SemaDeclCXX.cpp revision 1eb4433ac451dc16f4133a88af2d002ac26c58ef
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Parse/DeclSpec.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/Compiler.h"
26#include <algorithm> // for std::equal
27#include <map>
28
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// CheckDefaultArgumentVisitor
33//===----------------------------------------------------------------------===//
34
35namespace {
36  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
37  /// the default argument of a parameter to determine whether it
38  /// contains any ill-formed subexpressions. For example, this will
39  /// diagnose the use of local variables or parameters within the
40  /// default argument expression.
41  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
42    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
43    Expr *DefaultArg;
44    Sema *S;
45
46  public:
47    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
48      : DefaultArg(defarg), S(s) {}
49
50    bool VisitExpr(Expr *Node);
51    bool VisitDeclRefExpr(DeclRefExpr *DRE);
52    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
53  };
54
55  /// VisitExpr - Visit all of the children of this expression.
56  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
57    bool IsInvalid = false;
58    for (Stmt::child_iterator I = Node->child_begin(),
59         E = Node->child_end(); I != E; ++I)
60      IsInvalid |= Visit(*I);
61    return IsInvalid;
62  }
63
64  /// VisitDeclRefExpr - Visit a reference to a declaration, to
65  /// determine whether this declaration can be used in the default
66  /// argument expression.
67  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
68    NamedDecl *Decl = DRE->getDecl();
69    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
70      // C++ [dcl.fct.default]p9
71      //   Default arguments are evaluated each time the function is
72      //   called. The order of evaluation of function arguments is
73      //   unspecified. Consequently, parameters of a function shall not
74      //   be used in default argument expressions, even if they are not
75      //   evaluated. Parameters of a function declared before a default
76      //   argument expression are in scope and can hide namespace and
77      //   class member names.
78      return S->Diag(DRE->getSourceRange().getBegin(),
79                     diag::err_param_default_argument_references_param)
80         << Param->getDeclName() << DefaultArg->getSourceRange();
81    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
82      // C++ [dcl.fct.default]p7
83      //   Local variables shall not be used in default argument
84      //   expressions.
85      if (VDecl->isBlockVarDecl())
86        return S->Diag(DRE->getSourceRange().getBegin(),
87                       diag::err_param_default_argument_references_local)
88          << VDecl->getDeclName() << DefaultArg->getSourceRange();
89    }
90
91    return false;
92  }
93
94  /// VisitCXXThisExpr - Visit a C++ "this" expression.
95  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
96    // C++ [dcl.fct.default]p8:
97    //   The keyword this shall not be used in a default argument of a
98    //   member function.
99    return S->Diag(ThisE->getSourceRange().getBegin(),
100                   diag::err_param_default_argument_references_this)
101               << ThisE->getSourceRange();
102  }
103}
104
105bool
106Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
107                              SourceLocation EqualLoc) {
108  QualType ParamType = Param->getType();
109
110  if (RequireCompleteType(Param->getLocation(), Param->getType(),
111                          diag::err_typecheck_decl_incomplete_type)) {
112    Param->setInvalidDecl();
113    return true;
114  }
115
116  Expr *Arg = (Expr *)DefaultArg.get();
117
118  // C++ [dcl.fct.default]p5
119  //   A default argument expression is implicitly converted (clause
120  //   4) to the parameter type. The default argument expression has
121  //   the same semantic constraints as the initializer expression in
122  //   a declaration of a variable of the parameter type, using the
123  //   copy-initialization semantics (8.5).
124  if (CheckInitializerTypes(Arg, ParamType, EqualLoc,
125                            Param->getDeclName(), /*DirectInit=*/false))
126    return true;
127
128  Arg = MaybeCreateCXXExprWithTemporaries(Arg, /*DestroyTemps=*/false);
129
130  // Okay: add the default argument to the parameter
131  Param->setDefaultArg(Arg);
132
133  DefaultArg.release();
134
135  return false;
136}
137
138/// ActOnParamDefaultArgument - Check whether the default argument
139/// provided for a function parameter is well-formed. If so, attach it
140/// to the parameter declaration.
141void
142Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
143                                ExprArg defarg) {
144  if (!param || !defarg.get())
145    return;
146
147  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
148  UnparsedDefaultArgLocs.erase(Param);
149
150  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
151  QualType ParamType = Param->getType();
152
153  // Default arguments are only permitted in C++
154  if (!getLangOptions().CPlusPlus) {
155    Diag(EqualLoc, diag::err_param_default_argument)
156      << DefaultArg->getSourceRange();
157    Param->setInvalidDecl();
158    return;
159  }
160
161  // Check that the default argument is well-formed
162  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
163  if (DefaultArgChecker.Visit(DefaultArg.get())) {
164    Param->setInvalidDecl();
165    return;
166  }
167
168  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
169}
170
171/// ActOnParamUnparsedDefaultArgument - We've seen a default
172/// argument for a function parameter, but we can't parse it yet
173/// because we're inside a class definition. Note that this default
174/// argument will be parsed later.
175void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
176                                             SourceLocation EqualLoc,
177                                             SourceLocation ArgLoc) {
178  if (!param)
179    return;
180
181  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
182  if (Param)
183    Param->setUnparsedDefaultArg();
184
185  UnparsedDefaultArgLocs[Param] = ArgLoc;
186}
187
188/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
189/// the default argument for the parameter param failed.
190void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
191  if (!param)
192    return;
193
194  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
195
196  Param->setInvalidDecl();
197
198  UnparsedDefaultArgLocs.erase(Param);
199}
200
201/// CheckExtraCXXDefaultArguments - Check for any extra default
202/// arguments in the declarator, which is not a function declaration
203/// or definition and therefore is not permitted to have default
204/// arguments. This routine should be invoked for every declarator
205/// that is not a function declaration or definition.
206void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
207  // C++ [dcl.fct.default]p3
208  //   A default argument expression shall be specified only in the
209  //   parameter-declaration-clause of a function declaration or in a
210  //   template-parameter (14.1). It shall not be specified for a
211  //   parameter pack. If it is specified in a
212  //   parameter-declaration-clause, it shall not occur within a
213  //   declarator or abstract-declarator of a parameter-declaration.
214  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
215    DeclaratorChunk &chunk = D.getTypeObject(i);
216    if (chunk.Kind == DeclaratorChunk::Function) {
217      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
218        ParmVarDecl *Param =
219          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
220        if (Param->hasUnparsedDefaultArg()) {
221          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
222          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
223            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
224          delete Toks;
225          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
226        } else if (Param->getDefaultArg()) {
227          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
228            << Param->getDefaultArg()->getSourceRange();
229          Param->setDefaultArg(0);
230        }
231      }
232    }
233  }
234}
235
236// MergeCXXFunctionDecl - Merge two declarations of the same C++
237// function, once we already know that they have the same
238// type. Subroutine of MergeFunctionDecl. Returns true if there was an
239// error, false otherwise.
240bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
241  bool Invalid = false;
242
243  // C++ [dcl.fct.default]p4:
244  //
245  //   For non-template functions, default arguments can be added in
246  //   later declarations of a function in the same
247  //   scope. Declarations in different scopes have completely
248  //   distinct sets of default arguments. That is, declarations in
249  //   inner scopes do not acquire default arguments from
250  //   declarations in outer scopes, and vice versa. In a given
251  //   function declaration, all parameters subsequent to a
252  //   parameter with a default argument shall have default
253  //   arguments supplied in this or previous declarations. A
254  //   default argument shall not be redefined by a later
255  //   declaration (not even to the same value).
256  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
257    ParmVarDecl *OldParam = Old->getParamDecl(p);
258    ParmVarDecl *NewParam = New->getParamDecl(p);
259
260    if (OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
261      Diag(NewParam->getLocation(),
262           diag::err_param_default_argument_redefinition)
263        << NewParam->getDefaultArg()->getSourceRange();
264      Diag(OldParam->getLocation(), diag::note_previous_definition);
265      Invalid = true;
266    } else if (OldParam->getDefaultArg()) {
267      // Merge the old default argument into the new parameter
268      NewParam->setDefaultArg(OldParam->getDefaultArg());
269    }
270  }
271
272  if (CheckEquivalentExceptionSpec(
273          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
274          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
275    Invalid = true;
276  }
277
278  return Invalid;
279}
280
281/// CheckCXXDefaultArguments - Verify that the default arguments for a
282/// function declaration are well-formed according to C++
283/// [dcl.fct.default].
284void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
285  unsigned NumParams = FD->getNumParams();
286  unsigned p;
287
288  // Find first parameter with a default argument
289  for (p = 0; p < NumParams; ++p) {
290    ParmVarDecl *Param = FD->getParamDecl(p);
291    if (Param->hasDefaultArg())
292      break;
293  }
294
295  // C++ [dcl.fct.default]p4:
296  //   In a given function declaration, all parameters
297  //   subsequent to a parameter with a default argument shall
298  //   have default arguments supplied in this or previous
299  //   declarations. A default argument shall not be redefined
300  //   by a later declaration (not even to the same value).
301  unsigned LastMissingDefaultArg = 0;
302  for (; p < NumParams; ++p) {
303    ParmVarDecl *Param = FD->getParamDecl(p);
304    if (!Param->hasDefaultArg()) {
305      if (Param->isInvalidDecl())
306        /* We already complained about this parameter. */;
307      else if (Param->getIdentifier())
308        Diag(Param->getLocation(),
309             diag::err_param_default_argument_missing_name)
310          << Param->getIdentifier();
311      else
312        Diag(Param->getLocation(),
313             diag::err_param_default_argument_missing);
314
315      LastMissingDefaultArg = p;
316    }
317  }
318
319  if (LastMissingDefaultArg > 0) {
320    // Some default arguments were missing. Clear out all of the
321    // default arguments up to (and including) the last missing
322    // default argument, so that we leave the function parameters
323    // in a semantically valid state.
324    for (p = 0; p <= LastMissingDefaultArg; ++p) {
325      ParmVarDecl *Param = FD->getParamDecl(p);
326      if (Param->hasDefaultArg()) {
327        if (!Param->hasUnparsedDefaultArg())
328          Param->getDefaultArg()->Destroy(Context);
329        Param->setDefaultArg(0);
330      }
331    }
332  }
333}
334
335/// isCurrentClassName - Determine whether the identifier II is the
336/// name of the class type currently being defined. In the case of
337/// nested classes, this will only return true if II is the name of
338/// the innermost class.
339bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
340                              const CXXScopeSpec *SS) {
341  CXXRecordDecl *CurDecl;
342  if (SS && SS->isSet() && !SS->isInvalid()) {
343    DeclContext *DC = computeDeclContext(*SS, true);
344    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
345  } else
346    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
347
348  if (CurDecl)
349    return &II == CurDecl->getIdentifier();
350  else
351    return false;
352}
353
354/// \brief Check the validity of a C++ base class specifier.
355///
356/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
357/// and returns NULL otherwise.
358CXXBaseSpecifier *
359Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
360                         SourceRange SpecifierRange,
361                         bool Virtual, AccessSpecifier Access,
362                         QualType BaseType,
363                         SourceLocation BaseLoc) {
364  // C++ [class.union]p1:
365  //   A union shall not have base classes.
366  if (Class->isUnion()) {
367    Diag(Class->getLocation(), diag::err_base_clause_on_union)
368      << SpecifierRange;
369    return 0;
370  }
371
372  if (BaseType->isDependentType())
373    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
374                                Class->getTagKind() == RecordDecl::TK_class,
375                                Access, BaseType);
376
377  // Base specifiers must be record types.
378  if (!BaseType->isRecordType()) {
379    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
380    return 0;
381  }
382
383  // C++ [class.union]p1:
384  //   A union shall not be used as a base class.
385  if (BaseType->isUnionType()) {
386    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
387    return 0;
388  }
389
390  // C++ [class.derived]p2:
391  //   The class-name in a base-specifier shall not be an incompletely
392  //   defined class.
393  if (RequireCompleteType(BaseLoc, BaseType,
394                          PDiag(diag::err_incomplete_base_class)
395                            << SpecifierRange))
396    return 0;
397
398  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
399  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
400  assert(BaseDecl && "Record type has no declaration");
401  BaseDecl = BaseDecl->getDefinition(Context);
402  assert(BaseDecl && "Base type is not incomplete, but has no definition");
403  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
404  assert(CXXBaseDecl && "Base type is not a C++ type");
405  if (!CXXBaseDecl->isEmpty())
406    Class->setEmpty(false);
407  if (CXXBaseDecl->isPolymorphic())
408    Class->setPolymorphic(true);
409
410  // C++ [dcl.init.aggr]p1:
411  //   An aggregate is [...] a class with [...] no base classes [...].
412  Class->setAggregate(false);
413  Class->setPOD(false);
414
415  if (Virtual) {
416    // C++ [class.ctor]p5:
417    //   A constructor is trivial if its class has no virtual base classes.
418    Class->setHasTrivialConstructor(false);
419
420    // C++ [class.copy]p6:
421    //   A copy constructor is trivial if its class has no virtual base classes.
422    Class->setHasTrivialCopyConstructor(false);
423
424    // C++ [class.copy]p11:
425    //   A copy assignment operator is trivial if its class has no virtual
426    //   base classes.
427    Class->setHasTrivialCopyAssignment(false);
428
429    // C++0x [meta.unary.prop] is_empty:
430    //    T is a class type, but not a union type, with ... no virtual base
431    //    classes
432    Class->setEmpty(false);
433  } else {
434    // C++ [class.ctor]p5:
435    //   A constructor is trivial if all the direct base classes of its
436    //   class have trivial constructors.
437    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
438      Class->setHasTrivialConstructor(false);
439
440    // C++ [class.copy]p6:
441    //   A copy constructor is trivial if all the direct base classes of its
442    //   class have trivial copy constructors.
443    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
444      Class->setHasTrivialCopyConstructor(false);
445
446    // C++ [class.copy]p11:
447    //   A copy assignment operator is trivial if all the direct base classes
448    //   of its class have trivial copy assignment operators.
449    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
450      Class->setHasTrivialCopyAssignment(false);
451  }
452
453  // C++ [class.ctor]p3:
454  //   A destructor is trivial if all the direct base classes of its class
455  //   have trivial destructors.
456  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
457    Class->setHasTrivialDestructor(false);
458
459  // Create the base specifier.
460  // FIXME: Allocate via ASTContext?
461  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
462                              Class->getTagKind() == RecordDecl::TK_class,
463                              Access, BaseType);
464}
465
466/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
467/// one entry in the base class list of a class specifier, for
468/// example:
469///    class foo : public bar, virtual private baz {
470/// 'public bar' and 'virtual private baz' are each base-specifiers.
471Sema::BaseResult
472Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
473                         bool Virtual, AccessSpecifier Access,
474                         TypeTy *basetype, SourceLocation BaseLoc) {
475  if (!classdecl)
476    return true;
477
478  AdjustDeclIfTemplate(classdecl);
479  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
480  QualType BaseType = GetTypeFromParser(basetype);
481  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
482                                                      Virtual, Access,
483                                                      BaseType, BaseLoc))
484    return BaseSpec;
485
486  return true;
487}
488
489/// \brief Performs the actual work of attaching the given base class
490/// specifiers to a C++ class.
491bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
492                                unsigned NumBases) {
493 if (NumBases == 0)
494    return false;
495
496  // Used to keep track of which base types we have already seen, so
497  // that we can properly diagnose redundant direct base types. Note
498  // that the key is always the unqualified canonical type of the base
499  // class.
500  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
501
502  // Copy non-redundant base specifiers into permanent storage.
503  unsigned NumGoodBases = 0;
504  bool Invalid = false;
505  for (unsigned idx = 0; idx < NumBases; ++idx) {
506    QualType NewBaseType
507      = Context.getCanonicalType(Bases[idx]->getType());
508    NewBaseType = NewBaseType.getUnqualifiedType();
509
510    if (KnownBaseTypes[NewBaseType]) {
511      // C++ [class.mi]p3:
512      //   A class shall not be specified as a direct base class of a
513      //   derived class more than once.
514      Diag(Bases[idx]->getSourceRange().getBegin(),
515           diag::err_duplicate_base_class)
516        << KnownBaseTypes[NewBaseType]->getType()
517        << Bases[idx]->getSourceRange();
518
519      // Delete the duplicate base class specifier; we're going to
520      // overwrite its pointer later.
521      Context.Deallocate(Bases[idx]);
522
523      Invalid = true;
524    } else {
525      // Okay, add this new base class.
526      KnownBaseTypes[NewBaseType] = Bases[idx];
527      Bases[NumGoodBases++] = Bases[idx];
528    }
529  }
530
531  // Attach the remaining base class specifiers to the derived class.
532  Class->setBases(Context, Bases, NumGoodBases);
533
534  // Delete the remaining (good) base class specifiers, since their
535  // data has been copied into the CXXRecordDecl.
536  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
537    Context.Deallocate(Bases[idx]);
538
539  return Invalid;
540}
541
542/// ActOnBaseSpecifiers - Attach the given base specifiers to the
543/// class, after checking whether there are any duplicate base
544/// classes.
545void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
546                               unsigned NumBases) {
547  if (!ClassDecl || !Bases || !NumBases)
548    return;
549
550  AdjustDeclIfTemplate(ClassDecl);
551  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
552                       (CXXBaseSpecifier**)(Bases), NumBases);
553}
554
555//===----------------------------------------------------------------------===//
556// C++ class member Handling
557//===----------------------------------------------------------------------===//
558
559/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
560/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
561/// bitfield width if there is one and 'InitExpr' specifies the initializer if
562/// any.
563Sema::DeclPtrTy
564Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
565                               MultiTemplateParamsArg TemplateParameterLists,
566                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
567  const DeclSpec &DS = D.getDeclSpec();
568  DeclarationName Name = GetNameForDeclarator(D);
569  Expr *BitWidth = static_cast<Expr*>(BW);
570  Expr *Init = static_cast<Expr*>(InitExpr);
571  SourceLocation Loc = D.getIdentifierLoc();
572
573  bool isFunc = D.isFunctionDeclarator();
574
575  assert(!DS.isFriendSpecified());
576
577  // C++ 9.2p6: A member shall not be declared to have automatic storage
578  // duration (auto, register) or with the extern storage-class-specifier.
579  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
580  // data members and cannot be applied to names declared const or static,
581  // and cannot be applied to reference members.
582  switch (DS.getStorageClassSpec()) {
583    case DeclSpec::SCS_unspecified:
584    case DeclSpec::SCS_typedef:
585    case DeclSpec::SCS_static:
586      // FALL THROUGH.
