SemaDeclCXX.cpp revision 1f2e1a96bec2ba6418ae7f2d2b525a3575203b6a
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/EvaluatedExprVisitor.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/RecursiveASTVisitor.h"
30#include "clang/AST/StmtVisitor.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/AST/TypeOrdering.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Lex/Preprocessor.h"
37#include "llvm/ADT/SmallString.h"
38#include "llvm/ADT/STLExtras.h"
39#include <map>
40#include <set>
41
42using namespace clang;
43
44//===----------------------------------------------------------------------===//
45// CheckDefaultArgumentVisitor
46//===----------------------------------------------------------------------===//
47
48namespace {
49  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
50  /// the default argument of a parameter to determine whether it
51  /// contains any ill-formed subexpressions. For example, this will
52  /// diagnose the use of local variables or parameters within the
53  /// default argument expression.
54  class CheckDefaultArgumentVisitor
55    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
56    Expr *DefaultArg;
57    Sema *S;
58
59  public:
60    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
61      : DefaultArg(defarg), S(s) {}
62
63    bool VisitExpr(Expr *Node);
64    bool VisitDeclRefExpr(DeclRefExpr *DRE);
65    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
66    bool VisitLambdaExpr(LambdaExpr *Lambda);
67  };
68
69  /// VisitExpr - Visit all of the children of this expression.
70  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
71    bool IsInvalid = false;
72    for (Stmt::child_range I = Node->children(); I; ++I)
73      IsInvalid |= Visit(*I);
74    return IsInvalid;
75  }
76
77  /// VisitDeclRefExpr - Visit a reference to a declaration, to
78  /// determine whether this declaration can be used in the default
79  /// argument expression.
80  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
81    NamedDecl *Decl = DRE->getDecl();
82    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
83      // C++ [dcl.fct.default]p9
84      //   Default arguments are evaluated each time the function is
85      //   called. The order of evaluation of function arguments is
86      //   unspecified. Consequently, parameters of a function shall not
87      //   be used in default argument expressions, even if they are not
88      //   evaluated. Parameters of a function declared before a default
89      //   argument expression are in scope and can hide namespace and
90      //   class member names.
91      return S->Diag(DRE->getLocStart(),
92                     diag::err_param_default_argument_references_param)
93         << Param->getDeclName() << DefaultArg->getSourceRange();
94    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
95      // C++ [dcl.fct.default]p7
96      //   Local variables shall not be used in default argument
97      //   expressions.
98      if (VDecl->isLocalVarDecl())
99        return S->Diag(DRE->getLocStart(),
100                       diag::err_param_default_argument_references_local)
101          << VDecl->getDeclName() << DefaultArg->getSourceRange();
102    }
103
104    return false;
105  }
106
107  /// VisitCXXThisExpr - Visit a C++ "this" expression.
108  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
109    // C++ [dcl.fct.default]p8:
110    //   The keyword this shall not be used in a default argument of a
111    //   member function.
112    return S->Diag(ThisE->getLocStart(),
113                   diag::err_param_default_argument_references_this)
114               << ThisE->getSourceRange();
115  }
116
117  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
118    // C++11 [expr.lambda.prim]p13:
119    //   A lambda-expression appearing in a default argument shall not
120    //   implicitly or explicitly capture any entity.
121    if (Lambda->capture_begin() == Lambda->capture_end())
122      return false;
123
124    return S->Diag(Lambda->getLocStart(),
125                   diag::err_lambda_capture_default_arg);
126  }
127}
128
129void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
130                                                      CXXMethodDecl *Method) {
131  // If we have an MSAny spec already, don't bother.
132  if (!Method || ComputedEST == EST_MSAny)
133    return;
134
135  const FunctionProtoType *Proto
136    = Method->getType()->getAs<FunctionProtoType>();
137  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
138  if (!Proto)
139    return;
140
141  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
142
143  // If this function can throw any exceptions, make a note of that.
144  if (EST == EST_MSAny || EST == EST_None) {
145    ClearExceptions();
146    ComputedEST = EST;
147    return;
148  }
149
150  // FIXME: If the call to this decl is using any of its default arguments, we
151  // need to search them for potentially-throwing calls.
152
153  // If this function has a basic noexcept, it doesn't affect the outcome.
154  if (EST == EST_BasicNoexcept)
155    return;
156
157  // If we have a throw-all spec at this point, ignore the function.
158  if (ComputedEST == EST_None)
159    return;
160
161  // If we're still at noexcept(true) and there's a nothrow() callee,
162  // change to that specification.
163  if (EST == EST_DynamicNone) {
164    if (ComputedEST == EST_BasicNoexcept)
165      ComputedEST = EST_DynamicNone;
166    return;
167  }
168
169  // Check out noexcept specs.
170  if (EST == EST_ComputedNoexcept) {
171    FunctionProtoType::NoexceptResult NR =
172        Proto->getNoexceptSpec(Self->Context);
173    assert(NR != FunctionProtoType::NR_NoNoexcept &&
174           "Must have noexcept result for EST_ComputedNoexcept.");
175    assert(NR != FunctionProtoType::NR_Dependent &&
176           "Should not generate implicit declarations for dependent cases, "
177           "and don't know how to handle them anyway.");
178
179    // noexcept(false) -> no spec on the new function
180    if (NR == FunctionProtoType::NR_Throw) {
181      ClearExceptions();
182      ComputedEST = EST_None;
183    }
184    // noexcept(true) won't change anything either.
185    return;
186  }
187
188  assert(EST == EST_Dynamic && "EST case not considered earlier.");
189  assert(ComputedEST != EST_None &&
190         "Shouldn't collect exceptions when throw-all is guaranteed.");
191  ComputedEST = EST_Dynamic;
192  // Record the exceptions in this function's exception specification.
193  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
194                                          EEnd = Proto->exception_end();
195       E != EEnd; ++E)
196    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
197      Exceptions.push_back(*E);
198}
199
200void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
201  if (!E || ComputedEST == EST_MSAny)
202    return;
203
204  // FIXME:
205  //
206  // C++0x [except.spec]p14:
207  //   [An] implicit exception-specification specifies the type-id T if and
208  // only if T is allowed by the exception-specification of a function directly
209  // invoked by f's implicit definition; f shall allow all exceptions if any
210  // function it directly invokes allows all exceptions, and f shall allow no
211  // exceptions if every function it directly invokes allows no exceptions.
212  //
213  // Note in particular that if an implicit exception-specification is generated
214  // for a function containing a throw-expression, that specification can still
215  // be noexcept(true).
216  //
217  // Note also that 'directly invoked' is not defined in the standard, and there
218  // is no indication that we should only consider potentially-evaluated calls.
219  //
220  // Ultimately we should implement the intent of the standard: the exception
221  // specification should be the set of exceptions which can be thrown by the
222  // implicit definition. For now, we assume that any non-nothrow expression can
223  // throw any exception.
224
225  if (Self->canThrow(E))
226    ComputedEST = EST_None;
227}
228
229bool
230Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
231                              SourceLocation EqualLoc) {
232  if (RequireCompleteType(Param->getLocation(), Param->getType(),
233                          diag::err_typecheck_decl_incomplete_type)) {
234    Param->setInvalidDecl();
235    return true;
236  }
237
238  // C++ [dcl.fct.default]p5
239  //   A default argument expression is implicitly converted (clause
240  //   4) to the parameter type. The default argument expression has
241  //   the same semantic constraints as the initializer expression in
242  //   a declaration of a variable of the parameter type, using the
243  //   copy-initialization semantics (8.5).
244  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
245                                                                    Param);
246  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
247                                                           EqualLoc);
248  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
249  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
250                                      MultiExprArg(*this, &Arg, 1));
251  if (Result.isInvalid())
252    return true;
253  Arg = Result.takeAs<Expr>();
254
255  CheckImplicitConversions(Arg, EqualLoc);
256  Arg = MaybeCreateExprWithCleanups(Arg);
257
258  // Okay: add the default argument to the parameter
259  Param->setDefaultArg(Arg);
260
261  // We have already instantiated this parameter; provide each of the
262  // instantiations with the uninstantiated default argument.
263  UnparsedDefaultArgInstantiationsMap::iterator InstPos
264    = UnparsedDefaultArgInstantiations.find(Param);
265  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
266    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
267      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
268
269    // We're done tracking this parameter's instantiations.
270    UnparsedDefaultArgInstantiations.erase(InstPos);
271  }
272
273  return false;
274}
275
276/// ActOnParamDefaultArgument - Check whether the default argument
277/// provided for a function parameter is well-formed. If so, attach it
278/// to the parameter declaration.
279void
280Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
281                                Expr *DefaultArg) {
282  if (!param || !DefaultArg)
283    return;
284
285  ParmVarDecl *Param = cast<ParmVarDecl>(param);
286  UnparsedDefaultArgLocs.erase(Param);
287
288  // Default arguments are only permitted in C++
289  if (!getLangOpts().CPlusPlus) {
290    Diag(EqualLoc, diag::err_param_default_argument)
291      << DefaultArg->getSourceRange();
292    Param->setInvalidDecl();
293    return;
294  }
295
296  // Check for unexpanded parameter packs.
297  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
298    Param->setInvalidDecl();
299    return;
300  }
301
302  // Check that the default argument is well-formed
303  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
304  if (DefaultArgChecker.Visit(DefaultArg)) {
305    Param->setInvalidDecl();
306    return;
307  }
308
309  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
310}
311
312/// ActOnParamUnparsedDefaultArgument - We've seen a default
313/// argument for a function parameter, but we can't parse it yet
314/// because we're inside a class definition. Note that this default
315/// argument will be parsed later.
316void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
317                                             SourceLocation EqualLoc,
318                                             SourceLocation ArgLoc) {
319  if (!param)
320    return;
321
322  ParmVarDecl *Param = cast<ParmVarDecl>(param);
323  if (Param)
324    Param->setUnparsedDefaultArg();
325
326  UnparsedDefaultArgLocs[Param] = ArgLoc;
327}
328
329/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
330/// the default argument for the parameter param failed.
331void Sema::ActOnParamDefaultArgumentError(Decl *param) {
332  if (!param)
333    return;
334
335  ParmVarDecl *Param = cast<ParmVarDecl>(param);
336
337  Param->setInvalidDecl();
338
339  UnparsedDefaultArgLocs.erase(Param);
340}
341
342/// CheckExtraCXXDefaultArguments - Check for any extra default
343/// arguments in the declarator, which is not a function declaration
344/// or definition and therefore is not permitted to have default
345/// arguments. This routine should be invoked for every declarator
346/// that is not a function declaration or definition.
347void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
348  // C++ [dcl.fct.default]p3
349  //   A default argument expression shall be specified only in the
350  //   parameter-declaration-clause of a function declaration or in a
351  //   template-parameter (14.1). It shall not be specified for a
352  //   parameter pack. If it is specified in a
353  //   parameter-declaration-clause, it shall not occur within a
354  //   declarator or abstract-declarator of a parameter-declaration.
355  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
356    DeclaratorChunk &chunk = D.getTypeObject(i);
357    if (chunk.Kind == DeclaratorChunk::Function) {
358      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
359        ParmVarDecl *Param =
360          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
361        if (Param->hasUnparsedDefaultArg()) {
362          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
363          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
364            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
365          delete Toks;
366          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
367        } else if (Param->getDefaultArg()) {
368          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
369            << Param->getDefaultArg()->getSourceRange();
370          Param->setDefaultArg(0);
371        }
372      }
373    }
374  }
375}
376
377// MergeCXXFunctionDecl - Merge two declarations of the same C++
378// function, once we already know that they have the same
379// type. Subroutine of MergeFunctionDecl. Returns true if there was an
380// error, false otherwise.
381bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
382                                Scope *S) {
383  bool Invalid = false;
384
385  // C++ [dcl.fct.default]p4:
386  //   For non-template functions, default arguments can be added in
387  //   later declarations of a function in the same
388  //   scope. Declarations in different scopes have completely
389  //   distinct sets of default arguments. That is, declarations in
390  //   inner scopes do not acquire default arguments from
391  //   declarations in outer scopes, and vice versa. In a given
392  //   function declaration, all parameters subsequent to a
393  //   parameter with a default argument shall have default
394  //   arguments supplied in this or previous declarations. A
395  //   default argument shall not be redefined by a later
396  //   declaration (not even to the same value).
397  //
398  // C++ [dcl.fct.default]p6:
399  //   Except for member functions of class templates, the default arguments
400  //   in a member function definition that appears outside of the class
401  //   definition are added to the set of default arguments provided by the
402  //   member function declaration in the class definition.
403  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
404    ParmVarDecl *OldParam = Old->getParamDecl(p);
405    ParmVarDecl *NewParam = New->getParamDecl(p);
406
407    bool OldParamHasDfl = OldParam->hasDefaultArg();
408    bool NewParamHasDfl = NewParam->hasDefaultArg();
409
410    NamedDecl *ND = Old;
411    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
412      // Ignore default parameters of old decl if they are not in
413      // the same scope.
414      OldParamHasDfl = false;
415
416    if (OldParamHasDfl && NewParamHasDfl) {
417
418      unsigned DiagDefaultParamID =
419        diag::err_param_default_argument_redefinition;
420
421      // MSVC accepts that default parameters be redefined for member functions
422      // of template class. The new default parameter's value is ignored.
423      Invalid = true;
424      if (getLangOpts().MicrosoftExt) {
425        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
426        if (MD && MD->getParent()->getDescribedClassTemplate()) {
427          // Merge the old default argument into the new parameter.
428          NewParam->setHasInheritedDefaultArg();
429          if (OldParam->hasUninstantiatedDefaultArg())
430            NewParam->setUninstantiatedDefaultArg(
431                                      OldParam->getUninstantiatedDefaultArg());
432          else
433            NewParam->setDefaultArg(OldParam->getInit());
434          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
435          Invalid = false;
436        }
437      }
438
439      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
440      // hint here. Alternatively, we could walk the type-source information
441      // for NewParam to find the last source location in the type... but it
442      // isn't worth the effort right now. This is the kind of test case that
443      // is hard to get right:
444      //   int f(int);
445      //   void g(int (*fp)(int) = f);
446      //   void g(int (*fp)(int) = &f);
447      Diag(NewParam->getLocation(), DiagDefaultParamID)
448        << NewParam->getDefaultArgRange();
449
450      // Look for the function declaration where the default argument was
451      // actually written, which may be a declaration prior to Old.
452      for (FunctionDecl *Older = Old->getPreviousDecl();
453           Older; Older = Older->getPreviousDecl()) {
454        if (!Older->getParamDecl(p)->hasDefaultArg())
455          break;
456
457        OldParam = Older->getParamDecl(p);
458      }
459
460      Diag(OldParam->getLocation(), diag::note_previous_definition)
461        << OldParam->getDefaultArgRange();
462    } else if (OldParamHasDfl) {
463      // Merge the old default argument into the new parameter.
464      // It's important to use getInit() here;  getDefaultArg()
465      // strips off any top-level ExprWithCleanups.
466      NewParam->setHasInheritedDefaultArg();
467      if (OldParam->hasUninstantiatedDefaultArg())
468        NewParam->setUninstantiatedDefaultArg(
469                                      OldParam->getUninstantiatedDefaultArg());
470      else
471        NewParam->setDefaultArg(OldParam->getInit());
472    } else if (NewParamHasDfl) {
473      if (New->getDescribedFunctionTemplate()) {
474        // Paragraph 4, quoted above, only applies to non-template functions.
475        Diag(NewParam->getLocation(),
476             diag::err_param_default_argument_template_redecl)
477          << NewParam->getDefaultArgRange();
478        Diag(Old->getLocation(), diag::note_template_prev_declaration)
479          << false;
480      } else if (New->getTemplateSpecializationKind()
481                   != TSK_ImplicitInstantiation &&
482                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
483        // C++ [temp.expr.spec]p21:
484        //   Default function arguments shall not be specified in a declaration
485        //   or a definition for one of the following explicit specializations:
486        //     - the explicit specialization of a function template;
487        //     - the explicit specialization of a member function template;
488        //     - the explicit specialization of a member function of a class
489        //       template where the class template specialization to which the
490        //       member function specialization belongs is implicitly
491        //       instantiated.
492        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
493          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
494          << New->getDeclName()
495          << NewParam->getDefaultArgRange();
496      } else if (New->getDeclContext()->isDependentContext()) {
497        // C++ [dcl.fct.default]p6 (DR217):
498        //   Default arguments for a member function of a class template shall
499        //   be specified on the initial declaration of the member function
500        //   within the class template.
501        //
502        // Reading the tea leaves a bit in DR217 and its reference to DR205
503        // leads me to the conclusion that one cannot add default function
504        // arguments for an out-of-line definition of a member function of a
505        // dependent type.
506        int WhichKind = 2;
507        if (CXXRecordDecl *Record
508              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
509          if (Record->getDescribedClassTemplate())
510            WhichKind = 0;
511          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
512            WhichKind = 1;
513          else
514            WhichKind = 2;
515        }
516
517        Diag(NewParam->getLocation(),
518             diag::err_param_default_argument_member_template_redecl)
519          << WhichKind
520          << NewParam->getDefaultArgRange();
521      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
522        CXXSpecialMember NewSM = getSpecialMember(Ctor),
523                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
524        if (NewSM != OldSM) {
525          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
526            << NewParam->getDefaultArgRange() << NewSM;
527          Diag(Old->getLocation(), diag::note_previous_declaration_special)
528            << OldSM;
529        }
530      }
531    }
532  }
533
534  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
535  // template has a constexpr specifier then all its declarations shall
536  // contain the constexpr specifier.
537  if (New->isConstexpr() != Old->isConstexpr()) {
538    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
539      << New << New->isConstexpr();
540    Diag(Old->getLocation(), diag::note_previous_declaration);
541    Invalid = true;
542  }
543
544  if (CheckEquivalentExceptionSpec(Old, New))
545    Invalid = true;
546
547  return Invalid;
548}
549
550/// \brief Merge the exception specifications of two variable declarations.
551///
552/// This is called when there's a redeclaration of a VarDecl. The function
553/// checks if the redeclaration might have an exception specification and
554/// validates compatibility and merges the specs if necessary.
555void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
556  // Shortcut if exceptions are disabled.
557  if (!getLangOpts().CXXExceptions)
558    return;
559
560  assert(Context.hasSameType(New->getType(), Old->getType()) &&
561         "Should only be called if types are otherwise the same.");
562
563  QualType NewType = New->getType();
564  QualType OldType = Old->getType();
565
566  // We're only interested in pointers and references to functions, as well
567  // as pointers to member functions.
568  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
569    NewType = R->getPointeeType();
570    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
571  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
572    NewType = P->getPointeeType();
573    OldType = OldType->getAs<PointerType>()->getPointeeType();
574  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
575    NewType = M->getPointeeType();
576    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
577  }
578
579  if (!NewType->isFunctionProtoType())
580    return;
581
582  // There's lots of special cases for functions. For function pointers, system
583  // libraries are hopefully not as broken so that we don't need these
584  // workarounds.
585  if (CheckEquivalentExceptionSpec(
586        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
587        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
588    New->setInvalidDecl();
589  }
590}
591
592/// CheckCXXDefaultArguments - Verify that the default arguments for a
593/// function declaration are well-formed according to C++
594/// [dcl.fct.default].
595void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
596  unsigned NumParams = FD->getNumParams();
597  unsigned p;
598
599  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
600                  isa<CXXMethodDecl>(FD) &&
601                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
602
603  // Find first parameter with a default argument
604  for (p = 0; p < NumParams; ++p) {
605    ParmVarDecl *Param = FD->getParamDecl(p);
606    if (Param->hasDefaultArg()) {
607      // C++11 [expr.prim.lambda]p5:
608      //   [...] Default arguments (8.3.6) shall not be specified in the
609      //   parameter-declaration-clause of a lambda-declarator.
610      //
611      // FIXME: Core issue 974 strikes this sentence, we only provide an
612      // extension warning.
613      if (IsLambda)
614        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
615          << Param->getDefaultArgRange();
616      break;
617    }
618  }
619
620  // C++ [dcl.fct.default]p4:
621  //   In a given function declaration, all parameters
622  //   subsequent to a parameter with a default argument shall
623  //   have default arguments supplied in this or previous
624  //   declarations. A default argument shall not be redefined
625  //   by a later declaration (not even to the same value).
626  unsigned LastMissingDefaultArg = 0;
627  for (; p < NumParams; ++p) {
628    ParmVarDecl *Param = FD->getParamDecl(p);
629    if (!Param->hasDefaultArg()) {
630      if (Param->isInvalidDecl())
631        /* We already complained about this parameter. */;
632      else if (Param->getIdentifier())
633        Diag(Param->getLocation(),
634             diag::err_param_default_argument_missing_name)
635          << Param->getIdentifier();
636      else
637        Diag(Param->getLocation(),
638             diag::err_param_default_argument_missing);
639
640      LastMissingDefaultArg = p;
641    }
642  }
643
644  if (LastMissingDefaultArg > 0) {
645    // Some default arguments were missing. Clear out all of the
646    // default arguments up to (and including) the last missing
647    // default argument, so that we leave the function parameters
648    // in a semantically valid state.
649    for (p = 0; p <= LastMissingDefaultArg; ++p) {
650      ParmVarDecl *Param = FD->getParamDecl(p);
651      if (Param->hasDefaultArg()) {
652        Param->setDefaultArg(0);
653      }
654    }
655  }
656}
657
658// CheckConstexprParameterTypes - Check whether a function's parameter types
659// are all literal types. If so, return true. If not, produce a suitable
660// diagnostic and return false.
661static bool CheckConstexprParameterTypes(Sema &SemaRef,
662                                         const FunctionDecl *FD) {
663  unsigned ArgIndex = 0;
664  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
665  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
666       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
667    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
668    SourceLocation ParamLoc = PD->getLocation();
669    if (!(*i)->isDependentType() &&
670        SemaRef.RequireLiteralType(ParamLoc, *i,
671                                   diag::err_constexpr_non_literal_param,
672                                   ArgIndex+1, PD->getSourceRange(),
673                                   isa<CXXConstructorDecl>(FD)))
674      return false;
675  }
676  return true;
677}
678
679// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
680// the requirements of a constexpr function definition or a constexpr
681// constructor definition. If so, return true. If not, produce appropriate
682// diagnostics and return false.
683//
684// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
685bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
686  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
687  if (MD && MD->isInstance()) {
688    // C++11 [dcl.constexpr]p4:
689    //  The definition of a constexpr constructor shall satisfy the following
690    //  constraints:
691    //  - the class shall not have any virtual base classes;
692    const CXXRecordDecl *RD = MD->getParent();
693    if (RD->getNumVBases()) {
694      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
695        << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
696        << RD->getNumVBases();
697      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
698             E = RD->vbases_end(); I != E; ++I)
699        Diag(I->getLocStart(),
700             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
701      return false;
702    }
703  }
704
705  if (!isa<CXXConstructorDecl>(NewFD)) {
706    // C++11 [dcl.constexpr]p3:
707    //  The definition of a constexpr function shall satisfy the following
708    //  constraints:
709    // - it shall not be virtual;
710    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
711    if (Method && Method->isVirtual()) {
712      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
713
714      // If it's not obvious why this function is virtual, find an overridden
715      // function which uses the 'virtual' keyword.
716      const CXXMethodDecl *WrittenVirtual = Method;
717      while (!WrittenVirtual->isVirtualAsWritten())
718        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
719      if (WrittenVirtual != Method)
720        Diag(WrittenVirtual->getLocation(),
721             diag::note_overridden_virtual_function);
722      return false;
723    }
724
725    // - its return type shall be a literal type;
726    QualType RT = NewFD->getResultType();
727    if (!RT->isDependentType() &&
728        RequireLiteralType(NewFD->getLocation(), RT,
729                           diag::err_constexpr_non_literal_return))
730      return false;
731  }
732
733  // - each of its parameter types shall be a literal type;
734  if (!CheckConstexprParameterTypes(*this, NewFD))
735    return false;
736
737  return true;
738}
739
740/// Check the given declaration statement is legal within a constexpr function
741/// body. C++0x [dcl.constexpr]p3,p4.
742///
743/// \return true if the body is OK, false if we have diagnosed a problem.
744static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
745                                   DeclStmt *DS) {
746  // C++0x [dcl.constexpr]p3 and p4:
747  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
748  //  contain only
749  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
750         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
751    switch ((*DclIt)->getKind()) {
752    case Decl::StaticAssert:
753    case Decl::Using:
754    case Decl::UsingShadow:
755    case Decl::UsingDirective:
756    case Decl::UnresolvedUsingTypename:
757      //   - static_assert-declarations
758      //   - using-declarations,
759      //   - using-directives,
760      continue;
761
762    case Decl::Typedef:
763    case Decl::TypeAlias: {
764      //   - typedef declarations and alias-declarations that do not define
765      //     classes or enumerations,
766      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
767      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
768        // Don't allow variably-modified types in constexpr functions.
769        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
770        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
771          << TL.getSourceRange() << TL.getType()
772          << isa<CXXConstructorDecl>(Dcl);
773        return false;
774      }
775      continue;
776    }
777
778    case Decl::Enum:
779    case Decl::CXXRecord:
780      // As an extension, we allow the declaration (but not the definition) of
781      // classes and enumerations in all declarations, not just in typedef and
782      // alias declarations.
783      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
784        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
785          << isa<CXXConstructorDecl>(Dcl);
786        return false;
787      }
788      continue;
789
790    case Decl::Var:
791      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
792        << isa<CXXConstructorDecl>(Dcl);
793      return false;
794
795    default:
796      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
797        << isa<CXXConstructorDecl>(Dcl);
798      return false;
799    }
800  }
801
802  return true;
803}
804
805/// Check that the given field is initialized within a constexpr constructor.
806///
807/// \param Dcl The constexpr constructor being checked.
808/// \param Field The field being checked. This may be a member of an anonymous
809///        struct or union nested within the class being checked.
810/// \param Inits All declarations, including anonymous struct/union members and
811///        indirect members, for which any initialization was provided.
812/// \param Diagnosed Set to true if an error is produced.
813static void CheckConstexprCtorInitializer(Sema &SemaRef,
814                                          const FunctionDecl *Dcl,
815                                          FieldDecl *Field,
816                                          llvm::SmallSet<Decl*, 16> &Inits,
817                                          bool &Diagnosed) {
818  if (Field->isUnnamedBitfield())
819    return;
820
821  if (Field->isAnonymousStructOrUnion() &&
822      Field->getType()->getAsCXXRecordDecl()->isEmpty())
823    return;
824
825  if (!Inits.count(Field)) {
826    if (!Diagnosed) {
827      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
828      Diagnosed = true;
829    }
830    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
831  } else if (Field->isAnonymousStructOrUnion()) {
832    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
833    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
834         I != E; ++I)
835      // If an anonymous union contains an anonymous struct of which any member
836      // is initialized, all members must be initialized.
837      if (!RD->isUnion() || Inits.count(*I))
838        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
839  }
840}
841
842/// Check the body for the given constexpr function declaration only contains
843/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
844///
845/// \return true if the body is OK, false if we have diagnosed a problem.
846bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
847  if (isa<CXXTryStmt>(Body)) {
848    // C++11 [dcl.constexpr]p3:
849    //  The definition of a constexpr function shall satisfy the following
850    //  constraints: [...]
851    // - its function-body shall be = delete, = default, or a
852    //   compound-statement
853    //
854    // C++11 [dcl.constexpr]p4:
855    //  In the definition of a constexpr constructor, [...]
856    // - its function-body shall not be a function-try-block;
857    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
858      << isa<CXXConstructorDecl>(Dcl);
859    return false;
860  }
861
862  // - its function-body shall be [...] a compound-statement that contains only
863  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
864
865  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
866  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
867         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
868    switch ((*BodyIt)->getStmtClass()) {
869    case Stmt::NullStmtClass:
870      //   - null statements,
871      continue;
872
873    case Stmt::DeclStmtClass:
874      //   - static_assert-declarations
875      //   - using-declarations,
876      //   - using-directives,
877      //   - typedef declarations and alias-declarations that do not define
878      //     classes or enumerations,
879      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
880        return false;
881      continue;
882
883    case Stmt::ReturnStmtClass:
884      //   - and exactly one return statement;
885      if (isa<CXXConstructorDecl>(Dcl))
886        break;
887
888      ReturnStmts.push_back((*BodyIt)->getLocStart());
889      continue;
890
891    default:
892      break;
893    }
894
895    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
896      << isa<CXXConstructorDecl>(Dcl);
897    return false;
898  }
899
900  if (const CXXConstructorDecl *Constructor
901        = dyn_cast<CXXConstructorDecl>(Dcl)) {
902    const CXXRecordDecl *RD = Constructor->getParent();
903    // DR1359:
904    // - every non-variant non-static data member and base class sub-object
905    //   shall be initialized;
906    // - if the class is a non-empty union, or for each non-empty anonymous
907    //   union member of a non-union class, exactly one non-static data member
908    //   shall be initialized;
909    if (RD->isUnion()) {
910      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
911        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
912        return false;
913      }
914    } else if (!Constructor->isDependentContext() &&
915               !Constructor->isDelegatingConstructor()) {
916      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
917
918      // Skip detailed checking if we have enough initializers, and we would
919      // allow at most one initializer per member.
920      bool AnyAnonStructUnionMembers = false;
921      unsigned Fields = 0;
922      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
923           E = RD->field_end(); I != E; ++I, ++Fields) {
924        if (I->isAnonymousStructOrUnion()) {
925          AnyAnonStructUnionMembers = true;
926          break;
927        }
928      }
929      if (AnyAnonStructUnionMembers ||
930          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
931        // Check initialization of non-static data members. Base classes are
932        // always initialized so do not need to be checked. Dependent bases
933        // might not have initializers in the member initializer list.
934        llvm::SmallSet<Decl*, 16> Inits;
935        for (CXXConstructorDecl::init_const_iterator
936               I = Constructor->init_begin(), E = Constructor->init_end();
937             I != E; ++I) {
938          if (FieldDecl *FD = (*I)->getMember())
939            Inits.insert(FD);
940          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
941            Inits.insert(ID->chain_begin(), ID->chain_end());
942        }
943
944        bool Diagnosed = false;
945        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
946             E = RD->field_end(); I != E; ++I)
947          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
948        if (Diagnosed)
949          return false;
950      }
951    }
952  } else {
953    if (ReturnStmts.empty()) {
954      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
955      return false;
956    }
957    if (ReturnStmts.size() > 1) {
958      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
959      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
960        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
961      return false;
962    }
963  }
964
965  // C++11 [dcl.constexpr]p5:
966  //   if no function argument values exist such that the function invocation
967  //   substitution would produce a constant expression, the program is
968  //   ill-formed; no diagnostic required.
969  // C++11 [dcl.constexpr]p3:
970  //   - every constructor call and implicit conversion used in initializing the
971  //     return value shall be one of those allowed in a constant expression.
972  // C++11 [dcl.constexpr]p4:
973  //   - every constructor involved in initializing non-static data members and
974  //     base class sub-objects shall be a constexpr constructor.
975  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
976  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
977    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
978      << isa<CXXConstructorDecl>(Dcl);
979    for (size_t I = 0, N = Diags.size(); I != N; ++I)
980      Diag(Diags[I].first, Diags[I].second);
981    return false;
982  }
983
984  return true;
985}
986
987/// isCurrentClassName - Determine whether the identifier II is the
988/// name of the class type currently being defined. In the case of
989/// nested classes, this will only return true if II is the name of
990/// the innermost class.
991bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
992                              const CXXScopeSpec *SS) {
993  assert(getLangOpts().CPlusPlus && "No class names in C!");
994
995  CXXRecordDecl *CurDecl;
996  if (SS && SS->isSet() && !SS->isInvalid()) {
997    DeclContext *DC = computeDeclContext(*SS, true);
998    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
999  } else
1000    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1001
1002  if (CurDecl && CurDecl->getIdentifier())
1003    return &II == CurDecl->getIdentifier();
1004  else
1005    return false;
1006}
1007
1008/// \brief Check the validity of a C++ base class specifier.
1009///
1010/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1011/// and returns NULL otherwise.
1012CXXBaseSpecifier *
1013Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1014                         SourceRange SpecifierRange,
1015                         bool Virtual, AccessSpecifier Access,
1016                         TypeSourceInfo *TInfo,
1017                         SourceLocation EllipsisLoc) {
1018  QualType BaseType = TInfo->getType();
1019
1020  // C++ [class.union]p1:
1021  //   A union shall not have base classes.
1022  if (Class->isUnion()) {
1023    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1024      << SpecifierRange;
1025    return 0;
1026  }
1027
1028  if (EllipsisLoc.isValid() &&
1029      !TInfo->getType()->containsUnexpandedParameterPack()) {
1030    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1031      << TInfo->getTypeLoc().getSourceRange();
1032    EllipsisLoc = SourceLocation();
1033  }
1034
1035  if (BaseType->isDependentType())
1036    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1037                                          Class->getTagKind() == TTK_Class,
1038                                          Access, TInfo, EllipsisLoc);
1039
1040  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1041
1042  // Base specifiers must be record types.
1043  if (!BaseType->isRecordType()) {
1044    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1045    return 0;
1046  }
1047
1048  // C++ [class.union]p1:
1049  //   A union shall not be used as a base class.
1050  if (BaseType->isUnionType()) {
1051    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1052    return 0;
1053  }
1054
1055  // C++ [class.derived]p2:
1056  //   The class-name in a base-specifier shall not be an incompletely
1057  //   defined class.
1058  if (RequireCompleteType(BaseLoc, BaseType,
1059                          diag::err_incomplete_base_class, SpecifierRange)) {
1060    Class->setInvalidDecl();
1061    return 0;
1062  }
1063
1064  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1065  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1066  assert(BaseDecl && "Record type has no declaration");
1067  BaseDecl = BaseDecl->getDefinition();
1068  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1069  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1070  assert(CXXBaseDecl && "Base type is not a C++ type");
1071
1072  // C++ [class]p3:
1073  //   If a class is marked final and it appears as a base-type-specifier in
1074  //   base-clause, the program is ill-formed.
1075  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1076    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1077      << CXXBaseDecl->getDeclName();
1078    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1079      << CXXBaseDecl->getDeclName();
1080    return 0;
1081  }
1082
1083  if (BaseDecl->isInvalidDecl())
1084    Class->setInvalidDecl();
1085
1086  // Create the base specifier.
1087  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1088                                        Class->getTagKind() == TTK_Class,
1089                                        Access, TInfo, EllipsisLoc);
1090}
1091
1092/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1093/// one entry in the base class list of a class specifier, for
1094/// example:
1095///    class foo : public bar, virtual private baz {
1096/// 'public bar' and 'virtual private baz' are each base-specifiers.
1097BaseResult
1098Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1099                         bool Virtual, AccessSpecifier Access,
1100                         ParsedType basetype, SourceLocation BaseLoc,
1101                         SourceLocation EllipsisLoc) {
1102  if (!classdecl)
1103    return true;
1104
1105  AdjustDeclIfTemplate(classdecl);
1106  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1107  if (!Class)
1108    return true;
1109
1110  TypeSourceInfo *TInfo = 0;
1111  GetTypeFromParser(basetype, &TInfo);
1112
1113  if (EllipsisLoc.isInvalid() &&
1114      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1115                                      UPPC_BaseType))
1116    return true;
1117
1118  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1119                                                      Virtual, Access, TInfo,
1120                                                      EllipsisLoc))
1121    return BaseSpec;
1122  else
1123    Class->setInvalidDecl();
1124
1125  return true;
1126}
1127
1128/// \brief Performs the actual work of attaching the given base class
1129/// specifiers to a C++ class.
1130bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1131                                unsigned NumBases) {
1132 if (NumBases == 0)
1133    return false;
1134
1135  // Used to keep track of which base types we have already seen, so
1136  // that we can properly diagnose redundant direct base types. Note
1137  // that the key is always the unqualified canonical type of the base
1138  // class.
1139  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1140
1141  // Copy non-redundant base specifiers into permanent storage.
1142  unsigned NumGoodBases = 0;
1143  bool Invalid = false;
1144  for (unsigned idx = 0; idx < NumBases; ++idx) {
1145    QualType NewBaseType
1146      = Context.getCanonicalType(Bases[idx]->getType());
1147    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1148
1149    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1150    if (KnownBase) {
1151      // C++ [class.mi]p3:
1152      //   A class shall not be specified as a direct base class of a
1153      //   derived class more than once.
1154      Diag(Bases[idx]->getLocStart(),
1155           diag::err_duplicate_base_class)
1156        << KnownBase->getType()
1157        << Bases[idx]->getSourceRange();
1158
1159      // Delete the duplicate base class specifier; we're going to
1160      // overwrite its pointer later.
1161      Context.Deallocate(Bases[idx]);
1162
1163      Invalid = true;
1164    } else {
1165      // Okay, add this new base class.
1166      KnownBase = Bases[idx];
1167      Bases[NumGoodBases++] = Bases[idx];
1168      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1169        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1170          if (RD->hasAttr<WeakAttr>())
1171            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1172    }
1173  }
1174
1175  // Attach the remaining base class specifiers to the derived class.
1176  Class->setBases(Bases, NumGoodBases);
1177
1178  // Delete the remaining (good) base class specifiers, since their
1179  // data has been copied into the CXXRecordDecl.
1180  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1181    Context.Deallocate(Bases[idx]);
1182
1183  return Invalid;
1184}
1185
1186/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1187/// class, after checking whether there are any duplicate base
1188/// classes.
1189void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1190                               unsigned NumBases) {
1191  if (!ClassDecl || !Bases || !NumBases)
1192    return;
1193
1194  AdjustDeclIfTemplate(ClassDecl);
1195  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1196                       (CXXBaseSpecifier**)(Bases), NumBases);
1197}
1198
1199static CXXRecordDecl *GetClassForType(QualType T) {
1200  if (const RecordType *RT = T->getAs<RecordType>())
1201    return cast<CXXRecordDecl>(RT->getDecl());
1202  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1203    return ICT->getDecl();
1204  else
1205    return 0;
1206}
1207
1208/// \brief Determine whether the type \p Derived is a C++ class that is
1209/// derived from the type \p Base.
1210bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1211  if (!getLangOpts().CPlusPlus)
1212    return false;
1213
1214  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1215  if (!DerivedRD)
1216    return false;
1217
1218  CXXRecordDecl *BaseRD = GetClassForType(Base);
1219  if (!BaseRD)
1220    return false;
1221
1222  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1223  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1224}
1225
1226/// \brief Determine whether the type \p Derived is a C++ class that is
1227/// derived from the type \p Base.
1228bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1229  if (!getLangOpts().CPlusPlus)
1230    return false;
1231
1232  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1233  if (!DerivedRD)
1234    return false;
1235
1236  CXXRecordDecl *BaseRD = GetClassForType(Base);
1237  if (!BaseRD)
1238    return false;
1239
1240  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1241}
1242
1243void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1244                              CXXCastPath &BasePathArray) {
1245  assert(BasePathArray.empty() && "Base path array must be empty!");
1246  assert(Paths.isRecordingPaths() && "Must record paths!");
1247
1248  const CXXBasePath &Path = Paths.front();
1249
1250  // We first go backward and check if we have a virtual base.
1251  // FIXME: It would be better if CXXBasePath had the base specifier for
1252  // the nearest virtual base.
1253  unsigned Start = 0;
1254  for (unsigned I = Path.size(); I != 0; --I) {
1255    if (Path[I - 1].Base->isVirtual()) {
1256      Start = I - 1;
1257      break;
1258    }
1259  }
1260
1261  // Now add all bases.
1262  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1263    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1264}
1265
1266/// \brief Determine whether the given base path includes a virtual
1267/// base class.
1268bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1269  for (CXXCastPath::const_iterator B = BasePath.begin(),
1270                                BEnd = BasePath.end();
1271       B != BEnd; ++B)
1272    if ((*B)->isVirtual())
1273      return true;
1274
1275  return false;
1276}
1277
1278/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1279/// conversion (where Derived and Base are class types) is
1280/// well-formed, meaning that the conversion is unambiguous (and
1281/// that all of the base classes are accessible). Returns true
1282/// and emits a diagnostic if the code is ill-formed, returns false
1283/// otherwise. Loc is the location where this routine should point to
1284/// if there is an error, and Range is the source range to highlight
1285/// if there is an error.
1286bool
1287Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1288                                   unsigned InaccessibleBaseID,
1289                                   unsigned AmbigiousBaseConvID,
1290                                   SourceLocation Loc, SourceRange Range,
1291                                   DeclarationName Name,
1292                                   CXXCastPath *BasePath) {
1293  // First, determine whether the path from Derived to Base is
1294  // ambiguous. This is slightly more expensive than checking whether
1295  // the Derived to Base conversion exists, because here we need to
1296  // explore multiple paths to determine if there is an ambiguity.
1297  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1298                     /*DetectVirtual=*/false);
1299  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1300  assert(DerivationOkay &&
1301         "Can only be used with a derived-to-base conversion");
1302  (void)DerivationOkay;
1303
1304  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1305    if (InaccessibleBaseID) {
1306      // Check that the base class can be accessed.
1307      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1308                                   InaccessibleBaseID)) {
1309        case AR_inaccessible:
1310          return true;
1311        case AR_accessible:
1312        case AR_dependent:
1313        case AR_delayed:
1314          break;
1315      }
1316    }
1317
1318    // Build a base path if necessary.
1319    if (BasePath)
1320      BuildBasePathArray(Paths, *BasePath);
1321    return false;
1322  }
1323
1324  // We know that the derived-to-base conversion is ambiguous, and
1325  // we're going to produce a diagnostic. Perform the derived-to-base
1326  // search just one more time to compute all of the possible paths so
1327  // that we can print them out. This is more expensive than any of
1328  // the previous derived-to-base checks we've done, but at this point
1329  // performance isn't as much of an issue.
1330  Paths.clear();
1331  Paths.setRecordingPaths(true);
1332  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1333  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1334  (void)StillOkay;
1335
1336  // Build up a textual representation of the ambiguous paths, e.g.,
1337  // D -> B -> A, that will be used to illustrate the ambiguous
1338  // conversions in the diagnostic. We only print one of the paths
1339  // to each base class subobject.
1340  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1341
1342  Diag(Loc, AmbigiousBaseConvID)
1343  << Derived << Base << PathDisplayStr << Range << Name;
1344  return true;
1345}
1346
1347bool
1348Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1349                                   SourceLocation Loc, SourceRange Range,
1350                                   CXXCastPath *BasePath,
1351                                   bool IgnoreAccess) {
1352  return CheckDerivedToBaseConversion(Derived, Base,
1353                                      IgnoreAccess ? 0
1354                                       : diag::err_upcast_to_inaccessible_base,
1355                                      diag::err_ambiguous_derived_to_base_conv,
1356                                      Loc, Range, DeclarationName(),
1357                                      BasePath);
1358}
1359
1360
1361/// @brief Builds a string representing ambiguous paths from a
1362/// specific derived class to different subobjects of the same base
1363/// class.
1364///
1365/// This function builds a string that can be used in error messages
1366/// to show the different paths that one can take through the
1367/// inheritance hierarchy to go from the derived class to different
1368/// subobjects of a base class. The result looks something like this:
1369/// @code
1370/// struct D -> struct B -> struct A
1371/// struct D -> struct C -> struct A
1372/// @endcode
1373std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1374  std::string PathDisplayStr;
1375  std::set<unsigned> DisplayedPaths;
1376  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1377       Path != Paths.end(); ++Path) {
1378    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1379      // We haven't displayed a path to this particular base
1380      // class subobject yet.
1381      PathDisplayStr += "\n    ";
1382      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1383      for (CXXBasePath::const_iterator Element = Path->begin();
1384           Element != Path->end(); ++Element)
1385        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1386    }
1387  }
1388
1389  return PathDisplayStr;
1390}
1391
1392//===----------------------------------------------------------------------===//
1393// C++ class member Handling
1394//===----------------------------------------------------------------------===//
1395
1396/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1397bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1398                                SourceLocation ASLoc,
1399                                SourceLocation ColonLoc,
1400                                AttributeList *Attrs) {
1401  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1402  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1403                                                  ASLoc, ColonLoc);
1404  CurContext->addHiddenDecl(ASDecl);
1405  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1406}
1407
1408/// CheckOverrideControl - Check C++11 override control semantics.
1409void Sema::CheckOverrideControl(Decl *D) {
1410  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1411
1412  // Do we know which functions this declaration might be overriding?
1413  bool OverridesAreKnown = !MD ||
1414      (!MD->getParent()->hasAnyDependentBases() &&
1415       !MD->getType()->isDependentType());
1416
1417  if (!MD || !MD->isVirtual()) {
1418    if (OverridesAreKnown) {
1419      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1420        Diag(OA->getLocation(),
1421             diag::override_keyword_only_allowed_on_virtual_member_functions)
1422          << "override" << FixItHint::CreateRemoval(OA->getLocation());
1423        D->dropAttr<OverrideAttr>();
1424      }
1425      if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1426        Diag(FA->getLocation(),
1427             diag::override_keyword_only_allowed_on_virtual_member_functions)
1428          << "final" << FixItHint::CreateRemoval(FA->getLocation());
1429        D->dropAttr<FinalAttr>();
1430      }
1431    }
1432    return;
1433  }
1434
1435  if (!OverridesAreKnown)
1436    return;
1437
1438  // C++11 [class.virtual]p5:
1439  //   If a virtual function is marked with the virt-specifier override and
1440  //   does not override a member function of a base class, the program is
1441  //   ill-formed.
