=*/false);
5895  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5896  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5897}
5898
5899CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5900                                                    CXXRecordDecl *ClassDecl) {
5901  // C++ [class.copy]p4:
5902  //   If the class definition does not explicitly declare a copy
5903  //   constructor, one is declared implicitly.
5904
5905  // C++ [class.copy]p5:
5906  //   The implicitly-declared copy constructor for a class X will
5907  //   have the form
5908  //
5909  //       X::X(const X&)
5910  //
5911  //   if
5912  bool HasConstCopyConstructor = true;
5913
5914  //     -- each direct or virtual base class B of X has a copy
5915  //        constructor whose first parameter is of type const B& or
5916  //        const volatile B&, and
5917  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5918                                       BaseEnd = ClassDecl->bases_end();
5919       HasConstCopyConstructor && Base != BaseEnd;
5920       ++Base) {
5921    // Virtual bases are handled below.
5922    if (Base->isVirtual())
5923      continue;
5924
5925    CXXRecordDecl *BaseClassDecl
5926      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5927    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5928      DeclareImplicitCopyConstructor(BaseClassDecl);
5929
5930    HasConstCopyConstructor
5931      = BaseClassDecl->hasConstCopyConstructor(Context);
5932  }
5933
5934  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5935                                       BaseEnd = ClassDecl->vbases_end();
5936       HasConstCopyConstructor && Base != BaseEnd;
5937       ++Base) {
5938    CXXRecordDecl *BaseClassDecl
5939      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5940    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5941      DeclareImplicitCopyConstructor(BaseClassDecl);
5942
5943    HasConstCopyConstructor
5944      = BaseClassDecl->hasConstCopyConstructor(Context);
5945  }
5946
5947  //     -- for all the nonstatic data members of X that are of a
5948  //        class type M (or array thereof), each such class type
5949  //        has a copy constructor whose first parameter is of type
5950  //        const M& or const volatile M&.
5951  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5952                                  FieldEnd = ClassDecl->field_end();
5953       HasConstCopyConstructor && Field != FieldEnd;
5954       ++Field) {
5955    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5956    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5957      CXXRecordDecl *FieldClassDecl
5958        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5959      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5960        DeclareImplicitCopyConstructor(FieldClassDecl);
5961
5962      HasConstCopyConstructor
5963        = FieldClassDecl->hasConstCopyConstructor(Context);
5964    }
5965  }
5966
5967  //   Otherwise, the implicitly declared copy constructor will have
5968  //   the form
5969  //
5970  //       X::X(X&)
5971  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5972  QualType ArgType = ClassType;
5973  if (HasConstCopyConstructor)
5974    ArgType = ArgType.withConst();
5975  ArgType = Context.getLValueReferenceType(ArgType);
5976
5977  // C++ [except.spec]p14:
5978  //   An implicitly declared special member function (Clause 12) shall have an
5979  //   exception-specification. [...]
5980  ImplicitExceptionSpecification ExceptSpec(Context);
5981  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5982  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5983                                       BaseEnd = ClassDecl->bases_end();
5984       Base != BaseEnd;
5985       ++Base) {
5986    // Virtual bases are handled below.
5987    if (Base->isVirtual())
5988      continue;
5989
5990    CXXRecordDecl *BaseClassDecl
5991      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5992    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5993      DeclareImplicitCopyConstructor(BaseClassDecl);
5994
5995    if (CXXConstructorDecl *CopyConstructor
5996                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5997      ExceptSpec.CalledDecl(CopyConstructor);
5998  }
5999  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
6000                                       BaseEnd = ClassDecl->vbases_end();
6001       Base != BaseEnd;
6002       ++Base) {
6003    CXXRecordDecl *BaseClassDecl
6004      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6005    if (!BaseClassDecl->hasDeclaredCopyConstructor())
6006      DeclareImplicitCopyConstructor(BaseClassDecl);
6007
6008    if (CXXConstructorDecl *CopyConstructor
6009                          = BaseClassDecl->getCopyConstructor(Context, Quals))
6010      ExceptSpec.CalledDecl(CopyConstructor);
6011  }
6012  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6013                                  FieldEnd = ClassDecl->field_end();
6014       Field != FieldEnd;
6015       ++Field) {
6016    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6017    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
6018      CXXRecordDecl *FieldClassDecl
6019        = cast<CXXRecordDecl>(FieldClassType->getDecl());
6020      if (!FieldClassDecl->hasDeclaredCopyConstructor())
6021        DeclareImplicitCopyConstructor(FieldClassDecl);
6022
6023      if (CXXConstructorDecl *CopyConstructor
6024                          = FieldClassDecl->getCopyConstructor(Context, Quals))
6025        ExceptSpec.CalledDecl(CopyConstructor);
6026    }
6027  }
6028
6029  //   An implicitly-declared copy constructor is an inline public
6030  //   member of its class.
6031  FunctionProtoType::ExtProtoInfo EPI;
6032  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
6033  EPI.NumExceptions = ExceptSpec.size();
6034  EPI.Exceptions = ExceptSpec.data();
6035  DeclarationName Name
6036    = Context.DeclarationNames.getCXXConstructorName(
6037                                           Context.getCanonicalType(ClassType));
6038  SourceLocation ClassLoc = ClassDecl->getLocation();
6039  DeclarationNameInfo NameInfo(Name, ClassLoc);
6040  CXXConstructorDecl *CopyConstructor
6041    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6042                                 Context.getFunctionType(Context.VoidTy,
6043                                                         &ArgType, 1, EPI),
6044                                 /*TInfo=*/0,
6045                                 /*isExplicit=*/false,
6046                                 /*isInline=*/true,
6047                                 /*isImplicitlyDeclared=*/true);
6048  CopyConstructor->setAccess(AS_public);
6049  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
6050
6051  // Note that we have declared this constructor.
6052  ++ASTContext::NumImplicitCopyConstructorsDeclared;
6053
6054  // Add the parameter to the constructor.
6055  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
6056                                               ClassLoc, ClassLoc,
6057                                               /*IdentifierInfo=*/0,
6058                                               ArgType, /*TInfo=*/0,
6059                                               SC_None,
6060                                               SC_None, 0);
6061  CopyConstructor->setParams(&FromParam, 1);
6062  if (Scope *S = getScopeForContext(ClassDecl))
6063    PushOnScopeChains(CopyConstructor, S, false);
6064  ClassDecl->addDecl(CopyConstructor);
6065
6066  return CopyConstructor;
6067}
6068
6069void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
6070                                   CXXConstructorDecl *CopyConstructor,
6071                                   unsigned TypeQuals) {
6072  assert((CopyConstructor->isImplicit() &&
6073          CopyConstructor->isCopyConstructor(TypeQuals) &&
6074          !CopyConstructor->isUsed(false)) &&
6075         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
6076
6077  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
6078  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
6079
6080  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
6081  DiagnosticErrorTrap Trap(Diags);
6082
6083  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
6084      Trap.hasErrorOccurred()) {
6085    Diag(CurrentLocation, diag::note_member_synthesized_at)
6086      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
6087    CopyConstructor->setInvalidDecl();
6088  }  else {
6089    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
6090                                               CopyConstructor->getLocation(),
6091                                               MultiStmtArg(*this, 0, 0),
6092                                               /*isStmtExpr=*/false)
6093                                                              .takeAs<Stmt>());
6094  }
6095
6096  CopyConstructor->setUsed();
6097}
6098
6099ExprResult
6100Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
6101                            CXXConstructorDecl *Constructor,
6102                            MultiExprArg ExprArgs,
6103                            bool RequiresZeroInit,
6104                            unsigned ConstructKind,
6105                            SourceRange ParenRange) {
6106  bool Elidable = false;
6107
6108  // C++0x [class.copy]p34:
6109  //   When certain criteria are met, an implementation is allowed to
6110  //   omit the copy/move construction of a class object, even if the
6111  //   copy/move constructor and/or destructor for the object have
6112  //   side effects. [...]
6113  //     - when a temporary class object that has not been bound to a
6114  //       reference (12.2) would be copied/moved to a class object
6115  //       with the same cv-unqualified type, the copy/move operation
6116  //       can be omitted by constructing the temporary object
6117  //       directly into the target of the omitted copy/move
6118  if (ConstructKind == CXXConstructExpr::CK_Complete &&
6119      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
6120    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
6121    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
6122  }
6123
6124  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
6125                               Elidable, move(ExprArgs), RequiresZeroInit,
6126                               ConstructKind, ParenRange);
6127}
6128
6129/// BuildCXXConstructExpr - Creates a complete call to a constructor,
6130/// including handling of its default argument expressions.