587      break;
588    case DeclSpec::SCS_mutable:
589      if (isFunc) {
590        if (DS.getStorageClassSpecLoc().isValid())
591          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
592        else
593          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
594
595        // FIXME: It would be nicer if the keyword was ignored only for this
596        // declarator. Otherwise we could get follow-up errors.
597        D.getMutableDeclSpec().ClearStorageClassSpecs();
598      } else {
599        QualType T = GetTypeForDeclarator(D, S);
600        diag::kind err = static_cast<diag::kind>(0);
601        if (T->isReferenceType())
602          err = diag::err_mutable_reference;
603        else if (T.isConstQualified())
604          err = diag::err_mutable_const;
605        if (err != 0) {
606          if (DS.getStorageClassSpecLoc().isValid())
607            Diag(DS.getStorageClassSpecLoc(), err);
608          else
609            Diag(DS.getThreadSpecLoc(), err);
610          // FIXME: It would be nicer if the keyword was ignored only for this
611          // declarator. Otherwise we could get follow-up errors.
612          D.getMutableDeclSpec().ClearStorageClassSpecs();
613        }
614      }
615      break;
616    default:
617      if (DS.getStorageClassSpecLoc().isValid())
618        Diag(DS.getStorageClassSpecLoc(),
619             diag::err_storageclass_invalid_for_member);
620      else
621        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
622      D.getMutableDeclSpec().ClearStorageClassSpecs();
623  }
624
625  if (!isFunc &&
626      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
627      D.getNumTypeObjects() == 0) {
628    // Check also for this case:
629    //
630    // typedef int f();
631    // f a;
632    //
633    QualType TDType = GetTypeFromParser(DS.getTypeRep());
634    isFunc = TDType->isFunctionType();
635  }
636
637  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
638                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
639                      !isFunc);
640
641  Decl *Member;
642  if (isInstField) {
643    // FIXME: Check for template parameters!
644    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
645                         AS);
646    assert(Member && "HandleField never returns null");
647  } else {
648    Member = HandleDeclarator(S, D, move(TemplateParameterLists), false)
649               .getAs<Decl>();
650    if (!Member) {
651      if (BitWidth) DeleteExpr(BitWidth);
652      return DeclPtrTy();
653    }
654
655    // Non-instance-fields can't have a bitfield.
656    if (BitWidth) {
657      if (Member->isInvalidDecl()) {
658        // don't emit another diagnostic.
659      } else if (isa<VarDecl>(Member)) {
660        // C++ 9.6p3: A bit-field shall not be a static member.
661        // "static member 'A' cannot be a bit-field"
662        Diag(Loc, diag::err_static_not_bitfield)
663          << Name << BitWidth->getSourceRange();
664      } else if (isa<TypedefDecl>(Member)) {
665        // "typedef member 'x' cannot be a bit-field"
666        Diag(Loc, diag::err_typedef_not_bitfield)
667          << Name << BitWidth->getSourceRange();
668      } else {
669        // A function typedef ("typedef int f(); f a;").
670        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
671        Diag(Loc, diag::err_not_integral_type_bitfield)
672          << Name << cast<ValueDecl>(Member)->getType()
673          << BitWidth->getSourceRange();
674      }
675
676      DeleteExpr(BitWidth);
677      BitWidth = 0;
678      Member->setInvalidDecl();
679    }
680
681    Member->setAccess(AS);
682
683    // If we have declared a member function template, set the access of the
684    // templated declaration as well.
685    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
686      FunTmpl->getTemplatedDecl()->setAccess(AS);
687  }
688
689  assert((Name || isInstField) && "No identifier for non-field ?");
690
691  if (Init)
692    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
693  if (Deleted) // FIXME: Source location is not very good.
694    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
695
696  if (isInstField) {
697    FieldCollector->Add(cast<FieldDecl>(Member));
698    return DeclPtrTy();
699  }
700  return DeclPtrTy::make(Member);
701}
702
703/// ActOnMemInitializer - Handle a C++ member initializer.
704Sema::MemInitResult
705Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
706                          Scope *S,
707                          const CXXScopeSpec &SS,
708                          IdentifierInfo *MemberOrBase,
709                          TypeTy *TemplateTypeTy,
710                          SourceLocation IdLoc,
711                          SourceLocation LParenLoc,
712                          ExprTy **Args, unsigned NumArgs,
713                          SourceLocation *CommaLocs,
714                          SourceLocation RParenLoc) {
715  if (!ConstructorD)
716    return true;
717
718  AdjustDeclIfTemplate(ConstructorD);
719
720  CXXConstructorDecl *Constructor
721    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
722  if (!Constructor) {
723    // The user wrote a constructor initializer on a function that is
724    // not a C++ constructor. Ignore the error for now, because we may
725    // have more member initializers coming; we'll diagnose it just
726    // once in ActOnMemInitializers.
727    return true;
728  }
729
730  CXXRecordDecl *ClassDecl = Constructor->getParent();
731
732  // C++ [class.base.init]p2:
733  //   Names in a mem-initializer-id are looked up in the scope of the
734  //   constructor’s class and, if not found in that scope, are looked
735  //   up in the scope containing the constructor’s
736  //   definition. [Note: if the constructor’s class contains a member
737  //   with the same name as a direct or virtual base class of the
738  //   class, a mem-initializer-id naming the member or base class and
739  //   composed of a single identifier refers to the class member. A
740  //   mem-initializer-id for the hidden base class may be specified
741  //   using a qualified name. ]
742  if (!SS.getScopeRep() && !TemplateTypeTy) {
743    // Look for a member, first.
744    FieldDecl *Member = 0;
745    DeclContext::lookup_result Result
746      = ClassDecl->lookup(MemberOrBase);
747    if (Result.first != Result.second)
748      Member = dyn_cast<FieldDecl>(*Result.first);
749
750    // FIXME: Handle members of an anonymous union.
751
752    if (Member)
753      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
754                                    RParenLoc);
755  }
756  // It didn't name a member, so see if it names a class.
757  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
758                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
759  if (!BaseTy)
760    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
761      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
762
763  QualType BaseType = GetTypeFromParser(BaseTy);
764
765  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
766                              RParenLoc, ClassDecl);
767}
768
769Sema::MemInitResult
770Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
771                             unsigned NumArgs, SourceLocation IdLoc,
772                             SourceLocation RParenLoc) {
773  bool HasDependentArg = false;
774  for (unsigned i = 0; i < NumArgs; i++)
775    HasDependentArg |= Args[i]->isTypeDependent();
776
777  CXXConstructorDecl *C = 0;
778  QualType FieldType = Member->getType();
779  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
780    FieldType = Array->getElementType();
781  if (FieldType->isDependentType()) {
782    // Can't check init for dependent type.
783  } else if (FieldType->getAs<RecordType>()) {
784    if (!HasDependentArg)
785      C = PerformInitializationByConstructor(
786            FieldType, (Expr **)Args, NumArgs, IdLoc,
787            SourceRange(IdLoc, RParenLoc), Member->getDeclName(), IK_Direct);
788  } else if (NumArgs != 1 && NumArgs != 0) {
789    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
790                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
791  } else if (!HasDependentArg) {
792    Expr *NewExp;
793    if (NumArgs == 0) {
794      if (FieldType->isReferenceType()) {
795        Diag(IdLoc, diag::err_null_intialized_reference_member)
796              << Member->getDeclName();
797        return Diag(Member->getLocation(), diag::note_declared_at);
798      }
799      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
800      NumArgs = 1;
801    }
802    else
803      NewExp = (Expr*)Args[0];
804    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
805      return true;
806    Args[0] = NewExp;
807  }
808  // FIXME: Perform direct initialization of the member.
809  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
810                                                  NumArgs, C, IdLoc, RParenLoc);
811}
812
813Sema::MemInitResult
814Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
815                           unsigned NumArgs, SourceLocation IdLoc,
816                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
817  bool HasDependentArg = false;
818  for (unsigned i = 0; i < NumArgs; i++)
819    HasDependentArg |= Args[i]->isTypeDependent();
820
821  if (!BaseType->isDependentType()) {
822    if (!BaseType->isRecordType())
823      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
824        << BaseType << SourceRange(IdLoc, RParenLoc);
825
826    // C++ [class.base.init]p2:
827    //   [...] Unless the mem-initializer-id names a nonstatic data
828    //   member of the constructor’s class or a direct or virtual base
829    //   of that class, the mem-initializer is ill-formed. A
830    //   mem-initializer-list can initialize a base class using any
831    //   name that denotes that base class type.
832
833    // First, check for a direct base class.
834    const CXXBaseSpecifier *DirectBaseSpec = 0;
835    for (CXXRecordDecl::base_class_const_iterator Base =
836         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
837      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
838          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
839        // We found a direct base of this type. That's what we're
840        // initializing.
841        DirectBaseSpec = &*Base;
842        break;
843      }
844    }
845
846    // Check for a virtual base class.
847    // FIXME: We might be able to short-circuit this if we know in advance that
848    // there are no virtual bases.
849    const CXXBaseSpecifier *VirtualBaseSpec = 0;
850    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
851      // We haven't found a base yet; search the class hierarchy for a
852      // virtual base class.
853      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
854                      /*DetectVirtual=*/false);
855      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
856        for (BasePaths::paths_iterator Path = Paths.begin();
857             Path != Paths.end(); ++Path) {
858          if (Path->back().Base->isVirtual()) {
859            VirtualBaseSpec = Path->back().Base;
860            break;
861          }
862        }
863      }
864    }
865
866    // C++ [base.class.init]p2:
867    //   If a mem-initializer-id is ambiguous because it designates both
868    //   a direct non-virtual base class and an inherited virtual base
869    //   class, the mem-initializer is ill-formed.
870    if (DirectBaseSpec && VirtualBaseSpec)
871      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
872        << BaseType << SourceRange(IdLoc, RParenLoc);
873    // C++ [base.class.init]p2:
874    // Unless the mem-initializer-id names a nonstatic data membeer of the
875    // constructor's class ot a direst or virtual base of that class, the
876    // mem-initializer is ill-formed.
877    if (!DirectBaseSpec && !VirtualBaseSpec)
878      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
879      << BaseType << ClassDecl->getNameAsCString()
880      << SourceRange(IdLoc, RParenLoc);
881  }
882
883  CXXConstructorDecl *C = 0;
884  if (!BaseType->isDependentType() && !HasDependentArg) {
885    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
886                                            Context.getCanonicalType(BaseType));
887    C = PerformInitializationByConstructor(BaseType, (Expr **)Args, NumArgs,
888                                           IdLoc, SourceRange(IdLoc, RParenLoc),
889                                           Name, IK_Direct);
890  }
891
892  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
893                                                  NumArgs, C, IdLoc, RParenLoc);
894}
895
896void
897Sema::setBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
898                              CXXBaseOrMemberInitializer **Initializers,
899                              unsigned NumInitializers,
900                              llvm::SmallVectorImpl<CXXBaseSpecifier *>& Bases,
901                              llvm::SmallVectorImpl<FieldDecl *>&Fields) {
902  // We need to build the initializer AST according to order of construction
903  // and not what user specified in the Initializers list.
904  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
905  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
906  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
907  bool HasDependentBaseInit = false;
908
909  for (unsigned i = 0; i < NumInitializers; i++) {
910    CXXBaseOrMemberInitializer *Member = Initializers[i];
911    if (Member->isBaseInitializer()) {
912      if (Member->getBaseClass()->isDependentType())
913        HasDependentBaseInit = true;
914      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
915    } else {
916      AllBaseFields[Member->getMember()] = Member;
917    }
918  }
919
920  if (HasDependentBaseInit) {
921    // FIXME. This does not preserve the ordering of the initializers.
922    // Try (with -Wreorder)
923    // template<class X> struct A {};
924    // template<class X> struct B : A<X> {
925    //   B() : x1(10), A<X>() {}
926    //   int x1;
927    // };
928    // B<int> x;
929    // On seeing one dependent type, we should essentially exit this routine
930    // while preserving user-declared initializer list. When this routine is
931    // called during instantiatiation process, this routine will rebuild the
932    // oderdered initializer list correctly.
933
934    // If we have a dependent base initialization, we can't determine the
935    // association between initializers and bases; just dump the known
936    // initializers into the list, and don't try to deal with other bases.
937    for (unsigned i = 0; i < NumInitializers; i++) {
938      CXXBaseOrMemberInitializer *Member = Initializers[i];
939      if (Member->isBaseInitializer())
940        AllToInit.push_back(Member);
941    }
942  } else {
943    // Push virtual bases before others.
944    for (CXXRecordDecl::base_class_iterator VBase =
945         ClassDecl->vbases_begin(),
946         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
947      if (VBase->getType()->isDependentType())
948        continue;
949      if (CXXBaseOrMemberInitializer *Value =
950          AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
951        CXXRecordDecl *BaseDecl =
952          cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
953        assert(BaseDecl && "setBaseOrMemberInitializers - BaseDecl null");
954        if (CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context))
955          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
956        AllToInit.push_back(Value);
957      }
958      else {
959        CXXRecordDecl *VBaseDecl =
960        cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
961        assert(VBaseDecl && "setBaseOrMemberInitializers - VBaseDecl null");
962        CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context);
963        if (!Ctor)
964          Bases.push_back(VBase);
965        else
966          MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
967
968        CXXBaseOrMemberInitializer *Member =
969        new (Context) CXXBaseOrMemberInitializer(VBase->getType(), 0, 0,
970                                    Ctor,
971                                    SourceLocation(),
972                                    SourceLocation());
973        AllToInit.push_back(Member);
974      }
975    }
976
977    for (CXXRecordDecl::base_class_iterator Base =
978         ClassDecl->bases_begin(),
979         E = ClassDecl->bases_end(); Base != E; ++Base) {
980      // Virtuals are in the virtual base list and already constructed.
981      if (Base->isVirtual())
982        continue;
983      // Skip dependent types.
984      if (Base->getType()->isDependentType())
985        continue;
986      if (CXXBaseOrMemberInitializer *Value =
987          AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
988        CXXRecordDecl *BaseDecl =
989          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
990        assert(BaseDecl && "setBaseOrMemberInitializers - BaseDecl null");
991        if (CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context))
992          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
993        AllToInit.push_back(Value);
994      }
995      else {
996        CXXRecordDecl *BaseDecl =
997          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
998        assert(BaseDecl && "setBaseOrMemberInitializers - BaseDecl null");
999         CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context);
1000        if (!Ctor)
1001          Bases.push_back(Base);
1002        else
1003          MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1004
1005        CXXBaseOrMemberInitializer *Member =
1006        new (Context) CXXBaseOrMemberInitializer(Base->getType(), 0, 0,
1007                                      BaseDecl->getDefaultConstructor(Context),
1008                                      SourceLocation(),
1009                                      SourceLocation());
1010        AllToInit.push_back(Member);
1011      }
1012    }
1013  }
1014
1015  // non-static data members.
1016  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1017       E = ClassDecl->field_end(); Field != E; ++Field) {
1018    if ((*Field)->isAnonymousStructOrUnion()) {
1019      if (const RecordType *FieldClassType =
1020          Field->getType()->getAs<RecordType>()) {
1021        CXXRecordDecl *FieldClassDecl
1022        = cast<CXXRecordDecl>(FieldClassType->getDecl());
1023        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1024            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1025          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1026            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1027            // set to the anonymous union data member used in the initializer
1028            // list.
1029            Value->setMember(*Field);
1030            Value->setAnonUnionMember(*FA);
1031            AllToInit.push_back(Value);
1032            break;
1033          }
1034        }
1035      }
1036      continue;
1037    }
1038    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1039      QualType FT = (*Field)->getType();
1040      if (const RecordType* RT = FT->getAs<RecordType>()) {
1041        CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RT->getDecl());
1042        assert(FieldRecDecl && "setBaseOrMemberInitializers - BaseDecl null");
1043        if (CXXConstructorDecl *Ctor =
1044              FieldRecDecl->getDefaultConstructor(Context))
1045          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1046      }
1047      AllToInit.push_back(Value);
1048      continue;
1049    }
1050
1051    QualType FT = Context.getBaseElementType((*Field)->getType());
1052    if (const RecordType* RT = FT->getAs<RecordType>()) {
1053      CXXConstructorDecl *Ctor =
1054        cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context);
1055      if (!Ctor && !FT->isDependentType())
1056        Fields.push_back(*Field);
1057      CXXBaseOrMemberInitializer *Member =
1058      new (Context) CXXBaseOrMemberInitializer((*Field), 0, 0,
1059                                         Ctor,
1060                                         SourceLocation(),
1061                                         SourceLocation());
1062      AllToInit.push_back(Member);
1063      if (Ctor)
1064        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1065      if (FT.isConstQualified() && (!Ctor || Ctor->isTrivial())) {
1066        Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1067          << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getDeclName();
1068        Diag((*Field)->getLocation(), diag::note_declared_at);
1069      }
1070    }
1071    else if (FT->isReferenceType()) {
1072      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1073        << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getDeclName();
1074      Diag((*Field)->getLocation(), diag::note_declared_at);
1075    }
1076    else if (FT.isConstQualified()) {
1077      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1078        << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getDeclName();
1079      Diag((*Field)->getLocation(), diag::note_declared_at);
1080    }
1081  }
1082
1083  NumInitializers = AllToInit.size();
1084  if (NumInitializers > 0) {
1085    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1086    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1087      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1088
1089    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1090    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1091      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1092  }
1093}
1094
1095void
1096Sema::BuildBaseOrMemberInitializers(ASTContext &C,
1097                                 CXXConstructorDecl *Constructor,
1098                                 CXXBaseOrMemberInitializer **Initializers,
1099                                 unsigned NumInitializers
1100                                 ) {
1101  llvm::SmallVector<CXXBaseSpecifier *, 4>Bases;
1102  llvm::SmallVector<FieldDecl *, 4>Members;
1103
1104  setBaseOrMemberInitializers(Constructor,
1105                              Initializers, NumInitializers, Bases, Members);
1106  for (unsigned int i = 0; i < Bases.size(); i++)
1107    Diag(Bases[i]->getSourceRange().getBegin(),
1108         diag::err_missing_default_constructor) << 0 << Bases[i]->getType();
1109  for (unsigned int i = 0; i < Members.size(); i++)
1110    Diag(Members[i]->getLocation(), diag::err_missing_default_constructor)
1111          << 1 << Members[i]->getType();
1112}
1113
1114static void *GetKeyForTopLevelField(FieldDecl *Field) {
1115  // For anonymous unions, use the class declaration as the key.