1442  bool HasOverriddenMethods =
1443    MD->begin_overridden_methods() != MD->end_overridden_methods();
1444  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1445    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1446      << MD->getDeclName();
1447}
1448
1449/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1450/// function overrides a virtual member function marked 'final', according to
1451/// C++11 [class.virtual]p4.
1452bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1453                                                  const CXXMethodDecl *Old) {
1454  if (!Old->hasAttr<FinalAttr>())
1455    return false;
1456
1457  Diag(New->getLocation(), diag::err_final_function_overridden)
1458    << New->getDeclName();
1459  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1460  return true;
1461}
1462
1463static bool InitializationHasSideEffects(const FieldDecl &FD) {
1464  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1465  // FIXME: Destruction of ObjC lifetime types has side-effects.
1466  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1467    return !RD->isCompleteDefinition() ||
1468           !RD->hasTrivialDefaultConstructor() ||
1469           !RD->hasTrivialDestructor();
1470  return false;
1471}
1472
1473/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1474/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1475/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1476/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1477/// present (but parsing it has been deferred).
1478Decl *
1479Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1480                               MultiTemplateParamsArg TemplateParameterLists,
1481                               Expr *BW, const VirtSpecifiers &VS,
1482                               InClassInitStyle InitStyle) {
1483  const DeclSpec &DS = D.getDeclSpec();
1484  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1485  DeclarationName Name = NameInfo.getName();
1486  SourceLocation Loc = NameInfo.getLoc();
1487
1488  // For anonymous bitfields, the location should point to the type.
1489  if (Loc.isInvalid())
1490    Loc = D.getLocStart();
1491
1492  Expr *BitWidth = static_cast<Expr*>(BW);
1493
1494  assert(isa<CXXRecordDecl>(CurContext));
1495  assert(!DS.isFriendSpecified());
1496
1497  bool isFunc = D.isDeclarationOfFunction();
1498
1499  // C++ 9.2p6: A member shall not be declared to have automatic storage
1500  // duration (auto, register) or with the extern storage-class-specifier.
1501  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1502  // data members and cannot be applied to names declared const or static,
1503  // and cannot be applied to reference members.
1504  switch (DS.getStorageClassSpec()) {
1505    case DeclSpec::SCS_unspecified:
1506    case DeclSpec::SCS_typedef:
1507    case DeclSpec::SCS_static:
1508      // FALL THROUGH.
1509      break;
1510    case DeclSpec::SCS_mutable:
1511      if (isFunc) {
1512        if (DS.getStorageClassSpecLoc().isValid())
1513          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1514        else
1515          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1516
1517        // FIXME: It would be nicer if the keyword was ignored only for this
1518        // declarator. Otherwise we could get follow-up errors.
1519        D.getMutableDeclSpec().ClearStorageClassSpecs();
1520      }
1521      break;
1522    default:
1523      if (DS.getStorageClassSpecLoc().isValid())
1524        Diag(DS.getStorageClassSpecLoc(),
1525             diag::err_storageclass_invalid_for_member);
1526      else
1527        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1528      D.getMutableDeclSpec().ClearStorageClassSpecs();
1529  }
1530
1531  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1532                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1533                      !isFunc);
1534
1535  Decl *Member;
1536  if (isInstField) {
1537    CXXScopeSpec &SS = D.getCXXScopeSpec();
1538
1539    // Data members must have identifiers for names.
1540    if (!Name.isIdentifier()) {
1541      Diag(Loc, diag::err_bad_variable_name)
1542        << Name;
1543      return 0;
1544    }
1545
1546    IdentifierInfo *II = Name.getAsIdentifierInfo();
1547
1548    // Member field could not be with "template" keyword.
1549    // So TemplateParameterLists should be empty in this case.
1550    if (TemplateParameterLists.size()) {
1551      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1552      if (TemplateParams->size()) {
1553        // There is no such thing as a member field template.
1554        Diag(D.getIdentifierLoc(), diag::err_template_member)
1555            << II
1556            << SourceRange(TemplateParams->getTemplateLoc(),
1557                TemplateParams->getRAngleLoc());
1558      } else {
1559        // There is an extraneous 'template<>' for this member.
1560        Diag(TemplateParams->getTemplateLoc(),
1561            diag::err_template_member_noparams)
1562            << II
1563            << SourceRange(TemplateParams->getTemplateLoc(),
1564                TemplateParams->getRAngleLoc());
1565      }
1566      return 0;
1567    }
1568
1569    if (SS.isSet() && !SS.isInvalid()) {
1570      // The user provided a superfluous scope specifier inside a class
1571      // definition:
1572      //
1573      // class X {
1574      //   int X::member;
1575      // };
1576      if (DeclContext *DC = computeDeclContext(SS, false))
1577        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1578      else
1579        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1580          << Name << SS.getRange();
1581
1582      SS.clear();
1583    }
1584
1585    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1586                         InitStyle, AS);
1587    assert(Member && "HandleField never returns null");
1588  } else {
1589    assert(InitStyle == ICIS_NoInit);
1590
1591    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1592    if (!Member) {
1593      return 0;
1594    }
1595
1596    // Non-instance-fields can't have a bitfield.
1597    if (BitWidth) {
1598      if (Member->isInvalidDecl()) {
1599        // don't emit another diagnostic.
1600      } else if (isa<VarDecl>(Member)) {
1601        // C++ 9.6p3: A bit-field shall not be a static member.
1602        // "static member 'A' cannot be a bit-field"
1603        Diag(Loc, diag::err_static_not_bitfield)
1604          << Name << BitWidth->getSourceRange();
1605      } else if (isa<TypedefDecl>(Member)) {
1606        // "typedef member 'x' cannot be a bit-field"
1607        Diag(Loc, diag::err_typedef_not_bitfield)
1608          << Name << BitWidth->getSourceRange();
1609      } else {
1610        // A function typedef ("typedef int f(); f a;").
1611        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1612        Diag(Loc, diag::err_not_integral_type_bitfield)
1613          << Name << cast<ValueDecl>(Member)->getType()
1614          << BitWidth->getSourceRange();
1615      }
1616
1617      BitWidth = 0;
1618      Member->setInvalidDecl();
1619    }
1620
1621    Member->setAccess(AS);
1622
1623    // If we have declared a member function template, set the access of the
1624    // templated declaration as well.
1625    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1626      FunTmpl->getTemplatedDecl()->setAccess(AS);
1627  }
1628
1629  if (VS.isOverrideSpecified())
1630    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1631  if (VS.isFinalSpecified())
1632    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1633
1634  if (VS.getLastLocation().isValid()) {
1635    // Update the end location of a method that has a virt-specifiers.
1636    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1637      MD->setRangeEnd(VS.getLastLocation());
1638  }
1639
1640  CheckOverrideControl(Member);
1641
1642  assert((Name || isInstField) && "No identifier for non-field ?");
1643
1644  if (isInstField) {
1645    FieldDecl *FD = cast<FieldDecl>(Member);
1646    FieldCollector->Add(FD);
1647
1648    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
1649                                 FD->getLocation())
1650          != DiagnosticsEngine::Ignored) {
1651      // Remember all explicit private FieldDecls that have a name, no side
1652      // effects and are not part of a dependent type declaration.
1653      if (!FD->isImplicit() && FD->getDeclName() &&
1654          FD->getAccess() == AS_private &&
1655          !FD->hasAttr<UnusedAttr>() &&
1656          !FD->getParent()->isDependentContext() &&
1657          !InitializationHasSideEffects(*FD))
1658        UnusedPrivateFields.insert(FD);
1659    }
1660  }
1661
1662  return Member;
1663}
1664
1665/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1666/// in-class initializer for a non-static C++ class member, and after
1667/// instantiating an in-class initializer in a class template. Such actions
1668/// are deferred until the class is complete.
1669void
1670Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
1671                                       Expr *InitExpr) {
1672  FieldDecl *FD = cast<FieldDecl>(D);
1673  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
1674         "must set init style when field is created");
1675
1676  if (!InitExpr) {
1677    FD->setInvalidDecl();
1678    FD->removeInClassInitializer();
1679    return;
1680  }
1681
1682  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1683    FD->setInvalidDecl();
1684    FD->removeInClassInitializer();
1685    return;
1686  }
1687
1688  ExprResult Init = InitExpr;
1689  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1690    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1691      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1692        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1693    }
1694    Expr **Inits = &InitExpr;
1695    unsigned NumInits = 1;
1696    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1697    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
1698        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1699        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
1700    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
1701    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1702    if (Init.isInvalid()) {
1703      FD->setInvalidDecl();
1704      return;
1705    }
1706
1707    CheckImplicitConversions(Init.get(), InitLoc);
1708  }
1709
1710  // C++0x [class.base.init]p7:
1711  //   The initialization of each base and member constitutes a
1712  //   full-expression.
1713  Init = MaybeCreateExprWithCleanups(Init);
1714  if (Init.isInvalid()) {
1715    FD->setInvalidDecl();
1716    return;
1717  }
1718
1719  InitExpr = Init.release();
1720
1721  FD->setInClassInitializer(InitExpr);
1722}
1723
1724/// \brief Find the direct and/or virtual base specifiers that
1725/// correspond to the given base type, for use in base initialization
1726/// within a constructor.
1727static bool FindBaseInitializer(Sema &SemaRef,
1728                                CXXRecordDecl *ClassDecl,
1729                                QualType BaseType,
1730                                const CXXBaseSpecifier *&DirectBaseSpec,
1731                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1732  // First, check for a direct base class.
1733  DirectBaseSpec = 0;
1734  for (CXXRecordDecl::base_class_const_iterator Base
1735         = ClassDecl->bases_begin();
1736       Base != ClassDecl->bases_end(); ++Base) {
1737    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1738      // We found a direct base of this type. That's what we're
1739      // initializing.
1740      DirectBaseSpec = &*Base;
1741      break;
1742    }
1743  }
1744
1745  // Check for a virtual base class.
1746  // FIXME: We might be able to short-circuit this if we know in advance that
1747  // there are no virtual bases.
1748  VirtualBaseSpec = 0;
1749  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1750    // We haven't found a base yet; search the class hierarchy for a
1751    // virtual base class.
1752    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1753                       /*DetectVirtual=*/false);
1754    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1755                              BaseType, Paths)) {
1756      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1757           Path != Paths.end(); ++Path) {
1758        if (Path->back().Base->isVirtual()) {
1759          VirtualBaseSpec = Path->back().Base;
1760          break;
1761        }
1762      }
1763    }
1764  }
1765
1766  return DirectBaseSpec || VirtualBaseSpec;
1767}
1768
1769/// \brief Handle a C++ member initializer using braced-init-list syntax.
1770MemInitResult
1771Sema::ActOnMemInitializer(Decl *ConstructorD,
1772                          Scope *S,
1773                          CXXScopeSpec &SS,
1774                          IdentifierInfo *MemberOrBase,
1775                          ParsedType TemplateTypeTy,
1776                          const DeclSpec &DS,
1777                          SourceLocation IdLoc,
1778                          Expr *InitList,
1779                          SourceLocation EllipsisLoc) {
1780  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1781                             DS, IdLoc, InitList,
1782                             EllipsisLoc);
1783}
1784
1785/// \brief Handle a C++ member initializer using parentheses syntax.
1786MemInitResult
1787Sema::ActOnMemInitializer(Decl *ConstructorD,
1788                          Scope *S,
1789                          CXXScopeSpec &SS,
1790                          IdentifierInfo *MemberOrBase,
1791                          ParsedType TemplateTypeTy,
1792                          const DeclSpec &DS,
1793                          SourceLocation IdLoc,
1794                          SourceLocation LParenLoc,
1795                          Expr **Args, unsigned NumArgs,
1796                          SourceLocation RParenLoc,
1797                          SourceLocation EllipsisLoc) {
1798  Expr *List = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1799                                           RParenLoc);
1800  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1801                             DS, IdLoc, List, EllipsisLoc);
1802}
1803
1804namespace {
1805
1806// Callback to only accept typo corrections that can be a valid C++ member
1807// intializer: either a non-static field member or a base class.
1808class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1809 public:
1810  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1811      : ClassDecl(ClassDecl) {}
1812
1813  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1814    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1815      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1816        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1817      else
1818        return isa<TypeDecl>(ND);
1819    }
1820    return false;
1821  }
1822
1823 private:
1824  CXXRecordDecl *ClassDecl;
1825};
1826
1827}
1828
1829/// \brief Handle a C++ member initializer.
1830MemInitResult
1831Sema::BuildMemInitializer(Decl *ConstructorD,
1832                          Scope *S,
1833                          CXXScopeSpec &SS,
1834                          IdentifierInfo *MemberOrBase,
1835                          ParsedType TemplateTypeTy,
1836                          const DeclSpec &DS,
1837                          SourceLocation IdLoc,
1838                          Expr *Init,
1839                          SourceLocation EllipsisLoc) {
1840  if (!ConstructorD)
1841    return true;
1842
1843  AdjustDeclIfTemplate(ConstructorD);
1844
1845  CXXConstructorDecl *Constructor
1846    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1847  if (!Constructor) {
1848    // The user wrote a constructor initializer on a function that is
1849    // not a C++ constructor. Ignore the error for now, because we may
1850    // have more member initializers coming; we'll diagnose it just
1851    // once in ActOnMemInitializers.
1852    return true;
1853  }
1854
1855  CXXRecordDecl *ClassDecl = Constructor->getParent();
1856
1857  // C++ [class.base.init]p2:
1858  //   Names in a mem-initializer-id are looked up in the scope of the
1859  //   constructor's class and, if not found in that scope, are looked
1860  //   up in the scope containing the constructor's definition.
1861  //   [Note: if the constructor's class contains a member with the
1862  //   same name as a direct or virtual base class of the class, a
1863  //   mem-initializer-id naming the member or base class and composed
1864  //   of a single identifier refers to the class member. A
1865  //   mem-initializer-id for the hidden base class may be specified
1866  //   using a qualified name. ]
1867  if (!SS.getScopeRep() && !TemplateTypeTy) {
1868    // Look for a member, first.
1869    DeclContext::lookup_result Result
1870      = ClassDecl->lookup(MemberOrBase);
1871    if (Result.first != Result.second) {
1872      ValueDecl *Member;
1873      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1874          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1875        if (EllipsisLoc.isValid())
1876          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1877            << MemberOrBase
1878            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1879
1880        return BuildMemberInitializer(Member, Init, IdLoc);
1881      }
1882    }
1883  }
1884  // It didn't name a member, so see if it names a class.
1885  QualType BaseType;
1886  TypeSourceInfo *TInfo = 0;
1887
1888  if (TemplateTypeTy) {
1889    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1890  } else if (DS.getTypeSpecType() == TST_decltype) {
1891    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1892  } else {
1893    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1894    LookupParsedName(R, S, &SS);
1895
1896    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1897    if (!TyD) {
1898      if (R.isAmbiguous()) return true;
1899
1900      // We don't want access-control diagnostics here.
1901      R.suppressDiagnostics();
1902
1903      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1904        bool NotUnknownSpecialization = false;
1905        DeclContext *DC = computeDeclContext(SS, false);
1906        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1907          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1908
1909        if (!NotUnknownSpecialization) {
1910          // When the scope specifier can refer to a member of an unknown
1911          // specialization, we take it as a type name.
1912          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1913                                       SS.getWithLocInContext(Context),
1914                                       *MemberOrBase, IdLoc);
1915          if (BaseType.isNull())
1916            return true;
1917
1918          R.clear();
1919          R.setLookupName(MemberOrBase);
1920        }
1921      }
1922
1923      // If no results were found, try to correct typos.
1924      TypoCorrection Corr;
1925      MemInitializerValidatorCCC Validator(ClassDecl);
1926      if (R.empty() && BaseType.isNull() &&
1927          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1928                              Validator, ClassDecl))) {
1929        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
1930        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
1931        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1932          // We have found a non-static data member with a similar
1933          // name to what was typed; complain and initialize that
1934          // member.
1935          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1936            << MemberOrBase << true << CorrectedQuotedStr
1937            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1938          Diag(Member->getLocation(), diag::note_previous_decl)
1939            << CorrectedQuotedStr;
1940
1941          return BuildMemberInitializer(Member, Init, IdLoc);
1942        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1943          const CXXBaseSpecifier *DirectBaseSpec;
1944          const CXXBaseSpecifier *VirtualBaseSpec;
1945          if (FindBaseInitializer(*this, ClassDecl,
1946                                  Context.getTypeDeclType(Type),
1947                                  DirectBaseSpec, VirtualBaseSpec)) {
1948            // We have found a direct or virtual base class with a
1949            // similar name to what was typed; complain and initialize
1950            // that base class.
1951            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1952              << MemberOrBase << false << CorrectedQuotedStr
1953              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1954
1955            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1956                                                             : VirtualBaseSpec;
1957            Diag(BaseSpec->getLocStart(),
1958                 diag::note_base_class_specified_here)
1959              << BaseSpec->getType()
1960              << BaseSpec->getSourceRange();
1961
1962            TyD = Type;
1963          }
1964        }
1965      }
1966
1967      if (!TyD && BaseType.isNull()) {
1968        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1969          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1970        return true;
1971      }
1972    }
1973
1974    if (BaseType.isNull()) {
1975      BaseType = Context.getTypeDeclType(TyD);
1976      if (SS.isSet()) {
1977        NestedNameSpecifier *Qualifier =
1978          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1979
1980        // FIXME: preserve source range information
1981        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1982      }
1983    }
1984  }
1985
1986  if (!TInfo)
1987    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1988
1989  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
1990}
1991
1992/// Checks a member initializer expression for cases where reference (or
1993/// pointer) members are bound to by-value parameters (or their addresses).
1994static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1995                                               Expr *Init,
1996                                               SourceLocation IdLoc) {
1997  QualType MemberTy = Member->getType();
1998
1999  // We only handle pointers and references currently.
2000  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2001  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2002    return;
2003
2004  const bool IsPointer = MemberTy->isPointerType();
2005  if (IsPointer) {
2006    if (const UnaryOperator *Op
2007          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2008      // The only case we're worried about with pointers requires taking the
2009      // address.
2010      if (Op->getOpcode() != UO_AddrOf)
2011        return;
2012
2013      Init = Op->getSubExpr();
2014    } else {
2015      // We only handle address-of expression initializers for pointers.
2016      return;
2017    }
2018  }
2019
2020  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2021    // Taking the address of a temporary will be diagnosed as a hard error.
2022    if (IsPointer)
2023      return;
2024
2025    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2026      << Member << Init->getSourceRange();
2027  } else if (const DeclRefExpr *DRE
2028               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2029    // We only warn when referring to a non-reference parameter declaration.
2030    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2031    if (!Parameter || Parameter->getType()->isReferenceType())
2032      return;
2033
2034    S.Diag(Init->getExprLoc(),
2035           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2036                     : diag::warn_bind_ref_member_to_parameter)
2037      << Member << Parameter << Init->getSourceRange();
2038  } else {
2039    // Other initializers are fine.
2040    return;
2041  }
2042
2043  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2044    << (unsigned)IsPointer;
2045}
2046
2047namespace {
2048  class UninitializedFieldVisitor
2049      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2050    Sema &S;
2051    ValueDecl *VD;
2052  public:
2053    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
2054    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
2055                                                        S(S), VD(VD) {
2056    }
2057
2058    void HandleExpr(Expr *E) {
2059      if (!E) return;
2060
2061      // Expressions like x(x) sometimes lack the surrounding expressions
2062      // but need to be checked anyways.
2063      HandleValue(E);
2064      Visit(E);
2065    }
2066
2067    void HandleValue(Expr *E) {
2068      E = E->IgnoreParens();
2069
2070      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2071        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2072            return;
2073        Expr *Base = E;
2074        while (isa<MemberExpr>(Base)) {
2075          ME = dyn_cast<MemberExpr>(Base);
2076          if (VarDecl *VarD = dyn_cast<VarDecl>(ME->getMemberDecl()))
2077            if (VarD->hasGlobalStorage())
2078              return;
2079          Base = ME->getBase();
2080        }
2081
2082        if (VD == ME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
2083          S.Diag(ME->getExprLoc(), diag::warn_field_is_uninit);
2084          return;
2085        }
2086      }
2087
2088      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2089        HandleValue(CO->getTrueExpr());
2090        HandleValue(CO->getFalseExpr());
2091        return;
2092      }
2093
2094      if (BinaryConditionalOperator *BCO =
2095              dyn_cast<BinaryConditionalOperator>(E)) {
2096        HandleValue(BCO->getCommon());
2097        HandleValue(BCO->getFalseExpr());
2098        return;
2099      }
2100
2101      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2102        switch (BO->getOpcode()) {
2103        default:
2104          return;
2105        case(BO_PtrMemD):
2106        case(BO_PtrMemI):
2107          HandleValue(BO->getLHS());
2108          return;
2109        case(BO_Comma):
2110          HandleValue(BO->getRHS());
2111          return;
2112        }
2113      }
2114    }
2115
2116    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2117      if (E->getCastKind() == CK_LValueToRValue)
2118        HandleValue(E->getSubExpr());
2119
2120      Inherited::VisitImplicitCastExpr(E);
2121    }
2122
2123    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2124      Expr *Callee = E->getCallee();
2125      if (isa<MemberExpr>(Callee))
2126        HandleValue(Callee);
2127
2128      Inherited::VisitCXXMemberCallExpr(E);
2129    }
2130  };
2131  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
2132                                                       ValueDecl *VD) {
2133    UninitializedFieldVisitor(S, VD).HandleExpr(E);
2134  }
2135} // namespace
2136
2137MemInitResult
2138Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2139                             SourceLocation IdLoc) {
2140  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2141  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2142  assert((DirectMember || IndirectMember) &&
2143         "Member must be a FieldDecl or IndirectFieldDecl");
2144
2145  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2146    return true;
2147
2148  if (Member->isInvalidDecl())
2149    return true;
2150
2151  // Diagnose value-uses of fields to initialize themselves, e.g.
2152  //   foo(foo)
2153  // where foo is not also a parameter to the constructor.
2154  // TODO: implement -Wuninitialized and fold this into that framework.
2155  Expr **Args;
2156  unsigned NumArgs;
2157  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2158    Args = ParenList->getExprs();
2159    NumArgs = ParenList->getNumExprs();
2160  } else {
2161    InitListExpr *InitList = cast<InitListExpr>(Init);
2162    Args = InitList->getInits();
2163    NumArgs = InitList->getNumInits();
2164  }
2165
2166  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2167        != DiagnosticsEngine::Ignored)
2168    for (unsigned i = 0; i < NumArgs; ++i)
2169      // FIXME: Warn about the case when other fields are used before being
2170      // uninitialized. For example, let this field be the i'th field. When
2171      // initializing the i'th field, throw a warning if any of the >= i'th
2172      // fields are used, as they are not yet initialized.
2173      // Right now we are only handling the case where the i'th field uses
2174      // itself in its initializer.
2175      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2176
2177  SourceRange InitRange = Init->getSourceRange();
2178
2179  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2180    // Can't check initialization for a member of dependent type or when
2181    // any of the arguments are type-dependent expressions.
2182    DiscardCleanupsInEvaluationContext();
2183  } else {
2184    bool InitList = false;
2185    if (isa<InitListExpr>(Init)) {
2186      InitList = true;
2187      Args = &Init;
2188      NumArgs = 1;
2189
2190      if (isStdInitializerList(Member->getType(), 0)) {
2191        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2192            << /*at end of ctor*/1 << InitRange;
2193      }
2194    }
2195
2196    // Initialize the member.
2197    InitializedEntity MemberEntity =
2198      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2199                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2200    InitializationKind Kind =
2201      InitList ? InitializationKind::CreateDirectList(IdLoc)
2202               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2203                                                  InitRange.getEnd());
2204
2205    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2206    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2207                                            MultiExprArg(*this, Args, NumArgs),
2208                                            0);
2209    if (MemberInit.isInvalid())
2210      return true;
2211
2212    CheckImplicitConversions(MemberInit.get(),
2213                             InitRange.getBegin());
2214
2215    // C++0x [class.base.init]p7:
2216    //   The initialization of each base and member constitutes a
2217    //   full-expression.
2218    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2219    if (MemberInit.isInvalid())
2220      return true;
2221
2222    // If we are in a dependent context, template instantiation will
2223    // perform this type-checking again. Just save the arguments that we
2224    // received.
2225    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2226    // of the information that we have about the member
2227    // initializer. However, deconstructing the ASTs is a dicey process,
2228    // and this approach is far more likely to get the corner cases right.
2229    if (CurContext->isDependentContext()) {
2230      // The existing Init will do fine.
2231    } else {
2232      Init = MemberInit.get();
2233      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2234    }
2235  }
2236
2237  if (DirectMember) {
2238    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2239                                            InitRange.getBegin(), Init,
2240                                            InitRange.getEnd());
2241  } else {
2242    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2243                                            InitRange.getBegin(), Init,
2244                                            InitRange.getEnd());
2245  }
2246}
2247
2248MemInitResult
2249Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2250                                 CXXRecordDecl *ClassDecl) {
2251  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2252  if (!LangOpts.CPlusPlus0x)
2253    return Diag(NameLoc, diag::err_delegating_ctor)
2254      << TInfo->getTypeLoc().getLocalSourceRange();
2255  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2256
2257  bool InitList = true;
2258  Expr **Args = &Init;
2259  unsigned NumArgs = 1;
2260  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2261    InitList = false;
2262    Args = ParenList->getExprs();
2263    NumArgs = ParenList->getNumExprs();
2264  }
2265
2266  SourceRange InitRange = Init->getSourceRange();
2267  // Initialize the object.
2268  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2269                                     QualType(ClassDecl->getTypeForDecl(), 0));
2270  InitializationKind Kind =
2271    InitList ? InitializationKind::CreateDirectList(NameLoc)
2272             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2273                                                InitRange.getEnd());
2274  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2275  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2276                                              MultiExprArg(*this, Args,NumArgs),
2277                                              0);
2278  if (DelegationInit.isInvalid())
2279    return true;
2280
2281  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2282         "Delegating constructor with no target?");
2283
2284  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2285
2286  // C++0x [class.base.init]p7:
2287  //   The initialization of each base and member constitutes a
2288  //   full-expression.
2289  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2290  if (DelegationInit.isInvalid())
2291    return true;
2292
2293  // If we are in a dependent context, template instantiation will
2294  // perform this type-checking again. Just save the arguments that we
2295  // received in a ParenListExpr.
2296  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2297  // of the information that we have about the base
2298  // initializer. However, deconstructing the ASTs is a dicey process,
2299  // and this approach is far more likely to get the corner cases right.
2300  if (CurContext->isDependentContext())
2301    DelegationInit = Owned(Init);
2302
2303  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2304                                          DelegationInit.takeAs<Expr>(),
2305                                          InitRange.getEnd());
2306}
2307
2308MemInitResult
2309Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2310                           Expr *Init, CXXRecordDecl *ClassDecl,
2311                           SourceLocation EllipsisLoc) {
2312  SourceLocation BaseLoc
2313    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2314
2315  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2316    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2317             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2318
2319  // C++ [class.base.init]p2:
2320  //   [...] Unless the mem-initializer-id names a nonstatic data
2321  //   member of the constructor's class or a direct or virtual base
2322  //   of that class, the mem-initializer is ill-formed. A
2323  //   mem-initializer-list can initialize a base class using any
2324  //   name that denotes that base class type.
2325  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2326
2327  SourceRange InitRange = Init->getSourceRange();
2328  if (EllipsisLoc.isValid()) {
2329    // This is a pack expansion.
2330    if (!BaseType->containsUnexpandedParameterPack())  {
2331      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2332        << SourceRange(BaseLoc, InitRange.getEnd());
2333
2334      EllipsisLoc = SourceLocation();
2335    }
2336  } else {
2337    // Check for any unexpanded parameter packs.
2338    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2339      return true;
2340
2341    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2342      return true;
2343  }
2344
2345  // Check for direct and virtual base classes.
2346  const CXXBaseSpecifier *DirectBaseSpec = 0;
2347  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2348  if (!Dependent) {
2349    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2350                                       BaseType))
2351      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2352
2353    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2354                        VirtualBaseSpec);
2355
2356    // C++ [base.class.init]p2:
2357    // Unless the mem-initializer-id names a nonstatic data member of the
2358    // constructor's class or a direct or virtual base of that class, the
2359    // mem-initializer is ill-formed.
2360    if (!DirectBaseSpec && !VirtualBaseSpec) {
2361      // If the class has any dependent bases, then it's possible that
2362      // one of those types will resolve to the same type as
2363      // BaseType. Therefore, just treat this as a dependent base
2364      // class initialization.  FIXME: Should we try to check the
2365      // initialization anyway? It seems odd.
2366      if (ClassDecl->hasAnyDependentBases())
2367        Dependent = true;
2368      else
2369        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2370          << BaseType << Context.getTypeDeclType(ClassDecl)
2371          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2372    }
2373  }
2374
2375  if (Dependent) {
2376    DiscardCleanupsInEvaluationContext();
2377
2378    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2379                                            /*IsVirtual=*/false,
2380                                            InitRange.getBegin(), Init,
2381                                            InitRange.getEnd(), EllipsisLoc);
2382  }
2383
2384  // C++ [base.class.init]p2:
2385  //   If a mem-initializer-id is ambiguous because it designates both
2386  //   a direct non-virtual base class and an inherited virtual base
2387  //   class, the mem-initializer is ill-formed.
2388  if (DirectBaseSpec && VirtualBaseSpec)
2389    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2390      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2391
2392  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2393  if (!BaseSpec)
2394    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2395
2396  // Initialize the base.
2397  bool InitList = true;
2398  Expr **Args = &Init;
2399  unsigned NumArgs = 1;
2400  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2401    InitList = false;
2402    Args = ParenList->getExprs();
2403    NumArgs = ParenList->getNumExprs();
2404  }
2405
2406  InitializedEntity BaseEntity =
2407    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2408  InitializationKind Kind =
2409    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2410             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2411                                                InitRange.getEnd());
2412  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2413  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2414                                          MultiExprArg(*this, Args, NumArgs),
2415                                          0);
2416  if (BaseInit.isInvalid())
2417    return true;
2418
2419  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2420
2421  // C++0x [class.base.init]p7:
2422  //   The initialization of each base and member constitutes a
2423  //   full-expression.
2424  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2425  if (BaseInit.isInvalid())
2426    return true;
2427
2428  // If we are in a dependent context, template instantiation will
2429  // perform this type-checking again. Just save the arguments that we
2430  // received in a ParenListExpr.
2431  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2432  // of the information that we have about the base
2433  // initializer. However, deconstructing the ASTs is a dicey process,
2434  // and this approach is far more likely to get the corner cases right.
2435  if (CurContext->isDependentContext())
2436    BaseInit = Owned(Init);
2437
2438  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2439                                          BaseSpec->isVirtual(),
2440                                          InitRange.getBegin(),
2441                                          BaseInit.takeAs<Expr>(),
2442                                          InitRange.getEnd(), EllipsisLoc);
2443}
2444
2445// Create a static_cast\<T&&>(expr).
2446static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2447  QualType ExprType = E->getType();
2448  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2449  SourceLocation ExprLoc = E->getLocStart();
2450  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2451      TargetType, ExprLoc);
2452
2453  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2454                                   SourceRange(ExprLoc, ExprLoc),
2455                                   E->getSourceRange()).take();
2456}
2457
2458/// ImplicitInitializerKind - How an implicit base or member initializer should
2459/// initialize its base or member.
2460enum ImplicitInitializerKind {
2461  IIK_Default,
2462  IIK_Copy,
2463  IIK_Move
2464};
2465
2466static bool
2467BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2468                             ImplicitInitializerKind ImplicitInitKind,
2469                             CXXBaseSpecifier *BaseSpec,
2470                             bool IsInheritedVirtualBase,
2471                             CXXCtorInitializer *&CXXBaseInit) {
2472  InitializedEntity InitEntity
2473    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2474                                        IsInheritedVirtualBase);
2475
2476  ExprResult BaseInit;
2477
2478  switch (ImplicitInitKind) {
2479  case IIK_Default: {
2480    InitializationKind InitKind
2481      = InitializationKind::CreateDefault(Constructor->getLocation());
2482    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2483    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2484                               MultiExprArg(SemaRef, 0, 0));
2485    break;
2486  }
2487
2488  case IIK_Move:
2489  case IIK_Copy: {
2490    bool Moving = ImplicitInitKind == IIK_Move;
2491    ParmVarDecl *Param = Constructor->getParamDecl(0);
2492    QualType ParamType = Param->getType().getNonReferenceType();
2493
2494    Expr *CopyCtorArg =
2495      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2496                          SourceLocation(), Param, false,
2497                          Constructor->getLocation(), ParamType,
2498                          VK_LValue, 0);
2499
2500    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2501
2502    // Cast to the base class to avoid ambiguities.
2503    QualType ArgTy =
2504      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2505                                       ParamType.getQualifiers());
2506
2507    if (Moving) {
2508      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2509    }
2510
2511    CXXCastPath BasePath;
2512    BasePath.push_back(BaseSpec);
2513    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2514                                            CK_UncheckedDerivedToBase,
2515                                            Moving ? VK_XValue : VK_LValue,
2516                                            &BasePath).take();
2517
2518    InitializationKind InitKind
2519      = InitializationKind::CreateDirect(Constructor->getLocation(),
2520                                         SourceLocation(), SourceLocation());
2521    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2522                                   &CopyCtorArg, 1);
2523    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2524                               MultiExprArg(&CopyCtorArg, 1));
2525    break;
2526  }
2527  }
2528
2529  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2530  if (BaseInit.isInvalid())
2531    return true;
2532
2533  CXXBaseInit =
2534    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2535               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2536                                                        SourceLocation()),
2537                                             BaseSpec->isVirtual(),
2538                                             SourceLocation(),
2539                                             BaseInit.takeAs<Expr>(),
2540                                             SourceLocation(),
2541                                             SourceLocation());
2542
2543  return false;
2544}
2545
2546static bool RefersToRValueRef(Expr *MemRef) {
2547  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2548  return Referenced->getType()->isRValueReferenceType();
2549}
2550
2551static bool
2552BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2553                               ImplicitInitializerKind ImplicitInitKind,
2554                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2555                               CXXCtorInitializer *&CXXMemberInit) {
2556  if (Field->isInvalidDecl())
2557    return true;
2558
2559  SourceLocation Loc = Constructor->getLocation();
2560
2561  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2562    bool Moving = ImplicitInitKind == IIK_Move;
2563    ParmVarDecl *Param = Constructor->getParamDecl(0);
2564    QualType ParamType = Param->getType().getNonReferenceType();
2565
2566    // Suppress copying zero-width bitfields.
2567    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2568      return false;
2569
2570    Expr *MemberExprBase =
2571      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2572                          SourceLocation(), Param, false,
2573                          Loc, ParamType, VK_LValue, 0);
2574
2575    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2576
2577    if (Moving) {
2578      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2579    }
2580
2581    // Build a reference to this field within the parameter.
2582    CXXScopeSpec SS;
2583    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2584                              Sema::LookupMemberName);
2585    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2586                                  : cast<ValueDecl>(Field), AS_public);
2587    MemberLookup.resolveKind();
2588    ExprResult CtorArg
2589      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2590                                         ParamType, Loc,
2591                                         /*IsArrow=*/false,
2592                                         SS,
2593                                         /*TemplateKWLoc=*/SourceLocation(),
2594                                         /*FirstQualifierInScope=*/0,
2595                                         MemberLookup,
2596                                         /*TemplateArgs=*/0);
2597    if (CtorArg.isInvalid())
2598      return true;
2599
2600    // C++11 [class.copy]p15:
2601    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2602    //     with static_cast<T&&>(x.m);
2603    if (RefersToRValueRef(CtorArg.get())) {
2604      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2605    }
2606
2607    // When the field we are copying is an array, create index variables for
2608    // each dimension of the array. We use these index variables to subscript
2609    // the source array, and other clients (e.g., CodeGen) will perform the
2610    // necessary iteration with these index variables.
2611    SmallVector<VarDecl *, 4> IndexVariables;
2612    QualType BaseType = Field->getType();
2613    QualType SizeType = SemaRef.Context.getSizeType();
2614    bool InitializingArray = false;
2615    while (const ConstantArrayType *Array
2616                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2617      InitializingArray = true;
2618      // Create the iteration variable for this array index.
2619      IdentifierInfo *IterationVarName = 0;
2620      {
2621        SmallString<8> Str;
2622        llvm::raw_svector_ostream OS(Str);
2623        OS << "__i" << IndexVariables.size();
2624        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2625      }
2626      VarDecl *IterationVar
2627        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2628                          IterationVarName, SizeType,
2629                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2630                          SC_None, SC_None);
2631      IndexVariables.push_back(IterationVar);
2632
2633      // Create a reference to the iteration variable.
2634      ExprResult IterationVarRef
2635        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2636      assert(!IterationVarRef.isInvalid() &&
2637             "Reference to invented variable cannot fail!");
2638      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2639      assert(!IterationVarRef.isInvalid() &&
2640             "Conversion of invented variable cannot fail!");
2641
2642      // Subscript the array with this iteration variable.
2643      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2644                                                        IterationVarRef.take(),
2645                                                        Loc);
2646      if (CtorArg.isInvalid())
2647        return true;
2648
2649      BaseType = Array->getElementType();
2650    }
2651
2652    // The array subscript expression is an lvalue, which is wrong for moving.
2653    if (Moving && InitializingArray)
2654      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2655
2656    // Construct the entity that we will be initializing. For an array, this
2657    // will be first element in the array, which may require several levels
2658    // of array-subscript entities.
2659    SmallVector<InitializedEntity, 4> Entities;
2660    Entities.reserve(1 + IndexVariables.size());
2661    if (Indirect)
2662      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2663    else
2664      Entities.push_back(InitializedEntity::InitializeMember(Field));
2665    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2666      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2667                                                              0,
2668                                                              Entities.back()));
2669
2670    // Direct-initialize to use the copy constructor.
2671    InitializationKind InitKind =
2672      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2673
2674    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2675    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2676                                   &CtorArgE, 1);
2677
2678    ExprResult MemberInit
2679      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2680                        MultiExprArg(&CtorArgE, 1));
2681    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2682    if (MemberInit.isInvalid())
2683      return true;
2684
2685    if (Indirect) {
2686      assert(IndexVariables.size() == 0 &&
2687             "Indirect field improperly initialized");
2688      CXXMemberInit
2689        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2690                                                   Loc, Loc,
2691                                                   MemberInit.takeAs<Expr>(),
2692                                                   Loc);
2693    } else
2694      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2695                                                 Loc, MemberInit.takeAs<Expr>(),
2696                                                 Loc,
2697                                                 IndexVariables.data(),
2698                                                 IndexVariables.size());
2699    return false;
2700  }
2701
2702  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2703
2704  QualType FieldBaseElementType =
2705    SemaRef.Context.getBaseElementType(Field->getType());
2706
2707  if (FieldBaseElementType->isRecordType()) {
2708    InitializedEntity InitEntity
2709      = Indirect? InitializedEntity::InitializeMember(Indirect)
2710                : InitializedEntity::InitializeMember(Field);
2711    InitializationKind InitKind =
2712      InitializationKind::CreateDefault(Loc);
2713
2714    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2715    ExprResult MemberInit =
2716      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2717
2718    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2719    if (MemberInit.isInvalid())
2720      return true;
2721
2722    if (Indirect)
2723      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2724                                                               Indirect, Loc,
2725                                                               Loc,
2726                                                               MemberInit.get(),
2727                                                               Loc);
2728    else
2729      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2730                                                               Field, Loc, Loc,
2731                                                               MemberInit.get(),
2732                                                               Loc);
2733    return false;
2734  }
2735
2736  if (!Field->getParent()->isUnion()) {
2737    if (FieldBaseElementType->isReferenceType()) {
2738      SemaRef.Diag(Constructor->getLocation(),
2739                   diag::err_uninitialized_member_in_ctor)
2740      << (int)Constructor->isImplicit()
2741      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2742      << 0 << Field->getDeclName();
2743      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2744      return true;
2745    }
2746
2747    if (FieldBaseElementType.isConstQualified()) {
2748      SemaRef.Diag(Constructor->getLocation(),
2749                   diag::err_uninitialized_member_in_ctor)
2750      << (int)Constructor->isImplicit()
2751      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2752      << 1 << Field->getDeclName();
2753      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2754      return true;
2755    }
2756  }
2757
2758  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2759      FieldBaseElementType->isObjCRetainableType() &&
2760      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2761      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2762    // ARC:
2763    //   Default-initialize Objective-C pointers to NULL.
2764    CXXMemberInit
2765      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2766                                                 Loc, Loc,
2767                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2768                                                 Loc);
2769    return false;
2770  }
2771
2772  // Nothing to initialize.
2773  CXXMemberInit = 0;
2774  return false;
2775}
2776
2777namespace {
2778struct BaseAndFieldInfo {
2779  Sema &S;
2780  CXXConstructorDecl *Ctor;
2781  bool AnyErrorsInInits;
2782  ImplicitInitializerKind IIK;
2783  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2784  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2785
2786  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2787    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2788    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2789    if (Generated && Ctor->isCopyConstructor())
2790      IIK = IIK_Copy;
2791    else if (Generated && Ctor->isMoveConstructor())
2792      IIK = IIK_Move;
2793    else
2794      IIK = IIK_Default;
2795  }
2796
2797  bool isImplicitCopyOrMove() const {
2798    switch (IIK) {
2799    case IIK_Copy:
2800    case IIK_Move:
2801      return true;
2802
2803    case IIK_Default:
2804      return false;
2805    }
2806
2807    llvm_unreachable("Invalid ImplicitInitializerKind!");
2808  }
2809
2810  bool addFieldInitializer(CXXCtorInitializer *Init) {
2811    AllToInit.push_back(Init);
2812
2813    // Check whether this initializer makes the field "used".
2814    if (Init->getInit() && Init->getInit()->HasSideEffects(S.Context))
2815      S.UnusedPrivateFields.remove(Init->getAnyMember());
2816
2817    return false;
2818  }
2819};
2820}
2821
2822/// \brief Determine whether the given indirect field declaration is somewhere
2823/// within an anonymous union.
2824static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2825  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2826                                      CEnd = F->chain_end();
2827       C != CEnd; ++C)
2828    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2829      if (Record->isUnion())
2830        return true;
2831
2832  return false;
2833}
2834
2835/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2836/// array type.
2837static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2838  if (T->isIncompleteArrayType())
2839    return true;
2840
2841  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2842    if (!ArrayT->getSize())
2843      return true;
2844
2845    T = ArrayT->getElementType();
2846  }
2847
2848  return false;
2849}
2850
2851static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2852                                    FieldDecl *Field,
2853                                    IndirectFieldDecl *Indirect = 0) {
2854
2855  // Overwhelmingly common case: we have a direct initializer for this field.
2856  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
2857    return Info.addFieldInitializer(Init);
2858
2859  // C++11 [class.base.init]p8: if the entity is a non-static data member that
2860  // has a brace-or-equal-initializer, the entity is initialized as specified
2861  // in [dcl.init].
2862  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2863    CXXCtorInitializer *Init;
2864    if (Indirect)
2865      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2866                                                      SourceLocation(),
2867                                                      SourceLocation(), 0,
2868                                                      SourceLocation());
2869    else
2870      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2871                                                      SourceLocation(),
2872                                                      SourceLocation(), 0,
2873                                                      SourceLocation());
2874    return Info.addFieldInitializer(Init);
2875  }
2876
2877  // Don't build an implicit initializer for union members if none was
2878  // explicitly specified.
2879  if (Field->getParent()->isUnion() ||
2880      (Indirect && isWithinAnonymousUnion(Indirect)))
2881    return false;
2882
2883  // Don't initialize incomplete or zero-length arrays.
2884  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2885    return false;
2886
2887  // Don't try to build an implicit initializer if there were semantic
2888  // errors in any of the initializers (and therefore we might be
2889  // missing some that the user actually wrote).