6131ExprResult
6132Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
6133                            CXXConstructorDecl *Constructor, bool Elidable,
6134                            MultiExprArg ExprArgs,
6135                            bool RequiresZeroInit,
6136                            unsigned ConstructKind,
6137                            SourceRange ParenRange) {
6138  unsigned NumExprs = ExprArgs.size();
6139  Expr **Exprs = (Expr **)ExprArgs.release();
6140
6141  for (specific_attr_iterator<NonNullAttr>
6142           i = Constructor->specific_attr_begin<NonNullAttr>(),
6143           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
6144    const NonNullAttr *NonNull = *i;
6145    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
6146  }
6147
6148  MarkDeclarationReferenced(ConstructLoc, Constructor);
6149  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
6150                                        Constructor, Elidable, Exprs, NumExprs,
6151                                        RequiresZeroInit,
6152              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
6153                                        ParenRange));
6154}
6155
6156bool Sema::InitializeVarWithConstructor(VarDecl *VD,
6157                                        CXXConstructorDecl *Constructor,
6158                                        MultiExprArg Exprs) {
6159  // FIXME: Provide the correct paren SourceRange when available.
6160  ExprResult TempResult =
6161    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
6162                          move(Exprs), false, CXXConstructExpr::CK_Complete,
6163                          SourceRange());
6164  if (TempResult.isInvalid())
6165    return true;
6166
6167  Expr *Temp = TempResult.takeAs<Expr>();
6168  CheckImplicitConversions(Temp, VD->getLocation());
6169  MarkDeclarationReferenced(VD->getLocation(), Constructor);
6170  Temp = MaybeCreateExprWithCleanups(Temp);
6171  VD->setInit(Temp);
6172
6173  return false;
6174}
6175
6176void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
6177  if (VD->isInvalidDecl()) return;
6178
6179  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
6180  if (ClassDecl->isInvalidDecl()) return;
6181  if (ClassDecl->hasTrivialDestructor()) return;
6182  if (ClassDecl->isDependentContext()) return;
6183
6184  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
6185  MarkDeclarationReferenced(VD->getLocation(), Destructor);
6186  CheckDestructorAccess(VD->getLocation(), Destructor,
6187                        PDiag(diag::err_access_dtor_var)
6188                        << VD->getDeclName()
6189                        << VD->getType());
6190
6191  if (!VD->hasGlobalStorage()) return;
6192
6193  // Emit warning for non-trivial dtor in global scope (a real global,
6194  // class-static, function-static).
6195  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
6196
6197  // TODO: this should be re-enabled for static locals by !CXAAtExit
6198  if (!VD->isStaticLocal())
6199    Diag(VD->getLocation(), diag::warn_global_destructor);
6200}
6201
6202/// AddCXXDirectInitializerToDecl - This action is called immediately after
6203/// ActOnDeclarator, when a C++ direct initializer is present.
6204/// e.g: "int x(1);"
6205void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
6206                                         SourceLocation LParenLoc,
6207                                         MultiExprArg Exprs,
6208                                         SourceLocation RParenLoc,
6209                                         bool TypeMayContainAuto) {
6210  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
6211
6212  // If there is no declaration, there was an error parsing it.  Just ignore
6213  // the initializer.
6214  if (RealDecl == 0)
6215    return;
6216
6217  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6218  if (!VDecl) {
6219    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6220    RealDecl->setInvalidDecl();
6221    return;
6222  }
6223
6224  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6225  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6226    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
6227    if (Exprs.size() > 1) {
6228      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
6229           diag::err_auto_var_init_multiple_expressions)
6230        << VDecl->getDeclName() << VDecl->getType()
6231        << VDecl->getSourceRange();
6232      RealDecl->setInvalidDecl();
6233      return;
6234    }
6235
6236    Expr *Init = Exprs.get()[0];
6237    TypeSourceInfo *DeducedType = 0;
6238    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
6239      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
6240        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
6241        << Init->getSourceRange();
6242    if (!DeducedType) {
6243      RealDecl->setInvalidDecl();
6244      return;
6245    }
6246    VDecl->setTypeSourceInfo(DeducedType);
6247    VDecl->setType(DeducedType->getType());
6248
6249    // If this is a redeclaration, check that the type we just deduced matches
6250    // the previously declared type.
6251    if (VarDecl *Old = VDecl->getPreviousDeclaration())
6252      MergeVarDeclTypes(VDecl, Old);
6253  }
6254
6255  // We will represent direct-initialization similarly to copy-initialization:
6256  //    int x(1);  -as-> int x = 1;
6257  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6258  //
6259  // Clients that want to distinguish between the two forms, can check for
6260  // direct initializer using VarDecl::hasCXXDirectInitializer().
6261  // A major benefit is that clients that don't particularly care about which
6262  // exactly form was it (like the CodeGen) can handle both cases without
6263  // special case code.
6264
6265  // C++ 8.5p11:
6266  // The form of initialization (using parentheses or '=') is generally
6267  // insignificant, but does matter when the entity being initialized has a
6268  // class type.
6269
6270  if (!VDecl->getType()->isDependentType() &&
6271      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
6272                          diag::err_typecheck_decl_incomplete_type)) {
6273    VDecl->setInvalidDecl();
6274    return;
6275  }
6276
6277  // The variable can not have an abstract class type.
6278  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6279                             diag::err_abstract_type_in_decl,
6280                             AbstractVariableType))
6281    VDecl->setInvalidDecl();
6282
6283  const VarDecl *Def;
6284  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6285    Diag(VDecl->getLocation(), diag::err_redefinition)
6286    << VDecl->getDeclName();
6287    Diag(Def->getLocation(), diag::note_previous_definition);
6288    VDecl->setInvalidDecl();
6289    return;
6290  }
6291
6292  // C++ [class.static.data]p4
6293  //   If a static data member is of const integral or const
6294  //   enumeration type, its declaration in the class definition can
6295  //   specify a constant-initializer which shall be an integral
6296  //   constant expression (5.19). In that case, the member can appear
6297  //   in integral constant expressions. The member shall still be
6298  //   defined in a namespace scope if it is used in the program and the
6299  //   namespace scope definition shall not contain an initializer.
6300  //
6301  // We already performed a redefinition check above, but for static
6302  // data members we also need to check whether there was an in-class
6303  // declaration with an initializer.
6304  const VarDecl* PrevInit = 0;
6305  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6306    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
6307    Diag(PrevInit->getLocation(), diag::note_previous_definition);
6308    return;
6309  }
6310
6311  bool IsDependent = false;
6312  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
6313    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
6314      VDecl->setInvalidDecl();
6315      return;
6316    }
6317
6318    if (Exprs.get()[I]->isTypeDependent())
6319      IsDependent = true;
6320  }
6321
6322  // If either the declaration has a dependent type or if any of the
6323  // expressions is type-dependent, we represent the initialization
6324  // via a ParenListExpr for later use during template instantiation.
6325  if (VDecl->getType()->isDependentType() || IsDependent) {
6326    // Let clients know that initialization was done with a direct initializer.
6327    VDecl->setCXXDirectInitializer(true);
6328
6329    // Store the initialization expressions as a ParenListExpr.
6330    unsigned NumExprs = Exprs.size();
6331    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
6332                                               (Expr **)Exprs.release(),
6333                                               NumExprs, RParenLoc));
6334    return;
6335  }
6336
6337  // Capture the variable that is being initialized and the style of
6338  // initialization.
6339  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6340
6341  // FIXME: Poor source location information.
6342  InitializationKind Kind
6343    = InitializationKind::CreateDirect(VDecl->getLocation(),
6344                                       LParenLoc, RParenLoc);
6345
6346  InitializationSequence InitSeq(*this, Entity, Kind,
6347                                 Exprs.get(), Exprs.size());
6348  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
6349  if (Result.isInvalid()) {
6350    VDecl->setInvalidDecl();
6351    return;
6352  }
6353
6354  CheckImplicitConversions(Result.get(), LParenLoc);
6355
6356  Result = MaybeCreateExprWithCleanups(Result);
6357  VDecl->setInit(Result.takeAs<Expr>());
6358  VDecl->setCXXDirectInitializer(true);
6359
6360  CheckCompleteVariableDeclaration(VDecl);
6361}
6362
6363/// \brief Given a constructor and the set of arguments provided for the
6364/// constructor, convert the arguments and add any required default arguments
6365/// to form a proper call to this constructor.
6366///
6367/// \returns true if an error occurred, false otherwise.
6368bool
6369Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
6370                              MultiExprArg ArgsPtr,
6371                              SourceLocation Loc,
6372                              ASTOwningVector<Expr*> &ConvertedArgs) {
6373  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
6374  unsigned NumArgs = ArgsPtr.size();
6375  Expr **Args = (Expr **)ArgsPtr.get();
6376
6377  const FunctionProtoType *Proto
6378    = Constructor->getType()->getAs<FunctionProtoType>();
6379  assert(Proto && "Constructor without a prototype?");
6380  unsigned NumArgsInProto = Proto->getNumArgs();
6381
6382  // If too few arguments are available, we'll fill in the rest with defaults.