1116  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1117    if (RT->getDecl()->isAnonymousStructOrUnion())
1118      return static_cast<void *>(RT->getDecl());
1119  }
1120  return static_cast<void *>(Field);
1121}
1122
1123static void *GetKeyForBase(QualType BaseType) {
1124  if (const RecordType *RT = BaseType->getAs<RecordType>())
1125    return (void *)RT;
1126
1127  assert(0 && "Unexpected base type!");
1128  return 0;
1129}
1130
1131static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1132                             bool MemberMaybeAnon = false) {
1133  // For fields injected into the class via declaration of an anonymous union,
1134  // use its anonymous union class declaration as the unique key.
1135  if (Member->isMemberInitializer()) {
1136    FieldDecl *Field = Member->getMember();
1137
1138    // After BuildBaseOrMemberInitializers call, Field is the anonymous union
1139    // data member of the class. Data member used in the initializer list is
1140    // in AnonUnionMember field.
1141    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1142      Field = Member->getAnonUnionMember();
1143    if (Field->getDeclContext()->isRecord()) {
1144      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1145      if (RD->isAnonymousStructOrUnion())
1146        return static_cast<void *>(RD);
1147    }
1148    return static_cast<void *>(Field);
1149  }
1150
1151  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1152}
1153
1154void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1155                                SourceLocation ColonLoc,
1156                                MemInitTy **MemInits, unsigned NumMemInits) {
1157  if (!ConstructorDecl)
1158    return;
1159
1160  AdjustDeclIfTemplate(ConstructorDecl);
1161
1162  CXXConstructorDecl *Constructor
1163    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1164
1165  if (!Constructor) {
1166    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1167    return;
1168  }
1169
1170  if (!Constructor->isDependentContext()) {
1171    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1172    bool err = false;
1173    for (unsigned i = 0; i < NumMemInits; i++) {
1174      CXXBaseOrMemberInitializer *Member =
1175        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1176      void *KeyToMember = GetKeyForMember(Member);
1177      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1178      if (!PrevMember) {
1179        PrevMember = Member;
1180        continue;
1181      }
1182      if (FieldDecl *Field = Member->getMember())
1183        Diag(Member->getSourceLocation(),
1184             diag::error_multiple_mem_initialization)
1185        << Field->getNameAsString();
1186      else {
1187        Type *BaseClass = Member->getBaseClass();
1188        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1189        Diag(Member->getSourceLocation(),
1190             diag::error_multiple_base_initialization)
1191          << BaseClass->getDesugaredType(true);
1192      }
1193      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1194        << 0;
1195      err = true;
1196    }
1197
1198    if (err)
1199      return;
1200  }
1201
1202  BuildBaseOrMemberInitializers(Context, Constructor,
1203                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1204                      NumMemInits);
1205
1206  if (Constructor->isDependentContext())
1207    return;
1208
1209  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1210      Diagnostic::Ignored &&
1211      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1212      Diagnostic::Ignored)
1213    return;
1214
1215  // Also issue warning if order of ctor-initializer list does not match order
1216  // of 1) base class declarations and 2) order of non-static data members.
1217  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1218
1219  CXXRecordDecl *ClassDecl
1220    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1221  // Push virtual bases before others.
1222  for (CXXRecordDecl::base_class_iterator VBase =
1223       ClassDecl->vbases_begin(),
1224       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1225    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1226
1227  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1228       E = ClassDecl->bases_end(); Base != E; ++Base) {
1229    // Virtuals are alread in the virtual base list and are constructed
1230    // first.
1231    if (Base->isVirtual())
1232      continue;
1233    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1234  }
1235
1236  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1237       E = ClassDecl->field_end(); Field != E; ++Field)
1238    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1239
1240  int Last = AllBaseOrMembers.size();
1241  int curIndex = 0;
1242  CXXBaseOrMemberInitializer *PrevMember = 0;
1243  for (unsigned i = 0; i < NumMemInits; i++) {
1244    CXXBaseOrMemberInitializer *Member =
1245      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1246    void *MemberInCtorList = GetKeyForMember(Member, true);
1247
1248    for (; curIndex < Last; curIndex++)
1249      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1250        break;
1251    if (curIndex == Last) {
1252      assert(PrevMember && "Member not in member list?!");
1253      // Initializer as specified in ctor-initializer list is out of order.
1254      // Issue a warning diagnostic.
1255      if (PrevMember->isBaseInitializer()) {
1256        // Diagnostics is for an initialized base class.
1257        Type *BaseClass = PrevMember->getBaseClass();
1258        Diag(PrevMember->getSourceLocation(),
1259             diag::warn_base_initialized)
1260              << BaseClass->getDesugaredType(true);
1261      } else {
1262        FieldDecl *Field = PrevMember->getMember();
1263        Diag(PrevMember->getSourceLocation(),
1264             diag::warn_field_initialized)
1265          << Field->getNameAsString();
1266      }
1267      // Also the note!
1268      if (FieldDecl *Field = Member->getMember())
1269        Diag(Member->getSourceLocation(),
1270             diag::note_fieldorbase_initialized_here) << 0
1271          << Field->getNameAsString();
1272      else {
1273        Type *BaseClass = Member->getBaseClass();
1274        Diag(Member->getSourceLocation(),
1275             diag::note_fieldorbase_initialized_here) << 1
1276          << BaseClass->getDesugaredType(true);
1277      }
1278      for (curIndex = 0; curIndex < Last; curIndex++)
1279        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1280          break;
1281    }
1282    PrevMember = Member;
1283  }
1284}
1285
1286void
1287Sema::computeBaseOrMembersToDestroy(CXXDestructorDecl *Destructor) {
1288  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Destructor->getDeclContext());
1289  llvm::SmallVector<uintptr_t, 32> AllToDestruct;
1290
1291  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1292       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1293    if (VBase->getType()->isDependentType())
1294      continue;
1295    // Skip over virtual bases which have trivial destructors.
1296    CXXRecordDecl *BaseClassDecl
1297      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1298    if (BaseClassDecl->hasTrivialDestructor())
1299      continue;
1300    if (const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context))
1301      MarkDeclarationReferenced(Destructor->getLocation(),
1302                                const_cast<CXXDestructorDecl*>(Dtor));
1303
1304    uintptr_t Member =
1305    reinterpret_cast<uintptr_t>(VBase->getType().getTypePtr())
1306      | CXXDestructorDecl::VBASE;
1307    AllToDestruct.push_back(Member);
1308  }
1309  for (CXXRecordDecl::base_class_iterator Base =
1310       ClassDecl->bases_begin(),
1311       E = ClassDecl->bases_end(); Base != E; ++Base) {
1312    if (Base->isVirtual())
1313      continue;
1314    if (Base->getType()->isDependentType())
1315      continue;
1316    // Skip over virtual bases which have trivial destructors.
1317    CXXRecordDecl *BaseClassDecl
1318    = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1319    if (BaseClassDecl->hasTrivialDestructor())
1320      continue;
1321    if (const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context))
1322      MarkDeclarationReferenced(Destructor->getLocation(),
1323                                const_cast<CXXDestructorDecl*>(Dtor));
1324    uintptr_t Member =
1325    reinterpret_cast<uintptr_t>(Base->getType().getTypePtr())
1326      | CXXDestructorDecl::DRCTNONVBASE;
1327    AllToDestruct.push_back(Member);
1328  }
1329
1330  // non-static data members.
1331  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1332       E = ClassDecl->field_end(); Field != E; ++Field) {
1333    QualType FieldType = Context.getBaseElementType((*Field)->getType());
1334
1335    if (const RecordType* RT = FieldType->getAs<RecordType>()) {
1336      // Skip over virtual bases which have trivial destructors.
1337      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1338      if (FieldClassDecl->hasTrivialDestructor())
1339        continue;
1340      if (const CXXDestructorDecl *Dtor =
1341            FieldClassDecl->getDestructor(Context))
1342        MarkDeclarationReferenced(Destructor->getLocation(),
1343                                  const_cast<CXXDestructorDecl*>(Dtor));
1344      uintptr_t Member = reinterpret_cast<uintptr_t>(*Field);
1345      AllToDestruct.push_back(Member);
1346    }
1347  }
1348
1349  unsigned NumDestructions = AllToDestruct.size();
1350  if (NumDestructions > 0) {
1351    Destructor->setNumBaseOrMemberDestructions(NumDestructions);
1352    uintptr_t *BaseOrMemberDestructions =
1353      new (Context) uintptr_t [NumDestructions];
1354    // Insert in reverse order.
1355    for (int Idx = NumDestructions-1, i=0 ; Idx >= 0; --Idx)
1356      BaseOrMemberDestructions[i++] = AllToDestruct[Idx];
1357    Destructor->setBaseOrMemberDestructions(BaseOrMemberDestructions);
1358  }
1359}
1360
1361void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1362  if (!CDtorDecl)
1363    return;
1364
1365  AdjustDeclIfTemplate(CDtorDecl);
1366
1367  if (CXXConstructorDecl *Constructor
1368      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1369    BuildBaseOrMemberInitializers(Context,
1370                                     Constructor,
1371                                     (CXXBaseOrMemberInitializer **)0, 0);
1372}
1373
1374namespace {
1375  /// PureVirtualMethodCollector - traverses a class and its superclasses
1376  /// and determines if it has any pure virtual methods.
1377  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1378    ASTContext &Context;
1379
1380  public:
1381    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1382
1383  private:
1384    MethodList Methods;
1385
1386    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1387
1388  public:
1389    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1390      : Context(Ctx) {
1391
1392      MethodList List;
1393      Collect(RD, List);
1394
1395      // Copy the temporary list to methods, and make sure to ignore any
1396      // null entries.
1397      for (size_t i = 0, e = List.size(); i != e; ++i) {
1398        if (List[i])
1399          Methods.push_back(List[i]);
1400      }
1401    }
1402
1403    bool empty() const { return Methods.empty(); }
1404
1405    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1406    MethodList::const_iterator methods_end() { return Methods.end(); }
1407  };
1408
1409  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1410                                           MethodList& Methods) {
1411    // First, collect the pure virtual methods for the base classes.
1412    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1413         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1414      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1415        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1416        if (BaseDecl && BaseDecl->isAbstract())
1417          Collect(BaseDecl, Methods);
1418      }
1419    }
1420
1421    // Next, zero out any pure virtual methods that this class overrides.
1422    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1423
1424    MethodSetTy OverriddenMethods;
1425    size_t MethodsSize = Methods.size();
1426
1427    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1428         i != e; ++i) {
1429      // Traverse the record, looking for methods.
1430      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1431        // If the method is pure virtual, add it to the methods vector.
1432        if (MD->isPure()) {
1433          Methods.push_back(MD);
1434          continue;
1435        }
1436
1437        // Otherwise, record all the overridden methods in our set.
1438        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1439             E = MD->end_overridden_methods(); I != E; ++I) {
1440          // Keep track of the overridden methods.
1441          OverriddenMethods.insert(*I);
1442        }
1443      }
1444    }
1445
1446    // Now go through the methods and zero out all the ones we know are
1447    // overridden.
1448    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1449      if (OverriddenMethods.count(Methods[i]))
1450        Methods[i] = 0;
1451    }
1452
1453  }
1454}
1455
1456
1457bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1458                                  unsigned DiagID, AbstractDiagSelID SelID,
1459                                  const CXXRecordDecl *CurrentRD) {
1460  if (SelID == -1)
1461    return RequireNonAbstractType(Loc, T,
1462                                  PDiag(DiagID), CurrentRD);
1463  else
1464    return RequireNonAbstractType(Loc, T,
1465                                  PDiag(DiagID) << SelID, CurrentRD);
1466}
1467
1468bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1469                                  const PartialDiagnostic &PD,
1470                                  const CXXRecordDecl *CurrentRD) {
1471  if (!getLangOptions().CPlusPlus)
1472    return false;
1473
1474  if (const ArrayType *AT = Context.getAsArrayType(T))
1475    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1476                                  CurrentRD);
1477
1478  if (const PointerType *PT = T->getAs<PointerType>()) {
1479    // Find the innermost pointer type.
1480    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1481      PT = T;
1482
1483    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1484      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1485  }
1486
1487  const RecordType *RT = T->getAs<RecordType>();
1488  if (!RT)
1489    return false;
1490
1491  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1492  if (!RD)
1493    return false;
1494
1495  if (CurrentRD && CurrentRD != RD)
1496    return false;
1497
1498  if (!RD->isAbstract())
1499    return false;
1500
1501  Diag(Loc, PD) << RD->getDeclName();
1502
1503  // Check if we've already emitted the list of pure virtual functions for this
1504  // class.
1505  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1506    return true;
1507
1508  PureVirtualMethodCollector Collector(Context, RD);
1509
1510  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1511       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1512    const CXXMethodDecl *MD = *I;
1513
1514    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1515      MD->getDeclName();
1516  }
1517
1518  if (!PureVirtualClassDiagSet)
1519    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1520  PureVirtualClassDiagSet->insert(RD);
1521
1522  return true;
1523}
1524
1525namespace {
1526  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1527    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1528    Sema &SemaRef;
1529    CXXRecordDecl *AbstractClass;
1530
1531    bool VisitDeclContext(const DeclContext *DC) {
1532      bool Invalid = false;
1533
1534      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1535           E = DC->decls_end(); I != E; ++I)
1536        Invalid |= Visit(*I);
1537
1538      return Invalid;
1539    }
1540
1541  public:
1542    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1543      : SemaRef(SemaRef), AbstractClass(ac) {
1544        Visit(SemaRef.Context.getTranslationUnitDecl());
1545    }
1546
1547    bool VisitFunctionDecl(const FunctionDecl *FD) {
1548      if (FD->isThisDeclarationADefinition()) {
1549        // No need to do the check if we're in a definition, because it requires
1550        // that the return/param types are complete.
1551        // because that requires
1552        return VisitDeclContext(FD);
1553      }
1554
1555      // Check the return type.
1556      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1557      bool Invalid =
1558        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1559                                       diag::err_abstract_type_in_decl,
1560                                       Sema::AbstractReturnType,
1561                                       AbstractClass);
1562
1563      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1564           E = FD->param_end(); I != E; ++I) {
1565        const ParmVarDecl *VD = *I;
1566        Invalid |=
1567          SemaRef.RequireNonAbstractType(VD->getLocation(),
1568                                         VD->getOriginalType(),
1569                                         diag::err_abstract_type_in_decl,
1570                                         Sema::AbstractParamType,
1571                                         AbstractClass);
1572      }
1573
1574      return Invalid;
1575    }
1576
1577    bool VisitDecl(const Decl* D) {
1578      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1579        return VisitDeclContext(DC);
1580
1581      return false;
1582    }
1583  };
1584}
1585
1586void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1587                                             DeclPtrTy TagDecl,
1588                                             SourceLocation LBrac,
1589                                             SourceLocation RBrac) {
1590  if (!TagDecl)
1591    return;
1592
1593  AdjustDeclIfTemplate(TagDecl);
1594  ActOnFields(S, RLoc, TagDecl,
1595              (DeclPtrTy*)FieldCollector->getCurFields(),
1596              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1597
1598  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1599  if (!RD->isAbstract()) {
1600    // Collect all the pure virtual methods and see if this is an abstract
1601    // class after all.
1602    PureVirtualMethodCollector Collector(Context, RD);
1603    if (!Collector.empty())
1604      RD->setAbstract(true);
1605  }
1606
1607  if (RD->isAbstract())
1608    AbstractClassUsageDiagnoser(*this, RD);
1609
1610  if (!RD->isDependentType())
1611    AddImplicitlyDeclaredMembersToClass(RD);
1612}
1613
1614/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1615/// special functions, such as the default constructor, copy
1616/// constructor, or destructor, to the given C++ class (C++
1617/// [special]p1).  This routine can only be executed just before the
1618/// definition of the class is complete.
1619void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1620  CanQualType ClassType
1621    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1622
1623  // FIXME: Implicit declarations have exception specifications, which are
1624  // the union of the specifications of the implicitly called functions.
1625
1626  if (!ClassDecl->hasUserDeclaredConstructor()) {
1627    // C++ [class.ctor]p5:
1628    //   A default constructor for a class X is a constructor of class X
1629    //   that can be called without an argument. If there is no
1630    //   user-declared constructor for class X, a default constructor is
1631    //   implicitly declared. An implicitly-declared default constructor
1632    //   is an inline public member of its class.
1633    DeclarationName Name
1634      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1635    CXXConstructorDecl *DefaultCon =
1636      CXXConstructorDecl::Create(Context, ClassDecl,
1637                                 ClassDecl->getLocation(), Name,
1638                                 Context.getFunctionType(Context.VoidTy,
1639                                                         0, 0, false, 0),
1640                                 /*DInfo=*/0,
1641                                 /*isExplicit=*/false,
1642                                 /*isInline=*/true,
1643                                 /*isImplicitlyDeclared=*/true);
1644    DefaultCon->setAccess(AS_public);
1645    DefaultCon->setImplicit();
1646    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1647    ClassDecl->addDecl(DefaultCon);
1648  }
1649
1650  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1651    // C++ [class.copy]p4:
1652    //   If the class definition does not explicitly declare a copy
1653    //   constructor, one is declared implicitly.
1654
1655    // C++ [class.copy]p5:
1656    //   The implicitly-declared copy constructor for a class X will
1657    //   have the form
1658    //
1659    //       X::X(const X&)
1660    //
1661    //   if
1662    bool HasConstCopyConstructor = true;
1663
1664    //     -- each direct or virtual base class B of X has a copy
1665    //        constructor whose first parameter is of type const B& or
1666    //        const volatile B&, and
1667    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1668         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1669      const CXXRecordDecl *BaseClassDecl
1670        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1671      HasConstCopyConstructor
1672        = BaseClassDecl->hasConstCopyConstructor(Context);
1673    }
1674
1675    //     -- for all the nonstatic data members of X that are of a
1676    //        class type M (or array thereof), each such class type
1677    //        has a copy constructor whose first parameter is of type
1678    //        const M& or const volatile M&.
1679    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1680         HasConstCopyConstructor && Field != ClassDecl->field_end();
1681         ++Field) {
1682      QualType FieldType = (*Field)->getType();
1683      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1684        FieldType = Array->getElementType();
1685      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1686        const CXXRecordDecl *FieldClassDecl
1687          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1688        HasConstCopyConstructor
1689          = FieldClassDecl->hasConstCopyConstructor(Context);
1690      }
1691    }
1692
1693    //   Otherwise, the implicitly declared copy constructor will have
1694    //   the form
1695    //
1696    //       X::X(X&)
1697    QualType ArgType = ClassType;
1698    if (HasConstCopyConstructor)
1699      ArgType = ArgType.withConst();
1700    ArgType = Context.getLValueReferenceType(ArgType);
1701
1702    //   An implicitly-declared copy constructor is an inline public
1703    //   member of its class.