2890  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2891    return false;
2892
2893  CXXCtorInitializer *Init = 0;
2894  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2895                                     Indirect, Init))
2896    return true;
2897
2898  if (!Init)
2899    return false;
2900
2901  return Info.addFieldInitializer(Init);
2902}
2903
2904bool
2905Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2906                               CXXCtorInitializer *Initializer) {
2907  assert(Initializer->isDelegatingInitializer());
2908  Constructor->setNumCtorInitializers(1);
2909  CXXCtorInitializer **initializer =
2910    new (Context) CXXCtorInitializer*[1];
2911  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2912  Constructor->setCtorInitializers(initializer);
2913
2914  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2915    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2916    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2917  }
2918
2919  DelegatingCtorDecls.push_back(Constructor);
2920
2921  return false;
2922}
2923
2924bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2925                               CXXCtorInitializer **Initializers,
2926                               unsigned NumInitializers,
2927                               bool AnyErrors) {
2928  if (Constructor->isDependentContext()) {
2929    // Just store the initializers as written, they will be checked during
2930    // instantiation.
2931    if (NumInitializers > 0) {
2932      Constructor->setNumCtorInitializers(NumInitializers);
2933      CXXCtorInitializer **baseOrMemberInitializers =
2934        new (Context) CXXCtorInitializer*[NumInitializers];
2935      memcpy(baseOrMemberInitializers, Initializers,
2936             NumInitializers * sizeof(CXXCtorInitializer*));
2937      Constructor->setCtorInitializers(baseOrMemberInitializers);
2938    }
2939
2940    return false;
2941  }
2942
2943  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2944
2945  // We need to build the initializer AST according to order of construction
2946  // and not what user specified in the Initializers list.
2947  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2948  if (!ClassDecl)
2949    return true;
2950
2951  bool HadError = false;
2952
2953  for (unsigned i = 0; i < NumInitializers; i++) {
2954    CXXCtorInitializer *Member = Initializers[i];
2955
2956    if (Member->isBaseInitializer())
2957      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2958    else
2959      Info.AllBaseFields[Member->getAnyMember()] = Member;
2960  }
2961
2962  // Keep track of the direct virtual bases.
2963  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2964  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2965       E = ClassDecl->bases_end(); I != E; ++I) {
2966    if (I->isVirtual())
2967      DirectVBases.insert(I);
2968  }
2969
2970  // Push virtual bases before others.
2971  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2972       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2973
2974    if (CXXCtorInitializer *Value
2975        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2976      Info.AllToInit.push_back(Value);
2977    } else if (!AnyErrors) {
2978      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2979      CXXCtorInitializer *CXXBaseInit;
2980      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2981                                       VBase, IsInheritedVirtualBase,
2982                                       CXXBaseInit)) {
2983        HadError = true;
2984        continue;
2985      }
2986
2987      Info.AllToInit.push_back(CXXBaseInit);
2988    }
2989  }
2990
2991  // Non-virtual bases.
2992  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2993       E = ClassDecl->bases_end(); Base != E; ++Base) {
2994    // Virtuals are in the virtual base list and already constructed.
2995    if (Base->isVirtual())
2996      continue;
2997
2998    if (CXXCtorInitializer *Value
2999          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3000      Info.AllToInit.push_back(Value);
3001    } else if (!AnyErrors) {
3002      CXXCtorInitializer *CXXBaseInit;
3003      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3004                                       Base, /*IsInheritedVirtualBase=*/false,
3005                                       CXXBaseInit)) {
3006        HadError = true;
3007        continue;
3008      }
3009
3010      Info.AllToInit.push_back(CXXBaseInit);
3011    }
3012  }
3013
3014  // Fields.
3015  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3016                               MemEnd = ClassDecl->decls_end();
3017       Mem != MemEnd; ++Mem) {
3018    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3019      // C++ [class.bit]p2:
3020      //   A declaration for a bit-field that omits the identifier declares an
3021      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3022      //   initialized.
3023      if (F->isUnnamedBitfield())
3024        continue;
3025
3026      // If we're not generating the implicit copy/move constructor, then we'll
3027      // handle anonymous struct/union fields based on their individual
3028      // indirect fields.
3029      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
3030        continue;
3031
3032      if (CollectFieldInitializer(*this, Info, F))
3033        HadError = true;
3034      continue;
3035    }
3036
3037    // Beyond this point, we only consider default initialization.
3038    if (Info.IIK != IIK_Default)
3039      continue;
3040
3041    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3042      if (F->getType()->isIncompleteArrayType()) {
3043        assert(ClassDecl->hasFlexibleArrayMember() &&
3044               "Incomplete array type is not valid");
3045        continue;
3046      }
3047
3048      // Initialize each field of an anonymous struct individually.
3049      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3050        HadError = true;
3051
3052      continue;
3053    }
3054  }
3055
3056  NumInitializers = Info.AllToInit.size();
3057  if (NumInitializers > 0) {
3058    Constructor->setNumCtorInitializers(NumInitializers);
3059    CXXCtorInitializer **baseOrMemberInitializers =
3060      new (Context) CXXCtorInitializer*[NumInitializers];
3061    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3062           NumInitializers * sizeof(CXXCtorInitializer*));
3063    Constructor->setCtorInitializers(baseOrMemberInitializers);
3064
3065    // Constructors implicitly reference the base and member
3066    // destructors.
3067    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3068                                           Constructor->getParent());
3069  }
3070
3071  return HadError;
3072}
3073
3074static void *GetKeyForTopLevelField(FieldDecl *Field) {
3075  // For anonymous unions, use the class declaration as the key.
3076  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3077    if (RT->getDecl()->isAnonymousStructOrUnion())
3078      return static_cast<void *>(RT->getDecl());
3079  }
3080  return static_cast<void *>(Field);
3081}
3082
3083static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3084  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3085}
3086
3087static void *GetKeyForMember(ASTContext &Context,
3088                             CXXCtorInitializer *Member) {
3089  if (!Member->isAnyMemberInitializer())
3090    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3091
3092  // For fields injected into the class via declaration of an anonymous union,
3093  // use its anonymous union class declaration as the unique key.
3094  FieldDecl *Field = Member->getAnyMember();
3095
3096  // If the field is a member of an anonymous struct or union, our key
3097  // is the anonymous record decl that's a direct child of the class.
3098  RecordDecl *RD = Field->getParent();
3099  if (RD->isAnonymousStructOrUnion()) {
3100    while (true) {
3101      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3102      if (Parent->isAnonymousStructOrUnion())
3103        RD = Parent;
3104      else
3105        break;
3106    }
3107
3108    return static_cast<void *>(RD);
3109  }
3110
3111  return static_cast<void *>(Field);
3112}
3113
3114static void
3115DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3116                                  const CXXConstructorDecl *Constructor,
3117                                  CXXCtorInitializer **Inits,
3118                                  unsigned NumInits) {
3119  if (Constructor->getDeclContext()->isDependentContext())
3120    return;
3121
3122  // Don't check initializers order unless the warning is enabled at the
3123  // location of at least one initializer.
3124  bool ShouldCheckOrder = false;
3125  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3126    CXXCtorInitializer *Init = Inits[InitIndex];
3127    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3128                                         Init->getSourceLocation())
3129          != DiagnosticsEngine::Ignored) {
3130      ShouldCheckOrder = true;
3131      break;
3132    }
3133  }
3134  if (!ShouldCheckOrder)
3135    return;
3136
3137  // Build the list of bases and members in the order that they'll
3138  // actually be initialized.  The explicit initializers should be in
3139  // this same order but may be missing things.
3140  SmallVector<const void*, 32> IdealInitKeys;
3141
3142  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3143
3144  // 1. Virtual bases.
3145  for (CXXRecordDecl::base_class_const_iterator VBase =
3146       ClassDecl->vbases_begin(),
3147       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3148    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3149
3150  // 2. Non-virtual bases.
3151  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3152       E = ClassDecl->bases_end(); Base != E; ++Base) {
3153    if (Base->isVirtual())
3154      continue;
3155    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3156  }
3157
3158  // 3. Direct fields.
3159  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3160       E = ClassDecl->field_end(); Field != E; ++Field) {
3161    if (Field->isUnnamedBitfield())
3162      continue;
3163
3164    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3165  }
3166
3167  unsigned NumIdealInits = IdealInitKeys.size();
3168  unsigned IdealIndex = 0;
3169
3170  CXXCtorInitializer *PrevInit = 0;
3171  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3172    CXXCtorInitializer *Init = Inits[InitIndex];
3173    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3174
3175    // Scan forward to try to find this initializer in the idealized
3176    // initializers list.
3177    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3178      if (InitKey == IdealInitKeys[IdealIndex])
3179        break;
3180
3181    // If we didn't find this initializer, it must be because we
3182    // scanned past it on a previous iteration.  That can only
3183    // happen if we're out of order;  emit a warning.
3184    if (IdealIndex == NumIdealInits && PrevInit) {
3185      Sema::SemaDiagnosticBuilder D =
3186        SemaRef.Diag(PrevInit->getSourceLocation(),
3187                     diag::warn_initializer_out_of_order);
3188
3189      if (PrevInit->isAnyMemberInitializer())
3190        D << 0 << PrevInit->getAnyMember()->getDeclName();
3191      else
3192        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3193
3194      if (Init->isAnyMemberInitializer())
3195        D << 0 << Init->getAnyMember()->getDeclName();
3196      else
3197        D << 1 << Init->getTypeSourceInfo()->getType();
3198
3199      // Move back to the initializer's location in the ideal list.
3200      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3201        if (InitKey == IdealInitKeys[IdealIndex])
3202          break;
3203
3204      assert(IdealIndex != NumIdealInits &&
3205             "initializer not found in initializer list");
3206    }
3207
3208    PrevInit = Init;
3209  }
3210}
3211
3212namespace {
3213bool CheckRedundantInit(Sema &S,
3214                        CXXCtorInitializer *Init,
3215                        CXXCtorInitializer *&PrevInit) {
3216  if (!PrevInit) {
3217    PrevInit = Init;
3218    return false;
3219  }
3220
3221  if (FieldDecl *Field = Init->getMember())
3222    S.Diag(Init->getSourceLocation(),
3223           diag::err_multiple_mem_initialization)
3224      << Field->getDeclName()
3225      << Init->getSourceRange();
3226  else {
3227    const Type *BaseClass = Init->getBaseClass();
3228    assert(BaseClass && "neither field nor base");
3229    S.Diag(Init->getSourceLocation(),
3230           diag::err_multiple_base_initialization)
3231      << QualType(BaseClass, 0)
3232      << Init->getSourceRange();
3233  }
3234  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3235    << 0 << PrevInit->getSourceRange();
3236
3237  return true;
3238}
3239
3240typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3241typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3242
3243bool CheckRedundantUnionInit(Sema &S,
3244                             CXXCtorInitializer *Init,
3245                             RedundantUnionMap &Unions) {
3246  FieldDecl *Field = Init->getAnyMember();
3247  RecordDecl *Parent = Field->getParent();
3248  NamedDecl *Child = Field;
3249
3250  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3251    if (Parent->isUnion()) {
3252      UnionEntry &En = Unions[Parent];
3253      if (En.first && En.first != Child) {
3254        S.Diag(Init->getSourceLocation(),
3255               diag::err_multiple_mem_union_initialization)
3256          << Field->getDeclName()
3257          << Init->getSourceRange();
3258        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3259          << 0 << En.second->getSourceRange();
3260        return true;
3261      }
3262      if (!En.first) {
3263        En.first = Child;
3264        En.second = Init;
3265      }
3266      if (!Parent->isAnonymousStructOrUnion())
3267        return false;
3268    }
3269
3270    Child = Parent;
3271    Parent = cast<RecordDecl>(Parent->getDeclContext());
3272  }
3273
3274  return false;
3275}
3276}
3277
3278/// ActOnMemInitializers - Handle the member initializers for a constructor.
3279void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3280                                SourceLocation ColonLoc,
3281                                CXXCtorInitializer **meminits,
3282                                unsigned NumMemInits,
3283                                bool AnyErrors) {
3284  if (!ConstructorDecl)
3285    return;
3286
3287  AdjustDeclIfTemplate(ConstructorDecl);
3288
3289  CXXConstructorDecl *Constructor
3290    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3291
3292  if (!Constructor) {
3293    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3294    return;
3295  }
3296
3297  CXXCtorInitializer **MemInits =
3298    reinterpret_cast<CXXCtorInitializer **>(meminits);
3299
3300  // Mapping for the duplicate initializers check.
3301  // For member initializers, this is keyed with a FieldDecl*.
3302  // For base initializers, this is keyed with a Type*.
3303  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3304
3305  // Mapping for the inconsistent anonymous-union initializers check.
3306  RedundantUnionMap MemberUnions;
3307
3308  bool HadError = false;
3309  for (unsigned i = 0; i < NumMemInits; i++) {
3310    CXXCtorInitializer *Init = MemInits[i];
3311
3312    // Set the source order index.
3313    Init->setSourceOrder(i);
3314
3315    if (Init->isAnyMemberInitializer()) {
3316      FieldDecl *Field = Init->getAnyMember();
3317      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3318          CheckRedundantUnionInit(*this, Init, MemberUnions))
3319        HadError = true;
3320    } else if (Init->isBaseInitializer()) {
3321      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3322      if (CheckRedundantInit(*this, Init, Members[Key]))
3323        HadError = true;
3324    } else {
3325      assert(Init->isDelegatingInitializer());
3326      // This must be the only initializer
3327      if (i != 0 || NumMemInits > 1) {
3328        Diag(MemInits[0]->getSourceLocation(),
3329             diag::err_delegating_initializer_alone)
3330          << MemInits[0]->getSourceRange();
3331        HadError = true;
3332        // We will treat this as being the only initializer.
3333      }
3334      SetDelegatingInitializer(Constructor, MemInits[i]);
3335      // Return immediately as the initializer is set.
3336      return;
3337    }
3338  }
3339
3340  if (HadError)
3341    return;
3342
3343  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3344
3345  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3346}
3347
3348void
3349Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3350                                             CXXRecordDecl *ClassDecl) {
3351  // Ignore dependent contexts. Also ignore unions, since their members never
3352  // have destructors implicitly called.
3353  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3354    return;
3355
3356  // FIXME: all the access-control diagnostics are positioned on the
3357  // field/base declaration.  That's probably good; that said, the
3358  // user might reasonably want to know why the destructor is being
3359  // emitted, and we currently don't say.
3360
3361  // Non-static data members.
3362  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3363       E = ClassDecl->field_end(); I != E; ++I) {
3364    FieldDecl *Field = *I;
3365    if (Field->isInvalidDecl())
3366      continue;
3367
3368    // Don't destroy incomplete or zero-length arrays.
3369    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3370      continue;
3371
3372    QualType FieldType = Context.getBaseElementType(Field->getType());
3373
3374    const RecordType* RT = FieldType->getAs<RecordType>();
3375    if (!RT)
3376      continue;
3377
3378    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3379    if (FieldClassDecl->isInvalidDecl())
3380      continue;
3381    if (FieldClassDecl->hasIrrelevantDestructor())
3382      continue;
3383    // The destructor for an implicit anonymous union member is never invoked.
3384    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3385      continue;
3386
3387    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3388    assert(Dtor && "No dtor found for FieldClassDecl!");
3389    CheckDestructorAccess(Field->getLocation(), Dtor,
3390                          PDiag(diag::err_access_dtor_field)
3391                            << Field->getDeclName()
3392                            << FieldType);
3393
3394    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3395    DiagnoseUseOfDecl(Dtor, Location);
3396  }
3397
3398  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3399
3400  // Bases.
3401  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3402       E = ClassDecl->bases_end(); Base != E; ++Base) {
3403    // Bases are always records in a well-formed non-dependent class.
3404    const RecordType *RT = Base->getType()->getAs<RecordType>();
3405
3406    // Remember direct virtual bases.
3407    if (Base->isVirtual())
3408      DirectVirtualBases.insert(RT);
3409
3410    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3411    // If our base class is invalid, we probably can't get its dtor anyway.
3412    if (BaseClassDecl->isInvalidDecl())
3413      continue;
3414    if (BaseClassDecl->hasIrrelevantDestructor())
3415      continue;
3416
3417    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3418    assert(Dtor && "No dtor found for BaseClassDecl!");
3419
3420    // FIXME: caret should be on the start of the class name
3421    CheckDestructorAccess(Base->getLocStart(), Dtor,
3422                          PDiag(diag::err_access_dtor_base)
3423                            << Base->getType()
3424                            << Base->getSourceRange(),
3425                          Context.getTypeDeclType(ClassDecl));
3426
3427    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3428    DiagnoseUseOfDecl(Dtor, Location);
3429  }
3430
3431  // Virtual bases.
3432  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3433       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3434
3435    // Bases are always records in a well-formed non-dependent class.
3436    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3437
3438    // Ignore direct virtual bases.
3439    if (DirectVirtualBases.count(RT))
3440      continue;
3441
3442    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3443    // If our base class is invalid, we probably can't get its dtor anyway.
3444    if (BaseClassDecl->isInvalidDecl())
3445      continue;
3446    if (BaseClassDecl->hasIrrelevantDestructor())
3447      continue;
3448
3449    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3450    assert(Dtor && "No dtor found for BaseClassDecl!");
3451    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3452                          PDiag(diag::err_access_dtor_vbase)
3453                            << VBase->getType(),
3454                          Context.getTypeDeclType(ClassDecl));
3455
3456    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3457    DiagnoseUseOfDecl(Dtor, Location);
3458  }
3459}
3460
3461void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3462  if (!CDtorDecl)
3463    return;
3464
3465  if (CXXConstructorDecl *Constructor
3466      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3467    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3468}
3469
3470bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3471                                  unsigned DiagID, AbstractDiagSelID SelID) {
3472  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3473    unsigned DiagID;
3474    AbstractDiagSelID SelID;
3475
3476  public:
3477    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3478      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3479
3480    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3481      if (SelID == -1)
3482        S.Diag(Loc, DiagID) << T;
3483      else
3484        S.Diag(Loc, DiagID) << SelID << T;
3485    }
3486  } Diagnoser(DiagID, SelID);
3487
3488  return RequireNonAbstractType(Loc, T, Diagnoser);
3489}
3490
3491bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3492                                  TypeDiagnoser &Diagnoser) {
3493  if (!getLangOpts().CPlusPlus)
3494    return false;
3495
3496  if (const ArrayType *AT = Context.getAsArrayType(T))
3497    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3498
3499  if (const PointerType *PT = T->getAs<PointerType>()) {
3500    // Find the innermost pointer type.
3501    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3502      PT = T;
3503
3504    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3505      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3506  }
3507
3508  const RecordType *RT = T->getAs<RecordType>();
3509  if (!RT)
3510    return false;
3511
3512  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3513
3514  // We can't answer whether something is abstract until it has a
3515  // definition.  If it's currently being defined, we'll walk back
3516  // over all the declarations when we have a full definition.
3517  const CXXRecordDecl *Def = RD->getDefinition();
3518  if (!Def || Def->isBeingDefined())
3519    return false;
3520
3521  if (!RD->isAbstract())
3522    return false;
3523
3524  Diagnoser.diagnose(*this, Loc, T);
3525  DiagnoseAbstractType(RD);
3526
3527  return true;
3528}
3529
3530void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3531  // Check if we've already emitted the list of pure virtual functions
3532  // for this class.
3533  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3534    return;
3535
3536  CXXFinalOverriderMap FinalOverriders;
3537  RD->getFinalOverriders(FinalOverriders);
3538
3539  // Keep a set of seen pure methods so we won't diagnose the same method
3540  // more than once.
3541  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3542
3543  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3544                                   MEnd = FinalOverriders.end();
3545       M != MEnd;
3546       ++M) {
3547    for (OverridingMethods::iterator SO = M->second.begin(),
3548                                  SOEnd = M->second.end();
3549         SO != SOEnd; ++SO) {
3550      // C++ [class.abstract]p4:
3551      //   A class is abstract if it contains or inherits at least one
3552      //   pure virtual function for which the final overrider is pure
3553      //   virtual.
3554
3555      //
3556      if (SO->second.size() != 1)
3557        continue;
3558
3559      if (!SO->second.front().Method->isPure())
3560        continue;
3561
3562      if (!SeenPureMethods.insert(SO->second.front().Method))
3563        continue;
3564
3565      Diag(SO->second.front().Method->getLocation(),
3566           diag::note_pure_virtual_function)
3567        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3568    }
3569  }
3570
3571  if (!PureVirtualClassDiagSet)
3572    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3573  PureVirtualClassDiagSet->insert(RD);
3574}
3575
3576namespace {
3577struct AbstractUsageInfo {
3578  Sema &S;
3579  CXXRecordDecl *Record;
3580  CanQualType AbstractType;
3581  bool Invalid;
3582
3583  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3584    : S(S), Record(Record),
3585      AbstractType(S.Context.getCanonicalType(
3586                   S.Context.getTypeDeclType(Record))),
3587      Invalid(false) {}
3588
3589  void DiagnoseAbstractType() {
3590    if (Invalid) return;
3591    S.DiagnoseAbstractType(Record);
3592    Invalid = true;
3593  }
3594
3595  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3596};
3597
3598struct CheckAbstractUsage {
3599  AbstractUsageInfo &Info;
3600  const NamedDecl *Ctx;
3601
3602  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3603    : Info(Info), Ctx(Ctx) {}
3604
3605  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3606    switch (TL.getTypeLocClass()) {
3607#define ABSTRACT_TYPELOC(CLASS, PARENT)
3608#define TYPELOC(CLASS, PARENT) \
3609    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3610#include "clang/AST/TypeLocNodes.def"
3611    }
3612  }
3613
3614  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3615    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3616    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3617      if (!TL.getArg(I))
3618        continue;
3619
3620      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3621      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3622    }
3623  }
3624
3625  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3626    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3627  }
3628
3629  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3630    // Visit the type parameters from a permissive context.
3631    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3632      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3633      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3634        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3635          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3636      // TODO: other template argument types?
3637    }
3638  }
3639
3640  // Visit pointee types from a permissive context.
3641#define CheckPolymorphic(Type) \
3642  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3643    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3644  }
3645  CheckPolymorphic(PointerTypeLoc)
3646  CheckPolymorphic(ReferenceTypeLoc)
3647  CheckPolymorphic(MemberPointerTypeLoc)
3648  CheckPolymorphic(BlockPointerTypeLoc)
3649  CheckPolymorphic(AtomicTypeLoc)
3650
3651  /// Handle all the types we haven't given a more specific
3652  /// implementation for above.
3653  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3654    // Every other kind of type that we haven't called out already
3655    // that has an inner type is either (1) sugar or (2) contains that
3656    // inner type in some way as a subobject.
3657    if (TypeLoc Next = TL.getNextTypeLoc())
3658      return Visit(Next, Sel);
3659
3660    // If there's no inner type and we're in a permissive context,
3661    // don't diagnose.
3662    if (Sel == Sema::AbstractNone) return;
3663
3664    // Check whether the type matches the abstract type.
3665    QualType T = TL.getType();
3666    if (T->isArrayType()) {
3667      Sel = Sema::AbstractArrayType;
3668      T = Info.S.Context.getBaseElementType(T);
3669    }
3670    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3671    if (CT != Info.AbstractType) return;
3672
3673    // It matched; do some magic.
3674    if (Sel == Sema::AbstractArrayType) {
3675      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3676        << T << TL.getSourceRange();
3677    } else {
3678      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3679        << Sel << T << TL.getSourceRange();
3680    }
3681    Info.DiagnoseAbstractType();
3682  }
3683};
3684
3685void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3686                                  Sema::AbstractDiagSelID Sel) {
3687  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3688}
3689
3690}
3691
3692/// Check for invalid uses of an abstract type in a method declaration.
3693static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3694                                    CXXMethodDecl *MD) {
3695  // No need to do the check on definitions, which require that
3696  // the return/param types be complete.
3697  if (MD->doesThisDeclarationHaveABody())
3698    return;
3699
3700  // For safety's sake, just ignore it if we don't have type source
3701  // information.  This should never happen for non-implicit methods,
3702  // but...
3703  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3704    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3705}
3706
3707/// Check for invalid uses of an abstract type within a class definition.
3708static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3709                                    CXXRecordDecl *RD) {
3710  for (CXXRecordDecl::decl_iterator
3711         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3712    Decl *D = *I;
3713    if (D->isImplicit()) continue;
3714
3715    // Methods and method templates.
3716    if (isa<CXXMethodDecl>(D)) {
3717      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3718    } else if (isa<FunctionTemplateDecl>(D)) {
3719      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3720      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3721
3722    // Fields and static variables.
3723    } else if (isa<FieldDecl>(D)) {
3724      FieldDecl *FD = cast<FieldDecl>(D);
3725      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3726        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3727    } else if (isa<VarDecl>(D)) {
3728      VarDecl *VD = cast<VarDecl>(D);
3729      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3730        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3731
3732    // Nested classes and class templates.
3733    } else if (isa<CXXRecordDecl>(D)) {
3734      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3735    } else if (isa<ClassTemplateDecl>(D)) {
3736      CheckAbstractClassUsage(Info,
3737                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3738    }
3739  }
3740}
3741
3742/// \brief Perform semantic checks on a class definition that has been
3743/// completing, introducing implicitly-declared members, checking for
3744/// abstract types, etc.
3745void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3746  if (!Record)
3747    return;
3748
3749  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3750    AbstractUsageInfo Info(*this, Record);
3751    CheckAbstractClassUsage(Info, Record);
3752  }
3753
3754  // If this is not an aggregate type and has no user-declared constructor,
3755  // complain about any non-static data members of reference or const scalar
3756  // type, since they will never get initializers.
3757  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3758      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3759      !Record->isLambda()) {
3760    bool Complained = false;
3761    for (RecordDecl::field_iterator F = Record->field_begin(),
3762                                 FEnd = Record->field_end();
3763         F != FEnd; ++F) {
3764      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3765        continue;
3766
3767      if (F->getType()->isReferenceType() ||
3768          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3769        if (!Complained) {
3770          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3771            << Record->getTagKind() << Record;
3772          Complained = true;
3773        }
3774
3775        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3776          << F->getType()->isReferenceType()
3777          << F->getDeclName();
3778      }
3779    }
3780  }
3781
3782  if (Record->isDynamicClass() && !Record->isDependentType())
3783    DynamicClasses.push_back(Record);
3784
3785  if (Record->getIdentifier()) {
3786    // C++ [class.mem]p13:
3787    //   If T is the name of a class, then each of the following shall have a
3788    //   name different from T:
3789    //     - every member of every anonymous union that is a member of class T.
3790    //
3791    // C++ [class.mem]p14:
3792    //   In addition, if class T has a user-declared constructor (12.1), every
3793    //   non-static data member of class T shall have a name different from T.
3794    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3795         R.first != R.second; ++R.first) {
3796      NamedDecl *D = *R.first;
3797      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3798          isa<IndirectFieldDecl>(D)) {
3799        Diag(D->getLocation(), diag::err_member_name_of_class)
3800          << D->getDeclName();
3801        break;
3802      }
3803    }
3804  }
3805
3806  // Warn if the class has virtual methods but non-virtual public destructor.
3807  if (Record->isPolymorphic() && !Record->isDependentType()) {
3808    CXXDestructorDecl *dtor = Record->getDestructor();
3809    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3810      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3811           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3812  }
3813
3814  // See if a method overloads virtual methods in a base
3815  /// class without overriding any.
3816  if (!Record->isDependentType()) {
3817    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3818                                     MEnd = Record->method_end();
3819         M != MEnd; ++M) {
3820      if (!M->isStatic())
3821        DiagnoseHiddenVirtualMethods(Record, *M);
3822    }
3823  }
3824
3825  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3826  // function that is not a constructor declares that member function to be
3827  // const. [...] The class of which that function is a member shall be
3828  // a literal type.
3829  //
3830  // If the class has virtual bases, any constexpr members will already have
3831  // been diagnosed by the checks performed on the member declaration, so
3832  // suppress this (less useful) diagnostic.
3833  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3834      !Record->isLiteral() && !Record->getNumVBases()) {
3835    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3836                                     MEnd = Record->method_end();
3837         M != MEnd; ++M) {
3838      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3839        switch (Record->getTemplateSpecializationKind()) {
3840        case TSK_ImplicitInstantiation:
3841        case TSK_ExplicitInstantiationDeclaration:
3842        case TSK_ExplicitInstantiationDefinition:
3843          // If a template instantiates to a non-literal type, but its members
3844          // instantiate to constexpr functions, the template is technically
3845          // ill-formed, but we allow it for sanity.
3846          continue;
3847
3848        case TSK_Undeclared:
3849        case TSK_ExplicitSpecialization:
3850          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
3851                             diag::err_constexpr_method_non_literal);
3852          break;
3853        }
3854
3855        // Only produce one error per class.
3856        break;
3857      }
3858    }
3859  }
3860
3861  // Declare inherited constructors. We do this eagerly here because:
3862  // - The standard requires an eager diagnostic for conflicting inherited
3863  //   constructors from different classes.
3864  // - The lazy declaration of the other implicit constructors is so as to not
3865  //   waste space and performance on classes that are not meant to be
3866  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3867  //   have inherited constructors.
3868  DeclareInheritedConstructors(Record);
3869}
3870
3871void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3872  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3873                                      ME = Record->method_end();
3874       MI != ME; ++MI)
3875    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted())
3876      CheckExplicitlyDefaultedSpecialMember(*MI);
3877}
3878
3879/// Is the special member function which would be selected to perform the
3880/// specified operation on the specified class type a constexpr constructor?
3881static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
3882                                     Sema::CXXSpecialMember CSM,
3883                                     bool ConstArg) {
3884  Sema::SpecialMemberOverloadResult *SMOR =
3885      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
3886                            false, false, false, false);
3887  if (!SMOR || !SMOR->getMethod())
3888    // A constructor we wouldn't select can't be "involved in initializing"
3889    // anything.
3890    return true;
3891  return SMOR->getMethod()->isConstexpr();
3892}
3893
3894/// Determine whether the specified special member function would be constexpr
3895/// if it were implicitly defined.
3896static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
3897                                              Sema::CXXSpecialMember CSM,
3898                                              bool ConstArg) {
3899  if (!S.getLangOpts().CPlusPlus0x)
3900    return false;
3901
3902  // C++11 [dcl.constexpr]p4:
3903  // In the definition of a constexpr constructor [...]
3904  switch (CSM) {
3905  case Sema::CXXDefaultConstructor:
3906    // Since default constructor lookup is essentially trivial (and cannot
3907    // involve, for instance, template instantiation), we compute whether a
3908    // defaulted default constructor is constexpr directly within CXXRecordDecl.
3909    //
3910    // This is important for performance; we need to know whether the default
3911    // constructor is constexpr to determine whether the type is a literal type.
3912    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
3913
3914  case Sema::CXXCopyConstructor:
3915  case Sema::CXXMoveConstructor:
3916    // For copy or move constructors, we need to perform overload resolution.
3917    break;
3918
3919  case Sema::CXXCopyAssignment:
3920  case Sema::CXXMoveAssignment:
3921  case Sema::CXXDestructor:
3922  case Sema::CXXInvalid:
3923    return false;
3924  }
3925
3926  //   -- if the class is a non-empty union, or for each non-empty anonymous
3927  //      union member of a non-union class, exactly one non-static data member
3928  //      shall be initialized; [DR1359]
3929  //
3930  // If we squint, this is guaranteed, since exactly one non-static data member
3931  // will be initialized (if the constructor isn't deleted), we just don't know
3932  // which one.
3933  if (ClassDecl->isUnion())
3934    return true;
3935
3936  //   -- the class shall not have any virtual base classes;
3937  if (ClassDecl->getNumVBases())
3938    return false;
3939
3940  //   -- every constructor involved in initializing [...] base class
3941  //      sub-objects shall be a constexpr constructor;
3942  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
3943                                       BEnd = ClassDecl->bases_end();
3944       B != BEnd; ++B) {
3945    const RecordType *BaseType = B->getType()->getAs<RecordType>();
3946    if (!BaseType) continue;
3947
3948    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
3949    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
3950      return false;
3951  }
3952
3953  //   -- every constructor involved in initializing non-static data members
3954  //      [...] shall be a constexpr constructor;
3955  //   -- every non-static data member and base class sub-object shall be
3956  //      initialized
3957  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
3958                               FEnd = ClassDecl->field_end();
3959       F != FEnd; ++F) {
3960    if (F->isInvalidDecl())
3961      continue;
3962    if (const RecordType *RecordTy =
3963            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
3964      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
3965      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
3966        return false;
3967    }
3968  }
3969
3970  // All OK, it's constexpr!
3971  return true;
3972}
3973
3974static Sema::ImplicitExceptionSpecification
3975computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
3976  switch (S.getSpecialMember(MD)) {
3977  case Sema::CXXDefaultConstructor:
3978    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
3979  case Sema::CXXCopyConstructor:
3980    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
3981  case Sema::CXXCopyAssignment:
3982    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
3983  case Sema::CXXMoveConstructor:
3984    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
3985  case Sema::CXXMoveAssignment:
3986    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
3987  case Sema::CXXDestructor:
3988    return S.ComputeDefaultedDtorExceptionSpec(MD);
3989  case Sema::CXXInvalid:
3990    break;
3991  }
3992  llvm_unreachable("only special members have implicit exception specs");
3993}
3994
3995static void
3996updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
3997                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
3998  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3999  ExceptSpec.getEPI(EPI);
4000  const FunctionProtoType *NewFPT = cast<FunctionProtoType>(
4001    S.Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
4002                              FPT->getNumArgs(), EPI));
4003  FD->setType(QualType(NewFPT, 0));
4004}
4005
4006void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4007  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4008  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4009    return;
4010
4011  // Evaluate the exception specification.
4012  ImplicitExceptionSpecification ExceptSpec =
4013      computeImplicitExceptionSpec(*this, Loc, MD);
4014
4015  // Update the type of the special member to use it.
4016  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4017
4018  // A user-provided destructor can be defined outside the class. When that
4019  // happens, be sure to update the exception specification on both
4020  // declarations.
4021  const FunctionProtoType *CanonicalFPT =
4022    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4023  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4024    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4025                        CanonicalFPT, ExceptSpec);
4026}
4027
4028static bool isImplicitCopyCtorArgConst(Sema &S, CXXRecordDecl *ClassDecl);
4029static bool isImplicitCopyAssignmentArgConst(Sema &S, CXXRecordDecl *ClassDecl);
4030
4031void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4032  CXXRecordDecl *RD = MD->getParent();
4033  CXXSpecialMember CSM = getSpecialMember(MD);
4034
4035  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4036         "not an explicitly-defaulted special member");
4037
4038  // Whether this was the first-declared instance of the constructor.
4039  // This affects whether we implicitly add an exception spec and constexpr.
4040  bool First = MD == MD->getCanonicalDecl();
4041
4042  bool HadError = false;
4043
4044  // C++11 [dcl.fct.def.default]p1:
4045  //   A function that is explicitly defaulted shall
4046  //     -- be a special member function (checked elsewhere),
4047  //     -- have the same type (except for ref-qualifiers, and except that a
4048  //        copy operation can take a non-const reference) as an implicit
4049  //        declaration, and
4050  //     -- not have default arguments.
4051  unsigned ExpectedParams = 1;
4052  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4053    ExpectedParams = 0;
4054  if (MD->getNumParams() != ExpectedParams) {
4055    // This also checks for default arguments: a copy or move constructor with a
4056    // default argument is classified as a default constructor, and assignment
4057    // operations and destructors can't have default arguments.
4058    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4059      << CSM << MD->getSourceRange();
4060    HadError = true;
4061  }
4062
4063  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4064
4065  // Compute argument constness, constexpr, and triviality.
4066  bool CanHaveConstParam = false;
4067  bool Trivial;
4068  switch (CSM) {
4069  case CXXDefaultConstructor:
4070    Trivial = RD->hasTrivialDefaultConstructor();
4071    break;
4072  case CXXCopyConstructor:
4073    CanHaveConstParam = isImplicitCopyCtorArgConst(*this, RD);
4074    Trivial = RD->hasTrivialCopyConstructor();
4075    break;
4076  case CXXCopyAssignment:
4077    CanHaveConstParam = isImplicitCopyAssignmentArgConst(*this, RD);
4078    Trivial = RD->hasTrivialCopyAssignment();
4079    break;
4080  case CXXMoveConstructor:
4081    Trivial = RD->hasTrivialMoveConstructor();
4082    break;
4083  case CXXMoveAssignment:
4084    Trivial = RD->hasTrivialMoveAssignment();
4085    break;
4086  case CXXDestructor:
4087    Trivial = RD->hasTrivialDestructor();
4088    break;
4089  case CXXInvalid:
4090    llvm_unreachable("non-special member explicitly defaulted!");
4091  }
4092
4093  QualType ReturnType = Context.VoidTy;
4094  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4095    // Check for return type matching.
4096    ReturnType = Type->getResultType();
4097    QualType ExpectedReturnType =
4098        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4099    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4100      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4101        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4102      HadError = true;
4103    }
4104
4105    // A defaulted special member cannot have cv-qualifiers.
4106    if (Type->getTypeQuals()) {
4107      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4108        << (CSM == CXXMoveAssignment);
4109      HadError = true;
4110    }
4111  }
4112
4113  // Check for parameter type matching.
4114  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4115  bool HasConstParam = false;
4116  if (ExpectedParams && ArgType->isReferenceType()) {
4117    // Argument must be reference to possibly-const T.
4118    QualType ReferentType = ArgType->getPointeeType();
4119    HasConstParam = ReferentType.isConstQualified();
4120
4121    if (ReferentType.isVolatileQualified()) {
4122      Diag(MD->getLocation(),
4123           diag::err_defaulted_special_member_volatile_param) << CSM;
4124      HadError = true;
4125    }
4126
4127    if (HasConstParam && !CanHaveConstParam) {
4128      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4129        Diag(MD->getLocation(),
4130             diag::err_defaulted_special_member_copy_const_param)
4131          << (CSM == CXXCopyAssignment);
4132        // FIXME: Explain why this special member can't be const.
4133      } else {
4134        Diag(MD->getLocation(),
4135             diag::err_defaulted_special_member_move_const_param)
4136          << (CSM == CXXMoveAssignment);
4137      }
4138      HadError = true;
4139    }
4140
4141    // If a function is explicitly defaulted on its first declaration, it shall
4142    // have the same parameter type as if it had been implicitly declared.
4143    // (Presumably this is to prevent it from being trivial?)
4144    if (!HasConstParam && CanHaveConstParam && First)
4145      Diag(MD->getLocation(),
4146           diag::err_defaulted_special_member_copy_non_const_param)
4147        << (CSM == CXXCopyAssignment);
4148  } else if (ExpectedParams) {
4149    // A copy assignment operator can take its argument by value, but a
4150    // defaulted one cannot.
4151    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4152    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4153    HadError = true;
4154  }
4155
4156  // Rebuild the type with the implicit exception specification added, if we
4157  // are going to need it.
4158  const FunctionProtoType *ImplicitType = 0;
4159  if (First || Type->hasExceptionSpec()) {
4160    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4161    computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4162    ImplicitType = cast<FunctionProtoType>(
4163      Context.getFunctionType(ReturnType, &ArgType, ExpectedParams, EPI));
4164  }
4165
4166  // C++11 [dcl.fct.def.default]p2:
4167  //   An explicitly-defaulted function may be declared constexpr only if it
4168  //   would have been implicitly declared as constexpr,
4169  // Do not apply this rule to members of class templates, since core issue 1358
4170  // makes such functions always instantiate to constexpr functions. For
4171  // non-constructors, this is checked elsewhere.
4172  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4173                                                     HasConstParam);
4174  if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
4175      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4176    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4177    // FIXME: Explain why the constructor can't be constexpr.
4178    HadError = true;
4179  }
4180  //   and may have an explicit exception-specification only if it is compatible
4181  //   with the exception-specification on the implicit declaration.
4182  if (Type->hasExceptionSpec() &&
4183      CheckEquivalentExceptionSpec(
4184        PDiag(diag::err_incorrect_defaulted_exception_spec) << CSM,
4185        PDiag(), ImplicitType, SourceLocation(), Type, MD->getLocation()))
4186    HadError = true;
4187
4188  //   If a function is explicitly defaulted on its first declaration,
4189  if (First) {
4190    //  -- it is implicitly considered to be constexpr if the implicit
4191    //     definition would be,
4192    MD->setConstexpr(Constexpr);
4193
4194    //  -- it is implicitly considered to have the same exception-specification
4195    //     as if it had been implicitly declared,
4196    MD->setType(QualType(ImplicitType, 0));
4197
4198    // Such a function is also trivial if the implicitly-declared function
4199    // would have been.
4200    MD->setTrivial(Trivial);
4201  }
4202
4203  if (ShouldDeleteSpecialMember(MD, CSM)) {
4204    if (First) {
4205      MD->setDeletedAsWritten();
4206    } else {
4207      // C++11 [dcl.fct.def.default]p4:
4208      //   [For a] user-provided explicitly-defaulted function [...] if such a
4209      //   function is implicitly defined as deleted, the program is ill-formed.
4210      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4211      HadError = true;
4212    }
4213  }
4214
4215  if (HadError)
4216    MD->setInvalidDecl();
4217}
4218
4219namespace {
4220struct SpecialMemberDeletionInfo {
4221  Sema &S;
4222  CXXMethodDecl *MD;
4223  Sema::CXXSpecialMember CSM;
4224  bool Diagnose;
4225
4226  // Properties of the special member, computed for convenience.
4227  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4228  SourceLocation Loc;
4229
4230  bool AllFieldsAreConst;
4231
4232  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4233                            Sema::CXXSpecialMember CSM, bool Diagnose)
4234    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4235      IsConstructor(false), IsAssignment(false), IsMove(false),
4236      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4237      AllFieldsAreConst(true) {
4238    switch (CSM) {
4239      case Sema::CXXDefaultConstructor:
4240      case Sema::CXXCopyConstructor:
4241        IsConstructor = true;
4242        break;
4243      case Sema::CXXMoveConstructor:
4244        IsConstructor = true;
4245        IsMove = true;
4246        break;
4247      case Sema::CXXCopyAssignment:
4248        IsAssignment = true;
4249        break;
4250      case Sema::CXXMoveAssignment:
4251        IsAssignment = true;
4252        IsMove = true;
4253        break;
4254      case Sema::CXXDestructor:
4255        break;
4256      case Sema::CXXInvalid:
4257        llvm_unreachable("invalid special member kind");
4258    }
4259
4260    if (MD->getNumParams()) {
4261      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4262      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4263    }
4264  }
4265
4266  bool inUnion() const { return MD->getParent()->isUnion(); }
4267
4268  /// Look up the corresponding special member in the given class.
4269  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4270                                              unsigned Quals) {
4271    unsigned TQ = MD->getTypeQualifiers();
4272    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4273    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4274      Quals = 0;
4275    return S.LookupSpecialMember(Class, CSM,
4276                                 ConstArg || (Quals & Qualifiers::Const),
4277                                 VolatileArg || (Quals & Qualifiers::Volatile),
4278                                 MD->getRefQualifier() == RQ_RValue,
4279                                 TQ & Qualifiers::Const,
4280                                 TQ & Qualifiers::Volatile);
4281  }
4282
4283  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4284
4285  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4286  bool shouldDeleteForField(FieldDecl *FD);
4287  bool shouldDeleteForAllConstMembers();
4288
4289  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4290                                     unsigned Quals);
4291  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4292                                    Sema::SpecialMemberOverloadResult *SMOR,
4293                                    bool IsDtorCallInCtor);
4294
4295  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4296};
4297}
4298
4299/// Is the given special member inaccessible when used on the given
4300/// sub-object.
4301bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4302                                             CXXMethodDecl *target) {
4303  /// If we're operating on a base class, the object type is the
4304  /// type of this special member.
4305  QualType objectTy;
4306  AccessSpecifier access = target->getAccess();;
4307  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4308    objectTy = S.Context.getTypeDeclType(MD->getParent());
4309    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4310
4311  // If we're operating on a field, the object type is the type of the field.
4312  } else {
4313    objectTy = S.Context.getTypeDeclType(target->getParent());
4314  }
4315
4316  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4317}
4318
4319/// Check whether we should delete a special member due to the implicit
4320/// definition containing a call to a special member of a subobject.
4321bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4322    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4323    bool IsDtorCallInCtor) {
4324  CXXMethodDecl *Decl = SMOR->getMethod();
4325  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4326
4327  int DiagKind = -1;
4328
4329  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4330    DiagKind = !Decl ? 0 : 1;
4331  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4332    DiagKind = 2;
4333  else if (!isAccessible(Subobj, Decl))
4334    DiagKind = 3;
4335  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4336           !Decl->isTrivial()) {
4337    // A member of a union must have a trivial corresponding special member.
4338    // As a weird special case, a destructor call from a union's constructor
4339    // must be accessible and non-deleted, but need not be trivial. Such a
4340    // destructor is never actually called, but is semantically checked as
4341    // if it were.
4342    DiagKind = 4;
4343  }
4344
4345  if (DiagKind == -1)
4346    return false;
4347
4348  if (Diagnose) {
4349    if (Field) {
4350      S.Diag(Field->getLocation(),
4351             diag::note_deleted_special_member_class_subobject)
4352        << CSM << MD->getParent() << /*IsField*/true
4353        << Field << DiagKind << IsDtorCallInCtor;
4354    } else {
4355      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4356      S.Diag(Base->getLocStart(),
4357             diag::note_deleted_special_member_class_subobject)
4358        << CSM << MD->getParent() << /*IsField*/false
4359        << Base->getType() << DiagKind << IsDtorCallInCtor;
4360    }
4361
4362    if (DiagKind == 1)
4363      S.NoteDeletedFunction(Decl);
4364    // FIXME: Explain inaccessibility if DiagKind == 3.
