SemaDeclCXX.cpp revision 213d70b58b4f48050c3e545ce1bd4b0ec3af74be
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/AST/StmtVisitor.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/AST/TypeOrdering.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Lex/Preprocessor.h"
35#include "llvm/ADT/DenseSet.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/STLExtras.h"
38#include <map>
39#include <set>
40
41using namespace clang;
42
43//===----------------------------------------------------------------------===//
44// CheckDefaultArgumentVisitor
45//===----------------------------------------------------------------------===//
46
47namespace {
48  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
49  /// the default argument of a parameter to determine whether it
50  /// contains any ill-formed subexpressions. For example, this will
51  /// diagnose the use of local variables or parameters within the
52  /// default argument expression.
53  class CheckDefaultArgumentVisitor
54    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
55    Expr *DefaultArg;
56    Sema *S;
57
58  public:
59    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
60      : DefaultArg(defarg), S(s) {}
61
62    bool VisitExpr(Expr *Node);
63    bool VisitDeclRefExpr(DeclRefExpr *DRE);
64    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
65    bool VisitLambdaExpr(LambdaExpr *Lambda);
66  };
67
68  /// VisitExpr - Visit all of the children of this expression.
69  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
70    bool IsInvalid = false;
71    for (Stmt::child_range I = Node->children(); I; ++I)
72      IsInvalid |= Visit(*I);
73    return IsInvalid;
74  }
75
76  /// VisitDeclRefExpr - Visit a reference to a declaration, to
77  /// determine whether this declaration can be used in the default
78  /// argument expression.
79  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
80    NamedDecl *Decl = DRE->getDecl();
81    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
82      // C++ [dcl.fct.default]p9
83      //   Default arguments are evaluated each time the function is
84      //   called. The order of evaluation of function arguments is
85      //   unspecified. Consequently, parameters of a function shall not
86      //   be used in default argument expressions, even if they are not
87      //   evaluated. Parameters of a function declared before a default
88      //   argument expression are in scope and can hide namespace and
89      //   class member names.
90      return S->Diag(DRE->getSourceRange().getBegin(),
91                     diag::err_param_default_argument_references_param)
92         << Param->getDeclName() << DefaultArg->getSourceRange();
93    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
94      // C++ [dcl.fct.default]p7
95      //   Local variables shall not be used in default argument
96      //   expressions.
97      if (VDecl->isLocalVarDecl())
98        return S->Diag(DRE->getSourceRange().getBegin(),
99                       diag::err_param_default_argument_references_local)
100          << VDecl->getDeclName() << DefaultArg->getSourceRange();
101    }
102
103    return false;
104  }
105
106  /// VisitCXXThisExpr - Visit a C++ "this" expression.
107  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
108    // C++ [dcl.fct.default]p8:
109    //   The keyword this shall not be used in a default argument of a
110    //   member function.
111    return S->Diag(ThisE->getSourceRange().getBegin(),
112                   diag::err_param_default_argument_references_this)
113               << ThisE->getSourceRange();
114  }
115
116  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
117    // C++11 [expr.lambda.prim]p13:
118    //   A lambda-expression appearing in a default argument shall not
119    //   implicitly or explicitly capture any entity.
120    if (Lambda->capture_begin() == Lambda->capture_end())
121      return false;
122
123    return S->Diag(Lambda->getLocStart(),
124                   diag::err_lambda_capture_default_arg);
125  }
126}
127
128void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
129  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
130  // If we have an MSAny or unknown spec already, don't bother.
131  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
132    return;
133
134  const FunctionProtoType *Proto
135    = Method->getType()->getAs<FunctionProtoType>();
136
137  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
138
139  // If this function can throw any exceptions, make a note of that.
140  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
141    ClearExceptions();
142    ComputedEST = EST;
143    return;
144  }
145
146  // FIXME: If the call to this decl is using any of its default arguments, we
147  // need to search them for potentially-throwing calls.
148
149  // If this function has a basic noexcept, it doesn't affect the outcome.
150  if (EST == EST_BasicNoexcept)
151    return;
152
153  // If we have a throw-all spec at this point, ignore the function.
154  if (ComputedEST == EST_None)
155    return;
156
157  // If we're still at noexcept(true) and there's a nothrow() callee,
158  // change to that specification.
159  if (EST == EST_DynamicNone) {
160    if (ComputedEST == EST_BasicNoexcept)
161      ComputedEST = EST_DynamicNone;
162    return;
163  }
164
165  // Check out noexcept specs.
166  if (EST == EST_ComputedNoexcept) {
167    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
168    assert(NR != FunctionProtoType::NR_NoNoexcept &&
169           "Must have noexcept result for EST_ComputedNoexcept.");
170    assert(NR != FunctionProtoType::NR_Dependent &&
171           "Should not generate implicit declarations for dependent cases, "
172           "and don't know how to handle them anyway.");
173
174    // noexcept(false) -> no spec on the new function
175    if (NR == FunctionProtoType::NR_Throw) {
176      ClearExceptions();
177      ComputedEST = EST_None;
178    }
179    // noexcept(true) won't change anything either.
180    return;
181  }
182
183  assert(EST == EST_Dynamic && "EST case not considered earlier.");
184  assert(ComputedEST != EST_None &&
185         "Shouldn't collect exceptions when throw-all is guaranteed.");
186  ComputedEST = EST_Dynamic;
187  // Record the exceptions in this function's exception specification.
188  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
189                                          EEnd = Proto->exception_end();
190       E != EEnd; ++E)
191    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
192      Exceptions.push_back(*E);
193}
194
195void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
196  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
197    return;
198
199  // FIXME:
200  //
201  // C++0x [except.spec]p14:
202  //   [An] implicit exception-specification specifies the type-id T if and
203  // only if T is allowed by the exception-specification of a function directly
204  // invoked by f's implicit definition; f shall allow all exceptions if any
205  // function it directly invokes allows all exceptions, and f shall allow no
206  // exceptions if every function it directly invokes allows no exceptions.
207  //
208  // Note in particular that if an implicit exception-specification is generated
209  // for a function containing a throw-expression, that specification can still
210  // be noexcept(true).
211  //
212  // Note also that 'directly invoked' is not defined in the standard, and there
213  // is no indication that we should only consider potentially-evaluated calls.
214  //
215  // Ultimately we should implement the intent of the standard: the exception
216  // specification should be the set of exceptions which can be thrown by the
217  // implicit definition. For now, we assume that any non-nothrow expression can
218  // throw any exception.
219
220  if (E->CanThrow(*Context))
221    ComputedEST = EST_None;
222}
223
224bool
225Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
226                              SourceLocation EqualLoc) {
227  if (RequireCompleteType(Param->getLocation(), Param->getType(),
228                          diag::err_typecheck_decl_incomplete_type)) {
229    Param->setInvalidDecl();
230    return true;
231  }
232
233  // C++ [dcl.fct.default]p5
234  //   A default argument expression is implicitly converted (clause
235  //   4) to the parameter type. The default argument expression has
236  //   the same semantic constraints as the initializer expression in
237  //   a declaration of a variable of the parameter type, using the
238  //   copy-initialization semantics (8.5).
239  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
240                                                                    Param);
241  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
242                                                           EqualLoc);
243  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
244  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
245                                      MultiExprArg(*this, &Arg, 1));
246  if (Result.isInvalid())
247    return true;
248  Arg = Result.takeAs<Expr>();
249
250  CheckImplicitConversions(Arg, EqualLoc);
251  Arg = MaybeCreateExprWithCleanups(Arg);
252
253  // Okay: add the default argument to the parameter
254  Param->setDefaultArg(Arg);
255
256  // We have already instantiated this parameter; provide each of the
257  // instantiations with the uninstantiated default argument.
258  UnparsedDefaultArgInstantiationsMap::iterator InstPos
259    = UnparsedDefaultArgInstantiations.find(Param);
260  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
261    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
262      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
263
264    // We're done tracking this parameter's instantiations.
265    UnparsedDefaultArgInstantiations.erase(InstPos);
266  }
267
268  return false;
269}
270
271/// ActOnParamDefaultArgument - Check whether the default argument
272/// provided for a function parameter is well-formed. If so, attach it
273/// to the parameter declaration.
274void
275Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
276                                Expr *DefaultArg) {
277  if (!param || !DefaultArg)
278    return;
279
280  ParmVarDecl *Param = cast<ParmVarDecl>(param);
281  UnparsedDefaultArgLocs.erase(Param);
282
283  // Default arguments are only permitted in C++
284  if (!getLangOptions().CPlusPlus) {
285    Diag(EqualLoc, diag::err_param_default_argument)
286      << DefaultArg->getSourceRange();
287    Param->setInvalidDecl();
288    return;
289  }
290
291  // Check for unexpanded parameter packs.
292  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
293    Param->setInvalidDecl();
294    return;
295  }
296
297  // Check that the default argument is well-formed
298  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
299  if (DefaultArgChecker.Visit(DefaultArg)) {
300    Param->setInvalidDecl();
301    return;
302  }
303
304  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
305}
306
307/// ActOnParamUnparsedDefaultArgument - We've seen a default
308/// argument for a function parameter, but we can't parse it yet
309/// because we're inside a class definition. Note that this default
310/// argument will be parsed later.
311void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
312                                             SourceLocation EqualLoc,
313                                             SourceLocation ArgLoc) {
314  if (!param)
315    return;
316
317  ParmVarDecl *Param = cast<ParmVarDecl>(param);
318  if (Param)
319    Param->setUnparsedDefaultArg();
320
321  UnparsedDefaultArgLocs[Param] = ArgLoc;
322}
323
324/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
325/// the default argument for the parameter param failed.
326void Sema::ActOnParamDefaultArgumentError(Decl *param) {
327  if (!param)
328    return;
329
330  ParmVarDecl *Param = cast<ParmVarDecl>(param);
331
332  Param->setInvalidDecl();
333
334  UnparsedDefaultArgLocs.erase(Param);
335}
336
337/// CheckExtraCXXDefaultArguments - Check for any extra default
338/// arguments in the declarator, which is not a function declaration
339/// or definition and therefore is not permitted to have default
340/// arguments. This routine should be invoked for every declarator
341/// that is not a function declaration or definition.
342void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
343  // C++ [dcl.fct.default]p3
344  //   A default argument expression shall be specified only in the
345  //   parameter-declaration-clause of a function declaration or in a
346  //   template-parameter (14.1). It shall not be specified for a
347  //   parameter pack. If it is specified in a
348  //   parameter-declaration-clause, it shall not occur within a
349  //   declarator or abstract-declarator of a parameter-declaration.
350  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
351    DeclaratorChunk &chunk = D.getTypeObject(i);
352    if (chunk.Kind == DeclaratorChunk::Function) {
353      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
354        ParmVarDecl *Param =
355          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
356        if (Param->hasUnparsedDefaultArg()) {
357          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
358          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
359            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
360          delete Toks;
361          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
362        } else if (Param->getDefaultArg()) {
363          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
364            << Param->getDefaultArg()->getSourceRange();
365          Param->setDefaultArg(0);
366        }
367      }
368    }
369  }
370}
371
372// MergeCXXFunctionDecl - Merge two declarations of the same C++
373// function, once we already know that they have the same
374// type. Subroutine of MergeFunctionDecl. Returns true if there was an
375// error, false otherwise.
376bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
377  bool Invalid = false;
378
379  // C++ [dcl.fct.default]p4:
380  //   For non-template functions, default arguments can be added in
381  //   later declarations of a function in the same
382  //   scope. Declarations in different scopes have completely
383  //   distinct sets of default arguments. That is, declarations in
384  //   inner scopes do not acquire default arguments from
385  //   declarations in outer scopes, and vice versa. In a given
386  //   function declaration, all parameters subsequent to a
387  //   parameter with a default argument shall have default
388  //   arguments supplied in this or previous declarations. A
389  //   default argument shall not be redefined by a later
390  //   declaration (not even to the same value).
391  //
392  // C++ [dcl.fct.default]p6:
393  //   Except for member functions of class templates, the default arguments
394  //   in a member function definition that appears outside of the class
395  //   definition are added to the set of default arguments provided by the
396  //   member function declaration in the class definition.
397  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
398    ParmVarDecl *OldParam = Old->getParamDecl(p);
399    ParmVarDecl *NewParam = New->getParamDecl(p);
400
401    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
402
403      unsigned DiagDefaultParamID =
404        diag::err_param_default_argument_redefinition;
405
406      // MSVC accepts that default parameters be redefined for member functions
407      // of template class. The new default parameter's value is ignored.
408      Invalid = true;
409      if (getLangOptions().MicrosoftExt) {
410        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
411        if (MD && MD->getParent()->getDescribedClassTemplate()) {
412          // Merge the old default argument into the new parameter.
413          NewParam->setHasInheritedDefaultArg();
414          if (OldParam->hasUninstantiatedDefaultArg())
415            NewParam->setUninstantiatedDefaultArg(
416                                      OldParam->getUninstantiatedDefaultArg());
417          else
418            NewParam->setDefaultArg(OldParam->getInit());
419          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
420          Invalid = false;
421        }
422      }
423
424      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
425      // hint here. Alternatively, we could walk the type-source information
426      // for NewParam to find the last source location in the type... but it
427      // isn't worth the effort right now. This is the kind of test case that
428      // is hard to get right:
429      //   int f(int);
430      //   void g(int (*fp)(int) = f);
431      //   void g(int (*fp)(int) = &f);
432      Diag(NewParam->getLocation(), DiagDefaultParamID)
433        << NewParam->getDefaultArgRange();
434
435      // Look for the function declaration where the default argument was
436      // actually written, which may be a declaration prior to Old.
437      for (FunctionDecl *Older = Old->getPreviousDecl();
438           Older; Older = Older->getPreviousDecl()) {
439        if (!Older->getParamDecl(p)->hasDefaultArg())
440          break;
441
442        OldParam = Older->getParamDecl(p);
443      }
444
445      Diag(OldParam->getLocation(), diag::note_previous_definition)
446        << OldParam->getDefaultArgRange();
447    } else if (OldParam->hasDefaultArg()) {
448      // Merge the old default argument into the new parameter.
449      // It's important to use getInit() here;  getDefaultArg()
450      // strips off any top-level ExprWithCleanups.
451      NewParam->setHasInheritedDefaultArg();
452      if (OldParam->hasUninstantiatedDefaultArg())
453        NewParam->setUninstantiatedDefaultArg(
454                                      OldParam->getUninstantiatedDefaultArg());
455      else
456        NewParam->setDefaultArg(OldParam->getInit());
457    } else if (NewParam->hasDefaultArg()) {
458      if (New->getDescribedFunctionTemplate()) {
459        // Paragraph 4, quoted above, only applies to non-template functions.
460        Diag(NewParam->getLocation(),
461             diag::err_param_default_argument_template_redecl)
462          << NewParam->getDefaultArgRange();
463        Diag(Old->getLocation(), diag::note_template_prev_declaration)
464          << false;
465      } else if (New->getTemplateSpecializationKind()
466                   != TSK_ImplicitInstantiation &&
467                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
468        // C++ [temp.expr.spec]p21:
469        //   Default function arguments shall not be specified in a declaration
470        //   or a definition for one of the following explicit specializations:
471        //     - the explicit specialization of a function template;
472        //     - the explicit specialization of a member function template;
473        //     - the explicit specialization of a member function of a class
474        //       template where the class template specialization to which the
475        //       member function specialization belongs is implicitly
476        //       instantiated.
477        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
478          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
479          << New->getDeclName()
480          << NewParam->getDefaultArgRange();
481      } else if (New->getDeclContext()->isDependentContext()) {
482        // C++ [dcl.fct.default]p6 (DR217):
483        //   Default arguments for a member function of a class template shall
484        //   be specified on the initial declaration of the member function
485        //   within the class template.
486        //
487        // Reading the tea leaves a bit in DR217 and its reference to DR205
488        // leads me to the conclusion that one cannot add default function
489        // arguments for an out-of-line definition of a member function of a
490        // dependent type.
491        int WhichKind = 2;
492        if (CXXRecordDecl *Record
493              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
494          if (Record->getDescribedClassTemplate())
495            WhichKind = 0;
496          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
497            WhichKind = 1;
498          else
499            WhichKind = 2;
500        }
501
502        Diag(NewParam->getLocation(),
503             diag::err_param_default_argument_member_template_redecl)
504          << WhichKind
505          << NewParam->getDefaultArgRange();
506      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
507        CXXSpecialMember NewSM = getSpecialMember(Ctor),
508                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
509        if (NewSM != OldSM) {
510          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
511            << NewParam->getDefaultArgRange() << NewSM;
512          Diag(Old->getLocation(), diag::note_previous_declaration_special)
513            << OldSM;
514        }
515      }
516    }
517  }
518
519  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
520  // template has a constexpr specifier then all its declarations shall
521  // contain the constexpr specifier. [Note: An explicit specialization can
522  // differ from the template declaration with respect to the constexpr
523  // specifier. -- end note]
524  //
525  // FIXME: Don't reject changes in constexpr in explicit specializations.
526  if (New->isConstexpr() != Old->isConstexpr()) {
527    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
528      << New << New->isConstexpr();
529    Diag(Old->getLocation(), diag::note_previous_declaration);
530    Invalid = true;
531  }
532
533  if (CheckEquivalentExceptionSpec(Old, New))
534    Invalid = true;
535
536  return Invalid;
537}
538
539/// \brief Merge the exception specifications of two variable declarations.
540///
541/// This is called when there's a redeclaration of a VarDecl. The function
542/// checks if the redeclaration might have an exception specification and
543/// validates compatibility and merges the specs if necessary.
544void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
545  // Shortcut if exceptions are disabled.
546  if (!getLangOptions().CXXExceptions)
547    return;
548
549  assert(Context.hasSameType(New->getType(), Old->getType()) &&
550         "Should only be called if types are otherwise the same.");
551
552  QualType NewType = New->getType();
553  QualType OldType = Old->getType();
554
555  // We're only interested in pointers and references to functions, as well
556  // as pointers to member functions.
557  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
558    NewType = R->getPointeeType();
559    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
560  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
561    NewType = P->getPointeeType();
562    OldType = OldType->getAs<PointerType>()->getPointeeType();
563  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
564    NewType = M->getPointeeType();
565    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
566  }
567
568  if (!NewType->isFunctionProtoType())
569    return;
570
571  // There's lots of special cases for functions. For function pointers, system
572  // libraries are hopefully not as broken so that we don't need these
573  // workarounds.
574  if (CheckEquivalentExceptionSpec(
575        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
576        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
577    New->setInvalidDecl();
578  }
579}
580
581/// CheckCXXDefaultArguments - Verify that the default arguments for a
582/// function declaration are well-formed according to C++
583/// [dcl.fct.default].
584void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
585  unsigned NumParams = FD->getNumParams();
586  unsigned p;
587
588  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
589                  isa<CXXMethodDecl>(FD) &&
590                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
591
592  // Find first parameter with a default argument
593  for (p = 0; p < NumParams; ++p) {
594    ParmVarDecl *Param = FD->getParamDecl(p);
595    if (Param->hasDefaultArg()) {
596      // C++11 [expr.prim.lambda]p5:
597      //   [...] Default arguments (8.3.6) shall not be specified in the
598      //   parameter-declaration-clause of a lambda-declarator.
599      //
600      // FIXME: Core issue 974 strikes this sentence, we only provide an
601      // extension warning.
602      if (IsLambda)
603        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
604          << Param->getDefaultArgRange();
605      break;
606    }
607  }
608
609  // C++ [dcl.fct.default]p4:
610  //   In a given function declaration, all parameters
611  //   subsequent to a parameter with a default argument shall
612  //   have default arguments supplied in this or previous
613  //   declarations. A default argument shall not be redefined
614  //   by a later declaration (not even to the same value).