1704    DeclarationName Name
1705      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1706    CXXConstructorDecl *CopyConstructor
1707      = CXXConstructorDecl::Create(Context, ClassDecl,
1708                                   ClassDecl->getLocation(), Name,
1709                                   Context.getFunctionType(Context.VoidTy,
1710                                                           &ArgType, 1,
1711                                                           false, 0),
1712                                   /*DInfo=*/0,
1713                                   /*isExplicit=*/false,
1714                                   /*isInline=*/true,
1715                                   /*isImplicitlyDeclared=*/true);
1716    CopyConstructor->setAccess(AS_public);
1717    CopyConstructor->setImplicit();
1718    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1719
1720    // Add the parameter to the constructor.
1721    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1722                                                 ClassDecl->getLocation(),
1723                                                 /*IdentifierInfo=*/0,
1724                                                 ArgType, /*DInfo=*/0,
1725                                                 VarDecl::None, 0);
1726    CopyConstructor->setParams(Context, &FromParam, 1);
1727    ClassDecl->addDecl(CopyConstructor);
1728  }
1729
1730  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1731    // Note: The following rules are largely analoguous to the copy
1732    // constructor rules. Note that virtual bases are not taken into account
1733    // for determining the argument type of the operator. Note also that
1734    // operators taking an object instead of a reference are allowed.
1735    //
1736    // C++ [class.copy]p10:
1737    //   If the class definition does not explicitly declare a copy
1738    //   assignment operator, one is declared implicitly.
1739    //   The implicitly-defined copy assignment operator for a class X
1740    //   will have the form
1741    //
1742    //       X& X::operator=(const X&)
1743    //
1744    //   if
1745    bool HasConstCopyAssignment = true;
1746
1747    //       -- each direct base class B of X has a copy assignment operator
1748    //          whose parameter is of type const B&, const volatile B& or B,
1749    //          and
1750    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1751         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1752      const CXXRecordDecl *BaseClassDecl
1753        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1754      const CXXMethodDecl *MD = 0;
1755      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
1756                                                                     MD);
1757    }
1758
1759    //       -- for all the nonstatic data members of X that are of a class
1760    //          type M (or array thereof), each such class type has a copy
1761    //          assignment operator whose parameter is of type const M&,
1762    //          const volatile M& or M.
1763    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1764         HasConstCopyAssignment && Field != ClassDecl->field_end();
1765         ++Field) {
1766      QualType FieldType = (*Field)->getType();
1767      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1768        FieldType = Array->getElementType();
1769      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1770        const CXXRecordDecl *FieldClassDecl
1771          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1772        const CXXMethodDecl *MD = 0;
1773        HasConstCopyAssignment
1774          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
1775      }
1776    }
1777
1778    //   Otherwise, the implicitly declared copy assignment operator will
1779    //   have the form
1780    //
1781    //       X& X::operator=(X&)
1782    QualType ArgType = ClassType;
1783    QualType RetType = Context.getLValueReferenceType(ArgType);
1784    if (HasConstCopyAssignment)
1785      ArgType = ArgType.withConst();
1786    ArgType = Context.getLValueReferenceType(ArgType);
1787
1788    //   An implicitly-declared copy assignment operator is an inline public
1789    //   member of its class.
1790    DeclarationName Name =
1791      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1792    CXXMethodDecl *CopyAssignment =
1793      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1794                            Context.getFunctionType(RetType, &ArgType, 1,
1795                                                    false, 0),
1796                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
1797    CopyAssignment->setAccess(AS_public);
1798    CopyAssignment->setImplicit();
1799    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
1800    CopyAssignment->setCopyAssignment(true);
1801
1802    // Add the parameter to the operator.
1803    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1804                                                 ClassDecl->getLocation(),
1805                                                 /*IdentifierInfo=*/0,
1806                                                 ArgType, /*DInfo=*/0,
1807                                                 VarDecl::None, 0);
1808    CopyAssignment->setParams(Context, &FromParam, 1);
1809
1810    // Don't call addedAssignmentOperator. There is no way to distinguish an
1811    // implicit from an explicit assignment operator.
1812    ClassDecl->addDecl(CopyAssignment);
1813  }
1814
1815  if (!ClassDecl->hasUserDeclaredDestructor()) {
1816    // C++ [class.dtor]p2:
1817    //   If a class has no user-declared destructor, a destructor is
1818    //   declared implicitly. An implicitly-declared destructor is an
1819    //   inline public member of its class.
1820    DeclarationName Name
1821      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1822    CXXDestructorDecl *Destructor
1823      = CXXDestructorDecl::Create(Context, ClassDecl,
1824                                  ClassDecl->getLocation(), Name,
1825                                  Context.getFunctionType(Context.VoidTy,
1826                                                          0, 0, false, 0),
1827                                  /*isInline=*/true,
1828                                  /*isImplicitlyDeclared=*/true);
1829    Destructor->setAccess(AS_public);
1830    Destructor->setImplicit();
1831    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
1832    ClassDecl->addDecl(Destructor);
1833  }
1834}
1835
1836void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1837  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1838  if (!Template)
1839    return;
1840
1841  TemplateParameterList *Params = Template->getTemplateParameters();
1842  for (TemplateParameterList::iterator Param = Params->begin(),
1843                                    ParamEnd = Params->end();
1844       Param != ParamEnd; ++Param) {
1845    NamedDecl *Named = cast<NamedDecl>(*Param);
1846    if (Named->getDeclName()) {
1847      S->AddDecl(DeclPtrTy::make(Named));
1848      IdResolver.AddDecl(Named);
1849    }
1850  }
1851}
1852
1853/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1854/// parsing a top-level (non-nested) C++ class, and we are now
1855/// parsing those parts of the given Method declaration that could
1856/// not be parsed earlier (C++ [class.mem]p2), such as default
1857/// arguments. This action should enter the scope of the given
1858/// Method declaration as if we had just parsed the qualified method
1859/// name. However, it should not bring the parameters into scope;
1860/// that will be performed by ActOnDelayedCXXMethodParameter.
1861void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1862  if (!MethodD)
1863    return;
1864
1865  AdjustDeclIfTemplate(MethodD);
1866
1867  CXXScopeSpec SS;
1868  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1869  QualType ClassTy
1870    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1871  SS.setScopeRep(
1872    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1873  ActOnCXXEnterDeclaratorScope(S, SS);
1874}
1875
1876/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1877/// C++ method declaration. We're (re-)introducing the given
1878/// function parameter into scope for use in parsing later parts of
1879/// the method declaration. For example, we could see an
1880/// ActOnParamDefaultArgument event for this parameter.
1881void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1882  if (!ParamD)
1883    return;
1884
1885  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1886
1887  // If this parameter has an unparsed default argument, clear it out
1888  // to make way for the parsed default argument.
1889  if (Param->hasUnparsedDefaultArg())
1890    Param->setDefaultArg(0);
1891
1892  S->AddDecl(DeclPtrTy::make(Param));
1893  if (Param->getDeclName())
1894    IdResolver.AddDecl(Param);
1895}
1896
1897/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1898/// processing the delayed method declaration for Method. The method
1899/// declaration is now considered finished. There may be a separate
1900/// ActOnStartOfFunctionDef action later (not necessarily
1901/// immediately!) for this method, if it was also defined inside the
1902/// class body.
1903void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1904  if (!MethodD)
1905    return;
1906
1907  AdjustDeclIfTemplate(MethodD);
1908
1909  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1910  CXXScopeSpec SS;
1911  QualType ClassTy
1912    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1913  SS.setScopeRep(
1914    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1915  ActOnCXXExitDeclaratorScope(S, SS);
1916
1917  // Now that we have our default arguments, check the constructor
1918  // again. It could produce additional diagnostics or affect whether
1919  // the class has implicitly-declared destructors, among other
1920  // things.
1921  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1922    CheckConstructor(Constructor);
1923
1924  // Check the default arguments, which we may have added.
1925  if (!Method->isInvalidDecl())
1926    CheckCXXDefaultArguments(Method);
1927}
1928
1929/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1930/// the well-formedness of the constructor declarator @p D with type @p
1931/// R. If there are any errors in the declarator, this routine will
1932/// emit diagnostics and set the invalid bit to true.  In any case, the type
1933/// will be updated to reflect a well-formed type for the constructor and
1934/// returned.
1935QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1936                                          FunctionDecl::StorageClass &SC) {
1937  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1938
1939  // C++ [class.ctor]p3:
1940  //   A constructor shall not be virtual (10.3) or static (9.4). A
1941  //   constructor can be invoked for a const, volatile or const
1942  //   volatile object. A constructor shall not be declared const,
1943  //   volatile, or const volatile (9.3.2).
1944  if (isVirtual) {
1945    if (!D.isInvalidType())
1946      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1947        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1948        << SourceRange(D.getIdentifierLoc());
1949    D.setInvalidType();
1950  }
1951  if (SC == FunctionDecl::Static) {
1952    if (!D.isInvalidType())
1953      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1954        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1955        << SourceRange(D.getIdentifierLoc());
1956    D.setInvalidType();
1957    SC = FunctionDecl::None;
1958  }
1959
1960  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1961  if (FTI.TypeQuals != 0) {
1962    if (FTI.TypeQuals & QualType::Const)
1963      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1964        << "const" << SourceRange(D.getIdentifierLoc());
1965    if (FTI.TypeQuals & QualType::Volatile)
1966      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1967        << "volatile" << SourceRange(D.getIdentifierLoc());
1968    if (FTI.TypeQuals & QualType::Restrict)
1969      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1970        << "restrict" << SourceRange(D.getIdentifierLoc());
1971  }
1972
1973  // Rebuild the function type "R" without any type qualifiers (in
1974  // case any of the errors above fired) and with "void" as the
1975  // return type, since constructors don't have return types. We
1976  // *always* have to do this, because GetTypeForDeclarator will
1977  // put in a result type of "int" when none was specified.
1978  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1979  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1980                                 Proto->getNumArgs(),
1981                                 Proto->isVariadic(), 0);
1982}
1983
1984/// CheckConstructor - Checks a fully-formed constructor for
1985/// well-formedness, issuing any diagnostics required. Returns true if
1986/// the constructor declarator is invalid.
1987void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1988  CXXRecordDecl *ClassDecl
1989    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1990  if (!ClassDecl)
1991    return Constructor->setInvalidDecl();
1992
1993  // C++ [class.copy]p3:
1994  //   A declaration of a constructor for a class X is ill-formed if
1995  //   its first parameter is of type (optionally cv-qualified) X and
1996  //   either there are no other parameters or else all other
1997  //   parameters have default arguments.
1998  if (!Constructor->isInvalidDecl() &&
1999      ((Constructor->getNumParams() == 1) ||
2000       (Constructor->getNumParams() > 1 &&
2001        Constructor->getParamDecl(1)->hasDefaultArg()))) {
2002    QualType ParamType = Constructor->getParamDecl(0)->getType();
2003    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2004    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2005      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2006      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2007        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2008      Constructor->setInvalidDecl();
2009    }
2010  }
2011
2012  // Notify the class that we've added a constructor.
2013  ClassDecl->addedConstructor(Context, Constructor);
2014}
2015
2016static inline bool
2017FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2018  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2019          FTI.ArgInfo[0].Param &&
2020          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2021}
2022
2023/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2024/// the well-formednes of the destructor declarator @p D with type @p
2025/// R. If there are any errors in the declarator, this routine will
2026/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2027/// will be updated to reflect a well-formed type for the destructor and
2028/// returned.
2029QualType Sema::CheckDestructorDeclarator(Declarator &D,
2030                                         FunctionDecl::StorageClass& SC) {
2031  // C++ [class.dtor]p1:
2032  //   [...] A typedef-name that names a class is a class-name
2033  //   (7.1.3); however, a typedef-name that names a class shall not
2034  //   be used as the identifier in the declarator for a destructor
2035  //   declaration.
2036  QualType DeclaratorType = GetTypeFromParser(D.getDeclaratorIdType());
2037  if (isa<TypedefType>(DeclaratorType)) {
2038    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2039      << DeclaratorType;
2040    D.setInvalidType();
2041  }
2042
2043  // C++ [class.dtor]p2:
2044  //   A destructor is used to destroy objects of its class type. A
2045  //   destructor takes no parameters, and no return type can be
2046  //   specified for it (not even void). The address of a destructor
2047  //   shall not be taken. A destructor shall not be static. A
2048  //   destructor can be invoked for a const, volatile or const
2049  //   volatile object. A destructor shall not be declared const,
2050  //   volatile or const volatile (9.3.2).
2051  if (SC == FunctionDecl::Static) {
2052    if (!D.isInvalidType())
2053      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2054        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2055        << SourceRange(D.getIdentifierLoc());
2056    SC = FunctionDecl::None;
2057    D.setInvalidType();
2058  }
2059  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2060    // Destructors don't have return types, but the parser will
2061    // happily parse something like:
2062    //
2063    //   class X {
2064    //     float ~X();
2065    //   };
2066    //
2067    // The return type will be eliminated later.
2068    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2069      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2070      << SourceRange(D.getIdentifierLoc());
2071  }
2072
2073  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2074  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2075    if (FTI.TypeQuals & QualType::Const)
2076      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2077        << "const" << SourceRange(D.getIdentifierLoc());
2078    if (FTI.TypeQuals & QualType::Volatile)
2079      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2080        << "volatile" << SourceRange(D.getIdentifierLoc());
2081    if (FTI.TypeQuals & QualType::Restrict)
2082      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2083        << "restrict" << SourceRange(D.getIdentifierLoc());
2084    D.setInvalidType();
2085  }
2086
2087  // Make sure we don't have any parameters.
2088  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2089    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2090
2091    // Delete the parameters.
2092    FTI.freeArgs();
2093    D.setInvalidType();
2094  }
2095
2096  // Make sure the destructor isn't variadic.
2097  if (FTI.isVariadic) {
2098    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2099    D.setInvalidType();
2100  }
2101
2102  // Rebuild the function type "R" without any type qualifiers or
2103  // parameters (in case any of the errors above fired) and with
2104  // "void" as the return type, since destructors don't have return
2105  // types. We *always* have to do this, because GetTypeForDeclarator
2106  // will put in a result type of "int" when none was specified.
2107  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2108}
2109
2110/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2111/// well-formednes of the conversion function declarator @p D with
2112/// type @p R. If there are any errors in the declarator, this routine
2113/// will emit diagnostics and return true. Otherwise, it will return
2114/// false. Either way, the type @p R will be updated to reflect a
2115/// well-formed type for the conversion operator.
2116void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2117                                     FunctionDecl::StorageClass& SC) {
2118  // C++ [class.conv.fct]p1:
2119  //   Neither parameter types nor return type can be specified. The
2120  //   type of a conversion function (8.3.5) is "function taking no
2121  //   parameter returning conversion-type-id."
2122  if (SC == FunctionDecl::Static) {
2123    if (!D.isInvalidType())
2124      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2125        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2126        << SourceRange(D.getIdentifierLoc());
2127    D.setInvalidType();
2128    SC = FunctionDecl::None;
2129  }
2130  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2131    // Conversion functions don't have return types, but the parser will
2132    // happily parse something like:
2133    //
2134    //   class X {
2135    //     float operator bool();
2136    //   };
2137    //
2138    // The return type will be changed later anyway.
2139    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2140      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2141      << SourceRange(D.getIdentifierLoc());
2142  }
2143
2144  // Make sure we don't have any parameters.
2145  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
2146    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2147
2148    // Delete the parameters.
2149    D.getTypeObject(0).Fun.freeArgs();
2150    D.setInvalidType();
2151  }
2152
2153  // Make sure the conversion function isn't variadic.
2154  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
2155    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2156    D.setInvalidType();
2157  }
2158
2159  // C++ [class.conv.fct]p4:
2160  //   The conversion-type-id shall not represent a function type nor
2161  //   an array type.
2162  QualType ConvType = GetTypeFromParser(D.getDeclaratorIdType());
2163  if (ConvType->isArrayType()) {
2164    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2165    ConvType = Context.getPointerType(ConvType);
2166    D.setInvalidType();
2167  } else if (ConvType->isFunctionType()) {
2168    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2169    ConvType = Context.getPointerType(ConvType);
2170    D.setInvalidType();
2171  }
2172
2173  // Rebuild the function type "R" without any parameters (in case any
2174  // of the errors above fired) and with the conversion type as the
2175  // return type.
2176  R = Context.getFunctionType(ConvType, 0, 0, false,
2177                              R->getAsFunctionProtoType()->getTypeQuals());
2178
2179  // C++0x explicit conversion operators.
2180  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2181    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2182         diag::warn_explicit_conversion_functions)
2183      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2184}
2185
2186/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2187/// the declaration of the given C++ conversion function. This routine
2188/// is responsible for recording the conversion function in the C++
2189/// class, if possible.
2190Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2191  assert(Conversion && "Expected to receive a conversion function declaration");
2192
2193  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2194
2195  // Make sure we aren't redeclaring the conversion function.
2196  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2197
2198  // C++ [class.conv.fct]p1:
2199  //   [...] A conversion function is never used to convert a
2200  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2201  //   same object type (or a reference to it), to a (possibly
2202  //   cv-qualified) base class of that type (or a reference to it),
2203  //   or to (possibly cv-qualified) void.
2204  // FIXME: Suppress this warning if the conversion function ends up being a
2205  // virtual function that overrides a virtual function in a base class.
2206  QualType ClassType
2207    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2208  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2209    ConvType = ConvTypeRef->getPointeeType();
2210  if (ConvType->isRecordType()) {
2211    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2212    if (ConvType == ClassType)
2213      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2214        << ClassType;
2215    else if (IsDerivedFrom(ClassType, ConvType))
2216      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2217        <<  ClassType << ConvType;
2218  } else if (ConvType->isVoidType()) {
2219    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2220      << ClassType << ConvType;
2221  }
2222
2223  if (Conversion->getPreviousDeclaration()) {
2224    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
2225    if (FunctionTemplateDecl *ConversionTemplate
2226          = Conversion->getDescribedFunctionTemplate())
2227      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
2228    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
2229    for (OverloadedFunctionDecl::function_iterator
2230           Conv = Conversions->function_begin(),
2231           ConvEnd = Conversions->function_end();
2232         Conv != ConvEnd; ++Conv) {
2233      if (*Conv == ExpectedPrevDecl) {
2234        *Conv = Conversion;
2235        return DeclPtrTy::make(Conversion);
2236      }
2237    }
2238    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2239  } else if (FunctionTemplateDecl *ConversionTemplate
2240               = Conversion->getDescribedFunctionTemplate())
2241    ClassDecl->addConversionFunction(Context, ConversionTemplate);
2242  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
2243    ClassDecl->addConversionFunction(Context, Conversion);
2244
2245  return DeclPtrTy::make(Conversion);
2246}
2247
2248//===----------------------------------------------------------------------===//
2249// Namespace Handling
2250//===----------------------------------------------------------------------===//
2251
2252/// ActOnStartNamespaceDef - This is called at the start of a namespace
2253/// definition.
