SemaDeclCXX.cpp revision 1d110e05e0ff48c1c7a483d6b7fd094cdf28316a
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/AST/TypeOrdering.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31#include <map>
32#include <set>
33
34using namespace clang;
35
36//===----------------------------------------------------------------------===//
37// CheckDefaultArgumentVisitor
38//===----------------------------------------------------------------------===//
39
40namespace {
41  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
42  /// the default argument of a parameter to determine whether it
43  /// contains any ill-formed subexpressions. For example, this will
44  /// diagnose the use of local variables or parameters within the
45  /// default argument expression.
46  class CheckDefaultArgumentVisitor
47    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
48    Expr *DefaultArg;
49    Sema *S;
50
51  public:
52    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
53      : DefaultArg(defarg), S(s) {}
54
55    bool VisitExpr(Expr *Node);
56    bool VisitDeclRefExpr(DeclRefExpr *DRE);
57    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
58  };
59
60  /// VisitExpr - Visit all of the children of this expression.
61  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
62    bool IsInvalid = false;
63    for (Stmt::child_iterator I = Node->child_begin(),
64         E = Node->child_end(); I != E; ++I)
65      IsInvalid |= Visit(*I);
66    return IsInvalid;
67  }
68
69  /// VisitDeclRefExpr - Visit a reference to a declaration, to
70  /// determine whether this declaration can be used in the default
71  /// argument expression.
72  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
73    NamedDecl *Decl = DRE->getDecl();
74    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
75      // C++ [dcl.fct.default]p9
76      //   Default arguments are evaluated each time the function is
77      //   called. The order of evaluation of function arguments is
78      //   unspecified. Consequently, parameters of a function shall not
79      //   be used in default argument expressions, even if they are not
80      //   evaluated. Parameters of a function declared before a default
81      //   argument expression are in scope and can hide namespace and
82      //   class member names.
83      return S->Diag(DRE->getSourceRange().getBegin(),
84                     diag::err_param_default_argument_references_param)
85         << Param->getDeclName() << DefaultArg->getSourceRange();
86    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
87      // C++ [dcl.fct.default]p7
88      //   Local variables shall not be used in default argument
89      //   expressions.
90      if (VDecl->isBlockVarDecl())
91        return S->Diag(DRE->getSourceRange().getBegin(),
92                       diag::err_param_default_argument_references_local)
93          << VDecl->getDeclName() << DefaultArg->getSourceRange();
94    }
95
96    return false;
97  }
98
99  /// VisitCXXThisExpr - Visit a C++ "this" expression.
100  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
101    // C++ [dcl.fct.default]p8:
102    //   The keyword this shall not be used in a default argument of a
103    //   member function.
104    return S->Diag(ThisE->getSourceRange().getBegin(),
105                   diag::err_param_default_argument_references_this)
106               << ThisE->getSourceRange();
107  }
108}
109
110bool
111Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
112                              SourceLocation EqualLoc) {
113  if (RequireCompleteType(Param->getLocation(), Param->getType(),
114                          diag::err_typecheck_decl_incomplete_type)) {
115    Param->setInvalidDecl();
116    return true;
117  }
118
119  Expr *Arg = (Expr *)DefaultArg.get();
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
128  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
129                                                           EqualLoc);
130  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
131  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
132                                          MultiExprArg(*this, (void**)&Arg, 1));
133  if (Result.isInvalid())
134    return true;
135  Arg = Result.takeAs<Expr>();
136
137  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
138
139  // Okay: add the default argument to the parameter
140  Param->setDefaultArg(Arg);
141
142  DefaultArg.release();
143
144  return false;
145}
146
147/// ActOnParamDefaultArgument - Check whether the default argument
148/// provided for a function parameter is well-formed. If so, attach it
149/// to the parameter declaration.
150void
151Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
152                                ExprArg defarg) {
153  if (!param || !defarg.get())
154    return;
155
156  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
157  UnparsedDefaultArgLocs.erase(Param);
158
159  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
160
161  // Default arguments are only permitted in C++
162  if (!getLangOptions().CPlusPlus) {
163    Diag(EqualLoc, diag::err_param_default_argument)
164      << DefaultArg->getSourceRange();
165    Param->setInvalidDecl();
166    return;
167  }
168
169  // Check that the default argument is well-formed
170  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
171  if (DefaultArgChecker.Visit(DefaultArg.get())) {
172    Param->setInvalidDecl();
173    return;
174  }
175
176  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
177}
178
179/// ActOnParamUnparsedDefaultArgument - We've seen a default
180/// argument for a function parameter, but we can't parse it yet
181/// because we're inside a class definition. Note that this default
182/// argument will be parsed later.
183void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
184                                             SourceLocation EqualLoc,
185                                             SourceLocation ArgLoc) {
186  if (!param)
187    return;
188
189  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
190  if (Param)
191    Param->setUnparsedDefaultArg();
192
193  UnparsedDefaultArgLocs[Param] = ArgLoc;
194}
195
196/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
197/// the default argument for the parameter param failed.
198void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
199  if (!param)
200    return;
201
202  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
203
204  Param->setInvalidDecl();
205
206  UnparsedDefaultArgLocs.erase(Param);
207}
208
209/// CheckExtraCXXDefaultArguments - Check for any extra default
210/// arguments in the declarator, which is not a function declaration
211/// or definition and therefore is not permitted to have default
212/// arguments. This routine should be invoked for every declarator
213/// that is not a function declaration or definition.
214void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
215  // C++ [dcl.fct.default]p3
216  //   A default argument expression shall be specified only in the
217  //   parameter-declaration-clause of a function declaration or in a
218  //   template-parameter (14.1). It shall not be specified for a
219  //   parameter pack. If it is specified in a
220  //   parameter-declaration-clause, it shall not occur within a
221  //   declarator or abstract-declarator of a parameter-declaration.
222  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
223    DeclaratorChunk &chunk = D.getTypeObject(i);
224    if (chunk.Kind == DeclaratorChunk::Function) {
225      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
226        ParmVarDecl *Param =
227          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
228        if (Param->hasUnparsedDefaultArg()) {
229          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
230          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
231            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
232          delete Toks;
233          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
234        } else if (Param->getDefaultArg()) {
235          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
236            << Param->getDefaultArg()->getSourceRange();
237          Param->setDefaultArg(0);
238        }
239      }
240    }
241  }
242}
243
244// MergeCXXFunctionDecl - Merge two declarations of the same C++
245// function, once we already know that they have the same
246// type. Subroutine of MergeFunctionDecl. Returns true if there was an
247// error, false otherwise.
248bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
249  bool Invalid = false;
250
251  // C++ [dcl.fct.default]p4:
252  //   For non-template functions, default arguments can be added in
253  //   later declarations of a function in the same
254  //   scope. Declarations in different scopes have completely
255  //   distinct sets of default arguments. That is, declarations in
256  //   inner scopes do not acquire default arguments from
257  //   declarations in outer scopes, and vice versa. In a given
258  //   function declaration, all parameters subsequent to a
259  //   parameter with a default argument shall have default
260  //   arguments supplied in this or previous declarations. A
261  //   default argument shall not be redefined by a later
262  //   declaration (not even to the same value).
263  //
264  // C++ [dcl.fct.default]p6:
265  //   Except for member functions of class templates, the default arguments
266  //   in a member function definition that appears outside of the class
267  //   definition are added to the set of default arguments provided by the
268  //   member function declaration in the class definition.
269  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
270    ParmVarDecl *OldParam = Old->getParamDecl(p);
271    ParmVarDecl *NewParam = New->getParamDecl(p);
272
273    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
274      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
275      // hint here. Alternatively, we could walk the type-source information
276      // for NewParam to find the last source location in the type... but it
277      // isn't worth the effort right now. This is the kind of test case that
278      // is hard to get right:
279
280      //   int f(int);
281      //   void g(int (*fp)(int) = f);
282      //   void g(int (*fp)(int) = &f);
283      Diag(NewParam->getLocation(),
284           diag::err_param_default_argument_redefinition)
285        << NewParam->getDefaultArgRange();
286
287      // Look for the function declaration where the default argument was
288      // actually written, which may be a declaration prior to Old.
289      for (FunctionDecl *Older = Old->getPreviousDeclaration();
290           Older; Older = Older->getPreviousDeclaration()) {
291        if (!Older->getParamDecl(p)->hasDefaultArg())
292          break;
293
294        OldParam = Older->getParamDecl(p);
295      }
296
297      Diag(OldParam->getLocation(), diag::note_previous_definition)
298        << OldParam->getDefaultArgRange();
299      Invalid = true;
300    } else if (OldParam->hasDefaultArg()) {
301      // Merge the old default argument into the new parameter.
302      // It's important to use getInit() here;  getDefaultArg()
303      // strips off any top-level CXXExprWithTemporaries.
304      NewParam->setHasInheritedDefaultArg();
305      if (OldParam->hasUninstantiatedDefaultArg())
306        NewParam->setUninstantiatedDefaultArg(
307                                      OldParam->getUninstantiatedDefaultArg());
308      else
309        NewParam->setDefaultArg(OldParam->getInit());
310    } else if (NewParam->hasDefaultArg()) {
311      if (New->getDescribedFunctionTemplate()) {
312        // Paragraph 4, quoted above, only applies to non-template functions.
313        Diag(NewParam->getLocation(),
314             diag::err_param_default_argument_template_redecl)
315          << NewParam->getDefaultArgRange();
316        Diag(Old->getLocation(), diag::note_template_prev_declaration)
317          << false;
318      } else if (New->getTemplateSpecializationKind()
319                   != TSK_ImplicitInstantiation &&
320                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
321        // C++ [temp.expr.spec]p21:
322        //   Default function arguments shall not be specified in a declaration
323        //   or a definition for one of the following explicit specializations:
324        //     - the explicit specialization of a function template;
325        //     - the explicit specialization of a member function template;
326        //     - the explicit specialization of a member function of a class
327        //       template where the class template specialization to which the
328        //       member function specialization belongs is implicitly
329        //       instantiated.
330        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
331          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
332          << New->getDeclName()
333          << NewParam->getDefaultArgRange();
334      } else if (New->getDeclContext()->isDependentContext()) {
335        // C++ [dcl.fct.default]p6 (DR217):
336        //   Default arguments for a member function of a class template shall
337        //   be specified on the initial declaration of the member function
338        //   within the class template.
339        //
340        // Reading the tea leaves a bit in DR217 and its reference to DR205
341        // leads me to the conclusion that one cannot add default function
342        // arguments for an out-of-line definition of a member function of a
343        // dependent type.
344        int WhichKind = 2;
345        if (CXXRecordDecl *Record
346              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
347          if (Record->getDescribedClassTemplate())
348            WhichKind = 0;
349          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
350            WhichKind = 1;
351          else
352            WhichKind = 2;
353        }
354
355        Diag(NewParam->getLocation(),
356             diag::err_param_default_argument_member_template_redecl)
357          << WhichKind
358          << NewParam->getDefaultArgRange();
359      }
360    }
361  }
362
363  if (CheckEquivalentExceptionSpec(Old, New))
364    Invalid = true;
365
366  return Invalid;
367}
368
369/// CheckCXXDefaultArguments - Verify that the default arguments for a
370/// function declaration are well-formed according to C++
371/// [dcl.fct.default].
372void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
373  unsigned NumParams = FD->getNumParams();
374  unsigned p;
375
376  // Find first parameter with a default argument
377  for (p = 0; p < NumParams; ++p) {
378    ParmVarDecl *Param = FD->getParamDecl(p);
379    if (Param->hasDefaultArg())
380      break;
381  }
382
383  // C++ [dcl.fct.default]p4:
384  //   In a given function declaration, all parameters
385  //   subsequent to a parameter with a default argument shall
386  //   have default arguments supplied in this or previous
387  //   declarations. A default argument shall not be redefined
388  //   by a later declaration (not even to the same value).
389  unsigned LastMissingDefaultArg = 0;
390  for (; p < NumParams; ++p) {
391    ParmVarDecl *Param = FD->getParamDecl(p);
392    if (!Param->hasDefaultArg()) {
393      if (Param->isInvalidDecl())
394        /* We already complained about this parameter. */;
395      else if (Param->getIdentifier())
396        Diag(Param->getLocation(),
397             diag::err_param_default_argument_missing_name)
398          << Param->getIdentifier();
399      else
400        Diag(Param->getLocation(),
401             diag::err_param_default_argument_missing);
402
403      LastMissingDefaultArg = p;
404    }
405  }
406
407  if (LastMissingDefaultArg > 0) {
408    // Some default arguments were missing. Clear out all of the
409    // default arguments up to (and including) the last missing
410    // default argument, so that we leave the function parameters
411    // in a semantically valid state.
412    for (p = 0; p <= LastMissingDefaultArg; ++p) {
413      ParmVarDecl *Param = FD->getParamDecl(p);
414      if (Param->hasDefaultArg()) {
415        if (!Param->hasUnparsedDefaultArg())
416          Param->getDefaultArg()->Destroy(Context);
417        Param->setDefaultArg(0);
418      }
419    }
420  }
421}
422
423/// isCurrentClassName - Determine whether the identifier II is the
424/// name of the class type currently being defined. In the case of
425/// nested classes, this will only return true if II is the name of
426/// the innermost class.
427bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
428                              const CXXScopeSpec *SS) {
429  assert(getLangOptions().CPlusPlus && "No class names in C!");
430
431  CXXRecordDecl *CurDecl;
432  if (SS && SS->isSet() && !SS->isInvalid()) {
433    DeclContext *DC = computeDeclContext(*SS, true);
434    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
435  } else
436    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
437
438  if (CurDecl && CurDecl->getIdentifier())
439    return &II == CurDecl->getIdentifier();
440  else
441    return false;
442}
443
444/// \brief Check the validity of a C++ base class specifier.
445///
446/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
447/// and returns NULL otherwise.
448CXXBaseSpecifier *
449Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
450                         SourceRange SpecifierRange,
451                         bool Virtual, AccessSpecifier Access,
452                         QualType BaseType,
453                         SourceLocation BaseLoc) {
454  // C++ [class.union]p1:
455  //   A union shall not have base classes.
456  if (Class->isUnion()) {
457    Diag(Class->getLocation(), diag::err_base_clause_on_union)
458      << SpecifierRange;
459    return 0;
460  }
461
462  if (BaseType->isDependentType())
463    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
464                                Class->getTagKind() == TTK_Class,
465                                Access, BaseType);
466
467  // Base specifiers must be record types.
468  if (!BaseType->isRecordType()) {
469    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
470    return 0;
471  }
472
473  // C++ [class.union]p1:
474  //   A union shall not be used as a base class.
475  if (BaseType->isUnionType()) {
476    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
477    return 0;
478  }
479
480  // C++ [class.derived]p2:
481  //   The class-name in a base-specifier shall not be an incompletely
482  //   defined class.
483  if (RequireCompleteType(BaseLoc, BaseType,
484                          PDiag(diag::err_incomplete_base_class)
485                            << SpecifierRange))
486    return 0;
487
488  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
489  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
490  assert(BaseDecl && "Record type has no declaration");
491  BaseDecl = BaseDecl->getDefinition();
492  assert(BaseDecl && "Base type is not incomplete, but has no definition");
493  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
494  assert(CXXBaseDecl && "Base type is not a C++ type");
495
496  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
497  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
498    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
499    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
500      << BaseType;
501    return 0;
502  }
503
504  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
505
506  // Create the base specifier.
507  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
508                              Class->getTagKind() == TTK_Class,
509                              Access, BaseType);
510}
511
512void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
513                                          const CXXRecordDecl *BaseClass,
514                                          bool BaseIsVirtual) {
515  // A class with a non-empty base class is not empty.
516  // FIXME: Standard ref?
517  if (!BaseClass->isEmpty())
518    Class->setEmpty(false);
519
520  // C++ [class.virtual]p1:
521  //   A class that [...] inherits a virtual function is called a polymorphic
522  //   class.
523  if (BaseClass->isPolymorphic())
524    Class->setPolymorphic(true);
525
526  // C++ [dcl.init.aggr]p1:
527  //   An aggregate is [...] a class with [...] no base classes [...].
528  Class->setAggregate(false);
529
530  // C++ [class]p4:
531  //   A POD-struct is an aggregate class...
532  Class->setPOD(false);
533
534  if (BaseIsVirtual) {
535    // C++ [class.ctor]p5:
536    //   A constructor is trivial if its class has no virtual base classes.
537    Class->setHasTrivialConstructor(false);
538
539    // C++ [class.copy]p6:
540    //   A copy constructor is trivial if its class has no virtual base classes.
541    Class->setHasTrivialCopyConstructor(false);
542
543    // C++ [class.copy]p11:
544    //   A copy assignment operator is trivial if its class has no virtual
545    //   base classes.
546    Class->setHasTrivialCopyAssignment(false);
547
548    // C++0x [meta.unary.prop] is_empty:
549    //    T is a class type, but not a union type, with ... no virtual base
550    //    classes
551    Class->setEmpty(false);
552  } else {
553    // C++ [class.ctor]p5:
554    //   A constructor is trivial if all the direct base classes of its
555    //   class have trivial constructors.
556    if (!BaseClass->hasTrivialConstructor())
557      Class->setHasTrivialConstructor(false);
558
559    // C++ [class.copy]p6:
560    //   A copy constructor is trivial if all the direct base classes of its
561    //   class have trivial copy constructors.
562    if (!BaseClass->hasTrivialCopyConstructor())
563      Class->setHasTrivialCopyConstructor(false);
564
565    // C++ [class.copy]p11:
566    //   A copy assignment operator is trivial if all the direct base classes
567    //   of its class have trivial copy assignment operators.
568    if (!BaseClass->hasTrivialCopyAssignment())
569      Class->setHasTrivialCopyAssignment(false);
570  }
571
572  // C++ [class.ctor]p3:
573  //   A destructor is trivial if all the direct base classes of its class
574  //   have trivial destructors.
575  if (!BaseClass->hasTrivialDestructor())
576    Class->setHasTrivialDestructor(false);
577}
578
579/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
580/// one entry in the base class list of a class specifier, for
581/// example:
582///    class foo : public bar, virtual private baz {
583/// 'public bar' and 'virtual private baz' are each base-specifiers.
584Sema::BaseResult
585Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
586                         bool Virtual, AccessSpecifier Access,
587                         TypeTy *basetype, SourceLocation BaseLoc) {
588  if (!classdecl)
589    return true;
590
591  AdjustDeclIfTemplate(classdecl);
592  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
593  if (!Class)
594    return true;
595
596  QualType BaseType = GetTypeFromParser(basetype);
597  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
598                                                      Virtual, Access,
599                                                      BaseType, BaseLoc))
600    return BaseSpec;
601
602  return true;
603}
604
605/// \brief Performs the actual work of attaching the given base class
606/// specifiers to a C++ class.
607bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
608                                unsigned NumBases) {
609 if (NumBases == 0)
610    return false;
611
612  // Used to keep track of which base types we have already seen, so
613  // that we can properly diagnose redundant direct base types. Note
614  // that the key is always the unqualified canonical type of the base
615  // class.
616  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
617
618  // Copy non-redundant base specifiers into permanent storage.
619  unsigned NumGoodBases = 0;
620  bool Invalid = false;
621  for (unsigned idx = 0; idx < NumBases; ++idx) {
622    QualType NewBaseType
623      = Context.getCanonicalType(Bases[idx]->getType());
624    NewBaseType = NewBaseType.getLocalUnqualifiedType();
625    if (!Class->hasObjectMember()) {
626      if (const RecordType *FDTTy =
627            NewBaseType.getTypePtr()->getAs<RecordType>())
628        if (FDTTy->getDecl()->hasObjectMember())
629          Class->setHasObjectMember(true);
630    }
631
632    if (KnownBaseTypes[NewBaseType]) {
633      // C++ [class.mi]p3:
634      //   A class shall not be specified as a direct base class of a
635      //   derived class more than once.
636      Diag(Bases[idx]->getSourceRange().getBegin(),
637           diag::err_duplicate_base_class)
638        << KnownBaseTypes[NewBaseType]->getType()
639        << Bases[idx]->getSourceRange();
640
641      // Delete the duplicate base class specifier; we're going to
642      // overwrite its pointer later.
643      Context.Deallocate(Bases[idx]);
644
645      Invalid = true;
646    } else {
647      // Okay, add this new base class.
648      KnownBaseTypes[NewBaseType] = Bases[idx];
649      Bases[NumGoodBases++] = Bases[idx];
650    }
651  }
652
653  // Attach the remaining base class specifiers to the derived class.
654  Class->setBases(Bases, NumGoodBases);
655
656  // Delete the remaining (good) base class specifiers, since their
657  // data has been copied into the CXXRecordDecl.
658  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
659    Context.Deallocate(Bases[idx]);
660
661  return Invalid;
662}
663
664/// ActOnBaseSpecifiers - Attach the given base specifiers to the
665/// class, after checking whether there are any duplicate base
666/// classes.
667void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
668                               unsigned NumBases) {
669  if (!ClassDecl || !Bases || !NumBases)
670    return;
671
672  AdjustDeclIfTemplate(ClassDecl);
673  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
674                       (CXXBaseSpecifier**)(Bases), NumBases);
675}
676
677static CXXRecordDecl *GetClassForType(QualType T) {
678  if (const RecordType *RT = T->getAs<RecordType>())
679    return cast<CXXRecordDecl>(RT->getDecl());
680  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
681    return ICT->getDecl();
682  else
683    return 0;
684}
685
686/// \brief Determine whether the type \p Derived is a C++ class that is
687/// derived from the type \p Base.
688bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
689  if (!getLangOptions().CPlusPlus)
690    return false;
691
692  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
693  if (!DerivedRD)
694    return false;
695
696  CXXRecordDecl *BaseRD = GetClassForType(Base);
697  if (!BaseRD)
698    return false;
699
700  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
701  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
702}
703
704/// \brief Determine whether the type \p Derived is a C++ class that is
705/// derived from the type \p Base.
706bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
707  if (!getLangOptions().CPlusPlus)
708    return false;
709
710  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
711  if (!DerivedRD)
712    return false;
713
714  CXXRecordDecl *BaseRD = GetClassForType(Base);
715  if (!BaseRD)
716    return false;
717
718  return DerivedRD->isDerivedFrom(BaseRD, Paths);
719}
720
721void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
722                              CXXBaseSpecifierArray &BasePathArray) {
723  assert(BasePathArray.empty() && "Base path array must be empty!");
724  assert(Paths.isRecordingPaths() && "Must record paths!");
725
726  const CXXBasePath &Path = Paths.front();
727
728  // We first go backward and check if we have a virtual base.
729  // FIXME: It would be better if CXXBasePath had the base specifier for
730  // the nearest virtual base.
731  unsigned Start = 0;
732  for (unsigned I = Path.size(); I != 0; --I) {
733    if (Path[I - 1].Base->isVirtual()) {
734      Start = I - 1;
735      break;
736    }
737  }
738
739  // Now add all bases.
740  for (unsigned I = Start, E = Path.size(); I != E; ++I)
741    BasePathArray.push_back(Path[I].Base);
742}
743
744/// \brief Determine whether the given base path includes a virtual
745/// base class.
746bool Sema::BasePathInvolvesVirtualBase(const CXXBaseSpecifierArray &BasePath) {
747  for (CXXBaseSpecifierArray::iterator B = BasePath.begin(),
748                                    BEnd = BasePath.end();
749       B != BEnd; ++B)
750    if ((*B)->isVirtual())
751      return true;
752
753  return false;
754}
755
756/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
757/// conversion (where Derived and Base are class types) is
758/// well-formed, meaning that the conversion is unambiguous (and
759/// that all of the base classes are accessible). Returns true
760/// and emits a diagnostic if the code is ill-formed, returns false
761/// otherwise. Loc is the location where this routine should point to
762/// if there is an error, and Range is the source range to highlight
763/// if there is an error.
764bool
765Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
766                                   unsigned InaccessibleBaseID,
767                                   unsigned AmbigiousBaseConvID,
768                                   SourceLocation Loc, SourceRange Range,
769                                   DeclarationName Name,
770                                   CXXBaseSpecifierArray *BasePath) {
771  // First, determine whether the path from Derived to Base is
772  // ambiguous. This is slightly more expensive than checking whether
773  // the Derived to Base conversion exists, because here we need to
774  // explore multiple paths to determine if there is an ambiguity.
775  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
776                     /*DetectVirtual=*/false);
777  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
778  assert(DerivationOkay &&
779         "Can only be used with a derived-to-base conversion");
780  (void)DerivationOkay;
781
782  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
783    if (InaccessibleBaseID) {
784      // Check that the base class can be accessed.
785      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
786                                   InaccessibleBaseID)) {
787        case AR_inaccessible:
788          return true;
789        case AR_accessible:
790        case AR_dependent:
791        case AR_delayed:
792          break;
793      }
794    }
795
796    // Build a base path if necessary.
797    if (BasePath)
798      BuildBasePathArray(Paths, *BasePath);
799    return false;
800  }
801
802  // We know that the derived-to-base conversion is ambiguous, and
803  // we're going to produce a diagnostic. Perform the derived-to-base
804  // search just one more time to compute all of the possible paths so
805  // that we can print them out. This is more expensive than any of
806  // the previous derived-to-base checks we've done, but at this point
807  // performance isn't as much of an issue.
808  Paths.clear();
809  Paths.setRecordingPaths(true);
810  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
811  assert(StillOkay && "Can only be used with a derived-to-base conversion");
812  (void)StillOkay;
813
814  // Build up a textual representation of the ambiguous paths, e.g.,
815  // D -> B -> A, that will be used to illustrate the ambiguous
816  // conversions in the diagnostic. We only print one of the paths
817  // to each base class subobject.
818  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
819
820  Diag(Loc, AmbigiousBaseConvID)
821  << Derived << Base << PathDisplayStr << Range << Name;
822  return true;
823}
824
825bool
826Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
827                                   SourceLocation Loc, SourceRange Range,
828                                   CXXBaseSpecifierArray *BasePath,
829                                   bool IgnoreAccess) {
830  return CheckDerivedToBaseConversion(Derived, Base,
831                                      IgnoreAccess ? 0
832                                       : diag::err_upcast_to_inaccessible_base,
833                                      diag::err_ambiguous_derived_to_base_conv,
834                                      Loc, Range, DeclarationName(),
835                                      BasePath);
836}
837
838
839/// @brief Builds a string representing ambiguous paths from a
840/// specific derived class to different subobjects of the same base
841/// class.
842///
843/// This function builds a string that can be used in error messages
844/// to show the different paths that one can take through the
845/// inheritance hierarchy to go from the derived class to different
846/// subobjects of a base class. The result looks something like this:
847/// @code
848/// struct D -> struct B -> struct A
849/// struct D -> struct C -> struct A
850/// @endcode
851std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
852  std::string PathDisplayStr;
853  std::set<unsigned> DisplayedPaths;
854  for (CXXBasePaths::paths_iterator Path = Paths.begin();
855       Path != Paths.end(); ++Path) {
856    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
857      // We haven't displayed a path to this particular base
858      // class subobject yet.