4365  }
4366
4367  return true;
4368}
4369
4370/// Check whether we should delete a special member function due to having a
4371/// direct or virtual base class or non-static data member of class type M.
4372bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4373    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4374  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4375
4376  // C++11 [class.ctor]p5:
4377  // -- any direct or virtual base class, or non-static data member with no
4378  //    brace-or-equal-initializer, has class type M (or array thereof) and
4379  //    either M has no default constructor or overload resolution as applied
4380  //    to M's default constructor results in an ambiguity or in a function
4381  //    that is deleted or inaccessible
4382  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4383  // -- a direct or virtual base class B that cannot be copied/moved because
4384  //    overload resolution, as applied to B's corresponding special member,
4385  //    results in an ambiguity or a function that is deleted or inaccessible
4386  //    from the defaulted special member
4387  // C++11 [class.dtor]p5:
4388  // -- any direct or virtual base class [...] has a type with a destructor
4389  //    that is deleted or inaccessible
4390  if (!(CSM == Sema::CXXDefaultConstructor &&
4391        Field && Field->hasInClassInitializer()) &&
4392      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4393    return true;
4394
4395  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4396  // -- any direct or virtual base class or non-static data member has a
4397  //    type with a destructor that is deleted or inaccessible
4398  if (IsConstructor) {
4399    Sema::SpecialMemberOverloadResult *SMOR =
4400        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4401                              false, false, false, false, false);
4402    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4403      return true;
4404  }
4405
4406  return false;
4407}
4408
4409/// Check whether we should delete a special member function due to the class
4410/// having a particular direct or virtual base class.
4411bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4412  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4413  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4414}
4415
4416/// Check whether we should delete a special member function due to the class
4417/// having a particular non-static data member.
4418bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4419  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4420  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4421
4422  if (CSM == Sema::CXXDefaultConstructor) {
4423    // For a default constructor, all references must be initialized in-class
4424    // and, if a union, it must have a non-const member.
4425    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4426      if (Diagnose)
4427        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4428          << MD->getParent() << FD << FieldType << /*Reference*/0;
4429      return true;
4430    }
4431    // C++11 [class.ctor]p5: any non-variant non-static data member of
4432    // const-qualified type (or array thereof) with no
4433    // brace-or-equal-initializer does not have a user-provided default
4434    // constructor.
4435    if (!inUnion() && FieldType.isConstQualified() &&
4436        !FD->hasInClassInitializer() &&
4437        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4438      if (Diagnose)
4439        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4440          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4441      return true;
4442    }
4443
4444    if (inUnion() && !FieldType.isConstQualified())
4445      AllFieldsAreConst = false;
4446  } else if (CSM == Sema::CXXCopyConstructor) {
4447    // For a copy constructor, data members must not be of rvalue reference
4448    // type.
4449    if (FieldType->isRValueReferenceType()) {
4450      if (Diagnose)
4451        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4452          << MD->getParent() << FD << FieldType;
4453      return true;
4454    }
4455  } else if (IsAssignment) {
4456    // For an assignment operator, data members must not be of reference type.
4457    if (FieldType->isReferenceType()) {
4458      if (Diagnose)
4459        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4460          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4461      return true;
4462    }
4463    if (!FieldRecord && FieldType.isConstQualified()) {
4464      // C++11 [class.copy]p23:
4465      // -- a non-static data member of const non-class type (or array thereof)
4466      if (Diagnose)
4467        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4468          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4469      return true;
4470    }
4471  }
4472
4473  if (FieldRecord) {
4474    // Some additional restrictions exist on the variant members.
4475    if (!inUnion() && FieldRecord->isUnion() &&
4476        FieldRecord->isAnonymousStructOrUnion()) {
4477      bool AllVariantFieldsAreConst = true;
4478
4479      // FIXME: Handle anonymous unions declared within anonymous unions.
4480      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4481                                         UE = FieldRecord->field_end();
4482           UI != UE; ++UI) {
4483        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4484
4485        if (!UnionFieldType.isConstQualified())
4486          AllVariantFieldsAreConst = false;
4487
4488        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4489        if (UnionFieldRecord &&
4490            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4491                                          UnionFieldType.getCVRQualifiers()))
4492          return true;
4493      }
4494
4495      // At least one member in each anonymous union must be non-const
4496      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4497          FieldRecord->field_begin() != FieldRecord->field_end()) {
4498        if (Diagnose)
4499          S.Diag(FieldRecord->getLocation(),
4500                 diag::note_deleted_default_ctor_all_const)
4501            << MD->getParent() << /*anonymous union*/1;
4502        return true;
4503      }
4504
4505      // Don't check the implicit member of the anonymous union type.
4506      // This is technically non-conformant, but sanity demands it.
4507      return false;
4508    }
4509
4510    if (shouldDeleteForClassSubobject(FieldRecord, FD,
4511                                      FieldType.getCVRQualifiers()))
4512      return true;
4513  }
4514
4515  return false;
4516}
4517
4518/// C++11 [class.ctor] p5:
4519///   A defaulted default constructor for a class X is defined as deleted if
4520/// X is a union and all of its variant members are of const-qualified type.
4521bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4522  // This is a silly definition, because it gives an empty union a deleted
4523  // default constructor. Don't do that.
4524  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4525      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4526    if (Diagnose)
4527      S.Diag(MD->getParent()->getLocation(),
4528             diag::note_deleted_default_ctor_all_const)
4529        << MD->getParent() << /*not anonymous union*/0;
4530    return true;
4531  }
4532  return false;
4533}
4534
4535/// Determine whether a defaulted special member function should be defined as
4536/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4537/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4538bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4539                                     bool Diagnose) {
4540  if (MD->isInvalidDecl())
4541    return false;
4542  CXXRecordDecl *RD = MD->getParent();
4543  assert(!RD->isDependentType() && "do deletion after instantiation");
4544  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4545    return false;
4546
4547  // C++11 [expr.lambda.prim]p19:
4548  //   The closure type associated with a lambda-expression has a
4549  //   deleted (8.4.3) default constructor and a deleted copy
4550  //   assignment operator.
4551  if (RD->isLambda() &&
4552      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4553    if (Diagnose)
4554      Diag(RD->getLocation(), diag::note_lambda_decl);
4555    return true;
4556  }
4557
4558  // For an anonymous struct or union, the copy and assignment special members
4559  // will never be used, so skip the check. For an anonymous union declared at
4560  // namespace scope, the constructor and destructor are used.
4561  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4562      RD->isAnonymousStructOrUnion())
4563    return false;
4564
4565  // C++11 [class.copy]p7, p18:
4566  //   If the class definition declares a move constructor or move assignment
4567  //   operator, an implicitly declared copy constructor or copy assignment
4568  //   operator is defined as deleted.
4569  if (MD->isImplicit() &&
4570      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4571    CXXMethodDecl *UserDeclaredMove = 0;
4572
4573    // In Microsoft mode, a user-declared move only causes the deletion of the
4574    // corresponding copy operation, not both copy operations.
4575    if (RD->hasUserDeclaredMoveConstructor() &&
4576        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4577      if (!Diagnose) return true;
4578      UserDeclaredMove = RD->getMoveConstructor();
4579      assert(UserDeclaredMove);
4580    } else if (RD->hasUserDeclaredMoveAssignment() &&
4581               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4582      if (!Diagnose) return true;
4583      UserDeclaredMove = RD->getMoveAssignmentOperator();
4584      assert(UserDeclaredMove);
4585    }
4586
4587    if (UserDeclaredMove) {
4588      Diag(UserDeclaredMove->getLocation(),
4589           diag::note_deleted_copy_user_declared_move)
4590        << (CSM == CXXCopyAssignment) << RD
4591        << UserDeclaredMove->isMoveAssignmentOperator();
4592      return true;
4593    }
4594  }
4595
4596  // Do access control from the special member function
4597  ContextRAII MethodContext(*this, MD);
4598
4599  // C++11 [class.dtor]p5:
4600  // -- for a virtual destructor, lookup of the non-array deallocation function
4601  //    results in an ambiguity or in a function that is deleted or inaccessible
4602  if (CSM == CXXDestructor && MD->isVirtual()) {
4603    FunctionDecl *OperatorDelete = 0;
4604    DeclarationName Name =
4605      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4606    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4607                                 OperatorDelete, false)) {
4608      if (Diagnose)
4609        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4610      return true;
4611    }
4612  }
4613
4614  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4615
4616  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4617                                          BE = RD->bases_end(); BI != BE; ++BI)
4618    if (!BI->isVirtual() &&
4619        SMI.shouldDeleteForBase(BI))
4620      return true;
4621
4622  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4623                                          BE = RD->vbases_end(); BI != BE; ++BI)
4624    if (SMI.shouldDeleteForBase(BI))
4625      return true;
4626
4627  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4628                                     FE = RD->field_end(); FI != FE; ++FI)
4629    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4630        SMI.shouldDeleteForField(*FI))
4631      return true;
4632
4633  if (SMI.shouldDeleteForAllConstMembers())
4634    return true;
4635
4636  return false;
4637}
4638
4639/// \brief Data used with FindHiddenVirtualMethod
4640namespace {
4641  struct FindHiddenVirtualMethodData {
4642    Sema *S;
4643    CXXMethodDecl *Method;
4644    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4645    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4646  };
4647}
4648
4649/// \brief Member lookup function that determines whether a given C++
4650/// method overloads virtual methods in a base class without overriding any,
4651/// to be used with CXXRecordDecl::lookupInBases().
4652static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4653                                    CXXBasePath &Path,
4654                                    void *UserData) {
4655  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4656
4657  FindHiddenVirtualMethodData &Data
4658    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4659
4660  DeclarationName Name = Data.Method->getDeclName();
4661  assert(Name.getNameKind() == DeclarationName::Identifier);
4662
4663  bool foundSameNameMethod = false;
4664  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4665  for (Path.Decls = BaseRecord->lookup(Name);
4666       Path.Decls.first != Path.Decls.second;
4667       ++Path.Decls.first) {
4668    NamedDecl *D = *Path.Decls.first;
4669    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4670      MD = MD->getCanonicalDecl();
4671      foundSameNameMethod = true;
4672      // Interested only in hidden virtual methods.
4673      if (!MD->isVirtual())
4674        continue;
4675      // If the method we are checking overrides a method from its base
4676      // don't warn about the other overloaded methods.
4677      if (!Data.S->IsOverload(Data.Method, MD, false))
4678        return true;
4679      // Collect the overload only if its hidden.
4680      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4681        overloadedMethods.push_back(MD);
4682    }
4683  }
4684
4685  if (foundSameNameMethod)
4686    Data.OverloadedMethods.append(overloadedMethods.begin(),
4687                                   overloadedMethods.end());
4688  return foundSameNameMethod;
4689}
4690
4691/// \brief See if a method overloads virtual methods in a base class without
4692/// overriding any.
4693void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4694  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4695                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4696    return;
4697  if (!MD->getDeclName().isIdentifier())
4698    return;
4699
4700  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4701                     /*bool RecordPaths=*/false,
4702                     /*bool DetectVirtual=*/false);
4703  FindHiddenVirtualMethodData Data;
4704  Data.Method = MD;
4705  Data.S = this;
4706
4707  // Keep the base methods that were overriden or introduced in the subclass
4708  // by 'using' in a set. A base method not in this set is hidden.
4709  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4710       res.first != res.second; ++res.first) {
4711    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4712      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4713                                          E = MD->end_overridden_methods();
4714           I != E; ++I)
4715        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4716    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4717      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4718        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4719  }
4720
4721  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4722      !Data.OverloadedMethods.empty()) {
4723    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4724      << MD << (Data.OverloadedMethods.size() > 1);
4725
4726    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4727      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4728      Diag(overloadedMD->getLocation(),
4729           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4730    }
4731  }
4732}
4733
4734void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4735                                             Decl *TagDecl,
4736                                             SourceLocation LBrac,
4737                                             SourceLocation RBrac,
4738                                             AttributeList *AttrList) {
4739  if (!TagDecl)
4740    return;
4741
4742  AdjustDeclIfTemplate(TagDecl);
4743
4744  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
4745    if (l->getKind() != AttributeList::AT_Visibility)
4746      continue;
4747    l->setInvalid();
4748    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
4749      l->getName();
4750  }
4751
4752  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4753              // strict aliasing violation!
4754              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4755              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4756
4757  CheckCompletedCXXClass(
4758                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4759}
4760
4761/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4762/// special functions, such as the default constructor, copy
4763/// constructor, or destructor, to the given C++ class (C++
4764/// [special]p1).  This routine can only be executed just before the
4765/// definition of the class is complete.
4766void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4767  if (!ClassDecl->hasUserDeclaredConstructor())
4768    ++ASTContext::NumImplicitDefaultConstructors;
4769
4770  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4771    ++ASTContext::NumImplicitCopyConstructors;
4772
4773  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4774    ++ASTContext::NumImplicitMoveConstructors;
4775
4776  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4777    ++ASTContext::NumImplicitCopyAssignmentOperators;
4778
4779    // If we have a dynamic class, then the copy assignment operator may be
4780    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4781    // it shows up in the right place in the vtable and that we diagnose
4782    // problems with the implicit exception specification.
4783    if (ClassDecl->isDynamicClass())
4784      DeclareImplicitCopyAssignment(ClassDecl);
4785  }
4786
4787  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()) {
4788    ++ASTContext::NumImplicitMoveAssignmentOperators;
4789
4790    // Likewise for the move assignment operator.
4791    if (ClassDecl->isDynamicClass())
4792      DeclareImplicitMoveAssignment(ClassDecl);
4793  }
4794
4795  if (!ClassDecl->hasUserDeclaredDestructor()) {
4796    ++ASTContext::NumImplicitDestructors;
4797
4798    // If we have a dynamic class, then the destructor may be virtual, so we
4799    // have to declare the destructor immediately. This ensures that, e.g., it
4800    // shows up in the right place in the vtable and that we diagnose problems
4801    // with the implicit exception specification.
4802    if (ClassDecl->isDynamicClass())
4803      DeclareImplicitDestructor(ClassDecl);
4804  }
4805}
4806
4807void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4808  if (!D)
4809    return;
4810
4811  int NumParamList = D->getNumTemplateParameterLists();
4812  for (int i = 0; i < NumParamList; i++) {
4813    TemplateParameterList* Params = D->getTemplateParameterList(i);
4814    for (TemplateParameterList::iterator Param = Params->begin(),
4815                                      ParamEnd = Params->end();
4816          Param != ParamEnd; ++Param) {
4817      NamedDecl *Named = cast<NamedDecl>(*Param);
4818      if (Named->getDeclName()) {
4819        S->AddDecl(Named);
4820        IdResolver.AddDecl(Named);
4821      }
4822    }
4823  }
4824}
4825
4826void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4827  if (!D)
4828    return;
4829
4830  TemplateParameterList *Params = 0;
4831  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4832    Params = Template->getTemplateParameters();
4833  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4834           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4835    Params = PartialSpec->getTemplateParameters();
4836  else
4837    return;
4838
4839  for (TemplateParameterList::iterator Param = Params->begin(),
4840                                    ParamEnd = Params->end();
4841       Param != ParamEnd; ++Param) {
4842    NamedDecl *Named = cast<NamedDecl>(*Param);
4843    if (Named->getDeclName()) {
4844      S->AddDecl(Named);
4845      IdResolver.AddDecl(Named);
4846    }
4847  }
4848}
4849
4850void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4851  if (!RecordD) return;
4852  AdjustDeclIfTemplate(RecordD);
4853  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4854  PushDeclContext(S, Record);
4855}
4856
4857void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4858  if (!RecordD) return;
4859  PopDeclContext();
4860}
4861
4862/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4863/// parsing a top-level (non-nested) C++ class, and we are now
4864/// parsing those parts of the given Method declaration that could
4865/// not be parsed earlier (C++ [class.mem]p2), such as default
4866/// arguments. This action should enter the scope of the given
4867/// Method declaration as if we had just parsed the qualified method
4868/// name. However, it should not bring the parameters into scope;
4869/// that will be performed by ActOnDelayedCXXMethodParameter.
4870void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4871}
4872
4873/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4874/// C++ method declaration. We're (re-)introducing the given
4875/// function parameter into scope for use in parsing later parts of
4876/// the method declaration. For example, we could see an
4877/// ActOnParamDefaultArgument event for this parameter.
4878void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4879  if (!ParamD)
4880    return;
4881
4882  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4883
4884  // If this parameter has an unparsed default argument, clear it out
4885  // to make way for the parsed default argument.
4886  if (Param->hasUnparsedDefaultArg())
4887    Param->setDefaultArg(0);
4888
4889  S->AddDecl(Param);
4890  if (Param->getDeclName())
4891    IdResolver.AddDecl(Param);
4892}
4893
4894/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4895/// processing the delayed method declaration for Method. The method
4896/// declaration is now considered finished. There may be a separate
4897/// ActOnStartOfFunctionDef action later (not necessarily
4898/// immediately!) for this method, if it was also defined inside the
4899/// class body.
4900void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4901  if (!MethodD)
4902    return;
4903
4904  AdjustDeclIfTemplate(MethodD);
4905
4906  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4907
4908  // Now that we have our default arguments, check the constructor
4909  // again. It could produce additional diagnostics or affect whether
4910  // the class has implicitly-declared destructors, among other
4911  // things.
4912  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4913    CheckConstructor(Constructor);
4914
4915  // Check the default arguments, which we may have added.
4916  if (!Method->isInvalidDecl())
4917    CheckCXXDefaultArguments(Method);
4918}
4919
4920/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4921/// the well-formedness of the constructor declarator @p D with type @p
4922/// R. If there are any errors in the declarator, this routine will
4923/// emit diagnostics and set the invalid bit to true.  In any case, the type
4924/// will be updated to reflect a well-formed type for the constructor and
4925/// returned.
4926QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4927                                          StorageClass &SC) {
4928  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4929
4930  // C++ [class.ctor]p3:
4931  //   A constructor shall not be virtual (10.3) or static (9.4). A
4932  //   constructor can be invoked for a const, volatile or const
4933  //   volatile object. A constructor shall not be declared const,
4934  //   volatile, or const volatile (9.3.2).
4935  if (isVirtual) {
4936    if (!D.isInvalidType())
4937      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4938        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4939        << SourceRange(D.getIdentifierLoc());
4940    D.setInvalidType();
4941  }
4942  if (SC == SC_Static) {
4943    if (!D.isInvalidType())
4944      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4945        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4946        << SourceRange(D.getIdentifierLoc());
4947    D.setInvalidType();
4948    SC = SC_None;
4949  }
4950
4951  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4952  if (FTI.TypeQuals != 0) {
4953    if (FTI.TypeQuals & Qualifiers::Const)
4954      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4955        << "const" << SourceRange(D.getIdentifierLoc());
4956    if (FTI.TypeQuals & Qualifiers::Volatile)
4957      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4958        << "volatile" << SourceRange(D.getIdentifierLoc());
4959    if (FTI.TypeQuals & Qualifiers::Restrict)
4960      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4961        << "restrict" << SourceRange(D.getIdentifierLoc());
4962    D.setInvalidType();
4963  }
4964
4965  // C++0x [class.ctor]p4:
4966  //   A constructor shall not be declared with a ref-qualifier.
4967  if (FTI.hasRefQualifier()) {
4968    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4969      << FTI.RefQualifierIsLValueRef
4970      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4971    D.setInvalidType();
4972  }
4973
4974  // Rebuild the function type "R" without any type qualifiers (in
4975  // case any of the errors above fired) and with "void" as the
4976  // return type, since constructors don't have return types.
4977  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4978  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4979    return R;
4980
4981  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4982  EPI.TypeQuals = 0;
4983  EPI.RefQualifier = RQ_None;
4984
4985  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
4986                                 Proto->getNumArgs(), EPI);
4987}
4988
4989/// CheckConstructor - Checks a fully-formed constructor for
4990/// well-formedness, issuing any diagnostics required. Returns true if
4991/// the constructor declarator is invalid.
4992void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
4993  CXXRecordDecl *ClassDecl
4994    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
4995  if (!ClassDecl)
4996    return Constructor->setInvalidDecl();
4997
4998  // C++ [class.copy]p3:
4999  //   A declaration of a constructor for a class X is ill-formed if
5000  //   its first parameter is of type (optionally cv-qualified) X and
5001  //   either there are no other parameters or else all other
5002  //   parameters have default arguments.
5003  if (!Constructor->isInvalidDecl() &&
5004      ((Constructor->getNumParams() == 1) ||
5005       (Constructor->getNumParams() > 1 &&
5006        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5007      Constructor->getTemplateSpecializationKind()
5008                                              != TSK_ImplicitInstantiation) {
5009    QualType ParamType = Constructor->getParamDecl(0)->getType();
5010    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5011    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5012      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5013      const char *ConstRef
5014        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5015                                                        : " const &";
5016      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5017        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5018
5019      // FIXME: Rather that making the constructor invalid, we should endeavor
5020      // to fix the type.
5021      Constructor->setInvalidDecl();
5022    }
5023  }
5024}
5025
5026/// CheckDestructor - Checks a fully-formed destructor definition for
5027/// well-formedness, issuing any diagnostics required.  Returns true
5028/// on error.
5029bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5030  CXXRecordDecl *RD = Destructor->getParent();
5031
5032  if (Destructor->isVirtual()) {
5033    SourceLocation Loc;
5034
5035    if (!Destructor->isImplicit())
5036      Loc = Destructor->getLocation();
5037    else
5038      Loc = RD->getLocation();
5039
5040    // If we have a virtual destructor, look up the deallocation function
5041    FunctionDecl *OperatorDelete = 0;
5042    DeclarationName Name =
5043    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5044    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5045      return true;
5046
5047    MarkFunctionReferenced(Loc, OperatorDelete);
5048
5049    Destructor->setOperatorDelete(OperatorDelete);
5050  }
5051
5052  return false;
5053}
5054
5055static inline bool
5056FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5057  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5058          FTI.ArgInfo[0].Param &&
5059          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5060}
5061
5062/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5063/// the well-formednes of the destructor declarator @p D with type @p
5064/// R. If there are any errors in the declarator, this routine will
5065/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5066/// will be updated to reflect a well-formed type for the destructor and
5067/// returned.
5068QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5069                                         StorageClass& SC) {
5070  // C++ [class.dtor]p1:
5071  //   [...] A typedef-name that names a class is a class-name
5072  //   (7.1.3); however, a typedef-name that names a class shall not
5073  //   be used as the identifier in the declarator for a destructor
5074  //   declaration.
5075  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5076  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5077    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5078      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5079  else if (const TemplateSpecializationType *TST =
5080             DeclaratorType->getAs<TemplateSpecializationType>())
5081    if (TST->isTypeAlias())
5082      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5083        << DeclaratorType << 1;
5084
5085  // C++ [class.dtor]p2:
5086  //   A destructor is used to destroy objects of its class type. A
5087  //   destructor takes no parameters, and no return type can be
5088  //   specified for it (not even void). The address of a destructor
5089  //   shall not be taken. A destructor shall not be static. A
5090  //   destructor can be invoked for a const, volatile or const
5091  //   volatile object. A destructor shall not be declared const,
5092  //   volatile or const volatile (9.3.2).
5093  if (SC == SC_Static) {
5094    if (!D.isInvalidType())
5095      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5096        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5097        << SourceRange(D.getIdentifierLoc())
5098        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5099
5100    SC = SC_None;
5101  }
5102  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5103    // Destructors don't have return types, but the parser will
5104    // happily parse something like:
5105    //
5106    //   class X {
5107    //     float ~X();
5108    //   };
5109    //
5110    // The return type will be eliminated later.
5111    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5112      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5113      << SourceRange(D.getIdentifierLoc());
5114  }
5115
5116  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5117  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5118    if (FTI.TypeQuals & Qualifiers::Const)
5119      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5120        << "const" << SourceRange(D.getIdentifierLoc());
5121    if (FTI.TypeQuals & Qualifiers::Volatile)
5122      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5123        << "volatile" << SourceRange(D.getIdentifierLoc());
5124    if (FTI.TypeQuals & Qualifiers::Restrict)
5125      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5126        << "restrict" << SourceRange(D.getIdentifierLoc());
5127    D.setInvalidType();
5128  }
5129
5130  // C++0x [class.dtor]p2:
5131  //   A destructor shall not be declared with a ref-qualifier.
5132  if (FTI.hasRefQualifier()) {
5133    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5134      << FTI.RefQualifierIsLValueRef
5135      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5136    D.setInvalidType();
5137  }
5138
5139  // Make sure we don't have any parameters.
5140  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5141    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5142
5143    // Delete the parameters.
5144    FTI.freeArgs();
5145    D.setInvalidType();
5146  }
5147
5148  // Make sure the destructor isn't variadic.
5149  if (FTI.isVariadic) {
5150    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5151    D.setInvalidType();
5152  }
5153
5154  // Rebuild the function type "R" without any type qualifiers or
5155  // parameters (in case any of the errors above fired) and with
5156  // "void" as the return type, since destructors don't have return
5157  // types.
5158  if (!D.isInvalidType())
5159    return R;
5160
5161  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5162  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5163  EPI.Variadic = false;
5164  EPI.TypeQuals = 0;
5165  EPI.RefQualifier = RQ_None;
5166  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5167}
5168
5169/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5170/// well-formednes of the conversion function declarator @p D with
5171/// type @p R. If there are any errors in the declarator, this routine
5172/// will emit diagnostics and return true. Otherwise, it will return
5173/// false. Either way, the type @p R will be updated to reflect a
5174/// well-formed type for the conversion operator.
5175void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5176                                     StorageClass& SC) {
5177  // C++ [class.conv.fct]p1:
5178  //   Neither parameter types nor return type can be specified. The
5179  //   type of a conversion function (8.3.5) is "function taking no
5180  //   parameter returning conversion-type-id."
5181  if (SC == SC_Static) {
5182    if (!D.isInvalidType())
5183      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5184        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5185        << SourceRange(D.getIdentifierLoc());
5186    D.setInvalidType();
5187    SC = SC_None;
5188  }
5189
5190  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5191
5192  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5193    // Conversion functions don't have return types, but the parser will
5194    // happily parse something like:
5195    //
5196    //   class X {
5197    //     float operator bool();
5198    //   };
5199    //
5200    // The return type will be changed later anyway.
5201    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5202      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5203      << SourceRange(D.getIdentifierLoc());
5204    D.setInvalidType();
5205  }
5206
5207  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5208
5209  // Make sure we don't have any parameters.
5210  if (Proto->getNumArgs() > 0) {
5211    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5212
5213    // Delete the parameters.
5214    D.getFunctionTypeInfo().freeArgs();
5215    D.setInvalidType();
5216  } else if (Proto->isVariadic()) {
5217    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5218    D.setInvalidType();
5219  }
5220
5221  // Diagnose "&operator bool()" and other such nonsense.  This
5222  // is actually a gcc extension which we don't support.
5223  if (Proto->getResultType() != ConvType) {
5224    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5225      << Proto->getResultType();
5226    D.setInvalidType();
5227    ConvType = Proto->getResultType();
5228  }
5229
5230  // C++ [class.conv.fct]p4:
5231  //   The conversion-type-id shall not represent a function type nor
5232  //   an array type.
5233  if (ConvType->isArrayType()) {
5234    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5235    ConvType = Context.getPointerType(ConvType);
5236    D.setInvalidType();
5237  } else if (ConvType->isFunctionType()) {
5238    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5239    ConvType = Context.getPointerType(ConvType);
5240    D.setInvalidType();
5241  }
5242
5243  // Rebuild the function type "R" without any parameters (in case any
5244  // of the errors above fired) and with the conversion type as the
5245  // return type.
5246  if (D.isInvalidType())
5247    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5248
5249  // C++0x explicit conversion operators.
5250  if (D.getDeclSpec().isExplicitSpecified())
5251    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5252         getLangOpts().CPlusPlus0x ?
5253           diag::warn_cxx98_compat_explicit_conversion_functions :
5254           diag::ext_explicit_conversion_functions)
5255      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5256}
5257
5258/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5259/// the declaration of the given C++ conversion function. This routine
5260/// is responsible for recording the conversion function in the C++
5261/// class, if possible.
5262Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5263  assert(Conversion && "Expected to receive a conversion function declaration");
5264
5265  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5266
5267  // Make sure we aren't redeclaring the conversion function.
5268  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5269
5270  // C++ [class.conv.fct]p1:
5271  //   [...] A conversion function is never used to convert a
5272  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5273  //   same object type (or a reference to it), to a (possibly
5274  //   cv-qualified) base class of that type (or a reference to it),
5275  //   or to (possibly cv-qualified) void.
5276  // FIXME: Suppress this warning if the conversion function ends up being a
5277  // virtual function that overrides a virtual function in a base class.
5278  QualType ClassType
5279    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5280  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5281    ConvType = ConvTypeRef->getPointeeType();
5282  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5283      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5284    /* Suppress diagnostics for instantiations. */;
5285  else if (ConvType->isRecordType()) {
5286    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5287    if (ConvType == ClassType)
5288      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5289        << ClassType;
5290    else if (IsDerivedFrom(ClassType, ConvType))
5291      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5292        <<  ClassType << ConvType;
5293  } else if (ConvType->isVoidType()) {
5294    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5295      << ClassType << ConvType;
5296  }
5297
5298  if (FunctionTemplateDecl *ConversionTemplate
5299                                = Conversion->getDescribedFunctionTemplate())
5300    return ConversionTemplate;
5301
5302  return Conversion;
5303}
5304
5305//===----------------------------------------------------------------------===//
5306// Namespace Handling
5307//===----------------------------------------------------------------------===//
5308
5309
5310
5311/// ActOnStartNamespaceDef - This is called at the start of a namespace
5312/// definition.
5313Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5314                                   SourceLocation InlineLoc,
5315                                   SourceLocation NamespaceLoc,
5316                                   SourceLocation IdentLoc,
5317                                   IdentifierInfo *II,
5318                                   SourceLocation LBrace,
5319                                   AttributeList *AttrList) {
5320  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5321  // For anonymous namespace, take the location of the left brace.
5322  SourceLocation Loc = II ? IdentLoc : LBrace;
5323  bool IsInline = InlineLoc.isValid();
5324  bool IsInvalid = false;
5325  bool IsStd = false;
5326  bool AddToKnown = false;
5327  Scope *DeclRegionScope = NamespcScope->getParent();
5328
5329  NamespaceDecl *PrevNS = 0;
5330  if (II) {
5331    // C++ [namespace.def]p2:
5332    //   The identifier in an original-namespace-definition shall not
5333    //   have been previously defined in the declarative region in
5334    //   which the original-namespace-definition appears. The
5335    //   identifier in an original-namespace-definition is the name of
5336    //   the namespace. Subsequently in that declarative region, it is
5337    //   treated as an original-namespace-name.
5338    //
5339    // Since namespace names are unique in their scope, and we don't
5340    // look through using directives, just look for any ordinary names.
5341
5342    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5343    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5344    Decl::IDNS_Namespace;
5345    NamedDecl *PrevDecl = 0;
5346    for (DeclContext::lookup_result R
5347         = CurContext->getRedeclContext()->lookup(II);
5348         R.first != R.second; ++R.first) {
5349      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5350        PrevDecl = *R.first;
5351        break;
5352      }
5353    }
5354
5355    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5356
5357    if (PrevNS) {
5358      // This is an extended namespace definition.
5359      if (IsInline != PrevNS->isInline()) {
5360        // inline-ness must match
5361        if (PrevNS->isInline()) {
5362          // The user probably just forgot the 'inline', so suggest that it
5363          // be added back.
5364          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5365            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5366        } else {
5367          Diag(Loc, diag::err_inline_namespace_mismatch)
5368            << IsInline;
5369        }
5370        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5371
5372        IsInline = PrevNS->isInline();
5373      }
5374    } else if (PrevDecl) {
5375      // This is an invalid name redefinition.
5376      Diag(Loc, diag::err_redefinition_different_kind)
5377        << II;
5378      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5379      IsInvalid = true;
5380      // Continue on to push Namespc as current DeclContext and return it.
5381    } else if (II->isStr("std") &&
5382               CurContext->getRedeclContext()->isTranslationUnit()) {
5383      // This is the first "real" definition of the namespace "std", so update
5384      // our cache of the "std" namespace to point at this definition.
5385      PrevNS = getStdNamespace();
5386      IsStd = true;
5387      AddToKnown = !IsInline;
5388    } else {
5389      // We've seen this namespace for the first time.
5390      AddToKnown = !IsInline;
5391    }
5392  } else {
5393    // Anonymous namespaces.
5394
5395    // Determine whether the parent already has an anonymous namespace.
5396    DeclContext *Parent = CurContext->getRedeclContext();
5397    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5398      PrevNS = TU->getAnonymousNamespace();
5399    } else {
5400      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5401      PrevNS = ND->getAnonymousNamespace();
5402    }
5403
5404    if (PrevNS && IsInline != PrevNS->isInline()) {
5405      // inline-ness must match
5406      Diag(Loc, diag::err_inline_namespace_mismatch)
5407        << IsInline;
5408      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5409
5410      // Recover by ignoring the new namespace's inline status.
5411      IsInline = PrevNS->isInline();
5412    }
5413  }
5414
5415  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5416                                                 StartLoc, Loc, II, PrevNS);
5417  if (IsInvalid)
5418    Namespc->setInvalidDecl();
5419
5420  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5421
5422  // FIXME: Should we be merging attributes?
5423  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5424    PushNamespaceVisibilityAttr(Attr, Loc);
5425
5426  if (IsStd)
5427    StdNamespace = Namespc;
5428  if (AddToKnown)
5429    KnownNamespaces[Namespc] = false;
5430
5431  if (II) {
5432    PushOnScopeChains(Namespc, DeclRegionScope);
5433  } else {
5434    // Link the anonymous namespace into its parent.
5435    DeclContext *Parent = CurContext->getRedeclContext();
5436    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5437      TU->setAnonymousNamespace(Namespc);
5438    } else {
5439      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5440    }
5441
5442    CurContext->addDecl(Namespc);
5443
5444    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5445    //   behaves as if it were replaced by
5446    //     namespace unique { /* empty body */ }
5447    //     using namespace unique;
5448    //     namespace unique { namespace-body }
5449    //   where all occurrences of 'unique' in a translation unit are
5450    //   replaced by the same identifier and this identifier differs
5451    //   from all other identifiers in the entire program.
5452
5453    // We just create the namespace with an empty name and then add an
5454    // implicit using declaration, just like the standard suggests.
5455    //
5456    // CodeGen enforces the "universally unique" aspect by giving all
5457    // declarations semantically contained within an anonymous
5458    // namespace internal linkage.
5459
5460    if (!PrevNS) {
5461      UsingDirectiveDecl* UD
5462        = UsingDirectiveDecl::Create(Context, CurContext,
5463                                     /* 'using' */ LBrace,
5464                                     /* 'namespace' */ SourceLocation(),
5465                                     /* qualifier */ NestedNameSpecifierLoc(),
5466                                     /* identifier */ SourceLocation(),
5467                                     Namespc,
5468                                     /* Ancestor */ CurContext);
5469      UD->setImplicit();
5470      CurContext->addDecl(UD);
5471    }
5472  }
5473
5474  ActOnDocumentableDecl(Namespc);
5475
5476  // Although we could have an invalid decl (i.e. the namespace name is a
5477  // redefinition), push it as current DeclContext and try to continue parsing.
5478  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5479  // for the namespace has the declarations that showed up in that particular
5480  // namespace definition.
5481  PushDeclContext(NamespcScope, Namespc);
5482  return Namespc;
5483}
5484
5485/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5486/// is a namespace alias, returns the namespace it points to.
5487static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5488  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5489    return AD->getNamespace();
5490  return dyn_cast_or_null<NamespaceDecl>(D);
5491}
5492
5493/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5494/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5495void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5496  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5497  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5498  Namespc->setRBraceLoc(RBrace);
5499  PopDeclContext();
5500  if (Namespc->hasAttr<VisibilityAttr>())
5501    PopPragmaVisibility(true, RBrace);
5502}
5503
5504CXXRecordDecl *Sema::getStdBadAlloc() const {
5505  return cast_or_null<CXXRecordDecl>(
5506                                  StdBadAlloc.get(Context.getExternalSource()));
5507}
5508
5509NamespaceDecl *Sema::getStdNamespace() const {
5510  return cast_or_null<NamespaceDecl>(
5511                                 StdNamespace.get(Context.getExternalSource()));
5512}
5513
5514/// \brief Retrieve the special "std" namespace, which may require us to
5515/// implicitly define the namespace.
5516NamespaceDecl *Sema::getOrCreateStdNamespace() {
5517  if (!StdNamespace) {
5518    // The "std" namespace has not yet been defined, so build one implicitly.
5519    StdNamespace = NamespaceDecl::Create(Context,
5520                                         Context.getTranslationUnitDecl(),
5521                                         /*Inline=*/false,
5522                                         SourceLocation(), SourceLocation(),
5523                                         &PP.getIdentifierTable().get("std"),
5524                                         /*PrevDecl=*/0);
5525    getStdNamespace()->setImplicit(true);
5526  }
5527
5528  return getStdNamespace();
5529}
5530
5531bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5532  assert(getLangOpts().CPlusPlus &&
5533         "Looking for std::initializer_list outside of C++.");
5534
5535  // We're looking for implicit instantiations of
5536  // template <typename E> class std::initializer_list.
5537
5538  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5539    return false;
5540
5541  ClassTemplateDecl *Template = 0;
5542  const TemplateArgument *Arguments = 0;
5543
5544  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5545
5546    ClassTemplateSpecializationDecl *Specialization =
5547        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5548    if (!Specialization)
5549      return false;
5550
5551    Template = Specialization->getSpecializedTemplate();
5552    Arguments = Specialization->getTemplateArgs().data();
5553  } else if (const TemplateSpecializationType *TST =
5554                 Ty->getAs<TemplateSpecializationType>()) {
5555    Template = dyn_cast_or_null<ClassTemplateDecl>(
5556        TST->getTemplateName().getAsTemplateDecl());
5557    Arguments = TST->getArgs();
5558  }
5559  if (!Template)
5560    return false;
5561
5562  if (!StdInitializerList) {
5563    // Haven't recognized std::initializer_list yet, maybe this is it.
5564    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5565    if (TemplateClass->getIdentifier() !=
5566            &PP.getIdentifierTable().get("initializer_list") ||
5567        !getStdNamespace()->InEnclosingNamespaceSetOf(
5568            TemplateClass->getDeclContext()))
5569      return false;
5570    // This is a template called std::initializer_list, but is it the right
5571    // template?
5572    TemplateParameterList *Params = Template->getTemplateParameters();
5573    if (Params->getMinRequiredArguments() != 1)
5574      return false;
5575    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5576      return false;
5577
5578    // It's the right template.
5579    StdInitializerList = Template;
5580  }
5581
5582  if (Template != StdInitializerList)
5583    return false;
5584
5585  // This is an instance of std::initializer_list. Find the argument type.
5586  if (Element)
5587    *Element = Arguments[0].getAsType();
5588  return true;
5589}
5590
5591static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5592  NamespaceDecl *Std = S.getStdNamespace();
5593  if (!Std) {
5594    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5595    return 0;
5596  }
5597
5598  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5599                      Loc, Sema::LookupOrdinaryName);
5600  if (!S.LookupQualifiedName(Result, Std)) {
5601    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5602    return 0;
5603  }
5604  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5605  if (!Template) {
5606    Result.suppressDiagnostics();
5607    // We found something weird. Complain about the first thing we found.
5608    NamedDecl *Found = *Result.begin();
5609    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5610    return 0;
5611  }
5612
5613  // We found some template called std::initializer_list. Now verify that it's
5614  // correct.
5615  TemplateParameterList *Params = Template->getTemplateParameters();
5616  if (Params->getMinRequiredArguments() != 1 ||
5617      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5618    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5619    return 0;
5620  }
5621
5622  return Template;
5623}
5624
5625QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5626  if (!StdInitializerList) {
5627    StdInitializerList = LookupStdInitializerList(*this, Loc);
5628    if (!StdInitializerList)
5629      return QualType();
5630  }
5631
5632  TemplateArgumentListInfo Args(Loc, Loc);
5633  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5634                                       Context.getTrivialTypeSourceInfo(Element,
5635                                                                        Loc)));
5636  return Context.getCanonicalType(
5637      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5638}
5639
5640bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5641  // C++ [dcl.init.list]p2:
5642  //   A constructor is an initializer-list constructor if its first parameter
5643  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5644  //   std::initializer_list<E> for some type E, and either there are no other
5645  //   parameters or else all other parameters have default arguments.
5646  if (Ctor->getNumParams() < 1 ||
5647      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5648    return false;
5649
5650  QualType ArgType = Ctor->getParamDecl(0)->getType();
5651  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5652    ArgType = RT->getPointeeType().getUnqualifiedType();
5653
5654  return isStdInitializerList(ArgType, 0);
5655}
5656
5657/// \brief Determine whether a using statement is in a context where it will be
5658/// apply in all contexts.
5659static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5660  switch (CurContext->getDeclKind()) {
5661    case Decl::TranslationUnit:
5662      return true;
5663    case Decl::LinkageSpec:
5664      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5665    default:
5666      return false;
5667  }
5668}
5669
5670namespace {
5671
5672// Callback to only accept typo corrections that are namespaces.
5673class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5674 public:
5675  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5676    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5677      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5678    }
5679    return false;
5680  }
5681};
5682
5683}
5684
5685static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5686                                       CXXScopeSpec &SS,
5687                                       SourceLocation IdentLoc,
5688                                       IdentifierInfo *Ident) {
5689  NamespaceValidatorCCC Validator;
5690  R.clear();
5691  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5692                                               R.getLookupKind(), Sc, &SS,
5693                                               Validator)) {
5694    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
5695    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
5696    if (DeclContext *DC = S.computeDeclContext(SS, false))
5697      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5698        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5699        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5700    else
5701      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5702        << Ident << CorrectedQuotedStr
5703        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5704
5705    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5706         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5707
5708    R.addDecl(Corrected.getCorrectionDecl());
5709    return true;
5710  }
5711  return false;
5712}
5713
5714Decl *Sema::ActOnUsingDirective(Scope *S,
5715                                          SourceLocation UsingLoc,
5716                                          SourceLocation NamespcLoc,
5717                                          CXXScopeSpec &SS,
5718                                          SourceLocation IdentLoc,
5719                                          IdentifierInfo *NamespcName,
5720                                          AttributeList *AttrList) {
5721  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5722  assert(NamespcName && "Invalid NamespcName.");
5723  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5724
5725  // This can only happen along a recovery path.
5726  while (S->getFlags() & Scope::TemplateParamScope)
5727    S = S->getParent();
5728  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5729
5730  UsingDirectiveDecl *UDir = 0;
5731  NestedNameSpecifier *Qualifier = 0;
5732  if (SS.isSet())
5733    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5734
5735  // Lookup namespace name.
5736  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5737  LookupParsedName(R, S, &SS);
5738  if (R.isAmbiguous())
5739    return 0;
5740
5741  if (R.empty()) {
5742    R.clear();
5743    // Allow "using namespace std;" or "using namespace ::std;" even if
5744    // "std" hasn't been defined yet, for GCC compatibility.
5745    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5746        NamespcName->isStr("std")) {
5747      Diag(IdentLoc, diag::ext_using_undefined_std);
5748      R.addDecl(getOrCreateStdNamespace());
5749      R.resolveKind();
5750    }
5751    // Otherwise, attempt typo correction.
5752    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5753  }
5754
5755  if (!R.empty()) {
5756    NamedDecl *Named = R.getFoundDecl();
5757    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5758        && "expected namespace decl");
5759    // C++ [namespace.udir]p1:
5760    //   A using-directive specifies that the names in the nominated
5761    //   namespace can be used in the scope in which the
5762    //   using-directive appears after the using-directive. During
5763    //   unqualified name lookup (3.4.1), the names appear as if they
5764    //   were declared in the nearest enclosing namespace which
5765    //   contains both the using-directive and the nominated
5766    //   namespace. [Note: in this context, "contains" means "contains
5767    //   directly or indirectly". ]
5768
5769    // Find enclosing context containing both using-directive and
5770    // nominated namespace.
5771    NamespaceDecl *NS = getNamespaceDecl(Named);
5772    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5773    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5774      CommonAncestor = CommonAncestor->getParent();
5775
5776    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5777                                      SS.getWithLocInContext(Context),
5778                                      IdentLoc, Named, CommonAncestor);
5779
5780    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5781        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5782      Diag(IdentLoc, diag::warn_using_directive_in_header);
5783    }
5784
5785    PushUsingDirective(S, UDir);
5786  } else {
5787    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5788  }
5789
5790  // FIXME: We ignore attributes for now.