615  unsigned LastMissingDefaultArg = 0;
616  for (; p < NumParams; ++p) {
617    ParmVarDecl *Param = FD->getParamDecl(p);
618    if (!Param->hasDefaultArg()) {
619      if (Param->isInvalidDecl())
620        /* We already complained about this parameter. */;
621      else if (Param->getIdentifier())
622        Diag(Param->getLocation(),
623             diag::err_param_default_argument_missing_name)
624          << Param->getIdentifier();
625      else
626        Diag(Param->getLocation(),
627             diag::err_param_default_argument_missing);
628
629      LastMissingDefaultArg = p;
630    }
631  }
632
633  if (LastMissingDefaultArg > 0) {
634    // Some default arguments were missing. Clear out all of the
635    // default arguments up to (and including) the last missing
636    // default argument, so that we leave the function parameters
637    // in a semantically valid state.
638    for (p = 0; p <= LastMissingDefaultArg; ++p) {
639      ParmVarDecl *Param = FD->getParamDecl(p);
640      if (Param->hasDefaultArg()) {
641        Param->setDefaultArg(0);
642      }
643    }
644  }
645}
646
647// CheckConstexprParameterTypes - Check whether a function's parameter types
648// are all literal types. If so, return true. If not, produce a suitable
649// diagnostic and return false.
650static bool CheckConstexprParameterTypes(Sema &SemaRef,
651                                         const FunctionDecl *FD) {
652  unsigned ArgIndex = 0;
653  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
654  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
655       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
656    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
657    SourceLocation ParamLoc = PD->getLocation();
658    if (!(*i)->isDependentType() &&
659        SemaRef.RequireLiteralType(ParamLoc, *i,
660                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
661                                     << ArgIndex+1 << PD->getSourceRange()
662                                     << isa<CXXConstructorDecl>(FD)))
663      return false;
664  }
665  return true;
666}
667
668// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
669// the requirements of a constexpr function definition or a constexpr
670// constructor definition. If so, return true. If not, produce appropriate
671// diagnostics and return false.
672//
673// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
674bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
675  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
676  if (MD && MD->isInstance()) {
677    // C++11 [dcl.constexpr]p4:
678    //  The definition of a constexpr constructor shall satisfy the following
679    //  constraints:
680    //  - the class shall not have any virtual base classes;
681    const CXXRecordDecl *RD = MD->getParent();
682    if (RD->getNumVBases()) {
683      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
684        << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
685        << RD->getNumVBases();
686      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
687             E = RD->vbases_end(); I != E; ++I)
688        Diag(I->getSourceRange().getBegin(),
689             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
690      return false;
691    }
692  }
693
694  if (!isa<CXXConstructorDecl>(NewFD)) {
695    // C++11 [dcl.constexpr]p3:
696    //  The definition of a constexpr function shall satisfy the following
697    //  constraints:
698    // - it shall not be virtual;
699    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
700    if (Method && Method->isVirtual()) {
701      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
702
703      // If it's not obvious why this function is virtual, find an overridden
704      // function which uses the 'virtual' keyword.
705      const CXXMethodDecl *WrittenVirtual = Method;
706      while (!WrittenVirtual->isVirtualAsWritten())
707        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
708      if (WrittenVirtual != Method)
709        Diag(WrittenVirtual->getLocation(),
710             diag::note_overridden_virtual_function);
711      return false;
712    }
713
714    // - its return type shall be a literal type;
715    QualType RT = NewFD->getResultType();
716    if (!RT->isDependentType() &&
717        RequireLiteralType(NewFD->getLocation(), RT,
718                           PDiag(diag::err_constexpr_non_literal_return)))
719      return false;
720  }
721
722  // - each of its parameter types shall be a literal type;
723  if (!CheckConstexprParameterTypes(*this, NewFD))
724    return false;
725
726  return true;
727}
728
729/// Check the given declaration statement is legal within a constexpr function
730/// body. C++0x [dcl.constexpr]p3,p4.
731///
732/// \return true if the body is OK, false if we have diagnosed a problem.
733static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
734                                   DeclStmt *DS) {
735  // C++0x [dcl.constexpr]p3 and p4:
736  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
737  //  contain only
738  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
739         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
740    switch ((*DclIt)->getKind()) {
741    case Decl::StaticAssert:
742    case Decl::Using:
743    case Decl::UsingShadow:
744    case Decl::UsingDirective:
745    case Decl::UnresolvedUsingTypename:
746      //   - static_assert-declarations
747      //   - using-declarations,
748      //   - using-directives,
749      continue;
750
751    case Decl::Typedef:
752    case Decl::TypeAlias: {
753      //   - typedef declarations and alias-declarations that do not define
754      //     classes or enumerations,
755      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
756      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
757        // Don't allow variably-modified types in constexpr functions.
758        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
759        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
760          << TL.getSourceRange() << TL.getType()
761          << isa<CXXConstructorDecl>(Dcl);
762        return false;
763      }
764      continue;
765    }
766
767    case Decl::Enum:
768    case Decl::CXXRecord:
769      // As an extension, we allow the declaration (but not the definition) of
770      // classes and enumerations in all declarations, not just in typedef and
771      // alias declarations.
772      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
773        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
774          << isa<CXXConstructorDecl>(Dcl);
775        return false;
776      }
777      continue;
778
779    case Decl::Var:
780      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
781        << isa<CXXConstructorDecl>(Dcl);
782      return false;
783
784    default:
785      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
786        << isa<CXXConstructorDecl>(Dcl);
787      return false;
788    }
789  }
790
791  return true;
792}
793
794/// Check that the given field is initialized within a constexpr constructor.
795///
796/// \param Dcl The constexpr constructor being checked.
797/// \param Field The field being checked. This may be a member of an anonymous
798///        struct or union nested within the class being checked.
799/// \param Inits All declarations, including anonymous struct/union members and
800///        indirect members, for which any initialization was provided.
801/// \param Diagnosed Set to true if an error is produced.
802static void CheckConstexprCtorInitializer(Sema &SemaRef,
803                                          const FunctionDecl *Dcl,
804                                          FieldDecl *Field,
805                                          llvm::SmallSet<Decl*, 16> &Inits,
806                                          bool &Diagnosed) {
807  if (Field->isUnnamedBitfield())
808    return;
809
810  if (Field->isAnonymousStructOrUnion() &&
811      Field->getType()->getAsCXXRecordDecl()->isEmpty())
812    return;
813
814  if (!Inits.count(Field)) {
815    if (!Diagnosed) {
816      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
817      Diagnosed = true;
818    }
819    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
820  } else if (Field->isAnonymousStructOrUnion()) {
821    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
822    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
823         I != E; ++I)
824      // If an anonymous union contains an anonymous struct of which any member
825      // is initialized, all members must be initialized.
826      if (!RD->isUnion() || Inits.count(*I))
827        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
828  }
829}
830
831/// Check the body for the given constexpr function declaration only contains
832/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
833///
834/// \return true if the body is OK, false if we have diagnosed a problem.
835bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
836  if (isa<CXXTryStmt>(Body)) {
837    // C++11 [dcl.constexpr]p3:
838    //  The definition of a constexpr function shall satisfy the following
839    //  constraints: [...]
840    // - its function-body shall be = delete, = default, or a
841    //   compound-statement
842    //
843    // C++11 [dcl.constexpr]p4:
844    //  In the definition of a constexpr constructor, [...]
845    // - its function-body shall not be a function-try-block;
846    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
847      << isa<CXXConstructorDecl>(Dcl);
848    return false;
849  }
850
851  // - its function-body shall be [...] a compound-statement that contains only
852  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
853
854  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
855  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
856         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
857    switch ((*BodyIt)->getStmtClass()) {
858    case Stmt::NullStmtClass:
859      //   - null statements,
860      continue;
861
862    case Stmt::DeclStmtClass:
863      //   - static_assert-declarations
864      //   - using-declarations,
865      //   - using-directives,
866      //   - typedef declarations and alias-declarations that do not define
867      //     classes or enumerations,
868      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
869        return false;
870      continue;
871
872    case Stmt::ReturnStmtClass:
873      //   - and exactly one return statement;
874      if (isa<CXXConstructorDecl>(Dcl))
875        break;
876
877      ReturnStmts.push_back((*BodyIt)->getLocStart());
878      continue;
879
880    default:
881      break;
882    }
883
884    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
885      << isa<CXXConstructorDecl>(Dcl);
886    return false;
887  }
888
889  if (const CXXConstructorDecl *Constructor
890        = dyn_cast<CXXConstructorDecl>(Dcl)) {
891    const CXXRecordDecl *RD = Constructor->getParent();
892    // DR1359:
893    // - every non-variant non-static data member and base class sub-object
894    //   shall be initialized;
895    // - if the class is a non-empty union, or for each non-empty anonymous
896    //   union member of a non-union class, exactly one non-static data member
897    //   shall be initialized;
898    if (RD->isUnion()) {
899      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
900        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
901        return false;
902      }
903    } else if (!Constructor->isDependentContext() &&
904               !Constructor->isDelegatingConstructor()) {
905      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
906
907      // Skip detailed checking if we have enough initializers, and we would
908      // allow at most one initializer per member.
909      bool AnyAnonStructUnionMembers = false;
910      unsigned Fields = 0;
911      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
912           E = RD->field_end(); I != E; ++I, ++Fields) {
913        if ((*I)->isAnonymousStructOrUnion()) {
914          AnyAnonStructUnionMembers = true;
915          break;
916        }
917      }
918      if (AnyAnonStructUnionMembers ||
919          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
920        // Check initialization of non-static data members. Base classes are
921        // always initialized so do not need to be checked. Dependent bases
922        // might not have initializers in the member initializer list.
923        llvm::SmallSet<Decl*, 16> Inits;
924        for (CXXConstructorDecl::init_const_iterator
925               I = Constructor->init_begin(), E = Constructor->init_end();
926             I != E; ++I) {
927          if (FieldDecl *FD = (*I)->getMember())
928            Inits.insert(FD);
929          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
930            Inits.insert(ID->chain_begin(), ID->chain_end());
931        }
932
933        bool Diagnosed = false;
934        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
935             E = RD->field_end(); I != E; ++I)
936          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
937        if (Diagnosed)
938          return false;
939      }
940    }
941  } else {
942    if (ReturnStmts.empty()) {
943      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
944      return false;
945    }
946    if (ReturnStmts.size() > 1) {
947      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
948      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
949        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
950      return false;
951    }
952  }
953
954  // C++11 [dcl.constexpr]p5:
955  //   if no function argument values exist such that the function invocation
956  //   substitution would produce a constant expression, the program is
957  //   ill-formed; no diagnostic required.
958  // C++11 [dcl.constexpr]p3:
959  //   - every constructor call and implicit conversion used in initializing the
960  //     return value shall be one of those allowed in a constant expression.
961  // C++11 [dcl.constexpr]p4:
962  //   - every constructor involved in initializing non-static data members and
963  //     base class sub-objects shall be a constexpr constructor.
964  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
965  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
966    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
967      << isa<CXXConstructorDecl>(Dcl);
968    for (size_t I = 0, N = Diags.size(); I != N; ++I)
969      Diag(Diags[I].first, Diags[I].second);
970    return false;
971  }
972
973  return true;
974}
975
976/// isCurrentClassName - Determine whether the identifier II is the
977/// name of the class type currently being defined. In the case of
978/// nested classes, this will only return true if II is the name of
979/// the innermost class.
980bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
981                              const CXXScopeSpec *SS) {
982  assert(getLangOptions().CPlusPlus && "No class names in C!");
983
984  CXXRecordDecl *CurDecl;
985  if (SS && SS->isSet() && !SS->isInvalid()) {
986    DeclContext *DC = computeDeclContext(*SS, true);
987    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
988  } else
989    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
990
991  if (CurDecl && CurDecl->getIdentifier())
992    return &II == CurDecl->getIdentifier();
993  else
994    return false;
995}
996
997/// \brief Check the validity of a C++ base class specifier.
998///
999/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1000/// and returns NULL otherwise.
1001CXXBaseSpecifier *
1002Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1003                         SourceRange SpecifierRange,
1004                         bool Virtual, AccessSpecifier Access,
1005                         TypeSourceInfo *TInfo,
1006                         SourceLocation EllipsisLoc) {
1007  QualType BaseType = TInfo->getType();
1008
1009  // C++ [class.union]p1:
1010  //   A union shall not have base classes.
1011  if (Class->isUnion()) {
1012    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1013      << SpecifierRange;
1014    return 0;
1015  }
1016
1017  if (EllipsisLoc.isValid() &&
1018      !TInfo->getType()->containsUnexpandedParameterPack()) {
1019    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1020      << TInfo->getTypeLoc().getSourceRange();
1021    EllipsisLoc = SourceLocation();
1022  }
1023
1024  if (BaseType->isDependentType())
1025    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1026                                          Class->getTagKind() == TTK_Class,
1027                                          Access, TInfo, EllipsisLoc);
1028
1029  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1030
1031  // Base specifiers must be record types.
1032  if (!BaseType->isRecordType()) {
1033    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1034    return 0;
1035  }
1036
1037  // C++ [class.union]p1:
1038  //   A union shall not be used as a base class.
1039  if (BaseType->isUnionType()) {
1040    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1041    return 0;
1042  }
1043
1044  // C++ [class.derived]p2:
1045  //   The class-name in a base-specifier shall not be an incompletely
1046  //   defined class.
1047  if (RequireCompleteType(BaseLoc, BaseType,
1048                          PDiag(diag::err_incomplete_base_class)
1049                            << SpecifierRange)) {
1050    Class->setInvalidDecl();
1051    return 0;
1052  }
1053
1054  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1055  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1056  assert(BaseDecl && "Record type has no declaration");
1057  BaseDecl = BaseDecl->getDefinition();
1058  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1059  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1060  assert(CXXBaseDecl && "Base type is not a C++ type");
1061
1062  // C++ [class]p3:
1063  //   If a class is marked final and it appears as a base-type-specifier in
1064  //   base-clause, the program is ill-formed.
1065  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1066    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1067      << CXXBaseDecl->getDeclName();
1068    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1069      << CXXBaseDecl->getDeclName();
1070    return 0;
1071  }
1072
1073  if (BaseDecl->isInvalidDecl())
1074    Class->setInvalidDecl();
1075
1076  // Create the base specifier.
1077  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1078                                        Class->getTagKind() == TTK_Class,
1079                                        Access, TInfo, EllipsisLoc);
1080}
1081
1082/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1083/// one entry in the base class list of a class specifier, for
1084/// example:
1085///    class foo : public bar, virtual private baz {
1086/// 'public bar' and 'virtual private baz' are each base-specifiers.
1087BaseResult
1088Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1089                         bool Virtual, AccessSpecifier Access,
1090                         ParsedType basetype, SourceLocation BaseLoc,
1091                         SourceLocation EllipsisLoc) {
1092  if (!classdecl)
1093    return true;
1094
1095  AdjustDeclIfTemplate(classdecl);
1096  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1097  if (!Class)
1098    return true;
1099
1100  TypeSourceInfo *TInfo = 0;
1101  GetTypeFromParser(basetype, &TInfo);
1102
1103  if (EllipsisLoc.isInvalid() &&
1104      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1105                                      UPPC_BaseType))
1106    return true;
1107
1108  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1109                                                      Virtual, Access, TInfo,
1110                                                      EllipsisLoc))
1111    return BaseSpec;
1112
1113  return true;
1114}
1115
1116/// \brief Performs the actual work of attaching the given base class
1117/// specifiers to a C++ class.
1118bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1119                                unsigned NumBases) {
1120 if (NumBases == 0)
1121    return false;
1122
1123  // Used to keep track of which base types we have already seen, so
1124  // that we can properly diagnose redundant direct base types. Note
1125  // that the key is always the unqualified canonical type of the base
1126  // class.
1127  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1128
1129  // Copy non-redundant base specifiers into permanent storage.
1130  unsigned NumGoodBases = 0;
1131  bool Invalid = false;
1132  for (unsigned idx = 0; idx < NumBases; ++idx) {
1133    QualType NewBaseType
1134      = Context.getCanonicalType(Bases[idx]->getType());
1135    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1136    if (KnownBaseTypes[NewBaseType]) {
1137      // C++ [class.mi]p3:
1138      //   A class shall not be specified as a direct base class of a
1139      //   derived class more than once.
1140      Diag(Bases[idx]->getSourceRange().getBegin(),
1141           diag::err_duplicate_base_class)
1142        << KnownBaseTypes[NewBaseType]->getType()
1143        << Bases[idx]->getSourceRange();
1144
1145      // Delete the duplicate base class specifier; we're going to
1146      // overwrite its pointer later.
1147      Context.Deallocate(Bases[idx]);
1148
1149      Invalid = true;
1150    } else {
1151      // Okay, add this new base class.
1152      KnownBaseTypes[NewBaseType] = Bases[idx];
1153      Bases[NumGoodBases++] = Bases[idx];
1154      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1155        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1156          if (RD->hasAttr<WeakAttr>())
1157            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1158    }
1159  }
1160
1161  // Attach the remaining base class specifiers to the derived class.
1162  Class->setBases(Bases, NumGoodBases);
1163
1164  // Delete the remaining (good) base class specifiers, since their
1165  // data has been copied into the CXXRecordDecl.
1166  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1167    Context.Deallocate(Bases[idx]);
1168
1169  return Invalid;
1170}
1171
1172/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1173/// class, after checking whether there are any duplicate base
1174/// classes.
1175void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1176                               unsigned NumBases) {
1177  if (!ClassDecl || !Bases || !NumBases)
1178    return;
1179
1180  AdjustDeclIfTemplate(ClassDecl);
1181  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1182                       (CXXBaseSpecifier**)(Bases), NumBases);
1183}
1184
1185static CXXRecordDecl *GetClassForType(QualType T) {
1186  if (const RecordType *RT = T->getAs<RecordType>())
1187    return cast<CXXRecordDecl>(RT->getDecl());
1188  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1189    return ICT->getDecl();
1190  else
1191    return 0;
1192}
1193
1194/// \brief Determine whether the type \p Derived is a C++ class that is
1195/// derived from the type \p Base.
1196bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1197  if (!getLangOptions().CPlusPlus)
1198    return false;
1199
1200  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1201  if (!DerivedRD)
1202    return false;
1203
1204  CXXRecordDecl *BaseRD = GetClassForType(Base);
1205  if (!BaseRD)
1206    return false;
1207
1208  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1209  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1210}
1211
1212/// \brief Determine whether the type \p Derived is a C++ class that is
1213/// derived from the type \p Base.
1214bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1215  if (!getLangOptions().CPlusPlus)
1216    return false;
1217
1218  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1219  if (!DerivedRD)
1220    return false;
1221
1222  CXXRecordDecl *BaseRD = GetClassForType(Base);
1223  if (!BaseRD)
1224    return false;
1225
1226  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1227}
1228
1229void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1230                              CXXCastPath &BasePathArray) {
1231  assert(BasePathArray.empty() && "Base path array must be empty!");
1232  assert(Paths.isRecordingPaths() && "Must record paths!");
1233
1234  const CXXBasePath &Path = Paths.front();
1235
1236  // We first go backward and check if we have a virtual base.
1237  // FIXME: It would be better if CXXBasePath had the base specifier for
1238  // the nearest virtual base.
1239  unsigned Start = 0;
1240  for (unsigned I = Path.size(); I != 0; --I) {
1241    if (Path[I - 1].Base->isVirtual()) {
1242      Start = I - 1;
1243      break;
1244    }
1245  }
1246
1247  // Now add all bases.
1248  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1249    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1250}
1251
1252/// \brief Determine whether the given base path includes a virtual
1253/// base class.
1254bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1255  for (CXXCastPath::const_iterator B = BasePath.begin(),
1256                                BEnd = BasePath.end();
1257       B != BEnd; ++B)
1258    if ((*B)->isVirtual())
1259      return true;
1260
1261  return false;
1262}
1263
1264/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1265/// conversion (where Derived and Base are class types) is
1266/// well-formed, meaning that the conversion is unambiguous (and
1267/// that all of the base classes are accessible). Returns true
1268/// and emits a diagnostic if the code is ill-formed, returns false
1269/// otherwise. Loc is the location where this routine should point to
1270/// if there is an error, and Range is the source range to highlight
1271/// if there is an error.