859      PathDisplayStr += "\n    ";
860      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
861      for (CXXBasePath::const_iterator Element = Path->begin();
862           Element != Path->end(); ++Element)
863        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
864    }
865  }
866
867  return PathDisplayStr;
868}
869
870//===----------------------------------------------------------------------===//
871// C++ class member Handling
872//===----------------------------------------------------------------------===//
873
874/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
875Sema::DeclPtrTy
876Sema::ActOnAccessSpecifier(AccessSpecifier Access,
877                           SourceLocation ASLoc, SourceLocation ColonLoc) {
878  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
879  AccessSpecDecl* ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
880                                                  ASLoc, ColonLoc);
881  CurContext->addHiddenDecl(ASDecl);
882  return DeclPtrTy::make(ASDecl);
883}
884
885/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
886/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
887/// bitfield width if there is one and 'InitExpr' specifies the initializer if
888/// any.
889Sema::DeclPtrTy
890Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
891                               MultiTemplateParamsArg TemplateParameterLists,
892                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
893                               bool Deleted) {
894  const DeclSpec &DS = D.getDeclSpec();
895  DeclarationName Name = GetNameForDeclarator(D);
896  Expr *BitWidth = static_cast<Expr*>(BW);
897  Expr *Init = static_cast<Expr*>(InitExpr);
898  SourceLocation Loc = D.getIdentifierLoc();
899
900  assert(isa<CXXRecordDecl>(CurContext));
901  assert(!DS.isFriendSpecified());
902
903  bool isFunc = false;
904  if (D.isFunctionDeclarator())
905    isFunc = true;
906  else if (D.getNumTypeObjects() == 0 &&
907           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
908    QualType TDType = GetTypeFromParser(DS.getTypeRep());
909    isFunc = TDType->isFunctionType();
910  }
911
912  // C++ 9.2p6: A member shall not be declared to have automatic storage
913  // duration (auto, register) or with the extern storage-class-specifier.
914  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
915  // data members and cannot be applied to names declared const or static,
916  // and cannot be applied to reference members.
917  switch (DS.getStorageClassSpec()) {
918    case DeclSpec::SCS_unspecified:
919    case DeclSpec::SCS_typedef:
920    case DeclSpec::SCS_static:
921      // FALL THROUGH.
922      break;
923    case DeclSpec::SCS_mutable:
924      if (isFunc) {
925        if (DS.getStorageClassSpecLoc().isValid())
926          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
927        else
928          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
929
930        // FIXME: It would be nicer if the keyword was ignored only for this
931        // declarator. Otherwise we could get follow-up errors.
932        D.getMutableDeclSpec().ClearStorageClassSpecs();
933      }
934      break;
935    default:
936      if (DS.getStorageClassSpecLoc().isValid())
937        Diag(DS.getStorageClassSpecLoc(),
938             diag::err_storageclass_invalid_for_member);
939      else
940        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
941      D.getMutableDeclSpec().ClearStorageClassSpecs();
942  }
943
944  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
945                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
946                      !isFunc);
947
948  Decl *Member;
949  if (isInstField) {
950    // FIXME: Check for template parameters!
951    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
952                         AS);
953    assert(Member && "HandleField never returns null");
954  } else {
955    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
956               .getAs<Decl>();
957    if (!Member) {
958      if (BitWidth) DeleteExpr(BitWidth);
959      return DeclPtrTy();
960    }
961
962    // Non-instance-fields can't have a bitfield.
963    if (BitWidth) {
964      if (Member->isInvalidDecl()) {
965        // don't emit another diagnostic.
966      } else if (isa<VarDecl>(Member)) {
967        // C++ 9.6p3: A bit-field shall not be a static member.
968        // "static member 'A' cannot be a bit-field"
969        Diag(Loc, diag::err_static_not_bitfield)
970          << Name << BitWidth->getSourceRange();
971      } else if (isa<TypedefDecl>(Member)) {
972        // "typedef member 'x' cannot be a bit-field"
973        Diag(Loc, diag::err_typedef_not_bitfield)
974          << Name << BitWidth->getSourceRange();
975      } else {
976        // A function typedef ("typedef int f(); f a;").
977        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
978        Diag(Loc, diag::err_not_integral_type_bitfield)
979          << Name << cast<ValueDecl>(Member)->getType()
980          << BitWidth->getSourceRange();
981      }
982
983      DeleteExpr(BitWidth);
984      BitWidth = 0;
985      Member->setInvalidDecl();
986    }
987
988    Member->setAccess(AS);
989
990    // If we have declared a member function template, set the access of the
991    // templated declaration as well.
992    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
993      FunTmpl->getTemplatedDecl()->setAccess(AS);
994  }
995
996  assert((Name || isInstField) && "No identifier for non-field ?");
997
998  if (Init)
999    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
1000  if (Deleted) // FIXME: Source location is not very good.
1001    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
1002
1003  if (isInstField) {
1004    FieldCollector->Add(cast<FieldDecl>(Member));
1005    return DeclPtrTy();
1006  }
1007  return DeclPtrTy::make(Member);
1008}
1009
1010/// \brief Find the direct and/or virtual base specifiers that
1011/// correspond to the given base type, for use in base initialization
1012/// within a constructor.
1013static bool FindBaseInitializer(Sema &SemaRef,
1014                                CXXRecordDecl *ClassDecl,
1015                                QualType BaseType,
1016                                const CXXBaseSpecifier *&DirectBaseSpec,
1017                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1018  // First, check for a direct base class.
1019  DirectBaseSpec = 0;
1020  for (CXXRecordDecl::base_class_const_iterator Base
1021         = ClassDecl->bases_begin();
1022       Base != ClassDecl->bases_end(); ++Base) {
1023    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1024      // We found a direct base of this type. That's what we're
1025      // initializing.
1026      DirectBaseSpec = &*Base;
1027      break;
1028    }
1029  }
1030
1031  // Check for a virtual base class.
1032  // FIXME: We might be able to short-circuit this if we know in advance that
1033  // there are no virtual bases.
1034  VirtualBaseSpec = 0;
1035  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1036    // We haven't found a base yet; search the class hierarchy for a
1037    // virtual base class.
1038    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1039                       /*DetectVirtual=*/false);
1040    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1041                              BaseType, Paths)) {
1042      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1043           Path != Paths.end(); ++Path) {
1044        if (Path->back().Base->isVirtual()) {
1045          VirtualBaseSpec = Path->back().Base;
1046          break;
1047        }
1048      }
1049    }
1050  }
1051
1052  return DirectBaseSpec || VirtualBaseSpec;
1053}
1054
1055/// ActOnMemInitializer - Handle a C++ member initializer.
1056Sema::MemInitResult
1057Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1058                          Scope *S,
1059                          CXXScopeSpec &SS,
1060                          IdentifierInfo *MemberOrBase,
1061                          TypeTy *TemplateTypeTy,
1062                          SourceLocation IdLoc,
1063                          SourceLocation LParenLoc,
1064                          ExprTy **Args, unsigned NumArgs,
1065                          SourceLocation *CommaLocs,
1066                          SourceLocation RParenLoc) {
1067  if (!ConstructorD)
1068    return true;
1069
1070  AdjustDeclIfTemplate(ConstructorD);
1071
1072  CXXConstructorDecl *Constructor
1073    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1074  if (!Constructor) {
1075    // The user wrote a constructor initializer on a function that is
1076    // not a C++ constructor. Ignore the error for now, because we may
1077    // have more member initializers coming; we'll diagnose it just
1078    // once in ActOnMemInitializers.
1079    return true;
1080  }
1081
1082  CXXRecordDecl *ClassDecl = Constructor->getParent();
1083
1084  // C++ [class.base.init]p2:
1085  //   Names in a mem-initializer-id are looked up in the scope of the
1086  //   constructor’s class and, if not found in that scope, are looked
1087  //   up in the scope containing the constructor’s
1088  //   definition. [Note: if the constructor’s class contains a member
1089  //   with the same name as a direct or virtual base class of the
1090  //   class, a mem-initializer-id naming the member or base class and
1091  //   composed of a single identifier refers to the class member. A
1092  //   mem-initializer-id for the hidden base class may be specified
1093  //   using a qualified name. ]
1094  if (!SS.getScopeRep() && !TemplateTypeTy) {
1095    // Look for a member, first.
1096    FieldDecl *Member = 0;
1097    DeclContext::lookup_result Result
1098      = ClassDecl->lookup(MemberOrBase);
1099    if (Result.first != Result.second)
1100      Member = dyn_cast<FieldDecl>(*Result.first);
1101
1102    // FIXME: Handle members of an anonymous union.
1103
1104    if (Member)
1105      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1106                                    LParenLoc, RParenLoc);
1107  }
1108  // It didn't name a member, so see if it names a class.
1109  QualType BaseType;
1110  TypeSourceInfo *TInfo = 0;
1111
1112  if (TemplateTypeTy) {
1113    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1114  } else {
1115    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1116    LookupParsedName(R, S, &SS);
1117
1118    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1119    if (!TyD) {
1120      if (R.isAmbiguous()) return true;
1121
1122      // We don't want access-control diagnostics here.
1123      R.suppressDiagnostics();
1124
1125      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1126        bool NotUnknownSpecialization = false;
1127        DeclContext *DC = computeDeclContext(SS, false);
1128        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1129          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1130
1131        if (!NotUnknownSpecialization) {
1132          // When the scope specifier can refer to a member of an unknown
1133          // specialization, we take it as a type name.
1134          BaseType = CheckTypenameType(ETK_None,
1135                                       (NestedNameSpecifier *)SS.getScopeRep(),
1136                                       *MemberOrBase, SourceLocation(),
1137                                       SS.getRange(), IdLoc);
1138          if (BaseType.isNull())
1139            return true;
1140
1141          R.clear();
1142          R.setLookupName(MemberOrBase);
1143        }
1144      }
1145
1146      // If no results were found, try to correct typos.
1147      if (R.empty() && BaseType.isNull() &&
1148          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1149          R.isSingleResult()) {
1150        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1151          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1152            // We have found a non-static data member with a similar
1153            // name to what was typed; complain and initialize that
1154            // member.
1155            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1156              << MemberOrBase << true << R.getLookupName()
1157              << FixItHint::CreateReplacement(R.getNameLoc(),
1158                                              R.getLookupName().getAsString());
1159            Diag(Member->getLocation(), diag::note_previous_decl)
1160              << Member->getDeclName();
1161
1162            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1163                                          LParenLoc, RParenLoc);
1164          }
1165        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1166          const CXXBaseSpecifier *DirectBaseSpec;
1167          const CXXBaseSpecifier *VirtualBaseSpec;
1168          if (FindBaseInitializer(*this, ClassDecl,
1169                                  Context.getTypeDeclType(Type),
1170                                  DirectBaseSpec, VirtualBaseSpec)) {
1171            // We have found a direct or virtual base class with a
1172            // similar name to what was typed; complain and initialize
1173            // that base class.
1174            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1175              << MemberOrBase << false << R.getLookupName()
1176              << FixItHint::CreateReplacement(R.getNameLoc(),
1177                                              R.getLookupName().getAsString());
1178
1179            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1180                                                             : VirtualBaseSpec;
1181            Diag(BaseSpec->getSourceRange().getBegin(),
1182                 diag::note_base_class_specified_here)
1183              << BaseSpec->getType()
1184              << BaseSpec->getSourceRange();
1185
1186            TyD = Type;
1187          }
1188        }
1189      }
1190
1191      if (!TyD && BaseType.isNull()) {
1192        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1193          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1194        return true;
1195      }
1196    }
1197
1198    if (BaseType.isNull()) {
1199      BaseType = Context.getTypeDeclType(TyD);
1200      if (SS.isSet()) {
1201        NestedNameSpecifier *Qualifier =
1202          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1203
1204        // FIXME: preserve source range information
1205        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1206      }
1207    }
1208  }
1209
1210  if (!TInfo)
1211    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1212
1213  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1214                              LParenLoc, RParenLoc, ClassDecl);
1215}
1216
1217/// Checks an initializer expression for use of uninitialized fields, such as
1218/// containing the field that is being initialized. Returns true if there is an
1219/// uninitialized field was used an updates the SourceLocation parameter; false
1220/// otherwise.
1221static bool InitExprContainsUninitializedFields(const Stmt *S,
1222                                                const FieldDecl *LhsField,
1223                                                SourceLocation *L) {
1224  if (isa<CallExpr>(S)) {
1225    // Do not descend into function calls or constructors, as the use
1226    // of an uninitialized field may be valid. One would have to inspect
1227    // the contents of the function/ctor to determine if it is safe or not.
1228    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1229    // may be safe, depending on what the function/ctor does.
1230    return false;
1231  }
1232  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1233    const NamedDecl *RhsField = ME->getMemberDecl();
1234    if (RhsField == LhsField) {
1235      // Initializing a field with itself. Throw a warning.
1236      // But wait; there are exceptions!
1237      // Exception #1:  The field may not belong to this record.
1238      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1239      const Expr *base = ME->getBase();
1240      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1241        // Even though the field matches, it does not belong to this record.
1242        return false;
1243      }
1244      // None of the exceptions triggered; return true to indicate an
1245      // uninitialized field was used.
1246      *L = ME->getMemberLoc();
1247      return true;
1248    }
1249  }
1250  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1251       it != e; ++it) {
1252    if (!*it) {
1253      // An expression such as 'member(arg ?: "")' may trigger this.
1254      continue;
1255    }
1256    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1257      return true;
1258  }
1259  return false;
1260}
1261
1262Sema::MemInitResult
1263Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1264                             unsigned NumArgs, SourceLocation IdLoc,
1265                             SourceLocation LParenLoc,
1266                             SourceLocation RParenLoc) {
1267  // Diagnose value-uses of fields to initialize themselves, e.g.
1268  //   foo(foo)
1269  // where foo is not also a parameter to the constructor.
1270  // TODO: implement -Wuninitialized and fold this into that framework.
1271  for (unsigned i = 0; i < NumArgs; ++i) {
1272    SourceLocation L;
1273    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1274      // FIXME: Return true in the case when other fields are used before being
1275      // uninitialized. For example, let this field be the i'th field. When
1276      // initializing the i'th field, throw a warning if any of the >= i'th
1277      // fields are used, as they are not yet initialized.
1278      // Right now we are only handling the case where the i'th field uses
1279      // itself in its initializer.
1280      Diag(L, diag::warn_field_is_uninit);
1281    }
1282  }
1283
1284  bool HasDependentArg = false;
1285  for (unsigned i = 0; i < NumArgs; i++)
1286    HasDependentArg |= Args[i]->isTypeDependent();
1287
1288  QualType FieldType = Member->getType();
1289  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1290    FieldType = Array->getElementType();
1291  if (FieldType->isDependentType() || HasDependentArg) {
1292    // Can't check initialization for a member of dependent type or when
1293    // any of the arguments are type-dependent expressions.
1294    OwningExprResult Init
1295      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1296                                          RParenLoc));
1297
1298    // Erase any temporaries within this evaluation context; we're not
1299    // going to track them in the AST, since we'll be rebuilding the
1300    // ASTs during template instantiation.
1301    ExprTemporaries.erase(
1302              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1303                          ExprTemporaries.end());
1304
1305    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1306                                                    LParenLoc,
1307                                                    Init.takeAs<Expr>(),
1308                                                    RParenLoc);
1309
1310  }
1311
1312  if (Member->isInvalidDecl())
1313    return true;
1314
1315  // Initialize the member.
1316  InitializedEntity MemberEntity =
1317    InitializedEntity::InitializeMember(Member, 0);
1318  InitializationKind Kind =
1319    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1320
1321  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1322
1323  OwningExprResult MemberInit =
1324    InitSeq.Perform(*this, MemberEntity, Kind,
1325                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1326  if (MemberInit.isInvalid())
1327    return true;
1328
1329  // C++0x [class.base.init]p7:
1330  //   The initialization of each base and member constitutes a
1331  //   full-expression.
1332  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1333  if (MemberInit.isInvalid())
1334    return true;
1335
1336  // If we are in a dependent context, template instantiation will
1337  // perform this type-checking again. Just save the arguments that we
1338  // received in a ParenListExpr.
1339  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1340  // of the information that we have about the member
1341  // initializer. However, deconstructing the ASTs is a dicey process,
1342  // and this approach is far more likely to get the corner cases right.
1343  if (CurContext->isDependentContext()) {
1344    // Bump the reference count of all of the arguments.
1345    for (unsigned I = 0; I != NumArgs; ++I)
1346      Args[I]->Retain();
1347
1348    OwningExprResult Init
1349      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1350                                          RParenLoc));
1351    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1352                                                    LParenLoc,
1353                                                    Init.takeAs<Expr>(),
1354                                                    RParenLoc);
1355  }
1356
1357  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1358                                                  LParenLoc,
1359                                                  MemberInit.takeAs<Expr>(),
1360                                                  RParenLoc);
1361}
1362
1363Sema::MemInitResult
1364Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1365                           Expr **Args, unsigned NumArgs,
1366                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1367                           CXXRecordDecl *ClassDecl) {
1368  bool HasDependentArg = false;
1369  for (unsigned i = 0; i < NumArgs; i++)
1370    HasDependentArg |= Args[i]->isTypeDependent();
1371
1372  SourceLocation BaseLoc
1373    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1374
1375  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1376    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1377             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1378
1379  // C++ [class.base.init]p2:
1380  //   [...] Unless the mem-initializer-id names a nonstatic data
1381  //   member of the constructor’s class or a direct or virtual base
1382  //   of that class, the mem-initializer is ill-formed. A
1383  //   mem-initializer-list can initialize a base class using any
1384  //   name that denotes that base class type.
1385  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1386
1387  // Check for direct and virtual base classes.
1388  const CXXBaseSpecifier *DirectBaseSpec = 0;
1389  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1390  if (!Dependent) {
1391    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1392                        VirtualBaseSpec);
1393
1394    // C++ [base.class.init]p2:
1395    // Unless the mem-initializer-id names a nonstatic data member of the
1396    // constructor's class or a direct or virtual base of that class, the
1397    // mem-initializer is ill-formed.
1398    if (!DirectBaseSpec && !VirtualBaseSpec) {
1399      // If the class has any dependent bases, then it's possible that
1400      // one of those types will resolve to the same type as
1401      // BaseType. Therefore, just treat this as a dependent base
1402      // class initialization.  FIXME: Should we try to check the
1403      // initialization anyway? It seems odd.
1404      if (ClassDecl->hasAnyDependentBases())
1405        Dependent = true;
1406      else
1407        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1408          << BaseType << Context.getTypeDeclType(ClassDecl)
1409          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1410    }
1411  }
1412
1413  if (Dependent) {
1414    // Can't check initialization for a base of dependent type or when
1415    // any of the arguments are type-dependent expressions.
1416    OwningExprResult BaseInit
1417      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1418                                          RParenLoc));
1419
1420    // Erase any temporaries within this evaluation context; we're not
1421    // going to track them in the AST, since we'll be rebuilding the
1422    // ASTs during template instantiation.
1423    ExprTemporaries.erase(
1424              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1425                          ExprTemporaries.end());
1426
1427    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1428                                                    /*IsVirtual=*/false,
1429                                                    LParenLoc,
1430                                                    BaseInit.takeAs<Expr>(),
1431                                                    RParenLoc);
1432  }
1433
1434  // C++ [base.class.init]p2:
1435  //   If a mem-initializer-id is ambiguous because it designates both
1436  //   a direct non-virtual base class and an inherited virtual base
1437  //   class, the mem-initializer is ill-formed.
1438  if (DirectBaseSpec && VirtualBaseSpec)
1439    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1440      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1441
1442  CXXBaseSpecifier *BaseSpec
1443    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1444  if (!BaseSpec)
1445    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1446
1447  // Initialize the base.
1448  InitializedEntity BaseEntity =
1449    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1450  InitializationKind Kind =
1451    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1452
1453  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1454
1455  OwningExprResult BaseInit =
1456    InitSeq.Perform(*this, BaseEntity, Kind,
1457                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1458  if (BaseInit.isInvalid())
1459    return true;
1460
1461  // C++0x [class.base.init]p7:
1462  //   The initialization of each base and member constitutes a
1463  //   full-expression.
1464  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1465  if (BaseInit.isInvalid())
1466    return true;
1467
1468  // If we are in a dependent context, template instantiation will
1469  // perform this type-checking again. Just save the arguments that we
1470  // received in a ParenListExpr.
1471  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1472  // of the information that we have about the base
1473  // initializer. However, deconstructing the ASTs is a dicey process,
1474  // and this approach is far more likely to get the corner cases right.
1475  if (CurContext->isDependentContext()) {
1476    // Bump the reference count of all of the arguments.
1477    for (unsigned I = 0; I != NumArgs; ++I)
1478      Args[I]->Retain();
1479
1480    OwningExprResult Init
1481      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1482                                          RParenLoc));
1483    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1484                                                    BaseSpec->isVirtual(),
1485                                                    LParenLoc,
1486                                                    Init.takeAs<Expr>(),
1487                                                    RParenLoc);
1488  }
1489
1490  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1491                                                  BaseSpec->isVirtual(),
1492                                                  LParenLoc,
1493                                                  BaseInit.takeAs<Expr>(),
1494                                                  RParenLoc);
1495}
1496
1497/// ImplicitInitializerKind - How an implicit base or member initializer should
1498/// initialize its base or member.
1499enum ImplicitInitializerKind {
1500  IIK_Default,
1501  IIK_Copy,
1502  IIK_Move
1503};
1504
1505static bool
1506BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1507                             ImplicitInitializerKind ImplicitInitKind,
1508                             CXXBaseSpecifier *BaseSpec,
1509                             bool IsInheritedVirtualBase,
1510                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1511  InitializedEntity InitEntity
1512    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1513                                        IsInheritedVirtualBase);
1514
1515  Sema::OwningExprResult BaseInit(SemaRef);
1516
1517  switch (ImplicitInitKind) {
1518  case IIK_Default: {
1519    InitializationKind InitKind
1520      = InitializationKind::CreateDefault(Constructor->getLocation());
1521    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1522    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1523                               Sema::MultiExprArg(SemaRef, 0, 0));
1524    break;
1525  }
1526
1527  case IIK_Copy: {
1528    ParmVarDecl *Param = Constructor->getParamDecl(0);
1529    QualType ParamType = Param->getType().getNonReferenceType();
1530
1531    Expr *CopyCtorArg =
1532      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1533                          Constructor->getLocation(), ParamType, 0);
1534
1535    // Cast to the base class to avoid ambiguities.
1536    QualType ArgTy =
1537      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1538                                       ParamType.getQualifiers());
1539    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1540                              CastExpr::CK_UncheckedDerivedToBase,
1541                              /*isLvalue=*/true,
1542                              CXXBaseSpecifierArray(BaseSpec));
1543
1544    InitializationKind InitKind
1545      = InitializationKind::CreateDirect(Constructor->getLocation(),
1546                                         SourceLocation(), SourceLocation());
1547    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1548                                   &CopyCtorArg, 1);
1549    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1550                               Sema::MultiExprArg(SemaRef,
1551                                                  (void**)&CopyCtorArg, 1));
1552    break;
1553  }
1554
1555  case IIK_Move:
1556    assert(false && "Unhandled initializer kind!");
1557  }
1558
1559  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1560  if (BaseInit.isInvalid())
1561    return true;
1562
1563  CXXBaseInit =
1564    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1565               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1566                                                        SourceLocation()),
1567                                             BaseSpec->isVirtual(),
1568                                             SourceLocation(),
1569                                             BaseInit.takeAs<Expr>(),
1570                                             SourceLocation());
1571
1572  return false;
1573}
1574
1575static bool
1576BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1577                               ImplicitInitializerKind ImplicitInitKind,
1578                               FieldDecl *Field,
1579                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1580  if (Field->isInvalidDecl())
1581    return true;
1582
1583  SourceLocation Loc = Constructor->getLocation();
1584
1585  if (ImplicitInitKind == IIK_Copy) {
1586    ParmVarDecl *Param = Constructor->getParamDecl(0);
1587    QualType ParamType = Param->getType().getNonReferenceType();
1588
1589    Expr *MemberExprBase =
1590      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1591                          Loc, ParamType, 0);
1592
1593    // Build a reference to this field within the parameter.
1594    CXXScopeSpec SS;
1595    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1596                              Sema::LookupMemberName);
1597    MemberLookup.addDecl(Field, AS_public);
1598    MemberLookup.resolveKind();
1599    Sema::OwningExprResult CopyCtorArg
1600      = SemaRef.BuildMemberReferenceExpr(SemaRef.Owned(MemberExprBase),
1601                                         ParamType, Loc,
1602                                         /*IsArrow=*/false,
1603                                         SS,
1604                                         /*FirstQualifierInScope=*/0,
1605                                         MemberLookup,
1606                                         /*TemplateArgs=*/0);
1607    if (CopyCtorArg.isInvalid())
1608      return true;
1609
1610    // When the field we are copying is an array, create index variables for
1611    // each dimension of the array. We use these index variables to subscript
1612    // the source array, and other clients (e.g., CodeGen) will perform the
1613    // necessary iteration with these index variables.
1614    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1615    QualType BaseType = Field->getType();
1616    QualType SizeType = SemaRef.Context.getSizeType();
1617    while (const ConstantArrayType *Array
1618                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1619      // Create the iteration variable for this array index.
1620      IdentifierInfo *IterationVarName = 0;
1621      {
1622        llvm::SmallString<8> Str;
1623        llvm::raw_svector_ostream OS(Str);
1624        OS << "__i" << IndexVariables.size();
1625        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1626      }
1627      VarDecl *IterationVar
1628        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1629                          IterationVarName, SizeType,
1630                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1631                          VarDecl::None, VarDecl::None);
1632      IndexVariables.push_back(IterationVar);
1633
1634      // Create a reference to the iteration variable.
1635      Sema::OwningExprResult IterationVarRef
1636        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1637      assert(!IterationVarRef.isInvalid() &&
1638             "Reference to invented variable cannot fail!");
1639
1640      // Subscript the array with this iteration variable.
1641      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(move(CopyCtorArg),
1642                                                            Loc,
1643                                                          move(IterationVarRef),
1644                                                            Loc);
1645      if (CopyCtorArg.isInvalid())
1646        return true;
1647
1648      BaseType = Array->getElementType();
1649    }
1650
1651    // Construct the entity that we will be initializing. For an array, this
1652    // will be first element in the array, which may require several levels
1653    // of array-subscript entities.
1654    llvm::SmallVector<InitializedEntity, 4> Entities;
1655    Entities.reserve(1 + IndexVariables.size());
1656    Entities.push_back(InitializedEntity::InitializeMember(Field));
1657    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1658      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1659                                                              0,
1660                                                              Entities.back()));
1661
1662    // Direct-initialize to use the copy constructor.