6383  if (NumArgs < NumArgsInProto)
6384    ConvertedArgs.reserve(NumArgsInProto);
6385  else
6386    ConvertedArgs.reserve(NumArgs);
6387
6388  VariadicCallType CallType =
6389    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
6390  llvm::SmallVector<Expr *, 8> AllArgs;
6391  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
6392                                        Proto, 0, Args, NumArgs, AllArgs,
6393                                        CallType);
6394  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
6395    ConvertedArgs.push_back(AllArgs[i]);
6396  return Invalid;
6397}
6398
6399static inline bool
6400CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
6401                                       const FunctionDecl *FnDecl) {
6402  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
6403  if (isa<NamespaceDecl>(DC)) {
6404    return SemaRef.Diag(FnDecl->getLocation(),
6405                        diag::err_operator_new_delete_declared_in_namespace)
6406      << FnDecl->getDeclName();
6407  }
6408
6409  if (isa<TranslationUnitDecl>(DC) &&
6410      FnDecl->getStorageClass() == SC_Static) {
6411    return SemaRef.Diag(FnDecl->getLocation(),
6412                        diag::err_operator_new_delete_declared_static)
6413      << FnDecl->getDeclName();
6414  }
6415
6416  return false;
6417}
6418
6419static inline bool
6420CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
6421                            CanQualType ExpectedResultType,
6422                            CanQualType ExpectedFirstParamType,
6423                            unsigned DependentParamTypeDiag,
6424                            unsigned InvalidParamTypeDiag) {
6425  QualType ResultType =
6426    FnDecl->getType()->getAs<FunctionType>()->getResultType();
6427
6428  // Check that the result type is not dependent.
6429  if (ResultType->isDependentType())
6430    return SemaRef.Diag(FnDecl->getLocation(),
6431                        diag::err_operator_new_delete_dependent_result_type)
6432    << FnDecl->getDeclName() << ExpectedResultType;
6433
6434  // Check that the result type is what we expect.
6435  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
6436    return SemaRef.Diag(FnDecl->getLocation(),
6437                        diag::err_operator_new_delete_invalid_result_type)
6438    << FnDecl->getDeclName() << ExpectedResultType;
6439
6440  // A function template must have at least 2 parameters.
6441  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
6442    return SemaRef.Diag(FnDecl->getLocation(),
6443                      diag::err_operator_new_delete_template_too_few_parameters)
6444        << FnDecl->getDeclName();
6445
6446  // The function decl must have at least 1 parameter.
6447  if (FnDecl->getNumParams() == 0)
6448    return SemaRef.Diag(FnDecl->getLocation(),
6449                        diag::err_operator_new_delete_too_few_parameters)
6450      << FnDecl->getDeclName();
6451
6452  // Check the the first parameter type is not dependent.
6453  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
6454  if (FirstParamType->isDependentType())
6455    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
6456      << FnDecl->getDeclName() << ExpectedFirstParamType;
6457
6458  // Check that the first parameter type is what we expect.
6459  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
6460      ExpectedFirstParamType)
6461    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
6462    << FnDecl->getDeclName() << ExpectedFirstParamType;
6463
6464  return false;
6465}
6466
6467static bool
6468CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
6469  // C++ [basic.stc.dynamic.allocation]p1:
6470  //   A program is ill-formed if an allocation function is declared in a
6471  //   namespace scope other than global scope or declared static in global
6472  //   scope.
6473  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6474    return true;
6475
6476  CanQualType SizeTy =
6477    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
6478
6479  // C++ [basic.stc.dynamic.allocation]p1:
6480  //  The return type shall be void*. The first parameter shall have type
6481  //  std::size_t.
6482  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
6483                                  SizeTy,
6484                                  diag::err_operator_new_dependent_param_type,
6485                                  diag::err_operator_new_param_type))
6486    return true;
6487
6488  // C++ [basic.stc.dynamic.allocation]p1:
6489  //  The first parameter shall not have an associated default argument.
6490  if (FnDecl->getParamDecl(0)->hasDefaultArg())
6491    return SemaRef.Diag(FnDecl->getLocation(),
6492                        diag::err_operator_new_default_arg)
6493      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
6494
6495  return false;
6496}
6497
6498static bool
6499CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
6500  // C++ [basic.stc.dynamic.deallocation]p1:
6501  //   A program is ill-formed if deallocation functions are declared in a
6502  //   namespace scope other than global scope or declared static in global
6503  //   scope.
6504  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6505    return true;
6506
6507  // C++ [basic.stc.dynamic.deallocation]p2:
6508  //   Each deallocation function shall return void and its first parameter
6509  //   shall be void*.
6510  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
6511                                  SemaRef.Context.VoidPtrTy,
6512                                 diag::err_operator_delete_dependent_param_type,
6513                                 diag::err_operator_delete_param_type))
6514    return true;
6515
6516  return false;
6517}
6518
6519/// CheckOverloadedOperatorDeclaration - Check whether the declaration
6520/// of this overloaded operator is well-formed. If so, returns false;
6521/// otherwise, emits appropriate diagnostics and returns true.
6522bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
6523  assert(FnDecl && FnDecl->isOverloadedOperator() &&
6524         "Expected an overloaded operator declaration");
6525
6526  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
6527
6528  // C++ [over.oper]p5:
6529  //   The allocation and deallocation functions, operator new,
6530  //   operator new[], operator delete and operator delete[], are
6531  //   described completely in 3.7.3. The attributes and restrictions
6532  //   found in the rest of this subclause do not apply to them unless
6533  //   explicitly stated in 3.7.3.
6534  if (Op == OO_Delete || Op == OO_Array_Delete)
6535    return CheckOperatorDeleteDeclaration(*this, FnDecl);
6536
6537  if (Op == OO_New || Op == OO_Array_New)
6538    return CheckOperatorNewDeclaration(*this, FnDecl);
6539
6540  // C++ [over.oper]p6:
6541  //   An operator function shall either be a non-static member
6542  //   function or be a non-member function and have at least one
6543  //   parameter whose type is a class, a reference to a class, an
6544  //   enumeration, or a reference to an enumeration.
6545  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
6546    if (MethodDecl->isStatic())
6547      return Diag(FnDecl->getLocation(),
6548                  diag::err_operator_overload_static) << FnDecl->getDeclName();
6549  } else {
6550    bool ClassOrEnumParam = false;
6551    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
6552                                   ParamEnd = FnDecl->param_end();
6553         Param != ParamEnd; ++Param) {
6554      QualType ParamType = (*Param)->getType().getNonReferenceType();
6555      if (ParamType->isDependentType() || ParamType->isRecordType() ||
6556          ParamType->isEnumeralType()) {
6557        ClassOrEnumParam = true;
6558        break;
6559      }
6560    }
6561
6562    if (!ClassOrEnumParam)
6563      return Diag(FnDecl->getLocation(),
6564                  diag::err_operator_overload_needs_class_or_enum)
6565        << FnDecl->getDeclName();
6566  }
6567
6568  // C++ [over.oper]p8:
6569  //   An operator function cannot have default arguments (8.3.6),
6570  //   except where explicitly stated below.
6571  //
6572  // Only the function-call operator allows default arguments
6573  // (C++ [over.call]p1).
6574  if (Op != OO_Call) {
6575    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
6576         Param != FnDecl->param_end(); ++Param) {
6577      if ((*Param)->hasDefaultArg())
6578        return Diag((*Param)->getLocation(),
6579                    diag::err_operator_overload_default_arg)
6580          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
6581    }
6582  }
6583
6584  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
6585    { false, false, false }
6586#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
6587    , { Unary, Binary, MemberOnly }
6588#include "clang/Basic/OperatorKinds.def"
6589  };
6590
6591  bool CanBeUnaryOperator = OperatorUses[Op][0];
6592  bool CanBeBinaryOperator = OperatorUses[Op][1];
6593  bool MustBeMemberOperator = OperatorUses[Op][2];
6594
6595  // C++ [over.oper]p8:
6596  //   [...] Operator functions cannot have more or fewer parameters
6597  //   than the number required for the corresponding operator, as
6598  //   described in the rest of this subclause.
6599  unsigned NumParams = FnDecl->getNumParams()
6600                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
6601  if (Op != OO_Call &&
6602      ((NumParams == 1 && !CanBeUnaryOperator) ||
6603       (NumParams == 2 && !CanBeBinaryOperator) ||
6604       (NumParams < 1) || (NumParams > 2))) {
6605    // We have the wrong number of parameters.