1272bool
1273Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1274                                   unsigned InaccessibleBaseID,
1275                                   unsigned AmbigiousBaseConvID,
1276                                   SourceLocation Loc, SourceRange Range,
1277                                   DeclarationName Name,
1278                                   CXXCastPath *BasePath) {
1279  // First, determine whether the path from Derived to Base is
1280  // ambiguous. This is slightly more expensive than checking whether
1281  // the Derived to Base conversion exists, because here we need to
1282  // explore multiple paths to determine if there is an ambiguity.
1283  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1284                     /*DetectVirtual=*/false);
1285  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1286  assert(DerivationOkay &&
1287         "Can only be used with a derived-to-base conversion");
1288  (void)DerivationOkay;
1289
1290  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1291    if (InaccessibleBaseID) {
1292      // Check that the base class can be accessed.
1293      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1294                                   InaccessibleBaseID)) {
1295        case AR_inaccessible:
1296          return true;
1297        case AR_accessible:
1298        case AR_dependent:
1299        case AR_delayed:
1300          break;
1301      }
1302    }
1303
1304    // Build a base path if necessary.
1305    if (BasePath)
1306      BuildBasePathArray(Paths, *BasePath);
1307    return false;
1308  }
1309
1310  // We know that the derived-to-base conversion is ambiguous, and
1311  // we're going to produce a diagnostic. Perform the derived-to-base
1312  // search just one more time to compute all of the possible paths so
1313  // that we can print them out. This is more expensive than any of
1314  // the previous derived-to-base checks we've done, but at this point
1315  // performance isn't as much of an issue.
1316  Paths.clear();
1317  Paths.setRecordingPaths(true);
1318  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1319  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1320  (void)StillOkay;
1321
1322  // Build up a textual representation of the ambiguous paths, e.g.,
1323  // D -> B -> A, that will be used to illustrate the ambiguous
1324  // conversions in the diagnostic. We only print one of the paths
1325  // to each base class subobject.
1326  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1327
1328  Diag(Loc, AmbigiousBaseConvID)
1329  << Derived << Base << PathDisplayStr << Range << Name;
1330  return true;
1331}
1332
1333bool
1334Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1335                                   SourceLocation Loc, SourceRange Range,
1336                                   CXXCastPath *BasePath,
1337                                   bool IgnoreAccess) {
1338  return CheckDerivedToBaseConversion(Derived, Base,
1339                                      IgnoreAccess ? 0
1340                                       : diag::err_upcast_to_inaccessible_base,
1341                                      diag::err_ambiguous_derived_to_base_conv,
1342                                      Loc, Range, DeclarationName(),
1343                                      BasePath);
1344}
1345
1346
1347/// @brief Builds a string representing ambiguous paths from a
1348/// specific derived class to different subobjects of the same base
1349/// class.
1350///
1351/// This function builds a string that can be used in error messages
1352/// to show the different paths that one can take through the
1353/// inheritance hierarchy to go from the derived class to different
1354/// subobjects of a base class. The result looks something like this:
1355/// @code
1356/// struct D -> struct B -> struct A
1357/// struct D -> struct C -> struct A
1358/// @endcode
1359std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1360  std::string PathDisplayStr;
1361  std::set<unsigned> DisplayedPaths;
1362  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1363       Path != Paths.end(); ++Path) {
1364    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1365      // We haven't displayed a path to this particular base
1366      // class subobject yet.
1367      PathDisplayStr += "\n    ";
1368      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1369      for (CXXBasePath::const_iterator Element = Path->begin();
1370           Element != Path->end(); ++Element)
1371        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1372    }
1373  }
1374
1375  return PathDisplayStr;
1376}
1377
1378//===----------------------------------------------------------------------===//
1379// C++ class member Handling
1380//===----------------------------------------------------------------------===//
1381
1382/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1383bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1384                                SourceLocation ASLoc,
1385                                SourceLocation ColonLoc,
1386                                AttributeList *Attrs) {
1387  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1388  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1389                                                  ASLoc, ColonLoc);
1390  CurContext->addHiddenDecl(ASDecl);
1391  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1392}
1393
1394/// CheckOverrideControl - Check C++0x override control semantics.
1395void Sema::CheckOverrideControl(const Decl *D) {
1396  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1397  if (!MD || !MD->isVirtual())
1398    return;
1399
1400  if (MD->isDependentContext())
1401    return;
1402
1403  // C++0x [class.virtual]p3:
1404  //   If a virtual function is marked with the virt-specifier override and does
1405  //   not override a member function of a base class,
1406  //   the program is ill-formed.
1407  bool HasOverriddenMethods =
1408    MD->begin_overridden_methods() != MD->end_overridden_methods();
1409  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1410    Diag(MD->getLocation(),
1411                 diag::err_function_marked_override_not_overriding)
1412      << MD->getDeclName();
1413    return;
1414  }
1415}
1416
1417/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1418/// function overrides a virtual member function marked 'final', according to
1419/// C++0x [class.virtual]p3.
1420bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1421                                                  const CXXMethodDecl *Old) {
1422  if (!Old->hasAttr<FinalAttr>())
1423    return false;
1424
1425  Diag(New->getLocation(), diag::err_final_function_overridden)
1426    << New->getDeclName();
1427  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1428  return true;
1429}
1430
1431/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1432/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1433/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1434/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1435/// present but parsing it has been deferred.
1436Decl *
1437Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1438                               MultiTemplateParamsArg TemplateParameterLists,
1439                               Expr *BW, const VirtSpecifiers &VS,
1440                               bool HasDeferredInit) {
1441  const DeclSpec &DS = D.getDeclSpec();
1442  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1443  DeclarationName Name = NameInfo.getName();
1444  SourceLocation Loc = NameInfo.getLoc();
1445
1446  // For anonymous bitfields, the location should point to the type.
1447  if (Loc.isInvalid())
1448    Loc = D.getSourceRange().getBegin();
1449
1450  Expr *BitWidth = static_cast<Expr*>(BW);
1451
1452  assert(isa<CXXRecordDecl>(CurContext));
1453  assert(!DS.isFriendSpecified());
1454
1455  bool isFunc = D.isDeclarationOfFunction();
1456
1457  // C++ 9.2p6: A member shall not be declared to have automatic storage
1458  // duration (auto, register) or with the extern storage-class-specifier.
1459  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1460  // data members and cannot be applied to names declared const or static,
1461  // and cannot be applied to reference members.
1462  switch (DS.getStorageClassSpec()) {
1463    case DeclSpec::SCS_unspecified:
1464    case DeclSpec::SCS_typedef:
1465    case DeclSpec::SCS_static:
1466      // FALL THROUGH.
1467      break;
1468    case DeclSpec::SCS_mutable:
1469      if (isFunc) {
1470        if (DS.getStorageClassSpecLoc().isValid())
1471          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1472        else
1473          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1474
1475        // FIXME: It would be nicer if the keyword was ignored only for this
1476        // declarator. Otherwise we could get follow-up errors.
1477        D.getMutableDeclSpec().ClearStorageClassSpecs();
1478      }
1479      break;
1480    default:
1481      if (DS.getStorageClassSpecLoc().isValid())
1482        Diag(DS.getStorageClassSpecLoc(),
1483             diag::err_storageclass_invalid_for_member);
1484      else
1485        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1486      D.getMutableDeclSpec().ClearStorageClassSpecs();
1487  }
1488
1489  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1490                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1491                      !isFunc);
1492
1493  Decl *Member;
1494  if (isInstField) {
1495    CXXScopeSpec &SS = D.getCXXScopeSpec();
1496
1497    // Data members must have identifiers for names.
1498    if (Name.getNameKind() != DeclarationName::Identifier) {
1499      Diag(Loc, diag::err_bad_variable_name)
1500        << Name;
1501      return 0;
1502    }
1503
1504    IdentifierInfo *II = Name.getAsIdentifierInfo();
1505
1506    // Member field could not be with "template" keyword.
1507    // So TemplateParameterLists should be empty in this case.
1508    if (TemplateParameterLists.size()) {
1509      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1510      if (TemplateParams->size()) {
1511        // There is no such thing as a member field template.
1512        Diag(D.getIdentifierLoc(), diag::err_template_member)
1513            << II
1514            << SourceRange(TemplateParams->getTemplateLoc(),
1515                TemplateParams->getRAngleLoc());
1516      } else {
1517        // There is an extraneous 'template<>' for this member.
1518        Diag(TemplateParams->getTemplateLoc(),
1519            diag::err_template_member_noparams)
1520            << II
1521            << SourceRange(TemplateParams->getTemplateLoc(),
1522                TemplateParams->getRAngleLoc());
1523      }
1524      return 0;
1525    }
1526
1527    if (SS.isSet() && !SS.isInvalid()) {
1528      // The user provided a superfluous scope specifier inside a class
1529      // definition:
1530      //
1531      // class X {
1532      //   int X::member;
1533      // };
1534      DeclContext *DC = 0;
1535      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1536        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1537          << Name << FixItHint::CreateRemoval(SS.getRange());
1538      else
1539        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1540          << Name << SS.getRange();
1541
1542      SS.clear();
1543    }
1544
1545    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1546                         HasDeferredInit, AS);
1547    assert(Member && "HandleField never returns null");
1548  } else {
1549    assert(!HasDeferredInit);
1550
1551    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1552    if (!Member) {
1553      return 0;
1554    }
1555
1556    // Non-instance-fields can't have a bitfield.
1557    if (BitWidth) {
1558      if (Member->isInvalidDecl()) {
1559        // don't emit another diagnostic.
1560      } else if (isa<VarDecl>(Member)) {
1561        // C++ 9.6p3: A bit-field shall not be a static member.
1562        // "static member 'A' cannot be a bit-field"
1563        Diag(Loc, diag::err_static_not_bitfield)
1564          << Name << BitWidth->getSourceRange();
1565      } else if (isa<TypedefDecl>(Member)) {
1566        // "typedef member 'x' cannot be a bit-field"
1567        Diag(Loc, diag::err_typedef_not_bitfield)
1568          << Name << BitWidth->getSourceRange();
1569      } else {
1570        // A function typedef ("typedef int f(); f a;").
1571        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1572        Diag(Loc, diag::err_not_integral_type_bitfield)
1573          << Name << cast<ValueDecl>(Member)->getType()
1574          << BitWidth->getSourceRange();
1575      }
1576
1577      BitWidth = 0;
1578      Member->setInvalidDecl();
1579    }
1580
1581    Member->setAccess(AS);
1582
1583    // If we have declared a member function template, set the access of the
1584    // templated declaration as well.
1585    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1586      FunTmpl->getTemplatedDecl()->setAccess(AS);
1587  }
1588
1589  if (VS.isOverrideSpecified()) {
1590    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1591    if (!MD || !MD->isVirtual()) {
1592      Diag(Member->getLocStart(),
1593           diag::override_keyword_only_allowed_on_virtual_member_functions)
1594        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1595    } else
1596      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1597  }
1598  if (VS.isFinalSpecified()) {
1599    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1600    if (!MD || !MD->isVirtual()) {
1601      Diag(Member->getLocStart(),
1602           diag::override_keyword_only_allowed_on_virtual_member_functions)
1603      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1604    } else
1605      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1606  }
1607
1608  if (VS.getLastLocation().isValid()) {
1609    // Update the end location of a method that has a virt-specifiers.
1610    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1611      MD->setRangeEnd(VS.getLastLocation());
1612  }
1613
1614  CheckOverrideControl(Member);
1615
1616  assert((Name || isInstField) && "No identifier for non-field ?");
1617
1618  if (isInstField)
1619    FieldCollector->Add(cast<FieldDecl>(Member));
1620  return Member;
1621}
1622
1623/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1624/// in-class initializer for a non-static C++ class member, and after
1625/// instantiating an in-class initializer in a class template. Such actions
1626/// are deferred until the class is complete.
1627void
1628Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1629                                       Expr *InitExpr) {
1630  FieldDecl *FD = cast<FieldDecl>(D);
1631
1632  if (!InitExpr) {
1633    FD->setInvalidDecl();
1634    FD->removeInClassInitializer();
1635    return;
1636  }
1637
1638  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1639    FD->setInvalidDecl();
1640    FD->removeInClassInitializer();
1641    return;
1642  }
1643
1644  ExprResult Init = InitExpr;
1645  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1646    // FIXME: if there is no EqualLoc, this is list-initialization.
1647    Init = PerformCopyInitialization(
1648      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1649    if (Init.isInvalid()) {
1650      FD->setInvalidDecl();
1651      return;
1652    }
1653
1654    CheckImplicitConversions(Init.get(), EqualLoc);
1655  }
1656
1657  // C++0x [class.base.init]p7:
1658  //   The initialization of each base and member constitutes a
1659  //   full-expression.
1660  Init = MaybeCreateExprWithCleanups(Init);
1661  if (Init.isInvalid()) {
1662    FD->setInvalidDecl();
1663    return;
1664  }
1665
1666  InitExpr = Init.release();
1667
1668  FD->setInClassInitializer(InitExpr);
1669}
1670
1671/// \brief Find the direct and/or virtual base specifiers that
1672/// correspond to the given base type, for use in base initialization
1673/// within a constructor.
1674static bool FindBaseInitializer(Sema &SemaRef,
1675                                CXXRecordDecl *ClassDecl,
1676                                QualType BaseType,
1677                                const CXXBaseSpecifier *&DirectBaseSpec,
1678                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1679  // First, check for a direct base class.
1680  DirectBaseSpec = 0;
1681  for (CXXRecordDecl::base_class_const_iterator Base
1682         = ClassDecl->bases_begin();
1683       Base != ClassDecl->bases_end(); ++Base) {
1684    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1685      // We found a direct base of this type. That's what we're
1686      // initializing.
1687      DirectBaseSpec = &*Base;
1688      break;
1689    }
1690  }
1691
1692  // Check for a virtual base class.
1693  // FIXME: We might be able to short-circuit this if we know in advance that
1694  // there are no virtual bases.
1695  VirtualBaseSpec = 0;
1696  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1697    // We haven't found a base yet; search the class hierarchy for a
1698    // virtual base class.
1699    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1700                       /*DetectVirtual=*/false);
1701    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1702                              BaseType, Paths)) {
1703      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1704           Path != Paths.end(); ++Path) {
1705        if (Path->back().Base->isVirtual()) {
1706          VirtualBaseSpec = Path->back().Base;
1707          break;
1708        }
1709      }
1710    }
1711  }
1712
1713  return DirectBaseSpec || VirtualBaseSpec;
1714}
1715
1716/// \brief Handle a C++ member initializer using braced-init-list syntax.
1717MemInitResult
1718Sema::ActOnMemInitializer(Decl *ConstructorD,
1719                          Scope *S,
1720                          CXXScopeSpec &SS,
1721                          IdentifierInfo *MemberOrBase,
1722                          ParsedType TemplateTypeTy,
1723                          const DeclSpec &DS,
1724                          SourceLocation IdLoc,
1725                          Expr *InitList,
1726                          SourceLocation EllipsisLoc) {
1727  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1728                             DS, IdLoc, InitList,
1729                             EllipsisLoc);
1730}
1731
1732/// \brief Handle a C++ member initializer using parentheses syntax.
1733MemInitResult
1734Sema::ActOnMemInitializer(Decl *ConstructorD,
1735                          Scope *S,
1736                          CXXScopeSpec &SS,
1737                          IdentifierInfo *MemberOrBase,
1738                          ParsedType TemplateTypeTy,
1739                          const DeclSpec &DS,
1740                          SourceLocation IdLoc,
1741                          SourceLocation LParenLoc,
1742                          Expr **Args, unsigned NumArgs,
1743                          SourceLocation RParenLoc,
1744                          SourceLocation EllipsisLoc) {
1745  Expr *List = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1746                                           RParenLoc);
1747  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1748                             DS, IdLoc, List, EllipsisLoc);
1749}
1750
1751namespace {
1752
1753// Callback to only accept typo corrections that can be a valid C++ member
1754// intializer: either a non-static field member or a base class.
1755class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1756 public:
1757  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1758      : ClassDecl(ClassDecl) {}
1759
1760  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1761    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1762      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1763        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1764      else
1765        return isa<TypeDecl>(ND);
1766    }
1767    return false;
1768  }
1769
1770 private:
1771  CXXRecordDecl *ClassDecl;
1772};
1773
1774}
1775
1776/// \brief Handle a C++ member initializer.
1777MemInitResult
1778Sema::BuildMemInitializer(Decl *ConstructorD,
1779                          Scope *S,
1780                          CXXScopeSpec &SS,
1781                          IdentifierInfo *MemberOrBase,
1782                          ParsedType TemplateTypeTy,
1783                          const DeclSpec &DS,
1784                          SourceLocation IdLoc,
1785                          Expr *Init,
1786                          SourceLocation EllipsisLoc) {
1787  if (!ConstructorD)
1788    return true;
1789
1790  AdjustDeclIfTemplate(ConstructorD);
1791
1792  CXXConstructorDecl *Constructor
1793    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1794  if (!Constructor) {
1795    // The user wrote a constructor initializer on a function that is
1796    // not a C++ constructor. Ignore the error for now, because we may
1797    // have more member initializers coming; we'll diagnose it just
1798    // once in ActOnMemInitializers.
1799    return true;
1800  }
1801
1802  CXXRecordDecl *ClassDecl = Constructor->getParent();
1803
1804  // C++ [class.base.init]p2:
1805  //   Names in a mem-initializer-id are looked up in the scope of the
1806  //   constructor's class and, if not found in that scope, are looked
1807  //   up in the scope containing the constructor's definition.
1808  //   [Note: if the constructor's class contains a member with the
1809  //   same name as a direct or virtual base class of the class, a
1810  //   mem-initializer-id naming the member or base class and composed
1811  //   of a single identifier refers to the class member. A
1812  //   mem-initializer-id for the hidden base class may be specified
1813  //   using a qualified name. ]
1814  if (!SS.getScopeRep() && !TemplateTypeTy) {
1815    // Look for a member, first.
1816    DeclContext::lookup_result Result
1817      = ClassDecl->lookup(MemberOrBase);
1818    if (Result.first != Result.second) {
1819      ValueDecl *Member;
1820      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1821          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1822        if (EllipsisLoc.isValid())
1823          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1824            << MemberOrBase
1825            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1826
1827        return BuildMemberInitializer(Member, Init, IdLoc);
1828      }
1829    }
1830  }
1831  // It didn't name a member, so see if it names a class.
1832  QualType BaseType;
1833  TypeSourceInfo *TInfo = 0;
1834
1835  if (TemplateTypeTy) {
1836    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1837  } else if (DS.getTypeSpecType() == TST_decltype) {
1838    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1839  } else {
1840    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1841    LookupParsedName(R, S, &SS);
1842
1843    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1844    if (!TyD) {
1845      if (R.isAmbiguous()) return true;
1846
1847      // We don't want access-control diagnostics here.
1848      R.suppressDiagnostics();
1849
1850      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1851        bool NotUnknownSpecialization = false;
1852        DeclContext *DC = computeDeclContext(SS, false);
1853        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1854          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1855
1856        if (!NotUnknownSpecialization) {
1857          // When the scope specifier can refer to a member of an unknown
1858          // specialization, we take it as a type name.
1859          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1860                                       SS.getWithLocInContext(Context),
1861                                       *MemberOrBase, IdLoc);
1862          if (BaseType.isNull())
1863            return true;
1864
1865          R.clear();
1866          R.setLookupName(MemberOrBase);
1867        }
1868      }
1869
1870      // If no results were found, try to correct typos.