1663    InitializationKind InitKind =
1664      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1665
1666    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1667    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1668                                   &CopyCtorArgE, 1);
1669
1670    Sema::OwningExprResult MemberInit
1671      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1672                        Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArgE, 1));
1673    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1674    if (MemberInit.isInvalid())
1675      return true;
1676
1677    CXXMemberInit
1678      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1679                                           MemberInit.takeAs<Expr>(), Loc,
1680                                           IndexVariables.data(),
1681                                           IndexVariables.size());
1682    return false;
1683  }
1684
1685  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1686
1687  QualType FieldBaseElementType =
1688    SemaRef.Context.getBaseElementType(Field->getType());
1689
1690  if (FieldBaseElementType->isRecordType()) {
1691    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1692    InitializationKind InitKind =
1693      InitializationKind::CreateDefault(Loc);
1694
1695    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1696    Sema::OwningExprResult MemberInit =
1697      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1698                      Sema::MultiExprArg(SemaRef, 0, 0));
1699    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1700    if (MemberInit.isInvalid())
1701      return true;
1702
1703    CXXMemberInit =
1704      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1705                                                       Field, Loc, Loc,
1706                                                      MemberInit.takeAs<Expr>(),
1707                                                       Loc);
1708    return false;
1709  }
1710
1711  if (FieldBaseElementType->isReferenceType()) {
1712    SemaRef.Diag(Constructor->getLocation(),
1713                 diag::err_uninitialized_member_in_ctor)
1714    << (int)Constructor->isImplicit()
1715    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1716    << 0 << Field->getDeclName();
1717    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1718    return true;
1719  }
1720
1721  if (FieldBaseElementType.isConstQualified()) {
1722    SemaRef.Diag(Constructor->getLocation(),
1723                 diag::err_uninitialized_member_in_ctor)
1724    << (int)Constructor->isImplicit()
1725    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1726    << 1 << Field->getDeclName();
1727    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1728    return true;
1729  }
1730
1731  // Nothing to initialize.
1732  CXXMemberInit = 0;
1733  return false;
1734}
1735
1736namespace {
1737struct BaseAndFieldInfo {
1738  Sema &S;
1739  CXXConstructorDecl *Ctor;
1740  bool AnyErrorsInInits;
1741  ImplicitInitializerKind IIK;
1742  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1743  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1744
1745  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1746    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1747    // FIXME: Handle implicit move constructors.
1748    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1749      IIK = IIK_Copy;
1750    else
1751      IIK = IIK_Default;
1752  }
1753};
1754}
1755
1756static void RecordFieldInitializer(BaseAndFieldInfo &Info,
1757                                   FieldDecl *Top, FieldDecl *Field,
1758                                   CXXBaseOrMemberInitializer *Init) {
1759  // If the member doesn't need to be initialized, Init will still be null.
1760  if (!Init)
1761    return;
1762
1763  Info.AllToInit.push_back(Init);
1764  if (Field != Top) {
1765    Init->setMember(Top);
1766    Init->setAnonUnionMember(Field);
1767  }
1768}
1769
1770static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1771                                    FieldDecl *Top, FieldDecl *Field) {
1772
1773  // Overwhelmingly common case: we have a direct initializer for this field.
1774  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1775    RecordFieldInitializer(Info, Top, Field, Init);
1776    return false;
1777  }
1778
1779  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1780    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1781    assert(FieldClassType && "anonymous struct/union without record type");
1782    CXXRecordDecl *FieldClassDecl
1783      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1784
1785    // Even though union members never have non-trivial default
1786    // constructions in C++03, we still build member initializers for aggregate
1787    // record types which can be union members, and C++0x allows non-trivial
1788    // default constructors for union members, so we ensure that only one
1789    // member is initialized for these.
1790    if (FieldClassDecl->isUnion()) {
1791      // First check for an explicit initializer for one field.
1792      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1793           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1794        if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1795          RecordFieldInitializer(Info, Top, *FA, Init);
1796
1797          // Once we've initialized a field of an anonymous union, the union
1798          // field in the class is also initialized, so exit immediately.
1799          return false;
1800        }
1801      }
1802
1803      // Fallthrough and construct a default initializer for the union as
1804      // a whole, which can call its default constructor if such a thing exists
1805      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1806      // behavior going forward with C++0x, when anonymous unions there are
1807      // finalized, we should revisit this.
1808    } else {
1809      // For structs, we simply descend through to initialize all members where
1810      // necessary.
1811      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1812           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1813        if (CollectFieldInitializer(Info, Top, *FA))
1814          return true;
1815      }
1816    }
1817  }
1818
1819  // Don't try to build an implicit initializer if there were semantic
1820  // errors in any of the initializers (and therefore we might be
1821  // missing some that the user actually wrote).
1822  if (Info.AnyErrorsInInits)
1823    return false;
1824
1825  CXXBaseOrMemberInitializer *Init = 0;
1826  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1827    return true;
1828
1829  RecordFieldInitializer(Info, Top, Field, Init);
1830  return false;
1831}
1832
1833bool
1834Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1835                                  CXXBaseOrMemberInitializer **Initializers,
1836                                  unsigned NumInitializers,
1837                                  bool AnyErrors) {
1838  if (Constructor->getDeclContext()->isDependentContext()) {
1839    // Just store the initializers as written, they will be checked during
1840    // instantiation.
1841    if (NumInitializers > 0) {
1842      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1843      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1844        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1845      memcpy(baseOrMemberInitializers, Initializers,
1846             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1847      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1848    }
1849
1850    return false;
1851  }
1852
1853  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1854
1855  // We need to build the initializer AST according to order of construction
1856  // and not what user specified in the Initializers list.
1857  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1858  if (!ClassDecl)
1859    return true;
1860
1861  bool HadError = false;
1862
1863  for (unsigned i = 0; i < NumInitializers; i++) {
1864    CXXBaseOrMemberInitializer *Member = Initializers[i];
1865
1866    if (Member->isBaseInitializer())
1867      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1868    else
1869      Info.AllBaseFields[Member->getMember()] = Member;
1870  }
1871
1872  // Keep track of the direct virtual bases.
1873  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1874  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1875       E = ClassDecl->bases_end(); I != E; ++I) {
1876    if (I->isVirtual())
1877      DirectVBases.insert(I);
1878  }
1879
1880  // Push virtual bases before others.
1881  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1882       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1883
1884    if (CXXBaseOrMemberInitializer *Value
1885        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1886      Info.AllToInit.push_back(Value);
1887    } else if (!AnyErrors) {
1888      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1889      CXXBaseOrMemberInitializer *CXXBaseInit;
1890      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1891                                       VBase, IsInheritedVirtualBase,
1892                                       CXXBaseInit)) {
1893        HadError = true;
1894        continue;
1895      }
1896
1897      Info.AllToInit.push_back(CXXBaseInit);
1898    }
1899  }
1900
1901  // Non-virtual bases.
1902  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1903       E = ClassDecl->bases_end(); Base != E; ++Base) {
1904    // Virtuals are in the virtual base list and already constructed.
1905    if (Base->isVirtual())
1906      continue;
1907
1908    if (CXXBaseOrMemberInitializer *Value
1909          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1910      Info.AllToInit.push_back(Value);
1911    } else if (!AnyErrors) {
1912      CXXBaseOrMemberInitializer *CXXBaseInit;
1913      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1914                                       Base, /*IsInheritedVirtualBase=*/false,
1915                                       CXXBaseInit)) {
1916        HadError = true;
1917        continue;
1918      }
1919
1920      Info.AllToInit.push_back(CXXBaseInit);
1921    }
1922  }
1923
1924  // Fields.
1925  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1926       E = ClassDecl->field_end(); Field != E; ++Field) {
1927    if ((*Field)->getType()->isIncompleteArrayType()) {
1928      assert(ClassDecl->hasFlexibleArrayMember() &&
1929             "Incomplete array type is not valid");
1930      continue;
1931    }
1932    if (CollectFieldInitializer(Info, *Field, *Field))
1933      HadError = true;
1934  }
1935
1936  NumInitializers = Info.AllToInit.size();
1937  if (NumInitializers > 0) {
1938    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1939    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1940      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1941    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1942           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1943    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1944
1945    // Constructors implicitly reference the base and member
1946    // destructors.
1947    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1948                                           Constructor->getParent());
1949  }
1950
1951  return HadError;
1952}
1953
1954static void *GetKeyForTopLevelField(FieldDecl *Field) {
1955  // For anonymous unions, use the class declaration as the key.
1956  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1957    if (RT->getDecl()->isAnonymousStructOrUnion())
1958      return static_cast<void *>(RT->getDecl());
1959  }
1960  return static_cast<void *>(Field);
1961}
1962
1963static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1964  return Context.getCanonicalType(BaseType).getTypePtr();
1965}
1966
1967static void *GetKeyForMember(ASTContext &Context,
1968                             CXXBaseOrMemberInitializer *Member,
1969                             bool MemberMaybeAnon = false) {
1970  if (!Member->isMemberInitializer())
1971    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1972
1973  // For fields injected into the class via declaration of an anonymous union,
1974  // use its anonymous union class declaration as the unique key.
1975  FieldDecl *Field = Member->getMember();
1976
1977  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1978  // data member of the class. Data member used in the initializer list is
1979  // in AnonUnionMember field.
1980  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1981    Field = Member->getAnonUnionMember();
1982
1983  // If the field is a member of an anonymous struct or union, our key
1984  // is the anonymous record decl that's a direct child of the class.
1985  RecordDecl *RD = Field->getParent();
1986  if (RD->isAnonymousStructOrUnion()) {
1987    while (true) {
1988      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1989      if (Parent->isAnonymousStructOrUnion())
1990        RD = Parent;
1991      else
1992        break;
1993    }
1994
1995    return static_cast<void *>(RD);
1996  }
1997
1998  return static_cast<void *>(Field);
1999}
2000
2001static void
2002DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2003                                  const CXXConstructorDecl *Constructor,
2004                                  CXXBaseOrMemberInitializer **Inits,
2005                                  unsigned NumInits) {
2006  if (Constructor->getDeclContext()->isDependentContext())
2007    return;
2008
2009  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
2010        == Diagnostic::Ignored)
2011    return;
2012
2013  // Build the list of bases and members in the order that they'll
2014  // actually be initialized.  The explicit initializers should be in
2015  // this same order but may be missing things.
2016  llvm::SmallVector<const void*, 32> IdealInitKeys;
2017
2018  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2019
2020  // 1. Virtual bases.
2021  for (CXXRecordDecl::base_class_const_iterator VBase =
2022       ClassDecl->vbases_begin(),
2023       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2024    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2025
2026  // 2. Non-virtual bases.
2027  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2028       E = ClassDecl->bases_end(); Base != E; ++Base) {
2029    if (Base->isVirtual())
2030      continue;
2031    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2032  }
2033
2034  // 3. Direct fields.
2035  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2036       E = ClassDecl->field_end(); Field != E; ++Field)
2037    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2038
2039  unsigned NumIdealInits = IdealInitKeys.size();
2040  unsigned IdealIndex = 0;
2041
2042  CXXBaseOrMemberInitializer *PrevInit = 0;
2043  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2044    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2045    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
2046
2047    // Scan forward to try to find this initializer in the idealized
2048    // initializers list.
2049    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2050      if (InitKey == IdealInitKeys[IdealIndex])
2051        break;
2052
2053    // If we didn't find this initializer, it must be because we
2054    // scanned past it on a previous iteration.  That can only
2055    // happen if we're out of order;  emit a warning.
2056    if (IdealIndex == NumIdealInits && PrevInit) {
2057      Sema::SemaDiagnosticBuilder D =
2058        SemaRef.Diag(PrevInit->getSourceLocation(),
2059                     diag::warn_initializer_out_of_order);
2060
2061      if (PrevInit->isMemberInitializer())
2062        D << 0 << PrevInit->getMember()->getDeclName();
2063      else
2064        D << 1 << PrevInit->getBaseClassInfo()->getType();
2065
2066      if (Init->isMemberInitializer())
2067        D << 0 << Init->getMember()->getDeclName();
2068      else
2069        D << 1 << Init->getBaseClassInfo()->getType();
2070
2071      // Move back to the initializer's location in the ideal list.
2072      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2073        if (InitKey == IdealInitKeys[IdealIndex])
2074          break;
2075
2076      assert(IdealIndex != NumIdealInits &&
2077             "initializer not found in initializer list");
2078    }
2079
2080    PrevInit = Init;
2081  }
2082}
2083
2084namespace {
2085bool CheckRedundantInit(Sema &S,
2086                        CXXBaseOrMemberInitializer *Init,
2087                        CXXBaseOrMemberInitializer *&PrevInit) {
2088  if (!PrevInit) {
2089    PrevInit = Init;
2090    return false;
2091  }
2092
2093  if (FieldDecl *Field = Init->getMember())
2094    S.Diag(Init->getSourceLocation(),
2095           diag::err_multiple_mem_initialization)
2096      << Field->getDeclName()
2097      << Init->getSourceRange();
2098  else {
2099    Type *BaseClass = Init->getBaseClass();
2100    assert(BaseClass && "neither field nor base");
2101    S.Diag(Init->getSourceLocation(),
2102           diag::err_multiple_base_initialization)
2103      << QualType(BaseClass, 0)
2104      << Init->getSourceRange();
2105  }
2106  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2107    << 0 << PrevInit->getSourceRange();
2108
2109  return true;
2110}
2111
2112typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2113typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2114
2115bool CheckRedundantUnionInit(Sema &S,
2116                             CXXBaseOrMemberInitializer *Init,
2117                             RedundantUnionMap &Unions) {
2118  FieldDecl *Field = Init->getMember();
2119  RecordDecl *Parent = Field->getParent();
2120  if (!Parent->isAnonymousStructOrUnion())
2121    return false;
2122
2123  NamedDecl *Child = Field;
2124  do {
2125    if (Parent->isUnion()) {
2126      UnionEntry &En = Unions[Parent];
2127      if (En.first && En.first != Child) {
2128        S.Diag(Init->getSourceLocation(),
2129               diag::err_multiple_mem_union_initialization)
2130          << Field->getDeclName()
2131          << Init->getSourceRange();
2132        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2133          << 0 << En.second->getSourceRange();
2134        return true;
2135      } else if (!En.first) {
2136        En.first = Child;
2137        En.second = Init;
2138      }
2139    }
2140
2141    Child = Parent;
2142    Parent = cast<RecordDecl>(Parent->getDeclContext());
2143  } while (Parent->isAnonymousStructOrUnion());
2144
2145  return false;
2146}
2147}
2148
2149/// ActOnMemInitializers - Handle the member initializers for a constructor.
2150void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
2151                                SourceLocation ColonLoc,
2152                                MemInitTy **meminits, unsigned NumMemInits,
2153                                bool AnyErrors) {
2154  if (!ConstructorDecl)
2155    return;
2156
2157  AdjustDeclIfTemplate(ConstructorDecl);
2158
2159  CXXConstructorDecl *Constructor
2160    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
2161
2162  if (!Constructor) {
2163    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2164    return;
2165  }
2166
2167  CXXBaseOrMemberInitializer **MemInits =
2168    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2169
2170  // Mapping for the duplicate initializers check.
2171  // For member initializers, this is keyed with a FieldDecl*.
2172  // For base initializers, this is keyed with a Type*.
2173  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2174
2175  // Mapping for the inconsistent anonymous-union initializers check.
2176  RedundantUnionMap MemberUnions;
2177
2178  bool HadError = false;
2179  for (unsigned i = 0; i < NumMemInits; i++) {
2180    CXXBaseOrMemberInitializer *Init = MemInits[i];
2181
2182    // Set the source order index.
2183    Init->setSourceOrder(i);
2184
2185    if (Init->isMemberInitializer()) {
2186      FieldDecl *Field = Init->getMember();
2187      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2188          CheckRedundantUnionInit(*this, Init, MemberUnions))
2189        HadError = true;
2190    } else {
2191      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2192      if (CheckRedundantInit(*this, Init, Members[Key]))
2193        HadError = true;
2194    }
2195  }
2196
2197  if (HadError)
2198    return;
2199
2200  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2201
2202  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2203}
2204
2205void
2206Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2207                                             CXXRecordDecl *ClassDecl) {
2208  // Ignore dependent contexts.
2209  if (ClassDecl->isDependentContext())
2210    return;
2211
2212  // FIXME: all the access-control diagnostics are positioned on the
2213  // field/base declaration.  That's probably good; that said, the
2214  // user might reasonably want to know why the destructor is being
2215  // emitted, and we currently don't say.
2216
2217  // Non-static data members.
2218  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2219       E = ClassDecl->field_end(); I != E; ++I) {
2220    FieldDecl *Field = *I;
2221    if (Field->isInvalidDecl())
2222      continue;
2223    QualType FieldType = Context.getBaseElementType(Field->getType());
2224
2225    const RecordType* RT = FieldType->getAs<RecordType>();
2226    if (!RT)
2227      continue;
2228
2229    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2230    if (FieldClassDecl->hasTrivialDestructor())
2231      continue;
2232
2233    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor();
2234    CheckDestructorAccess(Field->getLocation(), Dtor,
2235                          PDiag(diag::err_access_dtor_field)
2236                            << Field->getDeclName()
2237                            << FieldType);
2238
2239    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2240  }
2241
2242  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2243
2244  // Bases.
2245  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2246       E = ClassDecl->bases_end(); Base != E; ++Base) {
2247    // Bases are always records in a well-formed non-dependent class.
2248    const RecordType *RT = Base->getType()->getAs<RecordType>();
2249
2250    // Remember direct virtual bases.
2251    if (Base->isVirtual())
2252      DirectVirtualBases.insert(RT);
2253
2254    // Ignore trivial destructors.
2255    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2256    if (BaseClassDecl->hasTrivialDestructor())
2257      continue;
2258
2259    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor();
2260
2261    // FIXME: caret should be on the start of the class name
2262    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2263                          PDiag(diag::err_access_dtor_base)
2264                            << Base->getType()
2265                            << Base->getSourceRange());
2266
2267    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2268  }
2269
2270  // Virtual bases.
2271  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2272       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2273
2274    // Bases are always records in a well-formed non-dependent class.
2275    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2276
2277    // Ignore direct virtual bases.
2278    if (DirectVirtualBases.count(RT))
2279      continue;
2280
2281    // Ignore trivial destructors.
2282    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2283    if (BaseClassDecl->hasTrivialDestructor())
2284      continue;
2285
2286    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor();
2287    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2288                          PDiag(diag::err_access_dtor_vbase)
2289                            << VBase->getType());
2290
2291    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2292  }
2293}
2294
2295void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
2296  if (!CDtorDecl)
2297    return;
2298
2299  if (CXXConstructorDecl *Constructor
2300      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
2301    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2302}
2303
2304bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2305                                  unsigned DiagID, AbstractDiagSelID SelID,
2306                                  const CXXRecordDecl *CurrentRD) {
2307  if (SelID == -1)
2308    return RequireNonAbstractType(Loc, T,
2309                                  PDiag(DiagID), CurrentRD);
2310  else
2311    return RequireNonAbstractType(Loc, T,
2312                                  PDiag(DiagID) << SelID, CurrentRD);
2313}
2314
2315bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2316                                  const PartialDiagnostic &PD,
2317                                  const CXXRecordDecl *CurrentRD) {
2318  if (!getLangOptions().CPlusPlus)
2319    return false;
2320
2321  if (const ArrayType *AT = Context.getAsArrayType(T))
2322    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2323                                  CurrentRD);
2324
2325  if (const PointerType *PT = T->getAs<PointerType>()) {
2326    // Find the innermost pointer type.
2327    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2328      PT = T;
2329
2330    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2331      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2332  }
2333
2334  const RecordType *RT = T->getAs<RecordType>();
2335  if (!RT)
2336    return false;
2337
2338  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2339
2340  if (CurrentRD && CurrentRD != RD)
2341    return false;
2342
2343  // FIXME: is this reasonable?  It matches current behavior, but....
2344  if (!RD->getDefinition())
2345    return false;
2346
2347  if (!RD->isAbstract())
2348    return false;
2349
2350  Diag(Loc, PD) << RD->getDeclName();
2351
2352  // Check if we've already emitted the list of pure virtual functions for this
2353  // class.
2354  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2355    return true;
2356
2357  CXXFinalOverriderMap FinalOverriders;
2358  RD->getFinalOverriders(FinalOverriders);
2359
2360  // Keep a set of seen pure methods so we won't diagnose the same method
2361  // more than once.
2362  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2363
2364  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2365                                   MEnd = FinalOverriders.end();
2366       M != MEnd;
2367       ++M) {
2368    for (OverridingMethods::iterator SO = M->second.begin(),
2369                                  SOEnd = M->second.end();
2370         SO != SOEnd; ++SO) {
2371      // C++ [class.abstract]p4:
2372      //   A class is abstract if it contains or inherits at least one
2373      //   pure virtual function for which the final overrider is pure
2374      //   virtual.
2375
2376      //
2377      if (SO->second.size() != 1)
2378        continue;
2379
2380      if (!SO->second.front().Method->isPure())
2381        continue;
2382
2383      if (!SeenPureMethods.insert(SO->second.front().Method))
2384        continue;
2385
2386      Diag(SO->second.front().Method->getLocation(),
2387           diag::note_pure_virtual_function)
2388        << SO->second.front().Method->getDeclName();
2389    }
2390  }
2391
2392  if (!PureVirtualClassDiagSet)
2393    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2394  PureVirtualClassDiagSet->insert(RD);
2395
2396  return true;
2397}
2398
2399namespace {
2400  class AbstractClassUsageDiagnoser
2401    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2402    Sema &SemaRef;
2403    CXXRecordDecl *AbstractClass;
2404
2405    bool VisitDeclContext(const DeclContext *DC) {
2406      bool Invalid = false;
2407
2408      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2409           E = DC->decls_end(); I != E; ++I)
2410        Invalid |= Visit(*I);
2411
2412      return Invalid;
2413    }
2414
2415  public:
2416    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2417      : SemaRef(SemaRef), AbstractClass(ac) {
2418        Visit(SemaRef.Context.getTranslationUnitDecl());
2419    }
2420
2421    bool VisitFunctionDecl(const FunctionDecl *FD) {
2422      if (FD->isThisDeclarationADefinition()) {
2423        // No need to do the check if we're in a definition, because it requires
2424        // that the return/param types are complete.
2425        // because that requires
2426        return VisitDeclContext(FD);
2427      }
2428
2429      // Check the return type.
2430      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2431      bool Invalid =
2432        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2433                                       diag::err_abstract_type_in_decl,
2434                                       Sema::AbstractReturnType,
2435                                       AbstractClass);
2436
2437      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2438           E = FD->param_end(); I != E; ++I) {
2439        const ParmVarDecl *VD = *I;
2440        Invalid |=
2441          SemaRef.RequireNonAbstractType(VD->getLocation(),
2442                                         VD->getOriginalType(),
2443                                         diag::err_abstract_type_in_decl,
2444                                         Sema::AbstractParamType,
2445                                         AbstractClass);
2446      }
2447
2448      return Invalid;
2449    }
2450
2451    bool VisitDecl(const Decl* D) {
2452      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2453        return VisitDeclContext(DC);
2454
2455      return false;
2456    }
2457  };
2458}
2459
2460/// \brief Perform semantic checks on a class definition that has been
2461/// completing, introducing implicitly-declared members, checking for
2462/// abstract types, etc.
2463void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
2464  if (!Record || Record->isInvalidDecl())
2465    return;
2466
2467  if (!Record->isDependentType())
2468    AddImplicitlyDeclaredMembersToClass(S, Record);
2469
2470  if (Record->isInvalidDecl())
2471    return;
2472
2473  // Set access bits correctly on the directly-declared conversions.
2474  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2475  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2476    Convs->setAccess(I, (*I)->getAccess());
2477
2478  // Determine whether we need to check for final overriders. We do
2479  // this either when there are virtual base classes (in which case we
2480  // may end up finding multiple final overriders for a given virtual
2481  // function) or any of the base classes is abstract (in which case
2482  // we might detect that this class is abstract).
2483  bool CheckFinalOverriders = false;
2484  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2485      !Record->isDependentType()) {
2486    if (Record->getNumVBases())
2487      CheckFinalOverriders = true;
2488    else if (!Record->isAbstract()) {
2489      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2490                                                 BEnd = Record->bases_end();
2491           B != BEnd; ++B) {
2492        CXXRecordDecl *BaseDecl
2493          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2494        if (BaseDecl->isAbstract()) {
2495          CheckFinalOverriders = true;
2496          break;
2497        }
2498      }
2499    }
2500  }
2501
2502  if (CheckFinalOverriders) {
2503    CXXFinalOverriderMap FinalOverriders;
2504    Record->getFinalOverriders(FinalOverriders);
2505
2506    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2507                                     MEnd = FinalOverriders.end();
2508         M != MEnd; ++M) {
2509      for (OverridingMethods::iterator SO = M->second.begin(),
2510                                    SOEnd = M->second.end();
2511           SO != SOEnd; ++SO) {
2512        assert(SO->second.size() > 0 &&
2513               "All virtual functions have overridding virtual functions");
2514        if (SO->second.size() == 1) {
2515          // C++ [class.abstract]p4:
2516          //   A class is abstract if it contains or inherits at least one
2517          //   pure virtual function for which the final overrider is pure
2518          //   virtual.
2519          if (SO->second.front().Method->isPure())
2520            Record->setAbstract(true);
2521          continue;
2522        }
2523
2524        // C++ [class.virtual]p2:
2525        //   In a derived class, if a virtual member function of a base
2526        //   class subobject has more than one final overrider the
2527        //   program is ill-formed.
2528        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2529          << (NamedDecl *)M->first << Record;
2530        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2531        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2532                                                 OMEnd = SO->second.end();
2533             OM != OMEnd; ++OM)
2534          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2535            << (NamedDecl *)M->first << OM->Method->getParent();
2536
2537        Record->setInvalidDecl();
2538      }
2539    }
2540  }
2541
2542  if (Record->isAbstract() && !Record->isInvalidDecl())
2543    (void)AbstractClassUsageDiagnoser(*this, Record);
2544
2545  // If this is not an aggregate type and has no user-declared constructor,
2546  // complain about any non-static data members of reference or const scalar
2547  // type, since they will never get initializers.