2254Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2255                                             SourceLocation IdentLoc,
2256                                             IdentifierInfo *II,
2257                                             SourceLocation LBrace) {
2258  NamespaceDecl *Namespc =
2259      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2260  Namespc->setLBracLoc(LBrace);
2261
2262  Scope *DeclRegionScope = NamespcScope->getParent();
2263
2264  if (II) {
2265    // C++ [namespace.def]p2:
2266    // The identifier in an original-namespace-definition shall not have been
2267    // previously defined in the declarative region in which the
2268    // original-namespace-definition appears. The identifier in an
2269    // original-namespace-definition is the name of the namespace. Subsequently
2270    // in that declarative region, it is treated as an original-namespace-name.
2271
2272    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
2273                                     true);
2274
2275    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2276      // This is an extended namespace definition.
2277      // Attach this namespace decl to the chain of extended namespace
2278      // definitions.
2279      OrigNS->setNextNamespace(Namespc);
2280      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2281
2282      // Remove the previous declaration from the scope.
2283      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2284        IdResolver.RemoveDecl(OrigNS);
2285        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2286      }
2287    } else if (PrevDecl) {
2288      // This is an invalid name redefinition.
2289      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2290       << Namespc->getDeclName();
2291      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2292      Namespc->setInvalidDecl();
2293      // Continue on to push Namespc as current DeclContext and return it.
2294    }
2295
2296    PushOnScopeChains(Namespc, DeclRegionScope);
2297  } else {
2298    // FIXME: Handle anonymous namespaces
2299  }
2300
2301  // Although we could have an invalid decl (i.e. the namespace name is a
2302  // redefinition), push it as current DeclContext and try to continue parsing.
2303  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2304  // for the namespace has the declarations that showed up in that particular
2305  // namespace definition.
2306  PushDeclContext(NamespcScope, Namespc);
2307  return DeclPtrTy::make(Namespc);
2308}
2309
2310/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2311/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2312void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2313  Decl *Dcl = D.getAs<Decl>();
2314  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2315  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2316  Namespc->setRBracLoc(RBrace);
2317  PopDeclContext();
2318}
2319
2320Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2321                                          SourceLocation UsingLoc,
2322                                          SourceLocation NamespcLoc,
2323                                          const CXXScopeSpec &SS,
2324                                          SourceLocation IdentLoc,
2325                                          IdentifierInfo *NamespcName,
2326                                          AttributeList *AttrList) {
2327  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2328  assert(NamespcName && "Invalid NamespcName.");
2329  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2330  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2331
2332  UsingDirectiveDecl *UDir = 0;
2333
2334  // Lookup namespace name.
2335  LookupResult R = LookupParsedName(S, &SS, NamespcName,
2336                                    LookupNamespaceName, false);
2337  if (R.isAmbiguous()) {
2338    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
2339    return DeclPtrTy();
2340  }
2341  if (NamedDecl *NS = R) {
2342    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
2343    // C++ [namespace.udir]p1:
2344    //   A using-directive specifies that the names in the nominated
2345    //   namespace can be used in the scope in which the
2346    //   using-directive appears after the using-directive. During
2347    //   unqualified name lookup (3.4.1), the names appear as if they
2348    //   were declared in the nearest enclosing namespace which
2349    //   contains both the using-directive and the nominated
2350    //   namespace. [Note: in this context, "contains" means "contains
2351    //   directly or indirectly". ]
2352
2353    // Find enclosing context containing both using-directive and
2354    // nominated namespace.
2355    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2356    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2357      CommonAncestor = CommonAncestor->getParent();
2358
2359    UDir = UsingDirectiveDecl::Create(Context,
2360                                      CurContext, UsingLoc,
2361                                      NamespcLoc,
2362                                      SS.getRange(),
2363                                      (NestedNameSpecifier *)SS.getScopeRep(),
2364                                      IdentLoc,
2365                                      cast<NamespaceDecl>(NS),
2366                                      CommonAncestor);
2367    PushUsingDirective(S, UDir);
2368  } else {
2369    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2370  }
2371
2372  // FIXME: We ignore attributes for now.
2373  delete AttrList;
2374  return DeclPtrTy::make(UDir);
2375}
2376
2377void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2378  // If scope has associated entity, then using directive is at namespace
2379  // or translation unit scope. We add UsingDirectiveDecls, into
2380  // it's lookup structure.
2381  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2382    Ctx->addDecl(UDir);
2383  else
2384    // Otherwise it is block-sope. using-directives will affect lookup
2385    // only to the end of scope.
2386    S->PushUsingDirective(DeclPtrTy::make(UDir));
2387}
2388
2389
2390Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2391                                            AccessSpecifier AS,
2392                                            SourceLocation UsingLoc,
2393                                            const CXXScopeSpec &SS,
2394                                            SourceLocation IdentLoc,
2395                                            IdentifierInfo *TargetName,
2396                                            OverloadedOperatorKind Op,
2397                                            AttributeList *AttrList,
2398                                            bool IsTypeName) {
2399  assert((TargetName || Op) && "Invalid TargetName.");
2400  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2401
2402  DeclarationName Name;
2403  if (TargetName)
2404    Name = TargetName;
2405  else
2406    Name = Context.DeclarationNames.getCXXOperatorName(Op);
2407
2408  NamedDecl *UD = BuildUsingDeclaration(UsingLoc, SS, IdentLoc,
2409                                        Name, AttrList, IsTypeName);
2410  if (UD) {
2411    PushOnScopeChains(UD, S);
2412    UD->setAccess(AS);
2413  }
2414
2415  return DeclPtrTy::make(UD);
2416}
2417
2418NamedDecl *Sema::BuildUsingDeclaration(SourceLocation UsingLoc,
2419                                       const CXXScopeSpec &SS,
2420                                       SourceLocation IdentLoc,
2421                                       DeclarationName Name,
2422                                       AttributeList *AttrList,
2423                                       bool IsTypeName) {
2424  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2425  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2426
2427  // FIXME: We ignore attributes for now.
2428  delete AttrList;
2429
2430  if (SS.isEmpty()) {
2431    Diag(IdentLoc, diag::err_using_requires_qualname);
2432    return 0;
2433  }
2434
2435  NestedNameSpecifier *NNS =
2436    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2437
2438  if (isUnknownSpecialization(SS)) {
2439    return UnresolvedUsingDecl::Create(Context, CurContext, UsingLoc,
2440                                       SS.getRange(), NNS,
2441                                       IdentLoc, Name, IsTypeName);
2442  }
2443
2444  DeclContext *LookupContext = 0;
2445
2446  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
2447    // C++0x N2914 [namespace.udecl]p3:
2448    // A using-declaration used as a member-declaration shall refer to a member
2449    // of a base class of the class being defined, shall refer to a member of an
2450    // anonymous union that is a member of a base class of the class being
2451    // defined, or shall refer to an enumerator for an enumeration type that is
2452    // a member of a base class of the class being defined.
2453    const Type *Ty = NNS->getAsType();
2454    if (!Ty || !IsDerivedFrom(Context.getTagDeclType(RD), QualType(Ty, 0))) {
2455      Diag(SS.getRange().getBegin(),
2456           diag::err_using_decl_nested_name_specifier_is_not_a_base_class)
2457        << NNS << RD->getDeclName();
2458      return 0;
2459    }
2460
2461    QualType BaseTy = Context.getCanonicalType(QualType(Ty, 0));
2462    LookupContext = BaseTy->getAs<RecordType>()->getDecl();
2463  } else {
2464    // C++0x N2914 [namespace.udecl]p8:
2465    // A using-declaration for a class member shall be a member-declaration.
2466    if (NNS->getKind() == NestedNameSpecifier::TypeSpec) {
2467      Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_class_member)
2468        << SS.getRange();
2469      return 0;
2470    }
2471
2472    // C++0x N2914 [namespace.udecl]p9:
2473    // In a using-declaration, a prefix :: refers to the global namespace.
2474    if (NNS->getKind() == NestedNameSpecifier::Global)
2475      LookupContext = Context.getTranslationUnitDecl();
2476    else
2477      LookupContext = NNS->getAsNamespace();
2478  }
2479
2480
2481  // Lookup target name.
2482  LookupResult R = LookupQualifiedName(LookupContext,
2483                                       Name, LookupOrdinaryName);
2484
2485  if (!R) {
2486    DiagnoseMissingMember(IdentLoc, Name, NNS, SS.getRange());
2487    return 0;
2488  }
2489
2490  NamedDecl *ND = R.getAsDecl();
2491
2492  if (IsTypeName && !isa<TypeDecl>(ND)) {
2493    Diag(IdentLoc, diag::err_using_typename_non_type);
2494    return 0;
2495  }
2496
2497  // C++0x N2914 [namespace.udecl]p6:
2498  // A using-declaration shall not name a namespace.
2499  if (isa<NamespaceDecl>(ND)) {
2500    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
2501      << SS.getRange();
2502    return 0;
2503  }
2504
2505  return UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2506                           ND->getLocation(), UsingLoc, ND, NNS, IsTypeName);
2507}
2508
2509/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2510/// is a namespace alias, returns the namespace it points to.
2511static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2512  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2513    return AD->getNamespace();
2514  return dyn_cast_or_null<NamespaceDecl>(D);
2515}
2516
2517Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2518                                             SourceLocation NamespaceLoc,
2519                                             SourceLocation AliasLoc,
2520                                             IdentifierInfo *Alias,
2521                                             const CXXScopeSpec &SS,
2522                                             SourceLocation IdentLoc,
2523                                             IdentifierInfo *Ident) {
2524
2525  // Lookup the namespace name.
2526  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
2527
2528  // Check if we have a previous declaration with the same name.
2529  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
2530    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2531      // We already have an alias with the same name that points to the same
2532      // namespace, so don't create a new one.
2533      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
2534        return DeclPtrTy();
2535    }
2536
2537    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2538      diag::err_redefinition_different_kind;
2539    Diag(AliasLoc, DiagID) << Alias;
2540    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2541    return DeclPtrTy();
2542  }
2543
2544  if (R.isAmbiguous()) {
2545    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2546    return DeclPtrTy();
2547  }
2548
2549  if (!R) {
2550    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2551    return DeclPtrTy();
2552  }
2553
2554  NamespaceAliasDecl *AliasDecl =
2555    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2556                               Alias, SS.getRange(),
2557                               (NestedNameSpecifier *)SS.getScopeRep(),
2558                               IdentLoc, R);
2559
2560  CurContext->addDecl(AliasDecl);
2561  return DeclPtrTy::make(AliasDecl);
2562}
2563
2564void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2565                                            CXXConstructorDecl *Constructor) {
2566  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2567          !Constructor->isUsed()) &&
2568    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2569
2570  CXXRecordDecl *ClassDecl
2571    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2572  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2573  // Before the implicitly-declared default constructor for a class is
2574  // implicitly defined, all the implicitly-declared default constructors
2575  // for its base class and its non-static data members shall have been
2576  // implicitly defined.
2577  bool err = false;
2578  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2579       E = ClassDecl->bases_end(); Base != E; ++Base) {
2580    CXXRecordDecl *BaseClassDecl
2581      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2582    if (!BaseClassDecl->hasTrivialConstructor()) {
2583      if (CXXConstructorDecl *BaseCtor =
2584            BaseClassDecl->getDefaultConstructor(Context))
2585        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2586      else {
2587        Diag(CurrentLocation, diag::err_defining_default_ctor)
2588          << Context.getTagDeclType(ClassDecl) << 1
2589          << Context.getTagDeclType(BaseClassDecl);
2590        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2591              << Context.getTagDeclType(BaseClassDecl);
2592        err = true;
2593      }
2594    }
2595  }
2596  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2597       E = ClassDecl->field_end(); Field != E; ++Field) {
2598    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2599    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2600      FieldType = Array->getElementType();
2601    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2602      CXXRecordDecl *FieldClassDecl
2603        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2604      if (!FieldClassDecl->hasTrivialConstructor()) {
2605        if (CXXConstructorDecl *FieldCtor =
2606            FieldClassDecl->getDefaultConstructor(Context))
2607          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2608        else {
2609          Diag(CurrentLocation, diag::err_defining_default_ctor)
2610          << Context.getTagDeclType(ClassDecl) << 0 <<
2611              Context.getTagDeclType(FieldClassDecl);
2612          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2613          << Context.getTagDeclType(FieldClassDecl);
2614          err = true;
2615        }
2616      }
2617    } else if (FieldType->isReferenceType()) {
2618      Diag(CurrentLocation, diag::err_unintialized_member)
2619        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2620      Diag((*Field)->getLocation(), diag::note_declared_at);
2621      err = true;
2622    } else if (FieldType.isConstQualified()) {
2623      Diag(CurrentLocation, diag::err_unintialized_member)
2624        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2625       Diag((*Field)->getLocation(), diag::note_declared_at);
2626      err = true;
2627    }
2628  }
2629  if (!err)
2630    Constructor->setUsed();
2631  else
2632    Constructor->setInvalidDecl();
2633}
2634
2635void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2636                                    CXXDestructorDecl *Destructor) {
2637  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2638         "DefineImplicitDestructor - call it for implicit default dtor");
2639
2640  CXXRecordDecl *ClassDecl
2641  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2642  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2643  // C++ [class.dtor] p5
2644  // Before the implicitly-declared default destructor for a class is
2645  // implicitly defined, all the implicitly-declared default destructors
2646  // for its base class and its non-static data members shall have been
2647  // implicitly defined.
2648  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2649       E = ClassDecl->bases_end(); Base != E; ++Base) {
2650    CXXRecordDecl *BaseClassDecl
2651      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2652    if (!BaseClassDecl->hasTrivialDestructor()) {
2653      if (CXXDestructorDecl *BaseDtor =
2654          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2655        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2656      else
2657        assert(false &&
2658               "DefineImplicitDestructor - missing dtor in a base class");
2659    }
2660  }
2661
2662  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2663       E = ClassDecl->field_end(); Field != E; ++Field) {
2664    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2665    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2666      FieldType = Array->getElementType();
2667    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2668      CXXRecordDecl *FieldClassDecl
2669        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2670      if (!FieldClassDecl->hasTrivialDestructor()) {
2671        if (CXXDestructorDecl *FieldDtor =
2672            const_cast<CXXDestructorDecl*>(
2673                                        FieldClassDecl->getDestructor(Context)))
2674          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2675        else
2676          assert(false &&
2677          "DefineImplicitDestructor - missing dtor in class of a data member");
2678      }
2679    }
2680  }
2681  Destructor->setUsed();
2682}
2683
2684void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2685                                          CXXMethodDecl *MethodDecl) {
2686  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2687          MethodDecl->getOverloadedOperator() == OO_Equal &&
2688          !MethodDecl->isUsed()) &&
2689         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2690
2691  CXXRecordDecl *ClassDecl
2692    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2693
2694  // C++[class.copy] p12
2695  // Before the implicitly-declared copy assignment operator for a class is
2696  // implicitly defined, all implicitly-declared copy assignment operators
2697  // for its direct base classes and its nonstatic data members shall have
2698  // been implicitly defined.
2699  bool err = false;
2700  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2701       E = ClassDecl->bases_end(); Base != E; ++Base) {
2702    CXXRecordDecl *BaseClassDecl
2703      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2704    if (CXXMethodDecl *BaseAssignOpMethod =
2705          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2706      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2707  }
2708  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2709       E = ClassDecl->field_end(); Field != E; ++Field) {
2710    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2711    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2712      FieldType = Array->getElementType();
2713    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2714      CXXRecordDecl *FieldClassDecl
2715        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2716      if (CXXMethodDecl *FieldAssignOpMethod =
2717          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2718        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2719    } else if (FieldType->isReferenceType()) {
2720      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2721      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2722      Diag(Field->getLocation(), diag::note_declared_at);
2723      Diag(CurrentLocation, diag::note_first_required_here);
2724      err = true;
2725    } else if (FieldType.isConstQualified()) {
2726      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2727      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2728      Diag(Field->getLocation(), diag::note_declared_at);
2729      Diag(CurrentLocation, diag::note_first_required_here);
2730      err = true;
2731    }
2732  }
2733  if (!err)
2734    MethodDecl->setUsed();
2735}
2736
2737CXXMethodDecl *
2738Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2739                              CXXRecordDecl *ClassDecl) {
2740  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2741  QualType RHSType(LHSType);
2742  // If class's assignment operator argument is const/volatile qualified,
2743  // look for operator = (const/volatile B&). Otherwise, look for
2744  // operator = (B&).
2745  if (ParmDecl->getType().isConstQualified())
2746    RHSType.addConst();
2747  if (ParmDecl->getType().isVolatileQualified())
2748    RHSType.addVolatile();
2749  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2750                                                          LHSType,
2751                                                          SourceLocation()));
2752  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2753                                                          RHSType,
2754                                                          SourceLocation()));
2755  Expr *Args[2] = { &*LHS, &*RHS };
2756  OverloadCandidateSet CandidateSet;
2757  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2758                              CandidateSet);
2759  OverloadCandidateSet::iterator Best;
2760  if (BestViableFunction(CandidateSet,
2761                         ClassDecl->getLocation(), Best) == OR_Success)
2762    return cast<CXXMethodDecl>(Best->Function);
2763  assert(false &&
2764         "getAssignOperatorMethod - copy assignment operator method not found");
2765  return 0;
2766}
2767
2768void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2769                                   CXXConstructorDecl *CopyConstructor,
2770                                   unsigned TypeQuals) {
2771  assert((CopyConstructor->isImplicit() &&
2772          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2773          !CopyConstructor->isUsed()) &&
2774         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2775
2776  CXXRecordDecl *ClassDecl
2777    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2778  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2779  // C++ [class.copy] p209
2780  // Before the implicitly-declared copy constructor for a class is
2781  // implicitly defined, all the implicitly-declared copy constructors
2782  // for its base class and its non-static data members shall have been
2783  // implicitly defined.