1871      TypoCorrection Corr;
1872      MemInitializerValidatorCCC Validator(ClassDecl);
1873      if (R.empty() && BaseType.isNull() &&
1874          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1875                              Validator, ClassDecl))) {
1876        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1877        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1878        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1879          // We have found a non-static data member with a similar
1880          // name to what was typed; complain and initialize that
1881          // member.
1882          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1883            << MemberOrBase << true << CorrectedQuotedStr
1884            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1885          Diag(Member->getLocation(), diag::note_previous_decl)
1886            << CorrectedQuotedStr;
1887
1888          return BuildMemberInitializer(Member, Init, IdLoc);
1889        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1890          const CXXBaseSpecifier *DirectBaseSpec;
1891          const CXXBaseSpecifier *VirtualBaseSpec;
1892          if (FindBaseInitializer(*this, ClassDecl,
1893                                  Context.getTypeDeclType(Type),
1894                                  DirectBaseSpec, VirtualBaseSpec)) {
1895            // We have found a direct or virtual base class with a
1896            // similar name to what was typed; complain and initialize
1897            // that base class.
1898            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1899              << MemberOrBase << false << CorrectedQuotedStr
1900              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1901
1902            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1903                                                             : VirtualBaseSpec;
1904            Diag(BaseSpec->getSourceRange().getBegin(),
1905                 diag::note_base_class_specified_here)
1906              << BaseSpec->getType()
1907              << BaseSpec->getSourceRange();
1908
1909            TyD = Type;
1910          }
1911        }
1912      }
1913
1914      if (!TyD && BaseType.isNull()) {
1915        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1916          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1917        return true;
1918      }
1919    }
1920
1921    if (BaseType.isNull()) {
1922      BaseType = Context.getTypeDeclType(TyD);
1923      if (SS.isSet()) {
1924        NestedNameSpecifier *Qualifier =
1925          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1926
1927        // FIXME: preserve source range information
1928        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1929      }
1930    }
1931  }
1932
1933  if (!TInfo)
1934    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1935
1936  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
1937}
1938
1939/// Checks a member initializer expression for cases where reference (or
1940/// pointer) members are bound to by-value parameters (or their addresses).
1941static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1942                                               Expr *Init,
1943                                               SourceLocation IdLoc) {
1944  QualType MemberTy = Member->getType();
1945
1946  // We only handle pointers and references currently.
1947  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1948  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1949    return;
1950
1951  const bool IsPointer = MemberTy->isPointerType();
1952  if (IsPointer) {
1953    if (const UnaryOperator *Op
1954          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1955      // The only case we're worried about with pointers requires taking the
1956      // address.
1957      if (Op->getOpcode() != UO_AddrOf)
1958        return;
1959
1960      Init = Op->getSubExpr();
1961    } else {
1962      // We only handle address-of expression initializers for pointers.
1963      return;
1964    }
1965  }
1966
1967  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1968    // Taking the address of a temporary will be diagnosed as a hard error.
1969    if (IsPointer)
1970      return;
1971
1972    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1973      << Member << Init->getSourceRange();
1974  } else if (const DeclRefExpr *DRE
1975               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1976    // We only warn when referring to a non-reference parameter declaration.
1977    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1978    if (!Parameter || Parameter->getType()->isReferenceType())
1979      return;
1980
1981    S.Diag(Init->getExprLoc(),
1982           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1983                     : diag::warn_bind_ref_member_to_parameter)
1984      << Member << Parameter << Init->getSourceRange();
1985  } else {
1986    // Other initializers are fine.
1987    return;
1988  }
1989
1990  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
1991    << (unsigned)IsPointer;
1992}
1993
1994/// Checks an initializer expression for use of uninitialized fields, such as
1995/// containing the field that is being initialized. Returns true if there is an
1996/// uninitialized field was used an updates the SourceLocation parameter; false
1997/// otherwise.
1998static bool InitExprContainsUninitializedFields(const Stmt *S,
1999                                                const ValueDecl *LhsField,
2000                                                SourceLocation *L) {
2001  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2002
2003  if (isa<CallExpr>(S)) {
2004    // Do not descend into function calls or constructors, as the use
2005    // of an uninitialized field may be valid. One would have to inspect
2006    // the contents of the function/ctor to determine if it is safe or not.
2007    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2008    // may be safe, depending on what the function/ctor does.
2009    return false;
2010  }
2011  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2012    const NamedDecl *RhsField = ME->getMemberDecl();
2013
2014    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2015      // The member expression points to a static data member.
2016      assert(VD->isStaticDataMember() &&
2017             "Member points to non-static data member!");
2018      (void)VD;
2019      return false;
2020    }
2021
2022    if (isa<EnumConstantDecl>(RhsField)) {
2023      // The member expression points to an enum.
2024      return false;
2025    }
2026
2027    if (RhsField == LhsField) {
2028      // Initializing a field with itself. Throw a warning.
2029      // But wait; there are exceptions!
2030      // Exception #1:  The field may not belong to this record.
2031      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2032      const Expr *base = ME->getBase();
2033      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2034        // Even though the field matches, it does not belong to this record.
2035        return false;
2036      }
2037      // None of the exceptions triggered; return true to indicate an
2038      // uninitialized field was used.
2039      *L = ME->getMemberLoc();
2040      return true;
2041    }
2042  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2043    // sizeof/alignof doesn't reference contents, do not warn.
2044    return false;
2045  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2046    // address-of doesn't reference contents (the pointer may be dereferenced
2047    // in the same expression but it would be rare; and weird).
2048    if (UOE->getOpcode() == UO_AddrOf)
2049      return false;
2050  }
2051  for (Stmt::const_child_range it = S->children(); it; ++it) {
2052    if (!*it) {
2053      // An expression such as 'member(arg ?: "")' may trigger this.
2054      continue;
2055    }
2056    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2057      return true;
2058  }
2059  return false;
2060}
2061
2062MemInitResult
2063Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2064                             SourceLocation IdLoc) {
2065  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2066  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2067  assert((DirectMember || IndirectMember) &&
2068         "Member must be a FieldDecl or IndirectFieldDecl");
2069
2070  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2071    return true;
2072
2073  if (Member->isInvalidDecl())
2074    return true;
2075
2076  // Diagnose value-uses of fields to initialize themselves, e.g.
2077  //   foo(foo)
2078  // where foo is not also a parameter to the constructor.
2079  // TODO: implement -Wuninitialized and fold this into that framework.
2080  Expr **Args;
2081  unsigned NumArgs;
2082  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2083    Args = ParenList->getExprs();
2084    NumArgs = ParenList->getNumExprs();
2085  } else {
2086    InitListExpr *InitList = cast<InitListExpr>(Init);
2087    Args = InitList->getInits();
2088    NumArgs = InitList->getNumInits();
2089  }
2090  for (unsigned i = 0; i < NumArgs; ++i) {
2091    SourceLocation L;
2092    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
2093      // FIXME: Return true in the case when other fields are used before being
2094      // uninitialized. For example, let this field be the i'th field. When
2095      // initializing the i'th field, throw a warning if any of the >= i'th
2096      // fields are used, as they are not yet initialized.
2097      // Right now we are only handling the case where the i'th field uses
2098      // itself in its initializer.
2099      Diag(L, diag::warn_field_is_uninit);
2100    }
2101  }
2102
2103  SourceRange InitRange = Init->getSourceRange();
2104
2105  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2106    // Can't check initialization for a member of dependent type or when
2107    // any of the arguments are type-dependent expressions.
2108    DiscardCleanupsInEvaluationContext();
2109  } else {
2110    bool InitList = false;
2111    if (isa<InitListExpr>(Init)) {
2112      InitList = true;
2113      Args = &Init;
2114      NumArgs = 1;
2115    }
2116
2117    // Initialize the member.
2118    InitializedEntity MemberEntity =
2119      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2120                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2121    InitializationKind Kind =
2122      InitList ? InitializationKind::CreateDirectList(IdLoc)
2123               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2124                                                  InitRange.getEnd());
2125
2126    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2127    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2128                                            MultiExprArg(*this, Args, NumArgs),
2129                                            0);
2130    if (MemberInit.isInvalid())
2131      return true;
2132
2133    CheckImplicitConversions(MemberInit.get(),
2134                             InitRange.getBegin());
2135
2136    // C++0x [class.base.init]p7:
2137    //   The initialization of each base and member constitutes a
2138    //   full-expression.
2139    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2140    if (MemberInit.isInvalid())
2141      return true;
2142
2143    // If we are in a dependent context, template instantiation will
2144    // perform this type-checking again. Just save the arguments that we
2145    // received.
2146    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2147    // of the information that we have about the member
2148    // initializer. However, deconstructing the ASTs is a dicey process,
2149    // and this approach is far more likely to get the corner cases right.
2150    if (CurContext->isDependentContext()) {
2151      // The existing Init will do fine.
2152    } else {
2153      Init = MemberInit.get();
2154      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2155    }
2156  }
2157
2158  if (DirectMember) {
2159    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2160                                            InitRange.getBegin(), Init,
2161                                            InitRange.getEnd());
2162  } else {
2163    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2164                                            InitRange.getBegin(), Init,
2165                                            InitRange.getEnd());
2166  }
2167}
2168
2169MemInitResult
2170Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2171                                 CXXRecordDecl *ClassDecl) {
2172  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2173  if (!LangOpts.CPlusPlus0x)
2174    return Diag(NameLoc, diag::err_delegating_ctor)
2175      << TInfo->getTypeLoc().getLocalSourceRange();
2176  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2177
2178  bool InitList = true;
2179  Expr **Args = &Init;
2180  unsigned NumArgs = 1;
2181  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2182    InitList = false;
2183    Args = ParenList->getExprs();
2184    NumArgs = ParenList->getNumExprs();
2185  }
2186
2187  SourceRange InitRange = Init->getSourceRange();
2188  // Initialize the object.
2189  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2190                                     QualType(ClassDecl->getTypeForDecl(), 0));
2191  InitializationKind Kind =
2192    InitList ? InitializationKind::CreateDirectList(NameLoc)
2193             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2194                                                InitRange.getEnd());
2195  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2196  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2197                                              MultiExprArg(*this, Args,NumArgs),
2198                                              0);
2199  if (DelegationInit.isInvalid())
2200    return true;
2201
2202  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2203         "Delegating constructor with no target?");
2204
2205  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2206
2207  // C++0x [class.base.init]p7:
2208  //   The initialization of each base and member constitutes a
2209  //   full-expression.
2210  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2211  if (DelegationInit.isInvalid())
2212    return true;
2213
2214  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2215                                          DelegationInit.takeAs<Expr>(),
2216                                          InitRange.getEnd());
2217}
2218
2219MemInitResult
2220Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2221                           Expr *Init, CXXRecordDecl *ClassDecl,
2222                           SourceLocation EllipsisLoc) {
2223  SourceLocation BaseLoc
2224    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2225
2226  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2227    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2228             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2229
2230  // C++ [class.base.init]p2:
2231  //   [...] Unless the mem-initializer-id names a nonstatic data
2232  //   member of the constructor's class or a direct or virtual base
2233  //   of that class, the mem-initializer is ill-formed. A
2234  //   mem-initializer-list can initialize a base class using any
2235  //   name that denotes that base class type.
2236  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2237
2238  SourceRange InitRange = Init->getSourceRange();
2239  if (EllipsisLoc.isValid()) {
2240    // This is a pack expansion.
2241    if (!BaseType->containsUnexpandedParameterPack())  {
2242      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2243        << SourceRange(BaseLoc, InitRange.getEnd());
2244
2245      EllipsisLoc = SourceLocation();
2246    }
2247  } else {
2248    // Check for any unexpanded parameter packs.
2249    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2250      return true;
2251
2252    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2253      return true;
2254  }
2255
2256  // Check for direct and virtual base classes.
2257  const CXXBaseSpecifier *DirectBaseSpec = 0;
2258  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2259  if (!Dependent) {
2260    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2261                                       BaseType))
2262      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2263
2264    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2265                        VirtualBaseSpec);
2266
2267    // C++ [base.class.init]p2:
2268    // Unless the mem-initializer-id names a nonstatic data member of the
2269    // constructor's class or a direct or virtual base of that class, the
2270    // mem-initializer is ill-formed.
2271    if (!DirectBaseSpec && !VirtualBaseSpec) {
2272      // If the class has any dependent bases, then it's possible that
2273      // one of those types will resolve to the same type as
2274      // BaseType. Therefore, just treat this as a dependent base
2275      // class initialization.  FIXME: Should we try to check the
2276      // initialization anyway? It seems odd.
2277      if (ClassDecl->hasAnyDependentBases())
2278        Dependent = true;
2279      else
2280        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2281          << BaseType << Context.getTypeDeclType(ClassDecl)
2282          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2283    }
2284  }
2285
2286  if (Dependent) {
2287    DiscardCleanupsInEvaluationContext();
2288
2289    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2290                                            /*IsVirtual=*/false,
2291                                            InitRange.getBegin(), Init,
2292                                            InitRange.getEnd(), EllipsisLoc);
2293  }
2294
2295  // C++ [base.class.init]p2:
2296  //   If a mem-initializer-id is ambiguous because it designates both
2297  //   a direct non-virtual base class and an inherited virtual base
2298  //   class, the mem-initializer is ill-formed.
2299  if (DirectBaseSpec && VirtualBaseSpec)
2300    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2301      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2302
2303  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2304  if (!BaseSpec)
2305    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2306
2307  // Initialize the base.
2308  bool InitList = true;
2309  Expr **Args = &Init;
2310  unsigned NumArgs = 1;
2311  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2312    InitList = false;
2313    Args = ParenList->getExprs();
2314    NumArgs = ParenList->getNumExprs();
2315  }
2316
2317  InitializedEntity BaseEntity =
2318    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2319  InitializationKind Kind =
2320    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2321             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2322                                                InitRange.getEnd());
2323  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2324  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2325                                          MultiExprArg(*this, Args, NumArgs),
2326                                          0);
2327  if (BaseInit.isInvalid())
2328    return true;
2329
2330  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2331
2332  // C++0x [class.base.init]p7:
2333  //   The initialization of each base and member constitutes a
2334  //   full-expression.
2335  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2336  if (BaseInit.isInvalid())
2337    return true;
2338
2339  // If we are in a dependent context, template instantiation will
2340  // perform this type-checking again. Just save the arguments that we
2341  // received in a ParenListExpr.
2342  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2343  // of the information that we have about the base
2344  // initializer. However, deconstructing the ASTs is a dicey process,
2345  // and this approach is far more likely to get the corner cases right.
2346  if (CurContext->isDependentContext())
2347    BaseInit = Owned(Init);
2348
2349  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2350                                          BaseSpec->isVirtual(),
2351                                          InitRange.getBegin(),
2352                                          BaseInit.takeAs<Expr>(),
2353                                          InitRange.getEnd(), EllipsisLoc);
2354}
2355
2356// Create a static_cast\<T&&>(expr).
2357static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2358  QualType ExprType = E->getType();
2359  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2360  SourceLocation ExprLoc = E->getLocStart();
2361  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2362      TargetType, ExprLoc);
2363
2364  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2365                                   SourceRange(ExprLoc, ExprLoc),
2366                                   E->getSourceRange()).take();
2367}
2368
2369/// ImplicitInitializerKind - How an implicit base or member initializer should
2370/// initialize its base or member.
2371enum ImplicitInitializerKind {
2372  IIK_Default,
2373  IIK_Copy,
2374  IIK_Move
2375};
2376
2377static bool
2378BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2379                             ImplicitInitializerKind ImplicitInitKind,
2380                             CXXBaseSpecifier *BaseSpec,
2381                             bool IsInheritedVirtualBase,
2382                             CXXCtorInitializer *&CXXBaseInit) {
2383  InitializedEntity InitEntity
2384    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2385                                        IsInheritedVirtualBase);
2386
2387  ExprResult BaseInit;
2388
2389  switch (ImplicitInitKind) {
2390  case IIK_Default: {
2391    InitializationKind InitKind
2392      = InitializationKind::CreateDefault(Constructor->getLocation());
2393    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2394    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2395                               MultiExprArg(SemaRef, 0, 0));
2396    break;
2397  }
2398
2399  case IIK_Move:
2400  case IIK_Copy: {
2401    bool Moving = ImplicitInitKind == IIK_Move;
2402    ParmVarDecl *Param = Constructor->getParamDecl(0);
2403    QualType ParamType = Param->getType().getNonReferenceType();
2404
2405    Expr *CopyCtorArg =
2406      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2407                          SourceLocation(), Param,
2408                          Constructor->getLocation(), ParamType,
2409                          VK_LValue, 0);
2410
2411    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2412
2413    // Cast to the base class to avoid ambiguities.
2414    QualType ArgTy =
2415      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2416                                       ParamType.getQualifiers());
2417
2418    if (Moving) {
2419      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2420    }
2421
2422    CXXCastPath BasePath;
2423    BasePath.push_back(BaseSpec);
2424    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2425                                            CK_UncheckedDerivedToBase,
2426                                            Moving ? VK_XValue : VK_LValue,
2427                                            &BasePath).take();
2428
2429    InitializationKind InitKind
2430      = InitializationKind::CreateDirect(Constructor->getLocation(),
2431                                         SourceLocation(), SourceLocation());
2432    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2433                                   &CopyCtorArg, 1);
2434    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2435                               MultiExprArg(&CopyCtorArg, 1));
2436    break;
2437  }
2438  }
2439
2440  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2441  if (BaseInit.isInvalid())
2442    return true;
2443
2444  CXXBaseInit =
2445    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2446               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2447                                                        SourceLocation()),
2448                                             BaseSpec->isVirtual(),
2449                                             SourceLocation(),
2450                                             BaseInit.takeAs<Expr>(),
2451                                             SourceLocation(),
2452                                             SourceLocation());
2453
2454  return false;
2455}
2456
2457static bool RefersToRValueRef(Expr *MemRef) {
2458  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2459  return Referenced->getType()->isRValueReferenceType();
2460}
2461
2462static bool
2463BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2464                               ImplicitInitializerKind ImplicitInitKind,
2465                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2466                               CXXCtorInitializer *&CXXMemberInit) {
2467  if (Field->isInvalidDecl())
2468    return true;
2469
2470  SourceLocation Loc = Constructor->getLocation();
2471
2472  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2473    bool Moving = ImplicitInitKind == IIK_Move;
2474    ParmVarDecl *Param = Constructor->getParamDecl(0);
2475    QualType ParamType = Param->getType().getNonReferenceType();
2476
2477    // Suppress copying zero-width bitfields.
2478    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2479      return false;
2480
2481    Expr *MemberExprBase =
2482      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2483                          SourceLocation(), Param,
2484                          Loc, ParamType, VK_LValue, 0);
2485
2486    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2487
2488    if (Moving) {
2489      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2490    }
2491
2492    // Build a reference to this field within the parameter.
2493    CXXScopeSpec SS;
2494    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2495                              Sema::LookupMemberName);
2496    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2497                                  : cast<ValueDecl>(Field), AS_public);
2498    MemberLookup.resolveKind();
2499    ExprResult CtorArg
2500      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2501                                         ParamType, Loc,
2502                                         /*IsArrow=*/false,
2503                                         SS,
2504                                         /*TemplateKWLoc=*/SourceLocation(),
2505                                         /*FirstQualifierInScope=*/0,
2506                                         MemberLookup,
2507                                         /*TemplateArgs=*/0);
2508    if (CtorArg.isInvalid())
2509      return true;
2510
2511    // C++11 [class.copy]p15:
2512    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2513    //     with static_cast<T&&>(x.m);
2514    if (RefersToRValueRef(CtorArg.get())) {
2515      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2516    }
2517
2518    // When the field we are copying is an array, create index variables for
2519    // each dimension of the array. We use these index variables to subscript
2520    // the source array, and other clients (e.g., CodeGen) will perform the
2521    // necessary iteration with these index variables.