2548  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2549      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2550    bool Complained = false;
2551    for (RecordDecl::field_iterator F = Record->field_begin(),
2552                                 FEnd = Record->field_end();
2553         F != FEnd; ++F) {
2554      if (F->getType()->isReferenceType() ||
2555          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2556        if (!Complained) {
2557          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2558            << Record->getTagKind() << Record;
2559          Complained = true;
2560        }
2561
2562        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2563          << F->getType()->isReferenceType()
2564          << F->getDeclName();
2565      }
2566    }
2567  }
2568
2569  if (Record->isDynamicClass())
2570    DynamicClasses.push_back(Record);
2571}
2572
2573void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2574                                             DeclPtrTy TagDecl,
2575                                             SourceLocation LBrac,
2576                                             SourceLocation RBrac,
2577                                             AttributeList *AttrList) {
2578  if (!TagDecl)
2579    return;
2580
2581  AdjustDeclIfTemplate(TagDecl);
2582
2583  ActOnFields(S, RLoc, TagDecl,
2584              (DeclPtrTy*)FieldCollector->getCurFields(),
2585              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2586
2587  CheckCompletedCXXClass(S,
2588                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2589}
2590
2591namespace {
2592  /// \brief Helper class that collects exception specifications for
2593  /// implicitly-declared special member functions.
2594  class ImplicitExceptionSpecification {
2595    ASTContext &Context;
2596    bool AllowsAllExceptions;
2597    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2598    llvm::SmallVector<QualType, 4> Exceptions;
2599
2600  public:
2601    explicit ImplicitExceptionSpecification(ASTContext &Context)
2602      : Context(Context), AllowsAllExceptions(false) { }
2603
2604    /// \brief Whether the special member function should have any
2605    /// exception specification at all.
2606    bool hasExceptionSpecification() const {
2607      return !AllowsAllExceptions;
2608    }
2609
2610    /// \brief Whether the special member function should have a
2611    /// throw(...) exception specification (a Microsoft extension).
2612    bool hasAnyExceptionSpecification() const {
2613      return false;
2614    }
2615
2616    /// \brief The number of exceptions in the exception specification.
2617    unsigned size() const { return Exceptions.size(); }
2618
2619    /// \brief The set of exceptions in the exception specification.
2620    const QualType *data() const { return Exceptions.data(); }
2621
2622    /// \brief Note that
2623    void CalledDecl(CXXMethodDecl *Method) {
2624      // If we already know that we allow all exceptions, do nothing.
2625      if (AllowsAllExceptions)
2626        return;
2627
2628      const FunctionProtoType *Proto
2629        = Method->getType()->getAs<FunctionProtoType>();
2630
2631      // If this function can throw any exceptions, make a note of that.
2632      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2633        AllowsAllExceptions = true;
2634        ExceptionsSeen.clear();
2635        Exceptions.clear();
2636        return;
2637      }
2638
2639      // Record the exceptions in this function's exception specification.
2640      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2641                                              EEnd = Proto->exception_end();
2642           E != EEnd; ++E)
2643        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2644          Exceptions.push_back(*E);
2645    }
2646  };
2647}
2648
2649
2650/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2651/// special functions, such as the default constructor, copy
2652/// constructor, or destructor, to the given C++ class (C++
2653/// [special]p1).  This routine can only be executed just before the
2654/// definition of the class is complete.
2655///
2656/// The scope, if provided, is the class scope.
2657void Sema::AddImplicitlyDeclaredMembersToClass(Scope *S,
2658                                               CXXRecordDecl *ClassDecl) {
2659  CanQualType ClassType
2660    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2661
2662  // FIXME: Implicit declarations have exception specifications, which are
2663  // the union of the specifications of the implicitly called functions.
2664
2665  if (!ClassDecl->hasUserDeclaredConstructor()) {
2666    // C++ [class.ctor]p5:
2667    //   A default constructor for a class X is a constructor of class X
2668    //   that can be called without an argument. If there is no
2669    //   user-declared constructor for class X, a default constructor is
2670    //   implicitly declared. An implicitly-declared default constructor
2671    //   is an inline public member of its class.
2672    DeclarationName Name
2673      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2674    CXXConstructorDecl *DefaultCon =
2675      CXXConstructorDecl::Create(Context, ClassDecl,
2676                                 ClassDecl->getLocation(), Name,
2677                                 Context.getFunctionType(Context.VoidTy,
2678                                                         0, 0, false, 0,
2679                                                         /*FIXME*/false, false,
2680                                                         0, 0,
2681                                                       FunctionType::ExtInfo()),
2682                                 /*TInfo=*/0,
2683                                 /*isExplicit=*/false,
2684                                 /*isInline=*/true,
2685                                 /*isImplicitlyDeclared=*/true);
2686    DefaultCon->setAccess(AS_public);
2687    DefaultCon->setImplicit();
2688    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2689    if (S)
2690      PushOnScopeChains(DefaultCon, S, true);
2691    else
2692      ClassDecl->addDecl(DefaultCon);
2693  }
2694
2695  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2696    // C++ [class.copy]p4:
2697    //   If the class definition does not explicitly declare a copy
2698    //   constructor, one is declared implicitly.
2699
2700    // C++ [class.copy]p5:
2701    //   The implicitly-declared copy constructor for a class X will
2702    //   have the form
2703    //
2704    //       X::X(const X&)
2705    //
2706    //   if
2707    bool HasConstCopyConstructor = true;
2708
2709    //     -- each direct or virtual base class B of X has a copy
2710    //        constructor whose first parameter is of type const B& or
2711    //        const volatile B&, and
2712    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2713         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2714      const CXXRecordDecl *BaseClassDecl
2715        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2716      HasConstCopyConstructor
2717        = BaseClassDecl->hasConstCopyConstructor(Context);
2718    }
2719
2720    //     -- for all the nonstatic data members of X that are of a
2721    //        class type M (or array thereof), each such class type
2722    //        has a copy constructor whose first parameter is of type
2723    //        const M& or const volatile M&.
2724    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2725         HasConstCopyConstructor && Field != ClassDecl->field_end();
2726         ++Field) {
2727      QualType FieldType = (*Field)->getType();
2728      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2729        FieldType = Array->getElementType();
2730      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2731        const CXXRecordDecl *FieldClassDecl
2732          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2733        HasConstCopyConstructor
2734          = FieldClassDecl->hasConstCopyConstructor(Context);
2735      }
2736    }
2737
2738    //   Otherwise, the implicitly declared copy constructor will have
2739    //   the form
2740    //
2741    //       X::X(X&)
2742    QualType ArgType = ClassType;
2743    if (HasConstCopyConstructor)
2744      ArgType = ArgType.withConst();
2745    ArgType = Context.getLValueReferenceType(ArgType);
2746
2747    //   An implicitly-declared copy constructor is an inline public
2748    //   member of its class.
2749    DeclarationName Name
2750      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2751    CXXConstructorDecl *CopyConstructor
2752      = CXXConstructorDecl::Create(Context, ClassDecl,
2753                                   ClassDecl->getLocation(), Name,
2754                                   Context.getFunctionType(Context.VoidTy,
2755                                                           &ArgType, 1,
2756                                                           false, 0,
2757                                               /*FIXME: hasExceptionSpec*/false,
2758                                                           false, 0, 0,
2759                                                       FunctionType::ExtInfo()),
2760                                   /*TInfo=*/0,
2761                                   /*isExplicit=*/false,
2762                                   /*isInline=*/true,
2763                                   /*isImplicitlyDeclared=*/true);
2764    CopyConstructor->setAccess(AS_public);
2765    CopyConstructor->setImplicit();
2766    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2767
2768    // Add the parameter to the constructor.
2769    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2770                                                 ClassDecl->getLocation(),
2771                                                 /*IdentifierInfo=*/0,
2772                                                 ArgType, /*TInfo=*/0,
2773                                                 VarDecl::None,
2774                                                 VarDecl::None, 0);
2775    CopyConstructor->setParams(&FromParam, 1);
2776    if (S)
2777      PushOnScopeChains(CopyConstructor, S, true);
2778    else
2779      ClassDecl->addDecl(CopyConstructor);
2780  }
2781
2782  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2783    // Note: The following rules are largely analoguous to the copy
2784    // constructor rules. Note that virtual bases are not taken into account
2785    // for determining the argument type of the operator. Note also that
2786    // operators taking an object instead of a reference are allowed.
2787    //
2788    // C++ [class.copy]p10:
2789    //   If the class definition does not explicitly declare a copy
2790    //   assignment operator, one is declared implicitly.
2791    //   The implicitly-defined copy assignment operator for a class X
2792    //   will have the form
2793    //
2794    //       X& X::operator=(const X&)
2795    //
2796    //   if
2797    bool HasConstCopyAssignment = true;
2798
2799    //       -- each direct base class B of X has a copy assignment operator
2800    //          whose parameter is of type const B&, const volatile B& or B,
2801    //          and
2802    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2803         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2804      assert(!Base->getType()->isDependentType() &&
2805            "Cannot generate implicit members for class with dependent bases.");
2806      const CXXRecordDecl *BaseClassDecl
2807        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2808      const CXXMethodDecl *MD = 0;
2809      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2810                                                                     MD);
2811    }
2812
2813    //       -- for all the nonstatic data members of X that are of a class
2814    //          type M (or array thereof), each such class type has a copy
2815    //          assignment operator whose parameter is of type const M&,
2816    //          const volatile M& or M.
2817    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2818         HasConstCopyAssignment && Field != ClassDecl->field_end();
2819         ++Field) {
2820      QualType FieldType = (*Field)->getType();
2821      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2822        FieldType = Array->getElementType();
2823      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2824        const CXXRecordDecl *FieldClassDecl
2825          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2826        const CXXMethodDecl *MD = 0;
2827        HasConstCopyAssignment
2828          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2829      }
2830    }
2831
2832    //   Otherwise, the implicitly declared copy assignment operator will
2833    //   have the form
2834    //
2835    //       X& X::operator=(X&)
2836    QualType ArgType = ClassType;
2837    QualType RetType = Context.getLValueReferenceType(ArgType);
2838    if (HasConstCopyAssignment)
2839      ArgType = ArgType.withConst();
2840    ArgType = Context.getLValueReferenceType(ArgType);
2841
2842    //   An implicitly-declared copy assignment operator is an inline public
2843    //   member of its class.
2844    DeclarationName Name =
2845      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2846    CXXMethodDecl *CopyAssignment =
2847      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2848                            Context.getFunctionType(RetType, &ArgType, 1,
2849                                                    false, 0,
2850                                              /*FIXME: hasExceptionSpec*/false,
2851                                                    false, 0, 0,
2852                                                    FunctionType::ExtInfo()),
2853                            /*TInfo=*/0, /*isStatic=*/false,
2854                            /*StorageClassAsWritten=*/FunctionDecl::None,
2855                            /*isInline=*/true);
2856    CopyAssignment->setAccess(AS_public);
2857    CopyAssignment->setImplicit();
2858    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2859    CopyAssignment->setCopyAssignment(true);
2860
2861    // Add the parameter to the operator.
2862    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2863                                                 ClassDecl->getLocation(),
2864                                                 /*Id=*/0,
2865                                                 ArgType, /*TInfo=*/0,
2866                                                 VarDecl::None,
2867                                                 VarDecl::None, 0);
2868    CopyAssignment->setParams(&FromParam, 1);
2869
2870    // Don't call addedAssignmentOperator. There is no way to distinguish an
2871    // implicit from an explicit assignment operator.
2872    if (S)
2873      PushOnScopeChains(CopyAssignment, S, true);
2874    else
2875      ClassDecl->addDecl(CopyAssignment);
2876    AddOverriddenMethods(ClassDecl, CopyAssignment);
2877  }
2878
2879  if (!ClassDecl->hasUserDeclaredDestructor()) {
2880    // C++ [class.dtor]p2:
2881    //   If a class has no user-declared destructor, a destructor is
2882    //   declared implicitly. An implicitly-declared destructor is an
2883    //   inline public member of its class.
2884
2885    // C++ [except.spec]p14:
2886    //   An implicitly declared special member function (Clause 12) shall have
2887    //   an exception-specification.
2888    ImplicitExceptionSpecification ExceptSpec(Context);
2889
2890    // Direct base-class destructors.
2891    for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
2892                                         BEnd = ClassDecl->bases_end();
2893         B != BEnd; ++B) {
2894      if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
2895        ExceptSpec.CalledDecl(
2896                    cast<CXXRecordDecl>(BaseType->getDecl())->getDestructor());
2897    }
2898
2899    // Virtual base-class destructors.
2900    for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
2901                                         BEnd = ClassDecl->vbases_end();
2902         B != BEnd; ++B) {
2903      if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
2904        ExceptSpec.CalledDecl(
2905                    cast<CXXRecordDecl>(BaseType->getDecl())->getDestructor());
2906    }
2907
2908    // Field destructors.
2909    for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
2910                                 FEnd = ClassDecl->field_end();
2911         F != FEnd; ++F) {
2912      if (const RecordType *RecordTy
2913                = Context.getBaseElementType(F->getType())->getAs<RecordType>())
2914        ExceptSpec.CalledDecl(
2915                    cast<CXXRecordDecl>(RecordTy->getDecl())->getDestructor());
2916    }
2917
2918    QualType Ty = Context.getFunctionType(Context.VoidTy,
2919                                          0, 0, false, 0,
2920                                        ExceptSpec.hasExceptionSpecification(),
2921                                      ExceptSpec.hasAnyExceptionSpecification(),
2922                                          ExceptSpec.size(),
2923                                          ExceptSpec.data(),
2924                                          FunctionType::ExtInfo());
2925
2926    DeclarationName Name
2927      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2928    CXXDestructorDecl *Destructor
2929      = CXXDestructorDecl::Create(Context, ClassDecl,
2930                                  ClassDecl->getLocation(), Name, Ty,
2931                                  /*isInline=*/true,
2932                                  /*isImplicitlyDeclared=*/true);
2933    Destructor->setAccess(AS_public);
2934    Destructor->setImplicit();
2935    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2936    if (S)
2937      PushOnScopeChains(Destructor, S, true);
2938    else
2939      ClassDecl->addDecl(Destructor);
2940
2941    // This could be uniqued if it ever proves significant.
2942    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2943
2944    AddOverriddenMethods(ClassDecl, Destructor);
2945  }
2946}
2947
2948void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2949  Decl *D = TemplateD.getAs<Decl>();
2950  if (!D)
2951    return;
2952
2953  TemplateParameterList *Params = 0;
2954  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2955    Params = Template->getTemplateParameters();
2956  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2957           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2958    Params = PartialSpec->getTemplateParameters();
2959  else
2960    return;
2961
2962  for (TemplateParameterList::iterator Param = Params->begin(),
2963                                    ParamEnd = Params->end();
2964       Param != ParamEnd; ++Param) {
2965    NamedDecl *Named = cast<NamedDecl>(*Param);
2966    if (Named->getDeclName()) {
2967      S->AddDecl(DeclPtrTy::make(Named));
2968      IdResolver.AddDecl(Named);
2969    }
2970  }
2971}
2972
2973void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2974  if (!RecordD) return;
2975  AdjustDeclIfTemplate(RecordD);
2976  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2977  PushDeclContext(S, Record);
2978}
2979
2980void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2981  if (!RecordD) return;
2982  PopDeclContext();
2983}
2984
2985/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2986/// parsing a top-level (non-nested) C++ class, and we are now
2987/// parsing those parts of the given Method declaration that could
2988/// not be parsed earlier (C++ [class.mem]p2), such as default
2989/// arguments. This action should enter the scope of the given
2990/// Method declaration as if we had just parsed the qualified method
2991/// name. However, it should not bring the parameters into scope;
2992/// that will be performed by ActOnDelayedCXXMethodParameter.
2993void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2994}
2995
2996/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2997/// C++ method declaration. We're (re-)introducing the given
2998/// function parameter into scope for use in parsing later parts of
2999/// the method declaration. For example, we could see an
3000/// ActOnParamDefaultArgument event for this parameter.
3001void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
3002  if (!ParamD)
3003    return;
3004
3005  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
3006
3007  // If this parameter has an unparsed default argument, clear it out
3008  // to make way for the parsed default argument.
3009  if (Param->hasUnparsedDefaultArg())
3010    Param->setDefaultArg(0);
3011
3012  S->AddDecl(DeclPtrTy::make(Param));
3013  if (Param->getDeclName())
3014    IdResolver.AddDecl(Param);
3015}
3016
3017/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
3018/// processing the delayed method declaration for Method. The method
3019/// declaration is now considered finished. There may be a separate
3020/// ActOnStartOfFunctionDef action later (not necessarily
3021/// immediately!) for this method, if it was also defined inside the
3022/// class body.
3023void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
3024  if (!MethodD)
3025    return;
3026
3027  AdjustDeclIfTemplate(MethodD);
3028
3029  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
3030
3031  // Now that we have our default arguments, check the constructor
3032  // again. It could produce additional diagnostics or affect whether
3033  // the class has implicitly-declared destructors, among other
3034  // things.
3035  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
3036    CheckConstructor(Constructor);
3037
3038  // Check the default arguments, which we may have added.
3039  if (!Method->isInvalidDecl())
3040    CheckCXXDefaultArguments(Method);
3041}
3042
3043/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
3044/// the well-formedness of the constructor declarator @p D with type @p
3045/// R. If there are any errors in the declarator, this routine will
3046/// emit diagnostics and set the invalid bit to true.  In any case, the type
3047/// will be updated to reflect a well-formed type for the constructor and
3048/// returned.
3049QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
3050                                          FunctionDecl::StorageClass &SC) {
3051  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3052
3053  // C++ [class.ctor]p3:
3054  //   A constructor shall not be virtual (10.3) or static (9.4). A
3055  //   constructor can be invoked for a const, volatile or const
3056  //   volatile object. A constructor shall not be declared const,
3057  //   volatile, or const volatile (9.3.2).
3058  if (isVirtual) {
3059    if (!D.isInvalidType())
3060      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3061        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
3062        << SourceRange(D.getIdentifierLoc());
3063    D.setInvalidType();
3064  }
3065  if (SC == FunctionDecl::Static) {
3066    if (!D.isInvalidType())
3067      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3068        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3069        << SourceRange(D.getIdentifierLoc());
3070    D.setInvalidType();
3071    SC = FunctionDecl::None;
3072  }
3073
3074  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3075  if (FTI.TypeQuals != 0) {
3076    if (FTI.TypeQuals & Qualifiers::Const)
3077      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3078        << "const" << SourceRange(D.getIdentifierLoc());
3079    if (FTI.TypeQuals & Qualifiers::Volatile)
3080      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3081        << "volatile" << SourceRange(D.getIdentifierLoc());
3082    if (FTI.TypeQuals & Qualifiers::Restrict)
3083      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3084        << "restrict" << SourceRange(D.getIdentifierLoc());
3085  }
3086
3087  // Rebuild the function type "R" without any type qualifiers (in
3088  // case any of the errors above fired) and with "void" as the
3089  // return type, since constructors don't have return types.
3090  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3091  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
3092                                 Proto->getNumArgs(),
3093                                 Proto->isVariadic(), 0,
3094                                 Proto->hasExceptionSpec(),
3095                                 Proto->hasAnyExceptionSpec(),
3096                                 Proto->getNumExceptions(),
3097                                 Proto->exception_begin(),
3098                                 Proto->getExtInfo());
3099}
3100
3101/// CheckConstructor - Checks a fully-formed constructor for
3102/// well-formedness, issuing any diagnostics required. Returns true if
3103/// the constructor declarator is invalid.
3104void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
3105  CXXRecordDecl *ClassDecl
3106    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
3107  if (!ClassDecl)
3108    return Constructor->setInvalidDecl();
3109
3110  // C++ [class.copy]p3:
3111  //   A declaration of a constructor for a class X is ill-formed if
3112  //   its first parameter is of type (optionally cv-qualified) X and
3113  //   either there are no other parameters or else all other
3114  //   parameters have default arguments.
3115  if (!Constructor->isInvalidDecl() &&
3116      ((Constructor->getNumParams() == 1) ||
3117       (Constructor->getNumParams() > 1 &&
3118        Constructor->getParamDecl(1)->hasDefaultArg())) &&
3119      Constructor->getTemplateSpecializationKind()
3120                                              != TSK_ImplicitInstantiation) {
3121    QualType ParamType = Constructor->getParamDecl(0)->getType();
3122    QualType ClassTy = Context.getTagDeclType(ClassDecl);
3123    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
3124      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
3125      const char *ConstRef
3126        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
3127                                                        : " const &";
3128      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
3129        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
3130
3131      // FIXME: Rather that making the constructor invalid, we should endeavor
3132      // to fix the type.
3133      Constructor->setInvalidDecl();
3134    }
3135  }
3136
3137  // Notify the class that we've added a constructor.  In principle we
3138  // don't need to do this for out-of-line declarations; in practice
3139  // we only instantiate the most recent declaration of a method, so
3140  // we have to call this for everything but friends.
3141  if (!Constructor->getFriendObjectKind())
3142    ClassDecl->addedConstructor(Context, Constructor);
3143}
3144
3145/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
3146/// issuing any diagnostics required. Returns true on error.
3147bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3148  CXXRecordDecl *RD = Destructor->getParent();
3149
3150  if (Destructor->isVirtual()) {
3151    SourceLocation Loc;
3152
3153    if (!Destructor->isImplicit())
3154      Loc = Destructor->getLocation();
3155    else
3156      Loc = RD->getLocation();
3157
3158    // If we have a virtual destructor, look up the deallocation function
3159    FunctionDecl *OperatorDelete = 0;
3160    DeclarationName Name =
3161    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3162    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3163      return true;
3164
3165    Destructor->setOperatorDelete(OperatorDelete);
3166  }
3167
3168  return false;
3169}
3170
3171static inline bool
3172FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3173  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3174          FTI.ArgInfo[0].Param &&
3175          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
3176}
3177
3178/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3179/// the well-formednes of the destructor declarator @p D with type @p
3180/// R. If there are any errors in the declarator, this routine will
3181/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3182/// will be updated to reflect a well-formed type for the destructor and
3183/// returned.
3184QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3185                                         FunctionDecl::StorageClass& SC) {
3186  // C++ [class.dtor]p1:
3187  //   [...] A typedef-name that names a class is a class-name
3188  //   (7.1.3); however, a typedef-name that names a class shall not
3189  //   be used as the identifier in the declarator for a destructor
3190  //   declaration.
3191  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3192  if (isa<TypedefType>(DeclaratorType))
3193    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3194      << DeclaratorType;
3195
3196  // C++ [class.dtor]p2:
3197  //   A destructor is used to destroy objects of its class type. A
3198  //   destructor takes no parameters, and no return type can be
3199  //   specified for it (not even void). The address of a destructor
3200  //   shall not be taken. A destructor shall not be static. A
3201  //   destructor can be invoked for a const, volatile or const
3202  //   volatile object. A destructor shall not be declared const,
3203  //   volatile or const volatile (9.3.2).
3204  if (SC == FunctionDecl::Static) {
3205    if (!D.isInvalidType())
3206      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3207        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3208        << SourceRange(D.getIdentifierLoc())
3209        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3210
3211    SC = FunctionDecl::None;
3212  }
3213  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3214    // Destructors don't have return types, but the parser will
3215    // happily parse something like:
3216    //
3217    //   class X {
3218    //     float ~X();
3219    //   };
3220    //
3221    // The return type will be eliminated later.
3222    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3223      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3224      << SourceRange(D.getIdentifierLoc());
3225  }
3226
3227  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3228  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3229    if (FTI.TypeQuals & Qualifiers::Const)
3230      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3231        << "const" << SourceRange(D.getIdentifierLoc());
3232    if (FTI.TypeQuals & Qualifiers::Volatile)
3233      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3234        << "volatile" << SourceRange(D.getIdentifierLoc());
3235    if (FTI.TypeQuals & Qualifiers::Restrict)
3236      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3237        << "restrict" << SourceRange(D.getIdentifierLoc());
3238    D.setInvalidType();
3239  }
3240
3241  // Make sure we don't have any parameters.
3242  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3243    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3244
3245    // Delete the parameters.
3246    FTI.freeArgs();
3247    D.setInvalidType();
3248  }
3249
3250  // Make sure the destructor isn't variadic.
3251  if (FTI.isVariadic) {
3252    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3253    D.setInvalidType();
3254  }
3255
3256  // Rebuild the function type "R" without any type qualifiers or
3257  // parameters (in case any of the errors above fired) and with
3258  // "void" as the return type, since destructors don't have return
3259  // types.
3260  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3261  if (!Proto)
3262    return QualType();
3263
3264  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
3265                                 Proto->hasExceptionSpec(),
3266                                 Proto->hasAnyExceptionSpec(),
3267                                 Proto->getNumExceptions(),
3268                                 Proto->exception_begin(),
3269                                 Proto->getExtInfo());
3270}
3271
3272/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3273/// well-formednes of the conversion function declarator @p D with
3274/// type @p R. If there are any errors in the declarator, this routine
3275/// will emit diagnostics and return true. Otherwise, it will return
3276/// false. Either way, the type @p R will be updated to reflect a
3277/// well-formed type for the conversion operator.
3278void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3279                                     FunctionDecl::StorageClass& SC) {
3280  // C++ [class.conv.fct]p1:
3281  //   Neither parameter types nor return type can be specified. The
3282  //   type of a conversion function (8.3.5) is "function taking no
3283  //   parameter returning conversion-type-id."
3284  if (SC == FunctionDecl::Static) {
3285    if (!D.isInvalidType())
3286      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3287        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3288        << SourceRange(D.getIdentifierLoc());
3289    D.setInvalidType();
3290    SC = FunctionDecl::None;
3291  }
3292
3293  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3294
3295  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3296    // Conversion functions don't have return types, but the parser will
3297    // happily parse something like:
3298    //
3299    //   class X {
3300    //     float operator bool();
3301    //   };
3302    //
3303    // The return type will be changed later anyway.
3304    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3305      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3306      << SourceRange(D.getIdentifierLoc());
3307    D.setInvalidType();
3308  }
3309
3310  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3311
3312  // Make sure we don't have any parameters.
3313  if (Proto->getNumArgs() > 0) {
3314    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3315
3316    // Delete the parameters.
3317    D.getTypeObject(0).Fun.freeArgs();
3318    D.setInvalidType();
3319  } else if (Proto->isVariadic()) {
3320    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3321    D.setInvalidType();
3322  }
3323
3324  // Diagnose "&operator bool()" and other such nonsense.  This
3325  // is actually a gcc extension which we don't support.
3326  if (Proto->getResultType() != ConvType) {
3327    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3328      << Proto->getResultType();
3329    D.setInvalidType();
3330    ConvType = Proto->getResultType();
3331  }
3332
3333  // C++ [class.conv.fct]p4:
3334  //   The conversion-type-id shall not represent a function type nor
3335  //   an array type.
3336  if (ConvType->isArrayType()) {
3337    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3338    ConvType = Context.getPointerType(ConvType);
3339    D.setInvalidType();
3340  } else if (ConvType->isFunctionType()) {
3341    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3342    ConvType = Context.getPointerType(ConvType);
3343    D.setInvalidType();
3344  }
3345
3346  // Rebuild the function type "R" without any parameters (in case any
3347  // of the errors above fired) and with the conversion type as the
3348  // return type.