6606    unsigned ErrorKind;
6607    if (CanBeUnaryOperator && CanBeBinaryOperator) {
6608      ErrorKind = 2;  // 2 -> unary or binary.
6609    } else if (CanBeUnaryOperator) {
6610      ErrorKind = 0;  // 0 -> unary
6611    } else {
6612      assert(CanBeBinaryOperator &&
6613             "All non-call overloaded operators are unary or binary!");
6614      ErrorKind = 1;  // 1 -> binary
6615    }
6616
6617    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
6618      << FnDecl->getDeclName() << NumParams << ErrorKind;
6619  }
6620
6621  // Overloaded operators other than operator() cannot be variadic.
6622  if (Op != OO_Call &&
6623      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
6624    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
6625      << FnDecl->getDeclName();
6626  }
6627
6628  // Some operators must be non-static member functions.
6629  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
6630    return Diag(FnDecl->getLocation(),
6631                diag::err_operator_overload_must_be_member)
6632      << FnDecl->getDeclName();
6633  }
6634
6635  // C++ [over.inc]p1:
6636  //   The user-defined function called operator++ implements the
6637  //   prefix and postfix ++ operator. If this function is a member
6638  //   function with no parameters, or a non-member function with one
6639  //   parameter of class or enumeration type, it defines the prefix
6640  //   increment operator ++ for objects of that type. If the function
6641  //   is a member function with one parameter (which shall be of type
6642  //   int) or a non-member function with two parameters (the second
6643  //   of which shall be of type int), it defines the postfix
6644  //   increment operator ++ for objects of that type.
6645  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
6646    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
6647    bool ParamIsInt = false;
6648    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
6649      ParamIsInt = BT->getKind() == BuiltinType::Int;
6650
6651    if (!ParamIsInt)
6652      return Diag(LastParam->getLocation(),
6653                  diag::err_operator_overload_post_incdec_must_be_int)
6654        << LastParam->getType() << (Op == OO_MinusMinus);
6655  }
6656
6657  return false;
6658}
6659
6660/// CheckLiteralOperatorDeclaration - Check whether the declaration
6661/// of this literal operator function is well-formed. If so, returns
6662/// false; otherwise, emits appropriate diagnostics and returns true.
6663bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
6664  DeclContext *DC = FnDecl->getDeclContext();
6665  Decl::Kind Kind = DC->getDeclKind();
6666  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
6667      Kind != Decl::LinkageSpec) {
6668    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
6669      << FnDecl->getDeclName();
6670    return true;
6671  }
6672
6673  bool Valid = false;
6674
6675  // template <char...> type operator "" name() is the only valid template
6676  // signature, and the only valid signature with no parameters.
6677  if (FnDecl->param_size() == 0) {
6678    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
6679      // Must have only one template parameter
6680      TemplateParameterList *Params = TpDecl->getTemplateParameters();
6681      if (Params->size() == 1) {
6682        NonTypeTemplateParmDecl *PmDecl =
6683          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
6684
6685        // The template parameter must be a char parameter pack.
6686        if (PmDecl && PmDecl->isTemplateParameterPack() &&
6687            Context.hasSameType(PmDecl->getType(), Context.CharTy))
6688          Valid = true;
6689      }
6690    }
6691  } else {
6692    // Check the first parameter
6693    FunctionDecl::param_iterator Param = FnDecl->param_begin();
6694
6695    QualType T = (*Param)->getType();
6696
6697    // unsigned long long int, long double, and any character type are allowed
6698    // as the only parameters.
6699    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
6700        Context.hasSameType(T, Context.LongDoubleTy) ||
6701        Context.hasSameType(T, Context.CharTy) ||
6702        Context.hasSameType(T, Context.WCharTy) ||
6703        Context.hasSameType(T, Context.Char16Ty) ||
6704        Context.hasSameType(T, Context.Char32Ty)) {
6705      if (++Param == FnDecl->param_end())
6706        Valid = true;
6707      goto FinishedParams;
6708    }
6709
6710    // Otherwise it must be a pointer to const; let's strip those qualifiers.
6711    const PointerType *PT = T->getAs<PointerType>();
6712    if (!PT)
6713      goto FinishedParams;
6714    T = PT->getPointeeType();
6715    if (!T.isConstQualified())
6716      goto FinishedParams;
6717    T = T.getUnqualifiedType();
6718
6719    // Move on to the second parameter;
6720    ++Param;
6721
6722    // If there is no second parameter, the first must be a const char *
6723    if (Param == FnDecl->param_end()) {
6724      if (Context.hasSameType(T, Context.CharTy))
6725        Valid = true;
6726      goto FinishedParams;
6727    }
6728
6729    // const char *, const wchar_t*, const char16_t*, and const char32_t*
6730    // are allowed as the first parameter to a two-parameter function
6731    if (!(Context.hasSameType(T, Context.CharTy) ||
6732          Context.hasSameType(T, Context.WCharTy) ||
6733          Context.hasSameType(T, Context.Char16Ty) ||
6734          Context.hasSameType(T, Context.Char32Ty)))
6735      goto FinishedParams;
6736
6737    // The second and final parameter must be an std::size_t
6738    T = (*Param)->getType().getUnqualifiedType();
6739    if (Context.hasSameType(T, Context.getSizeType()) &&
6740        ++Param == FnDecl->param_end())
6741      Valid = true;
6742  }
6743
6744  // FIXME: This diagnostic is absolutely terrible.
6745FinishedParams:
6746  if (!Valid) {
6747    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
6748      << FnDecl->getDeclName();
6749    return true;
6750  }
6751
6752  return false;
6753}
6754
6755/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6756/// linkage specification, including the language and (if present)
6757/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6758/// the location of the language string literal, which is provided
6759/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6760/// the '{' brace. Otherwise, this linkage specification does not
6761/// have any braces.
6762Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
6763                                           SourceLocation LangLoc,
6764                                           llvm::StringRef Lang,
6765                                           SourceLocation LBraceLoc) {
6766  LinkageSpecDecl::LanguageIDs Language;
6767  if (Lang == "\"C\"")
6768    Language = LinkageSpecDecl::lang_c;
6769  else if (Lang == "\"C++\"")
6770    Language = LinkageSpecDecl::lang_cxx;
6771  else {
6772    Diag(LangLoc, diag::err_bad_language);
6773    return 0;
6774  }
6775
6776  // FIXME: Add all the various semantics of linkage specifications
6777
6778  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6779                                               ExternLoc, LangLoc, Language);
6780  CurContext->addDecl(D);
6781  PushDeclContext(S, D);
6782  return D;
6783}
6784
6785/// ActOnFinishLinkageSpecification - Complete the definition of
6786/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6787/// valid, it's the position of the closing '}' brace in a linkage
6788/// specification that uses braces.
6789Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6790                                            Decl *LinkageSpec,
6791                                            SourceLocation RBraceLoc) {
6792  if (LinkageSpec) {
6793    if (RBraceLoc.isValid()) {
6794      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
6795      LSDecl->setRBraceLoc(RBraceLoc);
6796    }
6797    PopDeclContext();
6798  }
6799  return LinkageSpec;
6800}
6801
6802/// \brief Perform semantic analysis for the variable declaration that
6803/// occurs within a C++ catch clause, returning the newly-created
6804/// variable.
6805VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
6806                                         TypeSourceInfo *TInfo,
6807                                         SourceLocation StartLoc,
6808                                         SourceLocation Loc,
6809                                         IdentifierInfo *Name) {
6810  bool Invalid = false;
6811  QualType ExDeclType = TInfo->getType();
6812
6813  // Arrays and functions decay.
6814  if (ExDeclType->isArrayType())
6815    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6816  else if (ExDeclType->isFunctionType())
6817    ExDeclType = Context.getPointerType(ExDeclType);
6818
6819  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6820  // The exception-declaration shall not denote a pointer or reference to an
6821  // incomplete type, other than [cv] void*.
6822  // N2844 forbids rvalue references.
6823  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6824    Diag(Loc, diag::err_catch_rvalue_ref);
6825    Invalid = true;
6826  }
6827
6828  // GCC allows catching pointers and references to incomplete types
6829  // as an extension; so do we, but we warn by default.