5791  return UDir;
5792}
5793
5794void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5795  // If the scope has an associated entity and the using directive is at
5796  // namespace or translation unit scope, add the UsingDirectiveDecl into
5797  // its lookup structure so qualified name lookup can find it.
5798  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
5799  if (Ctx && !Ctx->isFunctionOrMethod())
5800    Ctx->addDecl(UDir);
5801  else
5802    // Otherwise, it is at block sope. The using-directives will affect lookup
5803    // only to the end of the scope.
5804    S->PushUsingDirective(UDir);
5805}
5806
5807
5808Decl *Sema::ActOnUsingDeclaration(Scope *S,
5809                                  AccessSpecifier AS,
5810                                  bool HasUsingKeyword,
5811                                  SourceLocation UsingLoc,
5812                                  CXXScopeSpec &SS,
5813                                  UnqualifiedId &Name,
5814                                  AttributeList *AttrList,
5815                                  bool IsTypeName,
5816                                  SourceLocation TypenameLoc) {
5817  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5818
5819  switch (Name.getKind()) {
5820  case UnqualifiedId::IK_ImplicitSelfParam:
5821  case UnqualifiedId::IK_Identifier:
5822  case UnqualifiedId::IK_OperatorFunctionId:
5823  case UnqualifiedId::IK_LiteralOperatorId:
5824  case UnqualifiedId::IK_ConversionFunctionId:
5825    break;
5826
5827  case UnqualifiedId::IK_ConstructorName:
5828  case UnqualifiedId::IK_ConstructorTemplateId:
5829    // C++11 inheriting constructors.
5830    Diag(Name.getLocStart(),
5831         getLangOpts().CPlusPlus0x ?
5832           // FIXME: Produce warn_cxx98_compat_using_decl_constructor
5833           //        instead once inheriting constructors work.
5834           diag::err_using_decl_constructor_unsupported :
5835           diag::err_using_decl_constructor)
5836      << SS.getRange();
5837
5838    if (getLangOpts().CPlusPlus0x) break;
5839
5840    return 0;
5841
5842  case UnqualifiedId::IK_DestructorName:
5843    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
5844      << SS.getRange();
5845    return 0;
5846
5847  case UnqualifiedId::IK_TemplateId:
5848    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
5849      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5850    return 0;
5851  }
5852
5853  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5854  DeclarationName TargetName = TargetNameInfo.getName();
5855  if (!TargetName)
5856    return 0;
5857
5858  // Warn about using declarations.
5859  // TODO: store that the declaration was written without 'using' and
5860  // talk about access decls instead of using decls in the
5861  // diagnostics.
5862  if (!HasUsingKeyword) {
5863    UsingLoc = Name.getLocStart();
5864
5865    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5866      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5867  }
5868
5869  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5870      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5871    return 0;
5872
5873  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5874                                        TargetNameInfo, AttrList,
5875                                        /* IsInstantiation */ false,
5876                                        IsTypeName, TypenameLoc);
5877  if (UD)
5878    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5879
5880  return UD;
5881}
5882
5883/// \brief Determine whether a using declaration considers the given
5884/// declarations as "equivalent", e.g., if they are redeclarations of
5885/// the same entity or are both typedefs of the same type.
5886static bool
5887IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5888                         bool &SuppressRedeclaration) {
5889  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5890    SuppressRedeclaration = false;
5891    return true;
5892  }
5893
5894  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5895    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5896      SuppressRedeclaration = true;
5897      return Context.hasSameType(TD1->getUnderlyingType(),
5898                                 TD2->getUnderlyingType());
5899    }
5900
5901  return false;
5902}
5903
5904
5905/// Determines whether to create a using shadow decl for a particular
5906/// decl, given the set of decls existing prior to this using lookup.
5907bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5908                                const LookupResult &Previous) {
5909  // Diagnose finding a decl which is not from a base class of the
5910  // current class.  We do this now because there are cases where this
5911  // function will silently decide not to build a shadow decl, which
5912  // will pre-empt further diagnostics.
5913  //
5914  // We don't need to do this in C++0x because we do the check once on
5915  // the qualifier.
5916  //
5917  // FIXME: diagnose the following if we care enough:
5918  //   struct A { int foo; };
5919  //   struct B : A { using A::foo; };
5920  //   template <class T> struct C : A {};
5921  //   template <class T> struct D : C<T> { using B::foo; } // <---
5922  // This is invalid (during instantiation) in C++03 because B::foo
5923  // resolves to the using decl in B, which is not a base class of D<T>.
5924  // We can't diagnose it immediately because C<T> is an unknown
5925  // specialization.  The UsingShadowDecl in D<T> then points directly
5926  // to A::foo, which will look well-formed when we instantiate.
5927  // The right solution is to not collapse the shadow-decl chain.
5928  if (!getLangOpts().CPlusPlus0x && CurContext->isRecord()) {
5929    DeclContext *OrigDC = Orig->getDeclContext();
5930
5931    // Handle enums and anonymous structs.
5932    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5933    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5934    while (OrigRec->isAnonymousStructOrUnion())
5935      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5936
5937    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5938      if (OrigDC == CurContext) {
5939        Diag(Using->getLocation(),
5940             diag::err_using_decl_nested_name_specifier_is_current_class)
5941          << Using->getQualifierLoc().getSourceRange();
5942        Diag(Orig->getLocation(), diag::note_using_decl_target);
5943        return true;
5944      }
5945
5946      Diag(Using->getQualifierLoc().getBeginLoc(),
5947           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5948        << Using->getQualifier()
5949        << cast<CXXRecordDecl>(CurContext)
5950        << Using->getQualifierLoc().getSourceRange();
5951      Diag(Orig->getLocation(), diag::note_using_decl_target);
5952      return true;
5953    }
5954  }
5955
5956  if (Previous.empty()) return false;
5957
5958  NamedDecl *Target = Orig;
5959  if (isa<UsingShadowDecl>(Target))
5960    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5961
5962  // If the target happens to be one of the previous declarations, we
5963  // don't have a conflict.
5964  //
5965  // FIXME: but we might be increasing its access, in which case we
5966  // should redeclare it.
5967  NamedDecl *NonTag = 0, *Tag = 0;
5968  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5969         I != E; ++I) {
5970    NamedDecl *D = (*I)->getUnderlyingDecl();
5971    bool Result;
5972    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5973      return Result;
5974
5975    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5976  }
5977
5978  if (Target->isFunctionOrFunctionTemplate()) {
5979    FunctionDecl *FD;
5980    if (isa<FunctionTemplateDecl>(Target))
5981      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5982    else
5983      FD = cast<FunctionDecl>(Target);
5984
5985    NamedDecl *OldDecl = 0;
5986    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5987    case Ovl_Overload:
5988      return false;
5989
5990    case Ovl_NonFunction:
5991      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5992      break;
5993
5994    // We found a decl with the exact signature.
5995    case Ovl_Match:
5996      // If we're in a record, we want to hide the target, so we
5997      // return true (without a diagnostic) to tell the caller not to
5998      // build a shadow decl.
5999      if (CurContext->isRecord())
6000        return true;
6001
6002      // If we're not in a record, this is an error.
6003      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6004      break;
6005    }
6006
6007    Diag(Target->getLocation(), diag::note_using_decl_target);
6008    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6009    return true;
6010  }
6011
6012  // Target is not a function.
6013
6014  if (isa<TagDecl>(Target)) {
6015    // No conflict between a tag and a non-tag.
6016    if (!Tag) return false;
6017
6018    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6019    Diag(Target->getLocation(), diag::note_using_decl_target);
6020    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6021    return true;
6022  }
6023
6024  // No conflict between a tag and a non-tag.
6025  if (!NonTag) return false;
6026
6027  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6028  Diag(Target->getLocation(), diag::note_using_decl_target);
6029  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6030  return true;
6031}
6032
6033/// Builds a shadow declaration corresponding to a 'using' declaration.
6034UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6035                                            UsingDecl *UD,
6036                                            NamedDecl *Orig) {
6037
6038  // If we resolved to another shadow declaration, just coalesce them.
6039  NamedDecl *Target = Orig;
6040  if (isa<UsingShadowDecl>(Target)) {
6041    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6042    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6043  }
6044
6045  UsingShadowDecl *Shadow
6046    = UsingShadowDecl::Create(Context, CurContext,
6047                              UD->getLocation(), UD, Target);
6048  UD->addShadowDecl(Shadow);
6049
6050  Shadow->setAccess(UD->getAccess());
6051  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6052    Shadow->setInvalidDecl();
6053
6054  if (S)
6055    PushOnScopeChains(Shadow, S);
6056  else
6057    CurContext->addDecl(Shadow);
6058
6059
6060  return Shadow;
6061}
6062
6063/// Hides a using shadow declaration.  This is required by the current
6064/// using-decl implementation when a resolvable using declaration in a
6065/// class is followed by a declaration which would hide or override
6066/// one or more of the using decl's targets; for example:
6067///
6068///   struct Base { void foo(int); };
6069///   struct Derived : Base {
6070///     using Base::foo;
6071///     void foo(int);
6072///   };
6073///
6074/// The governing language is C++03 [namespace.udecl]p12:
6075///
6076///   When a using-declaration brings names from a base class into a
6077///   derived class scope, member functions in the derived class
6078///   override and/or hide member functions with the same name and
6079///   parameter types in a base class (rather than conflicting).
6080///
6081/// There are two ways to implement this:
6082///   (1) optimistically create shadow decls when they're not hidden
6083///       by existing declarations, or
6084///   (2) don't create any shadow decls (or at least don't make them
6085///       visible) until we've fully parsed/instantiated the class.
6086/// The problem with (1) is that we might have to retroactively remove
6087/// a shadow decl, which requires several O(n) operations because the
6088/// decl structures are (very reasonably) not designed for removal.
6089/// (2) avoids this but is very fiddly and phase-dependent.
6090void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6091  if (Shadow->getDeclName().getNameKind() ==
6092        DeclarationName::CXXConversionFunctionName)
6093    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6094
6095  // Remove it from the DeclContext...
6096  Shadow->getDeclContext()->removeDecl(Shadow);
6097
6098  // ...and the scope, if applicable...
6099  if (S) {
6100    S->RemoveDecl(Shadow);
6101    IdResolver.RemoveDecl(Shadow);
6102  }
6103
6104  // ...and the using decl.
6105  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6106
6107  // TODO: complain somehow if Shadow was used.  It shouldn't
6108  // be possible for this to happen, because...?
6109}
6110
6111/// Builds a using declaration.
6112///
6113/// \param IsInstantiation - Whether this call arises from an
6114///   instantiation of an unresolved using declaration.  We treat
6115///   the lookup differently for these declarations.
6116NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6117                                       SourceLocation UsingLoc,
6118                                       CXXScopeSpec &SS,
6119                                       const DeclarationNameInfo &NameInfo,
6120                                       AttributeList *AttrList,
6121                                       bool IsInstantiation,
6122                                       bool IsTypeName,
6123                                       SourceLocation TypenameLoc) {
6124  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6125  SourceLocation IdentLoc = NameInfo.getLoc();
6126  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6127
6128  // FIXME: We ignore attributes for now.
6129
6130  if (SS.isEmpty()) {
6131    Diag(IdentLoc, diag::err_using_requires_qualname);
6132    return 0;
6133  }
6134
6135  // Do the redeclaration lookup in the current scope.
6136  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6137                        ForRedeclaration);
6138  Previous.setHideTags(false);
6139  if (S) {
6140    LookupName(Previous, S);
6141
6142    // It is really dumb that we have to do this.
6143    LookupResult::Filter F = Previous.makeFilter();
6144    while (F.hasNext()) {
6145      NamedDecl *D = F.next();
6146      if (!isDeclInScope(D, CurContext, S))
6147        F.erase();
6148    }
6149    F.done();
6150  } else {
6151    assert(IsInstantiation && "no scope in non-instantiation");
6152    assert(CurContext->isRecord() && "scope not record in instantiation");
6153    LookupQualifiedName(Previous, CurContext);
6154  }
6155
6156  // Check for invalid redeclarations.
6157  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6158    return 0;
6159
6160  // Check for bad qualifiers.
6161  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6162    return 0;
6163
6164  DeclContext *LookupContext = computeDeclContext(SS);
6165  NamedDecl *D;
6166  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6167  if (!LookupContext) {
6168    if (IsTypeName) {
6169      // FIXME: not all declaration name kinds are legal here
6170      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6171                                              UsingLoc, TypenameLoc,
6172                                              QualifierLoc,
6173                                              IdentLoc, NameInfo.getName());
6174    } else {
6175      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6176                                           QualifierLoc, NameInfo);
6177    }
6178  } else {
6179    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6180                          NameInfo, IsTypeName);
6181  }
6182  D->setAccess(AS);
6183  CurContext->addDecl(D);
6184
6185  if (!LookupContext) return D;
6186  UsingDecl *UD = cast<UsingDecl>(D);
6187
6188  if (RequireCompleteDeclContext(SS, LookupContext)) {
6189    UD->setInvalidDecl();
6190    return UD;
6191  }
6192
6193  // The normal rules do not apply to inheriting constructor declarations.
6194  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6195    if (CheckInheritingConstructorUsingDecl(UD))
6196      UD->setInvalidDecl();
6197    return UD;
6198  }
6199
6200  // Otherwise, look up the target name.
6201
6202  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6203
6204  // Unlike most lookups, we don't always want to hide tag
6205  // declarations: tag names are visible through the using declaration
6206  // even if hidden by ordinary names, *except* in a dependent context
6207  // where it's important for the sanity of two-phase lookup.
6208  if (!IsInstantiation)
6209    R.setHideTags(false);
6210
6211  // For the purposes of this lookup, we have a base object type
6212  // equal to that of the current context.
6213  if (CurContext->isRecord()) {
6214    R.setBaseObjectType(
6215                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6216  }
6217
6218  LookupQualifiedName(R, LookupContext);
6219
6220  if (R.empty()) {
6221    Diag(IdentLoc, diag::err_no_member)
6222      << NameInfo.getName() << LookupContext << SS.getRange();
6223    UD->setInvalidDecl();
6224    return UD;
6225  }
6226
6227  if (R.isAmbiguous()) {
6228    UD->setInvalidDecl();
6229    return UD;
6230  }
6231
6232  if (IsTypeName) {
6233    // If we asked for a typename and got a non-type decl, error out.
6234    if (!R.getAsSingle<TypeDecl>()) {
6235      Diag(IdentLoc, diag::err_using_typename_non_type);
6236      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6237        Diag((*I)->getUnderlyingDecl()->getLocation(),
6238             diag::note_using_decl_target);
6239      UD->setInvalidDecl();
6240      return UD;
6241    }
6242  } else {
6243    // If we asked for a non-typename and we got a type, error out,
6244    // but only if this is an instantiation of an unresolved using
6245    // decl.  Otherwise just silently find the type name.
6246    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6247      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6248      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6249      UD->setInvalidDecl();
6250      return UD;
6251    }
6252  }
6253
6254  // C++0x N2914 [namespace.udecl]p6:
6255  // A using-declaration shall not name a namespace.
6256  if (R.getAsSingle<NamespaceDecl>()) {
6257    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6258      << SS.getRange();
6259    UD->setInvalidDecl();
6260    return UD;
6261  }
6262
6263  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6264    if (!CheckUsingShadowDecl(UD, *I, Previous))
6265      BuildUsingShadowDecl(S, UD, *I);
6266  }
6267
6268  return UD;
6269}
6270
6271/// Additional checks for a using declaration referring to a constructor name.
6272bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
6273  assert(!UD->isTypeName() && "expecting a constructor name");
6274
6275  const Type *SourceType = UD->getQualifier()->getAsType();
6276  assert(SourceType &&
6277         "Using decl naming constructor doesn't have type in scope spec.");
6278  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6279
6280  // Check whether the named type is a direct base class.
6281  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6282  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6283  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6284       BaseIt != BaseE; ++BaseIt) {
6285    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6286    if (CanonicalSourceType == BaseType)
6287      break;
6288    if (BaseIt->getType()->isDependentType())
6289      break;
6290  }
6291
6292  if (BaseIt == BaseE) {
6293    // Did not find SourceType in the bases.
6294    Diag(UD->getUsingLocation(),
6295         diag::err_using_decl_constructor_not_in_direct_base)
6296      << UD->getNameInfo().getSourceRange()
6297      << QualType(SourceType, 0) << TargetClass;
6298    return true;
6299  }
6300
6301  if (!CurContext->isDependentContext())
6302    BaseIt->setInheritConstructors();
6303
6304  return false;
6305}
6306
6307/// Checks that the given using declaration is not an invalid
6308/// redeclaration.  Note that this is checking only for the using decl
6309/// itself, not for any ill-formedness among the UsingShadowDecls.
6310bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6311                                       bool isTypeName,
6312                                       const CXXScopeSpec &SS,
6313                                       SourceLocation NameLoc,
6314                                       const LookupResult &Prev) {
6315  // C++03 [namespace.udecl]p8:
6316  // C++0x [namespace.udecl]p10:
6317  //   A using-declaration is a declaration and can therefore be used
6318  //   repeatedly where (and only where) multiple declarations are
6319  //   allowed.
6320  //
6321  // That's in non-member contexts.
6322  if (!CurContext->getRedeclContext()->isRecord())
6323    return false;
6324
6325  NestedNameSpecifier *Qual
6326    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6327
6328  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6329    NamedDecl *D = *I;
6330
6331    bool DTypename;
6332    NestedNameSpecifier *DQual;
6333    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6334      DTypename = UD->isTypeName();
6335      DQual = UD->getQualifier();
6336    } else if (UnresolvedUsingValueDecl *UD
6337                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6338      DTypename = false;
6339      DQual = UD->getQualifier();
6340    } else if (UnresolvedUsingTypenameDecl *UD
6341                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6342      DTypename = true;
6343      DQual = UD->getQualifier();
6344    } else continue;
6345
6346    // using decls differ if one says 'typename' and the other doesn't.
6347    // FIXME: non-dependent using decls?
6348    if (isTypeName != DTypename) continue;
6349
6350    // using decls differ if they name different scopes (but note that
6351    // template instantiation can cause this check to trigger when it
6352    // didn't before instantiation).
6353    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6354        Context.getCanonicalNestedNameSpecifier(DQual))
6355      continue;
6356
6357    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6358    Diag(D->getLocation(), diag::note_using_decl) << 1;
6359    return true;
6360  }
6361
6362  return false;
6363}
6364
6365
6366/// Checks that the given nested-name qualifier used in a using decl
6367/// in the current context is appropriately related to the current
6368/// scope.  If an error is found, diagnoses it and returns true.
6369bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6370                                   const CXXScopeSpec &SS,
6371                                   SourceLocation NameLoc) {
6372  DeclContext *NamedContext = computeDeclContext(SS);
6373
6374  if (!CurContext->isRecord()) {
6375    // C++03 [namespace.udecl]p3:
6376    // C++0x [namespace.udecl]p8:
6377    //   A using-declaration for a class member shall be a member-declaration.
6378
6379    // If we weren't able to compute a valid scope, it must be a
6380    // dependent class scope.
6381    if (!NamedContext || NamedContext->isRecord()) {
6382      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6383        << SS.getRange();
6384      return true;
6385    }
6386
6387    // Otherwise, everything is known to be fine.
6388    return false;
6389  }
6390
6391  // The current scope is a record.
6392
6393  // If the named context is dependent, we can't decide much.
6394  if (!NamedContext) {
6395    // FIXME: in C++0x, we can diagnose if we can prove that the
6396    // nested-name-specifier does not refer to a base class, which is
6397    // still possible in some cases.
6398
6399    // Otherwise we have to conservatively report that things might be
6400    // okay.
6401    return false;
6402  }
6403
6404  if (!NamedContext->isRecord()) {
6405    // Ideally this would point at the last name in the specifier,
6406    // but we don't have that level of source info.
6407    Diag(SS.getRange().getBegin(),
6408         diag::err_using_decl_nested_name_specifier_is_not_class)
6409      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6410    return true;
6411  }
6412
6413  if (!NamedContext->isDependentContext() &&
6414      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6415    return true;
6416
6417  if (getLangOpts().CPlusPlus0x) {
6418    // C++0x [namespace.udecl]p3:
6419    //   In a using-declaration used as a member-declaration, the
6420    //   nested-name-specifier shall name a base class of the class
6421    //   being defined.
6422
6423    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6424                                 cast<CXXRecordDecl>(NamedContext))) {
6425      if (CurContext == NamedContext) {
6426        Diag(NameLoc,
6427             diag::err_using_decl_nested_name_specifier_is_current_class)
6428          << SS.getRange();
6429        return true;
6430      }
6431
6432      Diag(SS.getRange().getBegin(),
6433           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6434        << (NestedNameSpecifier*) SS.getScopeRep()
6435        << cast<CXXRecordDecl>(CurContext)
6436        << SS.getRange();
6437      return true;
6438    }
6439
6440    return false;
6441  }
6442
6443  // C++03 [namespace.udecl]p4:
6444  //   A using-declaration used as a member-declaration shall refer
6445  //   to a member of a base class of the class being defined [etc.].
6446
6447  // Salient point: SS doesn't have to name a base class as long as
6448  // lookup only finds members from base classes.  Therefore we can
6449  // diagnose here only if we can prove that that can't happen,
6450  // i.e. if the class hierarchies provably don't intersect.
6451
6452  // TODO: it would be nice if "definitely valid" results were cached
6453  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6454  // need to be repeated.
6455
6456  struct UserData {
6457    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
6458
6459    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6460      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6461      Data->Bases.insert(Base);
6462      return true;
6463    }
6464
6465    bool hasDependentBases(const CXXRecordDecl *Class) {
6466      return !Class->forallBases(collect, this);
6467    }
6468
6469    /// Returns true if the base is dependent or is one of the
6470    /// accumulated base classes.
6471    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6472      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6473      return !Data->Bases.count(Base);
6474    }
6475
6476    bool mightShareBases(const CXXRecordDecl *Class) {
6477      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6478    }
6479  };
6480
6481  UserData Data;
6482
6483  // Returns false if we find a dependent base.
6484  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6485    return false;
6486
6487  // Returns false if the class has a dependent base or if it or one
6488  // of its bases is present in the base set of the current context.
6489  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6490    return false;
6491
6492  Diag(SS.getRange().getBegin(),
6493       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6494    << (NestedNameSpecifier*) SS.getScopeRep()
6495    << cast<CXXRecordDecl>(CurContext)
6496    << SS.getRange();
6497
6498  return true;
6499}
6500
6501Decl *Sema::ActOnAliasDeclaration(Scope *S,
6502                                  AccessSpecifier AS,
6503                                  MultiTemplateParamsArg TemplateParamLists,
6504                                  SourceLocation UsingLoc,
6505                                  UnqualifiedId &Name,
6506                                  TypeResult Type) {
6507  // Skip up to the relevant declaration scope.
6508  while (S->getFlags() & Scope::TemplateParamScope)
6509    S = S->getParent();
6510  assert((S->getFlags() & Scope::DeclScope) &&
6511         "got alias-declaration outside of declaration scope");
6512
6513  if (Type.isInvalid())
6514    return 0;
6515
6516  bool Invalid = false;
6517  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6518  TypeSourceInfo *TInfo = 0;
6519  GetTypeFromParser(Type.get(), &TInfo);
6520
6521  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6522    return 0;
6523
6524  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6525                                      UPPC_DeclarationType)) {
6526    Invalid = true;
6527    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6528                                             TInfo->getTypeLoc().getBeginLoc());
6529  }
6530
6531  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6532  LookupName(Previous, S);
6533
6534  // Warn about shadowing the name of a template parameter.
6535  if (Previous.isSingleResult() &&
6536      Previous.getFoundDecl()->isTemplateParameter()) {
6537    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6538    Previous.clear();
6539  }
6540
6541  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6542         "name in alias declaration must be an identifier");
6543  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6544                                               Name.StartLocation,
6545                                               Name.Identifier, TInfo);
6546
6547  NewTD->setAccess(AS);
6548
6549  if (Invalid)
6550    NewTD->setInvalidDecl();
6551
6552  CheckTypedefForVariablyModifiedType(S, NewTD);
6553  Invalid |= NewTD->isInvalidDecl();
6554
6555  bool Redeclaration = false;
6556
6557  NamedDecl *NewND;
6558  if (TemplateParamLists.size()) {
6559    TypeAliasTemplateDecl *OldDecl = 0;
6560    TemplateParameterList *OldTemplateParams = 0;
6561
6562    if (TemplateParamLists.size() != 1) {
6563      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6564        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6565         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6566    }
6567    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6568
6569    // Only consider previous declarations in the same scope.
6570    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6571                         /*ExplicitInstantiationOrSpecialization*/false);
6572    if (!Previous.empty()) {
6573      Redeclaration = true;
6574
6575      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6576      if (!OldDecl && !Invalid) {
6577        Diag(UsingLoc, diag::err_redefinition_different_kind)
6578          << Name.Identifier;
6579
6580        NamedDecl *OldD = Previous.getRepresentativeDecl();
6581        if (OldD->getLocation().isValid())
6582          Diag(OldD->getLocation(), diag::note_previous_definition);
6583
6584        Invalid = true;
6585      }
6586
6587      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6588        if (TemplateParameterListsAreEqual(TemplateParams,
6589                                           OldDecl->getTemplateParameters(),
6590                                           /*Complain=*/true,
6591                                           TPL_TemplateMatch))
6592          OldTemplateParams = OldDecl->getTemplateParameters();
6593        else
6594          Invalid = true;
6595
6596        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6597        if (!Invalid &&
6598            !Context.hasSameType(OldTD->getUnderlyingType(),
6599                                 NewTD->getUnderlyingType())) {
6600          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6601          // but we can't reasonably accept it.
6602          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6603            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6604          if (OldTD->getLocation().isValid())
6605            Diag(OldTD->getLocation(), diag::note_previous_definition);
6606          Invalid = true;
6607        }
6608      }
6609    }
6610
6611    // Merge any previous default template arguments into our parameters,
6612    // and check the parameter list.
6613    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6614                                   TPC_TypeAliasTemplate))
6615      return 0;
6616
6617    TypeAliasTemplateDecl *NewDecl =
6618      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6619                                    Name.Identifier, TemplateParams,
6620                                    NewTD);
6621
6622    NewDecl->setAccess(AS);
6623
6624    if (Invalid)
6625      NewDecl->setInvalidDecl();
6626    else if (OldDecl)
6627      NewDecl->setPreviousDeclaration(OldDecl);
6628
6629    NewND = NewDecl;
6630  } else {
6631    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6632    NewND = NewTD;
6633  }
6634
6635  if (!Redeclaration)
6636    PushOnScopeChains(NewND, S);
6637
6638  ActOnDocumentableDecl(NewND);
6639  return NewND;
6640}
6641
6642Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6643                                             SourceLocation NamespaceLoc,
6644                                             SourceLocation AliasLoc,
6645                                             IdentifierInfo *Alias,
6646                                             CXXScopeSpec &SS,
6647                                             SourceLocation IdentLoc,
6648                                             IdentifierInfo *Ident) {
6649
6650  // Lookup the namespace name.
6651  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6652  LookupParsedName(R, S, &SS);
6653
6654  // Check if we have a previous declaration with the same name.
6655  NamedDecl *PrevDecl
6656    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6657                       ForRedeclaration);
6658  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6659    PrevDecl = 0;
6660
6661  if (PrevDecl) {
6662    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6663      // We already have an alias with the same name that points to the same
6664      // namespace, so don't create a new one.
6665      // FIXME: At some point, we'll want to create the (redundant)
6666      // declaration to maintain better source information.
6667      if (!R.isAmbiguous() && !R.empty() &&
6668          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6669        return 0;
6670    }
6671
6672    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6673      diag::err_redefinition_different_kind;
6674    Diag(AliasLoc, DiagID) << Alias;
6675    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6676    return 0;
6677  }
6678
6679  if (R.isAmbiguous())
6680    return 0;
6681
6682  if (R.empty()) {
6683    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6684      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6685      return 0;
6686    }
6687  }
6688
6689  NamespaceAliasDecl *AliasDecl =
6690    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6691                               Alias, SS.getWithLocInContext(Context),
6692                               IdentLoc, R.getFoundDecl());
6693
6694  PushOnScopeChains(AliasDecl, S);
6695  return AliasDecl;
6696}
6697
6698namespace {
6699  /// \brief Scoped object used to handle the state changes required in Sema
6700  /// to implicitly define the body of a C++ member function;
6701  class ImplicitlyDefinedFunctionScope {
6702    Sema &S;
6703    Sema::ContextRAII SavedContext;
6704
6705  public:
6706    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6707      : S(S), SavedContext(S, Method)
6708    {
6709      S.PushFunctionScope();
6710      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6711    }
6712
6713    ~ImplicitlyDefinedFunctionScope() {
6714      S.PopExpressionEvaluationContext();
6715      S.PopFunctionScopeInfo();
6716    }
6717  };
6718}
6719
6720Sema::ImplicitExceptionSpecification
6721Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
6722                                               CXXMethodDecl *MD) {
6723  CXXRecordDecl *ClassDecl = MD->getParent();
6724
6725  // C++ [except.spec]p14:
6726  //   An implicitly declared special member function (Clause 12) shall have an
6727  //   exception-specification. [...]
6728  ImplicitExceptionSpecification ExceptSpec(*this);
6729  if (ClassDecl->isInvalidDecl())
6730    return ExceptSpec;
6731
6732  // Direct base-class constructors.
6733  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6734                                       BEnd = ClassDecl->bases_end();
6735       B != BEnd; ++B) {
6736    if (B->isVirtual()) // Handled below.
6737      continue;
6738
6739    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6740      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6741      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6742      // If this is a deleted function, add it anyway. This might be conformant
6743      // with the standard. This might not. I'm not sure. It might not matter.
6744      if (Constructor)
6745        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6746    }
6747  }
6748
6749  // Virtual base-class constructors.
6750  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6751                                       BEnd = ClassDecl->vbases_end();
6752       B != BEnd; ++B) {
6753    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6754      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6755      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6756      // If this is a deleted function, add it anyway. This might be conformant
6757      // with the standard. This might not. I'm not sure. It might not matter.
6758      if (Constructor)
6759        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6760    }
6761  }
6762
6763  // Field constructors.
6764  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6765                               FEnd = ClassDecl->field_end();
6766       F != FEnd; ++F) {
6767    if (F->hasInClassInitializer()) {
6768      if (Expr *E = F->getInClassInitializer())
6769        ExceptSpec.CalledExpr(E);
6770      else if (!F->isInvalidDecl())
6771        // DR1351:
6772        //   If the brace-or-equal-initializer of a non-static data member
6773        //   invokes a defaulted default constructor of its class or of an
6774        //   enclosing class in a potentially evaluated subexpression, the
6775        //   program is ill-formed.
6776        //
6777        // This resolution is unworkable: the exception specification of the
6778        // default constructor can be needed in an unevaluated context, in
6779        // particular, in the operand of a noexcept-expression, and we can be
6780        // unable to compute an exception specification for an enclosed class.
6781        //
6782        // We do not allow an in-class initializer to require the evaluation
6783        // of the exception specification for any in-class initializer whose
6784        // definition is not lexically complete.
6785        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
6786    } else if (const RecordType *RecordTy
6787              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6788      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6789      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6790      // If this is a deleted function, add it anyway. This might be conformant
6791      // with the standard. This might not. I'm not sure. It might not matter.
6792      // In particular, the problem is that this function never gets called. It
6793      // might just be ill-formed because this function attempts to refer to
6794      // a deleted function here.
6795      if (Constructor)
6796        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
6797    }
6798  }
6799
6800  return ExceptSpec;
6801}
6802
6803CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6804                                                     CXXRecordDecl *ClassDecl) {
6805  // C++ [class.ctor]p5:
6806  //   A default constructor for a class X is a constructor of class X
6807  //   that can be called without an argument. If there is no
6808  //   user-declared constructor for class X, a default constructor is
6809  //   implicitly declared. An implicitly-declared default constructor
6810  //   is an inline public member of its class.
6811  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6812         "Should not build implicit default constructor!");
6813
6814  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
6815                                                     CXXDefaultConstructor,
6816                                                     false);
6817
6818  // Create the actual constructor declaration.
6819  CanQualType ClassType
6820    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6821  SourceLocation ClassLoc = ClassDecl->getLocation();
6822  DeclarationName Name
6823    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6824  DeclarationNameInfo NameInfo(Name, ClassLoc);
6825  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6826      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
6827      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6828      Constexpr);
6829  DefaultCon->setAccess(AS_public);
6830  DefaultCon->setDefaulted();
6831  DefaultCon->setImplicit();
6832  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6833
6834  // Build an exception specification pointing back at this constructor.
6835  FunctionProtoType::ExtProtoInfo EPI;
6836  EPI.ExceptionSpecType = EST_Unevaluated;
6837  EPI.ExceptionSpecDecl = DefaultCon;
6838  DefaultCon->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6839
6840  // Note that we have declared this constructor.
6841  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6842
6843  if (Scope *S = getScopeForContext(ClassDecl))
6844    PushOnScopeChains(DefaultCon, S, false);
6845  ClassDecl->addDecl(DefaultCon);
6846
6847  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6848    DefaultCon->setDeletedAsWritten();
6849
6850  return DefaultCon;
6851}
6852
6853void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6854                                            CXXConstructorDecl *Constructor) {
6855  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6856          !Constructor->doesThisDeclarationHaveABody() &&
6857          !Constructor->isDeleted()) &&
6858    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6859
6860  CXXRecordDecl *ClassDecl = Constructor->getParent();
6861  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6862
6863  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6864  DiagnosticErrorTrap Trap(Diags);
6865  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6866      Trap.hasErrorOccurred()) {
6867    Diag(CurrentLocation, diag::note_member_synthesized_at)
6868      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6869    Constructor->setInvalidDecl();
6870    return;
6871  }
6872
6873  SourceLocation Loc = Constructor->getLocation();
6874  Constructor->setBody(new (Context) CompoundStmt(Loc));
6875
6876  Constructor->setUsed();
6877  MarkVTableUsed(CurrentLocation, ClassDecl);
6878
6879  if (ASTMutationListener *L = getASTMutationListener()) {
6880    L->CompletedImplicitDefinition(Constructor);
6881  }
6882}
6883
6884void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6885  if (!D) return;
6886  AdjustDeclIfTemplate(D);
6887
6888  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6889
6890  if (!ClassDecl->isDependentType())
6891    CheckExplicitlyDefaultedMethods(ClassDecl);
6892}
6893
6894void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6895  // We start with an initial pass over the base classes to collect those that
6896  // inherit constructors from. If there are none, we can forgo all further
6897  // processing.
6898  typedef SmallVector<const RecordType *, 4> BasesVector;
6899  BasesVector BasesToInheritFrom;
6900  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6901                                          BaseE = ClassDecl->bases_end();
6902         BaseIt != BaseE; ++BaseIt) {
6903    if (BaseIt->getInheritConstructors()) {
6904      QualType Base = BaseIt->getType();
6905      if (Base->isDependentType()) {
6906        // If we inherit constructors from anything that is dependent, just
6907        // abort processing altogether. We'll get another chance for the
6908        // instantiations.
6909        return;
6910      }
6911      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6912    }
6913  }
6914  if (BasesToInheritFrom.empty())
6915    return;
6916
6917  // Now collect the constructors that we already have in the current class.
6918  // Those take precedence over inherited constructors.
6919  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6920  //   unless there is a user-declared constructor with the same signature in
6921  //   the class where the using-declaration appears.
6922  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6923  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6924                                    CtorE = ClassDecl->ctor_end();
6925       CtorIt != CtorE; ++CtorIt) {
6926    ExistingConstructors.insert(
6927        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6928  }
6929
6930  DeclarationName CreatedCtorName =
6931      Context.DeclarationNames.getCXXConstructorName(
6932          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6933
6934  // Now comes the true work.
6935  // First, we keep a map from constructor types to the base that introduced
6936  // them. Needed for finding conflicting constructors. We also keep the
6937  // actually inserted declarations in there, for pretty diagnostics.
6938  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6939  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6940  ConstructorToSourceMap InheritedConstructors;
6941  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6942                             BaseE = BasesToInheritFrom.end();
6943       BaseIt != BaseE; ++BaseIt) {
6944    const RecordType *Base = *BaseIt;
6945    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6946    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6947    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6948                                      CtorE = BaseDecl->ctor_end();
6949         CtorIt != CtorE; ++CtorIt) {
6950      // Find the using declaration for inheriting this base's constructors.
6951      // FIXME: Don't perform name lookup just to obtain a source location!
6952      DeclarationName Name =
6953          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6954      LookupResult Result(*this, Name, SourceLocation(), LookupUsingDeclName);
6955      LookupQualifiedName(Result, CurContext);
6956      UsingDecl *UD = Result.getAsSingle<UsingDecl>();
6957      SourceLocation UsingLoc = UD ? UD->getLocation() :
6958                                     ClassDecl->getLocation();
6959
6960      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6961      //   from the class X named in the using-declaration consists of actual
6962      //   constructors and notional constructors that result from the
6963      //   transformation of defaulted parameters as follows:
6964      //   - all non-template default constructors of X, and
6965      //   - for each non-template constructor of X that has at least one
6966      //     parameter with a default argument, the set of constructors that
6967      //     results from omitting any ellipsis parameter specification and
6968      //     successively omitting parameters with a default argument from the
6969      //     end of the parameter-type-list.
6970      CXXConstructorDecl *BaseCtor = *CtorIt;
6971      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6972      const FunctionProtoType *BaseCtorType =
6973          BaseCtor->getType()->getAs<FunctionProtoType>();
6974
6975      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6976                    maxParams = BaseCtor->getNumParams();
6977           params <= maxParams; ++params) {
6978        // Skip default constructors. They're never inherited.
6979        if (params == 0)
6980          continue;
6981        // Skip copy and move constructors for the same reason.
6982        if (CanBeCopyOrMove && params == 1)
6983          continue;
6984
6985        // Build up a function type for this particular constructor.
6986        // FIXME: The working paper does not consider that the exception spec
6987        // for the inheriting constructor might be larger than that of the
6988        // source. This code doesn't yet, either. When it does, this code will
6989        // need to be delayed until after exception specifications and in-class
6990        // member initializers are attached.
6991        const Type *NewCtorType;
6992        if (params == maxParams)
6993          NewCtorType = BaseCtorType;
6994        else {
6995          SmallVector<QualType, 16> Args;
6996          for (unsigned i = 0; i < params; ++i) {
6997            Args.push_back(BaseCtorType->getArgType(i));
6998          }
6999          FunctionProtoType::ExtProtoInfo ExtInfo =
7000              BaseCtorType->getExtProtoInfo();
7001          ExtInfo.Variadic = false;
7002          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7003                                                Args.data(), params, ExtInfo)
7004                       .getTypePtr();
7005        }
7006        const Type *CanonicalNewCtorType =
7007            Context.getCanonicalType(NewCtorType);
7008
7009        // Now that we have the type, first check if the class already has a
7010        // constructor with this signature.
7011        if (ExistingConstructors.count(CanonicalNewCtorType))
7012          continue;
7013
7014        // Then we check if we have already declared an inherited constructor
7015        // with this signature.
7016        std::pair<ConstructorToSourceMap::iterator, bool> result =
7017            InheritedConstructors.insert(std::make_pair(
7018                CanonicalNewCtorType,
7019                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7020        if (!result.second) {
7021          // Already in the map. If it came from a different class, that's an
7022          // error. Not if it's from the same.
7023          CanQualType PreviousBase = result.first->second.first;
7024          if (CanonicalBase != PreviousBase) {
7025            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7026            const CXXConstructorDecl *PrevBaseCtor =
7027                PrevCtor->getInheritedConstructor();
7028            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7029
7030            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7031            Diag(BaseCtor->getLocation(),
7032                 diag::note_using_decl_constructor_conflict_current_ctor);
7033            Diag(PrevBaseCtor->getLocation(),
7034                 diag::note_using_decl_constructor_conflict_previous_ctor);
7035            Diag(PrevCtor->getLocation(),
7036                 diag::note_using_decl_constructor_conflict_previous_using);
7037          }
7038          continue;
7039        }
7040
7041        // OK, we're there, now add the constructor.
7042        // C++0x [class.inhctor]p8: [...] that would be performed by a
7043        //   user-written inline constructor [...]
7044        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7045        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7046            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7047            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7048            /*ImplicitlyDeclared=*/true,
7049            // FIXME: Due to a defect in the standard, we treat inherited
7050            // constructors as constexpr even if that makes them ill-formed.
7051            /*Constexpr=*/BaseCtor->isConstexpr());
7052        NewCtor->setAccess(BaseCtor->getAccess());
7053
7054        // Build up the parameter decls and add them.
7055        SmallVector<ParmVarDecl *, 16> ParamDecls;
7056        for (unsigned i = 0; i < params; ++i) {
7057          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7058                                                   UsingLoc, UsingLoc,
7059                                                   /*IdentifierInfo=*/0,
7060                                                   BaseCtorType->getArgType(i),
7061                                                   /*TInfo=*/0, SC_None,
7062                                                   SC_None, /*DefaultArg=*/0));
7063        }
7064        NewCtor->setParams(ParamDecls);
7065        NewCtor->setInheritedConstructor(BaseCtor);
7066
7067        ClassDecl->addDecl(NewCtor);
7068        result.first->second.second = NewCtor;
7069      }
7070    }
7071  }
7072}
7073
7074Sema::ImplicitExceptionSpecification
7075Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
7076  CXXRecordDecl *ClassDecl = MD->getParent();
7077
7078  // C++ [except.spec]p14:
7079  //   An implicitly declared special member function (Clause 12) shall have
7080  //   an exception-specification.
7081  ImplicitExceptionSpecification ExceptSpec(*this);
7082  if (ClassDecl->isInvalidDecl())
7083    return ExceptSpec;
7084
7085  // Direct base-class destructors.
7086  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7087                                       BEnd = ClassDecl->bases_end();
7088       B != BEnd; ++B) {
7089    if (B->isVirtual()) // Handled below.
7090      continue;
7091
7092    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7093      ExceptSpec.CalledDecl(B->getLocStart(),
7094                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7095  }
7096
7097  // Virtual base-class destructors.
7098  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7099                                       BEnd = ClassDecl->vbases_end();
7100       B != BEnd; ++B) {
7101    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7102      ExceptSpec.CalledDecl(B->getLocStart(),
7103                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7104  }
7105
7106  // Field destructors.
7107  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7108                               FEnd = ClassDecl->field_end();
7109       F != FEnd; ++F) {
7110    if (const RecordType *RecordTy
7111        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7112      ExceptSpec.CalledDecl(F->getLocation(),
7113                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7114  }
7115
7116  return ExceptSpec;
7117}
7118
7119CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7120  // C++ [class.dtor]p2:
7121  //   If a class has no user-declared destructor, a destructor is
7122  //   declared implicitly. An implicitly-declared destructor is an
7123  //   inline public member of its class.
7124
7125  // Create the actual destructor declaration.
7126  CanQualType ClassType
7127    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7128  SourceLocation ClassLoc = ClassDecl->getLocation();
7129  DeclarationName Name
7130    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7131  DeclarationNameInfo NameInfo(Name, ClassLoc);
7132  CXXDestructorDecl *Destructor
7133      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7134                                  QualType(), 0, /*isInline=*/true,
7135                                  /*isImplicitlyDeclared=*/true);
7136  Destructor->setAccess(AS_public);
7137  Destructor->setDefaulted();
7138  Destructor->setImplicit();
7139  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7140
7141  // Build an exception specification pointing back at this destructor.
7142  FunctionProtoType::ExtProtoInfo EPI;
7143  EPI.ExceptionSpecType = EST_Unevaluated;
7144  EPI.ExceptionSpecDecl = Destructor;
7145  Destructor->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7146
7147  // Note that we have declared this destructor.
7148  ++ASTContext::NumImplicitDestructorsDeclared;
7149
7150  // Introduce this destructor into its scope.
7151  if (Scope *S = getScopeForContext(ClassDecl))
7152    PushOnScopeChains(Destructor, S, false);
7153  ClassDecl->addDecl(Destructor);
7154
7155  AddOverriddenMethods(ClassDecl, Destructor);
7156
7157  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7158    Destructor->setDeletedAsWritten();
7159
7160  return Destructor;
7161}
7162
7163void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7164                                    CXXDestructorDecl *Destructor) {
7165  assert((Destructor->isDefaulted() &&
7166          !Destructor->doesThisDeclarationHaveABody() &&
7167          !Destructor->isDeleted()) &&
7168         "DefineImplicitDestructor - call it for implicit default dtor");
7169  CXXRecordDecl *ClassDecl = Destructor->getParent();
7170  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7171
7172  if (Destructor->isInvalidDecl())
7173    return;
7174
7175  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7176
7177  DiagnosticErrorTrap Trap(Diags);
7178  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7179                                         Destructor->getParent());
7180
7181  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7182    Diag(CurrentLocation, diag::note_member_synthesized_at)
7183      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7184
7185    Destructor->setInvalidDecl();
7186    return;
7187  }
7188
7189  SourceLocation Loc = Destructor->getLocation();
7190  Destructor->setBody(new (Context) CompoundStmt(Loc));
7191  Destructor->setImplicitlyDefined(true);
7192  Destructor->setUsed();
7193  MarkVTableUsed(CurrentLocation, ClassDecl);
7194
7195  if (ASTMutationListener *L = getASTMutationListener()) {
7196    L->CompletedImplicitDefinition(Destructor);
7197  }
7198}
7199
7200/// \brief Perform any semantic analysis which needs to be delayed until all
7201/// pending class member declarations have been parsed.