3349  if (D.isInvalidType()) {
3350    R = Context.getFunctionType(ConvType, 0, 0, false,
3351                                Proto->getTypeQuals(),
3352                                Proto->hasExceptionSpec(),
3353                                Proto->hasAnyExceptionSpec(),
3354                                Proto->getNumExceptions(),
3355                                Proto->exception_begin(),
3356                                Proto->getExtInfo());
3357  }
3358
3359  // C++0x explicit conversion operators.
3360  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3361    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3362         diag::warn_explicit_conversion_functions)
3363      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3364}
3365
3366/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3367/// the declaration of the given C++ conversion function. This routine
3368/// is responsible for recording the conversion function in the C++
3369/// class, if possible.
3370Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3371  assert(Conversion && "Expected to receive a conversion function declaration");
3372
3373  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3374
3375  // Make sure we aren't redeclaring the conversion function.
3376  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3377
3378  // C++ [class.conv.fct]p1:
3379  //   [...] A conversion function is never used to convert a
3380  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3381  //   same object type (or a reference to it), to a (possibly
3382  //   cv-qualified) base class of that type (or a reference to it),
3383  //   or to (possibly cv-qualified) void.
3384  // FIXME: Suppress this warning if the conversion function ends up being a
3385  // virtual function that overrides a virtual function in a base class.
3386  QualType ClassType
3387    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3388  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3389    ConvType = ConvTypeRef->getPointeeType();
3390  if (ConvType->isRecordType()) {
3391    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3392    if (ConvType == ClassType)
3393      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3394        << ClassType;
3395    else if (IsDerivedFrom(ClassType, ConvType))
3396      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3397        <<  ClassType << ConvType;
3398  } else if (ConvType->isVoidType()) {
3399    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3400      << ClassType << ConvType;
3401  }
3402
3403  if (Conversion->getPrimaryTemplate()) {
3404    // ignore specializations
3405  } else if (Conversion->getPreviousDeclaration()) {
3406    if (FunctionTemplateDecl *ConversionTemplate
3407                                  = Conversion->getDescribedFunctionTemplate()) {
3408      if (ClassDecl->replaceConversion(
3409                                   ConversionTemplate->getPreviousDeclaration(),
3410                                       ConversionTemplate))
3411        return DeclPtrTy::make(ConversionTemplate);
3412    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3413                                            Conversion))
3414      return DeclPtrTy::make(Conversion);
3415    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3416  } else if (FunctionTemplateDecl *ConversionTemplate
3417               = Conversion->getDescribedFunctionTemplate())
3418    ClassDecl->addConversionFunction(ConversionTemplate);
3419  else
3420    ClassDecl->addConversionFunction(Conversion);
3421
3422  return DeclPtrTy::make(Conversion);
3423}
3424
3425//===----------------------------------------------------------------------===//
3426// Namespace Handling
3427//===----------------------------------------------------------------------===//
3428
3429/// ActOnStartNamespaceDef - This is called at the start of a namespace
3430/// definition.
3431Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3432                                             SourceLocation IdentLoc,
3433                                             IdentifierInfo *II,
3434                                             SourceLocation LBrace,
3435                                             AttributeList *AttrList) {
3436  NamespaceDecl *Namespc =
3437      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
3438  Namespc->setLBracLoc(LBrace);
3439
3440  Scope *DeclRegionScope = NamespcScope->getParent();
3441
3442  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3443
3444  if (II) {
3445    // C++ [namespace.def]p2:
3446    // The identifier in an original-namespace-definition shall not have been
3447    // previously defined in the declarative region in which the
3448    // original-namespace-definition appears. The identifier in an
3449    // original-namespace-definition is the name of the namespace. Subsequently
3450    // in that declarative region, it is treated as an original-namespace-name.
3451
3452    NamedDecl *PrevDecl
3453      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3454                         ForRedeclaration);
3455
3456    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3457      // This is an extended namespace definition.
3458      // Attach this namespace decl to the chain of extended namespace
3459      // definitions.
3460      OrigNS->setNextNamespace(Namespc);
3461      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3462
3463      // Remove the previous declaration from the scope.
3464      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3465        IdResolver.RemoveDecl(OrigNS);
3466        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3467      }
3468    } else if (PrevDecl) {
3469      // This is an invalid name redefinition.
3470      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3471       << Namespc->getDeclName();
3472      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3473      Namespc->setInvalidDecl();
3474      // Continue on to push Namespc as current DeclContext and return it.
3475    } else if (II->isStr("std") &&
3476               CurContext->getLookupContext()->isTranslationUnit()) {
3477      // This is the first "real" definition of the namespace "std", so update
3478      // our cache of the "std" namespace to point at this definition.
3479      if (StdNamespace) {
3480        // We had already defined a dummy namespace "std". Link this new
3481        // namespace definition to the dummy namespace "std".
3482        StdNamespace->setNextNamespace(Namespc);
3483        StdNamespace->setLocation(IdentLoc);
3484        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
3485      }
3486
3487      // Make our StdNamespace cache point at the first real definition of the
3488      // "std" namespace.
3489      StdNamespace = Namespc;
3490    }
3491
3492    PushOnScopeChains(Namespc, DeclRegionScope);
3493  } else {
3494    // Anonymous namespaces.
3495    assert(Namespc->isAnonymousNamespace());
3496
3497    // Link the anonymous namespace into its parent.
3498    NamespaceDecl *PrevDecl;
3499    DeclContext *Parent = CurContext->getLookupContext();
3500    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3501      PrevDecl = TU->getAnonymousNamespace();
3502      TU->setAnonymousNamespace(Namespc);
3503    } else {
3504      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3505      PrevDecl = ND->getAnonymousNamespace();
3506      ND->setAnonymousNamespace(Namespc);
3507    }
3508
3509    // Link the anonymous namespace with its previous declaration.
3510    if (PrevDecl) {
3511      assert(PrevDecl->isAnonymousNamespace());
3512      assert(!PrevDecl->getNextNamespace());
3513      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3514      PrevDecl->setNextNamespace(Namespc);
3515    }
3516
3517    CurContext->addDecl(Namespc);
3518
3519    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3520    //   behaves as if it were replaced by
3521    //     namespace unique { /* empty body */ }
3522    //     using namespace unique;
3523    //     namespace unique { namespace-body }
3524    //   where all occurrences of 'unique' in a translation unit are
3525    //   replaced by the same identifier and this identifier differs
3526    //   from all other identifiers in the entire program.
3527
3528    // We just create the namespace with an empty name and then add an
3529    // implicit using declaration, just like the standard suggests.
3530    //
3531    // CodeGen enforces the "universally unique" aspect by giving all
3532    // declarations semantically contained within an anonymous
3533    // namespace internal linkage.
3534
3535    if (!PrevDecl) {
3536      UsingDirectiveDecl* UD
3537        = UsingDirectiveDecl::Create(Context, CurContext,
3538                                     /* 'using' */ LBrace,
3539                                     /* 'namespace' */ SourceLocation(),
3540                                     /* qualifier */ SourceRange(),
3541                                     /* NNS */ NULL,
3542                                     /* identifier */ SourceLocation(),
3543                                     Namespc,
3544                                     /* Ancestor */ CurContext);
3545      UD->setImplicit();
3546      CurContext->addDecl(UD);
3547    }
3548  }
3549
3550  // Although we could have an invalid decl (i.e. the namespace name is a
3551  // redefinition), push it as current DeclContext and try to continue parsing.
3552  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3553  // for the namespace has the declarations that showed up in that particular
3554  // namespace definition.
3555  PushDeclContext(NamespcScope, Namespc);
3556  return DeclPtrTy::make(Namespc);
3557}
3558
3559/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3560/// is a namespace alias, returns the namespace it points to.
3561static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3562  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3563    return AD->getNamespace();
3564  return dyn_cast_or_null<NamespaceDecl>(D);
3565}
3566
3567/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3568/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3569void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3570  Decl *Dcl = D.getAs<Decl>();
3571  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3572  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3573  Namespc->setRBracLoc(RBrace);
3574  PopDeclContext();
3575}
3576
3577/// \brief Retrieve the special "std" namespace, which may require us to
3578/// implicitly define the namespace.
3579NamespaceDecl *Sema::getStdNamespace() {
3580  if (!StdNamespace) {
3581    // The "std" namespace has not yet been defined, so build one implicitly.
3582    StdNamespace = NamespaceDecl::Create(Context,
3583                                         Context.getTranslationUnitDecl(),
3584                                         SourceLocation(),
3585                                         &PP.getIdentifierTable().get("std"));
3586    StdNamespace->setImplicit(true);
3587  }
3588
3589  return StdNamespace;
3590}
3591
3592Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3593                                          SourceLocation UsingLoc,
3594                                          SourceLocation NamespcLoc,
3595                                          CXXScopeSpec &SS,
3596                                          SourceLocation IdentLoc,
3597                                          IdentifierInfo *NamespcName,
3598                                          AttributeList *AttrList) {
3599  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3600  assert(NamespcName && "Invalid NamespcName.");
3601  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3602  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3603
3604  UsingDirectiveDecl *UDir = 0;
3605  NestedNameSpecifier *Qualifier = 0;
3606  if (SS.isSet())
3607    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3608
3609  // Lookup namespace name.
3610  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3611  LookupParsedName(R, S, &SS);
3612  if (R.isAmbiguous())
3613    return DeclPtrTy();
3614
3615  if (R.empty()) {
3616    // Allow "using namespace std;" or "using namespace ::std;" even if
3617    // "std" hasn't been defined yet, for GCC compatibility.
3618    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3619        NamespcName->isStr("std")) {
3620      Diag(IdentLoc, diag::ext_using_undefined_std);
3621      R.addDecl(getStdNamespace());
3622      R.resolveKind();
3623    }
3624    // Otherwise, attempt typo correction.
3625    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3626                                                       CTC_NoKeywords, 0)) {
3627      if (R.getAsSingle<NamespaceDecl>() ||
3628          R.getAsSingle<NamespaceAliasDecl>()) {
3629        if (DeclContext *DC = computeDeclContext(SS, false))
3630          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3631            << NamespcName << DC << Corrected << SS.getRange()
3632            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3633        else
3634          Diag(IdentLoc, diag::err_using_directive_suggest)
3635            << NamespcName << Corrected
3636            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3637        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3638          << Corrected;
3639
3640        NamespcName = Corrected.getAsIdentifierInfo();
3641      } else {
3642        R.clear();
3643        R.setLookupName(NamespcName);
3644      }
3645    }
3646  }
3647
3648  if (!R.empty()) {
3649    NamedDecl *Named = R.getFoundDecl();
3650    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3651        && "expected namespace decl");
3652    // C++ [namespace.udir]p1:
3653    //   A using-directive specifies that the names in the nominated
3654    //   namespace can be used in the scope in which the
3655    //   using-directive appears after the using-directive. During
3656    //   unqualified name lookup (3.4.1), the names appear as if they
3657    //   were declared in the nearest enclosing namespace which
3658    //   contains both the using-directive and the nominated
3659    //   namespace. [Note: in this context, "contains" means "contains
3660    //   directly or indirectly". ]
3661
3662    // Find enclosing context containing both using-directive and
3663    // nominated namespace.
3664    NamespaceDecl *NS = getNamespaceDecl(Named);
3665    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3666    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3667      CommonAncestor = CommonAncestor->getParent();
3668
3669    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3670                                      SS.getRange(),
3671                                      (NestedNameSpecifier *)SS.getScopeRep(),
3672                                      IdentLoc, Named, CommonAncestor);
3673    PushUsingDirective(S, UDir);
3674  } else {
3675    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3676  }
3677
3678  // FIXME: We ignore attributes for now.
3679  delete AttrList;
3680  return DeclPtrTy::make(UDir);
3681}
3682
3683void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3684  // If scope has associated entity, then using directive is at namespace
3685  // or translation unit scope. We add UsingDirectiveDecls, into
3686  // it's lookup structure.
3687  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3688    Ctx->addDecl(UDir);
3689  else
3690    // Otherwise it is block-sope. using-directives will affect lookup
3691    // only to the end of scope.
3692    S->PushUsingDirective(DeclPtrTy::make(UDir));
3693}
3694
3695
3696Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3697                                            AccessSpecifier AS,
3698                                            bool HasUsingKeyword,
3699                                            SourceLocation UsingLoc,
3700                                            CXXScopeSpec &SS,
3701                                            UnqualifiedId &Name,
3702                                            AttributeList *AttrList,
3703                                            bool IsTypeName,
3704                                            SourceLocation TypenameLoc) {
3705  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3706
3707  switch (Name.getKind()) {
3708  case UnqualifiedId::IK_Identifier:
3709  case UnqualifiedId::IK_OperatorFunctionId:
3710  case UnqualifiedId::IK_LiteralOperatorId:
3711  case UnqualifiedId::IK_ConversionFunctionId:
3712    break;
3713
3714  case UnqualifiedId::IK_ConstructorName:
3715  case UnqualifiedId::IK_ConstructorTemplateId:
3716    // C++0x inherited constructors.
3717    if (getLangOptions().CPlusPlus0x) break;
3718
3719    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3720      << SS.getRange();
3721    return DeclPtrTy();
3722
3723  case UnqualifiedId::IK_DestructorName:
3724    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3725      << SS.getRange();
3726    return DeclPtrTy();
3727
3728  case UnqualifiedId::IK_TemplateId:
3729    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3730      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3731    return DeclPtrTy();
3732  }
3733
3734  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3735  if (!TargetName)
3736    return DeclPtrTy();
3737
3738  // Warn about using declarations.
3739  // TODO: store that the declaration was written without 'using' and
3740  // talk about access decls instead of using decls in the
3741  // diagnostics.
3742  if (!HasUsingKeyword) {
3743    UsingLoc = Name.getSourceRange().getBegin();
3744
3745    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3746      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3747  }
3748
3749  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3750                                        Name.getSourceRange().getBegin(),
3751                                        TargetName, AttrList,
3752                                        /* IsInstantiation */ false,
3753                                        IsTypeName, TypenameLoc);
3754  if (UD)
3755    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3756
3757  return DeclPtrTy::make(UD);
3758}
3759
3760/// Determines whether to create a using shadow decl for a particular
3761/// decl, given the set of decls existing prior to this using lookup.
3762bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3763                                const LookupResult &Previous) {
3764  // Diagnose finding a decl which is not from a base class of the
3765  // current class.  We do this now because there are cases where this
3766  // function will silently decide not to build a shadow decl, which
3767  // will pre-empt further diagnostics.
3768  //
3769  // We don't need to do this in C++0x because we do the check once on
3770  // the qualifier.
3771  //
3772  // FIXME: diagnose the following if we care enough:
3773  //   struct A { int foo; };
3774  //   struct B : A { using A::foo; };
3775  //   template <class T> struct C : A {};
3776  //   template <class T> struct D : C<T> { using B::foo; } // <---
3777  // This is invalid (during instantiation) in C++03 because B::foo
3778  // resolves to the using decl in B, which is not a base class of D<T>.
3779  // We can't diagnose it immediately because C<T> is an unknown
3780  // specialization.  The UsingShadowDecl in D<T> then points directly
3781  // to A::foo, which will look well-formed when we instantiate.
3782  // The right solution is to not collapse the shadow-decl chain.
3783  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3784    DeclContext *OrigDC = Orig->getDeclContext();
3785
3786    // Handle enums and anonymous structs.
3787    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3788    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3789    while (OrigRec->isAnonymousStructOrUnion())
3790      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3791
3792    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3793      if (OrigDC == CurContext) {
3794        Diag(Using->getLocation(),
3795             diag::err_using_decl_nested_name_specifier_is_current_class)
3796          << Using->getNestedNameRange();
3797        Diag(Orig->getLocation(), diag::note_using_decl_target);
3798        return true;
3799      }
3800
3801      Diag(Using->getNestedNameRange().getBegin(),
3802           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3803        << Using->getTargetNestedNameDecl()
3804        << cast<CXXRecordDecl>(CurContext)
3805        << Using->getNestedNameRange();
3806      Diag(Orig->getLocation(), diag::note_using_decl_target);
3807      return true;
3808    }
3809  }
3810
3811  if (Previous.empty()) return false;
3812
3813  NamedDecl *Target = Orig;
3814  if (isa<UsingShadowDecl>(Target))
3815    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3816
3817  // If the target happens to be one of the previous declarations, we
3818  // don't have a conflict.
3819  //
3820  // FIXME: but we might be increasing its access, in which case we
3821  // should redeclare it.
3822  NamedDecl *NonTag = 0, *Tag = 0;
3823  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3824         I != E; ++I) {
3825    NamedDecl *D = (*I)->getUnderlyingDecl();
3826    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3827      return false;
3828
3829    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3830  }
3831
3832  if (Target->isFunctionOrFunctionTemplate()) {
3833    FunctionDecl *FD;
3834    if (isa<FunctionTemplateDecl>(Target))
3835      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3836    else
3837      FD = cast<FunctionDecl>(Target);
3838
3839    NamedDecl *OldDecl = 0;
3840    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3841    case Ovl_Overload:
3842      return false;
3843
3844    case Ovl_NonFunction:
3845      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3846      break;
3847
3848    // We found a decl with the exact signature.
3849    case Ovl_Match:
3850      // If we're in a record, we want to hide the target, so we
3851      // return true (without a diagnostic) to tell the caller not to
3852      // build a shadow decl.
3853      if (CurContext->isRecord())
3854        return true;
3855
3856      // If we're not in a record, this is an error.
3857      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3858      break;
3859    }
3860
3861    Diag(Target->getLocation(), diag::note_using_decl_target);
3862    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3863    return true;
3864  }
3865
3866  // Target is not a function.
3867
3868  if (isa<TagDecl>(Target)) {
3869    // No conflict between a tag and a non-tag.
3870    if (!Tag) return false;
3871
3872    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3873    Diag(Target->getLocation(), diag::note_using_decl_target);
3874    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3875    return true;
3876  }
3877
3878  // No conflict between a tag and a non-tag.
3879  if (!NonTag) return false;
3880
3881  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3882  Diag(Target->getLocation(), diag::note_using_decl_target);
3883  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3884  return true;
3885}
3886
3887/// Builds a shadow declaration corresponding to a 'using' declaration.
3888UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3889                                            UsingDecl *UD,
3890                                            NamedDecl *Orig) {
3891
3892  // If we resolved to another shadow declaration, just coalesce them.
3893  NamedDecl *Target = Orig;
3894  if (isa<UsingShadowDecl>(Target)) {
3895    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3896    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3897  }
3898
3899  UsingShadowDecl *Shadow
3900    = UsingShadowDecl::Create(Context, CurContext,
3901                              UD->getLocation(), UD, Target);
3902  UD->addShadowDecl(Shadow);
3903
3904  if (S)
3905    PushOnScopeChains(Shadow, S);
3906  else
3907    CurContext->addDecl(Shadow);
3908  Shadow->setAccess(UD->getAccess());
3909
3910  // Register it as a conversion if appropriate.
3911  if (Shadow->getDeclName().getNameKind()
3912        == DeclarationName::CXXConversionFunctionName)
3913    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3914
3915  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3916    Shadow->setInvalidDecl();
3917
3918  return Shadow;
3919}
3920
3921/// Hides a using shadow declaration.  This is required by the current
3922/// using-decl implementation when a resolvable using declaration in a
3923/// class is followed by a declaration which would hide or override
3924/// one or more of the using decl's targets; for example:
3925///
3926///   struct Base { void foo(int); };
3927///   struct Derived : Base {
3928///     using Base::foo;
3929///     void foo(int);
3930///   };
3931///
3932/// The governing language is C++03 [namespace.udecl]p12:
3933///
3934///   When a using-declaration brings names from a base class into a
3935///   derived class scope, member functions in the derived class
3936///   override and/or hide member functions with the same name and
3937///   parameter types in a base class (rather than conflicting).
3938///
3939/// There are two ways to implement this:
3940///   (1) optimistically create shadow decls when they're not hidden
3941///       by existing declarations, or
3942///   (2) don't create any shadow decls (or at least don't make them
3943///       visible) until we've fully parsed/instantiated the class.
3944/// The problem with (1) is that we might have to retroactively remove
3945/// a shadow decl, which requires several O(n) operations because the
3946/// decl structures are (very reasonably) not designed for removal.
3947/// (2) avoids this but is very fiddly and phase-dependent.
3948void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3949  if (Shadow->getDeclName().getNameKind() ==
3950        DeclarationName::CXXConversionFunctionName)
3951    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3952
3953  // Remove it from the DeclContext...
3954  Shadow->getDeclContext()->removeDecl(Shadow);
3955
3956  // ...and the scope, if applicable...
3957  if (S) {
3958    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3959    IdResolver.RemoveDecl(Shadow);
3960  }
3961
3962  // ...and the using decl.
3963  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3964
3965  // TODO: complain somehow if Shadow was used.  It shouldn't
3966  // be possible for this to happen, because...?
3967}
3968
3969/// Builds a using declaration.
3970///
3971/// \param IsInstantiation - Whether this call arises from an
3972///   instantiation of an unresolved using declaration.  We treat
3973///   the lookup differently for these declarations.
3974NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3975                                       SourceLocation UsingLoc,
3976                                       CXXScopeSpec &SS,
3977                                       SourceLocation IdentLoc,
3978                                       DeclarationName Name,
3979                                       AttributeList *AttrList,
3980                                       bool IsInstantiation,
3981                                       bool IsTypeName,
3982                                       SourceLocation TypenameLoc) {
3983  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3984  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3985
3986  // FIXME: We ignore attributes for now.
3987  delete AttrList;
3988
3989  if (SS.isEmpty()) {
3990    Diag(IdentLoc, diag::err_using_requires_qualname);
3991    return 0;
3992  }
3993
3994  // Do the redeclaration lookup in the current scope.
3995  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3996                        ForRedeclaration);
3997  Previous.setHideTags(false);
3998  if (S) {
3999    LookupName(Previous, S);
4000
4001    // It is really dumb that we have to do this.
4002    LookupResult::Filter F = Previous.makeFilter();
4003    while (F.hasNext()) {
4004      NamedDecl *D = F.next();
4005      if (!isDeclInScope(D, CurContext, S))
4006        F.erase();
4007    }
4008    F.done();
4009  } else {
4010    assert(IsInstantiation && "no scope in non-instantiation");
4011    assert(CurContext->isRecord() && "scope not record in instantiation");
4012    LookupQualifiedName(Previous, CurContext);
4013  }
4014
4015  NestedNameSpecifier *NNS =
4016    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4017
4018  // Check for invalid redeclarations.
4019  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
4020    return 0;
4021
4022  // Check for bad qualifiers.
4023  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
4024    return 0;
4025
4026  DeclContext *LookupContext = computeDeclContext(SS);
4027  NamedDecl *D;
4028  if (!LookupContext) {
4029    if (IsTypeName) {
4030      // FIXME: not all declaration name kinds are legal here
4031      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
4032                                              UsingLoc, TypenameLoc,
4033                                              SS.getRange(), NNS,
4034                                              IdentLoc, Name);
4035    } else {
4036      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
4037                                           UsingLoc, SS.getRange(), NNS,
4038                                           IdentLoc, Name);
4039    }
4040  } else {
4041    D = UsingDecl::Create(Context, CurContext, IdentLoc,
4042                          SS.getRange(), UsingLoc, NNS, Name,
4043                          IsTypeName);
4044  }
4045  D->setAccess(AS);
4046  CurContext->addDecl(D);
4047
4048  if (!LookupContext) return D;
4049  UsingDecl *UD = cast<UsingDecl>(D);
4050
4051  if (RequireCompleteDeclContext(SS, LookupContext)) {
4052    UD->setInvalidDecl();
4053    return UD;
4054  }
4055
4056  // Look up the target name.
4057
4058  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
4059
4060  // Unlike most lookups, we don't always want to hide tag
4061  // declarations: tag names are visible through the using declaration
4062  // even if hidden by ordinary names, *except* in a dependent context
4063  // where it's important for the sanity of two-phase lookup.
4064  if (!IsInstantiation)
4065    R.setHideTags(false);
4066
4067  LookupQualifiedName(R, LookupContext);
4068
4069  if (R.empty()) {
4070    Diag(IdentLoc, diag::err_no_member)
4071      << Name << LookupContext << SS.getRange();
4072    UD->setInvalidDecl();
4073    return UD;
4074  }
4075
4076  if (R.isAmbiguous()) {
4077    UD->setInvalidDecl();
4078    return UD;
4079  }
4080
4081  if (IsTypeName) {
4082    // If we asked for a typename and got a non-type decl, error out.
4083    if (!R.getAsSingle<TypeDecl>()) {
4084      Diag(IdentLoc, diag::err_using_typename_non_type);
4085      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
4086        Diag((*I)->getUnderlyingDecl()->getLocation(),
4087             diag::note_using_decl_target);
4088      UD->setInvalidDecl();
4089      return UD;
4090    }
4091  } else {
4092    // If we asked for a non-typename and we got a type, error out,
4093    // but only if this is an instantiation of an unresolved using
4094    // decl.  Otherwise just silently find the type name.
4095    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
4096      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
4097      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
4098      UD->setInvalidDecl();
4099      return UD;
4100    }
4101  }
4102
4103  // C++0x N2914 [namespace.udecl]p6:
4104  // A using-declaration shall not name a namespace.
4105  if (R.getAsSingle<NamespaceDecl>()) {
4106    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
4107      << SS.getRange();
4108    UD->setInvalidDecl();
4109    return UD;
4110  }
4111
4112  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
4113    if (!CheckUsingShadowDecl(UD, *I, Previous))
4114      BuildUsingShadowDecl(S, UD, *I);
4115  }
4116
4117  return UD;
4118}
4119
4120/// Checks that the given using declaration is not an invalid
4121/// redeclaration.  Note that this is checking only for the using decl
4122/// itself, not for any ill-formedness among the UsingShadowDecls.
4123bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4124                                       bool isTypeName,
4125                                       const CXXScopeSpec &SS,
4126                                       SourceLocation NameLoc,
4127                                       const LookupResult &Prev) {
4128  // C++03 [namespace.udecl]p8:
4129  // C++0x [namespace.udecl]p10:
4130  //   A using-declaration is a declaration and can therefore be used
4131  //   repeatedly where (and only where) multiple declarations are
4132  //   allowed.
4133  //
4134  // That's in non-member contexts.
4135  if (!CurContext->getLookupContext()->isRecord())
4136    return false;
4137
4138  NestedNameSpecifier *Qual
4139    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4140
4141  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4142    NamedDecl *D = *I;
4143
4144    bool DTypename;
4145    NestedNameSpecifier *DQual;
4146    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4147      DTypename = UD->isTypeName();
4148      DQual = UD->getTargetNestedNameDecl();
4149    } else if (UnresolvedUsingValueDecl *UD
4150                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4151      DTypename = false;
4152      DQual = UD->getTargetNestedNameSpecifier();
4153    } else if (UnresolvedUsingTypenameDecl *UD
4154                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4155      DTypename = true;
4156      DQual = UD->getTargetNestedNameSpecifier();
4157    } else continue;
4158
4159    // using decls differ if one says 'typename' and the other doesn't.