2522    SmallVector<VarDecl *, 4> IndexVariables;
2523    QualType BaseType = Field->getType();
2524    QualType SizeType = SemaRef.Context.getSizeType();
2525    bool InitializingArray = false;
2526    while (const ConstantArrayType *Array
2527                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2528      InitializingArray = true;
2529      // Create the iteration variable for this array index.
2530      IdentifierInfo *IterationVarName = 0;
2531      {
2532        SmallString<8> Str;
2533        llvm::raw_svector_ostream OS(Str);
2534        OS << "__i" << IndexVariables.size();
2535        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2536      }
2537      VarDecl *IterationVar
2538        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2539                          IterationVarName, SizeType,
2540                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2541                          SC_None, SC_None);
2542      IndexVariables.push_back(IterationVar);
2543
2544      // Create a reference to the iteration variable.
2545      ExprResult IterationVarRef
2546        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2547      assert(!IterationVarRef.isInvalid() &&
2548             "Reference to invented variable cannot fail!");
2549      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2550      assert(!IterationVarRef.isInvalid() &&
2551             "Conversion of invented variable cannot fail!");
2552
2553      // Subscript the array with this iteration variable.
2554      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2555                                                        IterationVarRef.take(),
2556                                                        Loc);
2557      if (CtorArg.isInvalid())
2558        return true;
2559
2560      BaseType = Array->getElementType();
2561    }
2562
2563    // The array subscript expression is an lvalue, which is wrong for moving.
2564    if (Moving && InitializingArray)
2565      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2566
2567    // Construct the entity that we will be initializing. For an array, this
2568    // will be first element in the array, which may require several levels
2569    // of array-subscript entities.
2570    SmallVector<InitializedEntity, 4> Entities;
2571    Entities.reserve(1 + IndexVariables.size());
2572    if (Indirect)
2573      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2574    else
2575      Entities.push_back(InitializedEntity::InitializeMember(Field));
2576    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2577      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2578                                                              0,
2579                                                              Entities.back()));
2580
2581    // Direct-initialize to use the copy constructor.
2582    InitializationKind InitKind =
2583      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2584
2585    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2586    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2587                                   &CtorArgE, 1);
2588
2589    ExprResult MemberInit
2590      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2591                        MultiExprArg(&CtorArgE, 1));
2592    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2593    if (MemberInit.isInvalid())
2594      return true;
2595
2596    if (Indirect) {
2597      assert(IndexVariables.size() == 0 &&
2598             "Indirect field improperly initialized");
2599      CXXMemberInit
2600        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2601                                                   Loc, Loc,
2602                                                   MemberInit.takeAs<Expr>(),
2603                                                   Loc);
2604    } else
2605      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2606                                                 Loc, MemberInit.takeAs<Expr>(),
2607                                                 Loc,
2608                                                 IndexVariables.data(),
2609                                                 IndexVariables.size());
2610    return false;
2611  }
2612
2613  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2614
2615  QualType FieldBaseElementType =
2616    SemaRef.Context.getBaseElementType(Field->getType());
2617
2618  if (FieldBaseElementType->isRecordType()) {
2619    InitializedEntity InitEntity
2620      = Indirect? InitializedEntity::InitializeMember(Indirect)
2621                : InitializedEntity::InitializeMember(Field);
2622    InitializationKind InitKind =
2623      InitializationKind::CreateDefault(Loc);
2624
2625    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2626    ExprResult MemberInit =
2627      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2628
2629    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2630    if (MemberInit.isInvalid())
2631      return true;
2632
2633    if (Indirect)
2634      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2635                                                               Indirect, Loc,
2636                                                               Loc,
2637                                                               MemberInit.get(),
2638                                                               Loc);
2639    else
2640      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2641                                                               Field, Loc, Loc,
2642                                                               MemberInit.get(),
2643                                                               Loc);
2644    return false;
2645  }
2646
2647  if (!Field->getParent()->isUnion()) {
2648    if (FieldBaseElementType->isReferenceType()) {
2649      SemaRef.Diag(Constructor->getLocation(),
2650                   diag::err_uninitialized_member_in_ctor)
2651      << (int)Constructor->isImplicit()
2652      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2653      << 0 << Field->getDeclName();
2654      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2655      return true;
2656    }
2657
2658    if (FieldBaseElementType.isConstQualified()) {
2659      SemaRef.Diag(Constructor->getLocation(),
2660                   diag::err_uninitialized_member_in_ctor)
2661      << (int)Constructor->isImplicit()
2662      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2663      << 1 << Field->getDeclName();
2664      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2665      return true;
2666    }
2667  }
2668
2669  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2670      FieldBaseElementType->isObjCRetainableType() &&
2671      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2672      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2673    // Instant objects:
2674    //   Default-initialize Objective-C pointers to NULL.
2675    CXXMemberInit
2676      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2677                                                 Loc, Loc,
2678                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2679                                                 Loc);
2680    return false;
2681  }
2682
2683  // Nothing to initialize.
2684  CXXMemberInit = 0;
2685  return false;
2686}
2687
2688namespace {
2689struct BaseAndFieldInfo {
2690  Sema &S;
2691  CXXConstructorDecl *Ctor;
2692  bool AnyErrorsInInits;
2693  ImplicitInitializerKind IIK;
2694  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2695  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2696
2697  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2698    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2699    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2700    if (Generated && Ctor->isCopyConstructor())
2701      IIK = IIK_Copy;
2702    else if (Generated && Ctor->isMoveConstructor())
2703      IIK = IIK_Move;
2704    else
2705      IIK = IIK_Default;
2706  }
2707
2708  bool isImplicitCopyOrMove() const {
2709    switch (IIK) {
2710    case IIK_Copy:
2711    case IIK_Move:
2712      return true;
2713
2714    case IIK_Default:
2715      return false;
2716    }
2717
2718    llvm_unreachable("Invalid ImplicitInitializerKind!");
2719  }
2720};
2721}
2722
2723/// \brief Determine whether the given indirect field declaration is somewhere
2724/// within an anonymous union.
2725static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2726  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2727                                      CEnd = F->chain_end();
2728       C != CEnd; ++C)
2729    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2730      if (Record->isUnion())
2731        return true;
2732
2733  return false;
2734}
2735
2736/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2737/// array type.
2738static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2739  if (T->isIncompleteArrayType())
2740    return true;
2741
2742  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2743    if (!ArrayT->getSize())
2744      return true;
2745
2746    T = ArrayT->getElementType();
2747  }
2748
2749  return false;
2750}
2751
2752static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2753                                    FieldDecl *Field,
2754                                    IndirectFieldDecl *Indirect = 0) {
2755
2756  // Overwhelmingly common case: we have a direct initializer for this field.
2757  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2758    Info.AllToInit.push_back(Init);
2759    return false;
2760  }
2761
2762  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2763  // has a brace-or-equal-initializer, the entity is initialized as specified
2764  // in [dcl.init].
2765  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2766    CXXCtorInitializer *Init;
2767    if (Indirect)
2768      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2769                                                      SourceLocation(),
2770                                                      SourceLocation(), 0,
2771                                                      SourceLocation());
2772    else
2773      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2774                                                      SourceLocation(),
2775                                                      SourceLocation(), 0,
2776                                                      SourceLocation());
2777    Info.AllToInit.push_back(Init);
2778    return false;
2779  }
2780
2781  // Don't build an implicit initializer for union members if none was
2782  // explicitly specified.
2783  if (Field->getParent()->isUnion() ||
2784      (Indirect && isWithinAnonymousUnion(Indirect)))
2785    return false;
2786
2787  // Don't initialize incomplete or zero-length arrays.
2788  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2789    return false;
2790
2791  // Don't try to build an implicit initializer if there were semantic
2792  // errors in any of the initializers (and therefore we might be
2793  // missing some that the user actually wrote).
2794  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2795    return false;
2796
2797  CXXCtorInitializer *Init = 0;
2798  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2799                                     Indirect, Init))
2800    return true;
2801
2802  if (Init)
2803    Info.AllToInit.push_back(Init);
2804
2805  return false;
2806}
2807
2808bool
2809Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2810                               CXXCtorInitializer *Initializer) {
2811  assert(Initializer->isDelegatingInitializer());
2812  Constructor->setNumCtorInitializers(1);
2813  CXXCtorInitializer **initializer =
2814    new (Context) CXXCtorInitializer*[1];
2815  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2816  Constructor->setCtorInitializers(initializer);
2817
2818  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2819    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2820    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2821  }
2822
2823  DelegatingCtorDecls.push_back(Constructor);
2824
2825  return false;
2826}
2827
2828bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2829                               CXXCtorInitializer **Initializers,
2830                               unsigned NumInitializers,
2831                               bool AnyErrors) {
2832  if (Constructor->isDependentContext()) {
2833    // Just store the initializers as written, they will be checked during
2834    // instantiation.
2835    if (NumInitializers > 0) {
2836      Constructor->setNumCtorInitializers(NumInitializers);
2837      CXXCtorInitializer **baseOrMemberInitializers =
2838        new (Context) CXXCtorInitializer*[NumInitializers];
2839      memcpy(baseOrMemberInitializers, Initializers,
2840             NumInitializers * sizeof(CXXCtorInitializer*));
2841      Constructor->setCtorInitializers(baseOrMemberInitializers);
2842    }
2843
2844    return false;
2845  }
2846
2847  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2848
2849  // We need to build the initializer AST according to order of construction
2850  // and not what user specified in the Initializers list.
2851  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2852  if (!ClassDecl)
2853    return true;
2854
2855  bool HadError = false;
2856
2857  for (unsigned i = 0; i < NumInitializers; i++) {
2858    CXXCtorInitializer *Member = Initializers[i];
2859
2860    if (Member->isBaseInitializer())
2861      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2862    else
2863      Info.AllBaseFields[Member->getAnyMember()] = Member;
2864  }
2865
2866  // Keep track of the direct virtual bases.
2867  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2868  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2869       E = ClassDecl->bases_end(); I != E; ++I) {
2870    if (I->isVirtual())
2871      DirectVBases.insert(I);
2872  }
2873
2874  // Push virtual bases before others.
2875  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2876       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2877
2878    if (CXXCtorInitializer *Value
2879        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2880      Info.AllToInit.push_back(Value);
2881    } else if (!AnyErrors) {
2882      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2883      CXXCtorInitializer *CXXBaseInit;
2884      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2885                                       VBase, IsInheritedVirtualBase,
2886                                       CXXBaseInit)) {
2887        HadError = true;
2888        continue;
2889      }
2890
2891      Info.AllToInit.push_back(CXXBaseInit);
2892    }
2893  }
2894
2895  // Non-virtual bases.
2896  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2897       E = ClassDecl->bases_end(); Base != E; ++Base) {
2898    // Virtuals are in the virtual base list and already constructed.
2899    if (Base->isVirtual())
2900      continue;
2901
2902    if (CXXCtorInitializer *Value
2903          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2904      Info.AllToInit.push_back(Value);
2905    } else if (!AnyErrors) {
2906      CXXCtorInitializer *CXXBaseInit;
2907      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2908                                       Base, /*IsInheritedVirtualBase=*/false,
2909                                       CXXBaseInit)) {
2910        HadError = true;
2911        continue;
2912      }
2913
2914      Info.AllToInit.push_back(CXXBaseInit);
2915    }
2916  }
2917
2918  // Fields.
2919  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2920                               MemEnd = ClassDecl->decls_end();
2921       Mem != MemEnd; ++Mem) {
2922    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2923      // C++ [class.bit]p2:
2924      //   A declaration for a bit-field that omits the identifier declares an
2925      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2926      //   initialized.
2927      if (F->isUnnamedBitfield())
2928        continue;
2929
2930      // If we're not generating the implicit copy/move constructor, then we'll
2931      // handle anonymous struct/union fields based on their individual
2932      // indirect fields.
2933      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2934        continue;
2935
2936      if (CollectFieldInitializer(*this, Info, F))
2937        HadError = true;
2938      continue;
2939    }
2940
2941    // Beyond this point, we only consider default initialization.
2942    if (Info.IIK != IIK_Default)
2943      continue;
2944
2945    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2946      if (F->getType()->isIncompleteArrayType()) {
2947        assert(ClassDecl->hasFlexibleArrayMember() &&
2948               "Incomplete array type is not valid");
2949        continue;
2950      }
2951
2952      // Initialize each field of an anonymous struct individually.
2953      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2954        HadError = true;
2955
2956      continue;
2957    }
2958  }
2959
2960  NumInitializers = Info.AllToInit.size();
2961  if (NumInitializers > 0) {
2962    Constructor->setNumCtorInitializers(NumInitializers);
2963    CXXCtorInitializer **baseOrMemberInitializers =
2964      new (Context) CXXCtorInitializer*[NumInitializers];
2965    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2966           NumInitializers * sizeof(CXXCtorInitializer*));
2967    Constructor->setCtorInitializers(baseOrMemberInitializers);
2968
2969    // Constructors implicitly reference the base and member
2970    // destructors.
2971    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2972                                           Constructor->getParent());
2973  }
2974
2975  return HadError;
2976}
2977
2978static void *GetKeyForTopLevelField(FieldDecl *Field) {
2979  // For anonymous unions, use the class declaration as the key.
2980  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2981    if (RT->getDecl()->isAnonymousStructOrUnion())
2982      return static_cast<void *>(RT->getDecl());
2983  }
2984  return static_cast<void *>(Field);
2985}
2986
2987static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2988  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2989}
2990
2991static void *GetKeyForMember(ASTContext &Context,
2992                             CXXCtorInitializer *Member) {
2993  if (!Member->isAnyMemberInitializer())
2994    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2995
2996  // For fields injected into the class via declaration of an anonymous union,
2997  // use its anonymous union class declaration as the unique key.
2998  FieldDecl *Field = Member->getAnyMember();
2999
3000  // If the field is a member of an anonymous struct or union, our key
3001  // is the anonymous record decl that's a direct child of the class.
3002  RecordDecl *RD = Field->getParent();
3003  if (RD->isAnonymousStructOrUnion()) {
3004    while (true) {
3005      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3006      if (Parent->isAnonymousStructOrUnion())
3007        RD = Parent;
3008      else
3009        break;
3010    }
3011
3012    return static_cast<void *>(RD);
3013  }
3014
3015  return static_cast<void *>(Field);
3016}
3017
3018static void
3019DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3020                                  const CXXConstructorDecl *Constructor,
3021                                  CXXCtorInitializer **Inits,
3022                                  unsigned NumInits) {
3023  if (Constructor->getDeclContext()->isDependentContext())
3024    return;
3025
3026  // Don't check initializers order unless the warning is enabled at the
3027  // location of at least one initializer.
3028  bool ShouldCheckOrder = false;
3029  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3030    CXXCtorInitializer *Init = Inits[InitIndex];
3031    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3032                                         Init->getSourceLocation())
3033          != DiagnosticsEngine::Ignored) {
3034      ShouldCheckOrder = true;
3035      break;
3036    }
3037  }
3038  if (!ShouldCheckOrder)
3039    return;
3040
3041  // Build the list of bases and members in the order that they'll
3042  // actually be initialized.  The explicit initializers should be in
3043  // this same order but may be missing things.
3044  SmallVector<const void*, 32> IdealInitKeys;
3045
3046  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3047
3048  // 1. Virtual bases.
3049  for (CXXRecordDecl::base_class_const_iterator VBase =
3050       ClassDecl->vbases_begin(),
3051       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3052    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3053
3054  // 2. Non-virtual bases.
3055  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3056       E = ClassDecl->bases_end(); Base != E; ++Base) {
3057    if (Base->isVirtual())
3058      continue;
3059    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3060  }
3061
3062  // 3. Direct fields.
3063  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3064       E = ClassDecl->field_end(); Field != E; ++Field) {
3065    if (Field->isUnnamedBitfield())
3066      continue;
3067
3068    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3069  }
3070
3071  unsigned NumIdealInits = IdealInitKeys.size();
3072  unsigned IdealIndex = 0;
3073
3074  CXXCtorInitializer *PrevInit = 0;
3075  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3076    CXXCtorInitializer *Init = Inits[InitIndex];
3077    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3078
3079    // Scan forward to try to find this initializer in the idealized
3080    // initializers list.
3081    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3082      if (InitKey == IdealInitKeys[IdealIndex])
3083        break;
3084
3085    // If we didn't find this initializer, it must be because we
3086    // scanned past it on a previous iteration.  That can only
3087    // happen if we're out of order;  emit a warning.
3088    if (IdealIndex == NumIdealInits && PrevInit) {
3089      Sema::SemaDiagnosticBuilder D =
3090        SemaRef.Diag(PrevInit->getSourceLocation(),
3091                     diag::warn_initializer_out_of_order);
3092
3093      if (PrevInit->isAnyMemberInitializer())
3094        D << 0 << PrevInit->getAnyMember()->getDeclName();
3095      else
3096        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3097
3098      if (Init->isAnyMemberInitializer())
3099        D << 0 << Init->getAnyMember()->getDeclName();
3100      else
3101        D << 1 << Init->getTypeSourceInfo()->getType();
3102
3103      // Move back to the initializer's location in the ideal list.
3104      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3105        if (InitKey == IdealInitKeys[IdealIndex])
3106          break;
3107
3108      assert(IdealIndex != NumIdealInits &&
3109             "initializer not found in initializer list");
3110    }
3111
3112    PrevInit = Init;
3113  }
3114}
3115
3116namespace {
3117bool CheckRedundantInit(Sema &S,
3118                        CXXCtorInitializer *Init,
3119                        CXXCtorInitializer *&PrevInit) {
3120  if (!PrevInit) {
3121    PrevInit = Init;
3122    return false;
3123  }
3124
3125  if (FieldDecl *Field = Init->getMember())
3126    S.Diag(Init->getSourceLocation(),
3127           diag::err_multiple_mem_initialization)
3128      << Field->getDeclName()
3129      << Init->getSourceRange();
3130  else {
3131    const Type *BaseClass = Init->getBaseClass();
3132    assert(BaseClass && "neither field nor base");
3133    S.Diag(Init->getSourceLocation(),
3134           diag::err_multiple_base_initialization)
3135      << QualType(BaseClass, 0)
3136      << Init->getSourceRange();
3137  }
3138  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3139    << 0 << PrevInit->getSourceRange();
3140
3141  return true;
3142}
3143
3144typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3145typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3146
3147bool CheckRedundantUnionInit(Sema &S,
3148                             CXXCtorInitializer *Init,
3149                             RedundantUnionMap &Unions) {
3150  FieldDecl *Field = Init->getAnyMember();
3151  RecordDecl *Parent = Field->getParent();
3152  NamedDecl *Child = Field;
3153
3154  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3155    if (Parent->isUnion()) {
3156      UnionEntry &En = Unions[Parent];
3157      if (En.first && En.first != Child) {
3158        S.Diag(Init->getSourceLocation(),
3159               diag::err_multiple_mem_union_initialization)
3160          << Field->getDeclName()
3161          << Init->getSourceRange();
3162        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3163          << 0 << En.second->getSourceRange();
3164        return true;
3165      }
3166      if (!En.first) {
3167        En.first = Child;
3168        En.second = Init;
3169      }
3170      if (!Parent->isAnonymousStructOrUnion())
3171        return false;
3172    }
3173
3174    Child = Parent;
3175    Parent = cast<RecordDecl>(Parent->getDeclContext());
3176  }
3177
3178  return false;
3179}
3180}
3181
3182/// ActOnMemInitializers - Handle the member initializers for a constructor.
3183void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3184                                SourceLocation ColonLoc,
3185                                CXXCtorInitializer **meminits,
3186                                unsigned NumMemInits,
3187                                bool AnyErrors) {
3188  if (!ConstructorDecl)
3189    return;
3190
3191  AdjustDeclIfTemplate(ConstructorDecl);
3192
3193  CXXConstructorDecl *Constructor
3194    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3195
3196  if (!Constructor) {
3197    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3198    return;
3199  }
3200
3201  CXXCtorInitializer **MemInits =
3202    reinterpret_cast<CXXCtorInitializer **>(meminits);
3203
3204  // Mapping for the duplicate initializers check.