2784  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2785       Base != ClassDecl->bases_end(); ++Base) {
2786    CXXRecordDecl *BaseClassDecl
2787      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2788    if (CXXConstructorDecl *BaseCopyCtor =
2789        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2790      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2791  }
2792  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2793                                  FieldEnd = ClassDecl->field_end();
2794       Field != FieldEnd; ++Field) {
2795    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2796    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2797      FieldType = Array->getElementType();
2798    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2799      CXXRecordDecl *FieldClassDecl
2800        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2801      if (CXXConstructorDecl *FieldCopyCtor =
2802          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2803        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2804    }
2805  }
2806  CopyConstructor->setUsed();
2807}
2808
2809Sema::OwningExprResult
2810Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
2811                            CXXConstructorDecl *Constructor,
2812                            MultiExprArg ExprArgs) {
2813  bool Elidable = false;
2814
2815  // [class.copy]p15:
2816  // Whenever a temporary class object is copied using a copy constructor, and
2817  // this object and the copy have the same cv-unqualified type, an
2818  // implementation is permitted to treat the original and the copy as two
2819  // different ways of referring to the same object and not perform a copy at
2820  //all, even if the class copy constructor or destructor have side effects.
2821
2822  // FIXME: Is this enough?
2823  if (Constructor->isCopyConstructor(Context) && ExprArgs.size() == 1) {
2824    Expr *E = ((Expr **)ExprArgs.get())[0];
2825    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2826      E = BE->getSubExpr();
2827
2828    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
2829      Elidable = true;
2830  }
2831
2832  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
2833                               Elidable, move(ExprArgs));
2834}
2835
2836static bool
2837CheckConstructArgumentTypes(Sema &SemaRef, SourceLocation ConstructLoc,
2838                            CXXConstructExpr *E) {
2839  CXXConstructorDecl *Ctor = E->getConstructor();
2840  const FunctionProtoType *Proto = Ctor->getType()->getAsFunctionProtoType();
2841
2842  unsigned NumArgs = E->getNumArgs();
2843  unsigned NumArgsInProto = Proto->getNumArgs();
2844  unsigned NumRequiredArgs = Ctor->getMinRequiredArguments();
2845
2846  for (unsigned i = 0; i != NumArgsInProto; ++i) {
2847    QualType ProtoArgType = Proto->getArgType(i);
2848
2849    Expr *Arg;
2850
2851    if (i < NumRequiredArgs) {
2852      Arg = E->getArg(i);
2853
2854      // Pass the argument.
2855      // FIXME: Do this.
2856    } else {
2857      // Build a default argument.
2858      ParmVarDecl *Param = Ctor->getParamDecl(i);
2859
2860      Sema::OwningExprResult ArgExpr =
2861        SemaRef.BuildCXXDefaultArgExpr(ConstructLoc, Ctor, Param);
2862      if (ArgExpr.isInvalid())
2863        return true;
2864
2865      Arg = ArgExpr.takeAs<Expr>();
2866    }
2867
2868    E->setArg(i, Arg);
2869  }
2870
2871  // If this is a variadic call, handle args passed through "...".
2872  if (Proto->isVariadic()) {
2873    bool Invalid = false;
2874
2875    // Promote the arguments (C99 6.5.2.2p7).
2876    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2877      Expr *Arg = E->getArg(i);
2878      Invalid |=
2879        SemaRef.DefaultVariadicArgumentPromotion(Arg,
2880                                                 Sema::VariadicConstructor);
2881      E->setArg(i, Arg);
2882    }
2883
2884    return Invalid;
2885  }
2886
2887  return false;
2888}
2889
2890/// BuildCXXConstructExpr - Creates a complete call to a constructor,
2891/// including handling of its default argument expressions.
2892Sema::OwningExprResult
2893Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
2894                            CXXConstructorDecl *Constructor, bool Elidable,
2895                            MultiExprArg ExprArgs) {
2896  unsigned NumExprs = ExprArgs.size();
2897  Expr **Exprs = (Expr **)ExprArgs.release();
2898
2899  ExprOwningPtr<CXXConstructExpr> Temp(this,
2900                                       CXXConstructExpr::Create(Context,
2901                                                                DeclInitType,
2902                                                                Constructor,
2903                                                                Elidable,
2904                                                                Exprs,
2905                                                                NumExprs));
2906
2907  if (CheckConstructArgumentTypes(*this, ConstructLoc, Temp.get()))
2908    return ExprError();
2909
2910  return move(Temp);
2911}
2912
2913Sema::OwningExprResult
2914Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
2915                                  QualType Ty,
2916                                  SourceLocation TyBeginLoc,
2917                                  MultiExprArg Args,
2918                                  SourceLocation RParenLoc) {
2919  CXXTemporaryObjectExpr *E
2920    = new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty, TyBeginLoc,
2921                                           (Expr **)Args.get(),
2922                                           Args.size(), RParenLoc);
2923
2924  ExprOwningPtr<CXXTemporaryObjectExpr> Temp(this, E);
2925
2926  if (CheckConstructArgumentTypes(*this, TyBeginLoc, Temp.get()))
2927    return ExprError();
2928
2929  return move(Temp);
2930}
2931
2932
2933bool Sema::InitializeVarWithConstructor(VarDecl *VD,
2934                                        CXXConstructorDecl *Constructor,
2935                                        QualType DeclInitType,
2936                                        MultiExprArg Exprs) {
2937  OwningExprResult TempResult =
2938    BuildCXXConstructExpr(VD->getLocation(), DeclInitType, Constructor,
2939                          move(Exprs));
2940  if (TempResult.isInvalid())
2941    return true;
2942
2943  Expr *Temp = TempResult.takeAs<Expr>();
2944  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2945  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
2946  VD->setInit(Context, Temp);
2947
2948  return false;
2949}
2950
2951void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) {
2952  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2953                                  DeclInitType->getAs<RecordType>()->getDecl());
2954  if (!ClassDecl->hasTrivialDestructor())
2955    if (CXXDestructorDecl *Destructor =
2956        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2957      MarkDeclarationReferenced(VD->getLocation(), Destructor);
2958}
2959
2960/// AddCXXDirectInitializerToDecl - This action is called immediately after
2961/// ActOnDeclarator, when a C++ direct initializer is present.
2962/// e.g: "int x(1);"
2963void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2964                                         SourceLocation LParenLoc,
2965                                         MultiExprArg Exprs,
2966                                         SourceLocation *CommaLocs,
2967                                         SourceLocation RParenLoc) {
2968  unsigned NumExprs = Exprs.size();
2969  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2970  Decl *RealDecl = Dcl.getAs<Decl>();
2971
2972  // If there is no declaration, there was an error parsing it.  Just ignore
2973  // the initializer.
2974  if (RealDecl == 0)
2975    return;
2976
2977  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2978  if (!VDecl) {
2979    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2980    RealDecl->setInvalidDecl();
2981    return;
2982  }
2983
2984  // We will represent direct-initialization similarly to copy-initialization:
2985  //    int x(1);  -as-> int x = 1;
2986  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2987  //
2988  // Clients that want to distinguish between the two forms, can check for
2989  // direct initializer using VarDecl::hasCXXDirectInitializer().
2990  // A major benefit is that clients that don't particularly care about which
2991  // exactly form was it (like the CodeGen) can handle both cases without
2992  // special case code.
2993
2994  // If either the declaration has a dependent type or if any of the expressions
2995  // is type-dependent, we represent the initialization via a ParenListExpr for
2996  // later use during template instantiation.
2997  if (VDecl->getType()->isDependentType() ||
2998      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
2999    // Let clients know that initialization was done with a direct initializer.
3000    VDecl->setCXXDirectInitializer(true);
3001
3002    // Store the initialization expressions as a ParenListExpr.
3003    unsigned NumExprs = Exprs.size();
3004    VDecl->setInit(Context,
3005                   new (Context) ParenListExpr(Context, LParenLoc,
3006                                               (Expr **)Exprs.release(),
3007                                               NumExprs, RParenLoc));
3008    return;
3009  }
3010
3011
3012  // C++ 8.5p11:
3013  // The form of initialization (using parentheses or '=') is generally
3014  // insignificant, but does matter when the entity being initialized has a
3015  // class type.
3016  QualType DeclInitType = VDecl->getType();
3017  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
3018    DeclInitType = Array->getElementType();
3019
3020  // FIXME: This isn't the right place to complete the type.
3021  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3022                          diag::err_typecheck_decl_incomplete_type)) {
3023    VDecl->setInvalidDecl();
3024    return;
3025  }
3026
3027  if (VDecl->getType()->isRecordType()) {
3028    CXXConstructorDecl *Constructor
3029      = PerformInitializationByConstructor(DeclInitType,
3030                                           (Expr **)Exprs.get(), NumExprs,
3031                                           VDecl->getLocation(),
3032                                           SourceRange(VDecl->getLocation(),
3033                                                       RParenLoc),
3034                                           VDecl->getDeclName(),
3035                                           IK_Direct);
3036    if (!Constructor)
3037      RealDecl->setInvalidDecl();
3038    else {
3039      VDecl->setCXXDirectInitializer(true);
3040      if (InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
3041                                       move(Exprs)))
3042        RealDecl->setInvalidDecl();
3043      FinalizeVarWithDestructor(VDecl, DeclInitType);
3044    }
3045    return;
3046  }
3047
3048  if (NumExprs > 1) {
3049    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
3050      << SourceRange(VDecl->getLocation(), RParenLoc);
3051    RealDecl->setInvalidDecl();
3052    return;
3053  }
3054
3055  // Let clients know that initialization was done with a direct initializer.
3056  VDecl->setCXXDirectInitializer(true);
3057
3058  assert(NumExprs == 1 && "Expected 1 expression");
3059  // Set the init expression, handles conversions.
3060  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
3061                       /*DirectInit=*/true);
3062}
3063
3064/// PerformInitializationByConstructor - Perform initialization by
3065/// constructor (C++ [dcl.init]p14), which may occur as part of
3066/// direct-initialization or copy-initialization. We are initializing
3067/// an object of type @p ClassType with the given arguments @p
3068/// Args. @p Loc is the location in the source code where the
3069/// initializer occurs (e.g., a declaration, member initializer,
3070/// functional cast, etc.) while @p Range covers the whole
3071/// initialization. @p InitEntity is the entity being initialized,
3072/// which may by the name of a declaration or a type. @p Kind is the
3073/// kind of initialization we're performing, which affects whether
3074/// explicit constructors will be considered. When successful, returns
3075/// the constructor that will be used to perform the initialization;
3076/// when the initialization fails, emits a diagnostic and returns
3077/// null.
3078CXXConstructorDecl *
3079Sema::PerformInitializationByConstructor(QualType ClassType,
3080                                         Expr **Args, unsigned NumArgs,
3081                                         SourceLocation Loc, SourceRange Range,
3082                                         DeclarationName InitEntity,
3083                                         InitializationKind Kind) {
3084  const RecordType *ClassRec = ClassType->getAs<RecordType>();
3085  assert(ClassRec && "Can only initialize a class type here");
3086
3087  // C++ [dcl.init]p14:
3088  //
3089  //   If the initialization is direct-initialization, or if it is
3090  //   copy-initialization where the cv-unqualified version of the
3091  //   source type is the same class as, or a derived class of, the
3092  //   class of the destination, constructors are considered. The
3093  //   applicable constructors are enumerated (13.3.1.3), and the
3094  //   best one is chosen through overload resolution (13.3). The
3095  //   constructor so selected is called to initialize the object,
3096  //   with the initializer expression(s) as its argument(s). If no
3097  //   constructor applies, or the overload resolution is ambiguous,
3098  //   the initialization is ill-formed.
3099  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
3100  OverloadCandidateSet CandidateSet;
3101
3102  // Add constructors to the overload set.
3103  DeclarationName ConstructorName
3104    = Context.DeclarationNames.getCXXConstructorName(
3105                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
3106  DeclContext::lookup_const_iterator Con, ConEnd;
3107  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
3108       Con != ConEnd; ++Con) {
3109    // Find the constructor (which may be a template).
3110    CXXConstructorDecl *Constructor = 0;
3111    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
3112    if (ConstructorTmpl)
3113      Constructor
3114        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3115    else
3116      Constructor = cast<CXXConstructorDecl>(*Con);
3117
3118    if ((Kind == IK_Direct) ||
3119        (Kind == IK_Copy &&
3120         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
3121        (Kind == IK_Default && Constructor->isDefaultConstructor())) {
3122      if (ConstructorTmpl)
3123        AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0,
3124                                     Args, NumArgs, CandidateSet);
3125      else
3126        AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
3127    }
3128  }
3129
3130  // FIXME: When we decide not to synthesize the implicitly-declared
3131  // constructors, we'll need to make them appear here.
3132
3133  OverloadCandidateSet::iterator Best;
3134  switch (BestViableFunction(CandidateSet, Loc, Best)) {
3135  case OR_Success:
3136    // We found a constructor. Return it.
3137    return cast<CXXConstructorDecl>(Best->Function);
3138
3139  case OR_No_Viable_Function:
3140    if (InitEntity)
3141      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3142        << InitEntity << Range;
3143    else
3144      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3145        << ClassType << Range;
3146    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3147    return 0;
3148
3149  case OR_Ambiguous:
3150    if (InitEntity)
3151      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
3152    else
3153      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
3154    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3155    return 0;
3156
3157  case OR_Deleted:
3158    if (InitEntity)
3159      Diag(Loc, diag::err_ovl_deleted_init)
3160        << Best->Function->isDeleted()
3161        << InitEntity << Range;
3162    else
3163      Diag(Loc, diag::err_ovl_deleted_init)
3164        << Best->Function->isDeleted()
3165        << InitEntity << Range;
3166    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3167    return 0;
3168  }
3169
3170  return 0;
3171}
3172
3173/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3174/// determine whether they are reference-related,
3175/// reference-compatible, reference-compatible with added
3176/// qualification, or incompatible, for use in C++ initialization by
3177/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3178/// type, and the first type (T1) is the pointee type of the reference
3179/// type being initialized.
3180Sema::ReferenceCompareResult
3181Sema::CompareReferenceRelationship(QualType T1, QualType T2,
3182                                   bool& DerivedToBase) {
3183  assert(!T1->isReferenceType() &&
3184    "T1 must be the pointee type of the reference type");
3185  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
3186
3187  T1 = Context.getCanonicalType(T1);
3188  T2 = Context.getCanonicalType(T2);
3189  QualType UnqualT1 = T1.getUnqualifiedType();
3190  QualType UnqualT2 = T2.getUnqualifiedType();
3191
3192  // C++ [dcl.init.ref]p4:
3193  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3194  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3195  //   T1 is a base class of T2.
3196  if (UnqualT1 == UnqualT2)
3197    DerivedToBase = false;
3198  else if (IsDerivedFrom(UnqualT2, UnqualT1))
3199    DerivedToBase = true;
3200  else
3201    return Ref_Incompatible;
3202
3203  // At this point, we know that T1 and T2 are reference-related (at
3204  // least).
3205
3206  // C++ [dcl.init.ref]p4:
3207  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3208  //   reference-related to T2 and cv1 is the same cv-qualification
3209  //   as, or greater cv-qualification than, cv2. For purposes of
3210  //   overload resolution, cases for which cv1 is greater
3211  //   cv-qualification than cv2 are identified as
3212  //   reference-compatible with added qualification (see 13.3.3.2).
3213  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3214    return Ref_Compatible;
3215  else if (T1.isMoreQualifiedThan(T2))
3216    return Ref_Compatible_With_Added_Qualification;
3217  else
3218    return Ref_Related;
3219}
3220
3221/// CheckReferenceInit - Check the initialization of a reference
3222/// variable with the given initializer (C++ [dcl.init.ref]). Init is
3223/// the initializer (either a simple initializer or an initializer
3224/// list), and DeclType is the type of the declaration. When ICS is
3225/// non-null, this routine will compute the implicit conversion
3226/// sequence according to C++ [over.ics.ref] and will not produce any
3227/// diagnostics; when ICS is null, it will emit diagnostics when any
3228/// errors are found. Either way, a return value of true indicates
3229/// that there was a failure, a return value of false indicates that
3230/// the reference initialization succeeded.
3231///
3232/// When @p SuppressUserConversions, user-defined conversions are
3233/// suppressed.
3234/// When @p AllowExplicit, we also permit explicit user-defined
3235/// conversion functions.
3236/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
3237bool
3238Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
3239                         bool SuppressUserConversions,
3240                         bool AllowExplicit, bool ForceRValue,
3241                         ImplicitConversionSequence *ICS) {
3242  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3243
3244  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3245  QualType T2 = Init->getType();
3246
3247  // If the initializer is the address of an overloaded function, try
3248  // to resolve the overloaded function. If all goes well, T2 is the
3249  // type of the resulting function.
3250  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
3251    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
3252                                                          ICS != 0);
3253    if (Fn) {
3254      // Since we're performing this reference-initialization for
3255      // real, update the initializer with the resulting function.
3256      if (!ICS) {
3257        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
3258          return true;
3259
3260        FixOverloadedFunctionReference(Init, Fn);
3261      }
3262
3263      T2 = Fn->getType();
3264    }
3265  }
3266
3267  // Compute some basic properties of the types and the initializer.
3268  bool isRValRef = DeclType->isRValueReferenceType();
3269  bool DerivedToBase = false;
3270  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
3271                                                  Init->isLvalue(Context);
3272  ReferenceCompareResult RefRelationship
3273    = CompareReferenceRelationship(T1, T2, DerivedToBase);
3274
3275  // Most paths end in a failed conversion.
3276  if (ICS)
3277    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
3278
3279  // C++ [dcl.init.ref]p5:
3280  //   A reference to type "cv1 T1" is initialized by an expression
3281  //   of type "cv2 T2" as follows:
3282
3283  //     -- If the initializer expression
3284
3285  // Rvalue references cannot bind to lvalues (N2812).
3286  // There is absolutely no situation where they can. In particular, note that
3287  // this is ill-formed, even if B has a user-defined conversion to A&&:
3288  //   B b;
3289  //   A&& r = b;
3290  if (isRValRef && InitLvalue == Expr::LV_Valid) {
3291    if (!ICS)
3292      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
3293        << Init->getSourceRange();
3294    return true;
3295  }
3296
3297  bool BindsDirectly = false;
3298  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3299  //          reference-compatible with "cv2 T2," or
3300  //
3301  // Note that the bit-field check is skipped if we are just computing
3302  // the implicit conversion sequence (C++ [over.best.ics]p2).
3303  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
3304      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3305    BindsDirectly = true;
3306
3307    if (ICS) {
3308      // C++ [over.ics.ref]p1:
3309      //   When a parameter of reference type binds directly (8.5.3)
3310      //   to an argument expression, the implicit conversion sequence
3311      //   is the identity conversion, unless the argument expression
3312      //   has a type that is a derived class of the parameter type,
3313      //   in which case the implicit conversion sequence is a
3314      //   derived-to-base Conversion (13.3.3.1).