7202void Sema::ActOnFinishCXXMemberDecls() {
7203  // Perform any deferred checking of exception specifications for virtual
7204  // destructors.
7205  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
7206       i != e; ++i) {
7207    const CXXDestructorDecl *Dtor =
7208        DelayedDestructorExceptionSpecChecks[i].first;
7209    assert(!Dtor->getParent()->isDependentType() &&
7210           "Should not ever add destructors of templates into the list.");
7211    CheckOverridingFunctionExceptionSpec(Dtor,
7212        DelayedDestructorExceptionSpecChecks[i].second);
7213  }
7214  DelayedDestructorExceptionSpecChecks.clear();
7215}
7216
7217void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
7218                                         CXXDestructorDecl *Destructor) {
7219  assert(getLangOpts().CPlusPlus0x &&
7220         "adjusting dtor exception specs was introduced in c++11");
7221
7222  // C++11 [class.dtor]p3:
7223  //   A declaration of a destructor that does not have an exception-
7224  //   specification is implicitly considered to have the same exception-
7225  //   specification as an implicit declaration.
7226  const FunctionProtoType *DtorType = Destructor->getType()->
7227                                        getAs<FunctionProtoType>();
7228  if (DtorType->hasExceptionSpec())
7229    return;
7230
7231  // Replace the destructor's type, building off the existing one. Fortunately,
7232  // the only thing of interest in the destructor type is its extended info.
7233  // The return and arguments are fixed.
7234  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
7235  EPI.ExceptionSpecType = EST_Unevaluated;
7236  EPI.ExceptionSpecDecl = Destructor;
7237  Destructor->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7238
7239  // FIXME: If the destructor has a body that could throw, and the newly created
7240  // spec doesn't allow exceptions, we should emit a warning, because this
7241  // change in behavior can break conforming C++03 programs at runtime.
7242  // However, we don't have a body or an exception specification yet, so it
7243  // needs to be done somewhere else.
7244}
7245
7246/// \brief Builds a statement that copies/moves the given entity from \p From to
7247/// \c To.
7248///
7249/// This routine is used to copy/move the members of a class with an
7250/// implicitly-declared copy/move assignment operator. When the entities being
7251/// copied are arrays, this routine builds for loops to copy them.
7252///
7253/// \param S The Sema object used for type-checking.
7254///
7255/// \param Loc The location where the implicit copy/move is being generated.
7256///
7257/// \param T The type of the expressions being copied/moved. Both expressions
7258/// must have this type.
7259///
7260/// \param To The expression we are copying/moving to.
7261///
7262/// \param From The expression we are copying/moving from.
7263///
7264/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7265/// Otherwise, it's a non-static member subobject.
7266///
7267/// \param Copying Whether we're copying or moving.
7268///
7269/// \param Depth Internal parameter recording the depth of the recursion.
7270///
7271/// \returns A statement or a loop that copies the expressions.
7272static StmtResult
7273BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7274                      Expr *To, Expr *From,
7275                      bool CopyingBaseSubobject, bool Copying,
7276                      unsigned Depth = 0) {
7277  // C++0x [class.copy]p28:
7278  //   Each subobject is assigned in the manner appropriate to its type:
7279  //
7280  //     - if the subobject is of class type, as if by a call to operator= with
7281  //       the subobject as the object expression and the corresponding
7282  //       subobject of x as a single function argument (as if by explicit
7283  //       qualification; that is, ignoring any possible virtual overriding
7284  //       functions in more derived classes);
7285  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7286    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7287
7288    // Look for operator=.
7289    DeclarationName Name
7290      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7291    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7292    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7293
7294    // Filter out any result that isn't a copy/move-assignment operator.
7295    LookupResult::Filter F = OpLookup.makeFilter();
7296    while (F.hasNext()) {
7297      NamedDecl *D = F.next();
7298      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7299        if (Method->isCopyAssignmentOperator() ||
7300            (!Copying && Method->isMoveAssignmentOperator()))
7301          continue;
7302
7303      F.erase();
7304    }
7305    F.done();
7306
7307    // Suppress the protected check (C++ [class.protected]) for each of the
7308    // assignment operators we found. This strange dance is required when
7309    // we're assigning via a base classes's copy-assignment operator. To
7310    // ensure that we're getting the right base class subobject (without
7311    // ambiguities), we need to cast "this" to that subobject type; to
7312    // ensure that we don't go through the virtual call mechanism, we need
7313    // to qualify the operator= name with the base class (see below). However,
7314    // this means that if the base class has a protected copy assignment
7315    // operator, the protected member access check will fail. So, we
7316    // rewrite "protected" access to "public" access in this case, since we
7317    // know by construction that we're calling from a derived class.
7318    if (CopyingBaseSubobject) {
7319      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7320           L != LEnd; ++L) {
7321        if (L.getAccess() == AS_protected)
7322          L.setAccess(AS_public);
7323      }
7324    }
7325
7326    // Create the nested-name-specifier that will be used to qualify the
7327    // reference to operator=; this is required to suppress the virtual
7328    // call mechanism.
7329    CXXScopeSpec SS;
7330    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7331    SS.MakeTrivial(S.Context,
7332                   NestedNameSpecifier::Create(S.Context, 0, false,
7333                                               CanonicalT),
7334                   Loc);
7335
7336    // Create the reference to operator=.
7337    ExprResult OpEqualRef
7338      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7339                                   /*TemplateKWLoc=*/SourceLocation(),
7340                                   /*FirstQualifierInScope=*/0,
7341                                   OpLookup,
7342                                   /*TemplateArgs=*/0,
7343                                   /*SuppressQualifierCheck=*/true);
7344    if (OpEqualRef.isInvalid())
7345      return StmtError();
7346
7347    // Build the call to the assignment operator.
7348
7349    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7350                                                  OpEqualRef.takeAs<Expr>(),
7351                                                  Loc, &From, 1, Loc);
7352    if (Call.isInvalid())
7353      return StmtError();
7354
7355    return S.Owned(Call.takeAs<Stmt>());
7356  }
7357
7358  //     - if the subobject is of scalar type, the built-in assignment
7359  //       operator is used.
7360  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7361  if (!ArrayTy) {
7362    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7363    if (Assignment.isInvalid())
7364      return StmtError();
7365
7366    return S.Owned(Assignment.takeAs<Stmt>());
7367  }
7368
7369  //     - if the subobject is an array, each element is assigned, in the
7370  //       manner appropriate to the element type;
7371
7372  // Construct a loop over the array bounds, e.g.,
7373  //
7374  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7375  //
7376  // that will copy each of the array elements.
7377  QualType SizeType = S.Context.getSizeType();
7378
7379  // Create the iteration variable.
7380  IdentifierInfo *IterationVarName = 0;
7381  {
7382    SmallString<8> Str;
7383    llvm::raw_svector_ostream OS(Str);
7384    OS << "__i" << Depth;
7385    IterationVarName = &S.Context.Idents.get(OS.str());
7386  }
7387  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7388                                          IterationVarName, SizeType,
7389                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7390                                          SC_None, SC_None);
7391
7392  // Initialize the iteration variable to zero.
7393  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7394  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7395
7396  // Create a reference to the iteration variable; we'll use this several
7397  // times throughout.
7398  Expr *IterationVarRef
7399    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7400  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7401  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7402  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7403
7404  // Create the DeclStmt that holds the iteration variable.
7405  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7406
7407  // Create the comparison against the array bound.
7408  llvm::APInt Upper
7409    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7410  Expr *Comparison
7411    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7412                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7413                                     BO_NE, S.Context.BoolTy,
7414                                     VK_RValue, OK_Ordinary, Loc);
7415
7416  // Create the pre-increment of the iteration variable.
7417  Expr *Increment
7418    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7419                                    VK_LValue, OK_Ordinary, Loc);
7420
7421  // Subscript the "from" and "to" expressions with the iteration variable.
7422  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7423                                                         IterationVarRefRVal,
7424                                                         Loc));
7425  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7426                                                       IterationVarRefRVal,
7427                                                       Loc));
7428  if (!Copying) // Cast to rvalue
7429    From = CastForMoving(S, From);
7430
7431  // Build the copy/move for an individual element of the array.
7432  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7433                                          To, From, CopyingBaseSubobject,
7434                                          Copying, Depth + 1);
7435  if (Copy.isInvalid())
7436    return StmtError();
7437
7438  // Construct the loop that copies all elements of this array.
7439  return S.ActOnForStmt(Loc, Loc, InitStmt,
7440                        S.MakeFullExpr(Comparison),
7441                        0, S.MakeFullExpr(Increment),
7442                        Loc, Copy.take());
7443}
7444
7445/// Determine whether an implicit copy assignment operator for ClassDecl has a
7446/// const argument.
7447/// FIXME: It ought to be possible to store this on the record.
7448static bool isImplicitCopyAssignmentArgConst(Sema &S,
7449                                             CXXRecordDecl *ClassDecl) {
7450  if (ClassDecl->isInvalidDecl())
7451    return true;
7452
7453  // C++ [class.copy]p10:
7454  //   If the class definition does not explicitly declare a copy
7455  //   assignment operator, one is declared implicitly.
7456  //   The implicitly-defined copy assignment operator for a class X
7457  //   will have the form
7458  //
7459  //       X& X::operator=(const X&)
7460  //
7461  //   if
7462  //       -- each direct base class B of X has a copy assignment operator
7463  //          whose parameter is of type const B&, const volatile B& or B,
7464  //          and
7465  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7466                                       BaseEnd = ClassDecl->bases_end();
7467       Base != BaseEnd; ++Base) {
7468    // We'll handle this below
7469    if (S.getLangOpts().CPlusPlus0x && Base->isVirtual())
7470      continue;
7471
7472    assert(!Base->getType()->isDependentType() &&
7473           "Cannot generate implicit members for class with dependent bases.");
7474    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7475    if (!S.LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0))
7476      return false;
7477  }
7478
7479  // In C++11, the above citation has "or virtual" added
7480  if (S.getLangOpts().CPlusPlus0x) {
7481    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7482                                         BaseEnd = ClassDecl->vbases_end();
7483         Base != BaseEnd; ++Base) {
7484      assert(!Base->getType()->isDependentType() &&
7485             "Cannot generate implicit members for class with dependent bases.");
7486      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7487      if (!S.LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const,
7488                                     false, 0))
7489        return false;
7490    }
7491  }
7492
7493  //       -- for all the nonstatic data members of X that are of a class
7494  //          type M (or array thereof), each such class type has a copy
7495  //          assignment operator whose parameter is of type const M&,
7496  //          const volatile M& or M.
7497  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7498                                  FieldEnd = ClassDecl->field_end();
7499       Field != FieldEnd; ++Field) {
7500    QualType FieldType = S.Context.getBaseElementType(Field->getType());
7501    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl())
7502      if (!S.LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const,
7503                                     false, 0))
7504        return false;
7505  }
7506
7507  //   Otherwise, the implicitly declared copy assignment operator will
7508  //   have the form
7509  //
7510  //       X& X::operator=(X&)
7511
7512  return true;
7513}
7514
7515Sema::ImplicitExceptionSpecification
7516Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
7517  CXXRecordDecl *ClassDecl = MD->getParent();
7518
7519  ImplicitExceptionSpecification ExceptSpec(*this);
7520  if (ClassDecl->isInvalidDecl())
7521    return ExceptSpec;
7522
7523  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
7524  assert(T->getNumArgs() == 1 && "not a copy assignment op");
7525  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
7526
7527  // C++ [except.spec]p14:
7528  //   An implicitly declared special member function (Clause 12) shall have an
7529  //   exception-specification. [...]
7530
7531  // It is unspecified whether or not an implicit copy assignment operator
7532  // attempts to deduplicate calls to assignment operators of virtual bases are
7533  // made. As such, this exception specification is effectively unspecified.
7534  // Based on a similar decision made for constness in C++0x, we're erring on
7535  // the side of assuming such calls to be made regardless of whether they
7536  // actually happen.
7537  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7538                                       BaseEnd = ClassDecl->bases_end();
7539       Base != BaseEnd; ++Base) {
7540    if (Base->isVirtual())
7541      continue;
7542
7543    CXXRecordDecl *BaseClassDecl
7544      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7545    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7546                                                            ArgQuals, false, 0))
7547      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7548  }
7549
7550  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7551                                       BaseEnd = ClassDecl->vbases_end();
7552       Base != BaseEnd; ++Base) {
7553    CXXRecordDecl *BaseClassDecl
7554      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7555    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7556                                                            ArgQuals, false, 0))
7557      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7558  }
7559
7560  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7561                                  FieldEnd = ClassDecl->field_end();
7562       Field != FieldEnd;
7563       ++Field) {
7564    QualType FieldType = Context.getBaseElementType(Field->getType());
7565    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7566      if (CXXMethodDecl *CopyAssign =
7567          LookupCopyingAssignment(FieldClassDecl,
7568                                  ArgQuals | FieldType.getCVRQualifiers(),
7569                                  false, 0))
7570        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
7571    }
7572  }
7573
7574  return ExceptSpec;
7575}
7576
7577CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7578  // Note: The following rules are largely analoguous to the copy
7579  // constructor rules. Note that virtual bases are not taken into account
7580  // for determining the argument type of the operator. Note also that
7581  // operators taking an object instead of a reference are allowed.
7582
7583  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7584  QualType RetType = Context.getLValueReferenceType(ArgType);
7585  if (isImplicitCopyAssignmentArgConst(*this, ClassDecl))
7586    ArgType = ArgType.withConst();
7587  ArgType = Context.getLValueReferenceType(ArgType);
7588
7589  //   An implicitly-declared copy assignment operator is an inline public
7590  //   member of its class.
7591  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7592  SourceLocation ClassLoc = ClassDecl->getLocation();
7593  DeclarationNameInfo NameInfo(Name, ClassLoc);
7594  CXXMethodDecl *CopyAssignment
7595    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
7596                            /*TInfo=*/0, /*isStatic=*/false,
7597                            /*StorageClassAsWritten=*/SC_None,
7598                            /*isInline=*/true, /*isConstexpr=*/false,
7599                            SourceLocation());
7600  CopyAssignment->setAccess(AS_public);
7601  CopyAssignment->setDefaulted();
7602  CopyAssignment->setImplicit();
7603  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7604
7605  // Build an exception specification pointing back at this member.
7606  FunctionProtoType::ExtProtoInfo EPI;
7607  EPI.ExceptionSpecType = EST_Unevaluated;
7608  EPI.ExceptionSpecDecl = CopyAssignment;
7609  CopyAssignment->setType(Context.getFunctionType(RetType, &ArgType, 1, EPI));
7610
7611  // Add the parameter to the operator.
7612  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7613                                               ClassLoc, ClassLoc, /*Id=*/0,
7614                                               ArgType, /*TInfo=*/0,
7615                                               SC_None,
7616                                               SC_None, 0);
7617  CopyAssignment->setParams(FromParam);
7618
7619  // Note that we have added this copy-assignment operator.
7620  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7621
7622  if (Scope *S = getScopeForContext(ClassDecl))
7623    PushOnScopeChains(CopyAssignment, S, false);
7624  ClassDecl->addDecl(CopyAssignment);
7625
7626  // C++0x [class.copy]p19:
7627  //   ....  If the class definition does not explicitly declare a copy
7628  //   assignment operator, there is no user-declared move constructor, and
7629  //   there is no user-declared move assignment operator, a copy assignment
7630  //   operator is implicitly declared as defaulted.
7631  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
7632    CopyAssignment->setDeletedAsWritten();
7633
7634  AddOverriddenMethods(ClassDecl, CopyAssignment);
7635  return CopyAssignment;
7636}
7637
7638void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7639                                        CXXMethodDecl *CopyAssignOperator) {
7640  assert((CopyAssignOperator->isDefaulted() &&
7641          CopyAssignOperator->isOverloadedOperator() &&
7642          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7643          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
7644          !CopyAssignOperator->isDeleted()) &&
7645         "DefineImplicitCopyAssignment called for wrong function");
7646
7647  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7648
7649  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7650    CopyAssignOperator->setInvalidDecl();
7651    return;
7652  }
7653
7654  CopyAssignOperator->setUsed();
7655
7656  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7657  DiagnosticErrorTrap Trap(Diags);
7658
7659  // C++0x [class.copy]p30:
7660  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7661  //   for a non-union class X performs memberwise copy assignment of its
7662  //   subobjects. The direct base classes of X are assigned first, in the
7663  //   order of their declaration in the base-specifier-list, and then the
7664  //   immediate non-static data members of X are assigned, in the order in
7665  //   which they were declared in the class definition.
7666
7667  // The statements that form the synthesized function body.
7668  ASTOwningVector<Stmt*> Statements(*this);
7669
7670  // The parameter for the "other" object, which we are copying from.
7671  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7672  Qualifiers OtherQuals = Other->getType().getQualifiers();
7673  QualType OtherRefType = Other->getType();
7674  if (const LValueReferenceType *OtherRef
7675                                = OtherRefType->getAs<LValueReferenceType>()) {
7676    OtherRefType = OtherRef->getPointeeType();
7677    OtherQuals = OtherRefType.getQualifiers();
7678  }
7679
7680  // Our location for everything implicitly-generated.
7681  SourceLocation Loc = CopyAssignOperator->getLocation();
7682
7683  // Construct a reference to the "other" object. We'll be using this
7684  // throughout the generated ASTs.
7685  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7686  assert(OtherRef && "Reference to parameter cannot fail!");
7687
7688  // Construct the "this" pointer. We'll be using this throughout the generated
7689  // ASTs.
7690  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7691  assert(This && "Reference to this cannot fail!");
7692
7693  // Assign base classes.
7694  bool Invalid = false;
7695  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7696       E = ClassDecl->bases_end(); Base != E; ++Base) {
7697    // Form the assignment:
7698    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7699    QualType BaseType = Base->getType().getUnqualifiedType();
7700    if (!BaseType->isRecordType()) {
7701      Invalid = true;
7702      continue;
7703    }
7704
7705    CXXCastPath BasePath;
7706    BasePath.push_back(Base);
7707
7708    // Construct the "from" expression, which is an implicit cast to the
7709    // appropriately-qualified base type.
7710    Expr *From = OtherRef;
7711    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7712                             CK_UncheckedDerivedToBase,
7713                             VK_LValue, &BasePath).take();
7714
7715    // Dereference "this".
7716    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7717
7718    // Implicitly cast "this" to the appropriately-qualified base type.
7719    To = ImpCastExprToType(To.take(),
7720                           Context.getCVRQualifiedType(BaseType,
7721                                     CopyAssignOperator->getTypeQualifiers()),
7722                           CK_UncheckedDerivedToBase,
7723                           VK_LValue, &BasePath);
7724
7725    // Build the copy.
7726    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7727                                            To.get(), From,
7728                                            /*CopyingBaseSubobject=*/true,
7729                                            /*Copying=*/true);
7730    if (Copy.isInvalid()) {
7731      Diag(CurrentLocation, diag::note_member_synthesized_at)
7732        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7733      CopyAssignOperator->setInvalidDecl();
7734      return;
7735    }
7736
7737    // Success! Record the copy.
7738    Statements.push_back(Copy.takeAs<Expr>());
7739  }
7740
7741  // \brief Reference to the __builtin_memcpy function.
7742  Expr *BuiltinMemCpyRef = 0;
7743  // \brief Reference to the __builtin_objc_memmove_collectable function.
7744  Expr *CollectableMemCpyRef = 0;
7745
7746  // Assign non-static members.
7747  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7748                                  FieldEnd = ClassDecl->field_end();
7749       Field != FieldEnd; ++Field) {
7750    if (Field->isUnnamedBitfield())
7751      continue;
7752
7753    // Check for members of reference type; we can't copy those.
7754    if (Field->getType()->isReferenceType()) {
7755      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7756        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7757      Diag(Field->getLocation(), diag::note_declared_at);
7758      Diag(CurrentLocation, diag::note_member_synthesized_at)
7759        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7760      Invalid = true;
7761      continue;
7762    }
7763
7764    // Check for members of const-qualified, non-class type.
7765    QualType BaseType = Context.getBaseElementType(Field->getType());
7766    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7767      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7768        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7769      Diag(Field->getLocation(), diag::note_declared_at);
7770      Diag(CurrentLocation, diag::note_member_synthesized_at)
7771        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7772      Invalid = true;
7773      continue;
7774    }
7775
7776    // Suppress assigning zero-width bitfields.
7777    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7778      continue;
7779
7780    QualType FieldType = Field->getType().getNonReferenceType();
7781    if (FieldType->isIncompleteArrayType()) {
7782      assert(ClassDecl->hasFlexibleArrayMember() &&
7783             "Incomplete array type is not valid");
7784      continue;
7785    }
7786
7787    // Build references to the field in the object we're copying from and to.
7788    CXXScopeSpec SS; // Intentionally empty
7789    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7790                              LookupMemberName);
7791    MemberLookup.addDecl(*Field);
7792    MemberLookup.resolveKind();
7793    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7794                                               Loc, /*IsArrow=*/false,
7795                                               SS, SourceLocation(), 0,
7796                                               MemberLookup, 0);
7797    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7798                                             Loc, /*IsArrow=*/true,
7799                                             SS, SourceLocation(), 0,
7800                                             MemberLookup, 0);
7801    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7802    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7803
7804    // If the field should be copied with __builtin_memcpy rather than via
7805    // explicit assignments, do so. This optimization only applies for arrays
7806    // of scalars and arrays of class type with trivial copy-assignment
7807    // operators.
7808    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7809        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7810      // Compute the size of the memory buffer to be copied.
7811      QualType SizeType = Context.getSizeType();
7812      llvm::APInt Size(Context.getTypeSize(SizeType),
7813                       Context.getTypeSizeInChars(BaseType).getQuantity());
7814      for (const ConstantArrayType *Array
7815              = Context.getAsConstantArrayType(FieldType);
7816           Array;
7817           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7818        llvm::APInt ArraySize
7819          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7820        Size *= ArraySize;
7821      }
7822
7823      // Take the address of the field references for "from" and "to".
7824      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7825      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7826
7827      bool NeedsCollectableMemCpy =
7828          (BaseType->isRecordType() &&
7829           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7830
7831      if (NeedsCollectableMemCpy) {
7832        if (!CollectableMemCpyRef) {
7833          // Create a reference to the __builtin_objc_memmove_collectable function.
7834          LookupResult R(*this,
7835                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7836                         Loc, LookupOrdinaryName);
7837          LookupName(R, TUScope, true);
7838
7839          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7840          if (!CollectableMemCpy) {
7841            // Something went horribly wrong earlier, and we will have
7842            // complained about it.
7843            Invalid = true;
7844            continue;
7845          }
7846
7847          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7848                                                  CollectableMemCpy->getType(),
7849                                                  VK_LValue, Loc, 0).take();
7850          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7851        }
7852      }
7853      // Create a reference to the __builtin_memcpy builtin function.
7854      else if (!BuiltinMemCpyRef) {
7855        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7856                       LookupOrdinaryName);
7857        LookupName(R, TUScope, true);
7858
7859        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7860        if (!BuiltinMemCpy) {
7861          // Something went horribly wrong earlier, and we will have complained
7862          // about it.
7863          Invalid = true;
7864          continue;
7865        }
7866
7867        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7868                                            BuiltinMemCpy->getType(),
7869                                            VK_LValue, Loc, 0).take();
7870        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7871      }
7872
7873      ASTOwningVector<Expr*> CallArgs(*this);
7874      CallArgs.push_back(To.takeAs<Expr>());
7875      CallArgs.push_back(From.takeAs<Expr>());
7876      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7877      ExprResult Call = ExprError();
7878      if (NeedsCollectableMemCpy)
7879        Call = ActOnCallExpr(/*Scope=*/0,
7880                             CollectableMemCpyRef,
7881                             Loc, move_arg(CallArgs),
7882                             Loc);
7883      else
7884        Call = ActOnCallExpr(/*Scope=*/0,
7885                             BuiltinMemCpyRef,
7886                             Loc, move_arg(CallArgs),
7887                             Loc);
7888
7889      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7890      Statements.push_back(Call.takeAs<Expr>());
7891      continue;
7892    }
7893
7894    // Build the copy of this field.
7895    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7896                                            To.get(), From.get(),
7897                                            /*CopyingBaseSubobject=*/false,
7898                                            /*Copying=*/true);
7899    if (Copy.isInvalid()) {
7900      Diag(CurrentLocation, diag::note_member_synthesized_at)
7901        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7902      CopyAssignOperator->setInvalidDecl();
7903      return;
7904    }
7905
7906    // Success! Record the copy.
7907    Statements.push_back(Copy.takeAs<Stmt>());
7908  }
7909
7910  if (!Invalid) {
7911    // Add a "return *this;"
7912    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7913
7914    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7915    if (Return.isInvalid())
7916      Invalid = true;
7917    else {
7918      Statements.push_back(Return.takeAs<Stmt>());
7919
7920      if (Trap.hasErrorOccurred()) {
7921        Diag(CurrentLocation, diag::note_member_synthesized_at)
7922          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7923        Invalid = true;
7924      }
7925    }
7926  }
7927
7928  if (Invalid) {
7929    CopyAssignOperator->setInvalidDecl();
7930    return;
7931  }
7932
7933  StmtResult Body;
7934  {
7935    CompoundScopeRAII CompoundScope(*this);
7936    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7937                             /*isStmtExpr=*/false);
7938    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7939  }
7940  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7941
7942  if (ASTMutationListener *L = getASTMutationListener()) {
7943    L->CompletedImplicitDefinition(CopyAssignOperator);
7944  }
7945}
7946
7947Sema::ImplicitExceptionSpecification
7948Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
7949  CXXRecordDecl *ClassDecl = MD->getParent();
7950
7951  ImplicitExceptionSpecification ExceptSpec(*this);
7952  if (ClassDecl->isInvalidDecl())
7953    return ExceptSpec;
7954
7955  // C++0x [except.spec]p14:
7956  //   An implicitly declared special member function (Clause 12) shall have an
7957  //   exception-specification. [...]
7958
7959  // It is unspecified whether or not an implicit move assignment operator
7960  // attempts to deduplicate calls to assignment operators of virtual bases are
7961  // made. As such, this exception specification is effectively unspecified.
7962  // Based on a similar decision made for constness in C++0x, we're erring on
7963  // the side of assuming such calls to be made regardless of whether they
7964  // actually happen.
7965  // Note that a move constructor is not implicitly declared when there are
7966  // virtual bases, but it can still be user-declared and explicitly defaulted.
7967  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7968                                       BaseEnd = ClassDecl->bases_end();
7969       Base != BaseEnd; ++Base) {
7970    if (Base->isVirtual())
7971      continue;
7972
7973    CXXRecordDecl *BaseClassDecl
7974      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7975    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7976                                                           0, false, 0))
7977      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
7978  }
7979
7980  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7981                                       BaseEnd = ClassDecl->vbases_end();
7982       Base != BaseEnd; ++Base) {
7983    CXXRecordDecl *BaseClassDecl
7984      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7985    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7986                                                           0, false, 0))
7987      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
7988  }
7989
7990  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7991                                  FieldEnd = ClassDecl->field_end();
7992       Field != FieldEnd;
7993       ++Field) {
7994    QualType FieldType = Context.getBaseElementType(Field->getType());
7995    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7996      if (CXXMethodDecl *MoveAssign =
7997              LookupMovingAssignment(FieldClassDecl,
7998                                     FieldType.getCVRQualifiers(),
7999                                     false, 0))
8000        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
8001    }
8002  }
8003
8004  return ExceptSpec;
8005}
8006
8007/// Determine whether the class type has any direct or indirect virtual base
8008/// classes which have a non-trivial move assignment operator.
8009static bool
8010hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
8011  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8012                                          BaseEnd = ClassDecl->vbases_end();
8013       Base != BaseEnd; ++Base) {
8014    CXXRecordDecl *BaseClass =
8015        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8016
8017    // Try to declare the move assignment. If it would be deleted, then the
8018    // class does not have a non-trivial move assignment.
8019    if (BaseClass->needsImplicitMoveAssignment())
8020      S.DeclareImplicitMoveAssignment(BaseClass);
8021
8022    // If the class has both a trivial move assignment and a non-trivial move
8023    // assignment, hasTrivialMoveAssignment() is false.
8024    if (BaseClass->hasDeclaredMoveAssignment() &&
8025        !BaseClass->hasTrivialMoveAssignment())
8026      return true;
8027  }
8028
8029  return false;
8030}
8031
8032/// Determine whether the given type either has a move constructor or is
8033/// trivially copyable.
8034static bool
8035hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
8036  Type = S.Context.getBaseElementType(Type);
8037
8038  // FIXME: Technically, non-trivially-copyable non-class types, such as
8039  // reference types, are supposed to return false here, but that appears
8040  // to be a standard defect.
8041  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8042  if (!ClassDecl || !ClassDecl->getDefinition())
8043    return true;
8044
8045  if (Type.isTriviallyCopyableType(S.Context))
8046    return true;
8047
8048  if (IsConstructor) {
8049    if (ClassDecl->needsImplicitMoveConstructor())
8050      S.DeclareImplicitMoveConstructor(ClassDecl);
8051    return ClassDecl->hasDeclaredMoveConstructor();
8052  }
8053
8054  if (ClassDecl->needsImplicitMoveAssignment())
8055    S.DeclareImplicitMoveAssignment(ClassDecl);
8056  return ClassDecl->hasDeclaredMoveAssignment();
8057}
8058
8059/// Determine whether all non-static data members and direct or virtual bases
8060/// of class \p ClassDecl have either a move operation, or are trivially
8061/// copyable.
8062static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
8063                                            bool IsConstructor) {
8064  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8065                                          BaseEnd = ClassDecl->bases_end();
8066       Base != BaseEnd; ++Base) {
8067    if (Base->isVirtual())
8068      continue;
8069
8070    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8071      return false;
8072  }
8073
8074  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8075                                          BaseEnd = ClassDecl->vbases_end();
8076       Base != BaseEnd; ++Base) {
8077    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8078      return false;
8079  }
8080
8081  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8082                                     FieldEnd = ClassDecl->field_end();
8083       Field != FieldEnd; ++Field) {
8084    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
8085      return false;
8086  }
8087
8088  return true;
8089}
8090
8091CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8092  // C++11 [class.copy]p20:
8093  //   If the definition of a class X does not explicitly declare a move
8094  //   assignment operator, one will be implicitly declared as defaulted
8095  //   if and only if:
8096  //
8097  //   - [first 4 bullets]
8098  assert(ClassDecl->needsImplicitMoveAssignment());
8099
8100  // [Checked after we build the declaration]
8101  //   - the move assignment operator would not be implicitly defined as
8102  //     deleted,
8103
8104  // [DR1402]:
8105  //   - X has no direct or indirect virtual base class with a non-trivial
8106  //     move assignment operator, and
8107  //   - each of X's non-static data members and direct or virtual base classes
8108  //     has a type that either has a move assignment operator or is trivially
8109  //     copyable.
8110  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
8111      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
8112    ClassDecl->setFailedImplicitMoveAssignment();
8113    return 0;
8114  }
8115
8116  // Note: The following rules are largely analoguous to the move
8117  // constructor rules.
8118
8119  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8120  QualType RetType = Context.getLValueReferenceType(ArgType);
8121  ArgType = Context.getRValueReferenceType(ArgType);
8122
8123  //   An implicitly-declared move assignment operator is an inline public
8124  //   member of its class.
8125  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8126  SourceLocation ClassLoc = ClassDecl->getLocation();
8127  DeclarationNameInfo NameInfo(Name, ClassLoc);
8128  CXXMethodDecl *MoveAssignment
8129    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8130                            /*TInfo=*/0, /*isStatic=*/false,
8131                            /*StorageClassAsWritten=*/SC_None,
8132                            /*isInline=*/true,
8133                            /*isConstexpr=*/false,
8134                            SourceLocation());
8135  MoveAssignment->setAccess(AS_public);
8136  MoveAssignment->setDefaulted();
8137  MoveAssignment->setImplicit();
8138  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8139
8140  // Build an exception specification pointing back at this member.
8141  FunctionProtoType::ExtProtoInfo EPI;
8142  EPI.ExceptionSpecType = EST_Unevaluated;
8143  EPI.ExceptionSpecDecl = MoveAssignment;
8144  MoveAssignment->setType(Context.getFunctionType(RetType, &ArgType, 1, EPI));
8145
8146  // Add the parameter to the operator.
8147  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8148                                               ClassLoc, ClassLoc, /*Id=*/0,
8149                                               ArgType, /*TInfo=*/0,
8150                                               SC_None,
8151                                               SC_None, 0);
8152  MoveAssignment->setParams(FromParam);
8153
8154  // Note that we have added this copy-assignment operator.
8155  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8156
8157  // C++0x [class.copy]p9:
8158  //   If the definition of a class X does not explicitly declare a move
8159  //   assignment operator, one will be implicitly declared as defaulted if and
8160  //   only if:
8161  //   [...]
8162  //   - the move assignment operator would not be implicitly defined as
8163  //     deleted.
8164  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8165    // Cache this result so that we don't try to generate this over and over
8166    // on every lookup, leaking memory and wasting time.
8167    ClassDecl->setFailedImplicitMoveAssignment();
8168    return 0;
8169  }
8170
8171  if (Scope *S = getScopeForContext(ClassDecl))
8172    PushOnScopeChains(MoveAssignment, S, false);
8173  ClassDecl->addDecl(MoveAssignment);
8174
8175  AddOverriddenMethods(ClassDecl, MoveAssignment);
8176  return MoveAssignment;
8177}
8178
8179void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8180                                        CXXMethodDecl *MoveAssignOperator) {
8181  assert((MoveAssignOperator->isDefaulted() &&
8182          MoveAssignOperator->isOverloadedOperator() &&
8183          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8184          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8185          !MoveAssignOperator->isDeleted()) &&
8186         "DefineImplicitMoveAssignment called for wrong function");
8187
8188  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8189
8190  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8191    MoveAssignOperator->setInvalidDecl();
8192    return;
8193  }
8194
8195  MoveAssignOperator->setUsed();
8196
8197  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8198  DiagnosticErrorTrap Trap(Diags);
8199
8200  // C++0x [class.copy]p28:
8201  //   The implicitly-defined or move assignment operator for a non-union class
8202  //   X performs memberwise move assignment of its subobjects. The direct base
8203  //   classes of X are assigned first, in the order of their declaration in the
8204  //   base-specifier-list, and then the immediate non-static data members of X
8205  //   are assigned, in the order in which they were declared in the class
8206  //   definition.
8207
8208  // The statements that form the synthesized function body.
8209  ASTOwningVector<Stmt*> Statements(*this);
8210
8211  // The parameter for the "other" object, which we are move from.
8212  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8213  QualType OtherRefType = Other->getType()->
8214      getAs<RValueReferenceType>()->getPointeeType();
8215  assert(OtherRefType.getQualifiers() == 0 &&
8216         "Bad argument type of defaulted move assignment");
8217
8218  // Our location for everything implicitly-generated.
8219  SourceLocation Loc = MoveAssignOperator->getLocation();
8220
8221  // Construct a reference to the "other" object. We'll be using this
8222  // throughout the generated ASTs.
8223  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8224  assert(OtherRef && "Reference to parameter cannot fail!");
8225  // Cast to rvalue.
8226  OtherRef = CastForMoving(*this, OtherRef);
8227
8228  // Construct the "this" pointer. We'll be using this throughout the generated
8229  // ASTs.
8230  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8231  assert(This && "Reference to this cannot fail!");
8232
8233  // Assign base classes.
8234  bool Invalid = false;
8235  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8236       E = ClassDecl->bases_end(); Base != E; ++Base) {
8237    // Form the assignment:
8238    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8239    QualType BaseType = Base->getType().getUnqualifiedType();
8240    if (!BaseType->isRecordType()) {
8241      Invalid = true;
8242      continue;
8243    }
8244
8245    CXXCastPath BasePath;
8246    BasePath.push_back(Base);
8247
8248    // Construct the "from" expression, which is an implicit cast to the
8249    // appropriately-qualified base type.
8250    Expr *From = OtherRef;
8251    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8252                             VK_XValue, &BasePath).take();
8253
8254    // Dereference "this".
8255    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8256
8257    // Implicitly cast "this" to the appropriately-qualified base type.
8258    To = ImpCastExprToType(To.take(),
8259                           Context.getCVRQualifiedType(BaseType,
8260                                     MoveAssignOperator->getTypeQualifiers()),
8261                           CK_UncheckedDerivedToBase,
8262                           VK_LValue, &BasePath);
8263
8264    // Build the move.
8265    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8266                                            To.get(), From,
8267                                            /*CopyingBaseSubobject=*/true,
8268                                            /*Copying=*/false);
8269    if (Move.isInvalid()) {
8270      Diag(CurrentLocation, diag::note_member_synthesized_at)
8271        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8272      MoveAssignOperator->setInvalidDecl();
8273      return;
8274    }
8275
8276    // Success! Record the move.
8277    Statements.push_back(Move.takeAs<Expr>());
8278  }
8279
8280  // \brief Reference to the __builtin_memcpy function.
8281  Expr *BuiltinMemCpyRef = 0;
8282  // \brief Reference to the __builtin_objc_memmove_collectable function.
8283  Expr *CollectableMemCpyRef = 0;
8284
8285  // Assign non-static members.
8286  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8287                                  FieldEnd = ClassDecl->field_end();
8288       Field != FieldEnd; ++Field) {
8289    if (Field->isUnnamedBitfield())
8290      continue;
8291
8292    // Check for members of reference type; we can't move those.
8293    if (Field->getType()->isReferenceType()) {
8294      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8295        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8296      Diag(Field->getLocation(), diag::note_declared_at);
8297      Diag(CurrentLocation, diag::note_member_synthesized_at)
8298        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8299      Invalid = true;
8300      continue;
8301    }
8302
8303    // Check for members of const-qualified, non-class type.
8304    QualType BaseType = Context.getBaseElementType(Field->getType());
8305    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8306      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8307        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8308      Diag(Field->getLocation(), diag::note_declared_at);
8309      Diag(CurrentLocation, diag::note_member_synthesized_at)
8310        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8311      Invalid = true;
8312      continue;
8313    }
8314
8315    // Suppress assigning zero-width bitfields.
8316    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8317      continue;
8318
8319    QualType FieldType = Field->getType().getNonReferenceType();
8320    if (FieldType->isIncompleteArrayType()) {
8321      assert(ClassDecl->hasFlexibleArrayMember() &&
8322             "Incomplete array type is not valid");
8323      continue;
8324    }
8325
8326    // Build references to the field in the object we're copying from and to.
8327    CXXScopeSpec SS; // Intentionally empty
8328    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8329                              LookupMemberName);
8330    MemberLookup.addDecl(*Field);
8331    MemberLookup.resolveKind();
8332    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8333                                               Loc, /*IsArrow=*/false,
8334                                               SS, SourceLocation(), 0,
8335                                               MemberLookup, 0);
8336    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8337                                             Loc, /*IsArrow=*/true,
8338                                             SS, SourceLocation(), 0,
8339                                             MemberLookup, 0);
8340    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8341    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8342
8343    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8344        "Member reference with rvalue base must be rvalue except for reference "
8345        "members, which aren't allowed for move assignment.");
8346
8347    // If the field should be copied with __builtin_memcpy rather than via
8348    // explicit assignments, do so. This optimization only applies for arrays
8349    // of scalars and arrays of class type with trivial move-assignment
8350    // operators.
8351    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8352        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8353      // Compute the size of the memory buffer to be copied.
8354      QualType SizeType = Context.getSizeType();
8355      llvm::APInt Size(Context.getTypeSize(SizeType),
8356                       Context.getTypeSizeInChars(BaseType).getQuantity());
8357      for (const ConstantArrayType *Array
8358              = Context.getAsConstantArrayType(FieldType);
8359           Array;
8360           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8361        llvm::APInt ArraySize
8362          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8363        Size *= ArraySize;
8364      }
8365
8366      // Take the address of the field references for "from" and "to". We
8367      // directly construct UnaryOperators here because semantic analysis
8368      // does not permit us to take the address of an xvalue.
8369      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8370                             Context.getPointerType(From.get()->getType()),
8371                             VK_RValue, OK_Ordinary, Loc);
8372      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8373                           Context.getPointerType(To.get()->getType()),
8374                           VK_RValue, OK_Ordinary, Loc);
8375
8376      bool NeedsCollectableMemCpy =
8377          (BaseType->isRecordType() &&
8378           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8379
8380      if (NeedsCollectableMemCpy) {
8381        if (!CollectableMemCpyRef) {
8382          // Create a reference to the __builtin_objc_memmove_collectable function.
8383          LookupResult R(*this,
8384                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8385                         Loc, LookupOrdinaryName);
8386          LookupName(R, TUScope, true);
8387
8388          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8389          if (!CollectableMemCpy) {
8390            // Something went horribly wrong earlier, and we will have
8391            // complained about it.
8392            Invalid = true;
8393            continue;
8394          }
8395
8396          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8397                                                  CollectableMemCpy->getType(),
8398                                                  VK_LValue, Loc, 0).take();
8399          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8400        }
8401      }
8402      // Create a reference to the __builtin_memcpy builtin function.
8403      else if (!BuiltinMemCpyRef) {
8404        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8405                       LookupOrdinaryName);
8406        LookupName(R, TUScope, true);
8407
8408        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8409        if (!BuiltinMemCpy) {
8410          // Something went horribly wrong earlier, and we will have complained
8411          // about it.
8412          Invalid = true;
8413          continue;
8414        }
8415
8416        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8417                                            BuiltinMemCpy->getType(),
8418                                            VK_LValue, Loc, 0).take();
8419        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8420      }
8421
8422      ASTOwningVector<Expr*> CallArgs(*this);
8423      CallArgs.push_back(To.takeAs<Expr>());
8424      CallArgs.push_back(From.takeAs<Expr>());
8425      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8426      ExprResult Call = ExprError();
8427      if (NeedsCollectableMemCpy)
8428        Call = ActOnCallExpr(/*Scope=*/0,
8429                             CollectableMemCpyRef,
8430                             Loc, move_arg(CallArgs),
8431                             Loc);
8432      else
8433        Call = ActOnCallExpr(/*Scope=*/0,
8434                             BuiltinMemCpyRef,
8435                             Loc, move_arg(CallArgs),
8436                             Loc);
8437
8438      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8439      Statements.push_back(Call.takeAs<Expr>());
8440      continue;
8441    }
8442
8443    // Build the move of this field.
8444    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8445                                            To.get(), From.get(),
8446                                            /*CopyingBaseSubobject=*/false,
8447                                            /*Copying=*/false);
8448    if (Move.isInvalid()) {
8449      Diag(CurrentLocation, diag::note_member_synthesized_at)
8450        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8451      MoveAssignOperator->setInvalidDecl();
8452      return;
8453    }
8454
8455    // Success! Record the copy.
8456    Statements.push_back(Move.takeAs<Stmt>());
8457  }
8458
8459  if (!Invalid) {
8460    // Add a "return *this;"
8461    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8462
8463    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8464    if (Return.isInvalid())
8465      Invalid = true;
8466    else {
8467      Statements.push_back(Return.takeAs<Stmt>());
8468
8469      if (Trap.hasErrorOccurred()) {
8470        Diag(CurrentLocation, diag::note_member_synthesized_at)
8471          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8472        Invalid = true;
8473      }
8474    }
8475  }
8476
8477  if (Invalid) {
8478    MoveAssignOperator->setInvalidDecl();
8479    return;
8480  }
8481
8482  StmtResult Body;
8483  {
8484    CompoundScopeRAII CompoundScope(*this);
8485    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8486                             /*isStmtExpr=*/false);
8487    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8488  }
8489  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8490
8491  if (ASTMutationListener *L = getASTMutationListener()) {
8492    L->CompletedImplicitDefinition(MoveAssignOperator);
8493  }
8494}
8495
8496/// Determine whether an implicit copy constructor for ClassDecl has a const
8497/// argument.
8498/// FIXME: It ought to be possible to store this on the record.