6830
6831  QualType BaseType = ExDeclType;
6832  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6833  unsigned DK = diag::err_catch_incomplete;
6834  bool IncompleteCatchIsInvalid = true;
6835  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6836    BaseType = Ptr->getPointeeType();
6837    Mode = 1;
6838    DK = diag::ext_catch_incomplete_ptr;
6839    IncompleteCatchIsInvalid = false;
6840  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6841    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6842    BaseType = Ref->getPointeeType();
6843    Mode = 2;
6844    DK = diag::ext_catch_incomplete_ref;
6845    IncompleteCatchIsInvalid = false;
6846  }
6847  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6848      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6849      IncompleteCatchIsInvalid)
6850    Invalid = true;
6851
6852  if (!Invalid && !ExDeclType->isDependentType() &&
6853      RequireNonAbstractType(Loc, ExDeclType,
6854                             diag::err_abstract_type_in_decl,
6855                             AbstractVariableType))
6856    Invalid = true;
6857
6858  // Only the non-fragile NeXT runtime currently supports C++ catches
6859  // of ObjC types, and no runtime supports catching ObjC types by value.
6860  if (!Invalid && getLangOptions().ObjC1) {
6861    QualType T = ExDeclType;
6862    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6863      T = RT->getPointeeType();
6864
6865    if (T->isObjCObjectType()) {
6866      Diag(Loc, diag::err_objc_object_catch);
6867      Invalid = true;
6868    } else if (T->isObjCObjectPointerType()) {
6869      if (!getLangOptions().ObjCNonFragileABI) {
6870        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6871        Invalid = true;
6872      }
6873    }
6874  }
6875
6876  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
6877                                    ExDeclType, TInfo, SC_None, SC_None);
6878  ExDecl->setExceptionVariable(true);
6879
6880  if (!Invalid) {
6881    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
6882      // C++ [except.handle]p16:
6883      //   The object declared in an exception-declaration or, if the
6884      //   exception-declaration does not specify a name, a temporary (12.2) is
6885      //   copy-initialized (8.5) from the exception object. [...]
6886      //   The object is destroyed when the handler exits, after the destruction
6887      //   of any automatic objects initialized within the handler.
6888      //
6889      // We just pretend to initialize the object with itself, then make sure
6890      // it can be destroyed later.
6891      QualType initType = ExDeclType;
6892
6893      InitializedEntity entity =
6894        InitializedEntity::InitializeVariable(ExDecl);
6895      InitializationKind initKind =
6896        InitializationKind::CreateCopy(Loc, SourceLocation());
6897
6898      Expr *opaqueValue =
6899        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
6900      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
6901      ExprResult result = sequence.Perform(*this, entity, initKind,
6902                                           MultiExprArg(&opaqueValue, 1));
6903      if (result.isInvalid())
6904        Invalid = true;
6905      else {
6906        // If the constructor used was non-trivial, set this as the
6907        // "initializer".
6908        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
6909        if (!construct->getConstructor()->isTrivial()) {
6910          Expr *init = MaybeCreateExprWithCleanups(construct);
6911          ExDecl->setInit(init);
6912        }
6913
6914        // And make sure it's destructable.
6915        FinalizeVarWithDestructor(ExDecl, recordType);
6916      }
6917    }
6918  }
6919
6920  if (Invalid)
6921    ExDecl->setInvalidDecl();
6922
6923  return ExDecl;
6924}
6925
6926/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6927/// handler.
6928Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6929  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6930  bool Invalid = D.isInvalidType();
6931
6932  // Check for unexpanded parameter packs.
6933  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6934                                               UPPC_ExceptionType)) {
6935    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6936                                             D.getIdentifierLoc());
6937    Invalid = true;
6938  }
6939
6940  IdentifierInfo *II = D.getIdentifier();
6941  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6942                                             LookupOrdinaryName,
6943                                             ForRedeclaration)) {
6944    // The scope should be freshly made just for us. There is just no way
6945    // it contains any previous declaration.
6946    assert(!S->isDeclScope(PrevDecl));
6947    if (PrevDecl->isTemplateParameter()) {
6948      // Maybe we will complain about the shadowed template parameter.
6949      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6950    }
6951  }
6952
6953  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6954    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6955      << D.getCXXScopeSpec().getRange();
6956    Invalid = true;
6957  }
6958
6959  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6960                                              D.getSourceRange().getBegin(),
6961                                              D.getIdentifierLoc(),
6962                                              D.getIdentifier());
6963  if (Invalid)
6964    ExDecl->setInvalidDecl();
6965
6966  // Add the exception declaration into this scope.
6967  if (II)
6968    PushOnScopeChains(ExDecl, S);
6969  else
6970    CurContext->addDecl(ExDecl);
6971
6972  ProcessDeclAttributes(S, ExDecl, D);
6973  return ExDecl;
6974}
6975
6976Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
6977                                         Expr *AssertExpr,
6978                                         Expr *AssertMessageExpr_,
6979                                         SourceLocation RParenLoc) {
6980  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6981
6982  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6983    llvm::APSInt Value(32);
6984    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6985      Diag(StaticAssertLoc,
6986           diag::err_static_assert_expression_is_not_constant) <<
6987        AssertExpr->getSourceRange();
6988      return 0;
6989    }
6990
6991    if (Value == 0) {
6992      Diag(StaticAssertLoc, diag::err_static_assert_failed)
6993        << AssertMessage->getString() << AssertExpr->getSourceRange();
6994    }
6995  }
6996
6997  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
6998    return 0;
6999
7000  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
7001                                        AssertExpr, AssertMessage, RParenLoc);
7002
7003  CurContext->addDecl(Decl);
7004  return Decl;
7005}
7006
7007/// \brief Perform semantic analysis of the given friend type declaration.
7008///
7009/// \returns A friend declaration that.
7010FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
7011                                      TypeSourceInfo *TSInfo) {
7012  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
7013
7014  QualType T = TSInfo->getType();
7015  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
7016
7017  if (!getLangOptions().CPlusPlus0x) {
7018    // C++03 [class.friend]p2:
7019    //   An elaborated-type-specifier shall be used in a friend declaration
7020    //   for a class.*
7021    //
7022    //   * The class-key of the elaborated-type-specifier is required.
7023    if (!ActiveTemplateInstantiations.empty()) {
7024      // Do not complain about the form of friend template types during
7025      // template instantiation; we will already have complained when the
7026      // template was declared.
7027    } else if (!T->isElaboratedTypeSpecifier()) {
7028      // If we evaluated the type to a record type, suggest putting
7029      // a tag in front.
7030      if (const RecordType *RT = T->getAs<RecordType>()) {
7031        RecordDecl *RD = RT->getDecl();
7032
7033        std::string InsertionText = std::string(" ") + RD->getKindName();
7034
7035        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
7036          << (unsigned) RD->getTagKind()
7037          << T
7038          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
7039                                        InsertionText);
7040      } else {
7041        Diag(FriendLoc, diag::ext_nonclass_type_friend)
7042          << T
7043          << SourceRange(FriendLoc, TypeRange.getEnd());
7044      }
7045    } else if (T->getAs<EnumType>()) {
7046      Diag(FriendLoc, diag::ext_enum_friend)
7047        << T
7048        << SourceRange(FriendLoc, TypeRange.getEnd());
7049    }
7050  }
7051
7052  // C++0x [class.friend]p3:
7053  //   If the type specifier in a friend declaration designates a (possibly
7054  //   cv-qualified) class type, that class is declared as a friend; otherwise,
7055  //   the friend declaration is ignored.
7056
7057  // FIXME: C++0x has some syntactic restrictions on friend type declarations
7058  // in [class.friend]p3 that we do not implement.
7059
7060  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
7061}
7062
7063/// Handle a friend tag declaration where the scope specifier was
7064/// templated.
7065Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
7066                                    unsigned TagSpec, SourceLocation TagLoc,
7067                                    CXXScopeSpec &SS,
7068                                    IdentifierInfo *Name, SourceLocation NameLoc,
7069                                    AttributeList *Attr,
7070                                    MultiTemplateParamsArg TempParamLists) {
7071  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7072
7073  bool isExplicitSpecialization = false;
7074  bool Invalid = false;
7075
7076  if (TemplateParameterList *TemplateParams
7077        = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
7078                                                  TempParamLists.get(),
7079                                                  TempParamLists.size(),
7080                                                  /*friend*/ true,
7081                                                  isExplicitSpecialization,
7082                                                  Invalid)) {
7083    if (TemplateParams->size() > 0) {
7084      // This is a declaration of a class template.
7085      if (Invalid)
7086        return 0;
7087
7088      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
7089                                SS, Name, NameLoc, Attr,
7090                                TemplateParams, AS_public,
7091                                TempParamLists.size() - 1,
7092                   (TemplateParameterList**) TempParamLists.release()).take();
7093    } else {
7094      // The "template<>" header is extraneous.
7095      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7096        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7097      isExplicitSpecialization = true;
7098    }
7099  }
7100
7101  if (Invalid) return 0;
7102
7103  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
7104
7105  bool isAllExplicitSpecializations = true;
7106  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
7107    if (TempParamLists.get()[I]->size()) {
7108      isAllExplicitSpecializations = false;
7109      break;
7110    }
7111  }
7112
7113  // FIXME: don't ignore attributes.