3315      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3316      ICS->Standard.First = ICK_Identity;
3317      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3318      ICS->Standard.Third = ICK_Identity;
3319      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3320      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3321      ICS->Standard.ReferenceBinding = true;
3322      ICS->Standard.DirectBinding = true;
3323      ICS->Standard.RRefBinding = false;
3324      ICS->Standard.CopyConstructor = 0;
3325
3326      // Nothing more to do: the inaccessibility/ambiguity check for
3327      // derived-to-base conversions is suppressed when we're
3328      // computing the implicit conversion sequence (C++
3329      // [over.best.ics]p2).
3330      return false;
3331    } else {
3332      // Perform the conversion.
3333      // FIXME: Binding to a subobject of the lvalue is going to require more
3334      // AST annotation than this.
3335      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
3336    }
3337  }
3338
3339  //       -- has a class type (i.e., T2 is a class type) and can be
3340  //          implicitly converted to an lvalue of type "cv3 T3,"
3341  //          where "cv1 T1" is reference-compatible with "cv3 T3"
3342  //          92) (this conversion is selected by enumerating the
3343  //          applicable conversion functions (13.3.1.6) and choosing
3344  //          the best one through overload resolution (13.3)),
3345  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
3346      !RequireCompleteType(SourceLocation(), T2, 0)) {
3347    // FIXME: Look for conversions in base classes!
3348    CXXRecordDecl *T2RecordDecl
3349      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3350
3351    OverloadCandidateSet CandidateSet;
3352    OverloadedFunctionDecl *Conversions
3353      = T2RecordDecl->getConversionFunctions();
3354    for (OverloadedFunctionDecl::function_iterator Func
3355           = Conversions->function_begin();
3356         Func != Conversions->function_end(); ++Func) {
3357      FunctionTemplateDecl *ConvTemplate
3358        = dyn_cast<FunctionTemplateDecl>(*Func);
3359      CXXConversionDecl *Conv;
3360      if (ConvTemplate)
3361        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3362      else
3363        Conv = cast<CXXConversionDecl>(*Func);
3364
3365      // If the conversion function doesn't return a reference type,
3366      // it can't be considered for this conversion.
3367      if (Conv->getConversionType()->isLValueReferenceType() &&
3368          (AllowExplicit || !Conv->isExplicit())) {
3369        if (ConvTemplate)
3370          AddTemplateConversionCandidate(ConvTemplate, Init, DeclType,
3371                                         CandidateSet);
3372        else
3373          AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
3374      }
3375    }
3376
3377    OverloadCandidateSet::iterator Best;
3378    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
3379    case OR_Success:
3380      // This is a direct binding.
3381      BindsDirectly = true;
3382
3383      if (ICS) {
3384        // C++ [over.ics.ref]p1:
3385        //
3386        //   [...] If the parameter binds directly to the result of
3387        //   applying a conversion function to the argument
3388        //   expression, the implicit conversion sequence is a
3389        //   user-defined conversion sequence (13.3.3.1.2), with the
3390        //   second standard conversion sequence either an identity
3391        //   conversion or, if the conversion function returns an
3392        //   entity of a type that is a derived class of the parameter
3393        //   type, a derived-to-base Conversion.
3394        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
3395        ICS->UserDefined.Before = Best->Conversions[0].Standard;
3396        ICS->UserDefined.After = Best->FinalConversion;
3397        ICS->UserDefined.ConversionFunction = Best->Function;
3398        assert(ICS->UserDefined.After.ReferenceBinding &&
3399               ICS->UserDefined.After.DirectBinding &&
3400               "Expected a direct reference binding!");
3401        return false;
3402      } else {
3403        // Perform the conversion.
3404        // FIXME: Binding to a subobject of the lvalue is going to require more
3405        // AST annotation than this.
3406        ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
3407      }
3408      break;
3409
3410    case OR_Ambiguous:
3411      assert(false && "Ambiguous reference binding conversions not implemented.");
3412      return true;
3413
3414    case OR_No_Viable_Function:
3415    case OR_Deleted:
3416      // There was no suitable conversion, or we found a deleted
3417      // conversion; continue with other checks.
3418      break;
3419    }
3420  }
3421
3422  if (BindsDirectly) {
3423    // C++ [dcl.init.ref]p4:
3424    //   [...] In all cases where the reference-related or
3425    //   reference-compatible relationship of two types is used to
3426    //   establish the validity of a reference binding, and T1 is a
3427    //   base class of T2, a program that necessitates such a binding
3428    //   is ill-formed if T1 is an inaccessible (clause 11) or
3429    //   ambiguous (10.2) base class of T2.
3430    //
3431    // Note that we only check this condition when we're allowed to
3432    // complain about errors, because we should not be checking for
3433    // ambiguity (or inaccessibility) unless the reference binding
3434    // actually happens.
3435    if (DerivedToBase)
3436      return CheckDerivedToBaseConversion(T2, T1,
3437                                          Init->getSourceRange().getBegin(),
3438                                          Init->getSourceRange());
3439    else
3440      return false;
3441  }
3442
3443  //     -- Otherwise, the reference shall be to a non-volatile const
3444  //        type (i.e., cv1 shall be const), or the reference shall be an
3445  //        rvalue reference and the initializer expression shall be an rvalue.
3446  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
3447    if (!ICS)
3448      Diag(Init->getSourceRange().getBegin(),
3449           diag::err_not_reference_to_const_init)
3450        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3451        << T2 << Init->getSourceRange();
3452    return true;
3453  }
3454
3455  //       -- If the initializer expression is an rvalue, with T2 a
3456  //          class type, and "cv1 T1" is reference-compatible with
3457  //          "cv2 T2," the reference is bound in one of the
3458  //          following ways (the choice is implementation-defined):
3459  //
3460  //          -- The reference is bound to the object represented by
3461  //             the rvalue (see 3.10) or to a sub-object within that
3462  //             object.
3463  //
3464  //          -- A temporary of type "cv1 T2" [sic] is created, and
3465  //             a constructor is called to copy the entire rvalue
3466  //             object into the temporary. The reference is bound to
3467  //             the temporary or to a sub-object within the
3468  //             temporary.
3469  //
3470  //          The constructor that would be used to make the copy
3471  //          shall be callable whether or not the copy is actually
3472  //          done.
3473  //
3474  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
3475  // freedom, so we will always take the first option and never build
3476  // a temporary in this case. FIXME: We will, however, have to check
3477  // for the presence of a copy constructor in C++98/03 mode.
3478  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
3479      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3480    if (ICS) {
3481      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3482      ICS->Standard.First = ICK_Identity;
3483      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3484      ICS->Standard.Third = ICK_Identity;
3485      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3486      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3487      ICS->Standard.ReferenceBinding = true;
3488      ICS->Standard.DirectBinding = false;
3489      ICS->Standard.RRefBinding = isRValRef;
3490      ICS->Standard.CopyConstructor = 0;
3491    } else {
3492      // FIXME: Binding to a subobject of the rvalue is going to require more
3493      // AST annotation than this.
3494      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/false);
3495    }
3496    return false;
3497  }
3498
3499  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3500  //          initialized from the initializer expression using the
3501  //          rules for a non-reference copy initialization (8.5). The
3502  //          reference is then bound to the temporary. If T1 is
3503  //          reference-related to T2, cv1 must be the same
3504  //          cv-qualification as, or greater cv-qualification than,
3505  //          cv2; otherwise, the program is ill-formed.
3506  if (RefRelationship == Ref_Related) {
3507    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3508    // we would be reference-compatible or reference-compatible with
3509    // added qualification. But that wasn't the case, so the reference
3510    // initialization fails.
3511    if (!ICS)
3512      Diag(Init->getSourceRange().getBegin(),
3513           diag::err_reference_init_drops_quals)
3514        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3515        << T2 << Init->getSourceRange();
3516    return true;
3517  }
3518
3519  // If at least one of the types is a class type, the types are not
3520  // related, and we aren't allowed any user conversions, the
3521  // reference binding fails. This case is important for breaking
3522  // recursion, since TryImplicitConversion below will attempt to
3523  // create a temporary through the use of a copy constructor.
3524  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
3525      (T1->isRecordType() || T2->isRecordType())) {
3526    if (!ICS)
3527      Diag(Init->getSourceRange().getBegin(),
3528           diag::err_typecheck_convert_incompatible)
3529        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
3530    return true;
3531  }
3532
3533  // Actually try to convert the initializer to T1.
3534  if (ICS) {
3535    // C++ [over.ics.ref]p2:
3536    //
3537    //   When a parameter of reference type is not bound directly to
3538    //   an argument expression, the conversion sequence is the one
3539    //   required to convert the argument expression to the
3540    //   underlying type of the reference according to
3541    //   13.3.3.1. Conceptually, this conversion sequence corresponds
3542    //   to copy-initializing a temporary of the underlying type with
3543    //   the argument expression. Any difference in top-level
3544    //   cv-qualification is subsumed by the initialization itself
3545    //   and does not constitute a conversion.
3546    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
3547                                 /*AllowExplicit=*/false,
3548                                 /*ForceRValue=*/false,
3549                                 /*InOverloadResolution=*/false);
3550
3551    // Of course, that's still a reference binding.
3552    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
3553      ICS->Standard.ReferenceBinding = true;
3554      ICS->Standard.RRefBinding = isRValRef;
3555    } else if (ICS->ConversionKind ==
3556              ImplicitConversionSequence::UserDefinedConversion) {
3557      ICS->UserDefined.After.ReferenceBinding = true;
3558      ICS->UserDefined.After.RRefBinding = isRValRef;
3559    }
3560    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
3561  } else {
3562    return PerformImplicitConversion(Init, T1, "initializing");
3563  }
3564}
3565
3566/// CheckOverloadedOperatorDeclaration - Check whether the declaration
3567/// of this overloaded operator is well-formed. If so, returns false;
3568/// otherwise, emits appropriate diagnostics and returns true.
3569bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
3570  assert(FnDecl && FnDecl->isOverloadedOperator() &&
3571         "Expected an overloaded operator declaration");
3572
3573  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
3574
3575  // C++ [over.oper]p5:
3576  //   The allocation and deallocation functions, operator new,
3577  //   operator new[], operator delete and operator delete[], are
3578  //   described completely in 3.7.3. The attributes and restrictions
3579  //   found in the rest of this subclause do not apply to them unless
3580  //   explicitly stated in 3.7.3.
3581  // FIXME: Write a separate routine for checking this. For now, just allow it.
3582  if (Op == OO_New || Op == OO_Array_New ||
3583      Op == OO_Delete || Op == OO_Array_Delete)
3584    return false;
3585
3586  // C++ [over.oper]p6:
3587  //   An operator function shall either be a non-static member
3588  //   function or be a non-member function and have at least one
3589  //   parameter whose type is a class, a reference to a class, an
3590  //   enumeration, or a reference to an enumeration.
3591  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
3592    if (MethodDecl->isStatic())
3593      return Diag(FnDecl->getLocation(),
3594                  diag::err_operator_overload_static) << FnDecl->getDeclName();
3595  } else {
3596    bool ClassOrEnumParam = false;
3597    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
3598                                   ParamEnd = FnDecl->param_end();
3599         Param != ParamEnd; ++Param) {
3600      QualType ParamType = (*Param)->getType().getNonReferenceType();
3601      if (ParamType->isDependentType() || ParamType->isRecordType() ||
3602          ParamType->isEnumeralType()) {
3603        ClassOrEnumParam = true;
3604        break;
3605      }
3606    }
3607
3608    if (!ClassOrEnumParam)
3609      return Diag(FnDecl->getLocation(),
3610                  diag::err_operator_overload_needs_class_or_enum)
3611        << FnDecl->getDeclName();
3612  }
3613
3614  // C++ [over.oper]p8:
3615  //   An operator function cannot have default arguments (8.3.6),
3616  //   except where explicitly stated below.
3617  //
3618  // Only the function-call operator allows default arguments
3619  // (C++ [over.call]p1).
3620  if (Op != OO_Call) {
3621    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
3622         Param != FnDecl->param_end(); ++Param) {
3623      if ((*Param)->hasUnparsedDefaultArg())
3624        return Diag((*Param)->getLocation(),
3625                    diag::err_operator_overload_default_arg)
3626          << FnDecl->getDeclName();
3627      else if (Expr *DefArg = (*Param)->getDefaultArg())
3628        return Diag((*Param)->getLocation(),
3629                    diag::err_operator_overload_default_arg)
3630          << FnDecl->getDeclName() << DefArg->getSourceRange();
3631    }
3632  }
3633
3634  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
3635    { false, false, false }
3636#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
3637    , { Unary, Binary, MemberOnly }
3638#include "clang/Basic/OperatorKinds.def"
3639  };
3640
3641  bool CanBeUnaryOperator = OperatorUses[Op][0];
3642  bool CanBeBinaryOperator = OperatorUses[Op][1];
3643  bool MustBeMemberOperator = OperatorUses[Op][2];
3644
3645  // C++ [over.oper]p8:
3646  //   [...] Operator functions cannot have more or fewer parameters
3647  //   than the number required for the corresponding operator, as
3648  //   described in the rest of this subclause.
3649  unsigned NumParams = FnDecl->getNumParams()
3650                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
3651  if (Op != OO_Call &&
3652      ((NumParams == 1 && !CanBeUnaryOperator) ||
3653       (NumParams == 2 && !CanBeBinaryOperator) ||
3654       (NumParams < 1) || (NumParams > 2))) {
3655    // We have the wrong number of parameters.
3656    unsigned ErrorKind;
3657    if (CanBeUnaryOperator && CanBeBinaryOperator) {
3658      ErrorKind = 2;  // 2 -> unary or binary.
3659    } else if (CanBeUnaryOperator) {
3660      ErrorKind = 0;  // 0 -> unary
3661    } else {
3662      assert(CanBeBinaryOperator &&
3663             "All non-call overloaded operators are unary or binary!");
3664      ErrorKind = 1;  // 1 -> binary
3665    }
3666
3667    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
3668      << FnDecl->getDeclName() << NumParams << ErrorKind;
3669  }
3670
3671  // Overloaded operators other than operator() cannot be variadic.
3672  if (Op != OO_Call &&
3673      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
3674    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
3675      << FnDecl->getDeclName();
3676  }
3677
3678  // Some operators must be non-static member functions.
3679  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
3680    return Diag(FnDecl->getLocation(),
3681                diag::err_operator_overload_must_be_member)
3682      << FnDecl->getDeclName();
3683  }
3684
3685  // C++ [over.inc]p1:
3686  //   The user-defined function called operator++ implements the
3687  //   prefix and postfix ++ operator. If this function is a member
3688  //   function with no parameters, or a non-member function with one
3689  //   parameter of class or enumeration type, it defines the prefix
3690  //   increment operator ++ for objects of that type. If the function
3691  //   is a member function with one parameter (which shall be of type
3692  //   int) or a non-member function with two parameters (the second
3693  //   of which shall be of type int), it defines the postfix
3694  //   increment operator ++ for objects of that type.
3695  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
3696    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
3697    bool ParamIsInt = false;
3698    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
3699      ParamIsInt = BT->getKind() == BuiltinType::Int;
3700
3701    if (!ParamIsInt)
3702      return Diag(LastParam->getLocation(),
3703                  diag::err_operator_overload_post_incdec_must_be_int)
3704        << LastParam->getType() << (Op == OO_MinusMinus);
3705  }
3706
3707  // Notify the class if it got an assignment operator.
3708  if (Op == OO_Equal) {
3709    // Would have returned earlier otherwise.
3710    assert(isa<CXXMethodDecl>(FnDecl) &&
3711      "Overloaded = not member, but not filtered.");
3712    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3713    Method->setCopyAssignment(true);
3714    Method->getParent()->addedAssignmentOperator(Context, Method);
3715  }
3716
3717  return false;
3718}
3719
3720/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3721/// linkage specification, including the language and (if present)
3722/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3723/// the location of the language string literal, which is provided
3724/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3725/// the '{' brace. Otherwise, this linkage specification does not
3726/// have any braces.
3727Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3728                                                     SourceLocation ExternLoc,
3729                                                     SourceLocation LangLoc,
3730                                                     const char *Lang,
3731                                                     unsigned StrSize,
3732                                                     SourceLocation LBraceLoc) {
3733  LinkageSpecDecl::LanguageIDs Language;
3734  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3735    Language = LinkageSpecDecl::lang_c;
3736  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3737    Language = LinkageSpecDecl::lang_cxx;
3738  else {
3739    Diag(LangLoc, diag::err_bad_language);
3740    return DeclPtrTy();
3741  }
3742
3743  // FIXME: Add all the various semantics of linkage specifications
3744
3745  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3746                                               LangLoc, Language,
3747                                               LBraceLoc.isValid());
3748  CurContext->addDecl(D);
3749  PushDeclContext(S, D);
3750  return DeclPtrTy::make(D);
3751}
3752
3753/// ActOnFinishLinkageSpecification - Completely the definition of
3754/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3755/// valid, it's the position of the closing '}' brace in a linkage
3756/// specification that uses braces.
3757Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3758                                                      DeclPtrTy LinkageSpec,
3759                                                      SourceLocation RBraceLoc) {
3760  if (LinkageSpec)
3761    PopDeclContext();
3762  return LinkageSpec;
3763}
3764
3765/// \brief Perform semantic analysis for the variable declaration that
3766/// occurs within a C++ catch clause, returning the newly-created
3767/// variable.
3768VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3769                                         DeclaratorInfo *DInfo,
3770                                         IdentifierInfo *Name,
3771                                         SourceLocation Loc,
3772                                         SourceRange Range) {
3773  bool Invalid = false;
3774
3775  // Arrays and functions decay.
3776  if (ExDeclType->isArrayType())
3777    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3778  else if (ExDeclType->isFunctionType())
3779    ExDeclType = Context.getPointerType(ExDeclType);
3780
3781  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3782  // The exception-declaration shall not denote a pointer or reference to an
3783  // incomplete type, other than [cv] void*.
3784  // N2844 forbids rvalue references.
3785  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3786    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3787    Invalid = true;
3788  }
3789
3790  QualType BaseType = ExDeclType;
3791  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3792  unsigned DK = diag::err_catch_incomplete;
3793  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
3794    BaseType = Ptr->getPointeeType();
3795    Mode = 1;
3796    DK = diag::err_catch_incomplete_ptr;
3797  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
3798    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3799    BaseType = Ref->getPointeeType();
3800    Mode = 2;
3801    DK = diag::err_catch_incomplete_ref;
3802  }
3803  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3804      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3805    Invalid = true;
3806
3807  if (!Invalid && !ExDeclType->isDependentType() &&
3808      RequireNonAbstractType(Loc, ExDeclType,
3809                             diag::err_abstract_type_in_decl,
3810                             AbstractVariableType))
3811    Invalid = true;
3812
3813  // FIXME: Need to test for ability to copy-construct and destroy the
3814  // exception variable.