8499static bool isImplicitCopyCtorArgConst(Sema &S, CXXRecordDecl *ClassDecl) {
8500  if (ClassDecl->isInvalidDecl())
8501    return true;
8502
8503  // C++ [class.copy]p5:
8504  //   The implicitly-declared copy constructor for a class X will
8505  //   have the form
8506  //
8507  //       X::X(const X&)
8508  //
8509  //   if
8510  //     -- each direct or virtual base class B of X has a copy
8511  //        constructor whose first parameter is of type const B& or
8512  //        const volatile B&, and
8513  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8514                                       BaseEnd = ClassDecl->bases_end();
8515       Base != BaseEnd; ++Base) {
8516    // Virtual bases are handled below.
8517    if (Base->isVirtual())
8518      continue;
8519
8520    CXXRecordDecl *BaseClassDecl
8521      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8522    // FIXME: This lookup is wrong. If the copy ctor for a member or base is
8523    // ambiguous, we should still produce a constructor with a const-qualified
8524    // parameter.
8525    if (!S.LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const))
8526      return false;
8527  }
8528
8529  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8530                                       BaseEnd = ClassDecl->vbases_end();
8531       Base != BaseEnd; ++Base) {
8532    CXXRecordDecl *BaseClassDecl
8533      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8534    if (!S.LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const))
8535      return false;
8536  }
8537
8538  //     -- for all the nonstatic data members of X that are of a
8539  //        class type M (or array thereof), each such class type
8540  //        has a copy constructor whose first parameter is of type
8541  //        const M& or const volatile M&.
8542  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8543                                  FieldEnd = ClassDecl->field_end();
8544       Field != FieldEnd; ++Field) {
8545    QualType FieldType = S.Context.getBaseElementType(Field->getType());
8546    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8547      if (!S.LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const))
8548        return false;
8549    }
8550  }
8551
8552  //   Otherwise, the implicitly declared copy constructor will have
8553  //   the form
8554  //
8555  //       X::X(X&)
8556
8557  return true;
8558}
8559
8560Sema::ImplicitExceptionSpecification
8561Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
8562  CXXRecordDecl *ClassDecl = MD->getParent();
8563
8564  ImplicitExceptionSpecification ExceptSpec(*this);
8565  if (ClassDecl->isInvalidDecl())
8566    return ExceptSpec;
8567
8568  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
8569  assert(T->getNumArgs() >= 1 && "not a copy ctor");
8570  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
8571
8572  // C++ [except.spec]p14:
8573  //   An implicitly declared special member function (Clause 12) shall have an
8574  //   exception-specification. [...]
8575  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8576                                       BaseEnd = ClassDecl->bases_end();
8577       Base != BaseEnd;
8578       ++Base) {
8579    // Virtual bases are handled below.
8580    if (Base->isVirtual())
8581      continue;
8582
8583    CXXRecordDecl *BaseClassDecl
8584      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8585    if (CXXConstructorDecl *CopyConstructor =
8586          LookupCopyingConstructor(BaseClassDecl, Quals))
8587      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8588  }
8589  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8590                                       BaseEnd = ClassDecl->vbases_end();
8591       Base != BaseEnd;
8592       ++Base) {
8593    CXXRecordDecl *BaseClassDecl
8594      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8595    if (CXXConstructorDecl *CopyConstructor =
8596          LookupCopyingConstructor(BaseClassDecl, Quals))
8597      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8598  }
8599  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8600                                  FieldEnd = ClassDecl->field_end();
8601       Field != FieldEnd;
8602       ++Field) {
8603    QualType FieldType = Context.getBaseElementType(Field->getType());
8604    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8605      if (CXXConstructorDecl *CopyConstructor =
8606              LookupCopyingConstructor(FieldClassDecl,
8607                                       Quals | FieldType.getCVRQualifiers()))
8608      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
8609    }
8610  }
8611
8612  return ExceptSpec;
8613}
8614
8615CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8616                                                    CXXRecordDecl *ClassDecl) {
8617  // C++ [class.copy]p4:
8618  //   If the class definition does not explicitly declare a copy
8619  //   constructor, one is declared implicitly.
8620
8621  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8622  QualType ArgType = ClassType;
8623  bool Const = isImplicitCopyCtorArgConst(*this, ClassDecl);
8624  if (Const)
8625    ArgType = ArgType.withConst();
8626  ArgType = Context.getLValueReferenceType(ArgType);
8627
8628  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8629                                                     CXXCopyConstructor,
8630                                                     Const);
8631
8632  DeclarationName Name
8633    = Context.DeclarationNames.getCXXConstructorName(
8634                                           Context.getCanonicalType(ClassType));
8635  SourceLocation ClassLoc = ClassDecl->getLocation();
8636  DeclarationNameInfo NameInfo(Name, ClassLoc);
8637
8638  //   An implicitly-declared copy constructor is an inline public
8639  //   member of its class.
8640  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8641      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
8642      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8643      Constexpr);
8644  CopyConstructor->setAccess(AS_public);
8645  CopyConstructor->setDefaulted();
8646  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8647
8648  // Build an exception specification pointing back at this member.
8649  FunctionProtoType::ExtProtoInfo EPI;
8650  EPI.ExceptionSpecType = EST_Unevaluated;
8651  EPI.ExceptionSpecDecl = CopyConstructor;
8652  CopyConstructor->setType(
8653      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
8654
8655  // Note that we have declared this constructor.
8656  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8657
8658  // Add the parameter to the constructor.
8659  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8660                                               ClassLoc, ClassLoc,
8661                                               /*IdentifierInfo=*/0,
8662                                               ArgType, /*TInfo=*/0,
8663                                               SC_None,
8664                                               SC_None, 0);
8665  CopyConstructor->setParams(FromParam);
8666
8667  if (Scope *S = getScopeForContext(ClassDecl))
8668    PushOnScopeChains(CopyConstructor, S, false);
8669  ClassDecl->addDecl(CopyConstructor);
8670
8671  // C++11 [class.copy]p8:
8672  //   ... If the class definition does not explicitly declare a copy
8673  //   constructor, there is no user-declared move constructor, and there is no
8674  //   user-declared move assignment operator, a copy constructor is implicitly
8675  //   declared as defaulted.
8676  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8677    CopyConstructor->setDeletedAsWritten();
8678
8679  return CopyConstructor;
8680}
8681
8682void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8683                                   CXXConstructorDecl *CopyConstructor) {
8684  assert((CopyConstructor->isDefaulted() &&
8685          CopyConstructor->isCopyConstructor() &&
8686          !CopyConstructor->doesThisDeclarationHaveABody() &&
8687          !CopyConstructor->isDeleted()) &&
8688         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8689
8690  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8691  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8692
8693  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8694  DiagnosticErrorTrap Trap(Diags);
8695
8696  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8697      Trap.hasErrorOccurred()) {
8698    Diag(CurrentLocation, diag::note_member_synthesized_at)
8699      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8700    CopyConstructor->setInvalidDecl();
8701  }  else {
8702    Sema::CompoundScopeRAII CompoundScope(*this);
8703    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8704                                               CopyConstructor->getLocation(),
8705                                               MultiStmtArg(*this, 0, 0),
8706                                               /*isStmtExpr=*/false)
8707                                                              .takeAs<Stmt>());
8708    CopyConstructor->setImplicitlyDefined(true);
8709  }
8710
8711  CopyConstructor->setUsed();
8712  if (ASTMutationListener *L = getASTMutationListener()) {
8713    L->CompletedImplicitDefinition(CopyConstructor);
8714  }
8715}
8716
8717Sema::ImplicitExceptionSpecification
8718Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
8719  CXXRecordDecl *ClassDecl = MD->getParent();
8720
8721  // C++ [except.spec]p14:
8722  //   An implicitly declared special member function (Clause 12) shall have an
8723  //   exception-specification. [...]
8724  ImplicitExceptionSpecification ExceptSpec(*this);
8725  if (ClassDecl->isInvalidDecl())
8726    return ExceptSpec;
8727
8728  // Direct base-class constructors.
8729  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8730                                       BEnd = ClassDecl->bases_end();
8731       B != BEnd; ++B) {
8732    if (B->isVirtual()) // Handled below.
8733      continue;
8734
8735    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8736      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8737      CXXConstructorDecl *Constructor =
8738          LookupMovingConstructor(BaseClassDecl, 0);
8739      // If this is a deleted function, add it anyway. This might be conformant
8740      // with the standard. This might not. I'm not sure. It might not matter.
8741      if (Constructor)
8742        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8743    }
8744  }
8745
8746  // Virtual base-class constructors.
8747  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8748                                       BEnd = ClassDecl->vbases_end();
8749       B != BEnd; ++B) {
8750    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8751      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8752      CXXConstructorDecl *Constructor =
8753          LookupMovingConstructor(BaseClassDecl, 0);
8754      // If this is a deleted function, add it anyway. This might be conformant
8755      // with the standard. This might not. I'm not sure. It might not matter.
8756      if (Constructor)
8757        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8758    }
8759  }
8760
8761  // Field constructors.
8762  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8763                               FEnd = ClassDecl->field_end();
8764       F != FEnd; ++F) {
8765    QualType FieldType = Context.getBaseElementType(F->getType());
8766    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
8767      CXXConstructorDecl *Constructor =
8768          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
8769      // If this is a deleted function, add it anyway. This might be conformant
8770      // with the standard. This might not. I'm not sure. It might not matter.
8771      // In particular, the problem is that this function never gets called. It
8772      // might just be ill-formed because this function attempts to refer to
8773      // a deleted function here.
8774      if (Constructor)
8775        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8776    }
8777  }
8778
8779  return ExceptSpec;
8780}
8781
8782CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8783                                                    CXXRecordDecl *ClassDecl) {
8784  // C++11 [class.copy]p9:
8785  //   If the definition of a class X does not explicitly declare a move
8786  //   constructor, one will be implicitly declared as defaulted if and only if:
8787  //
8788  //   - [first 4 bullets]
8789  assert(ClassDecl->needsImplicitMoveConstructor());
8790
8791  // [Checked after we build the declaration]
8792  //   - the move assignment operator would not be implicitly defined as
8793  //     deleted,
8794
8795  // [DR1402]:
8796  //   - each of X's non-static data members and direct or virtual base classes
8797  //     has a type that either has a move constructor or is trivially copyable.
8798  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
8799    ClassDecl->setFailedImplicitMoveConstructor();
8800    return 0;
8801  }
8802
8803  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8804  QualType ArgType = Context.getRValueReferenceType(ClassType);
8805
8806  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8807                                                     CXXMoveConstructor,
8808                                                     false);
8809
8810  DeclarationName Name
8811    = Context.DeclarationNames.getCXXConstructorName(
8812                                           Context.getCanonicalType(ClassType));
8813  SourceLocation ClassLoc = ClassDecl->getLocation();
8814  DeclarationNameInfo NameInfo(Name, ClassLoc);
8815
8816  // C++0x [class.copy]p11:
8817  //   An implicitly-declared copy/move constructor is an inline public
8818  //   member of its class.
8819  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8820      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
8821      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8822      Constexpr);
8823  MoveConstructor->setAccess(AS_public);
8824  MoveConstructor->setDefaulted();
8825  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8826
8827  // Build an exception specification pointing back at this member.
8828  FunctionProtoType::ExtProtoInfo EPI;
8829  EPI.ExceptionSpecType = EST_Unevaluated;
8830  EPI.ExceptionSpecDecl = MoveConstructor;
8831  MoveConstructor->setType(
8832      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
8833
8834  // Add the parameter to the constructor.
8835  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8836                                               ClassLoc, ClassLoc,
8837                                               /*IdentifierInfo=*/0,
8838                                               ArgType, /*TInfo=*/0,
8839                                               SC_None,
8840                                               SC_None, 0);
8841  MoveConstructor->setParams(FromParam);
8842
8843  // C++0x [class.copy]p9:
8844  //   If the definition of a class X does not explicitly declare a move
8845  //   constructor, one will be implicitly declared as defaulted if and only if:
8846  //   [...]
8847  //   - the move constructor would not be implicitly defined as deleted.
8848  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8849    // Cache this result so that we don't try to generate this over and over
8850    // on every lookup, leaking memory and wasting time.
8851    ClassDecl->setFailedImplicitMoveConstructor();
8852    return 0;
8853  }
8854
8855  // Note that we have declared this constructor.
8856  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8857
8858  if (Scope *S = getScopeForContext(ClassDecl))
8859    PushOnScopeChains(MoveConstructor, S, false);
8860  ClassDecl->addDecl(MoveConstructor);
8861
8862  return MoveConstructor;
8863}
8864
8865void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8866                                   CXXConstructorDecl *MoveConstructor) {
8867  assert((MoveConstructor->isDefaulted() &&
8868          MoveConstructor->isMoveConstructor() &&
8869          !MoveConstructor->doesThisDeclarationHaveABody() &&
8870          !MoveConstructor->isDeleted()) &&
8871         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8872
8873  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8874  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8875
8876  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8877  DiagnosticErrorTrap Trap(Diags);
8878
8879  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8880      Trap.hasErrorOccurred()) {
8881    Diag(CurrentLocation, diag::note_member_synthesized_at)
8882      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8883    MoveConstructor->setInvalidDecl();
8884  }  else {
8885    Sema::CompoundScopeRAII CompoundScope(*this);
8886    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8887                                               MoveConstructor->getLocation(),
8888                                               MultiStmtArg(*this, 0, 0),
8889                                               /*isStmtExpr=*/false)
8890                                                              .takeAs<Stmt>());
8891    MoveConstructor->setImplicitlyDefined(true);
8892  }
8893
8894  MoveConstructor->setUsed();
8895
8896  if (ASTMutationListener *L = getASTMutationListener()) {
8897    L->CompletedImplicitDefinition(MoveConstructor);
8898  }
8899}
8900
8901bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
8902  return FD->isDeleted() &&
8903         (FD->isDefaulted() || FD->isImplicit()) &&
8904         isa<CXXMethodDecl>(FD);
8905}
8906
8907/// \brief Mark the call operator of the given lambda closure type as "used".
8908static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
8909  CXXMethodDecl *CallOperator
8910    = cast<CXXMethodDecl>(
8911        *Lambda->lookup(
8912          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
8913  CallOperator->setReferenced();
8914  CallOperator->setUsed();
8915}
8916
8917void Sema::DefineImplicitLambdaToFunctionPointerConversion(
8918       SourceLocation CurrentLocation,
8919       CXXConversionDecl *Conv)
8920{
8921  CXXRecordDecl *Lambda = Conv->getParent();
8922
8923  // Make sure that the lambda call operator is marked used.
8924  markLambdaCallOperatorUsed(*this, Lambda);
8925
8926  Conv->setUsed();
8927
8928  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8929  DiagnosticErrorTrap Trap(Diags);
8930
8931  // Return the address of the __invoke function.
8932  DeclarationName InvokeName = &Context.Idents.get("__invoke");
8933  CXXMethodDecl *Invoke
8934    = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
8935  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
8936                                       VK_LValue, Conv->getLocation()).take();
8937  assert(FunctionRef && "Can't refer to __invoke function?");
8938  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
8939  Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
8940                                           Conv->getLocation(),
8941                                           Conv->getLocation()));
8942
8943  // Fill in the __invoke function with a dummy implementation. IR generation
8944  // will fill in the actual details.
8945  Invoke->setUsed();
8946  Invoke->setReferenced();
8947  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
8948
8949  if (ASTMutationListener *L = getASTMutationListener()) {
8950    L->CompletedImplicitDefinition(Conv);
8951    L->CompletedImplicitDefinition(Invoke);
8952  }
8953}
8954
8955void Sema::DefineImplicitLambdaToBlockPointerConversion(
8956       SourceLocation CurrentLocation,
8957       CXXConversionDecl *Conv)
8958{
8959  Conv->setUsed();
8960
8961  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8962  DiagnosticErrorTrap Trap(Diags);
8963
8964  // Copy-initialize the lambda object as needed to capture it.
8965  Expr *This = ActOnCXXThis(CurrentLocation).take();
8966  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
8967
8968  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
8969                                                        Conv->getLocation(),
8970                                                        Conv, DerefThis);
8971
8972  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
8973  // behavior.  Note that only the general conversion function does this
8974  // (since it's unusable otherwise); in the case where we inline the
8975  // block literal, it has block literal lifetime semantics.
8976  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
8977    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
8978                                          CK_CopyAndAutoreleaseBlockObject,
8979                                          BuildBlock.get(), 0, VK_RValue);
8980
8981  if (BuildBlock.isInvalid()) {
8982    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8983    Conv->setInvalidDecl();
8984    return;
8985  }
8986
8987  // Create the return statement that returns the block from the conversion
8988  // function.
8989  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
8990  if (Return.isInvalid()) {
8991    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8992    Conv->setInvalidDecl();
8993    return;
8994  }
8995
8996  // Set the body of the conversion function.
8997  Stmt *ReturnS = Return.take();
8998  Conv->setBody(new (Context) CompoundStmt(Context, &ReturnS, 1,
8999                                           Conv->getLocation(),
9000                                           Conv->getLocation()));
9001
9002  // We're done; notify the mutation listener, if any.
9003  if (ASTMutationListener *L = getASTMutationListener()) {
9004    L->CompletedImplicitDefinition(Conv);
9005  }
9006}
9007
9008/// \brief Determine whether the given list arguments contains exactly one
9009/// "real" (non-default) argument.
9010static bool hasOneRealArgument(MultiExprArg Args) {
9011  switch (Args.size()) {
9012  case 0:
9013    return false;
9014
9015  default:
9016    if (!Args.get()[1]->isDefaultArgument())
9017      return false;
9018
9019    // fall through
9020  case 1:
9021    return !Args.get()[0]->isDefaultArgument();
9022  }
9023
9024  return false;
9025}
9026
9027ExprResult
9028Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9029                            CXXConstructorDecl *Constructor,
9030                            MultiExprArg ExprArgs,
9031                            bool HadMultipleCandidates,
9032                            bool RequiresZeroInit,
9033                            unsigned ConstructKind,
9034                            SourceRange ParenRange) {
9035  bool Elidable = false;
9036
9037  // C++0x [class.copy]p34:
9038  //   When certain criteria are met, an implementation is allowed to
9039  //   omit the copy/move construction of a class object, even if the
9040  //   copy/move constructor and/or destructor for the object have
9041  //   side effects. [...]
9042  //     - when a temporary class object that has not been bound to a
9043  //       reference (12.2) would be copied/moved to a class object
9044  //       with the same cv-unqualified type, the copy/move operation
9045  //       can be omitted by constructing the temporary object
9046  //       directly into the target of the omitted copy/move
9047  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9048      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
9049    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
9050    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9051  }
9052
9053  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9054                               Elidable, move(ExprArgs), HadMultipleCandidates,
9055                               RequiresZeroInit, ConstructKind, ParenRange);
9056}
9057
9058/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9059/// including handling of its default argument expressions.
9060ExprResult
9061Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9062                            CXXConstructorDecl *Constructor, bool Elidable,
9063                            MultiExprArg ExprArgs,
9064                            bool HadMultipleCandidates,
9065                            bool RequiresZeroInit,
9066                            unsigned ConstructKind,
9067                            SourceRange ParenRange) {
9068  unsigned NumExprs = ExprArgs.size();
9069  Expr **Exprs = (Expr **)ExprArgs.release();
9070
9071  MarkFunctionReferenced(ConstructLoc, Constructor);
9072  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9073                                        Constructor, Elidable, Exprs, NumExprs,
9074                                        HadMultipleCandidates, /*FIXME*/false,
9075                                        RequiresZeroInit,
9076              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9077                                        ParenRange));
9078}
9079
9080bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9081                                        CXXConstructorDecl *Constructor,
9082                                        MultiExprArg Exprs,
9083                                        bool HadMultipleCandidates) {
9084  // FIXME: Provide the correct paren SourceRange when available.
9085  ExprResult TempResult =
9086    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9087                          move(Exprs), HadMultipleCandidates, false,
9088                          CXXConstructExpr::CK_Complete, SourceRange());
9089  if (TempResult.isInvalid())
9090    return true;
9091
9092  Expr *Temp = TempResult.takeAs<Expr>();
9093  CheckImplicitConversions(Temp, VD->getLocation());
9094  MarkFunctionReferenced(VD->getLocation(), Constructor);
9095  Temp = MaybeCreateExprWithCleanups(Temp);
9096  VD->setInit(Temp);
9097
9098  return false;
9099}
9100
9101void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9102  if (VD->isInvalidDecl()) return;
9103
9104  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9105  if (ClassDecl->isInvalidDecl()) return;
9106  if (ClassDecl->hasIrrelevantDestructor()) return;
9107  if (ClassDecl->isDependentContext()) return;
9108
9109  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9110  MarkFunctionReferenced(VD->getLocation(), Destructor);
9111  CheckDestructorAccess(VD->getLocation(), Destructor,
9112                        PDiag(diag::err_access_dtor_var)
9113                        << VD->getDeclName()
9114                        << VD->getType());
9115  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9116
9117  if (!VD->hasGlobalStorage()) return;
9118
9119  // Emit warning for non-trivial dtor in global scope (a real global,
9120  // class-static, function-static).
9121  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9122
9123  // TODO: this should be re-enabled for static locals by !CXAAtExit
9124  if (!VD->isStaticLocal())
9125    Diag(VD->getLocation(), diag::warn_global_destructor);
9126}
9127
9128/// \brief Given a constructor and the set of arguments provided for the
9129/// constructor, convert the arguments and add any required default arguments
9130/// to form a proper call to this constructor.
9131///
9132/// \returns true if an error occurred, false otherwise.
9133bool
9134Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9135                              MultiExprArg ArgsPtr,
9136                              SourceLocation Loc,
9137                              ASTOwningVector<Expr*> &ConvertedArgs,
9138                              bool AllowExplicit) {
9139  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9140  unsigned NumArgs = ArgsPtr.size();
9141  Expr **Args = (Expr **)ArgsPtr.get();
9142
9143  const FunctionProtoType *Proto
9144    = Constructor->getType()->getAs<FunctionProtoType>();
9145  assert(Proto && "Constructor without a prototype?");
9146  unsigned NumArgsInProto = Proto->getNumArgs();
9147
9148  // If too few arguments are available, we'll fill in the rest with defaults.
9149  if (NumArgs < NumArgsInProto)
9150    ConvertedArgs.reserve(NumArgsInProto);
9151  else
9152    ConvertedArgs.reserve(NumArgs);
9153
9154  VariadicCallType CallType =
9155    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9156  SmallVector<Expr *, 8> AllArgs;
9157  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9158                                        Proto, 0, Args, NumArgs, AllArgs,
9159                                        CallType, AllowExplicit);
9160  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9161
9162  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9163
9164  CheckConstructorCall(Constructor, AllArgs.data(), AllArgs.size(),
9165                       Proto, Loc);
9166
9167  return Invalid;
9168}
9169
9170static inline bool
9171CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9172                                       const FunctionDecl *FnDecl) {
9173  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9174  if (isa<NamespaceDecl>(DC)) {
9175    return SemaRef.Diag(FnDecl->getLocation(),
9176                        diag::err_operator_new_delete_declared_in_namespace)
9177      << FnDecl->getDeclName();
9178  }
9179
9180  if (isa<TranslationUnitDecl>(DC) &&
9181      FnDecl->getStorageClass() == SC_Static) {
9182    return SemaRef.Diag(FnDecl->getLocation(),
9183                        diag::err_operator_new_delete_declared_static)
9184      << FnDecl->getDeclName();
9185  }
9186
9187  return false;
9188}
9189
9190static inline bool
9191CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9192                            CanQualType ExpectedResultType,
9193                            CanQualType ExpectedFirstParamType,
9194                            unsigned DependentParamTypeDiag,
9195                            unsigned InvalidParamTypeDiag) {
9196  QualType ResultType =
9197    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9198
9199  // Check that the result type is not dependent.
9200  if (ResultType->isDependentType())
9201    return SemaRef.Diag(FnDecl->getLocation(),
9202                        diag::err_operator_new_delete_dependent_result_type)
9203    << FnDecl->getDeclName() << ExpectedResultType;
9204
9205  // Check that the result type is what we expect.
9206  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9207    return SemaRef.Diag(FnDecl->getLocation(),
9208                        diag::err_operator_new_delete_invalid_result_type)
9209    << FnDecl->getDeclName() << ExpectedResultType;
9210
9211  // A function template must have at least 2 parameters.
9212  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9213    return SemaRef.Diag(FnDecl->getLocation(),
9214                      diag::err_operator_new_delete_template_too_few_parameters)
9215        << FnDecl->getDeclName();
9216
9217  // The function decl must have at least 1 parameter.
9218  if (FnDecl->getNumParams() == 0)
9219    return SemaRef.Diag(FnDecl->getLocation(),
9220                        diag::err_operator_new_delete_too_few_parameters)
9221      << FnDecl->getDeclName();
9222
9223  // Check the first parameter type is not dependent.
9224  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9225  if (FirstParamType->isDependentType())
9226    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9227      << FnDecl->getDeclName() << ExpectedFirstParamType;
9228
9229  // Check that the first parameter type is what we expect.
9230  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9231      ExpectedFirstParamType)
9232    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9233    << FnDecl->getDeclName() << ExpectedFirstParamType;
9234
9235  return false;
9236}
9237
9238static bool
9239CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9240  // C++ [basic.stc.dynamic.allocation]p1:
9241  //   A program is ill-formed if an allocation function is declared in a
9242  //   namespace scope other than global scope or declared static in global
9243  //   scope.
9244  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9245    return true;
9246
9247  CanQualType SizeTy =
9248    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9249
9250  // C++ [basic.stc.dynamic.allocation]p1:
9251  //  The return type shall be void*. The first parameter shall have type
9252  //  std::size_t.
9253  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9254                                  SizeTy,
9255                                  diag::err_operator_new_dependent_param_type,
9256                                  diag::err_operator_new_param_type))
9257    return true;
9258
9259  // C++ [basic.stc.dynamic.allocation]p1:
9260  //  The first parameter shall not have an associated default argument.
9261  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9262    return SemaRef.Diag(FnDecl->getLocation(),
9263                        diag::err_operator_new_default_arg)
9264      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9265
9266  return false;
9267}
9268
9269static bool
9270CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9271  // C++ [basic.stc.dynamic.deallocation]p1:
9272  //   A program is ill-formed if deallocation functions are declared in a
9273  //   namespace scope other than global scope or declared static in global
9274  //   scope.
9275  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9276    return true;
9277
9278  // C++ [basic.stc.dynamic.deallocation]p2:
9279  //   Each deallocation function shall return void and its first parameter
9280  //   shall be void*.
9281  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9282                                  SemaRef.Context.VoidPtrTy,
9283                                 diag::err_operator_delete_dependent_param_type,
9284                                 diag::err_operator_delete_param_type))
9285    return true;
9286
9287  return false;
9288}
9289
9290/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9291/// of this overloaded operator is well-formed. If so, returns false;
9292/// otherwise, emits appropriate diagnostics and returns true.
9293bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9294  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9295         "Expected an overloaded operator declaration");
9296
9297  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9298
9299  // C++ [over.oper]p5:
9300  //   The allocation and deallocation functions, operator new,
9301  //   operator new[], operator delete and operator delete[], are
9302  //   described completely in 3.7.3. The attributes and restrictions
9303  //   found in the rest of this subclause do not apply to them unless
9304  //   explicitly stated in 3.7.3.
9305  if (Op == OO_Delete || Op == OO_Array_Delete)
9306    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9307
9308  if (Op == OO_New || Op == OO_Array_New)
9309    return CheckOperatorNewDeclaration(*this, FnDecl);
9310
9311  // C++ [over.oper]p6:
9312  //   An operator function shall either be a non-static member
9313  //   function or be a non-member function and have at least one
9314  //   parameter whose type is a class, a reference to a class, an
9315  //   enumeration, or a reference to an enumeration.
9316  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9317    if (MethodDecl->isStatic())
9318      return Diag(FnDecl->getLocation(),
9319                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9320  } else {
9321    bool ClassOrEnumParam = false;
9322    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9323                                   ParamEnd = FnDecl->param_end();
9324         Param != ParamEnd; ++Param) {
9325      QualType ParamType = (*Param)->getType().getNonReferenceType();
9326      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9327          ParamType->isEnumeralType()) {
9328        ClassOrEnumParam = true;
9329        break;
9330      }
9331    }
9332
9333    if (!ClassOrEnumParam)
9334      return Diag(FnDecl->getLocation(),
9335                  diag::err_operator_overload_needs_class_or_enum)
9336        << FnDecl->getDeclName();
9337  }
9338
9339  // C++ [over.oper]p8:
9340  //   An operator function cannot have default arguments (8.3.6),
9341  //   except where explicitly stated below.
9342  //
9343  // Only the function-call operator allows default arguments
9344  // (C++ [over.call]p1).
9345  if (Op != OO_Call) {
9346    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9347         Param != FnDecl->param_end(); ++Param) {
9348      if ((*Param)->hasDefaultArg())
9349        return Diag((*Param)->getLocation(),
9350                    diag::err_operator_overload_default_arg)
9351          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9352    }
9353  }
9354
9355  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9356    { false, false, false }
9357#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9358    , { Unary, Binary, MemberOnly }
9359#include "clang/Basic/OperatorKinds.def"
9360  };
9361
9362  bool CanBeUnaryOperator = OperatorUses[Op][0];
9363  bool CanBeBinaryOperator = OperatorUses[Op][1];
9364  bool MustBeMemberOperator = OperatorUses[Op][2];
9365
9366  // C++ [over.oper]p8:
9367  //   [...] Operator functions cannot have more or fewer parameters
9368  //   than the number required for the corresponding operator, as
9369  //   described in the rest of this subclause.
9370  unsigned NumParams = FnDecl->getNumParams()
9371                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9372  if (Op != OO_Call &&
9373      ((NumParams == 1 && !CanBeUnaryOperator) ||
9374       (NumParams == 2 && !CanBeBinaryOperator) ||
9375       (NumParams < 1) || (NumParams > 2))) {
9376    // We have the wrong number of parameters.
9377    unsigned ErrorKind;
9378    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9379      ErrorKind = 2;  // 2 -> unary or binary.
9380    } else if (CanBeUnaryOperator) {
9381      ErrorKind = 0;  // 0 -> unary
9382    } else {
9383      assert(CanBeBinaryOperator &&
9384             "All non-call overloaded operators are unary or binary!");
9385      ErrorKind = 1;  // 1 -> binary
9386    }
9387
9388    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9389      << FnDecl->getDeclName() << NumParams << ErrorKind;
9390  }
9391
9392  // Overloaded operators other than operator() cannot be variadic.
9393  if (Op != OO_Call &&
9394      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9395    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9396      << FnDecl->getDeclName();
9397  }
9398
9399  // Some operators must be non-static member functions.
9400  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9401    return Diag(FnDecl->getLocation(),
9402                diag::err_operator_overload_must_be_member)
9403      << FnDecl->getDeclName();
9404  }
9405
9406  // C++ [over.inc]p1:
9407  //   The user-defined function called operator++ implements the
9408  //   prefix and postfix ++ operator. If this function is a member
9409  //   function with no parameters, or a non-member function with one
9410  //   parameter of class or enumeration type, it defines the prefix
9411  //   increment operator ++ for objects of that type. If the function
9412  //   is a member function with one parameter (which shall be of type
9413  //   int) or a non-member function with two parameters (the second
9414  //   of which shall be of type int), it defines the postfix
9415  //   increment operator ++ for objects of that type.
9416  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9417    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9418    bool ParamIsInt = false;
9419    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9420      ParamIsInt = BT->getKind() == BuiltinType::Int;
9421
9422    if (!ParamIsInt)
9423      return Diag(LastParam->getLocation(),
9424                  diag::err_operator_overload_post_incdec_must_be_int)
9425        << LastParam->getType() << (Op == OO_MinusMinus);
9426  }
9427
9428  return false;
9429}
9430
9431/// CheckLiteralOperatorDeclaration - Check whether the declaration
9432/// of this literal operator function is well-formed. If so, returns
9433/// false; otherwise, emits appropriate diagnostics and returns true.
9434bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9435  if (isa<CXXMethodDecl>(FnDecl)) {
9436    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9437      << FnDecl->getDeclName();
9438    return true;
9439  }
9440
9441  if (FnDecl->isExternC()) {
9442    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
9443    return true;
9444  }
9445
9446  bool Valid = false;
9447
9448  // This might be the definition of a literal operator template.
9449  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
9450  // This might be a specialization of a literal operator template.
9451  if (!TpDecl)
9452    TpDecl = FnDecl->getPrimaryTemplate();
9453
9454  // template <char...> type operator "" name() is the only valid template
9455  // signature, and the only valid signature with no parameters.
9456  if (TpDecl) {
9457    if (FnDecl->param_size() == 0) {
9458      // Must have only one template parameter
9459      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9460      if (Params->size() == 1) {
9461        NonTypeTemplateParmDecl *PmDecl =
9462          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9463
9464        // The template parameter must be a char parameter pack.
9465        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9466            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9467          Valid = true;
9468      }
9469    }
9470  } else if (FnDecl->param_size()) {
9471    // Check the first parameter
9472    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9473
9474    QualType T = (*Param)->getType().getUnqualifiedType();
9475
9476    // unsigned long long int, long double, and any character type are allowed
9477    // as the only parameters.
9478    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9479        Context.hasSameType(T, Context.LongDoubleTy) ||
9480        Context.hasSameType(T, Context.CharTy) ||
9481        Context.hasSameType(T, Context.WCharTy) ||
9482        Context.hasSameType(T, Context.Char16Ty) ||
9483        Context.hasSameType(T, Context.Char32Ty)) {
9484      if (++Param == FnDecl->param_end())
9485        Valid = true;
9486      goto FinishedParams;
9487    }
9488
9489    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9490    const PointerType *PT = T->getAs<PointerType>();
9491    if (!PT)
9492      goto FinishedParams;
9493    T = PT->getPointeeType();
9494    if (!T.isConstQualified() || T.isVolatileQualified())
9495      goto FinishedParams;
9496    T = T.getUnqualifiedType();
9497
9498    // Move on to the second parameter;
9499    ++Param;
9500
9501    // If there is no second parameter, the first must be a const char *
9502    if (Param == FnDecl->param_end()) {
9503      if (Context.hasSameType(T, Context.CharTy))
9504        Valid = true;
9505      goto FinishedParams;
9506    }
9507
9508    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9509    // are allowed as the first parameter to a two-parameter function
9510    if (!(Context.hasSameType(T, Context.CharTy) ||
9511          Context.hasSameType(T, Context.WCharTy) ||
9512          Context.hasSameType(T, Context.Char16Ty) ||
9513          Context.hasSameType(T, Context.Char32Ty)))
9514      goto FinishedParams;
9515
9516    // The second and final parameter must be an std::size_t
9517    T = (*Param)->getType().getUnqualifiedType();
9518    if (Context.hasSameType(T, Context.getSizeType()) &&
9519        ++Param == FnDecl->param_end())
9520      Valid = true;
9521  }
9522
9523  // FIXME: This diagnostic is absolutely terrible.
9524FinishedParams:
9525  if (!Valid) {
9526    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9527      << FnDecl->getDeclName();
9528    return true;
9529  }
9530
9531  // A parameter-declaration-clause containing a default argument is not
9532  // equivalent to any of the permitted forms.
9533  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9534                                    ParamEnd = FnDecl->param_end();
9535       Param != ParamEnd; ++Param) {
9536    if ((*Param)->hasDefaultArg()) {
9537      Diag((*Param)->getDefaultArgRange().getBegin(),
9538           diag::err_literal_operator_default_argument)
9539        << (*Param)->getDefaultArgRange();
9540      break;
9541    }
9542  }
9543
9544  StringRef LiteralName
9545    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9546  if (LiteralName[0] != '_') {
9547    // C++11 [usrlit.suffix]p1:
9548    //   Literal suffix identifiers that do not start with an underscore
9549    //   are reserved for future standardization.
9550    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9551  }
9552
9553  return false;
9554}
9555
9556/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9557/// linkage specification, including the language and (if present)
9558/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9559/// the location of the language string literal, which is provided
9560/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9561/// the '{' brace. Otherwise, this linkage specification does not
9562/// have any braces.
9563Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9564                                           SourceLocation LangLoc,
9565                                           StringRef Lang,
9566                                           SourceLocation LBraceLoc) {
9567  LinkageSpecDecl::LanguageIDs Language;
9568  if (Lang == "\"C\"")
9569    Language = LinkageSpecDecl::lang_c;
9570  else if (Lang == "\"C++\"")
9571    Language = LinkageSpecDecl::lang_cxx;
9572  else {
9573    Diag(LangLoc, diag::err_bad_language);
9574    return 0;
9575  }
9576
9577  // FIXME: Add all the various semantics of linkage specifications
9578
9579  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9580                                               ExternLoc, LangLoc, Language);
9581  CurContext->addDecl(D);
9582  PushDeclContext(S, D);
9583  return D;
9584}
9585
9586/// ActOnFinishLinkageSpecification - Complete the definition of
9587/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9588/// valid, it's the position of the closing '}' brace in a linkage
9589/// specification that uses braces.
9590Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9591                                            Decl *LinkageSpec,
9592                                            SourceLocation RBraceLoc) {
9593  if (LinkageSpec) {
9594    if (RBraceLoc.isValid()) {
9595      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9596      LSDecl->setRBraceLoc(RBraceLoc);
9597    }
9598    PopDeclContext();
9599  }
9600  return LinkageSpec;
9601}
9602
9603/// \brief Perform semantic analysis for the variable declaration that
9604/// occurs within a C++ catch clause, returning the newly-created
9605/// variable.
9606VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9607                                         TypeSourceInfo *TInfo,
9608                                         SourceLocation StartLoc,
9609                                         SourceLocation Loc,
9610                                         IdentifierInfo *Name) {
9611  bool Invalid = false;
9612  QualType ExDeclType = TInfo->getType();
9613
9614  // Arrays and functions decay.
9615  if (ExDeclType->isArrayType())
9616    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9617  else if (ExDeclType->isFunctionType())
9618    ExDeclType = Context.getPointerType(ExDeclType);
9619
9620  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9621  // The exception-declaration shall not denote a pointer or reference to an
9622  // incomplete type, other than [cv] void*.
9623  // N2844 forbids rvalue references.
9624  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9625    Diag(Loc, diag::err_catch_rvalue_ref);
9626    Invalid = true;
9627  }
9628
9629  QualType BaseType = ExDeclType;
9630  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9631  unsigned DK = diag::err_catch_incomplete;
9632  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9633    BaseType = Ptr->getPointeeType();
9634    Mode = 1;
9635    DK = diag::err_catch_incomplete_ptr;
9636  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9637    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9638    BaseType = Ref->getPointeeType();
9639    Mode = 2;
9640    DK = diag::err_catch_incomplete_ref;
9641  }
9642  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9643      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9644    Invalid = true;
9645
9646  if (!Invalid && !ExDeclType->isDependentType() &&
9647      RequireNonAbstractType(Loc, ExDeclType,
9648                             diag::err_abstract_type_in_decl,
9649                             AbstractVariableType))
9650    Invalid = true;
9651
9652  // Only the non-fragile NeXT runtime currently supports C++ catches
9653  // of ObjC types, and no runtime supports catching ObjC types by value.
9654  if (!Invalid && getLangOpts().ObjC1) {
9655    QualType T = ExDeclType;
9656    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9657      T = RT->getPointeeType();
9658
9659    if (T->isObjCObjectType()) {
9660      Diag(Loc, diag::err_objc_object_catch);
9661      Invalid = true;
9662    } else if (T->isObjCObjectPointerType()) {
9663      // FIXME: should this be a test for macosx-fragile specifically?
9664      if (getLangOpts().ObjCRuntime.isFragile())
9665        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9666    }
9667  }
9668
9669  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9670                                    ExDeclType, TInfo, SC_None, SC_None);
9671  ExDecl->setExceptionVariable(true);
9672
9673  // In ARC, infer 'retaining' for variables of retainable type.
9674  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9675    Invalid = true;
9676
9677  if (!Invalid && !ExDeclType->isDependentType()) {
9678    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9679      // C++ [except.handle]p16:
9680      //   The object declared in an exception-declaration or, if the
9681      //   exception-declaration does not specify a name, a temporary (12.2) is
9682      //   copy-initialized (8.5) from the exception object. [...]
9683      //   The object is destroyed when the handler exits, after the destruction
9684      //   of any automatic objects initialized within the handler.
9685      //
9686      // We just pretend to initialize the object with itself, then make sure
9687      // it can be destroyed later.
9688      QualType initType = ExDeclType;
9689
9690      InitializedEntity entity =
9691        InitializedEntity::InitializeVariable(ExDecl);
9692      InitializationKind initKind =
9693        InitializationKind::CreateCopy(Loc, SourceLocation());
9694
9695      Expr *opaqueValue =
9696        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9697      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9698      ExprResult result = sequence.Perform(*this, entity, initKind,
9699                                           MultiExprArg(&opaqueValue, 1));
9700      if (result.isInvalid())
9701        Invalid = true;
9702      else {
9703        // If the constructor used was non-trivial, set this as the
9704        // "initializer".
9705        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9706        if (!construct->getConstructor()->isTrivial()) {
9707          Expr *init = MaybeCreateExprWithCleanups(construct);
9708          ExDecl->setInit(init);
9709        }
9710
9711        // And make sure it's destructable.
9712        FinalizeVarWithDestructor(ExDecl, recordType);
9713      }
9714    }
9715  }
9716
9717  if (Invalid)
9718    ExDecl->setInvalidDecl();
9719
9720  return ExDecl;
9721}
9722
9723/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9724/// handler.
9725Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9726  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9727  bool Invalid = D.isInvalidType();
9728
9729  // Check for unexpanded parameter packs.
9730  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9731                                               UPPC_ExceptionType)) {
9732    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9733                                             D.getIdentifierLoc());
9734    Invalid = true;
9735  }
9736
9737  IdentifierInfo *II = D.getIdentifier();
9738  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9739                                             LookupOrdinaryName,
9740                                             ForRedeclaration)) {
9741    // The scope should be freshly made just for us. There is just no way
9742    // it contains any previous declaration.
9743    assert(!S->isDeclScope(PrevDecl));
9744    if (PrevDecl->isTemplateParameter()) {
9745      // Maybe we will complain about the shadowed template parameter.
9746      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9747      PrevDecl = 0;
9748    }
9749  }
9750
9751  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9752    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9753      << D.getCXXScopeSpec().getRange();
9754    Invalid = true;
9755  }
9756
9757  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9758                                              D.getLocStart(),
9759                                              D.getIdentifierLoc(),
9760                                              D.getIdentifier());
9761  if (Invalid)
9762    ExDecl->setInvalidDecl();
9763
9764  // Add the exception declaration into this scope.
9765  if (II)
9766    PushOnScopeChains(ExDecl, S);
9767  else
9768    CurContext->addDecl(ExDecl);
9769
9770  ProcessDeclAttributes(S, ExDecl, D);
9771  return ExDecl;
9772}
9773
9774Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9775                                         Expr *AssertExpr,
9776                                         Expr *AssertMessageExpr,
9777                                         SourceLocation RParenLoc) {
9778  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
9779
9780  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9781    return 0;
9782
9783  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
9784                                      AssertMessage, RParenLoc, false);
9785}
9786
9787Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9788                                         Expr *AssertExpr,
9789                                         StringLiteral *AssertMessage,
9790                                         SourceLocation RParenLoc,
9791                                         bool Failed) {
9792  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
9793      !Failed) {
9794    // In a static_assert-declaration, the constant-expression shall be a
9795    // constant expression that can be contextually converted to bool.
9796    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9797    if (Converted.isInvalid())
9798      Failed = true;
9799
9800    llvm::APSInt Cond;
9801    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
9802          diag::err_static_assert_expression_is_not_constant,
9803          /*AllowFold=*/false).isInvalid())
9804      Failed = true;
9805
9806    if (!Failed && !Cond) {
9807      llvm::SmallString<256> MsgBuffer;
9808      llvm::raw_svector_ostream Msg(MsgBuffer);
9809      AssertMessage->printPretty(Msg, Context, 0, getPrintingPolicy());
9810      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9811        << Msg.str() << AssertExpr->getSourceRange();
9812      Failed = true;
9813    }
9814  }
9815
9816  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9817                                        AssertExpr, AssertMessage, RParenLoc,
9818                                        Failed);
9819
9820  CurContext->addDecl(Decl);
9821  return Decl;
9822}
9823
9824/// \brief Perform semantic analysis of the given friend type declaration.
9825///
9826/// \returns A friend declaration that.
9827FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9828                                      SourceLocation FriendLoc,
9829                                      TypeSourceInfo *TSInfo) {
9830  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9831
9832  QualType T = TSInfo->getType();
9833  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9834
9835  // C++03 [class.friend]p2:
9836  //   An elaborated-type-specifier shall be used in a friend declaration
9837  //   for a class.*
9838  //
9839  //   * The class-key of the elaborated-type-specifier is required.
9840  if (!ActiveTemplateInstantiations.empty()) {
9841    // Do not complain about the form of friend template types during
9842    // template instantiation; we will already have complained when the
9843    // template was declared.