3205  // For member initializers, this is keyed with a FieldDecl*.
3206  // For base initializers, this is keyed with a Type*.
3207  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3208
3209  // Mapping for the inconsistent anonymous-union initializers check.
3210  RedundantUnionMap MemberUnions;
3211
3212  bool HadError = false;
3213  for (unsigned i = 0; i < NumMemInits; i++) {
3214    CXXCtorInitializer *Init = MemInits[i];
3215
3216    // Set the source order index.
3217    Init->setSourceOrder(i);
3218
3219    if (Init->isAnyMemberInitializer()) {
3220      FieldDecl *Field = Init->getAnyMember();
3221      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3222          CheckRedundantUnionInit(*this, Init, MemberUnions))
3223        HadError = true;
3224    } else if (Init->isBaseInitializer()) {
3225      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3226      if (CheckRedundantInit(*this, Init, Members[Key]))
3227        HadError = true;
3228    } else {
3229      assert(Init->isDelegatingInitializer());
3230      // This must be the only initializer
3231      if (i != 0 || NumMemInits > 1) {
3232        Diag(MemInits[0]->getSourceLocation(),
3233             diag::err_delegating_initializer_alone)
3234          << MemInits[0]->getSourceRange();
3235        HadError = true;
3236        // We will treat this as being the only initializer.
3237      }
3238      SetDelegatingInitializer(Constructor, MemInits[i]);
3239      // Return immediately as the initializer is set.
3240      return;
3241    }
3242  }
3243
3244  if (HadError)
3245    return;
3246
3247  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3248
3249  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3250}
3251
3252void
3253Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3254                                             CXXRecordDecl *ClassDecl) {
3255  // Ignore dependent contexts. Also ignore unions, since their members never
3256  // have destructors implicitly called.
3257  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3258    return;
3259
3260  // FIXME: all the access-control diagnostics are positioned on the
3261  // field/base declaration.  That's probably good; that said, the
3262  // user might reasonably want to know why the destructor is being
3263  // emitted, and we currently don't say.
3264
3265  // Non-static data members.
3266  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3267       E = ClassDecl->field_end(); I != E; ++I) {
3268    FieldDecl *Field = *I;
3269    if (Field->isInvalidDecl())
3270      continue;
3271
3272    // Don't destroy incomplete or zero-length arrays.
3273    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3274      continue;
3275
3276    QualType FieldType = Context.getBaseElementType(Field->getType());
3277
3278    const RecordType* RT = FieldType->getAs<RecordType>();
3279    if (!RT)
3280      continue;
3281
3282    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3283    if (FieldClassDecl->isInvalidDecl())
3284      continue;
3285    if (FieldClassDecl->hasIrrelevantDestructor())
3286      continue;
3287
3288    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3289    assert(Dtor && "No dtor found for FieldClassDecl!");
3290    CheckDestructorAccess(Field->getLocation(), Dtor,
3291                          PDiag(diag::err_access_dtor_field)
3292                            << Field->getDeclName()
3293                            << FieldType);
3294
3295    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3296    DiagnoseUseOfDecl(Dtor, Location);
3297  }
3298
3299  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3300
3301  // Bases.
3302  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3303       E = ClassDecl->bases_end(); Base != E; ++Base) {
3304    // Bases are always records in a well-formed non-dependent class.
3305    const RecordType *RT = Base->getType()->getAs<RecordType>();
3306
3307    // Remember direct virtual bases.
3308    if (Base->isVirtual())
3309      DirectVirtualBases.insert(RT);
3310
3311    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3312    // If our base class is invalid, we probably can't get its dtor anyway.
3313    if (BaseClassDecl->isInvalidDecl())
3314      continue;
3315    if (BaseClassDecl->hasIrrelevantDestructor())
3316      continue;
3317
3318    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3319    assert(Dtor && "No dtor found for BaseClassDecl!");
3320
3321    // FIXME: caret should be on the start of the class name
3322    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3323                          PDiag(diag::err_access_dtor_base)
3324                            << Base->getType()
3325                            << Base->getSourceRange());
3326
3327    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3328    DiagnoseUseOfDecl(Dtor, Location);
3329  }
3330
3331  // Virtual bases.
3332  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3333       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3334
3335    // Bases are always records in a well-formed non-dependent class.
3336    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3337
3338    // Ignore direct virtual bases.
3339    if (DirectVirtualBases.count(RT))
3340      continue;
3341
3342    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3343    // If our base class is invalid, we probably can't get its dtor anyway.
3344    if (BaseClassDecl->isInvalidDecl())
3345      continue;
3346    if (BaseClassDecl->hasIrrelevantDestructor())
3347      continue;
3348
3349    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3350    assert(Dtor && "No dtor found for BaseClassDecl!");
3351    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3352                          PDiag(diag::err_access_dtor_vbase)
3353                            << VBase->getType());
3354
3355    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3356    DiagnoseUseOfDecl(Dtor, Location);
3357  }
3358}
3359
3360void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3361  if (!CDtorDecl)
3362    return;
3363
3364  if (CXXConstructorDecl *Constructor
3365      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3366    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3367}
3368
3369bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3370                                  unsigned DiagID, AbstractDiagSelID SelID) {
3371  if (SelID == -1)
3372    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3373  else
3374    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3375}
3376
3377bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3378                                  const PartialDiagnostic &PD) {
3379  if (!getLangOptions().CPlusPlus)
3380    return false;
3381
3382  if (const ArrayType *AT = Context.getAsArrayType(T))
3383    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3384
3385  if (const PointerType *PT = T->getAs<PointerType>()) {
3386    // Find the innermost pointer type.
3387    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3388      PT = T;
3389
3390    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3391      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3392  }
3393
3394  const RecordType *RT = T->getAs<RecordType>();
3395  if (!RT)
3396    return false;
3397
3398  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3399
3400  // We can't answer whether something is abstract until it has a
3401  // definition.  If it's currently being defined, we'll walk back
3402  // over all the declarations when we have a full definition.
3403  const CXXRecordDecl *Def = RD->getDefinition();
3404  if (!Def || Def->isBeingDefined())
3405    return false;
3406
3407  if (!RD->isAbstract())
3408    return false;
3409
3410  Diag(Loc, PD) << RD->getDeclName();
3411  DiagnoseAbstractType(RD);
3412
3413  return true;
3414}
3415
3416void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3417  // Check if we've already emitted the list of pure virtual functions
3418  // for this class.
3419  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3420    return;
3421
3422  CXXFinalOverriderMap FinalOverriders;
3423  RD->getFinalOverriders(FinalOverriders);
3424
3425  // Keep a set of seen pure methods so we won't diagnose the same method
3426  // more than once.
3427  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3428
3429  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3430                                   MEnd = FinalOverriders.end();
3431       M != MEnd;
3432       ++M) {
3433    for (OverridingMethods::iterator SO = M->second.begin(),
3434                                  SOEnd = M->second.end();
3435         SO != SOEnd; ++SO) {
3436      // C++ [class.abstract]p4:
3437      //   A class is abstract if it contains or inherits at least one
3438      //   pure virtual function for which the final overrider is pure
3439      //   virtual.
3440
3441      //
3442      if (SO->second.size() != 1)
3443        continue;
3444
3445      if (!SO->second.front().Method->isPure())
3446        continue;
3447
3448      if (!SeenPureMethods.insert(SO->second.front().Method))
3449        continue;
3450
3451      Diag(SO->second.front().Method->getLocation(),
3452           diag::note_pure_virtual_function)
3453        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3454    }
3455  }
3456
3457  if (!PureVirtualClassDiagSet)
3458    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3459  PureVirtualClassDiagSet->insert(RD);
3460}
3461
3462namespace {
3463struct AbstractUsageInfo {
3464  Sema &S;
3465  CXXRecordDecl *Record;
3466  CanQualType AbstractType;
3467  bool Invalid;
3468
3469  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3470    : S(S), Record(Record),
3471      AbstractType(S.Context.getCanonicalType(
3472                   S.Context.getTypeDeclType(Record))),
3473      Invalid(false) {}
3474
3475  void DiagnoseAbstractType() {
3476    if (Invalid) return;
3477    S.DiagnoseAbstractType(Record);
3478    Invalid = true;
3479  }
3480
3481  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3482};
3483
3484struct CheckAbstractUsage {
3485  AbstractUsageInfo &Info;
3486  const NamedDecl *Ctx;
3487
3488  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3489    : Info(Info), Ctx(Ctx) {}
3490
3491  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3492    switch (TL.getTypeLocClass()) {
3493#define ABSTRACT_TYPELOC(CLASS, PARENT)
3494#define TYPELOC(CLASS, PARENT) \
3495    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3496#include "clang/AST/TypeLocNodes.def"
3497    }
3498  }
3499
3500  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3501    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3502    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3503      if (!TL.getArg(I))
3504        continue;
3505
3506      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3507      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3508    }
3509  }
3510
3511  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3512    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3513  }
3514
3515  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3516    // Visit the type parameters from a permissive context.
3517    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3518      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3519      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3520        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3521          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3522      // TODO: other template argument types?
3523    }
3524  }
3525
3526  // Visit pointee types from a permissive context.
3527#define CheckPolymorphic(Type) \
3528  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3529    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3530  }
3531  CheckPolymorphic(PointerTypeLoc)
3532  CheckPolymorphic(ReferenceTypeLoc)
3533  CheckPolymorphic(MemberPointerTypeLoc)
3534  CheckPolymorphic(BlockPointerTypeLoc)
3535  CheckPolymorphic(AtomicTypeLoc)
3536
3537  /// Handle all the types we haven't given a more specific
3538  /// implementation for above.
3539  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3540    // Every other kind of type that we haven't called out already
3541    // that has an inner type is either (1) sugar or (2) contains that
3542    // inner type in some way as a subobject.
3543    if (TypeLoc Next = TL.getNextTypeLoc())
3544      return Visit(Next, Sel);
3545
3546    // If there's no inner type and we're in a permissive context,
3547    // don't diagnose.
3548    if (Sel == Sema::AbstractNone) return;
3549
3550    // Check whether the type matches the abstract type.
3551    QualType T = TL.getType();
3552    if (T->isArrayType()) {
3553      Sel = Sema::AbstractArrayType;
3554      T = Info.S.Context.getBaseElementType(T);
3555    }
3556    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3557    if (CT != Info.AbstractType) return;
3558
3559    // It matched; do some magic.
3560    if (Sel == Sema::AbstractArrayType) {
3561      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3562        << T << TL.getSourceRange();
3563    } else {
3564      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3565        << Sel << T << TL.getSourceRange();
3566    }
3567    Info.DiagnoseAbstractType();
3568  }
3569};
3570
3571void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3572                                  Sema::AbstractDiagSelID Sel) {
3573  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3574}
3575
3576}
3577
3578/// Check for invalid uses of an abstract type in a method declaration.
3579static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3580                                    CXXMethodDecl *MD) {
3581  // No need to do the check on definitions, which require that
3582  // the return/param types be complete.
3583  if (MD->doesThisDeclarationHaveABody())
3584    return;
3585
3586  // For safety's sake, just ignore it if we don't have type source
3587  // information.  This should never happen for non-implicit methods,
3588  // but...
3589  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3590    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3591}
3592
3593/// Check for invalid uses of an abstract type within a class definition.
3594static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3595                                    CXXRecordDecl *RD) {
3596  for (CXXRecordDecl::decl_iterator
3597         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3598    Decl *D = *I;
3599    if (D->isImplicit()) continue;
3600
3601    // Methods and method templates.
3602    if (isa<CXXMethodDecl>(D)) {
3603      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3604    } else if (isa<FunctionTemplateDecl>(D)) {
3605      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3606      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3607
3608    // Fields and static variables.
3609    } else if (isa<FieldDecl>(D)) {
3610      FieldDecl *FD = cast<FieldDecl>(D);
3611      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3612        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3613    } else if (isa<VarDecl>(D)) {
3614      VarDecl *VD = cast<VarDecl>(D);
3615      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3616        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3617
3618    // Nested classes and class templates.
3619    } else if (isa<CXXRecordDecl>(D)) {
3620      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3621    } else if (isa<ClassTemplateDecl>(D)) {
3622      CheckAbstractClassUsage(Info,
3623                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3624    }
3625  }
3626}
3627
3628/// \brief Perform semantic checks on a class definition that has been
3629/// completing, introducing implicitly-declared members, checking for
3630/// abstract types, etc.
3631void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3632  if (!Record)
3633    return;
3634
3635  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3636    AbstractUsageInfo Info(*this, Record);
3637    CheckAbstractClassUsage(Info, Record);
3638  }
3639
3640  // If this is not an aggregate type and has no user-declared constructor,
3641  // complain about any non-static data members of reference or const scalar
3642  // type, since they will never get initializers.
3643  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3644      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3645      !Record->isLambda()) {
3646    bool Complained = false;
3647    for (RecordDecl::field_iterator F = Record->field_begin(),
3648                                 FEnd = Record->field_end();
3649         F != FEnd; ++F) {
3650      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3651        continue;
3652
3653      if (F->getType()->isReferenceType() ||
3654          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3655        if (!Complained) {
3656          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3657            << Record->getTagKind() << Record;
3658          Complained = true;
3659        }
3660
3661        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3662          << F->getType()->isReferenceType()
3663          << F->getDeclName();
3664      }
3665    }
3666  }
3667
3668  if (Record->isDynamicClass() && !Record->isDependentType())
3669    DynamicClasses.push_back(Record);
3670
3671  if (Record->getIdentifier()) {
3672    // C++ [class.mem]p13:
3673    //   If T is the name of a class, then each of the following shall have a
3674    //   name different from T:
3675    //     - every member of every anonymous union that is a member of class T.
3676    //
3677    // C++ [class.mem]p14:
3678    //   In addition, if class T has a user-declared constructor (12.1), every
3679    //   non-static data member of class T shall have a name different from T.
3680    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3681         R.first != R.second; ++R.first) {
3682      NamedDecl *D = *R.first;
3683      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3684          isa<IndirectFieldDecl>(D)) {
3685        Diag(D->getLocation(), diag::err_member_name_of_class)
3686          << D->getDeclName();
3687        break;
3688      }
3689    }
3690  }
3691
3692  // Warn if the class has virtual methods but non-virtual public destructor.
3693  if (Record->isPolymorphic() && !Record->isDependentType()) {
3694    CXXDestructorDecl *dtor = Record->getDestructor();
3695    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3696      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3697           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3698  }
3699
3700  // See if a method overloads virtual methods in a base
3701  /// class without overriding any.
3702  if (!Record->isDependentType()) {
3703    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3704                                     MEnd = Record->method_end();
3705         M != MEnd; ++M) {
3706      if (!(*M)->isStatic())
3707        DiagnoseHiddenVirtualMethods(Record, *M);
3708    }
3709  }
3710
3711  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3712  // function that is not a constructor declares that member function to be
3713  // const. [...] The class of which that function is a member shall be
3714  // a literal type.
3715  //
3716  // If the class has virtual bases, any constexpr members will already have
3717  // been diagnosed by the checks performed on the member declaration, so
3718  // suppress this (less useful) diagnostic.
3719  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3720      !Record->isLiteral() && !Record->getNumVBases()) {
3721    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3722                                     MEnd = Record->method_end();
3723         M != MEnd; ++M) {
3724      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3725        switch (Record->getTemplateSpecializationKind()) {
3726        case TSK_ImplicitInstantiation:
3727        case TSK_ExplicitInstantiationDeclaration:
3728        case TSK_ExplicitInstantiationDefinition:
3729          // If a template instantiates to a non-literal type, but its members
3730          // instantiate to constexpr functions, the template is technically
3731          // ill-formed, but we allow it for sanity.
3732          continue;
3733
3734        case TSK_Undeclared:
3735        case TSK_ExplicitSpecialization:
3736          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3737                             PDiag(diag::err_constexpr_method_non_literal));
3738          break;
3739        }
3740
3741        // Only produce one error per class.
3742        break;
3743      }
3744    }
3745  }
3746
3747  // Declare inherited constructors. We do this eagerly here because:
3748  // - The standard requires an eager diagnostic for conflicting inherited
3749  //   constructors from different classes.
3750  // - The lazy declaration of the other implicit constructors is so as to not
3751  //   waste space and performance on classes that are not meant to be
3752  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3753  //   have inherited constructors.
3754  DeclareInheritedConstructors(Record);
3755
3756  if (!Record->isDependentType())
3757    CheckExplicitlyDefaultedMethods(Record);
3758}
3759
3760void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3761  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3762                                      ME = Record->method_end();
3763       MI != ME; ++MI) {
3764    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3765      switch (getSpecialMember(*MI)) {
3766      case CXXDefaultConstructor:
3767        CheckExplicitlyDefaultedDefaultConstructor(
3768                                                  cast<CXXConstructorDecl>(*MI));
3769        break;
3770
3771      case CXXDestructor:
3772        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3773        break;
3774
3775      case CXXCopyConstructor:
3776        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3777        break;
3778
3779      case CXXCopyAssignment:
3780        CheckExplicitlyDefaultedCopyAssignment(*MI);
3781        break;
3782
3783      case CXXMoveConstructor:
3784        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3785        break;
3786
3787      case CXXMoveAssignment:
3788        CheckExplicitlyDefaultedMoveAssignment(*MI);
3789        break;
3790
3791      case CXXInvalid:
3792        llvm_unreachable("non-special member explicitly defaulted!");
3793      }
3794    }
3795  }
3796
3797}
3798
3799void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3800  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3801
3802  // Whether this was the first-declared instance of the constructor.
3803  // This affects whether we implicitly add an exception spec (and, eventually,
3804  // constexpr). It is also ill-formed to explicitly default a constructor such
3805  // that it would be deleted. (C++0x [decl.fct.def.default])
3806  bool First = CD == CD->getCanonicalDecl();
3807
3808  bool HadError = false;
3809  if (CD->getNumParams() != 0) {
3810    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3811      << CD->getSourceRange();
3812    HadError = true;
3813  }
3814
3815  ImplicitExceptionSpecification Spec
3816    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3817  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3818  if (EPI.ExceptionSpecType == EST_Delayed) {
3819    // Exception specification depends on some deferred part of the class. We'll
3820    // try again when the class's definition has been fully processed.
3821    return;
3822  }
3823  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3824                          *ExceptionType = Context.getFunctionType(
3825                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3826
3827  // C++11 [dcl.fct.def.default]p2:
3828  //   An explicitly-defaulted function may be declared constexpr only if it
3829  //   would have been implicitly declared as constexpr,
3830  // Do not apply this rule to templates, since core issue 1358 makes such
3831  // functions always instantiate to constexpr functions.
3832  if (CD->isConstexpr() &&
3833      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3834    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3835      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3836        << CXXDefaultConstructor;
3837      HadError = true;
3838    }
3839  }
3840  //   and may have an explicit exception-specification only if it is compatible
3841  //   with the exception-specification on the implicit declaration.
3842  if (CtorType->hasExceptionSpec()) {
3843    if (CheckEquivalentExceptionSpec(
3844          PDiag(diag::err_incorrect_defaulted_exception_spec)
3845            << CXXDefaultConstructor,
3846          PDiag(),
3847          ExceptionType, SourceLocation(),
3848          CtorType, CD->getLocation())) {
3849      HadError = true;
3850    }
3851  }
3852
3853  //   If a function is explicitly defaulted on its first declaration,
3854  if (First) {
3855    //  -- it is implicitly considered to be constexpr if the implicit
3856    //     definition would be,
3857    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3858
3859    //  -- it is implicitly considered to have the same
3860    //     exception-specification as if it had been implicitly declared
3861    //
3862    // FIXME: a compatible, but different, explicit exception specification
3863    // will be silently overridden. We should issue a warning if this happens.