7114
7115  // If it's explicit specializations all the way down, just forget
7116  // about the template header and build an appropriate non-templated
7117  // friend.  TODO: for source fidelity, remember the headers.
7118  if (isAllExplicitSpecializations) {
7119    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7120    ElaboratedTypeKeyword Keyword
7121      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7122    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
7123                                   *Name, NameLoc);
7124    if (T.isNull())
7125      return 0;
7126
7127    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7128    if (isa<DependentNameType>(T)) {
7129      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
7130      TL.setKeywordLoc(TagLoc);
7131      TL.setQualifierLoc(QualifierLoc);
7132      TL.setNameLoc(NameLoc);
7133    } else {
7134      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
7135      TL.setKeywordLoc(TagLoc);
7136      TL.setQualifierLoc(QualifierLoc);
7137      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
7138    }
7139
7140    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
7141                                            TSI, FriendLoc);
7142    Friend->setAccess(AS_public);
7143    CurContext->addDecl(Friend);
7144    return Friend;
7145  }
7146
7147  // Handle the case of a templated-scope friend class.  e.g.
7148  //   template <class T> class A<T>::B;
7149  // FIXME: we don't support these right now.
7150  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7151  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
7152  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7153  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
7154  TL.setKeywordLoc(TagLoc);
7155  TL.setQualifierLoc(SS.getWithLocInContext(Context));
7156  TL.setNameLoc(NameLoc);
7157
7158  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
7159                                          TSI, FriendLoc);
7160  Friend->setAccess(AS_public);
7161  Friend->setUnsupportedFriend(true);
7162  CurContext->addDecl(Friend);
7163  return Friend;
7164}
7165
7166
7167/// Handle a friend type declaration.  This works in tandem with
7168/// ActOnTag.
7169///
7170/// Notes on friend class templates:
7171///
7172/// We generally treat friend class declarations as if they were
7173/// declaring a class.  So, for example, the elaborated type specifier
7174/// in a friend declaration is required to obey the restrictions of a
7175/// class-head (i.e. no typedefs in the scope chain), template
7176/// parameters are required to match up with simple template-ids, &c.
7177/// However, unlike when declaring a template specialization, it's
7178/// okay to refer to a template specialization without an empty
7179/// template parameter declaration, e.g.
7180///   friend class A<T>::B<unsigned>;
7181/// We permit this as a special case; if there are any template
7182/// parameters present at all, require proper matching, i.e.
7183///   template <> template <class T> friend class A<int>::B;
7184Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
7185                                MultiTemplateParamsArg TempParams) {
7186  SourceLocation Loc = DS.getSourceRange().getBegin();
7187
7188  assert(DS.isFriendSpecified());
7189  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
7190
7191  // Try to convert the decl specifier to a type.  This works for
7192  // friend templates because ActOnTag never produces a ClassTemplateDecl
7193  // for a TUK_Friend.
7194  Declarator TheDeclarator(DS, Declarator::MemberContext);
7195  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
7196  QualType T = TSI->getType();
7197  if (TheDeclarator.isInvalidType())
7198    return 0;
7199
7200  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
7201    return 0;
7202
7203  // This is definitely an error in C++98.  It's probably meant to
7204  // be forbidden in C++0x, too, but the specification is just
7205  // poorly written.
7206  //
7207  // The problem is with declarations like the following:
7208  //   template <T> friend A<T>::foo;
7209  // where deciding whether a class C is a friend or not now hinges
7210  // on whether there exists an instantiation of A that causes
7211  // 'foo' to equal C.  There are restrictions on class-heads
7212  // (which we declare (by fiat) elaborated friend declarations to
7213  // be) that makes this tractable.
7214  //
7215  // FIXME: handle "template <> friend class A<T>;", which
7216  // is possibly well-formed?  Who even knows?
7217  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
7218    Diag(Loc, diag::err_tagless_friend_type_template)
7219      << DS.getSourceRange();
7220    return 0;
7221  }
7222
7223  // C++98 [class.friend]p1: A friend of a class is a function
7224  //   or class that is not a member of the class . . .
7225  // This is fixed in DR77, which just barely didn't make the C++03
7226  // deadline.  It's also a very silly restriction that seriously
7227  // affects inner classes and which nobody else seems to implement;
7228  // thus we never diagnose it, not even in -pedantic.
7229  //
7230  // But note that we could warn about it: it's always useless to
7231  // friend one of your own members (it's not, however, worthless to
7232  // friend a member of an arbitrary specialization of your template).
7233
7234  Decl *D;
7235  if (unsigned NumTempParamLists = TempParams.size())
7236    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
7237                                   NumTempParamLists,
7238                                   TempParams.release(),
7239                                   TSI,
7240                                   DS.getFriendSpecLoc());
7241  else
7242    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
7243
7244  if (!D)
7245    return 0;
7246
7247  D->setAccess(AS_public);
7248  CurContext->addDecl(D);
7249
7250  return D;
7251}
7252
7253Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
7254                                    MultiTemplateParamsArg TemplateParams) {
7255  const DeclSpec &DS = D.getDeclSpec();
7256
7257  assert(DS.isFriendSpecified());
7258  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
7259
7260  SourceLocation Loc = D.getIdentifierLoc();
7261  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7262  QualType T = TInfo->getType();
7263
7264  // C++ [class.friend]p1
7265  //   A friend of a class is a function or class....
7266  // Note that this sees through typedefs, which is intended.
7267  // It *doesn't* see through dependent types, which is correct
7268  // according to [temp.arg.type]p3:
7269  //   If a declaration acquires a function type through a
7270  //   type dependent on a template-parameter and this causes
7271  //   a declaration that does not use the syntactic form of a
7272  //   function declarator to have a function type, the program
7273  //   is ill-formed.
7274  if (!T->isFunctionType()) {
7275    Diag(Loc, diag::err_unexpected_friend);
7276
7277    // It might be worthwhile to try to recover by creating an
7278    // appropriate declaration.
7279    return 0;
7280  }
7281
7282  // C++ [namespace.memdef]p3
7283  //  - If a friend declaration in a non-local class first declares a
7284  //    class or function, the friend class or function is a member
7285  //    of the innermost enclosing namespace.
7286  //  - The name of the friend is not found by simple name lookup
7287  //    until a matching declaration is provided in that namespace
7288  //    scope (either before or after the class declaration granting
7289  //    friendship).
7290  //  - If a friend function is called, its name may be found by the
7291  //    name lookup that considers functions from namespaces and
7292  //    classes associated with the types of the function arguments.
7293  //  - When looking for a prior declaration of a class or a function
7294  //    declared as a friend, scopes outside the innermost enclosing
7295  //    namespace scope are not considered.
7296
7297  CXXScopeSpec &SS = D.getCXXScopeSpec();
7298  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7299  DeclarationName Name = NameInfo.getName();
7300  assert(Name);
7301
7302  // Check for unexpanded parameter packs.
7303  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
7304      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
7305      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
7306    return 0;
7307
7308  // The context we found the declaration in, or in which we should
7309  // create the declaration.
7310  DeclContext *DC;
7311  Scope *DCScope = S;
7312  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
7313                        ForRedeclaration);
7314
7315  // FIXME: there are different rules in local classes
7316
7317  // There are four cases here.
7318  //   - There's no scope specifier, in which case we just go to the
7319  //     appropriate scope and look for a function or function template
7320  //     there as appropriate.
7321  // Recover from invalid scope qualifiers as if they just weren't there.
7322  if (SS.isInvalid() || !SS.isSet()) {
7323    // C++0x [namespace.memdef]p3:
7324    //   If the name in a friend declaration is neither qualified nor
7325    //   a template-id and the declaration is a function or an
7326    //   elaborated-type-specifier, the lookup to determine whether
7327    //   the entity has been previously declared shall not consider
7328    //   any scopes outside the innermost enclosing namespace.
7329    // C++0x [class.friend]p11:
7330    //   If a friend declaration appears in a local class and the name
7331    //   specified is an unqualified name, a prior declaration is
7332    //   looked up without considering scopes that are outside the
7333    //   innermost enclosing non-class scope. For a friend function
7334    //   declaration, if there is no prior declaration, the program is
7335    //   ill-formed.
7336    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
7337    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
7338
7339    // Find the appropriate context according to the above.
7340    DC = CurContext;
7341    while (true) {
7342      // Skip class contexts.  If someone can cite chapter and verse
7343      // for this behavior, that would be nice --- it's what GCC and
7344      // EDG do, and it seems like a reasonable intent, but the spec
7345      // really only says that checks for unqualified existing
7346      // declarations should stop at the nearest enclosing namespace,
7347      // not that they should only consider the nearest enclosing
7348      // namespace.