4160    // FIXME: non-dependent using decls?
4161    if (isTypeName != DTypename) continue;
4162
4163    // using decls differ if they name different scopes (but note that
4164    // template instantiation can cause this check to trigger when it
4165    // didn't before instantiation).
4166    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4167        Context.getCanonicalNestedNameSpecifier(DQual))
4168      continue;
4169
4170    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4171    Diag(D->getLocation(), diag::note_using_decl) << 1;
4172    return true;
4173  }
4174
4175  return false;
4176}
4177
4178
4179/// Checks that the given nested-name qualifier used in a using decl
4180/// in the current context is appropriately related to the current
4181/// scope.  If an error is found, diagnoses it and returns true.
4182bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4183                                   const CXXScopeSpec &SS,
4184                                   SourceLocation NameLoc) {
4185  DeclContext *NamedContext = computeDeclContext(SS);
4186
4187  if (!CurContext->isRecord()) {
4188    // C++03 [namespace.udecl]p3:
4189    // C++0x [namespace.udecl]p8:
4190    //   A using-declaration for a class member shall be a member-declaration.
4191
4192    // If we weren't able to compute a valid scope, it must be a
4193    // dependent class scope.
4194    if (!NamedContext || NamedContext->isRecord()) {
4195      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4196        << SS.getRange();
4197      return true;
4198    }
4199
4200    // Otherwise, everything is known to be fine.
4201    return false;
4202  }
4203
4204  // The current scope is a record.
4205
4206  // If the named context is dependent, we can't decide much.
4207  if (!NamedContext) {
4208    // FIXME: in C++0x, we can diagnose if we can prove that the
4209    // nested-name-specifier does not refer to a base class, which is
4210    // still possible in some cases.
4211
4212    // Otherwise we have to conservatively report that things might be
4213    // okay.
4214    return false;
4215  }
4216
4217  if (!NamedContext->isRecord()) {
4218    // Ideally this would point at the last name in the specifier,
4219    // but we don't have that level of source info.
4220    Diag(SS.getRange().getBegin(),
4221         diag::err_using_decl_nested_name_specifier_is_not_class)
4222      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4223    return true;
4224  }
4225
4226  if (getLangOptions().CPlusPlus0x) {
4227    // C++0x [namespace.udecl]p3:
4228    //   In a using-declaration used as a member-declaration, the
4229    //   nested-name-specifier shall name a base class of the class
4230    //   being defined.
4231
4232    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4233                                 cast<CXXRecordDecl>(NamedContext))) {
4234      if (CurContext == NamedContext) {
4235        Diag(NameLoc,
4236             diag::err_using_decl_nested_name_specifier_is_current_class)
4237          << SS.getRange();
4238        return true;
4239      }
4240
4241      Diag(SS.getRange().getBegin(),
4242           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4243        << (NestedNameSpecifier*) SS.getScopeRep()
4244        << cast<CXXRecordDecl>(CurContext)
4245        << SS.getRange();
4246      return true;
4247    }
4248
4249    return false;
4250  }
4251
4252  // C++03 [namespace.udecl]p4:
4253  //   A using-declaration used as a member-declaration shall refer
4254  //   to a member of a base class of the class being defined [etc.].
4255
4256  // Salient point: SS doesn't have to name a base class as long as
4257  // lookup only finds members from base classes.  Therefore we can
4258  // diagnose here only if we can prove that that can't happen,
4259  // i.e. if the class hierarchies provably don't intersect.
4260
4261  // TODO: it would be nice if "definitely valid" results were cached
4262  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4263  // need to be repeated.
4264
4265  struct UserData {
4266    llvm::DenseSet<const CXXRecordDecl*> Bases;
4267
4268    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4269      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4270      Data->Bases.insert(Base);
4271      return true;
4272    }
4273
4274    bool hasDependentBases(const CXXRecordDecl *Class) {
4275      return !Class->forallBases(collect, this);
4276    }
4277
4278    /// Returns true if the base is dependent or is one of the
4279    /// accumulated base classes.
4280    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4281      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4282      return !Data->Bases.count(Base);
4283    }
4284
4285    bool mightShareBases(const CXXRecordDecl *Class) {
4286      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4287    }
4288  };
4289
4290  UserData Data;
4291
4292  // Returns false if we find a dependent base.
4293  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4294    return false;
4295
4296  // Returns false if the class has a dependent base or if it or one
4297  // of its bases is present in the base set of the current context.
4298  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4299    return false;
4300
4301  Diag(SS.getRange().getBegin(),
4302       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4303    << (NestedNameSpecifier*) SS.getScopeRep()
4304    << cast<CXXRecordDecl>(CurContext)
4305    << SS.getRange();
4306
4307  return true;
4308}
4309
4310Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
4311                                             SourceLocation NamespaceLoc,
4312                                             SourceLocation AliasLoc,
4313                                             IdentifierInfo *Alias,
4314                                             CXXScopeSpec &SS,
4315                                             SourceLocation IdentLoc,
4316                                             IdentifierInfo *Ident) {
4317
4318  // Lookup the namespace name.
4319  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4320  LookupParsedName(R, S, &SS);
4321
4322  // Check if we have a previous declaration with the same name.
4323  NamedDecl *PrevDecl
4324    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4325                       ForRedeclaration);
4326  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4327    PrevDecl = 0;
4328
4329  if (PrevDecl) {
4330    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4331      // We already have an alias with the same name that points to the same
4332      // namespace, so don't create a new one.
4333      // FIXME: At some point, we'll want to create the (redundant)
4334      // declaration to maintain better source information.
4335      if (!R.isAmbiguous() && !R.empty() &&
4336          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4337        return DeclPtrTy();
4338    }
4339
4340    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4341      diag::err_redefinition_different_kind;
4342    Diag(AliasLoc, DiagID) << Alias;
4343    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4344    return DeclPtrTy();
4345  }
4346
4347  if (R.isAmbiguous())
4348    return DeclPtrTy();
4349
4350  if (R.empty()) {
4351    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4352                                                CTC_NoKeywords, 0)) {
4353      if (R.getAsSingle<NamespaceDecl>() ||
4354          R.getAsSingle<NamespaceAliasDecl>()) {
4355        if (DeclContext *DC = computeDeclContext(SS, false))
4356          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4357            << Ident << DC << Corrected << SS.getRange()
4358            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4359        else
4360          Diag(IdentLoc, diag::err_using_directive_suggest)
4361            << Ident << Corrected
4362            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4363
4364        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4365          << Corrected;
4366
4367        Ident = Corrected.getAsIdentifierInfo();
4368      } else {
4369        R.clear();
4370        R.setLookupName(Ident);
4371      }
4372    }
4373
4374    if (R.empty()) {
4375      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4376      return DeclPtrTy();
4377    }
4378  }
4379
4380  NamespaceAliasDecl *AliasDecl =
4381    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4382                               Alias, SS.getRange(),
4383                               (NestedNameSpecifier *)SS.getScopeRep(),
4384                               IdentLoc, R.getFoundDecl());
4385
4386  PushOnScopeChains(AliasDecl, S);
4387  return DeclPtrTy::make(AliasDecl);
4388}
4389
4390namespace {
4391  /// \brief Scoped object used to handle the state changes required in Sema
4392  /// to implicitly define the body of a C++ member function;
4393  class ImplicitlyDefinedFunctionScope {
4394    Sema &S;
4395    DeclContext *PreviousContext;
4396
4397  public:
4398    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4399      : S(S), PreviousContext(S.CurContext)
4400    {
4401      S.CurContext = Method;
4402      S.PushFunctionScope();
4403      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4404    }
4405
4406    ~ImplicitlyDefinedFunctionScope() {
4407      S.PopExpressionEvaluationContext();
4408      S.PopFunctionOrBlockScope();
4409      S.CurContext = PreviousContext;
4410    }
4411  };
4412}
4413
4414void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4415                                            CXXConstructorDecl *Constructor) {
4416  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4417          !Constructor->isUsed(false)) &&
4418    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4419
4420  CXXRecordDecl *ClassDecl = Constructor->getParent();
4421  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4422
4423  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4424  ErrorTrap Trap(*this);
4425  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4426      Trap.hasErrorOccurred()) {
4427    Diag(CurrentLocation, diag::note_member_synthesized_at)
4428      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4429    Constructor->setInvalidDecl();
4430  } else {
4431    Constructor->setUsed();
4432    MarkVTableUsed(CurrentLocation, ClassDecl);
4433  }
4434}
4435
4436void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4437                                    CXXDestructorDecl *Destructor) {
4438  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4439         "DefineImplicitDestructor - call it for implicit default dtor");
4440  CXXRecordDecl *ClassDecl = Destructor->getParent();
4441  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4442
4443  if (Destructor->isInvalidDecl())
4444    return;
4445
4446  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4447
4448  ErrorTrap Trap(*this);
4449  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4450                                         Destructor->getParent());
4451
4452  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4453    Diag(CurrentLocation, diag::note_member_synthesized_at)
4454      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4455
4456    Destructor->setInvalidDecl();
4457    return;
4458  }
4459
4460  Destructor->setUsed();
4461  MarkVTableUsed(CurrentLocation, ClassDecl);
4462}
4463
4464/// \brief Builds a statement that copies the given entity from \p From to
4465/// \c To.
4466///
4467/// This routine is used to copy the members of a class with an
4468/// implicitly-declared copy assignment operator. When the entities being
4469/// copied are arrays, this routine builds for loops to copy them.
4470///
4471/// \param S The Sema object used for type-checking.
4472///
4473/// \param Loc The location where the implicit copy is being generated.
4474///
4475/// \param T The type of the expressions being copied. Both expressions must
4476/// have this type.
4477///
4478/// \param To The expression we are copying to.
4479///
4480/// \param From The expression we are copying from.
4481///
4482/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4483/// Otherwise, it's a non-static member subobject.
4484///
4485/// \param Depth Internal parameter recording the depth of the recursion.
4486///
4487/// \returns A statement or a loop that copies the expressions.
4488static Sema::OwningStmtResult
4489BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4490                      Sema::OwningExprResult To, Sema::OwningExprResult From,
4491                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4492  typedef Sema::OwningStmtResult OwningStmtResult;
4493  typedef Sema::OwningExprResult OwningExprResult;
4494
4495  // C++0x [class.copy]p30:
4496  //   Each subobject is assigned in the manner appropriate to its type:
4497  //
4498  //     - if the subobject is of class type, the copy assignment operator
4499  //       for the class is used (as if by explicit qualification; that is,
4500  //       ignoring any possible virtual overriding functions in more derived
4501  //       classes);
4502  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4503    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4504
4505    // Look for operator=.
4506    DeclarationName Name
4507      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4508    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4509    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4510
4511    // Filter out any result that isn't a copy-assignment operator.
4512    LookupResult::Filter F = OpLookup.makeFilter();
4513    while (F.hasNext()) {
4514      NamedDecl *D = F.next();
4515      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4516        if (Method->isCopyAssignmentOperator())
4517          continue;
4518
4519      F.erase();
4520    }
4521    F.done();
4522
4523    // Suppress the protected check (C++ [class.protected]) for each of the
4524    // assignment operators we found. This strange dance is required when
4525    // we're assigning via a base classes's copy-assignment operator. To
4526    // ensure that we're getting the right base class subobject (without
4527    // ambiguities), we need to cast "this" to that subobject type; to
4528    // ensure that we don't go through the virtual call mechanism, we need
4529    // to qualify the operator= name with the base class (see below). However,
4530    // this means that if the base class has a protected copy assignment
4531    // operator, the protected member access check will fail. So, we
4532    // rewrite "protected" access to "public" access in this case, since we
4533    // know by construction that we're calling from a derived class.
4534    if (CopyingBaseSubobject) {
4535      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4536           L != LEnd; ++L) {
4537        if (L.getAccess() == AS_protected)
4538          L.setAccess(AS_public);
4539      }
4540    }
4541
4542    // Create the nested-name-specifier that will be used to qualify the
4543    // reference to operator=; this is required to suppress the virtual
4544    // call mechanism.
4545    CXXScopeSpec SS;
4546    SS.setRange(Loc);
4547    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4548                                               T.getTypePtr()));
4549
4550    // Create the reference to operator=.
4551    OwningExprResult OpEqualRef
4552      = S.BuildMemberReferenceExpr(move(To), T, Loc, /*isArrow=*/false, SS,
4553                                   /*FirstQualifierInScope=*/0, OpLookup,
4554                                   /*TemplateArgs=*/0,
4555                                   /*SuppressQualifierCheck=*/true);
4556    if (OpEqualRef.isInvalid())
4557      return S.StmtError();
4558
4559    // Build the call to the assignment operator.
4560    Expr *FromE = From.takeAs<Expr>();
4561    OwningExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4562                                                      OpEqualRef.takeAs<Expr>(),
4563                                                        Loc, &FromE, 1, 0, Loc);
4564    if (Call.isInvalid())
4565      return S.StmtError();
4566
4567    return S.Owned(Call.takeAs<Stmt>());
4568  }
4569
4570  //     - if the subobject is of scalar type, the built-in assignment
4571  //       operator is used.
4572  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4573  if (!ArrayTy) {
4574    OwningExprResult Assignment = S.CreateBuiltinBinOp(Loc,
4575                                                       BinaryOperator::Assign,
4576                                                       To.takeAs<Expr>(),
4577                                                       From.takeAs<Expr>());
4578    if (Assignment.isInvalid())
4579      return S.StmtError();
4580
4581    return S.Owned(Assignment.takeAs<Stmt>());
4582  }
4583
4584  //     - if the subobject is an array, each element is assigned, in the
4585  //       manner appropriate to the element type;
4586
4587  // Construct a loop over the array bounds, e.g.,
4588  //
4589  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4590  //
4591  // that will copy each of the array elements.
4592  QualType SizeType = S.Context.getSizeType();
4593
4594  // Create the iteration variable.
4595  IdentifierInfo *IterationVarName = 0;
4596  {
4597    llvm::SmallString<8> Str;
4598    llvm::raw_svector_ostream OS(Str);
4599    OS << "__i" << Depth;
4600    IterationVarName = &S.Context.Idents.get(OS.str());
4601  }
4602  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4603                                          IterationVarName, SizeType,
4604                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4605                                          VarDecl::None, VarDecl::None);
4606
4607  // Initialize the iteration variable to zero.
4608  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4609  IterationVar->setInit(new (S.Context) IntegerLiteral(Zero, SizeType, Loc));
4610
4611  // Create a reference to the iteration variable; we'll use this several
4612  // times throughout.
4613  Expr *IterationVarRef
4614    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4615  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4616
4617  // Create the DeclStmt that holds the iteration variable.
4618  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4619
4620  // Create the comparison against the array bound.
4621  llvm::APInt Upper = ArrayTy->getSize();
4622  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4623  OwningExprResult Comparison
4624    = S.Owned(new (S.Context) BinaryOperator(IterationVarRef->Retain(),
4625                           new (S.Context) IntegerLiteral(Upper, SizeType, Loc),
4626                                    BinaryOperator::NE, S.Context.BoolTy, Loc));
4627
4628  // Create the pre-increment of the iteration variable.
4629  OwningExprResult Increment
4630    = S.Owned(new (S.Context) UnaryOperator(IterationVarRef->Retain(),
4631                                            UnaryOperator::PreInc,
4632                                            SizeType, Loc));
4633
4634  // Subscript the "from" and "to" expressions with the iteration variable.
4635  From = S.CreateBuiltinArraySubscriptExpr(move(From), Loc,
4636                                           S.Owned(IterationVarRef->Retain()),
4637                                           Loc);
4638  To = S.CreateBuiltinArraySubscriptExpr(move(To), Loc,
4639                                         S.Owned(IterationVarRef->Retain()),
4640                                         Loc);
4641  assert(!From.isInvalid() && "Builtin subscripting can't fail!");
4642  assert(!To.isInvalid() && "Builtin subscripting can't fail!");
4643
4644  // Build the copy for an individual element of the array.
4645  OwningStmtResult Copy = BuildSingleCopyAssign(S, Loc,
4646                                                ArrayTy->getElementType(),
4647                                                move(To), move(From),
4648                                                CopyingBaseSubobject, Depth+1);
4649  if (Copy.isInvalid()) {
4650    InitStmt->Destroy(S.Context);
4651    return S.StmtError();
4652  }
4653
4654  // Construct the loop that copies all elements of this array.
4655  return S.ActOnForStmt(Loc, Loc, S.Owned(InitStmt),
4656                        S.MakeFullExpr(Comparison),
4657                        Sema::DeclPtrTy(),
4658                        S.MakeFullExpr(Increment),
4659                        Loc, move(Copy));
4660}
4661
4662void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4663                                        CXXMethodDecl *CopyAssignOperator) {
4664  assert((CopyAssignOperator->isImplicit() &&
4665          CopyAssignOperator->isOverloadedOperator() &&
4666          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4667          !CopyAssignOperator->isUsed(false)) &&
4668         "DefineImplicitCopyAssignment called for wrong function");
4669
4670  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4671
4672  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4673    CopyAssignOperator->setInvalidDecl();
4674    return;
4675  }
4676
4677  CopyAssignOperator->setUsed();
4678
4679  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4680  ErrorTrap Trap(*this);
4681
4682  // C++0x [class.copy]p30:
4683  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4684  //   for a non-union class X performs memberwise copy assignment of its
4685  //   subobjects. The direct base classes of X are assigned first, in the
4686  //   order of their declaration in the base-specifier-list, and then the
4687  //   immediate non-static data members of X are assigned, in the order in
4688  //   which they were declared in the class definition.
4689
4690  // The statements that form the synthesized function body.
4691  ASTOwningVector<&ActionBase::DeleteStmt> Statements(*this);
4692
4693  // The parameter for the "other" object, which we are copying from.
4694  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4695  Qualifiers OtherQuals = Other->getType().getQualifiers();
4696  QualType OtherRefType = Other->getType();
4697  if (const LValueReferenceType *OtherRef
4698                                = OtherRefType->getAs<LValueReferenceType>()) {
4699    OtherRefType = OtherRef->getPointeeType();
4700    OtherQuals = OtherRefType.getQualifiers();
4701  }
4702
4703  // Our location for everything implicitly-generated.
4704  SourceLocation Loc = CopyAssignOperator->getLocation();
4705
4706  // Construct a reference to the "other" object. We'll be using this
4707  // throughout the generated ASTs.
4708  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4709  assert(OtherRef && "Reference to parameter cannot fail!");
4710
4711  // Construct the "this" pointer. We'll be using this throughout the generated
4712  // ASTs.
4713  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4714  assert(This && "Reference to this cannot fail!");
4715
4716  // Assign base classes.
4717  bool Invalid = false;
4718  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4719       E = ClassDecl->bases_end(); Base != E; ++Base) {
4720    // Form the assignment:
4721    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4722    QualType BaseType = Base->getType().getUnqualifiedType();
4723    CXXRecordDecl *BaseClassDecl = 0;
4724    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4725      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4726    else {
4727      Invalid = true;
4728      continue;
4729    }
4730
4731    // Construct the "from" expression, which is an implicit cast to the
4732    // appropriately-qualified base type.
4733    Expr *From = OtherRef->Retain();
4734    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4735                      CastExpr::CK_UncheckedDerivedToBase, /*isLvalue=*/true,
4736                      CXXBaseSpecifierArray(Base));
4737
4738    // Dereference "this".
4739    OwningExprResult To = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4740                                               Owned(This->Retain()));
4741
4742    // Implicitly cast "this" to the appropriately-qualified base type.
4743    Expr *ToE = To.takeAs<Expr>();
4744    ImpCastExprToType(ToE,
4745                      Context.getCVRQualifiedType(BaseType,
4746                                      CopyAssignOperator->getTypeQualifiers()),
4747                      CastExpr::CK_UncheckedDerivedToBase,
4748                      /*isLvalue=*/true, CXXBaseSpecifierArray(Base));
4749    To = Owned(ToE);
4750
4751    // Build the copy.
4752    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4753                                                  move(To), Owned(From),
4754                                                /*CopyingBaseSubobject=*/true);
4755    if (Copy.isInvalid()) {
4756      Diag(CurrentLocation, diag::note_member_synthesized_at)
4757        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4758      CopyAssignOperator->setInvalidDecl();
4759      return;
4760    }
4761
4762    // Success! Record the copy.
4763    Statements.push_back(Copy.takeAs<Expr>());
4764  }
4765
4766  // \brief Reference to the __builtin_memcpy function.
4767  Expr *BuiltinMemCpyRef = 0;
4768  // \brief Reference to the __builtin_objc_memmove_collectable function.
4769  Expr *CollectableMemCpyRef = 0;
4770
4771  // Assign non-static members.
4772  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4773                                  FieldEnd = ClassDecl->field_end();
4774       Field != FieldEnd; ++Field) {
4775    // Check for members of reference type; we can't copy those.
4776    if (Field->getType()->isReferenceType()) {
4777      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4778        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4779      Diag(Field->getLocation(), diag::note_declared_at);
4780      Diag(CurrentLocation, diag::note_member_synthesized_at)
4781        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4782      Invalid = true;
4783      continue;
4784    }
4785
4786    // Check for members of const-qualified, non-class type.
4787    QualType BaseType = Context.getBaseElementType(Field->getType());
4788    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
4789      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4790        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4791      Diag(Field->getLocation(), diag::note_declared_at);
4792      Diag(CurrentLocation, diag::note_member_synthesized_at)
4793        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4794      Invalid = true;
4795      continue;
4796    }
4797
4798    QualType FieldType = Field->getType().getNonReferenceType();
4799    if (FieldType->isIncompleteArrayType()) {
4800      assert(ClassDecl->hasFlexibleArrayMember() &&
4801             "Incomplete array type is not valid");
4802      continue;
4803    }
4804
4805    // Build references to the field in the object we're copying from and to.
4806    CXXScopeSpec SS; // Intentionally empty
4807    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
4808                              LookupMemberName);
4809    MemberLookup.addDecl(*Field);
4810    MemberLookup.resolveKind();
4811    OwningExprResult From = BuildMemberReferenceExpr(Owned(OtherRef->Retain()),
4812                                                     OtherRefType,
4813                                                     Loc, /*IsArrow=*/false,
4814                                                     SS, 0, MemberLookup, 0);
4815    OwningExprResult To = BuildMemberReferenceExpr(Owned(This->Retain()),
4816                                                   This->getType(),
4817                                                   Loc, /*IsArrow=*/true,
4818                                                   SS, 0, MemberLookup, 0);
4819    assert(!From.isInvalid() && "Implicit field reference cannot fail");
4820    assert(!To.isInvalid() && "Implicit field reference cannot fail");
4821
4822    // If the field should be copied with __builtin_memcpy rather than via
4823    // explicit assignments, do so. This optimization only applies for arrays
4824    // of scalars and arrays of class type with trivial copy-assignment
4825    // operators.
4826    if (FieldType->isArrayType() &&
4827        (!BaseType->isRecordType() ||
4828         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
4829           ->hasTrivialCopyAssignment())) {
4830      // Compute the size of the memory buffer to be copied.
4831      QualType SizeType = Context.getSizeType();
4832      llvm::APInt Size(Context.getTypeSize(SizeType),
4833                       Context.getTypeSizeInChars(BaseType).getQuantity());
4834      for (const ConstantArrayType *Array
4835              = Context.getAsConstantArrayType(FieldType);
4836           Array;
4837           Array = Context.getAsConstantArrayType(Array->getElementType())) {
4838        llvm::APInt ArraySize = Array->getSize();
4839        ArraySize.zextOrTrunc(Size.getBitWidth());
4840        Size *= ArraySize;
4841      }
4842
4843      // Take the address of the field references for "from" and "to".
4844      From = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(From));
4845      To = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(To));
4846
4847      bool NeedsCollectableMemCpy =
4848          (BaseType->isRecordType() &&
4849           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
4850
4851      if (NeedsCollectableMemCpy) {
4852        if (!CollectableMemCpyRef) {
4853          // Create a reference to the __builtin_objc_memmove_collectable function.
4854          LookupResult R(*this,
4855                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
4856                         Loc, LookupOrdinaryName);
4857          LookupName(R, TUScope, true);
4858
4859          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
4860          if (!CollectableMemCpy) {
4861            // Something went horribly wrong earlier, and we will have
4862            // complained about it.
4863            Invalid = true;
4864            continue;
4865          }
4866
4867          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
4868                                                  CollectableMemCpy->getType(),
4869                                                  Loc, 0).takeAs<Expr>();
4870          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
4871        }
4872      }
4873      // Create a reference to the __builtin_memcpy builtin function.
4874      else if (!BuiltinMemCpyRef) {
4875        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
4876                       LookupOrdinaryName);
4877        LookupName(R, TUScope, true);
4878
4879        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
4880        if (!BuiltinMemCpy) {
4881          // Something went horribly wrong earlier, and we will have complained
4882          // about it.
4883          Invalid = true;
4884          continue;
4885        }
4886
4887        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
4888                                            BuiltinMemCpy->getType(),
4889                                            Loc, 0).takeAs<Expr>();
4890        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
4891      }
4892
4893      ASTOwningVector<&ActionBase::DeleteExpr> CallArgs(*this);
4894      CallArgs.push_back(To.takeAs<Expr>());
4895      CallArgs.push_back(From.takeAs<Expr>());
4896      CallArgs.push_back(new (Context) IntegerLiteral(Size, SizeType, Loc));
4897      llvm::SmallVector<SourceLocation, 4> Commas; // FIXME: Silly
4898      Commas.push_back(Loc);
4899      Commas.push_back(Loc);
4900      OwningExprResult Call = ExprError();
4901      if (NeedsCollectableMemCpy)
4902        Call = ActOnCallExpr(/*Scope=*/0,
4903                             Owned(CollectableMemCpyRef->Retain()),
4904                             Loc, move_arg(CallArgs),
4905                             Commas.data(), Loc);
4906      else
4907        Call = ActOnCallExpr(/*Scope=*/0,
4908                             Owned(BuiltinMemCpyRef->Retain()),
4909                             Loc, move_arg(CallArgs),
4910                             Commas.data(), Loc);
4911
4912      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
4913      Statements.push_back(Call.takeAs<Expr>());
4914      continue;
4915    }
4916
4917    // Build the copy of this field.
4918    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
4919                                                  move(To), move(From),
4920                                              /*CopyingBaseSubobject=*/false);
4921    if (Copy.isInvalid()) {
4922      Diag(CurrentLocation, diag::note_member_synthesized_at)
4923        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4924      CopyAssignOperator->setInvalidDecl();
4925      return;
4926    }
4927
4928    // Success! Record the copy.