3864    EPI.ExtInfo = CtorType->getExtInfo();
3865  }
3866
3867  if (HadError) {
3868    CD->setInvalidDecl();
3869    return;
3870  }
3871
3872  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3873    if (First) {
3874      CD->setDeletedAsWritten();
3875    } else {
3876      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3877        << CXXDefaultConstructor;
3878      CD->setInvalidDecl();
3879    }
3880  }
3881}
3882
3883void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3884  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3885
3886  // Whether this was the first-declared instance of the constructor.
3887  bool First = CD == CD->getCanonicalDecl();
3888
3889  bool HadError = false;
3890  if (CD->getNumParams() != 1) {
3891    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3892      << CD->getSourceRange();
3893    HadError = true;
3894  }
3895
3896  ImplicitExceptionSpecification Spec(Context);
3897  bool Const;
3898  llvm::tie(Spec, Const) =
3899    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3900
3901  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3902  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3903                          *ExceptionType = Context.getFunctionType(
3904                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3905
3906  // Check for parameter type matching.
3907  // This is a copy ctor so we know it's a cv-qualified reference to T.
3908  QualType ArgType = CtorType->getArgType(0);
3909  if (ArgType->getPointeeType().isVolatileQualified()) {
3910    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3911    HadError = true;
3912  }
3913  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3914    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3915    HadError = true;
3916  }
3917
3918  // C++11 [dcl.fct.def.default]p2:
3919  //   An explicitly-defaulted function may be declared constexpr only if it
3920  //   would have been implicitly declared as constexpr,
3921  // Do not apply this rule to templates, since core issue 1358 makes such
3922  // functions always instantiate to constexpr functions.
3923  if (CD->isConstexpr() &&
3924      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3925    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3926      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3927        << CXXCopyConstructor;
3928      HadError = true;
3929    }
3930  }
3931  //   and may have an explicit exception-specification only if it is compatible
3932  //   with the exception-specification on the implicit declaration.
3933  if (CtorType->hasExceptionSpec()) {
3934    if (CheckEquivalentExceptionSpec(
3935          PDiag(diag::err_incorrect_defaulted_exception_spec)
3936            << CXXCopyConstructor,
3937          PDiag(),
3938          ExceptionType, SourceLocation(),
3939          CtorType, CD->getLocation())) {
3940      HadError = true;
3941    }
3942  }
3943
3944  //   If a function is explicitly defaulted on its first declaration,
3945  if (First) {
3946    //  -- it is implicitly considered to be constexpr if the implicit
3947    //     definition would be,
3948    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3949
3950    //  -- it is implicitly considered to have the same
3951    //     exception-specification as if it had been implicitly declared, and
3952    //
3953    // FIXME: a compatible, but different, explicit exception specification
3954    // will be silently overridden. We should issue a warning if this happens.
3955    EPI.ExtInfo = CtorType->getExtInfo();
3956
3957    //  -- [...] it shall have the same parameter type as if it had been
3958    //     implicitly declared.
3959    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3960  }
3961
3962  if (HadError) {
3963    CD->setInvalidDecl();
3964    return;
3965  }
3966
3967  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3968    if (First) {
3969      CD->setDeletedAsWritten();
3970    } else {
3971      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3972        << CXXCopyConstructor;
3973      CD->setInvalidDecl();
3974    }
3975  }
3976}
3977
3978void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3979  assert(MD->isExplicitlyDefaulted());
3980
3981  // Whether this was the first-declared instance of the operator
3982  bool First = MD == MD->getCanonicalDecl();
3983
3984  bool HadError = false;
3985  if (MD->getNumParams() != 1) {
3986    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3987      << MD->getSourceRange();
3988    HadError = true;
3989  }
3990
3991  QualType ReturnType =
3992    MD->getType()->getAs<FunctionType>()->getResultType();
3993  if (!ReturnType->isLValueReferenceType() ||
3994      !Context.hasSameType(
3995        Context.getCanonicalType(ReturnType->getPointeeType()),
3996        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3997    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3998    HadError = true;
3999  }
4000
4001  ImplicitExceptionSpecification Spec(Context);
4002  bool Const;
4003  llvm::tie(Spec, Const) =
4004    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
4005
4006  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4007  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4008                          *ExceptionType = Context.getFunctionType(
4009                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4010
4011  QualType ArgType = OperType->getArgType(0);
4012  if (!ArgType->isLValueReferenceType()) {
4013    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4014    HadError = true;
4015  } else {
4016    if (ArgType->getPointeeType().isVolatileQualified()) {
4017      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
4018      HadError = true;
4019    }
4020    if (ArgType->getPointeeType().isConstQualified() && !Const) {
4021      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
4022      HadError = true;
4023    }
4024  }
4025
4026  if (OperType->getTypeQuals()) {
4027    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
4028    HadError = true;
4029  }
4030
4031  if (OperType->hasExceptionSpec()) {
4032    if (CheckEquivalentExceptionSpec(
4033          PDiag(diag::err_incorrect_defaulted_exception_spec)
4034            << CXXCopyAssignment,
4035          PDiag(),
4036          ExceptionType, SourceLocation(),
4037          OperType, MD->getLocation())) {
4038      HadError = true;
4039    }
4040  }
4041  if (First) {
4042    // We set the declaration to have the computed exception spec here.
4043    // We duplicate the one parameter type.
4044    EPI.RefQualifier = OperType->getRefQualifier();
4045    EPI.ExtInfo = OperType->getExtInfo();
4046    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4047  }
4048
4049  if (HadError) {
4050    MD->setInvalidDecl();
4051    return;
4052  }
4053
4054  if (ShouldDeleteSpecialMember(MD, CXXCopyAssignment)) {
4055    if (First) {
4056      MD->setDeletedAsWritten();
4057    } else {
4058      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4059        << CXXCopyAssignment;
4060      MD->setInvalidDecl();
4061    }
4062  }
4063}
4064
4065void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4066  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4067
4068  // Whether this was the first-declared instance of the constructor.
4069  bool First = CD == CD->getCanonicalDecl();
4070
4071  bool HadError = false;
4072  if (CD->getNumParams() != 1) {
4073    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4074      << CD->getSourceRange();
4075    HadError = true;
4076  }
4077
4078  ImplicitExceptionSpecification Spec(
4079      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4080
4081  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4082  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4083                          *ExceptionType = Context.getFunctionType(
4084                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4085
4086  // Check for parameter type matching.
4087  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4088  QualType ArgType = CtorType->getArgType(0);
4089  if (ArgType->getPointeeType().isVolatileQualified()) {
4090    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4091    HadError = true;
4092  }
4093  if (ArgType->getPointeeType().isConstQualified()) {
4094    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4095    HadError = true;
4096  }
4097
4098  // C++11 [dcl.fct.def.default]p2:
4099  //   An explicitly-defaulted function may be declared constexpr only if it
4100  //   would have been implicitly declared as constexpr,
4101  // Do not apply this rule to templates, since core issue 1358 makes such
4102  // functions always instantiate to constexpr functions.
4103  if (CD->isConstexpr() &&
4104      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4105    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4106      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4107        << CXXMoveConstructor;
4108      HadError = true;
4109    }
4110  }
4111  //   and may have an explicit exception-specification only if it is compatible
4112  //   with the exception-specification on the implicit declaration.
4113  if (CtorType->hasExceptionSpec()) {
4114    if (CheckEquivalentExceptionSpec(
4115          PDiag(diag::err_incorrect_defaulted_exception_spec)
4116            << CXXMoveConstructor,
4117          PDiag(),
4118          ExceptionType, SourceLocation(),
4119          CtorType, CD->getLocation())) {
4120      HadError = true;
4121    }
4122  }
4123
4124  //   If a function is explicitly defaulted on its first declaration,
4125  if (First) {
4126    //  -- it is implicitly considered to be constexpr if the implicit
4127    //     definition would be,
4128    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4129
4130    //  -- it is implicitly considered to have the same
4131    //     exception-specification as if it had been implicitly declared, and
4132    //
4133    // FIXME: a compatible, but different, explicit exception specification
4134    // will be silently overridden. We should issue a warning if this happens.
4135    EPI.ExtInfo = CtorType->getExtInfo();
4136
4137    //  -- [...] it shall have the same parameter type as if it had been
4138    //     implicitly declared.
4139    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4140  }
4141
4142  if (HadError) {
4143    CD->setInvalidDecl();
4144    return;
4145  }
4146
4147  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4148    if (First) {
4149      CD->setDeletedAsWritten();
4150    } else {
4151      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4152        << CXXMoveConstructor;
4153      CD->setInvalidDecl();
4154    }
4155  }
4156}
4157
4158void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4159  assert(MD->isExplicitlyDefaulted());
4160
4161  // Whether this was the first-declared instance of the operator
4162  bool First = MD == MD->getCanonicalDecl();
4163
4164  bool HadError = false;
4165  if (MD->getNumParams() != 1) {
4166    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4167      << MD->getSourceRange();
4168    HadError = true;
4169  }
4170
4171  QualType ReturnType =
4172    MD->getType()->getAs<FunctionType>()->getResultType();
4173  if (!ReturnType->isLValueReferenceType() ||
4174      !Context.hasSameType(
4175        Context.getCanonicalType(ReturnType->getPointeeType()),
4176        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4177    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4178    HadError = true;
4179  }
4180
4181  ImplicitExceptionSpecification Spec(
4182      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4183
4184  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4185  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4186                          *ExceptionType = Context.getFunctionType(
4187                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4188
4189  QualType ArgType = OperType->getArgType(0);
4190  if (!ArgType->isRValueReferenceType()) {
4191    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4192    HadError = true;
4193  } else {
4194    if (ArgType->getPointeeType().isVolatileQualified()) {
4195      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4196      HadError = true;
4197    }
4198    if (ArgType->getPointeeType().isConstQualified()) {
4199      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4200      HadError = true;
4201    }
4202  }
4203
4204  if (OperType->getTypeQuals()) {
4205    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4206    HadError = true;
4207  }
4208
4209  if (OperType->hasExceptionSpec()) {
4210    if (CheckEquivalentExceptionSpec(
4211          PDiag(diag::err_incorrect_defaulted_exception_spec)
4212            << CXXMoveAssignment,
4213          PDiag(),
4214          ExceptionType, SourceLocation(),
4215          OperType, MD->getLocation())) {
4216      HadError = true;
4217    }
4218  }
4219  if (First) {
4220    // We set the declaration to have the computed exception spec here.
4221    // We duplicate the one parameter type.
4222    EPI.RefQualifier = OperType->getRefQualifier();
4223    EPI.ExtInfo = OperType->getExtInfo();
4224    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4225  }
4226
4227  if (HadError) {
4228    MD->setInvalidDecl();
4229    return;
4230  }
4231
4232  if (ShouldDeleteSpecialMember(MD, CXXMoveAssignment)) {
4233    if (First) {
4234      MD->setDeletedAsWritten();
4235    } else {
4236      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4237        << CXXMoveAssignment;
4238      MD->setInvalidDecl();
4239    }
4240  }
4241}
4242
4243void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4244  assert(DD->isExplicitlyDefaulted());
4245
4246  // Whether this was the first-declared instance of the destructor.
4247  bool First = DD == DD->getCanonicalDecl();
4248
4249  ImplicitExceptionSpecification Spec
4250    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4251  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4252  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4253                          *ExceptionType = Context.getFunctionType(
4254                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4255
4256  if (DtorType->hasExceptionSpec()) {
4257    if (CheckEquivalentExceptionSpec(
4258          PDiag(diag::err_incorrect_defaulted_exception_spec)
4259            << CXXDestructor,
4260          PDiag(),
4261          ExceptionType, SourceLocation(),
4262          DtorType, DD->getLocation())) {
4263      DD->setInvalidDecl();
4264      return;
4265    }
4266  }
4267  if (First) {
4268    // We set the declaration to have the computed exception spec here.
4269    // There are no parameters.
4270    EPI.ExtInfo = DtorType->getExtInfo();
4271    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4272  }
4273
4274  if (ShouldDeleteSpecialMember(DD, CXXDestructor)) {
4275    if (First) {
4276      DD->setDeletedAsWritten();
4277    } else {
4278      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4279        << CXXDestructor;
4280      DD->setInvalidDecl();
4281    }
4282  }
4283}
4284
4285namespace {
4286struct SpecialMemberDeletionInfo {
4287  Sema &S;
4288  CXXMethodDecl *MD;
4289  Sema::CXXSpecialMember CSM;
4290
4291  // Properties of the special member, computed for convenience.
4292  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4293  SourceLocation Loc;
4294
4295  bool AllFieldsAreConst;
4296
4297  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4298                            Sema::CXXSpecialMember CSM)
4299    : S(S), MD(MD), CSM(CSM),
4300      IsConstructor(false), IsAssignment(false), IsMove(false),
4301      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4302      AllFieldsAreConst(true) {
4303    switch (CSM) {
4304      case Sema::CXXDefaultConstructor:
4305      case Sema::CXXCopyConstructor:
4306        IsConstructor = true;
4307        break;
4308      case Sema::CXXMoveConstructor:
4309        IsConstructor = true;
4310        IsMove = true;
4311        break;
4312      case Sema::CXXCopyAssignment:
4313        IsAssignment = true;
4314        break;
4315      case Sema::CXXMoveAssignment:
4316        IsAssignment = true;
4317        IsMove = true;
4318        break;
4319      case Sema::CXXDestructor:
4320        break;
4321      case Sema::CXXInvalid:
4322        llvm_unreachable("invalid special member kind");
4323    }
4324
4325    if (MD->getNumParams()) {
4326      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4327      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4328    }
4329  }
4330
4331  bool inUnion() const { return MD->getParent()->isUnion(); }
4332
4333  /// Look up the corresponding special member in the given class.
4334  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class) {
4335    unsigned TQ = MD->getTypeQualifiers();
4336    return S.LookupSpecialMember(Class, CSM, ConstArg, VolatileArg,
4337                                 MD->getRefQualifier() == RQ_RValue,
4338                                 TQ & Qualifiers::Const,
4339                                 TQ & Qualifiers::Volatile);
4340  }
4341
4342  bool shouldDeleteForBase(CXXRecordDecl *BaseDecl, bool IsVirtualBase);
4343  bool shouldDeleteForField(FieldDecl *FD);
4344  bool shouldDeleteForAllConstMembers();
4345};
4346}
4347
4348/// Check whether we should delete a special member function due to the class
4349/// having a particular direct or virtual base class.
4350bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXRecordDecl *BaseDecl,
4351                                                    bool IsVirtualBase) {
4352  // C++11 [class.copy]p23:
4353  // -- for the move assignment operator, any direct or indirect virtual
4354  //    base class.
4355  if (CSM == Sema::CXXMoveAssignment && IsVirtualBase)
4356    return true;
4357
4358  // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
4359  // -- any direct or virtual base class [...] has a type with a destructor
4360  //    that is deleted or inaccessible
4361  if (!IsAssignment) {
4362    CXXDestructorDecl *BaseDtor = S.LookupDestructor(BaseDecl);
4363    if (BaseDtor->isDeleted())
4364      return true;
4365    if (S.CheckDestructorAccess(Loc, BaseDtor, S.PDiag())
4366          != Sema::AR_accessible)
4367      return true;
4368  }
4369
4370  // C++11 [class.ctor]p5:
4371  // -- any direct or virtual base class [...] has class type M [...] and
4372  //    either M has no default constructor or overload resolution as applied
4373  //    to M's default constructor results in an ambiguity or in a function
4374  //    that is deleted or inaccessible
4375  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4376  // -- a direct or virtual base class B that cannot be copied/moved because
4377  //    overload resolution, as applied to B's corresponding special member,
4378  //    results in an ambiguity or a function that is deleted or inaccessible
4379  //    from the defaulted special member
4380  if (CSM != Sema::CXXDestructor) {
4381    Sema::SpecialMemberOverloadResult *SMOR = lookupIn(BaseDecl);
4382    if (!SMOR->hasSuccess())
4383      return true;
4384
4385    CXXMethodDecl *BaseMember = SMOR->getMethod();
4386    if (IsConstructor) {
4387      CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4388      if (S.CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4389                                   S.PDiag()) != Sema::AR_accessible)
4390        return true;
4391
4392      // -- for the move constructor, a [...] direct or virtual base class with
4393      //    a type that does not have a move constructor and is not trivially
4394      //    copyable.
4395      if (IsMove && !BaseCtor->isMoveConstructor() &&
4396          !BaseDecl->isTriviallyCopyable())
4397        return true;
4398    } else {
4399      assert(IsAssignment && "unexpected kind of special member");
4400      if (S.CheckDirectMemberAccess(Loc, BaseMember, S.PDiag())
4401            != Sema::AR_accessible)
4402        return true;
4403
4404      // -- for the move assignment operator, a direct base class with a type
4405      //    that does not have a move assignment operator and is not trivially
4406      //    copyable.
4407      if (IsMove && !BaseMember->isMoveAssignmentOperator() &&
4408          !BaseDecl->isTriviallyCopyable())
4409        return true;
4410    }
4411  }
4412
4413  // C++11 [class.dtor]p5:
4414  // -- for a virtual destructor, lookup of the non-array deallocation function
4415  //    results in an ambiguity or in a function that is deleted or inaccessible
4416  if (CSM == Sema::CXXDestructor && MD->isVirtual()) {
4417    FunctionDecl *OperatorDelete = 0;
4418    DeclarationName Name =
4419      S.Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4420    if (S.FindDeallocationFunction(Loc, MD->getParent(), Name,
4421                                   OperatorDelete, false))
4422      return true;
4423  }
4424
4425  return false;
4426}
4427
4428/// Check whether we should delete a special member function due to the class
4429/// having a particular non-static data member.
4430bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4431  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4432  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4433
4434  if (CSM == Sema::CXXDefaultConstructor) {
4435    // For a default constructor, all references must be initialized in-class
4436    // and, if a union, it must have a non-const member.
4437    if (FieldType->isReferenceType() && !FD->hasInClassInitializer())
4438      return true;
4439
4440    if (inUnion() && !FieldType.isConstQualified())
4441      AllFieldsAreConst = false;
4442  } else if (CSM == Sema::CXXCopyConstructor) {
4443    // For a copy constructor, data members must not be of rvalue reference
4444    // type.
4445    if (FieldType->isRValueReferenceType())
4446      return true;
4447  } else if (IsAssignment) {
4448    // For an assignment operator, data members must not be of reference type.
4449    if (FieldType->isReferenceType())
4450      return true;
4451  }
4452
4453  if (FieldRecord) {
4454    // For a default constructor, a const member must have a user-provided
4455    // default constructor or else be explicitly initialized.
4456    if (CSM == Sema::CXXDefaultConstructor && FieldType.isConstQualified() &&
4457        !FD->hasInClassInitializer() &&
4458        !FieldRecord->hasUserProvidedDefaultConstructor())
4459      return true;
4460
4461    // Some additional restrictions exist on the variant members.
4462    if (!inUnion() && FieldRecord->isUnion() &&
4463        FieldRecord->isAnonymousStructOrUnion()) {
4464      bool AllVariantFieldsAreConst = true;
4465
4466      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4467                                         UE = FieldRecord->field_end();
4468           UI != UE; ++UI) {
4469        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4470        CXXRecordDecl *UnionFieldRecord =
4471          UnionFieldType->getAsCXXRecordDecl();
4472
4473        if (!UnionFieldType.isConstQualified())
4474          AllVariantFieldsAreConst = false;
4475
4476        if (UnionFieldRecord) {
4477          // FIXME: Checking for accessibility and validity of this
4478          //        destructor is technically going beyond the
4479          //        standard, but this is believed to be a defect.