3815
3816  // FIXME: Need to check for abstract classes.
3817
3818  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3819                                    Name, ExDeclType, DInfo, VarDecl::None);
3820
3821  if (Invalid)
3822    ExDecl->setInvalidDecl();
3823
3824  return ExDecl;
3825}
3826
3827/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3828/// handler.
3829Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3830  DeclaratorInfo *DInfo = 0;
3831  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
3832
3833  bool Invalid = D.isInvalidType();
3834  IdentifierInfo *II = D.getIdentifier();
3835  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3836    // The scope should be freshly made just for us. There is just no way
3837    // it contains any previous declaration.
3838    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3839    if (PrevDecl->isTemplateParameter()) {
3840      // Maybe we will complain about the shadowed template parameter.
3841      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3842    }
3843  }
3844
3845  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3846    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3847      << D.getCXXScopeSpec().getRange();
3848    Invalid = true;
3849  }
3850
3851  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
3852                                              D.getIdentifier(),
3853                                              D.getIdentifierLoc(),
3854                                            D.getDeclSpec().getSourceRange());
3855
3856  if (Invalid)
3857    ExDecl->setInvalidDecl();
3858
3859  // Add the exception declaration into this scope.
3860  if (II)
3861    PushOnScopeChains(ExDecl, S);
3862  else
3863    CurContext->addDecl(ExDecl);
3864
3865  ProcessDeclAttributes(S, ExDecl, D);
3866  return DeclPtrTy::make(ExDecl);
3867}
3868
3869Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3870                                                   ExprArg assertexpr,
3871                                                   ExprArg assertmessageexpr) {
3872  Expr *AssertExpr = (Expr *)assertexpr.get();
3873  StringLiteral *AssertMessage =
3874    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3875
3876  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3877    llvm::APSInt Value(32);
3878    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3879      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3880        AssertExpr->getSourceRange();
3881      return DeclPtrTy();
3882    }
3883
3884    if (Value == 0) {
3885      std::string str(AssertMessage->getStrData(),
3886                      AssertMessage->getByteLength());
3887      Diag(AssertLoc, diag::err_static_assert_failed)
3888        << str << AssertExpr->getSourceRange();
3889    }
3890  }
3891
3892  assertexpr.release();
3893  assertmessageexpr.release();
3894  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3895                                        AssertExpr, AssertMessage);
3896
3897  CurContext->addDecl(Decl);
3898  return DeclPtrTy::make(Decl);
3899}
3900
3901Sema::DeclPtrTy Sema::ActOnFriendDecl(Scope *S,
3902                       llvm::PointerUnion<const DeclSpec*,Declarator*> DU,
3903                                      bool IsDefinition) {
3904  if (DU.is<Declarator*>())
3905    return ActOnFriendFunctionDecl(S, *DU.get<Declarator*>(), IsDefinition);
3906  else
3907    return ActOnFriendTypeDecl(S, *DU.get<const DeclSpec*>(), IsDefinition);
3908}
3909
3910Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S,
3911                                          const DeclSpec &DS,
3912                                          bool IsDefinition) {
3913  SourceLocation Loc = DS.getSourceRange().getBegin();
3914
3915  assert(DS.isFriendSpecified());
3916  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
3917
3918  // Try to convert the decl specifier to a type.
3919  bool invalid = false;
3920  QualType T = ConvertDeclSpecToType(DS, Loc, invalid);
3921  if (invalid) return DeclPtrTy();
3922
3923  // C++ [class.friend]p2:
3924  //   An elaborated-type-specifier shall be used in a friend declaration
3925  //   for a class.*
3926  //   * The class-key of the elaborated-type-specifier is required.
3927  // This is one of the rare places in Clang where it's legitimate to
3928  // ask about the "spelling" of the type.
3929  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
3930    // If we evaluated the type to a record type, suggest putting
3931    // a tag in front.
3932    if (const RecordType *RT = T->getAs<RecordType>()) {
3933      RecordDecl *RD = RT->getDecl();
3934
3935      std::string InsertionText = std::string(" ") + RD->getKindName();
3936
3937      Diag(DS.getFriendSpecLoc(), diag::err_unelaborated_friend_type)
3938        << (RD->isUnion())
3939        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
3940                                                 InsertionText);
3941      return DeclPtrTy();
3942    }else {
3943      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
3944          << DS.getSourceRange();
3945      return DeclPtrTy();
3946    }
3947  }
3948
3949  FriendDecl::FriendUnion FU = T.getTypePtr();
3950
3951  // The parser doesn't quite handle
3952  //   friend class A { ... }
3953  // optimally, because it might have been the (valid) prefix of
3954  //   friend class A { ... } foo();
3955  // So in a very particular set of circumstances, we need to adjust
3956  // IsDefinition.
3957  //
3958  // Also, if we made a RecordDecl in ActOnTag, we want that to be the
3959  // object of our friend declaration.
3960  switch (DS.getTypeSpecType()) {
3961  default: break;
3962  case DeclSpec::TST_class:
3963  case DeclSpec::TST_struct:
3964  case DeclSpec::TST_union:
3965    CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>((Decl*) DS.getTypeRep());
3966    if (RD) {
3967      IsDefinition |= RD->isDefinition();
3968      FU = RD;
3969    }
3970    break;
3971  }
3972
3973  // C++ [class.friend]p2: A class shall not be defined inside
3974  //   a friend declaration.
3975  if (IsDefinition) {
3976    Diag(DS.getFriendSpecLoc(), diag::err_friend_decl_defines_class)
3977      << DS.getSourceRange();
3978    return DeclPtrTy();
3979  }
3980
3981  // C++98 [class.friend]p1: A friend of a class is a function
3982  //   or class that is not a member of the class . . .
3983  // But that's a silly restriction which nobody implements for
3984  // inner classes, and C++0x removes it anyway, so we only report
3985  // this (as a warning) if we're being pedantic.
3986  if (!getLangOptions().CPlusPlus0x)
3987    if (const RecordType *RT = T->getAs<RecordType>())
3988      if (RT->getDecl()->getDeclContext() == CurContext)
3989        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
3990
3991  FriendDecl *FD = FriendDecl::Create(Context, CurContext, Loc, FU,
3992                                      DS.getFriendSpecLoc());
3993  FD->setAccess(AS_public);
3994  CurContext->addDecl(FD);
3995
3996  return DeclPtrTy::make(FD);
3997}
3998
3999Sema::DeclPtrTy Sema::ActOnFriendFunctionDecl(Scope *S,
4000                                              Declarator &D,
4001                                              bool IsDefinition) {
4002  const DeclSpec &DS = D.getDeclSpec();
4003
4004  assert(DS.isFriendSpecified());
4005  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4006
4007  SourceLocation Loc = D.getIdentifierLoc();
4008  DeclaratorInfo *DInfo = 0;
4009  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4010
4011  // C++ [class.friend]p1
4012  //   A friend of a class is a function or class....
4013  // Note that this sees through typedefs, which is intended.
4014  // It *doesn't* see through dependent types, which is correct
4015  // according to [temp.arg.type]p3:
4016  //   If a declaration acquires a function type through a
4017  //   type dependent on a template-parameter and this causes
4018  //   a declaration that does not use the syntactic form of a
4019  //   function declarator to have a function type, the program
4020  //   is ill-formed.
4021  if (!T->isFunctionType()) {
4022    Diag(Loc, diag::err_unexpected_friend);
4023
4024    // It might be worthwhile to try to recover by creating an
4025    // appropriate declaration.
4026    return DeclPtrTy();
4027  }
4028
4029  // C++ [namespace.memdef]p3
4030  //  - If a friend declaration in a non-local class first declares a
4031  //    class or function, the friend class or function is a member
4032  //    of the innermost enclosing namespace.
4033  //  - The name of the friend is not found by simple name lookup
4034  //    until a matching declaration is provided in that namespace
4035  //    scope (either before or after the class declaration granting
4036  //    friendship).
4037  //  - If a friend function is called, its name may be found by the
4038  //    name lookup that considers functions from namespaces and
4039  //    classes associated with the types of the function arguments.
4040  //  - When looking for a prior declaration of a class or a function
4041  //    declared as a friend, scopes outside the innermost enclosing
4042  //    namespace scope are not considered.
4043
4044  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
4045  DeclarationName Name = GetNameForDeclarator(D);
4046  assert(Name);
4047
4048  // The existing declaration we found.
4049  FunctionDecl *FD = NULL;
4050
4051  // The context we found the declaration in, or in which we should
4052  // create the declaration.
4053  DeclContext *DC;
4054
4055  // FIXME: handle local classes
4056
4057  // Recover from invalid scope qualifiers as if they just weren't there.
4058  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
4059    DC = computeDeclContext(ScopeQual);
4060
4061    // FIXME: handle dependent contexts
4062    if (!DC) return DeclPtrTy();
4063
4064    Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
4065
4066    // If searching in that context implicitly found a declaration in
4067    // a different context, treat it like it wasn't found at all.
4068    // TODO: better diagnostics for this case.  Suggesting the right
4069    // qualified scope would be nice...
4070    if (!Dec || Dec->getDeclContext() != DC) {
4071      D.setInvalidType();
4072      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
4073      return DeclPtrTy();
4074    }
4075
4076    // C++ [class.friend]p1: A friend of a class is a function or
4077    //   class that is not a member of the class . . .
4078    if (DC == CurContext)
4079      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4080
4081    FD = cast<FunctionDecl>(Dec);
4082
4083  // Otherwise walk out to the nearest namespace scope looking for matches.
4084  } else {
4085    // TODO: handle local class contexts.
4086
4087    DC = CurContext;
4088    while (true) {
4089      // Skip class contexts.  If someone can cite chapter and verse
4090      // for this behavior, that would be nice --- it's what GCC and
4091      // EDG do, and it seems like a reasonable intent, but the spec
4092      // really only says that checks for unqualified existing
4093      // declarations should stop at the nearest enclosing namespace,
4094      // not that they should only consider the nearest enclosing
4095      // namespace.
4096      while (DC->isRecord()) DC = DC->getParent();
4097
4098      Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
4099
4100      // TODO: decide what we think about using declarations.
4101      if (Dec) {
4102        FD = cast<FunctionDecl>(Dec);
4103        break;
4104      }
4105      if (DC->isFileContext()) break;
4106      DC = DC->getParent();
4107    }
4108
4109    // C++ [class.friend]p1: A friend of a class is a function or
4110    //   class that is not a member of the class . . .
4111    // C++0x changes this for both friend types and functions.
4112    // Most C++ 98 compilers do seem to give an error here, so
4113    // we do, too.
4114    if (FD && DC == CurContext && !getLangOptions().CPlusPlus0x)
4115      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4116  }
4117
4118  bool Redeclaration = (FD != 0);
4119
4120  // If we found a match, create a friend function declaration with
4121  // that function as the previous declaration.
4122  if (Redeclaration) {
4123    // Create it in the semantic context of the original declaration.
4124    DC = FD->getDeclContext();
4125
4126  // If we didn't find something matching the type exactly, create
4127  // a declaration.  This declaration should only be findable via
4128  // argument-dependent lookup.
4129  } else {
4130    assert(DC->isFileContext());
4131
4132    // This implies that it has to be an operator or function.
4133    if (D.getKind() == Declarator::DK_Constructor ||
4134        D.getKind() == Declarator::DK_Destructor ||
4135        D.getKind() == Declarator::DK_Conversion) {
4136      Diag(Loc, diag::err_introducing_special_friend) <<
4137        (D.getKind() == Declarator::DK_Constructor ? 0 :
4138         D.getKind() == Declarator::DK_Destructor ? 1 : 2);
4139      return DeclPtrTy();
4140    }
4141  }
4142
4143  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, DInfo,
4144                                          /* PrevDecl = */ FD,
4145                                          MultiTemplateParamsArg(*this),
4146                                          IsDefinition,
4147                                          Redeclaration);
4148  if (!ND) return DeclPtrTy();
4149
4150  assert(cast<FunctionDecl>(ND)->getPreviousDeclaration() == FD &&
4151         "lost reference to previous declaration");
4152
4153  FD = cast<FunctionDecl>(ND);
4154
4155  assert(FD->getDeclContext() == DC);
4156  assert(FD->getLexicalDeclContext() == CurContext);
4157
4158  // Add the function declaration to the appropriate lookup tables,
4159  // adjusting the redeclarations list as necessary.  We don't
4160  // want to do this yet if the friending class is dependent.
4161  //
4162  // Also update the scope-based lookup if the target context's
4163  // lookup context is in lexical scope.
4164  if (!CurContext->isDependentContext()) {
4165    DC = DC->getLookupContext();
4166    DC->makeDeclVisibleInContext(FD, /* Recoverable=*/ false);
4167    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4168      PushOnScopeChains(FD, EnclosingScope, /*AddToContext=*/ false);
4169  }
4170
4171  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
4172                                       D.getIdentifierLoc(), FD,
4173                                       DS.getFriendSpecLoc());
4174  FrD->setAccess(AS_public);
4175  CurContext->addDecl(FrD);
4176
4177  return DeclPtrTy::make(FD);
4178}
4179
4180void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
4181  AdjustDeclIfTemplate(dcl);
4182
4183  Decl *Dcl = dcl.getAs<Decl>();
4184  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
4185  if (!Fn) {
4186    Diag(DelLoc, diag::err_deleted_non_function);
4187    return;
4188  }
4189  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
4190    Diag(DelLoc, diag::err_deleted_decl_not_first);
4191    Diag(Prev->getLocation(), diag::note_previous_declaration);
4192    // If the declaration wasn't the first, we delete the function anyway for
4193    // recovery.
4194  }
4195  Fn->setDeleted();
4196}
4197
4198static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
4199  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
4200       ++CI) {
4201    Stmt *SubStmt = *CI;
4202    if (!SubStmt)
4203      continue;
4204    if (isa<ReturnStmt>(SubStmt))
4205      Self.Diag(SubStmt->getSourceRange().getBegin(),
4206           diag::err_return_in_constructor_handler);
4207    if (!isa<Expr>(SubStmt))
4208      SearchForReturnInStmt(Self, SubStmt);
4209  }
4210}
4211
4212void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
4213  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
4214    CXXCatchStmt *Handler = TryBlock->getHandler(I);
4215    SearchForReturnInStmt(*this, Handler);
4216  }
4217}
4218
4219bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
4220                                             const CXXMethodDecl *Old) {
4221  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
4222  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
4223
4224  QualType CNewTy = Context.getCanonicalType(NewTy);
4225  QualType COldTy = Context.getCanonicalType(OldTy);
4226
4227  if (CNewTy == COldTy &&
4228      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
4229    return false;
4230
4231  // Check if the return types are covariant
4232  QualType NewClassTy, OldClassTy;
4233
4234  /// Both types must be pointers or references to classes.
4235  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
4236    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
4237      NewClassTy = NewPT->getPointeeType();
4238      OldClassTy = OldPT->getPointeeType();
4239    }
4240  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
4241    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
4242      NewClassTy = NewRT->getPointeeType();
4243      OldClassTy = OldRT->getPointeeType();
4244    }
4245  }
4246
4247  // The return types aren't either both pointers or references to a class type.
4248  if (NewClassTy.isNull()) {
4249    Diag(New->getLocation(),
4250         diag::err_different_return_type_for_overriding_virtual_function)
4251      << New->getDeclName() << NewTy << OldTy;
4252    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4253
4254    return true;
4255  }
4256
4257  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
4258    // Check if the new class derives from the old class.
4259    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
4260      Diag(New->getLocation(),
4261           diag::err_covariant_return_not_derived)
4262      << New->getDeclName() << NewTy << OldTy;
4263      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4264      return true;
4265    }
4266
4267    // Check if we the conversion from derived to base is valid.
4268    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
4269                      diag::err_covariant_return_inaccessible_base,
4270                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
4271                      // FIXME: Should this point to the return type?
4272                      New->getLocation(), SourceRange(), New->getDeclName())) {
4273      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4274      return true;
4275    }
4276  }
4277
4278  // The qualifiers of the return types must be the same.
4279  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
4280    Diag(New->getLocation(),
4281         diag::err_covariant_return_type_different_qualifications)
4282    << New->getDeclName() << NewTy << OldTy;
4283    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4284    return true;
4285  };
4286
4287
4288  // The new class type must have the same or less qualifiers as the old type.
4289  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
4290    Diag(New->getLocation(),
4291         diag::err_covariant_return_type_class_type_more_qualified)
4292    << New->getDeclName() << NewTy << OldTy;
4293    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4294    return true;
4295  };
4296
4297  return false;
4298}
4299
4300bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
4301                                                const CXXMethodDecl *Old) {
4302  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
4303                                  diag::note_overridden_virtual_function,
4304                                  Old->getType()->getAsFunctionProtoType(),
4305                                  Old->getLocation(),
4306                                  New->getType()->getAsFunctionProtoType(),
4307                                  New->getLocation());
4308}
4309
4310/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
4311/// initializer for the declaration 'Dcl'.
4312/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
4313/// static data member of class X, names should be looked up in the scope of
4314/// class X.
4315void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4316  AdjustDeclIfTemplate(Dcl);
4317
4318  Decl *D = Dcl.getAs<Decl>();
4319  // If there is no declaration, there was an error parsing it.
4320  if (D == 0)
4321    return;
4322
4323  // Check whether it is a declaration with a nested name specifier like
4324  // int foo::bar;
4325  if (!D->isOutOfLine())
4326    return;
4327
4328  // C++ [basic.lookup.unqual]p13
4329  //
4330  // A name used in the definition of a static data member of class X
4331  // (after the qualified-id of the static member) is looked up as if the name
4332  // was used in a member function of X.
4333
4334  // Change current context into the context of the initializing declaration.
4335  EnterDeclaratorContext(S, D->getDeclContext());
4336}
4337
4338/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
4339/// initializer for the declaration 'Dcl'.
4340void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4341  AdjustDeclIfTemplate(Dcl);
4342
4343  Decl *D = Dcl.getAs<Decl>();
4344  // If there is no declaration, there was an error parsing it.
4345  if (D == 0)
4346    return;
4347
4348  // Check whether it is a declaration with a nested name specifier like
4349  // int foo::bar;
4350  if (!D->isOutOfLine())
4351    return;
4352
4353  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
4354  ExitDeclaratorContext(S);
4355}
4356