4929    Statements.push_back(Copy.takeAs<Stmt>());
4930  }
4931
4932  if (!Invalid) {
4933    // Add a "return *this;"
4934    OwningExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4935                                                    Owned(This->Retain()));
4936
4937    OwningStmtResult Return = ActOnReturnStmt(Loc, move(ThisObj));
4938    if (Return.isInvalid())
4939      Invalid = true;
4940    else {
4941      Statements.push_back(Return.takeAs<Stmt>());
4942
4943      if (Trap.hasErrorOccurred()) {
4944        Diag(CurrentLocation, diag::note_member_synthesized_at)
4945          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4946        Invalid = true;
4947      }
4948    }
4949  }
4950
4951  if (Invalid) {
4952    CopyAssignOperator->setInvalidDecl();
4953    return;
4954  }
4955
4956  OwningStmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
4957                                            /*isStmtExpr=*/false);
4958  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
4959  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
4960}
4961
4962void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
4963                                   CXXConstructorDecl *CopyConstructor,
4964                                   unsigned TypeQuals) {
4965  assert((CopyConstructor->isImplicit() &&
4966          CopyConstructor->isCopyConstructor(TypeQuals) &&
4967          !CopyConstructor->isUsed(false)) &&
4968         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
4969
4970  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
4971  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
4972
4973  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
4974  ErrorTrap Trap(*this);
4975
4976  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
4977      Trap.hasErrorOccurred()) {
4978    Diag(CurrentLocation, diag::note_member_synthesized_at)
4979      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
4980    CopyConstructor->setInvalidDecl();
4981  }  else {
4982    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
4983                                               CopyConstructor->getLocation(),
4984                                               MultiStmtArg(*this, 0, 0),
4985                                               /*isStmtExpr=*/false)
4986                                                              .takeAs<Stmt>());
4987  }
4988
4989  CopyConstructor->setUsed();
4990}
4991
4992Sema::OwningExprResult
4993Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4994                            CXXConstructorDecl *Constructor,
4995                            MultiExprArg ExprArgs,
4996                            bool RequiresZeroInit,
4997                            CXXConstructExpr::ConstructionKind ConstructKind) {
4998  bool Elidable = false;
4999
5000  // C++0x [class.copy]p34:
5001  //   When certain criteria are met, an implementation is allowed to
5002  //   omit the copy/move construction of a class object, even if the
5003  //   copy/move constructor and/or destructor for the object have
5004  //   side effects. [...]
5005  //     - when a temporary class object that has not been bound to a
5006  //       reference (12.2) would be copied/moved to a class object
5007  //       with the same cv-unqualified type, the copy/move operation
5008  //       can be omitted by constructing the temporary object
5009  //       directly into the target of the omitted copy/move
5010  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
5011    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5012    Elidable = SubExpr->isTemporaryObject() &&
5013      Context.hasSameUnqualifiedType(SubExpr->getType(),
5014                           Context.getTypeDeclType(Constructor->getParent()));
5015  }
5016
5017  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5018                               Elidable, move(ExprArgs), RequiresZeroInit,
5019                               ConstructKind);
5020}
5021
5022/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5023/// including handling of its default argument expressions.
5024Sema::OwningExprResult
5025Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5026                            CXXConstructorDecl *Constructor, bool Elidable,
5027                            MultiExprArg ExprArgs,
5028                            bool RequiresZeroInit,
5029                            CXXConstructExpr::ConstructionKind ConstructKind) {
5030  unsigned NumExprs = ExprArgs.size();
5031  Expr **Exprs = (Expr **)ExprArgs.release();
5032
5033  MarkDeclarationReferenced(ConstructLoc, Constructor);
5034  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5035                                        Constructor, Elidable, Exprs, NumExprs,
5036                                        RequiresZeroInit, ConstructKind));
5037}
5038
5039bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5040                                        CXXConstructorDecl *Constructor,
5041                                        MultiExprArg Exprs) {
5042  OwningExprResult TempResult =
5043    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5044                          move(Exprs));
5045  if (TempResult.isInvalid())
5046    return true;
5047
5048  Expr *Temp = TempResult.takeAs<Expr>();
5049  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5050  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
5051  VD->setInit(Temp);
5052
5053  return false;
5054}
5055
5056void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5057  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5058  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5059      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5060    CXXDestructorDecl *Destructor = ClassDecl->getDestructor();
5061    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5062    CheckDestructorAccess(VD->getLocation(), Destructor,
5063                          PDiag(diag::err_access_dtor_var)
5064                            << VD->getDeclName()
5065                            << VD->getType());
5066  }
5067}
5068
5069/// AddCXXDirectInitializerToDecl - This action is called immediately after
5070/// ActOnDeclarator, when a C++ direct initializer is present.
5071/// e.g: "int x(1);"
5072void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
5073                                         SourceLocation LParenLoc,
5074                                         MultiExprArg Exprs,
5075                                         SourceLocation *CommaLocs,
5076                                         SourceLocation RParenLoc) {
5077  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5078  Decl *RealDecl = Dcl.getAs<Decl>();
5079
5080  // If there is no declaration, there was an error parsing it.  Just ignore
5081  // the initializer.
5082  if (RealDecl == 0)
5083    return;
5084
5085  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5086  if (!VDecl) {
5087    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5088    RealDecl->setInvalidDecl();
5089    return;
5090  }
5091
5092  // We will represent direct-initialization similarly to copy-initialization:
5093  //    int x(1);  -as-> int x = 1;
5094  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5095  //
5096  // Clients that want to distinguish between the two forms, can check for
5097  // direct initializer using VarDecl::hasCXXDirectInitializer().
5098  // A major benefit is that clients that don't particularly care about which
5099  // exactly form was it (like the CodeGen) can handle both cases without
5100  // special case code.
5101
5102  // C++ 8.5p11:
5103  // The form of initialization (using parentheses or '=') is generally
5104  // insignificant, but does matter when the entity being initialized has a
5105  // class type.
5106  QualType DeclInitType = VDecl->getType();
5107  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
5108    DeclInitType = Context.getBaseElementType(Array);
5109
5110  if (!VDecl->getType()->isDependentType() &&
5111      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5112                          diag::err_typecheck_decl_incomplete_type)) {
5113    VDecl->setInvalidDecl();
5114    return;
5115  }
5116
5117  // The variable can not have an abstract class type.
5118  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5119                             diag::err_abstract_type_in_decl,
5120                             AbstractVariableType))
5121    VDecl->setInvalidDecl();
5122
5123  const VarDecl *Def;
5124  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5125    Diag(VDecl->getLocation(), diag::err_redefinition)
5126    << VDecl->getDeclName();
5127    Diag(Def->getLocation(), diag::note_previous_definition);
5128    VDecl->setInvalidDecl();
5129    return;
5130  }
5131
5132  // If either the declaration has a dependent type or if any of the
5133  // expressions is type-dependent, we represent the initialization
5134  // via a ParenListExpr for later use during template instantiation.
5135  if (VDecl->getType()->isDependentType() ||
5136      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
5137    // Let clients know that initialization was done with a direct initializer.
5138    VDecl->setCXXDirectInitializer(true);
5139
5140    // Store the initialization expressions as a ParenListExpr.
5141    unsigned NumExprs = Exprs.size();
5142    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5143                                               (Expr **)Exprs.release(),
5144                                               NumExprs, RParenLoc));
5145    return;
5146  }
5147
5148  // Capture the variable that is being initialized and the style of
5149  // initialization.
5150  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5151
5152  // FIXME: Poor source location information.
5153  InitializationKind Kind
5154    = InitializationKind::CreateDirect(VDecl->getLocation(),
5155                                       LParenLoc, RParenLoc);
5156
5157  InitializationSequence InitSeq(*this, Entity, Kind,
5158                                 (Expr**)Exprs.get(), Exprs.size());
5159  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5160  if (Result.isInvalid()) {
5161    VDecl->setInvalidDecl();
5162    return;
5163  }
5164
5165  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
5166  VDecl->setInit(Result.takeAs<Expr>());
5167  VDecl->setCXXDirectInitializer(true);
5168
5169  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
5170    FinalizeVarWithDestructor(VDecl, Record);
5171}
5172
5173/// \brief Given a constructor and the set of arguments provided for the
5174/// constructor, convert the arguments and add any required default arguments
5175/// to form a proper call to this constructor.
5176///
5177/// \returns true if an error occurred, false otherwise.
5178bool
5179Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5180                              MultiExprArg ArgsPtr,
5181                              SourceLocation Loc,
5182                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
5183  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5184  unsigned NumArgs = ArgsPtr.size();
5185  Expr **Args = (Expr **)ArgsPtr.get();
5186
5187  const FunctionProtoType *Proto
5188    = Constructor->getType()->getAs<FunctionProtoType>();
5189  assert(Proto && "Constructor without a prototype?");
5190  unsigned NumArgsInProto = Proto->getNumArgs();
5191
5192  // If too few arguments are available, we'll fill in the rest with defaults.
5193  if (NumArgs < NumArgsInProto)
5194    ConvertedArgs.reserve(NumArgsInProto);
5195  else
5196    ConvertedArgs.reserve(NumArgs);
5197
5198  VariadicCallType CallType =
5199    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5200  llvm::SmallVector<Expr *, 8> AllArgs;
5201  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5202                                        Proto, 0, Args, NumArgs, AllArgs,
5203                                        CallType);
5204  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5205    ConvertedArgs.push_back(AllArgs[i]);
5206  return Invalid;
5207}
5208
5209static inline bool
5210CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5211                                       const FunctionDecl *FnDecl) {
5212  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
5213  if (isa<NamespaceDecl>(DC)) {
5214    return SemaRef.Diag(FnDecl->getLocation(),
5215                        diag::err_operator_new_delete_declared_in_namespace)
5216      << FnDecl->getDeclName();
5217  }
5218
5219  if (isa<TranslationUnitDecl>(DC) &&
5220      FnDecl->getStorageClass() == FunctionDecl::Static) {
5221    return SemaRef.Diag(FnDecl->getLocation(),
5222                        diag::err_operator_new_delete_declared_static)
5223      << FnDecl->getDeclName();
5224  }
5225
5226  return false;
5227}
5228
5229static inline bool
5230CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5231                            CanQualType ExpectedResultType,
5232                            CanQualType ExpectedFirstParamType,
5233                            unsigned DependentParamTypeDiag,
5234                            unsigned InvalidParamTypeDiag) {
5235  QualType ResultType =
5236    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5237
5238  // Check that the result type is not dependent.
5239  if (ResultType->isDependentType())
5240    return SemaRef.Diag(FnDecl->getLocation(),
5241                        diag::err_operator_new_delete_dependent_result_type)
5242    << FnDecl->getDeclName() << ExpectedResultType;
5243
5244  // Check that the result type is what we expect.
5245  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5246    return SemaRef.Diag(FnDecl->getLocation(),
5247                        diag::err_operator_new_delete_invalid_result_type)
5248    << FnDecl->getDeclName() << ExpectedResultType;
5249
5250  // A function template must have at least 2 parameters.
5251  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5252    return SemaRef.Diag(FnDecl->getLocation(),
5253                      diag::err_operator_new_delete_template_too_few_parameters)
5254        << FnDecl->getDeclName();
5255
5256  // The function decl must have at least 1 parameter.
5257  if (FnDecl->getNumParams() == 0)
5258    return SemaRef.Diag(FnDecl->getLocation(),
5259                        diag::err_operator_new_delete_too_few_parameters)
5260      << FnDecl->getDeclName();
5261
5262  // Check the the first parameter type is not dependent.
5263  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5264  if (FirstParamType->isDependentType())
5265    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5266      << FnDecl->getDeclName() << ExpectedFirstParamType;
5267
5268  // Check that the first parameter type is what we expect.
5269  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5270      ExpectedFirstParamType)
5271    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5272    << FnDecl->getDeclName() << ExpectedFirstParamType;
5273
5274  return false;
5275}
5276
5277static bool
5278CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5279  // C++ [basic.stc.dynamic.allocation]p1:
5280  //   A program is ill-formed if an allocation function is declared in a
5281  //   namespace scope other than global scope or declared static in global
5282  //   scope.
5283  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5284    return true;
5285
5286  CanQualType SizeTy =
5287    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5288
5289  // C++ [basic.stc.dynamic.allocation]p1:
5290  //  The return type shall be void*. The first parameter shall have type
5291  //  std::size_t.
5292  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5293                                  SizeTy,
5294                                  diag::err_operator_new_dependent_param_type,
5295                                  diag::err_operator_new_param_type))
5296    return true;
5297
5298  // C++ [basic.stc.dynamic.allocation]p1:
5299  //  The first parameter shall not have an associated default argument.
5300  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5301    return SemaRef.Diag(FnDecl->getLocation(),
5302                        diag::err_operator_new_default_arg)
5303      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5304
5305  return false;
5306}
5307
5308static bool
5309CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5310  // C++ [basic.stc.dynamic.deallocation]p1:
5311  //   A program is ill-formed if deallocation functions are declared in a
5312  //   namespace scope other than global scope or declared static in global
5313  //   scope.
5314  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5315    return true;
5316
5317  // C++ [basic.stc.dynamic.deallocation]p2:
5318  //   Each deallocation function shall return void and its first parameter
5319  //   shall be void*.
5320  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5321                                  SemaRef.Context.VoidPtrTy,
5322                                 diag::err_operator_delete_dependent_param_type,
5323                                 diag::err_operator_delete_param_type))
5324    return true;
5325
5326  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5327  if (FirstParamType->isDependentType())
5328    return SemaRef.Diag(FnDecl->getLocation(),
5329                        diag::err_operator_delete_dependent_param_type)
5330    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5331
5332  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
5333      SemaRef.Context.VoidPtrTy)
5334    return SemaRef.Diag(FnDecl->getLocation(),
5335                        diag::err_operator_delete_param_type)
5336      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5337
5338  return false;
5339}
5340
5341/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5342/// of this overloaded operator is well-formed. If so, returns false;
5343/// otherwise, emits appropriate diagnostics and returns true.
5344bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5345  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5346         "Expected an overloaded operator declaration");
5347
5348  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5349
5350  // C++ [over.oper]p5:
5351  //   The allocation and deallocation functions, operator new,
5352  //   operator new[], operator delete and operator delete[], are
5353  //   described completely in 3.7.3. The attributes and restrictions
5354  //   found in the rest of this subclause do not apply to them unless
5355  //   explicitly stated in 3.7.3.
5356  if (Op == OO_Delete || Op == OO_Array_Delete)
5357    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5358
5359  if (Op == OO_New || Op == OO_Array_New)
5360    return CheckOperatorNewDeclaration(*this, FnDecl);
5361
5362  // C++ [over.oper]p6:
5363  //   An operator function shall either be a non-static member
5364  //   function or be a non-member function and have at least one
5365  //   parameter whose type is a class, a reference to a class, an
5366  //   enumeration, or a reference to an enumeration.
5367  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5368    if (MethodDecl->isStatic())
5369      return Diag(FnDecl->getLocation(),
5370                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5371  } else {
5372    bool ClassOrEnumParam = false;
5373    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5374                                   ParamEnd = FnDecl->param_end();
5375         Param != ParamEnd; ++Param) {
5376      QualType ParamType = (*Param)->getType().getNonReferenceType();
5377      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5378          ParamType->isEnumeralType()) {
5379        ClassOrEnumParam = true;
5380        break;
5381      }
5382    }
5383
5384    if (!ClassOrEnumParam)
5385      return Diag(FnDecl->getLocation(),
5386                  diag::err_operator_overload_needs_class_or_enum)
5387        << FnDecl->getDeclName();
5388  }
5389
5390  // C++ [over.oper]p8:
5391  //   An operator function cannot have default arguments (8.3.6),
5392  //   except where explicitly stated below.
5393  //
5394  // Only the function-call operator allows default arguments
5395  // (C++ [over.call]p1).
5396  if (Op != OO_Call) {
5397    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5398         Param != FnDecl->param_end(); ++Param) {
5399      if ((*Param)->hasDefaultArg())
5400        return Diag((*Param)->getLocation(),
5401                    diag::err_operator_overload_default_arg)
5402          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5403    }
5404  }
5405
5406  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5407    { false, false, false }
5408#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5409    , { Unary, Binary, MemberOnly }
5410#include "clang/Basic/OperatorKinds.def"
5411  };
5412
5413  bool CanBeUnaryOperator = OperatorUses[Op][0];
5414  bool CanBeBinaryOperator = OperatorUses[Op][1];
5415  bool MustBeMemberOperator = OperatorUses[Op][2];
5416
5417  // C++ [over.oper]p8:
5418  //   [...] Operator functions cannot have more or fewer parameters
5419  //   than the number required for the corresponding operator, as
5420  //   described in the rest of this subclause.
5421  unsigned NumParams = FnDecl->getNumParams()
5422                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5423  if (Op != OO_Call &&
5424      ((NumParams == 1 && !CanBeUnaryOperator) ||
5425       (NumParams == 2 && !CanBeBinaryOperator) ||
5426       (NumParams < 1) || (NumParams > 2))) {
5427    // We have the wrong number of parameters.
5428    unsigned ErrorKind;
5429    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5430      ErrorKind = 2;  // 2 -> unary or binary.
5431    } else if (CanBeUnaryOperator) {
5432      ErrorKind = 0;  // 0 -> unary
5433    } else {
5434      assert(CanBeBinaryOperator &&
5435             "All non-call overloaded operators are unary or binary!");
5436      ErrorKind = 1;  // 1 -> binary
5437    }
5438
5439    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5440      << FnDecl->getDeclName() << NumParams << ErrorKind;
5441  }
5442
5443  // Overloaded operators other than operator() cannot be variadic.
5444  if (Op != OO_Call &&
5445      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5446    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5447      << FnDecl->getDeclName();
5448  }
5449
5450  // Some operators must be non-static member functions.
5451  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5452    return Diag(FnDecl->getLocation(),
5453                diag::err_operator_overload_must_be_member)
5454      << FnDecl->getDeclName();
5455  }
5456
5457  // C++ [over.inc]p1:
5458  //   The user-defined function called operator++ implements the
5459  //   prefix and postfix ++ operator. If this function is a member
5460  //   function with no parameters, or a non-member function with one
5461  //   parameter of class or enumeration type, it defines the prefix
5462  //   increment operator ++ for objects of that type. If the function
5463  //   is a member function with one parameter (which shall be of type
5464  //   int) or a non-member function with two parameters (the second
5465  //   of which shall be of type int), it defines the postfix
5466  //   increment operator ++ for objects of that type.
5467  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5468    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5469    bool ParamIsInt = false;
5470    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5471      ParamIsInt = BT->getKind() == BuiltinType::Int;
5472
5473    if (!ParamIsInt)
5474      return Diag(LastParam->getLocation(),
5475                  diag::err_operator_overload_post_incdec_must_be_int)
5476        << LastParam->getType() << (Op == OO_MinusMinus);
5477  }
5478
5479  // Notify the class if it got an assignment operator.
5480  if (Op == OO_Equal) {
5481    // Would have returned earlier otherwise.
5482    assert(isa<CXXMethodDecl>(FnDecl) &&
5483      "Overloaded = not member, but not filtered.");
5484    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5485    Method->getParent()->addedAssignmentOperator(Context, Method);
5486  }
5487
5488  return false;
5489}
5490
5491/// CheckLiteralOperatorDeclaration - Check whether the declaration
5492/// of this literal operator function is well-formed. If so, returns
5493/// false; otherwise, emits appropriate diagnostics and returns true.
5494bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5495  DeclContext *DC = FnDecl->getDeclContext();
5496  Decl::Kind Kind = DC->getDeclKind();
5497  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5498      Kind != Decl::LinkageSpec) {
5499    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5500      << FnDecl->getDeclName();
5501    return true;
5502  }
5503
5504  bool Valid = false;
5505
5506  // template <char...> type operator "" name() is the only valid template
5507  // signature, and the only valid signature with no parameters.
5508  if (FnDecl->param_size() == 0) {
5509    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5510      // Must have only one template parameter
5511      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5512      if (Params->size() == 1) {
5513        NonTypeTemplateParmDecl *PmDecl =
5514          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5515
5516        // The template parameter must be a char parameter pack.
5517        // FIXME: This test will always fail because non-type parameter packs
5518        //   have not been implemented.
5519        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5520            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5521          Valid = true;
5522      }
5523    }
5524  } else {
5525    // Check the first parameter
5526    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5527
5528    QualType T = (*Param)->getType();
5529
5530    // unsigned long long int, long double, and any character type are allowed
5531    // as the only parameters.
5532    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5533        Context.hasSameType(T, Context.LongDoubleTy) ||
5534        Context.hasSameType(T, Context.CharTy) ||
5535        Context.hasSameType(T, Context.WCharTy) ||
5536        Context.hasSameType(T, Context.Char16Ty) ||
5537        Context.hasSameType(T, Context.Char32Ty)) {
5538      if (++Param == FnDecl->param_end())
5539        Valid = true;
5540      goto FinishedParams;
5541    }
5542
5543    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5544    const PointerType *PT = T->getAs<PointerType>();
5545    if (!PT)
5546      goto FinishedParams;
5547    T = PT->getPointeeType();
5548    if (!T.isConstQualified())
5549      goto FinishedParams;
5550    T = T.getUnqualifiedType();
5551
5552    // Move on to the second parameter;
5553    ++Param;
5554
5555    // If there is no second parameter, the first must be a const char *
5556    if (Param == FnDecl->param_end()) {
5557      if (Context.hasSameType(T, Context.CharTy))
5558        Valid = true;
5559      goto FinishedParams;
5560    }
5561
5562    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5563    // are allowed as the first parameter to a two-parameter function
5564    if (!(Context.hasSameType(T, Context.CharTy) ||
5565          Context.hasSameType(T, Context.WCharTy) ||
5566          Context.hasSameType(T, Context.Char16Ty) ||
5567          Context.hasSameType(T, Context.Char32Ty)))
5568      goto FinishedParams;
5569
5570    // The second and final parameter must be an std::size_t
5571    T = (*Param)->getType().getUnqualifiedType();
5572    if (Context.hasSameType(T, Context.getSizeType()) &&
5573        ++Param == FnDecl->param_end())
5574      Valid = true;
5575  }
5576
5577  // FIXME: This diagnostic is absolutely terrible.
5578FinishedParams:
5579  if (!Valid) {
5580    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5581      << FnDecl->getDeclName();
5582    return true;
5583  }
5584
5585  return false;
5586}
5587
5588/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5589/// linkage specification, including the language and (if present)
5590/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5591/// the location of the language string literal, which is provided
5592/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5593/// the '{' brace. Otherwise, this linkage specification does not
5594/// have any braces.
5595Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5596                                                     SourceLocation ExternLoc,
5597                                                     SourceLocation LangLoc,
5598                                                     llvm::StringRef Lang,
5599                                                     SourceLocation LBraceLoc) {
5600  LinkageSpecDecl::LanguageIDs Language;
5601  if (Lang == "\"C\"")
5602    Language = LinkageSpecDecl::lang_c;
5603  else if (Lang == "\"C++\"")
5604    Language = LinkageSpecDecl::lang_cxx;
5605  else {
5606    Diag(LangLoc, diag::err_bad_language);
5607    return DeclPtrTy();
5608  }
5609
5610  // FIXME: Add all the various semantics of linkage specifications
5611
5612  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5613                                               LangLoc, Language,
5614                                               LBraceLoc.isValid());
5615  CurContext->addDecl(D);
5616  PushDeclContext(S, D);
5617  return DeclPtrTy::make(D);
5618}
5619
5620/// ActOnFinishLinkageSpecification - Completely the definition of
5621/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5622/// valid, it's the position of the closing '}' brace in a linkage
5623/// specification that uses braces.
5624Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5625                                                      DeclPtrTy LinkageSpec,
5626                                                      SourceLocation RBraceLoc) {
5627  if (LinkageSpec)
5628    PopDeclContext();
5629  return LinkageSpec;
5630}
5631
5632/// \brief Perform semantic analysis for the variable declaration that
5633/// occurs within a C++ catch clause, returning the newly-created
5634/// variable.
5635VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5636                                         TypeSourceInfo *TInfo,
5637                                         IdentifierInfo *Name,
5638                                         SourceLocation Loc,
5639                                         SourceRange Range) {
5640  bool Invalid = false;
5641
5642  // Arrays and functions decay.
5643  if (ExDeclType->isArrayType())
5644    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5645  else if (ExDeclType->isFunctionType())
5646    ExDeclType = Context.getPointerType(ExDeclType);
5647
5648  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5649  // The exception-declaration shall not denote a pointer or reference to an
5650  // incomplete type, other than [cv] void*.
5651  // N2844 forbids rvalue references.
5652  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5653    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5654    Invalid = true;
5655  }
5656
5657  // GCC allows catching pointers and references to incomplete types
5658  // as an extension; so do we, but we warn by default.
5659
5660  QualType BaseType = ExDeclType;
5661  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5662  unsigned DK = diag::err_catch_incomplete;
5663  bool IncompleteCatchIsInvalid = true;
5664  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5665    BaseType = Ptr->getPointeeType();
5666    Mode = 1;
5667    DK = diag::ext_catch_incomplete_ptr;
5668    IncompleteCatchIsInvalid = false;
5669  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5670    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5671    BaseType = Ref->getPointeeType();
5672    Mode = 2;
5673    DK = diag::ext_catch_incomplete_ref;
5674    IncompleteCatchIsInvalid = false;
5675  }
5676  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5677      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5678      IncompleteCatchIsInvalid)
5679    Invalid = true;
5680
5681  if (!Invalid && !ExDeclType->isDependentType() &&
5682      RequireNonAbstractType(Loc, ExDeclType,
5683                             diag::err_abstract_type_in_decl,
5684                             AbstractVariableType))
5685    Invalid = true;
5686
5687  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5688                                    Name, ExDeclType, TInfo, VarDecl::None,
5689                                    VarDecl::None);
5690  ExDecl->setExceptionVariable(true);
5691
5692  if (!Invalid) {
5693    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
5694      // C++ [except.handle]p16:
5695      //   The object declared in an exception-declaration or, if the
5696      //   exception-declaration does not specify a name, a temporary (12.2) is
5697      //   copy-initialized (8.5) from the exception object. [...]
5698      //   The object is destroyed when the handler exits, after the destruction
5699      //   of any automatic objects initialized within the handler.
5700      //
5701      // We just pretend to initialize the object with itself, then make sure
5702      // it can be destroyed later.
5703      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
5704      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
5705                                            Loc, ExDeclType, 0);
5706      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
5707                                                               SourceLocation());
5708      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
5709      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5710                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
5711      if (Result.isInvalid())
5712        Invalid = true;
5713      else
5714        FinalizeVarWithDestructor(ExDecl, RecordTy);
5715    }
5716  }
5717
5718  if (Invalid)
5719    ExDecl->setInvalidDecl();
5720
5721  return ExDecl;
5722}
5723
5724/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5725/// handler.