7349      while (DC->isRecord())
7350        DC = DC->getParent();
7351
7352      LookupQualifiedName(Previous, DC);
7353
7354      // TODO: decide what we think about using declarations.
7355      if (isLocal || !Previous.empty())
7356        break;
7357
7358      if (isTemplateId) {
7359        if (isa<TranslationUnitDecl>(DC)) break;
7360      } else {
7361        if (DC->isFileContext()) break;
7362      }
7363      DC = DC->getParent();
7364    }
7365
7366    // C++ [class.friend]p1: A friend of a class is a function or
7367    //   class that is not a member of the class . . .
7368    // C++0x changes this for both friend types and functions.
7369    // Most C++ 98 compilers do seem to give an error here, so
7370    // we do, too.
7371    if (!Previous.empty() && DC->Equals(CurContext)
7372        && !getLangOptions().CPlusPlus0x)
7373      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
7374
7375    DCScope = getScopeForDeclContext(S, DC);
7376
7377  //   - There's a non-dependent scope specifier, in which case we
7378  //     compute it and do a previous lookup there for a function
7379  //     or function template.
7380  } else if (!SS.getScopeRep()->isDependent()) {
7381    DC = computeDeclContext(SS);
7382    if (!DC) return 0;
7383
7384    if (RequireCompleteDeclContext(SS, DC)) return 0;
7385
7386    LookupQualifiedName(Previous, DC);
7387
7388    // Ignore things found implicitly in the wrong scope.
7389    // TODO: better diagnostics for this case.  Suggesting the right
7390    // qualified scope would be nice...
7391    LookupResult::Filter F = Previous.makeFilter();
7392    while (F.hasNext()) {
7393      NamedDecl *D = F.next();
7394      if (!DC->InEnclosingNamespaceSetOf(
7395              D->getDeclContext()->getRedeclContext()))
7396        F.erase();
7397    }
7398    F.done();
7399
7400    if (Previous.empty()) {
7401      D.setInvalidType();
7402      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
7403      return 0;
7404    }
7405
7406    // C++ [class.friend]p1: A friend of a class is a function or
7407    //   class that is not a member of the class . . .
7408    if (DC->Equals(CurContext))
7409      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
7410
7411  //   - There's a scope specifier that does not match any template
7412  //     parameter lists, in which case we use some arbitrary context,
7413  //     create a method or method template, and wait for instantiation.
7414  //   - There's a scope specifier that does match some template
7415  //     parameter lists, which we don't handle right now.
7416  } else {
7417    DC = CurContext;
7418    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
7419  }
7420
7421  if (!DC->isRecord()) {
7422    // This implies that it has to be an operator or function.
7423    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
7424        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
7425        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
7426      Diag(Loc, diag::err_introducing_special_friend) <<
7427        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
7428         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
7429      return 0;
7430    }
7431  }
7432
7433  bool Redeclaration = false;
7434  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
7435                                          move(TemplateParams),
7436                                          IsDefinition,
7437                                          Redeclaration);
7438  if (!ND) return 0;
7439
7440  assert(ND->getDeclContext() == DC);
7441  assert(ND->getLexicalDeclContext() == CurContext);
7442
7443  // Add the function declaration to the appropriate lookup tables,
7444  // adjusting the redeclarations list as necessary.  We don't
7445  // want to do this yet if the friending class is dependent.
7446  //
7447  // Also update the scope-based lookup if the target context's
7448  // lookup context is in lexical scope.
7449  if (!CurContext->isDependentContext()) {
7450    DC = DC->getRedeclContext();
7451    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
7452    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7453      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
7454  }
7455
7456  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
7457                                       D.getIdentifierLoc(), ND,
7458                                       DS.getFriendSpecLoc());
7459  FrD->setAccess(AS_public);
7460  CurContext->addDecl(FrD);
7461
7462  if (ND->isInvalidDecl())
7463    FrD->setInvalidDecl();
7464  else {
7465    FunctionDecl *FD;
7466    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
7467      FD = FTD->getTemplatedDecl();
7468    else
7469      FD = cast<FunctionDecl>(ND);
7470
7471    // Mark templated-scope function declarations as unsupported.
7472    if (FD->getNumTemplateParameterLists())
7473      FrD->setUnsupportedFriend(true);
7474  }
7475
7476  return ND;
7477}
7478
7479void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
7480  AdjustDeclIfTemplate(Dcl);
7481
7482  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
7483  if (!Fn) {
7484    Diag(DelLoc, diag::err_deleted_non_function);
7485    return;
7486  }
7487  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
7488    Diag(DelLoc, diag::err_deleted_decl_not_first);
7489    Diag(Prev->getLocation(), diag::note_previous_declaration);
7490    // If the declaration wasn't the first, we delete the function anyway for
7491    // recovery.
7492  }
7493  Fn->setDeleted();
7494}
7495
7496static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
7497  for (Stmt::child_range CI = S->children(); CI; ++CI) {
7498    Stmt *SubStmt = *CI;
7499    if (!SubStmt)
7500      continue;
7501    if (isa<ReturnStmt>(SubStmt))
7502      Self.Diag(SubStmt->getSourceRange().getBegin(),
7503           diag::err_return_in_constructor_handler);
7504    if (!isa<Expr>(SubStmt))
7505      SearchForReturnInStmt(Self, SubStmt);
7506  }
7507}
7508
7509void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
7510  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
7511    CXXCatchStmt *Handler = TryBlock->getHandler(I);
7512    SearchForReturnInStmt(*this, Handler);
7513  }
7514}
7515
7516bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
7517                                             const CXXMethodDecl *Old) {
7518  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
7519  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
7520
7521  if (Context.hasSameType(NewTy, OldTy) ||
7522      NewTy->isDependentType() || OldTy->isDependentType())
7523    return false;
7524
7525  // Check if the return types are covariant
7526  QualType NewClassTy, OldClassTy;
7527
7528  /// Both types must be pointers or references to classes.
7529  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
7530    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
7531      NewClassTy = NewPT->getPointeeType();
7532      OldClassTy = OldPT->getPointeeType();
7533    }
7534  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
7535    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
7536      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
7537        NewClassTy = NewRT->getPointeeType();
7538        OldClassTy = OldRT->getPointeeType();
7539      }
7540    }
7541  }
7542
7543  // The return types aren't either both pointers or references to a class type.
7544  if (NewClassTy.isNull()) {
7545    Diag(New->getLocation(),
7546         diag::err_different_return_type_for_overriding_virtual_function)
7547      << New->getDeclName() << NewTy << OldTy;
7548    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7549
7550    return true;
7551  }
7552
7553  // C++ [class.virtual]p6:
7554  //   If the return type of D::f differs from the return type of B::f, the
7555  //   class type in the return type of D::f shall be complete at the point of
7556  //   declaration of D::f or shall be the class type D.
7557  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
7558    if (!RT->isBeingDefined() &&
7559        RequireCompleteType(New->getLocation(), NewClassTy,
7560                            PDiag(diag::err_covariant_return_incomplete)
7561                              << New->getDeclName()))
7562    return true;
7563  }
7564
7565  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
7566    // Check if the new class derives from the old class.
7567    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
7568      Diag(New->getLocation(),
7569           diag::err_covariant_return_not_derived)
7570      << New->getDeclName() << NewTy << OldTy;
7571      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7572      return true;
7573    }
7574
7575    // Check if we the conversion from derived to base is valid.
7576    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
7577                    diag::err_covariant_return_inaccessible_base,
7578                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
7579                    // FIXME: Should this point to the return type?
7580                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
7581      // FIXME: this note won't trigger for delayed access control
7582      // diagnostics, and it's impossible to get an undelayed error
7583      // here from access control during the original parse because
7584      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
7585      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7586      return true;
7587    }
7588  }
7589
7590  // The qualifiers of the return types must be the same.
7591  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
7592    Diag(New->getLocation(),
7593         diag::err_covariant_return_type_different_qualifications)
7594    << New->getDeclName() << NewTy << OldTy;
7595    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7596    return true;
7597  };
7598
7599
7600  // The new class type must have the same or less qualifiers as the old type.
7601  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
7602    Diag(New->getLocation(),
7603         diag::err_covariant_return_type_class_type_more_qualified)
7604    << New->getDeclName() << NewTy << OldTy;
7605    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7606    return true;
7607  };
7608
7609  return false;
7610}
7611
7612/// \brief Mark the given method pure.
7613///
7614/// \param Method the method to be marked pure.
7615///
7616/// \param InitRange the source range that covers the "0" initializer.