9844  } else if (!T->isElaboratedTypeSpecifier()) {
9845    // If we evaluated the type to a record type, suggest putting
9846    // a tag in front.
9847    if (const RecordType *RT = T->getAs<RecordType>()) {
9848      RecordDecl *RD = RT->getDecl();
9849
9850      std::string InsertionText = std::string(" ") + RD->getKindName();
9851
9852      Diag(TypeRange.getBegin(),
9853           getLangOpts().CPlusPlus0x ?
9854             diag::warn_cxx98_compat_unelaborated_friend_type :
9855             diag::ext_unelaborated_friend_type)
9856        << (unsigned) RD->getTagKind()
9857        << T
9858        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9859                                      InsertionText);
9860    } else {
9861      Diag(FriendLoc,
9862           getLangOpts().CPlusPlus0x ?
9863             diag::warn_cxx98_compat_nonclass_type_friend :
9864             diag::ext_nonclass_type_friend)
9865        << T
9866        << SourceRange(FriendLoc, TypeRange.getEnd());
9867    }
9868  } else if (T->getAs<EnumType>()) {
9869    Diag(FriendLoc,
9870         getLangOpts().CPlusPlus0x ?
9871           diag::warn_cxx98_compat_enum_friend :
9872           diag::ext_enum_friend)
9873      << T
9874      << SourceRange(FriendLoc, TypeRange.getEnd());
9875  }
9876
9877  // C++0x [class.friend]p3:
9878  //   If the type specifier in a friend declaration designates a (possibly
9879  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9880  //   the friend declaration is ignored.
9881
9882  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9883  // in [class.friend]p3 that we do not implement.
9884
9885  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9886}
9887
9888/// Handle a friend tag declaration where the scope specifier was
9889/// templated.
9890Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9891                                    unsigned TagSpec, SourceLocation TagLoc,
9892                                    CXXScopeSpec &SS,
9893                                    IdentifierInfo *Name, SourceLocation NameLoc,
9894                                    AttributeList *Attr,
9895                                    MultiTemplateParamsArg TempParamLists) {
9896  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9897
9898  bool isExplicitSpecialization = false;
9899  bool Invalid = false;
9900
9901  if (TemplateParameterList *TemplateParams
9902        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9903                                                  TempParamLists.get(),
9904                                                  TempParamLists.size(),
9905                                                  /*friend*/ true,
9906                                                  isExplicitSpecialization,
9907                                                  Invalid)) {
9908    if (TemplateParams->size() > 0) {
9909      // This is a declaration of a class template.
9910      if (Invalid)
9911        return 0;
9912
9913      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9914                                SS, Name, NameLoc, Attr,
9915                                TemplateParams, AS_public,
9916                                /*ModulePrivateLoc=*/SourceLocation(),
9917                                TempParamLists.size() - 1,
9918                   (TemplateParameterList**) TempParamLists.release()).take();
9919    } else {
9920      // The "template<>" header is extraneous.
9921      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9922        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9923      isExplicitSpecialization = true;
9924    }
9925  }
9926
9927  if (Invalid) return 0;
9928
9929  bool isAllExplicitSpecializations = true;
9930  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9931    if (TempParamLists.get()[I]->size()) {
9932      isAllExplicitSpecializations = false;
9933      break;
9934    }
9935  }
9936
9937  // FIXME: don't ignore attributes.
9938
9939  // If it's explicit specializations all the way down, just forget
9940  // about the template header and build an appropriate non-templated
9941  // friend.  TODO: for source fidelity, remember the headers.
9942  if (isAllExplicitSpecializations) {
9943    if (SS.isEmpty()) {
9944      bool Owned = false;
9945      bool IsDependent = false;
9946      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9947                      Attr, AS_public,
9948                      /*ModulePrivateLoc=*/SourceLocation(),
9949                      MultiTemplateParamsArg(), Owned, IsDependent,
9950                      /*ScopedEnumKWLoc=*/SourceLocation(),
9951                      /*ScopedEnumUsesClassTag=*/false,
9952                      /*UnderlyingType=*/TypeResult());
9953    }
9954
9955    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9956    ElaboratedTypeKeyword Keyword
9957      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9958    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9959                                   *Name, NameLoc);
9960    if (T.isNull())
9961      return 0;
9962
9963    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9964    if (isa<DependentNameType>(T)) {
9965      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9966      TL.setElaboratedKeywordLoc(TagLoc);
9967      TL.setQualifierLoc(QualifierLoc);
9968      TL.setNameLoc(NameLoc);
9969    } else {
9970      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9971      TL.setElaboratedKeywordLoc(TagLoc);
9972      TL.setQualifierLoc(QualifierLoc);
9973      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9974    }
9975
9976    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9977                                            TSI, FriendLoc);
9978    Friend->setAccess(AS_public);
9979    CurContext->addDecl(Friend);
9980    return Friend;
9981  }
9982
9983  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9984
9985
9986
9987  // Handle the case of a templated-scope friend class.  e.g.
9988  //   template <class T> class A<T>::B;
9989  // FIXME: we don't support these right now.
9990  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9991  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9992  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9993  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9994  TL.setElaboratedKeywordLoc(TagLoc);
9995  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9996  TL.setNameLoc(NameLoc);
9997
9998  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9999                                          TSI, FriendLoc);
10000  Friend->setAccess(AS_public);
10001  Friend->setUnsupportedFriend(true);
10002  CurContext->addDecl(Friend);
10003  return Friend;
10004}
10005
10006
10007/// Handle a friend type declaration.  This works in tandem with
10008/// ActOnTag.
10009///
10010/// Notes on friend class templates:
10011///
10012/// We generally treat friend class declarations as if they were
10013/// declaring a class.  So, for example, the elaborated type specifier
10014/// in a friend declaration is required to obey the restrictions of a
10015/// class-head (i.e. no typedefs in the scope chain), template
10016/// parameters are required to match up with simple template-ids, &c.
10017/// However, unlike when declaring a template specialization, it's
10018/// okay to refer to a template specialization without an empty
10019/// template parameter declaration, e.g.
10020///   friend class A<T>::B<unsigned>;
10021/// We permit this as a special case; if there are any template
10022/// parameters present at all, require proper matching, i.e.
10023///   template <> template \<class T> friend class A<int>::B;
10024Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10025                                MultiTemplateParamsArg TempParams) {
10026  SourceLocation Loc = DS.getLocStart();
10027
10028  assert(DS.isFriendSpecified());
10029  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10030
10031  // Try to convert the decl specifier to a type.  This works for
10032  // friend templates because ActOnTag never produces a ClassTemplateDecl
10033  // for a TUK_Friend.
10034  Declarator TheDeclarator(DS, Declarator::MemberContext);
10035  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10036  QualType T = TSI->getType();
10037  if (TheDeclarator.isInvalidType())
10038    return 0;
10039
10040  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10041    return 0;
10042
10043  // This is definitely an error in C++98.  It's probably meant to
10044  // be forbidden in C++0x, too, but the specification is just
10045  // poorly written.
10046  //
10047  // The problem is with declarations like the following:
10048  //   template <T> friend A<T>::foo;
10049  // where deciding whether a class C is a friend or not now hinges
10050  // on whether there exists an instantiation of A that causes
10051  // 'foo' to equal C.  There are restrictions on class-heads
10052  // (which we declare (by fiat) elaborated friend declarations to
10053  // be) that makes this tractable.
10054  //
10055  // FIXME: handle "template <> friend class A<T>;", which
10056  // is possibly well-formed?  Who even knows?
10057  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10058    Diag(Loc, diag::err_tagless_friend_type_template)
10059      << DS.getSourceRange();
10060    return 0;
10061  }
10062
10063  // C++98 [class.friend]p1: A friend of a class is a function
10064  //   or class that is not a member of the class . . .
10065  // This is fixed in DR77, which just barely didn't make the C++03
10066  // deadline.  It's also a very silly restriction that seriously
10067  // affects inner classes and which nobody else seems to implement;
10068  // thus we never diagnose it, not even in -pedantic.
10069  //
10070  // But note that we could warn about it: it's always useless to
10071  // friend one of your own members (it's not, however, worthless to
10072  // friend a member of an arbitrary specialization of your template).
10073
10074  Decl *D;
10075  if (unsigned NumTempParamLists = TempParams.size())
10076    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10077                                   NumTempParamLists,
10078                                   TempParams.release(),
10079                                   TSI,
10080                                   DS.getFriendSpecLoc());
10081  else
10082    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10083
10084  if (!D)
10085    return 0;
10086
10087  D->setAccess(AS_public);
10088  CurContext->addDecl(D);
10089
10090  return D;
10091}
10092
10093Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10094                                    MultiTemplateParamsArg TemplateParams) {
10095  const DeclSpec &DS = D.getDeclSpec();
10096
10097  assert(DS.isFriendSpecified());
10098  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10099
10100  SourceLocation Loc = D.getIdentifierLoc();
10101  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10102
10103  // C++ [class.friend]p1
10104  //   A friend of a class is a function or class....
10105  // Note that this sees through typedefs, which is intended.
10106  // It *doesn't* see through dependent types, which is correct
10107  // according to [temp.arg.type]p3:
10108  //   If a declaration acquires a function type through a
10109  //   type dependent on a template-parameter and this causes
10110  //   a declaration that does not use the syntactic form of a
10111  //   function declarator to have a function type, the program
10112  //   is ill-formed.
10113  if (!TInfo->getType()->isFunctionType()) {
10114    Diag(Loc, diag::err_unexpected_friend);
10115
10116    // It might be worthwhile to try to recover by creating an
10117    // appropriate declaration.
10118    return 0;
10119  }
10120
10121  // C++ [namespace.memdef]p3
10122  //  - If a friend declaration in a non-local class first declares a
10123  //    class or function, the friend class or function is a member
10124  //    of the innermost enclosing namespace.
10125  //  - The name of the friend is not found by simple name lookup
10126  //    until a matching declaration is provided in that namespace
10127  //    scope (either before or after the class declaration granting
10128  //    friendship).
10129  //  - If a friend function is called, its name may be found by the
10130  //    name lookup that considers functions from namespaces and
10131  //    classes associated with the types of the function arguments.
10132  //  - When looking for a prior declaration of a class or a function
10133  //    declared as a friend, scopes outside the innermost enclosing
10134  //    namespace scope are not considered.
10135
10136  CXXScopeSpec &SS = D.getCXXScopeSpec();
10137  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10138  DeclarationName Name = NameInfo.getName();
10139  assert(Name);
10140
10141  // Check for unexpanded parameter packs.
10142  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10143      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10144      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10145    return 0;
10146
10147  // The context we found the declaration in, or in which we should
10148  // create the declaration.
10149  DeclContext *DC;
10150  Scope *DCScope = S;
10151  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10152                        ForRedeclaration);
10153
10154  // FIXME: there are different rules in local classes
10155
10156  // There are four cases here.
10157  //   - There's no scope specifier, in which case we just go to the
10158  //     appropriate scope and look for a function or function template
10159  //     there as appropriate.
10160  // Recover from invalid scope qualifiers as if they just weren't there.
10161  if (SS.isInvalid() || !SS.isSet()) {
10162    // C++0x [namespace.memdef]p3:
10163    //   If the name in a friend declaration is neither qualified nor
10164    //   a template-id and the declaration is a function or an
10165    //   elaborated-type-specifier, the lookup to determine whether
10166    //   the entity has been previously declared shall not consider
10167    //   any scopes outside the innermost enclosing namespace.
10168    // C++0x [class.friend]p11:
10169    //   If a friend declaration appears in a local class and the name
10170    //   specified is an unqualified name, a prior declaration is
10171    //   looked up without considering scopes that are outside the
10172    //   innermost enclosing non-class scope. For a friend function
10173    //   declaration, if there is no prior declaration, the program is
10174    //   ill-formed.
10175    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10176    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10177
10178    // Find the appropriate context according to the above.
10179    DC = CurContext;
10180    while (true) {
10181      // Skip class contexts.  If someone can cite chapter and verse
10182      // for this behavior, that would be nice --- it's what GCC and
10183      // EDG do, and it seems like a reasonable intent, but the spec
10184      // really only says that checks for unqualified existing
10185      // declarations should stop at the nearest enclosing namespace,
10186      // not that they should only consider the nearest enclosing
10187      // namespace.
10188      while (DC->isRecord() || DC->isTransparentContext())
10189        DC = DC->getParent();
10190
10191      LookupQualifiedName(Previous, DC);
10192
10193      // TODO: decide what we think about using declarations.
10194      if (isLocal || !Previous.empty())
10195        break;
10196
10197      if (isTemplateId) {
10198        if (isa<TranslationUnitDecl>(DC)) break;
10199      } else {
10200        if (DC->isFileContext()) break;
10201      }
10202      DC = DC->getParent();
10203    }
10204
10205    // C++ [class.friend]p1: A friend of a class is a function or
10206    //   class that is not a member of the class . . .
10207    // C++11 changes this for both friend types and functions.
10208    // Most C++ 98 compilers do seem to give an error here, so
10209    // we do, too.
10210    if (!Previous.empty() && DC->Equals(CurContext))
10211      Diag(DS.getFriendSpecLoc(),
10212           getLangOpts().CPlusPlus0x ?
10213             diag::warn_cxx98_compat_friend_is_member :
10214             diag::err_friend_is_member);
10215
10216    DCScope = getScopeForDeclContext(S, DC);
10217
10218    // C++ [class.friend]p6:
10219    //   A function can be defined in a friend declaration of a class if and
10220    //   only if the class is a non-local class (9.8), the function name is
10221    //   unqualified, and the function has namespace scope.
10222    if (isLocal && D.isFunctionDefinition()) {
10223      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10224    }
10225
10226  //   - There's a non-dependent scope specifier, in which case we
10227  //     compute it and do a previous lookup there for a function
10228  //     or function template.
10229  } else if (!SS.getScopeRep()->isDependent()) {
10230    DC = computeDeclContext(SS);
10231    if (!DC) return 0;
10232
10233    if (RequireCompleteDeclContext(SS, DC)) return 0;
10234
10235    LookupQualifiedName(Previous, DC);
10236
10237    // Ignore things found implicitly in the wrong scope.
10238    // TODO: better diagnostics for this case.  Suggesting the right
10239    // qualified scope would be nice...
10240    LookupResult::Filter F = Previous.makeFilter();
10241    while (F.hasNext()) {
10242      NamedDecl *D = F.next();
10243      if (!DC->InEnclosingNamespaceSetOf(
10244              D->getDeclContext()->getRedeclContext()))
10245        F.erase();
10246    }
10247    F.done();
10248
10249    if (Previous.empty()) {
10250      D.setInvalidType();
10251      Diag(Loc, diag::err_qualified_friend_not_found)
10252          << Name << TInfo->getType();
10253      return 0;
10254    }
10255
10256    // C++ [class.friend]p1: A friend of a class is a function or
10257    //   class that is not a member of the class . . .
10258    if (DC->Equals(CurContext))
10259      Diag(DS.getFriendSpecLoc(),
10260           getLangOpts().CPlusPlus0x ?
10261             diag::warn_cxx98_compat_friend_is_member :
10262             diag::err_friend_is_member);
10263
10264    if (D.isFunctionDefinition()) {
10265      // C++ [class.friend]p6:
10266      //   A function can be defined in a friend declaration of a class if and
10267      //   only if the class is a non-local class (9.8), the function name is
10268      //   unqualified, and the function has namespace scope.
10269      SemaDiagnosticBuilder DB
10270        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10271
10272      DB << SS.getScopeRep();
10273      if (DC->isFileContext())
10274        DB << FixItHint::CreateRemoval(SS.getRange());
10275      SS.clear();
10276    }
10277
10278  //   - There's a scope specifier that does not match any template
10279  //     parameter lists, in which case we use some arbitrary context,
10280  //     create a method or method template, and wait for instantiation.
10281  //   - There's a scope specifier that does match some template
10282  //     parameter lists, which we don't handle right now.
10283  } else {
10284    if (D.isFunctionDefinition()) {
10285      // C++ [class.friend]p6:
10286      //   A function can be defined in a friend declaration of a class if and
10287      //   only if the class is a non-local class (9.8), the function name is
10288      //   unqualified, and the function has namespace scope.
10289      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10290        << SS.getScopeRep();
10291    }
10292
10293    DC = CurContext;
10294    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10295  }
10296
10297  if (!DC->isRecord()) {
10298    // This implies that it has to be an operator or function.
10299    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10300        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10301        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10302      Diag(Loc, diag::err_introducing_special_friend) <<
10303        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10304         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10305      return 0;
10306    }
10307  }
10308
10309  // FIXME: This is an egregious hack to cope with cases where the scope stack
10310  // does not contain the declaration context, i.e., in an out-of-line
10311  // definition of a class.
10312  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10313  if (!DCScope) {
10314    FakeDCScope.setEntity(DC);
10315    DCScope = &FakeDCScope;
10316  }
10317
10318  bool AddToScope = true;
10319  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10320                                          move(TemplateParams), AddToScope);
10321  if (!ND) return 0;
10322
10323  assert(ND->getDeclContext() == DC);
10324  assert(ND->getLexicalDeclContext() == CurContext);
10325
10326  // Add the function declaration to the appropriate lookup tables,
10327  // adjusting the redeclarations list as necessary.  We don't
10328  // want to do this yet if the friending class is dependent.
10329  //
10330  // Also update the scope-based lookup if the target context's
10331  // lookup context is in lexical scope.
10332  if (!CurContext->isDependentContext()) {
10333    DC = DC->getRedeclContext();
10334    DC->makeDeclVisibleInContext(ND);
10335    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10336      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10337  }
10338
10339  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10340                                       D.getIdentifierLoc(), ND,
10341                                       DS.getFriendSpecLoc());
10342  FrD->setAccess(AS_public);
10343  CurContext->addDecl(FrD);
10344
10345  if (ND->isInvalidDecl()) {
10346    FrD->setInvalidDecl();
10347  } else {
10348    if (DC->isRecord()) CheckFriendAccess(ND);
10349
10350    FunctionDecl *FD;
10351    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10352      FD = FTD->getTemplatedDecl();
10353    else
10354      FD = cast<FunctionDecl>(ND);
10355
10356    // Mark templated-scope function declarations as unsupported.
10357    if (FD->getNumTemplateParameterLists())
10358      FrD->setUnsupportedFriend(true);
10359  }
10360
10361  return ND;
10362}
10363
10364void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10365  AdjustDeclIfTemplate(Dcl);
10366
10367  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10368  if (!Fn) {
10369    Diag(DelLoc, diag::err_deleted_non_function);
10370    return;
10371  }
10372  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10373    // Don't consider the implicit declaration we generate for explicit
10374    // specializations. FIXME: Do not generate these implicit declarations.
10375    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
10376        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
10377      Diag(DelLoc, diag::err_deleted_decl_not_first);
10378      Diag(Prev->getLocation(), diag::note_previous_declaration);
10379    }
10380    // If the declaration wasn't the first, we delete the function anyway for
10381    // recovery.
10382  }
10383  Fn->setDeletedAsWritten();
10384
10385  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10386  if (!MD)
10387    return;
10388
10389  // A deleted special member function is trivial if the corresponding
10390  // implicitly-declared function would have been.
10391  switch (getSpecialMember(MD)) {
10392  case CXXInvalid:
10393    break;
10394  case CXXDefaultConstructor:
10395    MD->setTrivial(MD->getParent()->hasTrivialDefaultConstructor());
10396    break;
10397  case CXXCopyConstructor:
10398    MD->setTrivial(MD->getParent()->hasTrivialCopyConstructor());
10399    break;
10400  case CXXMoveConstructor:
10401    MD->setTrivial(MD->getParent()->hasTrivialMoveConstructor());
10402    break;
10403  case CXXCopyAssignment:
10404    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
10405    break;
10406  case CXXMoveAssignment:
10407    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
10408    break;
10409  case CXXDestructor:
10410    MD->setTrivial(MD->getParent()->hasTrivialDestructor());
10411    break;
10412  }
10413}
10414
10415void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10416  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10417
10418  if (MD) {
10419    if (MD->getParent()->isDependentType()) {
10420      MD->setDefaulted();
10421      MD->setExplicitlyDefaulted();
10422      return;
10423    }
10424
10425    CXXSpecialMember Member = getSpecialMember(MD);
10426    if (Member == CXXInvalid) {
10427      Diag(DefaultLoc, diag::err_default_special_members);
10428      return;
10429    }
10430
10431    MD->setDefaulted();
10432    MD->setExplicitlyDefaulted();
10433
10434    // If this definition appears within the record, do the checking when
10435    // the record is complete.
10436    const FunctionDecl *Primary = MD;
10437    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10438      // Find the uninstantiated declaration that actually had the '= default'
10439      // on it.
10440      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10441
10442    if (Primary == Primary->getCanonicalDecl())
10443      return;
10444
10445    CheckExplicitlyDefaultedSpecialMember(MD);
10446
10447    switch (Member) {
10448    case CXXDefaultConstructor: {
10449      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10450      if (!CD->isInvalidDecl())
10451        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10452      break;
10453    }
10454
10455    case CXXCopyConstructor: {
10456      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10457      if (!CD->isInvalidDecl())
10458        DefineImplicitCopyConstructor(DefaultLoc, CD);
10459      break;
10460    }
10461
10462    case CXXCopyAssignment: {
10463      if (!MD->isInvalidDecl())
10464        DefineImplicitCopyAssignment(DefaultLoc, MD);
10465      break;
10466    }
10467
10468    case CXXDestructor: {
10469      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10470      if (!DD->isInvalidDecl())
10471        DefineImplicitDestructor(DefaultLoc, DD);
10472      break;
10473    }
10474
10475    case CXXMoveConstructor: {
10476      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10477      if (!CD->isInvalidDecl())
10478        DefineImplicitMoveConstructor(DefaultLoc, CD);
10479      break;
10480    }
10481
10482    case CXXMoveAssignment: {
10483      if (!MD->isInvalidDecl())
10484        DefineImplicitMoveAssignment(DefaultLoc, MD);
10485      break;
10486    }
10487
10488    case CXXInvalid:
10489      llvm_unreachable("Invalid special member.");
10490    }
10491  } else {
10492    Diag(DefaultLoc, diag::err_default_special_members);
10493  }
10494}
10495
10496static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10497  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10498    Stmt *SubStmt = *CI;
10499    if (!SubStmt)
10500      continue;
10501    if (isa<ReturnStmt>(SubStmt))
10502      Self.Diag(SubStmt->getLocStart(),
10503           diag::err_return_in_constructor_handler);
10504    if (!isa<Expr>(SubStmt))
10505      SearchForReturnInStmt(Self, SubStmt);
10506  }
10507}
10508
10509void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10510  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10511    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10512    SearchForReturnInStmt(*this, Handler);
10513  }
10514}
10515
10516bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10517                                             const CXXMethodDecl *Old) {
10518  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10519  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10520
10521  if (Context.hasSameType(NewTy, OldTy) ||
10522      NewTy->isDependentType() || OldTy->isDependentType())
10523    return false;
10524
10525  // Check if the return types are covariant
10526  QualType NewClassTy, OldClassTy;
10527
10528  /// Both types must be pointers or references to classes.
10529  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10530    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10531      NewClassTy = NewPT->getPointeeType();
10532      OldClassTy = OldPT->getPointeeType();
10533    }
10534  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10535    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10536      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10537        NewClassTy = NewRT->getPointeeType();
10538        OldClassTy = OldRT->getPointeeType();
10539      }
10540    }
10541  }
10542
10543  // The return types aren't either both pointers or references to a class type.
10544  if (NewClassTy.isNull()) {
10545    Diag(New->getLocation(),
10546         diag::err_different_return_type_for_overriding_virtual_function)
10547      << New->getDeclName() << NewTy << OldTy;
10548    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10549
10550    return true;
10551  }
10552
10553  // C++ [class.virtual]p6:
10554  //   If the return type of D::f differs from the return type of B::f, the
10555  //   class type in the return type of D::f shall be complete at the point of
10556  //   declaration of D::f or shall be the class type D.
10557  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10558    if (!RT->isBeingDefined() &&
10559        RequireCompleteType(New->getLocation(), NewClassTy,
10560                            diag::err_covariant_return_incomplete,
10561                            New->getDeclName()))
10562    return true;
10563  }
10564
10565  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10566    // Check if the new class derives from the old class.
10567    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10568      Diag(New->getLocation(),
10569           diag::err_covariant_return_not_derived)
10570      << New->getDeclName() << NewTy << OldTy;
10571      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10572      return true;
10573    }
10574
10575    // Check if we the conversion from derived to base is valid.
10576    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10577                    diag::err_covariant_return_inaccessible_base,
10578                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10579                    // FIXME: Should this point to the return type?
10580                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10581      // FIXME: this note won't trigger for delayed access control
10582      // diagnostics, and it's impossible to get an undelayed error
10583      // here from access control during the original parse because
10584      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10585      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10586      return true;
10587    }
10588  }
10589
10590  // The qualifiers of the return types must be the same.
10591  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10592    Diag(New->getLocation(),
10593         diag::err_covariant_return_type_different_qualifications)
10594    << New->getDeclName() << NewTy << OldTy;
10595    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10596    return true;
10597  };
10598
10599
10600  // The new class type must have the same or less qualifiers as the old type.
10601  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10602    Diag(New->getLocation(),
10603         diag::err_covariant_return_type_class_type_more_qualified)
10604    << New->getDeclName() << NewTy << OldTy;
10605    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10606    return true;
10607  };
10608
10609  return false;
10610}
10611
10612/// \brief Mark the given method pure.
10613///
10614/// \param Method the method to be marked pure.
10615///
10616/// \param InitRange the source range that covers the "0" initializer.
10617bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10618  SourceLocation EndLoc = InitRange.getEnd();
10619  if (EndLoc.isValid())
10620    Method->setRangeEnd(EndLoc);
10621
10622  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10623    Method->setPure();
10624    return false;
10625  }
10626
10627  if (!Method->isInvalidDecl())
10628    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10629      << Method->getDeclName() << InitRange;
10630  return true;
10631}
10632
10633/// \brief Determine whether the given declaration is a static data member.
10634static bool isStaticDataMember(Decl *D) {
10635  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
10636  if (!Var)
10637    return false;
10638
10639  return Var->isStaticDataMember();
10640}
10641/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10642/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10643/// is a fresh scope pushed for just this purpose.
10644///
10645/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10646/// static data member of class X, names should be looked up in the scope of
10647/// class X.
10648void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10649  // If there is no declaration, there was an error parsing it.
10650  if (D == 0 || D->isInvalidDecl()) return;
10651
10652  // We should only get called for declarations with scope specifiers, like:
10653  //   int foo::bar;
10654  assert(D->isOutOfLine());
10655  EnterDeclaratorContext(S, D->getDeclContext());
10656
10657  // If we are parsing the initializer for a static data member, push a
10658  // new expression evaluation context that is associated with this static
10659  // data member.
10660  if (isStaticDataMember(D))
10661    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
10662}
10663
10664/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10665/// initializer for the out-of-line declaration 'D'.
10666void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10667  // If there is no declaration, there was an error parsing it.
10668  if (D == 0 || D->isInvalidDecl()) return;
10669
10670  if (isStaticDataMember(D))
10671    PopExpressionEvaluationContext();
10672
10673  assert(D->isOutOfLine());
10674  ExitDeclaratorContext(S);
10675}
10676
10677/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10678/// C++ if/switch/while/for statement.
10679/// e.g: "if (int x = f()) {...}"
10680DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10681  // C++ 6.4p2:
10682  // The declarator shall not specify a function or an array.
10683  // The type-specifier-seq shall not contain typedef and shall not declare a
10684  // new class or enumeration.
10685  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10686         "Parser allowed 'typedef' as storage class of condition decl.");
10687
10688  Decl *Dcl = ActOnDeclarator(S, D);
10689  if (!Dcl)
10690    return true;
10691
10692  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10693    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10694      << D.getSourceRange();
10695    return true;
10696  }
10697
10698  return Dcl;
10699}
10700
10701void Sema::LoadExternalVTableUses() {
10702  if (!ExternalSource)
10703    return;
10704
10705  SmallVector<ExternalVTableUse, 4> VTables;
10706  ExternalSource->ReadUsedVTables(VTables);
10707  SmallVector<VTableUse, 4> NewUses;
10708  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10709    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10710      = VTablesUsed.find(VTables[I].Record);
10711    // Even if a definition wasn't required before, it may be required now.
10712    if (Pos != VTablesUsed.end()) {
10713      if (!Pos->second && VTables[I].DefinitionRequired)
10714        Pos->second = true;
10715      continue;
10716    }
10717
10718    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10719    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10720  }
10721
10722  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10723}
10724
10725void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10726                          bool DefinitionRequired) {
10727  // Ignore any vtable uses in unevaluated operands or for classes that do
10728  // not have a vtable.
10729  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10730      CurContext->isDependentContext() ||
10731      ExprEvalContexts.back().Context == Unevaluated)
10732    return;
10733
10734  // Try to insert this class into the map.
10735  LoadExternalVTableUses();
10736  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10737  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10738    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10739  if (!Pos.second) {
10740    // If we already had an entry, check to see if we are promoting this vtable
10741    // to required a definition. If so, we need to reappend to the VTableUses
10742    // list, since we may have already processed the first entry.
10743    if (DefinitionRequired && !Pos.first->second) {
10744      Pos.first->second = true;
10745    } else {
10746      // Otherwise, we can early exit.
10747      return;
10748    }
10749  }
10750
10751  // Local classes need to have their virtual members marked
10752  // immediately. For all other classes, we mark their virtual members
10753  // at the end of the translation unit.
10754  if (Class->isLocalClass())
10755    MarkVirtualMembersReferenced(Loc, Class);
10756  else
10757    VTableUses.push_back(std::make_pair(Class, Loc));
10758}
10759
10760bool Sema::DefineUsedVTables() {
10761  LoadExternalVTableUses();
10762  if (VTableUses.empty())
10763    return false;
10764
10765  // Note: The VTableUses vector could grow as a result of marking
10766  // the members of a class as "used", so we check the size each
10767  // time through the loop and prefer indices (which are stable) to
10768  // iterators (which are not).
10769  bool DefinedAnything = false;
10770  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10771    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10772    if (!Class)
10773      continue;
10774
10775    SourceLocation Loc = VTableUses[I].second;
10776
10777    bool DefineVTable = true;
10778
10779    // If this class has a key function, but that key function is
10780    // defined in another translation unit, we don't need to emit the
10781    // vtable even though we're using it.
10782    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10783    if (KeyFunction && !KeyFunction->hasBody()) {
10784      switch (KeyFunction->getTemplateSpecializationKind()) {
10785      case TSK_Undeclared:
10786      case TSK_ExplicitSpecialization:
10787      case TSK_ExplicitInstantiationDeclaration:
10788        // The key function is in another translation unit.
10789        DefineVTable = false;
10790        break;
10791
10792      case TSK_ExplicitInstantiationDefinition:
10793      case TSK_ImplicitInstantiation:
10794        // We will be instantiating the key function.
10795        break;
10796      }
10797    } else if (!KeyFunction) {
10798      // If we have a class with no key function that is the subject
10799      // of an explicit instantiation declaration, suppress the
10800      // vtable; it will live with the explicit instantiation
10801      // definition.
10802      bool IsExplicitInstantiationDeclaration
10803        = Class->getTemplateSpecializationKind()
10804                                      == TSK_ExplicitInstantiationDeclaration;
10805      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10806                                 REnd = Class->redecls_end();
10807           R != REnd; ++R) {
10808        TemplateSpecializationKind TSK
10809          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10810        if (TSK == TSK_ExplicitInstantiationDeclaration)
10811          IsExplicitInstantiationDeclaration = true;
10812        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10813          IsExplicitInstantiationDeclaration = false;
10814          break;
10815        }
10816      }
10817
10818      if (IsExplicitInstantiationDeclaration)
10819        DefineVTable = false;
10820    }
10821
10822    // The exception specifications for all virtual members may be needed even
10823    // if we are not providing an authoritative form of the vtable in this TU.
10824    // We may choose to emit it available_externally anyway.
10825    if (!DefineVTable) {
10826      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
10827      continue;
10828    }
10829
10830    // Mark all of the virtual members of this class as referenced, so
10831    // that we can build a vtable. Then, tell the AST consumer that a
10832    // vtable for this class is required.
10833    DefinedAnything = true;
10834    MarkVirtualMembersReferenced(Loc, Class);
10835    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10836    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10837
10838    // Optionally warn if we're emitting a weak vtable.
10839    if (Class->getLinkage() == ExternalLinkage &&
10840        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10841      const FunctionDecl *KeyFunctionDef = 0;
10842      if (!KeyFunction ||
10843          (KeyFunction->hasBody(KeyFunctionDef) &&
10844           KeyFunctionDef->isInlined()))
10845        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10846             TSK_ExplicitInstantiationDefinition
10847             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10848          << Class;
10849    }
10850  }
10851  VTableUses.clear();
10852
10853  return DefinedAnything;
10854}
10855
10856void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
10857                                                 const CXXRecordDecl *RD) {
10858  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
10859                                      E = RD->method_end(); I != E; ++I)
10860    if ((*I)->isVirtual() && !(*I)->isPure())
10861      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
10862}
10863
10864void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10865                                        const CXXRecordDecl *RD) {
10866  // Mark all functions which will appear in RD's vtable as used.
10867  CXXFinalOverriderMap FinalOverriders;
10868  RD->getFinalOverriders(FinalOverriders);
10869  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
10870                                            E = FinalOverriders.end();
10871       I != E; ++I) {
10872    for (OverridingMethods::const_iterator OI = I->second.begin(),
10873                                           OE = I->second.end();
10874         OI != OE; ++OI) {
10875      assert(OI->second.size() > 0 && "no final overrider");
10876      CXXMethodDecl *Overrider = OI->second.front().Method;
10877
10878      // C++ [basic.def.odr]p2:
10879      //   [...] A virtual member function is used if it is not pure. [...]
10880      if (!Overrider->isPure())
10881        MarkFunctionReferenced(Loc, Overrider);
10882    }
10883  }
10884
10885  // Only classes that have virtual bases need a VTT.
10886  if (RD->getNumVBases() == 0)
10887    return;
10888
10889  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10890           e = RD->bases_end(); i != e; ++i) {
10891    const CXXRecordDecl *Base =
10892        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10893    if (Base->getNumVBases() == 0)
10894      continue;
10895    MarkVirtualMembersReferenced(Loc, Base);
10896  }
10897}
10898
10899/// SetIvarInitializers - This routine builds initialization ASTs for the
10900/// Objective-C implementation whose ivars need be initialized.
10901void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10902  if (!getLangOpts().CPlusPlus)
10903    return;
10904  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10905    SmallVector<ObjCIvarDecl*, 8> ivars;
10906    CollectIvarsToConstructOrDestruct(OID, ivars);
10907    if (ivars.empty())
10908      return;
10909    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10910    for (unsigned i = 0; i < ivars.size(); i++) {
10911      FieldDecl *Field = ivars[i];
10912      if (Field->isInvalidDecl())
10913        continue;
10914
10915      CXXCtorInitializer *Member;
10916      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10917      InitializationKind InitKind =
10918        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10919
10920      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10921      ExprResult MemberInit =
10922        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10923      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10924      // Note, MemberInit could actually come back empty if no initialization
10925      // is required (e.g., because it would call a trivial default constructor)
10926      if (!MemberInit.get() || MemberInit.isInvalid())
10927        continue;
10928
10929      Member =
10930        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10931                                         SourceLocation(),
10932                                         MemberInit.takeAs<Expr>(),
10933                                         SourceLocation());
10934      AllToInit.push_back(Member);
10935
10936      // Be sure that the destructor is accessible and is marked as referenced.
10937      if (const RecordType *RecordTy
10938                  = Context.getBaseElementType(Field->getType())
10939                                                        ->getAs<RecordType>()) {
10940                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10941        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10942          MarkFunctionReferenced(Field->getLocation(), Destructor);
10943          CheckDestructorAccess(Field->getLocation(), Destructor,
10944                            PDiag(diag::err_access_dtor_ivar)
10945                              << Context.getBaseElementType(Field->getType()));
10946        }
10947      }
10948    }
10949    ObjCImplementation->setIvarInitializers(Context,
10950                                            AllToInit.data(), AllToInit.size());
10951  }
10952}
10953
10954static
10955void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10956                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10957                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10958                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10959                           Sema &S) {
10960  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10961                                                   CE = Current.end();
10962  if (Ctor->isInvalidDecl())
10963    return;
10964
10965  const FunctionDecl *FNTarget = 0;
10966  CXXConstructorDecl *Target;
10967
10968  // We ignore the result here since if we don't have a body, Target will be
10969  // null below.
10970  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10971  Target
10972= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10973
10974  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10975                     // Avoid dereferencing a null pointer here.
10976                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10977
10978  if (!Current.insert(Canonical))
10979    return;
10980
10981  // We know that beyond here, we aren't chaining into a cycle.
10982  if (!Target || !Target->isDelegatingConstructor() ||
10983      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10984    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10985      Valid.insert(*CI);
10986    Current.clear();
10987  // We've hit a cycle.
10988  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10989             Current.count(TCanonical)) {
10990    // If we haven't diagnosed this cycle yet, do so now.
10991    if (!Invalid.count(TCanonical)) {
10992      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10993             diag::warn_delegating_ctor_cycle)
10994        << Ctor;
10995
10996      // Don't add a note for a function delegating directo to itself.
10997      if (TCanonical != Canonical)
10998        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10999
11000      CXXConstructorDecl *C = Target;
11001      while (C->getCanonicalDecl() != Canonical) {
11002        (void)C->getTargetConstructor()->hasBody(FNTarget);
11003        assert(FNTarget && "Ctor cycle through bodiless function");
11004
11005        C
11006       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
11007        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11008      }
11009    }
11010
11011    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11012      Invalid.insert(*CI);
11013    Current.clear();
11014  } else {
11015    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11016  }
11017}
11018
11019
11020void Sema::CheckDelegatingCtorCycles() {
11021  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11022
11023  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11024                                                   CE = Current.end();
11025
11026  for (DelegatingCtorDeclsType::iterator
11027         I = DelegatingCtorDecls.begin(ExternalSource),
11028         E = DelegatingCtorDecls.end();
11029       I != E; ++I) {
11030   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11031  }
11032
11033  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11034    (*CI)->setInvalidDecl();
11035}
11036
11037namespace {
11038  /// \brief AST visitor that finds references to the 'this' expression.
11039  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
11040    Sema &S;
11041
11042  public:
11043    explicit FindCXXThisExpr(Sema &S) : S(S) { }
11044
11045    bool VisitCXXThisExpr(CXXThisExpr *E) {
11046      S.Diag(E->getLocation(), diag::err_this_static_member_func)
11047        << E->isImplicit();
11048      return false;
11049    }
11050  };
11051}
11052
11053bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
11054  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11055  if (!TSInfo)
11056    return false;
11057
11058  TypeLoc TL = TSInfo->getTypeLoc();
11059  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11060  if (!ProtoTL)
11061    return false;
11062
11063  // C++11 [expr.prim.general]p3:
11064  //   [The expression this] shall not appear before the optional
11065  //   cv-qualifier-seq and it shall not appear within the declaration of a
11066  //   static member function (although its type and value category are defined
11067  //   within a static member function as they are within a non-static member
11068  //   function). [ Note: this is because declaration matching does not occur
11069  //  until the complete declarator is known. - end note ]
11070  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11071  FindCXXThisExpr Finder(*this);
11072
11073  // If the return type came after the cv-qualifier-seq, check it now.
11074  if (Proto->hasTrailingReturn() &&
11075      !Finder.TraverseTypeLoc(ProtoTL->getResultLoc()))
11076    return true;
11077
11078  // Check the exception specification.
11079  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
11080    return true;
11081
11082  return checkThisInStaticMemberFunctionAttributes(Method);
11083}
11084
11085bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
11086  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11087  if (!TSInfo)
11088    return false;
11089
11090  TypeLoc TL = TSInfo->getTypeLoc();
11091  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11092  if (!ProtoTL)
11093    return false;
11094
11095  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11096  FindCXXThisExpr Finder(*this);
11097
11098  switch (Proto->getExceptionSpecType()) {
11099  case EST_Uninstantiated:
11100  case EST_Unevaluated:
11101  case EST_BasicNoexcept:
11102  case EST_DynamicNone:
11103  case EST_MSAny:
11104  case EST_None:
11105    break;
11106
11107  case EST_ComputedNoexcept:
11108    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11109      return true;
11110
11111  case EST_Dynamic:
11112    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11113         EEnd = Proto->exception_end();
11114         E != EEnd; ++E) {
11115      if (!Finder.TraverseType(*E))
11116        return true;
11117    }
11118    break;
11119  }
11120
11121  return false;
11122}
11123
11124bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11125  FindCXXThisExpr Finder(*this);
11126
11127  // Check attributes.
11128  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11129       A != AEnd; ++A) {
11130    // FIXME: This should be emitted by tblgen.
11131    Expr *Arg = 0;
11132    ArrayRef<Expr *> Args;
11133    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11134      Arg = G->getArg();
11135    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11136      Arg = G->getArg();
11137    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11138      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11139    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11140      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11141    else if (ExclusiveLockFunctionAttr *ELF
11142               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11143      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11144    else if (SharedLockFunctionAttr *SLF
11145               = dyn_cast<SharedLockFunctionAttr>(*A))
11146      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11147    else if (ExclusiveTrylockFunctionAttr *ETLF
11148               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11149      Arg = ETLF->getSuccessValue();
11150      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11151    } else if (SharedTrylockFunctionAttr *STLF
11152                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11153      Arg = STLF->getSuccessValue();
11154      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11155    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11156      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11157    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11158      Arg = LR->getArg();
11159    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11160      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11161    else if (ExclusiveLocksRequiredAttr *ELR
11162               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11163      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11164    else if (SharedLocksRequiredAttr *SLR
11165               = dyn_cast<SharedLocksRequiredAttr>(*A))
11166      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11167
11168    if (Arg && !Finder.TraverseStmt(Arg))
11169      return true;
11170
11171    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
11172      if (!Finder.TraverseStmt(Args[I]))
11173        return true;
11174    }
11175  }
11176
11177  return false;
11178}
11179
11180void
11181Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
11182                                  ArrayRef<ParsedType> DynamicExceptions,
11183                                  ArrayRef<SourceRange> DynamicExceptionRanges,
11184                                  Expr *NoexceptExpr,
11185                                  llvm::SmallVectorImpl<QualType> &Exceptions,
11186                                  FunctionProtoType::ExtProtoInfo &EPI) {
11187  Exceptions.clear();
11188  EPI.ExceptionSpecType = EST;
11189  if (EST == EST_Dynamic) {
11190    Exceptions.reserve(DynamicExceptions.size());
11191    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
11192      // FIXME: Preserve type source info.
11193      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
11194
11195      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
11196      collectUnexpandedParameterPacks(ET, Unexpanded);
11197      if (!Unexpanded.empty()) {
11198        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
11199                                         UPPC_ExceptionType,
11200                                         Unexpanded);
11201        continue;
11202      }
11203
11204      // Check that the type is valid for an exception spec, and
11205      // drop it if not.
11206      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
11207        Exceptions.push_back(ET);
11208    }
11209    EPI.NumExceptions = Exceptions.size();
11210    EPI.Exceptions = Exceptions.data();
11211    return;
11212  }
11213
11214  if (EST == EST_ComputedNoexcept) {
11215    // If an error occurred, there's no expression here.
11216    if (NoexceptExpr) {
11217      assert((NoexceptExpr->isTypeDependent() ||
11218              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
11219              Context.BoolTy) &&
11220             "Parser should have made sure that the expression is boolean");
11221      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
11222        EPI.ExceptionSpecType = EST_BasicNoexcept;
11223        return;
11224      }
11225
11226      if (!NoexceptExpr->isValueDependent())
11227        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
11228                         diag::err_noexcept_needs_constant_expression,
11229                         /*AllowFold*/ false).take();
11230      EPI.NoexceptExpr = NoexceptExpr;
11231    }
11232    return;
11233  }
11234}
11235
11236/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11237Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11238  // Implicitly declared functions (e.g. copy constructors) are
11239  // __host__ __device__
11240  if (D->isImplicit())
11241    return CFT_HostDevice;
11242
11243  if (D->hasAttr<CUDAGlobalAttr>())
11244    return CFT_Global;
11245
11246  if (D->hasAttr<CUDADeviceAttr>()) {
11247    if (D->hasAttr<CUDAHostAttr>())
11248      return CFT_HostDevice;
11249    else
11250      return CFT_Device;
11251  }
11252
11253  return CFT_Host;
11254}
11255
11256bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11257                           CUDAFunctionTarget CalleeTarget) {
11258  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11259  // Callable from the device only."
11260  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11261    return true;
11262
11263  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11264  // Callable from the host only."
11265  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11266  // Callable from the host only."
11267  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11268      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11269    return true;
11270
11271  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11272    return true;
11273
11274  return false;
11275}
11276