5726Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5727  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5728  QualType ExDeclType = TInfo->getType();
5729
5730  bool Invalid = D.isInvalidType();
5731  IdentifierInfo *II = D.getIdentifier();
5732  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
5733                                             LookupOrdinaryName,
5734                                             ForRedeclaration)) {
5735    // The scope should be freshly made just for us. There is just no way
5736    // it contains any previous declaration.
5737    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5738    if (PrevDecl->isTemplateParameter()) {
5739      // Maybe we will complain about the shadowed template parameter.
5740      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5741    }
5742  }
5743
5744  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5745    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5746      << D.getCXXScopeSpec().getRange();
5747    Invalid = true;
5748  }
5749
5750  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5751                                              D.getIdentifier(),
5752                                              D.getIdentifierLoc(),
5753                                            D.getDeclSpec().getSourceRange());
5754
5755  if (Invalid)
5756    ExDecl->setInvalidDecl();
5757
5758  // Add the exception declaration into this scope.
5759  if (II)
5760    PushOnScopeChains(ExDecl, S);
5761  else
5762    CurContext->addDecl(ExDecl);
5763
5764  ProcessDeclAttributes(S, ExDecl, D);
5765  return DeclPtrTy::make(ExDecl);
5766}
5767
5768Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5769                                                   ExprArg assertexpr,
5770                                                   ExprArg assertmessageexpr) {
5771  Expr *AssertExpr = (Expr *)assertexpr.get();
5772  StringLiteral *AssertMessage =
5773    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5774
5775  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5776    llvm::APSInt Value(32);
5777    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5778      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5779        AssertExpr->getSourceRange();
5780      return DeclPtrTy();
5781    }
5782
5783    if (Value == 0) {
5784      Diag(AssertLoc, diag::err_static_assert_failed)
5785        << AssertMessage->getString() << AssertExpr->getSourceRange();
5786    }
5787  }
5788
5789  assertexpr.release();
5790  assertmessageexpr.release();
5791  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5792                                        AssertExpr, AssertMessage);
5793
5794  CurContext->addDecl(Decl);
5795  return DeclPtrTy::make(Decl);
5796}
5797
5798/// \brief Perform semantic analysis of the given friend type declaration.
5799///
5800/// \returns A friend declaration that.
5801FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
5802                                      TypeSourceInfo *TSInfo) {
5803  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
5804
5805  QualType T = TSInfo->getType();
5806  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
5807
5808  if (!getLangOptions().CPlusPlus0x) {
5809    // C++03 [class.friend]p2:
5810    //   An elaborated-type-specifier shall be used in a friend declaration
5811    //   for a class.*
5812    //
5813    //   * The class-key of the elaborated-type-specifier is required.
5814    if (!ActiveTemplateInstantiations.empty()) {
5815      // Do not complain about the form of friend template types during
5816      // template instantiation; we will already have complained when the
5817      // template was declared.
5818    } else if (!T->isElaboratedTypeSpecifier()) {
5819      // If we evaluated the type to a record type, suggest putting
5820      // a tag in front.
5821      if (const RecordType *RT = T->getAs<RecordType>()) {
5822        RecordDecl *RD = RT->getDecl();
5823
5824        std::string InsertionText = std::string(" ") + RD->getKindName();
5825
5826        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
5827          << (unsigned) RD->getTagKind()
5828          << T
5829          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
5830                                        InsertionText);
5831      } else {
5832        Diag(FriendLoc, diag::ext_nonclass_type_friend)
5833          << T
5834          << SourceRange(FriendLoc, TypeRange.getEnd());
5835      }
5836    } else if (T->getAs<EnumType>()) {
5837      Diag(FriendLoc, diag::ext_enum_friend)
5838        << T
5839        << SourceRange(FriendLoc, TypeRange.getEnd());
5840    }
5841  }
5842
5843  // C++0x [class.friend]p3:
5844  //   If the type specifier in a friend declaration designates a (possibly
5845  //   cv-qualified) class type, that class is declared as a friend; otherwise,
5846  //   the friend declaration is ignored.
5847
5848  // FIXME: C++0x has some syntactic restrictions on friend type declarations
5849  // in [class.friend]p3 that we do not implement.
5850
5851  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
5852}
5853
5854/// Handle a friend type declaration.  This works in tandem with
5855/// ActOnTag.
5856///
5857/// Notes on friend class templates:
5858///
5859/// We generally treat friend class declarations as if they were
5860/// declaring a class.  So, for example, the elaborated type specifier
5861/// in a friend declaration is required to obey the restrictions of a
5862/// class-head (i.e. no typedefs in the scope chain), template
5863/// parameters are required to match up with simple template-ids, &c.
5864/// However, unlike when declaring a template specialization, it's
5865/// okay to refer to a template specialization without an empty
5866/// template parameter declaration, e.g.
5867///   friend class A<T>::B<unsigned>;
5868/// We permit this as a special case; if there are any template
5869/// parameters present at all, require proper matching, i.e.
5870///   template <> template <class T> friend class A<int>::B;
5871Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5872                                          MultiTemplateParamsArg TempParams) {
5873  SourceLocation Loc = DS.getSourceRange().getBegin();
5874
5875  assert(DS.isFriendSpecified());
5876  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5877
5878  // Try to convert the decl specifier to a type.  This works for
5879  // friend templates because ActOnTag never produces a ClassTemplateDecl
5880  // for a TUK_Friend.
5881  Declarator TheDeclarator(DS, Declarator::MemberContext);
5882  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
5883  QualType T = TSI->getType();
5884  if (TheDeclarator.isInvalidType())
5885    return DeclPtrTy();
5886
5887  // This is definitely an error in C++98.  It's probably meant to
5888  // be forbidden in C++0x, too, but the specification is just
5889  // poorly written.
5890  //
5891  // The problem is with declarations like the following:
5892  //   template <T> friend A<T>::foo;
5893  // where deciding whether a class C is a friend or not now hinges
5894  // on whether there exists an instantiation of A that causes
5895  // 'foo' to equal C.  There are restrictions on class-heads
5896  // (which we declare (by fiat) elaborated friend declarations to
5897  // be) that makes this tractable.
5898  //
5899  // FIXME: handle "template <> friend class A<T>;", which
5900  // is possibly well-formed?  Who even knows?
5901  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5902    Diag(Loc, diag::err_tagless_friend_type_template)
5903      << DS.getSourceRange();
5904    return DeclPtrTy();
5905  }
5906
5907  // C++98 [class.friend]p1: A friend of a class is a function
5908  //   or class that is not a member of the class . . .
5909  // This is fixed in DR77, which just barely didn't make the C++03
5910  // deadline.  It's also a very silly restriction that seriously
5911  // affects inner classes and which nobody else seems to implement;
5912  // thus we never diagnose it, not even in -pedantic.
5913  //
5914  // But note that we could warn about it: it's always useless to
5915  // friend one of your own members (it's not, however, worthless to
5916  // friend a member of an arbitrary specialization of your template).
5917
5918  Decl *D;
5919  if (unsigned NumTempParamLists = TempParams.size())
5920    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5921                                   NumTempParamLists,
5922                                 (TemplateParameterList**) TempParams.release(),
5923                                   TSI,
5924                                   DS.getFriendSpecLoc());
5925  else
5926    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
5927
5928  if (!D)
5929    return DeclPtrTy();
5930
5931  D->setAccess(AS_public);
5932  CurContext->addDecl(D);
5933
5934  return DeclPtrTy::make(D);
5935}
5936
5937Sema::DeclPtrTy
5938Sema::ActOnFriendFunctionDecl(Scope *S,
5939                              Declarator &D,
5940                              bool IsDefinition,
5941                              MultiTemplateParamsArg TemplateParams) {
5942  const DeclSpec &DS = D.getDeclSpec();
5943
5944  assert(DS.isFriendSpecified());
5945  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5946
5947  SourceLocation Loc = D.getIdentifierLoc();
5948  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5949  QualType T = TInfo->getType();
5950
5951  // C++ [class.friend]p1
5952  //   A friend of a class is a function or class....
5953  // Note that this sees through typedefs, which is intended.
5954  // It *doesn't* see through dependent types, which is correct
5955  // according to [temp.arg.type]p3:
5956  //   If a declaration acquires a function type through a
5957  //   type dependent on a template-parameter and this causes
5958  //   a declaration that does not use the syntactic form of a
5959  //   function declarator to have a function type, the program
5960  //   is ill-formed.
5961  if (!T->isFunctionType()) {
5962    Diag(Loc, diag::err_unexpected_friend);
5963
5964    // It might be worthwhile to try to recover by creating an
5965    // appropriate declaration.
5966    return DeclPtrTy();
5967  }
5968
5969  // C++ [namespace.memdef]p3
5970  //  - If a friend declaration in a non-local class first declares a
5971  //    class or function, the friend class or function is a member
5972  //    of the innermost enclosing namespace.
5973  //  - The name of the friend is not found by simple name lookup
5974  //    until a matching declaration is provided in that namespace
5975  //    scope (either before or after the class declaration granting
5976  //    friendship).
5977  //  - If a friend function is called, its name may be found by the
5978  //    name lookup that considers functions from namespaces and
5979  //    classes associated with the types of the function arguments.
5980  //  - When looking for a prior declaration of a class or a function
5981  //    declared as a friend, scopes outside the innermost enclosing
5982  //    namespace scope are not considered.
5983
5984  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5985  DeclarationName Name = GetNameForDeclarator(D);
5986  assert(Name);
5987
5988  // The context we found the declaration in, or in which we should
5989  // create the declaration.
5990  DeclContext *DC;
5991
5992  // FIXME: handle local classes
5993
5994  // Recover from invalid scope qualifiers as if they just weren't there.
5995  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5996                        ForRedeclaration);
5997  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5998    DC = computeDeclContext(ScopeQual);
5999
6000    // FIXME: handle dependent contexts
6001    if (!DC) return DeclPtrTy();
6002    if (RequireCompleteDeclContext(ScopeQual, DC)) return DeclPtrTy();
6003
6004    LookupQualifiedName(Previous, DC);
6005
6006    // Ignore things found implicitly in the wrong scope.
6007    // TODO: better diagnostics for this case.  Suggesting the right
6008    // qualified scope would be nice...
6009    LookupResult::Filter F = Previous.makeFilter();
6010    while (F.hasNext()) {
6011      NamedDecl *D = F.next();
6012      if (!D->getDeclContext()->getLookupContext()->Equals(DC))
6013        F.erase();
6014    }
6015    F.done();
6016
6017    if (Previous.empty()) {
6018      D.setInvalidType();
6019      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6020      return DeclPtrTy();
6021    }
6022
6023    // C++ [class.friend]p1: A friend of a class is a function or
6024    //   class that is not a member of the class . . .
6025    if (DC->Equals(CurContext))
6026      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6027
6028  // Otherwise walk out to the nearest namespace scope looking for matches.
6029  } else {
6030    // TODO: handle local class contexts.
6031
6032    DC = CurContext;
6033    while (true) {
6034      // Skip class contexts.  If someone can cite chapter and verse
6035      // for this behavior, that would be nice --- it's what GCC and
6036      // EDG do, and it seems like a reasonable intent, but the spec
6037      // really only says that checks for unqualified existing
6038      // declarations should stop at the nearest enclosing namespace,
6039      // not that they should only consider the nearest enclosing
6040      // namespace.
6041      while (DC->isRecord())
6042        DC = DC->getParent();
6043
6044      LookupQualifiedName(Previous, DC);
6045
6046      // TODO: decide what we think about using declarations.
6047      if (!Previous.empty())
6048        break;
6049
6050      if (DC->isFileContext()) break;
6051      DC = DC->getParent();
6052    }
6053
6054    // C++ [class.friend]p1: A friend of a class is a function or
6055    //   class that is not a member of the class . . .
6056    // C++0x changes this for both friend types and functions.
6057    // Most C++ 98 compilers do seem to give an error here, so
6058    // we do, too.
6059    if (!Previous.empty() && DC->Equals(CurContext)
6060        && !getLangOptions().CPlusPlus0x)
6061      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6062  }
6063
6064  if (DC->isFileContext()) {
6065    // This implies that it has to be an operator or function.
6066    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6067        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6068        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6069      Diag(Loc, diag::err_introducing_special_friend) <<
6070        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6071         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6072      return DeclPtrTy();
6073    }
6074  }
6075
6076  bool Redeclaration = false;
6077  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
6078                                          move(TemplateParams),
6079                                          IsDefinition,
6080                                          Redeclaration);
6081  if (!ND) return DeclPtrTy();
6082
6083  assert(ND->getDeclContext() == DC);
6084  assert(ND->getLexicalDeclContext() == CurContext);
6085
6086  // Add the function declaration to the appropriate lookup tables,
6087  // adjusting the redeclarations list as necessary.  We don't
6088  // want to do this yet if the friending class is dependent.
6089  //
6090  // Also update the scope-based lookup if the target context's
6091  // lookup context is in lexical scope.
6092  if (!CurContext->isDependentContext()) {
6093    DC = DC->getLookupContext();
6094    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6095    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6096      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6097  }
6098
6099  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6100                                       D.getIdentifierLoc(), ND,
6101                                       DS.getFriendSpecLoc());
6102  FrD->setAccess(AS_public);
6103  CurContext->addDecl(FrD);
6104
6105  return DeclPtrTy::make(ND);
6106}
6107
6108void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
6109  AdjustDeclIfTemplate(dcl);
6110
6111  Decl *Dcl = dcl.getAs<Decl>();
6112  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6113  if (!Fn) {
6114    Diag(DelLoc, diag::err_deleted_non_function);
6115    return;
6116  }
6117  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6118    Diag(DelLoc, diag::err_deleted_decl_not_first);
6119    Diag(Prev->getLocation(), diag::note_previous_declaration);
6120    // If the declaration wasn't the first, we delete the function anyway for
6121    // recovery.
6122  }
6123  Fn->setDeleted();
6124}
6125
6126static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6127  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6128       ++CI) {
6129    Stmt *SubStmt = *CI;
6130    if (!SubStmt)
6131      continue;
6132    if (isa<ReturnStmt>(SubStmt))
6133      Self.Diag(SubStmt->getSourceRange().getBegin(),
6134           diag::err_return_in_constructor_handler);
6135    if (!isa<Expr>(SubStmt))
6136      SearchForReturnInStmt(Self, SubStmt);
6137  }
6138}
6139
6140void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6141  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6142    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6143    SearchForReturnInStmt(*this, Handler);
6144  }
6145}
6146
6147bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6148                                             const CXXMethodDecl *Old) {
6149  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6150  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6151
6152  if (Context.hasSameType(NewTy, OldTy) ||
6153      NewTy->isDependentType() || OldTy->isDependentType())
6154    return false;
6155
6156  // Check if the return types are covariant
6157  QualType NewClassTy, OldClassTy;
6158
6159  /// Both types must be pointers or references to classes.
6160  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6161    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6162      NewClassTy = NewPT->getPointeeType();
6163      OldClassTy = OldPT->getPointeeType();
6164    }
6165  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6166    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6167      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6168        NewClassTy = NewRT->getPointeeType();
6169        OldClassTy = OldRT->getPointeeType();
6170      }
6171    }
6172  }
6173
6174  // The return types aren't either both pointers or references to a class type.
6175  if (NewClassTy.isNull()) {
6176    Diag(New->getLocation(),
6177         diag::err_different_return_type_for_overriding_virtual_function)
6178      << New->getDeclName() << NewTy << OldTy;
6179    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6180
6181    return true;
6182  }
6183
6184  // C++ [class.virtual]p6:
6185  //   If the return type of D::f differs from the return type of B::f, the
6186  //   class type in the return type of D::f shall be complete at the point of
6187  //   declaration of D::f or shall be the class type D.
6188  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6189    if (!RT->isBeingDefined() &&
6190        RequireCompleteType(New->getLocation(), NewClassTy,
6191                            PDiag(diag::err_covariant_return_incomplete)
6192                              << New->getDeclName()))
6193    return true;
6194  }
6195
6196  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6197    // Check if the new class derives from the old class.
6198    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6199      Diag(New->getLocation(),
6200           diag::err_covariant_return_not_derived)
6201      << New->getDeclName() << NewTy << OldTy;
6202      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6203      return true;
6204    }
6205
6206    // Check if we the conversion from derived to base is valid.
6207    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6208                    diag::err_covariant_return_inaccessible_base,
6209                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6210                    // FIXME: Should this point to the return type?
6211                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6212      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6213      return true;
6214    }
6215  }
6216
6217  // The qualifiers of the return types must be the same.
6218  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6219    Diag(New->getLocation(),
6220         diag::err_covariant_return_type_different_qualifications)
6221    << New->getDeclName() << NewTy << OldTy;
6222    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6223    return true;
6224  };
6225
6226
6227  // The new class type must have the same or less qualifiers as the old type.
6228  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6229    Diag(New->getLocation(),
6230         diag::err_covariant_return_type_class_type_more_qualified)
6231    << New->getDeclName() << NewTy << OldTy;
6232    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6233    return true;
6234  };
6235
6236  return false;
6237}
6238
6239bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6240                                             const CXXMethodDecl *Old)
6241{
6242  if (Old->hasAttr<FinalAttr>()) {
6243    Diag(New->getLocation(), diag::err_final_function_overridden)
6244      << New->getDeclName();
6245    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6246    return true;
6247  }
6248
6249  return false;
6250}
6251
6252/// \brief Mark the given method pure.
6253///
6254/// \param Method the method to be marked pure.
6255///
6256/// \param InitRange the source range that covers the "0" initializer.
6257bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6258  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6259    Method->setPure();
6260
6261    // A class is abstract if at least one function is pure virtual.
6262    Method->getParent()->setAbstract(true);
6263    return false;
6264  }
6265
6266  if (!Method->isInvalidDecl())
6267    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6268      << Method->getDeclName() << InitRange;
6269  return true;
6270}
6271
6272/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6273/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6274/// is a fresh scope pushed for just this purpose.
6275///
6276/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6277/// static data member of class X, names should be looked up in the scope of
6278/// class X.
6279void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6280  // If there is no declaration, there was an error parsing it.
6281  Decl *D = Dcl.getAs<Decl>();
6282  if (D == 0) return;
6283
6284  // We should only get called for declarations with scope specifiers, like:
6285  //   int foo::bar;
6286  assert(D->isOutOfLine());
6287  EnterDeclaratorContext(S, D->getDeclContext());
6288}
6289
6290/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6291/// initializer for the out-of-line declaration 'Dcl'.
6292void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6293  // If there is no declaration, there was an error parsing it.
6294  Decl *D = Dcl.getAs<Decl>();
6295  if (D == 0) return;
6296
6297  assert(D->isOutOfLine());
6298  ExitDeclaratorContext(S);
6299}
6300
6301/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6302/// C++ if/switch/while/for statement.
6303/// e.g: "if (int x = f()) {...}"
6304Action::DeclResult
6305Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6306  // C++ 6.4p2:
6307  // The declarator shall not specify a function or an array.
6308  // The type-specifier-seq shall not contain typedef and shall not declare a
6309  // new class or enumeration.
6310  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6311         "Parser allowed 'typedef' as storage class of condition decl.");
6312
6313  TagDecl *OwnedTag = 0;
6314  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6315  QualType Ty = TInfo->getType();
6316
6317  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6318                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6319                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6320    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6321      << D.getSourceRange();
6322    return DeclResult();
6323  } else if (OwnedTag && OwnedTag->isDefinition()) {
6324    // The type-specifier-seq shall not declare a new class or enumeration.
6325    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6326  }
6327
6328  DeclPtrTy Dcl = ActOnDeclarator(S, D);
6329  if (!Dcl)
6330    return DeclResult();
6331
6332  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
6333  VD->setDeclaredInCondition(true);
6334  return Dcl;
6335}
6336
6337void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6338                          bool DefinitionRequired) {
6339  // Ignore any vtable uses in unevaluated operands or for classes that do
6340  // not have a vtable.
6341  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6342      CurContext->isDependentContext() ||
6343      ExprEvalContexts.back().Context == Unevaluated)
6344    return;
6345
6346  // Try to insert this class into the map.
6347  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6348  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6349    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6350  if (!Pos.second) {
6351    // If we already had an entry, check to see if we are promoting this vtable
6352    // to required a definition. If so, we need to reappend to the VTableUses
6353    // list, since we may have already processed the first entry.
6354    if (DefinitionRequired && !Pos.first->second) {
6355      Pos.first->second = true;
6356    } else {
6357      // Otherwise, we can early exit.
6358      return;
6359    }
6360  }
6361
6362  // Local classes need to have their virtual members marked
6363  // immediately. For all other classes, we mark their virtual members
6364  // at the end of the translation unit.
6365  if (Class->isLocalClass())
6366    MarkVirtualMembersReferenced(Loc, Class);
6367  else
6368    VTableUses.push_back(std::make_pair(Class, Loc));
6369}
6370
6371bool Sema::DefineUsedVTables() {
6372  // If any dynamic classes have their key function defined within
6373  // this translation unit, then those vtables are considered "used" and must
6374  // be emitted.
6375  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6376    if (const CXXMethodDecl *KeyFunction
6377                             = Context.getKeyFunction(DynamicClasses[I])) {
6378      const FunctionDecl *Definition = 0;
6379      if (KeyFunction->getBody(Definition))
6380        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6381    }
6382  }
6383
6384  if (VTableUses.empty())
6385    return false;
6386
6387  // Note: The VTableUses vector could grow as a result of marking
6388  // the members of a class as "used", so we check the size each
6389  // time through the loop and prefer indices (with are stable) to
6390  // iterators (which are not).
6391  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6392    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6393    if (!Class)
6394      continue;
6395
6396    SourceLocation Loc = VTableUses[I].second;
6397
6398    // If this class has a key function, but that key function is
6399    // defined in another translation unit, we don't need to emit the
6400    // vtable even though we're using it.
6401    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6402    if (KeyFunction && !KeyFunction->getBody()) {
6403      switch (KeyFunction->getTemplateSpecializationKind()) {
6404      case TSK_Undeclared:
6405      case TSK_ExplicitSpecialization:
6406      case TSK_ExplicitInstantiationDeclaration:
6407        // The key function is in another translation unit.
6408        continue;
6409
6410      case TSK_ExplicitInstantiationDefinition:
6411      case TSK_ImplicitInstantiation:
6412        // We will be instantiating the key function.
6413        break;
6414      }
6415    } else if (!KeyFunction) {
6416      // If we have a class with no key function that is the subject
6417      // of an explicit instantiation declaration, suppress the
6418      // vtable; it will live with the explicit instantiation
6419      // definition.
6420      bool IsExplicitInstantiationDeclaration
6421        = Class->getTemplateSpecializationKind()
6422                                      == TSK_ExplicitInstantiationDeclaration;
6423      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6424                                 REnd = Class->redecls_end();
6425           R != REnd; ++R) {
6426        TemplateSpecializationKind TSK
6427          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6428        if (TSK == TSK_ExplicitInstantiationDeclaration)
6429          IsExplicitInstantiationDeclaration = true;
6430        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6431          IsExplicitInstantiationDeclaration = false;
6432          break;
6433        }
6434      }
6435
6436      if (IsExplicitInstantiationDeclaration)
6437        continue;
6438    }
6439
6440    // Mark all of the virtual members of this class as referenced, so
6441    // that we can build a vtable. Then, tell the AST consumer that a
6442    // vtable for this class is required.
6443    MarkVirtualMembersReferenced(Loc, Class);
6444    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6445    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6446
6447    // Optionally warn if we're emitting a weak vtable.
6448    if (Class->getLinkage() == ExternalLinkage &&
6449        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6450      if (!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
6451        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6452    }
6453  }
6454  VTableUses.clear();
6455
6456  return true;
6457}
6458
6459void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6460                                        const CXXRecordDecl *RD) {
6461  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6462       e = RD->method_end(); i != e; ++i) {
6463    CXXMethodDecl *MD = *i;
6464
6465    // C++ [basic.def.odr]p2:
6466    //   [...] A virtual member function is used if it is not pure. [...]
6467    if (MD->isVirtual() && !MD->isPure())
6468      MarkDeclarationReferenced(Loc, MD);
6469  }
6470
6471  // Only classes that have virtual bases need a VTT.
6472  if (RD->getNumVBases() == 0)
6473    return;
6474
6475  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6476           e = RD->bases_end(); i != e; ++i) {
6477    const CXXRecordDecl *Base =
6478        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6479    if (i->isVirtual())
6480      continue;
6481    if (Base->getNumVBases() == 0)
6482      continue;
6483    MarkVirtualMembersReferenced(Loc, Base);
6484  }
6485}
6486
6487/// SetIvarInitializers - This routine builds initialization ASTs for the
6488/// Objective-C implementation whose ivars need be initialized.
6489void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6490  if (!getLangOptions().CPlusPlus)
6491    return;
6492  if (const ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6493    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
6494    CollectIvarsToConstructOrDestruct(OID, ivars);
6495    if (ivars.empty())
6496      return;
6497    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
6498    for (unsigned i = 0; i < ivars.size(); i++) {
6499      FieldDecl *Field = ivars[i];
6500      if (Field->isInvalidDecl())
6501        continue;
6502
6503      CXXBaseOrMemberInitializer *Member;
6504      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
6505      InitializationKind InitKind =
6506        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
6507
6508      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
6509      Sema::OwningExprResult MemberInit =
6510        InitSeq.Perform(*this, InitEntity, InitKind,
6511                        Sema::MultiExprArg(*this, 0, 0));
6512      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
6513      // Note, MemberInit could actually come back empty if no initialization
6514      // is required (e.g., because it would call a trivial default constructor)
6515      if (!MemberInit.get() || MemberInit.isInvalid())
6516        continue;
6517
6518      Member =
6519        new (Context) CXXBaseOrMemberInitializer(Context,
6520                                                 Field, SourceLocation(),
6521                                                 SourceLocation(),
6522                                                 MemberInit.takeAs<Expr>(),
6523                                                 SourceLocation());
6524      AllToInit.push_back(Member);
6525
6526      // Be sure that the destructor is accessible and is marked as referenced.
6527      if (const RecordType *RecordTy
6528                  = Context.getBaseElementType(Field->getType())
6529                                                        ->getAs<RecordType>()) {
6530                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
6531        if (CXXDestructorDecl *Destructor
6532                        = const_cast<CXXDestructorDecl*>(RD->getDestructor())) {
6533          MarkDeclarationReferenced(Field->getLocation(), Destructor);
6534          CheckDestructorAccess(Field->getLocation(), Destructor,
6535                            PDiag(diag::err_access_dtor_ivar)
6536                              << Context.getBaseElementType(Field->getType()));
6537        }
6538      }
6539    }
6540    ObjCImplementation->setIvarInitializers(Context,
6541                                            AllToInit.data(), AllToInit.size());
6542  }
6543}
6544