7617bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
7618  SourceLocation EndLoc = InitRange.getEnd();
7619  if (EndLoc.isValid())
7620    Method->setRangeEnd(EndLoc);
7621
7622  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
7623    Method->setPure();
7624    return false;
7625  }
7626
7627  if (!Method->isInvalidDecl())
7628    Diag(Method->getLocation(), diag::err_non_virtual_pure)
7629      << Method->getDeclName() << InitRange;
7630  return true;
7631}
7632
7633/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
7634/// an initializer for the out-of-line declaration 'Dcl'.  The scope
7635/// is a fresh scope pushed for just this purpose.
7636///
7637/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
7638/// static data member of class X, names should be looked up in the scope of
7639/// class X.
7640void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
7641  // If there is no declaration, there was an error parsing it.
7642  if (D == 0) return;
7643
7644  // We should only get called for declarations with scope specifiers, like:
7645  //   int foo::bar;
7646  assert(D->isOutOfLine());
7647  EnterDeclaratorContext(S, D->getDeclContext());
7648}
7649
7650/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
7651/// initializer for the out-of-line declaration 'D'.
7652void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
7653  // If there is no declaration, there was an error parsing it.
7654  if (D == 0) return;
7655
7656  assert(D->isOutOfLine());
7657  ExitDeclaratorContext(S);
7658}
7659
7660/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
7661/// C++ if/switch/while/for statement.
7662/// e.g: "if (int x = f()) {...}"
7663DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
7664  // C++ 6.4p2:
7665  // The declarator shall not specify a function or an array.
7666  // The type-specifier-seq shall not contain typedef and shall not declare a
7667  // new class or enumeration.
7668  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
7669         "Parser allowed 'typedef' as storage class of condition decl.");
7670
7671  TagDecl *OwnedTag = 0;
7672  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
7673  QualType Ty = TInfo->getType();
7674
7675  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
7676                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
7677                              // would be created and CXXConditionDeclExpr wants a VarDecl.
7678    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
7679      << D.getSourceRange();
7680    return DeclResult();
7681  } else if (OwnedTag && OwnedTag->isDefinition()) {
7682    // The type-specifier-seq shall not declare a new class or enumeration.
7683    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
7684  }
7685
7686  Decl *Dcl = ActOnDeclarator(S, D);
7687  if (!Dcl)
7688    return DeclResult();
7689
7690  return Dcl;
7691}
7692
7693void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
7694                          bool DefinitionRequired) {
7695  // Ignore any vtable uses in unevaluated operands or for classes that do
7696  // not have a vtable.
7697  if (!Class->isDynamicClass() || Class->isDependentContext() ||
7698      CurContext->isDependentContext() ||
7699      ExprEvalContexts.back().Context == Unevaluated)
7700    return;
7701
7702  // Try to insert this class into the map.
7703  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7704  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
7705    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
7706  if (!Pos.second) {
7707    // If we already had an entry, check to see if we are promoting this vtable
7708    // to required a definition. If so, we need to reappend to the VTableUses
7709    // list, since we may have already processed the first entry.
7710    if (DefinitionRequired && !Pos.first->second) {
7711      Pos.first->second = true;
7712    } else {
7713      // Otherwise, we can early exit.
7714      return;
7715    }
7716  }
7717
7718  // Local classes need to have their virtual members marked
7719  // immediately. For all other classes, we mark their virtual members
7720  // at the end of the translation unit.
7721  if (Class->isLocalClass())
7722    MarkVirtualMembersReferenced(Loc, Class);
7723  else
7724    VTableUses.push_back(std::make_pair(Class, Loc));
7725}
7726
7727bool Sema::DefineUsedVTables() {
7728  if (VTableUses.empty())
7729    return false;
7730
7731  // Note: The VTableUses vector could grow as a result of marking
7732  // the members of a class as "used", so we check the size each
7733  // time through the loop and prefer indices (with are stable) to
7734  // iterators (which are not).
7735  for (unsigned I = 0; I != VTableUses.size(); ++I) {
7736    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
7737    if (!Class)
7738      continue;
7739
7740    SourceLocation Loc = VTableUses[I].second;
7741
7742    // If this class has a key function, but that key function is
7743    // defined in another translation unit, we don't need to emit the
7744    // vtable even though we're using it.
7745    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
7746    if (KeyFunction && !KeyFunction->hasBody()) {
7747      switch (KeyFunction->getTemplateSpecializationKind()) {
7748      case TSK_Undeclared:
7749      case TSK_ExplicitSpecialization:
7750      case TSK_ExplicitInstantiationDeclaration:
7751        // The key function is in another translation unit.
7752        continue;
7753
7754      case TSK_ExplicitInstantiationDefinition:
7755      case TSK_ImplicitInstantiation:
7756        // We will be instantiating the key function.
7757        break;
7758      }
7759    } else if (!KeyFunction) {
7760      // If we have a class with no key function that is the subject
7761      // of an explicit instantiation declaration, suppress the
7762      // vtable; it will live with the explicit instantiation
7763      // definition.
7764      bool IsExplicitInstantiationDeclaration
7765        = Class->getTemplateSpecializationKind()
7766                                      == TSK_ExplicitInstantiationDeclaration;
7767      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
7768                                 REnd = Class->redecls_end();
7769           R != REnd; ++R) {
7770        TemplateSpecializationKind TSK
7771          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
7772        if (TSK == TSK_ExplicitInstantiationDeclaration)
7773          IsExplicitInstantiationDeclaration = true;
7774        else if (TSK == TSK_ExplicitInstantiationDefinition) {
7775          IsExplicitInstantiationDeclaration = false;
7776          break;
7777        }
7778      }
7779
7780      if (IsExplicitInstantiationDeclaration)
7781        continue;
7782    }
7783
7784    // Mark all of the virtual members of this class as referenced, so
7785    // that we can build a vtable. Then, tell the AST consumer that a
7786    // vtable for this class is required.
7787    MarkVirtualMembersReferenced(Loc, Class);
7788    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7789    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
7790
7791    // Optionally warn if we're emitting a weak vtable.
7792    if (Class->getLinkage() == ExternalLinkage &&
7793        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
7794      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
7795        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
7796    }
7797  }
7798  VTableUses.clear();
7799
7800  return true;
7801}
7802
7803void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
7804                                        const CXXRecordDecl *RD) {
7805  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
7806       e = RD->method_end(); i != e; ++i) {
7807    CXXMethodDecl *MD = *i;
7808
7809    // C++ [basic.def.odr]p2:
7810    //   [...] A virtual member function is used if it is not pure. [...]
7811    if (MD->isVirtual() && !MD->isPure())
7812      MarkDeclarationReferenced(Loc, MD);
7813  }
7814
7815  // Only classes that have virtual bases need a VTT.
7816  if (RD->getNumVBases() == 0)
7817    return;
7818
7819  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
7820           e = RD->bases_end(); i != e; ++i) {
7821    const CXXRecordDecl *Base =
7822        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
7823    if (Base->getNumVBases() == 0)
7824      continue;
7825    MarkVirtualMembersReferenced(Loc, Base);
7826  }
7827}
7828
7829/// SetIvarInitializers - This routine builds initialization ASTs for the
7830/// Objective-C implementation whose ivars need be initialized.
7831void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
7832  if (!getLangOptions().CPlusPlus)
7833    return;
7834  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
7835    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
7836    CollectIvarsToConstructOrDestruct(OID, ivars);
7837    if (ivars.empty())
7838      return;
7839    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
7840    for (unsigned i = 0; i < ivars.size(); i++) {
7841      FieldDecl *Field = ivars[i];
7842      if (Field->isInvalidDecl())
7843        continue;
7844
7845      CXXCtorInitializer *Member;
7846      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
7847      InitializationKind InitKind =
7848        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
7849
7850      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
7851      ExprResult MemberInit =
7852        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
7853      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
7854      // Note, MemberInit could actually come back empty if no initialization
7855      // is required (e.g., because it would call a trivial default constructor)
7856      if (!MemberInit.get() || MemberInit.isInvalid())
7857        continue;
7858
7859      Member =
7860        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
7861                                         SourceLocation(),
7862                                         MemberInit.takeAs<Expr>(),
7863                                         SourceLocation());
7864      AllToInit.push_back(Member);
7865
7866      // Be sure that the destructor is accessible and is marked as referenced.
7867      if (const RecordType *RecordTy
7868                  = Context.getBaseElementType(Field->getType())
7869                                                        ->getAs<RecordType>()) {
7870                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
7871        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
7872          MarkDeclarationReferenced(Field->getLocation(), Destructor);
7873          CheckDestructorAccess(Field->getLocation(), Destructor,
7874                            PDiag(diag::err_access_dtor_ivar)
7875                              << Context.getBaseElementType(Field->getType()));
7876        }
7877      }
7878    }
7879    ObjCImplementation->setIvarInitializers(Context,
7880                                            AllToInit.data(), AllToInit.size());
7881  }
7882}
7883