4480          if (!IsAssignment) {
4481            CXXDestructorDecl *FieldDtor = S.LookupDestructor(UnionFieldRecord);
4482            if (FieldDtor->isDeleted())
4483              return true;
4484            if (S.CheckDestructorAccess(Loc, FieldDtor, S.PDiag()) !=
4485                Sema::AR_accessible)
4486              return true;
4487            if (!FieldDtor->isTrivial())
4488              return true;
4489          }
4490
4491          // FIXME: in-class initializers should be handled here
4492          if (CSM != Sema::CXXDestructor) {
4493            Sema::SpecialMemberOverloadResult *SMOR =
4494                lookupIn(UnionFieldRecord);
4495            // FIXME: Checking for accessibility and validity of this
4496            //        corresponding member is technically going beyond the
4497            //        standard, but this is believed to be a defect.
4498            if (!SMOR->hasSuccess())
4499              return true;
4500
4501            CXXMethodDecl *FieldMember = SMOR->getMethod();
4502            // A member of a union must have a trivial corresponding
4503            // special member.
4504            if (!FieldMember->isTrivial())
4505              return true;
4506
4507            if (IsConstructor) {
4508              CXXConstructorDecl *FieldCtor =
4509                  cast<CXXConstructorDecl>(FieldMember);
4510              if (S.CheckConstructorAccess(Loc, FieldCtor,
4511                                           FieldCtor->getAccess(),
4512                                           S.PDiag()) != Sema::AR_accessible)
4513              return true;
4514            } else {
4515              assert(IsAssignment && "unexpected kind of special member");
4516              if (S.CheckDirectMemberAccess(Loc, FieldMember, S.PDiag())
4517                  != Sema::AR_accessible)
4518                return true;
4519            }
4520          }
4521        }
4522      }
4523
4524      // At least one member in each anonymous union must be non-const
4525      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst)
4526        return true;
4527
4528      // Don't try to initialize the anonymous union
4529      // This is technically non-conformant, but sanity demands it.
4530      return false;
4531    }
4532
4533    // Unless we're doing assignment, the field's destructor must be
4534    // accessible and not deleted.
4535    if (!IsAssignment) {
4536      CXXDestructorDecl *FieldDtor = S.LookupDestructor(FieldRecord);
4537      if (FieldDtor->isDeleted())
4538        return true;
4539      if (S.CheckDestructorAccess(Loc, FieldDtor, S.PDiag()) !=
4540          Sema::AR_accessible)
4541        return true;
4542    }
4543
4544    // Check that the corresponding member of the field is accessible,
4545    // unique, and non-deleted. We don't do this if it has an explicit
4546    // initialization when default-constructing.
4547    if (CSM != Sema::CXXDestructor &&
4548        !(CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer())) {
4549      Sema::SpecialMemberOverloadResult *SMOR = lookupIn(FieldRecord);
4550      if (!SMOR->hasSuccess())
4551        return true;
4552
4553      CXXMethodDecl *FieldMember = SMOR->getMethod();
4554      if (IsConstructor) {
4555        CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4556        if (S.CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4557                                     S.PDiag()) != Sema::AR_accessible)
4558        return true;
4559
4560        // For a move operation, the corresponding operation must actually
4561        // be a move operation (and not a copy selected by overload
4562        // resolution) unless we are working on a trivially copyable class.
4563        if (IsMove && !FieldCtor->isMoveConstructor() &&
4564            !FieldRecord->isTriviallyCopyable())
4565          return true;
4566      } else {
4567        assert(IsAssignment && "unexpected kind of special member");
4568        if (S.CheckDirectMemberAccess(Loc, FieldMember, S.PDiag())
4569              != Sema::AR_accessible)
4570          return true;
4571
4572        // -- for the move assignment operator, a non-static data member with a
4573        //    type that does not have a move assignment operator and is not
4574        //    trivially copyable.
4575        if (IsMove && !FieldMember->isMoveAssignmentOperator() &&
4576            !FieldRecord->isTriviallyCopyable())
4577          return true;
4578      }
4579
4580      // We need the corresponding member of a union to be trivial so that
4581      // we can safely copy them all simultaneously.
4582      // FIXME: Note that performing the check here (where we rely on the lack
4583      // of an in-class initializer) is technically ill-formed. However, this
4584      // seems most obviously to be a bug in the standard.
4585      if (inUnion() && !FieldMember->isTrivial())
4586        return true;
4587    }
4588  } else if (CSM == Sema::CXXDefaultConstructor && !inUnion() &&
4589             FieldType.isConstQualified() && !FD->hasInClassInitializer()) {
4590    // We can't initialize a const member of non-class type to any value.
4591    return true;
4592  } else if (IsAssignment && FieldType.isConstQualified()) {
4593    // C++11 [class.copy]p23:
4594    // -- a non-static data member of const non-class type (or array thereof)
4595    return true;
4596  }
4597
4598  return false;
4599}
4600
4601/// C++11 [class.ctor] p5:
4602///   A defaulted default constructor for a class X is defined as deleted if
4603/// X is a union and all of its variant members are of const-qualified type.
4604bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4605  return CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst;
4606}
4607
4608/// Determine whether a defaulted special member function should be defined as
4609/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4610/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4611bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4612  assert(!MD->isInvalidDecl());
4613  CXXRecordDecl *RD = MD->getParent();
4614  assert(!RD->isDependentType() && "do deletion after instantiation");
4615  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4616    return false;
4617
4618  // C++11 [expr.lambda.prim]p19:
4619  //   The closure type associated with a lambda-expression has a
4620  //   deleted (8.4.3) default constructor and a deleted copy
4621  //   assignment operator.
4622  if (RD->isLambda() &&
4623      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment))
4624    return true;
4625
4626  // For an anonymous struct or union, the copy and assignment special members
4627  // will never be used, so skip the check. For an anonymous union declared at
4628  // namespace scope, the constructor and destructor are used.
4629  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4630      RD->isAnonymousStructOrUnion())
4631    return false;
4632
4633  // Do access control from the special member function
4634  ContextRAII MethodContext(*this, MD);
4635
4636  SpecialMemberDeletionInfo SMI(*this, MD, CSM);
4637
4638  // FIXME: We should put some diagnostic logic right into this function.
4639
4640  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4641                                          BE = RD->bases_end(); BI != BE; ++BI)
4642    if (!BI->isVirtual() &&
4643        SMI.shouldDeleteForBase(BI->getType()->getAsCXXRecordDecl(), false))
4644      return true;
4645
4646  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4647                                          BE = RD->vbases_end(); BI != BE; ++BI)
4648    if (SMI.shouldDeleteForBase(BI->getType()->getAsCXXRecordDecl(), true))
4649      return true;
4650
4651  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4652                                     FE = RD->field_end(); FI != FE; ++FI)
4653    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4654        SMI.shouldDeleteForField(*FI))
4655      return true;
4656
4657  if (SMI.shouldDeleteForAllConstMembers())
4658    return true;
4659
4660  return false;
4661}
4662
4663/// \brief Data used with FindHiddenVirtualMethod
4664namespace {
4665  struct FindHiddenVirtualMethodData {
4666    Sema *S;
4667    CXXMethodDecl *Method;
4668    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4669    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4670  };
4671}
4672
4673/// \brief Member lookup function that determines whether a given C++
4674/// method overloads virtual methods in a base class without overriding any,
4675/// to be used with CXXRecordDecl::lookupInBases().
4676static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4677                                    CXXBasePath &Path,
4678                                    void *UserData) {
4679  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4680
4681  FindHiddenVirtualMethodData &Data
4682    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4683
4684  DeclarationName Name = Data.Method->getDeclName();
4685  assert(Name.getNameKind() == DeclarationName::Identifier);
4686
4687  bool foundSameNameMethod = false;
4688  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4689  for (Path.Decls = BaseRecord->lookup(Name);
4690       Path.Decls.first != Path.Decls.second;
4691       ++Path.Decls.first) {
4692    NamedDecl *D = *Path.Decls.first;
4693    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4694      MD = MD->getCanonicalDecl();
4695      foundSameNameMethod = true;
4696      // Interested only in hidden virtual methods.
4697      if (!MD->isVirtual())
4698        continue;
4699      // If the method we are checking overrides a method from its base
4700      // don't warn about the other overloaded methods.
4701      if (!Data.S->IsOverload(Data.Method, MD, false))
4702        return true;
4703      // Collect the overload only if its hidden.
4704      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4705        overloadedMethods.push_back(MD);
4706    }
4707  }
4708
4709  if (foundSameNameMethod)
4710    Data.OverloadedMethods.append(overloadedMethods.begin(),
4711                                   overloadedMethods.end());
4712  return foundSameNameMethod;
4713}
4714
4715/// \brief See if a method overloads virtual methods in a base class without
4716/// overriding any.
4717void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4718  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4719                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4720    return;
4721  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4722    return;
4723
4724  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4725                     /*bool RecordPaths=*/false,
4726                     /*bool DetectVirtual=*/false);
4727  FindHiddenVirtualMethodData Data;
4728  Data.Method = MD;
4729  Data.S = this;
4730
4731  // Keep the base methods that were overriden or introduced in the subclass
4732  // by 'using' in a set. A base method not in this set is hidden.
4733  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4734       res.first != res.second; ++res.first) {
4735    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4736      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4737                                          E = MD->end_overridden_methods();
4738           I != E; ++I)
4739        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4740    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4741      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4742        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4743  }
4744
4745  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4746      !Data.OverloadedMethods.empty()) {
4747    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4748      << MD << (Data.OverloadedMethods.size() > 1);
4749
4750    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4751      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4752      Diag(overloadedMD->getLocation(),
4753           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4754    }
4755  }
4756}
4757
4758void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4759                                             Decl *TagDecl,
4760                                             SourceLocation LBrac,
4761                                             SourceLocation RBrac,
4762                                             AttributeList *AttrList) {
4763  if (!TagDecl)
4764    return;
4765
4766  AdjustDeclIfTemplate(TagDecl);
4767
4768  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4769              // strict aliasing violation!
4770              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4771              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4772
4773  CheckCompletedCXXClass(
4774                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4775}
4776
4777/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4778/// special functions, such as the default constructor, copy
4779/// constructor, or destructor, to the given C++ class (C++
4780/// [special]p1).  This routine can only be executed just before the
4781/// definition of the class is complete.
4782void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4783  if (!ClassDecl->hasUserDeclaredConstructor())
4784    ++ASTContext::NumImplicitDefaultConstructors;
4785
4786  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4787    ++ASTContext::NumImplicitCopyConstructors;
4788
4789  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4790    ++ASTContext::NumImplicitMoveConstructors;
4791
4792  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4793    ++ASTContext::NumImplicitCopyAssignmentOperators;
4794
4795    // If we have a dynamic class, then the copy assignment operator may be
4796    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4797    // it shows up in the right place in the vtable and that we diagnose
4798    // problems with the implicit exception specification.
4799    if (ClassDecl->isDynamicClass())
4800      DeclareImplicitCopyAssignment(ClassDecl);
4801  }
4802
4803  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
4804    ++ASTContext::NumImplicitMoveAssignmentOperators;
4805
4806    // Likewise for the move assignment operator.
4807    if (ClassDecl->isDynamicClass())
4808      DeclareImplicitMoveAssignment(ClassDecl);
4809  }
4810
4811  if (!ClassDecl->hasUserDeclaredDestructor()) {
4812    ++ASTContext::NumImplicitDestructors;
4813
4814    // If we have a dynamic class, then the destructor may be virtual, so we
4815    // have to declare the destructor immediately. This ensures that, e.g., it
4816    // shows up in the right place in the vtable and that we diagnose problems
4817    // with the implicit exception specification.
4818    if (ClassDecl->isDynamicClass())
4819      DeclareImplicitDestructor(ClassDecl);
4820  }
4821}
4822
4823void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4824  if (!D)
4825    return;
4826
4827  int NumParamList = D->getNumTemplateParameterLists();
4828  for (int i = 0; i < NumParamList; i++) {
4829    TemplateParameterList* Params = D->getTemplateParameterList(i);
4830    for (TemplateParameterList::iterator Param = Params->begin(),
4831                                      ParamEnd = Params->end();
4832          Param != ParamEnd; ++Param) {
4833      NamedDecl *Named = cast<NamedDecl>(*Param);
4834      if (Named->getDeclName()) {
4835        S->AddDecl(Named);
4836        IdResolver.AddDecl(Named);
4837      }
4838    }
4839  }
4840}
4841
4842void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4843  if (!D)
4844    return;
4845
4846  TemplateParameterList *Params = 0;
4847  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4848    Params = Template->getTemplateParameters();
4849  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4850           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4851    Params = PartialSpec->getTemplateParameters();
4852  else
4853    return;
4854
4855  for (TemplateParameterList::iterator Param = Params->begin(),
4856                                    ParamEnd = Params->end();
4857       Param != ParamEnd; ++Param) {
4858    NamedDecl *Named = cast<NamedDecl>(*Param);
4859    if (Named->getDeclName()) {
4860      S->AddDecl(Named);
4861      IdResolver.AddDecl(Named);
4862    }
4863  }
4864}
4865
4866void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4867  if (!RecordD) return;
4868  AdjustDeclIfTemplate(RecordD);
4869  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4870  PushDeclContext(S, Record);
4871}
4872
4873void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4874  if (!RecordD) return;
4875  PopDeclContext();
4876}
4877
4878/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4879/// parsing a top-level (non-nested) C++ class, and we are now
4880/// parsing those parts of the given Method declaration that could
4881/// not be parsed earlier (C++ [class.mem]p2), such as default
4882/// arguments. This action should enter the scope of the given
4883/// Method declaration as if we had just parsed the qualified method
4884/// name. However, it should not bring the parameters into scope;
4885/// that will be performed by ActOnDelayedCXXMethodParameter.
4886void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4887}
4888
4889/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4890/// C++ method declaration. We're (re-)introducing the given
4891/// function parameter into scope for use in parsing later parts of
4892/// the method declaration. For example, we could see an
4893/// ActOnParamDefaultArgument event for this parameter.
4894void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4895  if (!ParamD)
4896    return;
4897
4898  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4899
4900  // If this parameter has an unparsed default argument, clear it out
4901  // to make way for the parsed default argument.
4902  if (Param->hasUnparsedDefaultArg())
4903    Param->setDefaultArg(0);
4904
4905  S->AddDecl(Param);
4906  if (Param->getDeclName())
4907    IdResolver.AddDecl(Param);
4908}
4909
4910/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4911/// processing the delayed method declaration for Method. The method
4912/// declaration is now considered finished. There may be a separate
4913/// ActOnStartOfFunctionDef action later (not necessarily
4914/// immediately!) for this method, if it was also defined inside the
4915/// class body.
4916void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4917  if (!MethodD)
4918    return;
4919
4920  AdjustDeclIfTemplate(MethodD);
4921
4922  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4923
4924  // Now that we have our default arguments, check the constructor
4925  // again. It could produce additional diagnostics or affect whether
4926  // the class has implicitly-declared destructors, among other
4927  // things.
4928  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4929    CheckConstructor(Constructor);
4930
4931  // Check the default arguments, which we may have added.
4932  if (!Method->isInvalidDecl())
4933    CheckCXXDefaultArguments(Method);
4934}
4935
4936/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4937/// the well-formedness of the constructor declarator @p D with type @p
4938/// R. If there are any errors in the declarator, this routine will
4939/// emit diagnostics and set the invalid bit to true.  In any case, the type
4940/// will be updated to reflect a well-formed type for the constructor and
4941/// returned.
4942QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4943                                          StorageClass &SC) {
4944  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4945
4946  // C++ [class.ctor]p3:
4947  //   A constructor shall not be virtual (10.3) or static (9.4). A
4948  //   constructor can be invoked for a const, volatile or const
4949  //   volatile object. A constructor shall not be declared const,
4950  //   volatile, or const volatile (9.3.2).
4951  if (isVirtual) {
4952    if (!D.isInvalidType())
4953      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4954        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4955        << SourceRange(D.getIdentifierLoc());
4956    D.setInvalidType();
4957  }
4958  if (SC == SC_Static) {
4959    if (!D.isInvalidType())
4960      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4961        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4962        << SourceRange(D.getIdentifierLoc());
4963    D.setInvalidType();
4964    SC = SC_None;
4965  }
4966
4967  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4968  if (FTI.TypeQuals != 0) {
4969    if (FTI.TypeQuals & Qualifiers::Const)
4970      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4971        << "const" << SourceRange(D.getIdentifierLoc());
4972    if (FTI.TypeQuals & Qualifiers::Volatile)
4973      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4974        << "volatile" << SourceRange(D.getIdentifierLoc());
4975    if (FTI.TypeQuals & Qualifiers::Restrict)
4976      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4977        << "restrict" << SourceRange(D.getIdentifierLoc());
4978    D.setInvalidType();
4979  }
4980
4981  // C++0x [class.ctor]p4:
4982  //   A constructor shall not be declared with a ref-qualifier.
4983  if (FTI.hasRefQualifier()) {
4984    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4985      << FTI.RefQualifierIsLValueRef
4986      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4987    D.setInvalidType();
4988  }
4989
4990  // Rebuild the function type "R" without any type qualifiers (in
4991  // case any of the errors above fired) and with "void" as the
4992  // return type, since constructors don't have return types.
4993  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4994  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4995    return R;
4996
4997  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4998  EPI.TypeQuals = 0;
4999  EPI.RefQualifier = RQ_None;
5000
5001  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5002                                 Proto->getNumArgs(), EPI);
5003}
5004
5005/// CheckConstructor - Checks a fully-formed constructor for
5006/// well-formedness, issuing any diagnostics required. Returns true if
5007/// the constructor declarator is invalid.
5008void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5009  CXXRecordDecl *ClassDecl
5010    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5011  if (!ClassDecl)
5012    return Constructor->setInvalidDecl();
5013
5014  // C++ [class.copy]p3:
5015  //   A declaration of a constructor for a class X is ill-formed if
5016  //   its first parameter is of type (optionally cv-qualified) X and
5017  //   either there are no other parameters or else all other
5018  //   parameters have default arguments.
5019  if (!Constructor->isInvalidDecl() &&
5020      ((Constructor->getNumParams() == 1) ||
5021       (Constructor->getNumParams() > 1 &&
5022        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5023      Constructor->getTemplateSpecializationKind()
5024                                              != TSK_ImplicitInstantiation) {
5025    QualType ParamType = Constructor->getParamDecl(0)->getType();
5026    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5027    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5028      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5029      const char *ConstRef
5030        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5031                                                        : " const &";
5032      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5033        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5034
5035      // FIXME: Rather that making the constructor invalid, we should endeavor
5036      // to fix the type.
5037      Constructor->setInvalidDecl();
5038    }
5039  }
5040}
5041
5042/// CheckDestructor - Checks a fully-formed destructor definition for
5043/// well-formedness, issuing any diagnostics required.  Returns true
5044/// on error.
5045bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5046  CXXRecordDecl *RD = Destructor->getParent();
5047
5048  if (Destructor->isVirtual()) {
5049    SourceLocation Loc;
5050
5051    if (!Destructor->isImplicit())
5052      Loc = Destructor->getLocation();
5053    else
5054      Loc = RD->getLocation();
5055
5056    // If we have a virtual destructor, look up the deallocation function
5057    FunctionDecl *OperatorDelete = 0;
5058    DeclarationName Name =
5059    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5060    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5061      return true;
5062
5063    MarkFunctionReferenced(Loc, OperatorDelete);
5064
5065    Destructor->setOperatorDelete(OperatorDelete);
5066  }
5067
5068  return false;
5069}
5070
5071static inline bool
5072FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5073  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5074          FTI.ArgInfo[0].Param &&
5075          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5076}
5077
5078/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5079/// the well-formednes of the destructor declarator @p D with type @p
5080/// R. If there are any errors in the declarator, this routine will
5081/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5082/// will be updated to reflect a well-formed type for the destructor and
5083/// returned.
5084QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5085                                         StorageClass& SC) {
5086  // C++ [class.dtor]p1:
5087  //   [...] A typedef-name that names a class is a class-name
5088  //   (7.1.3); however, a typedef-name that names a class shall not
5089  //   be used as the identifier in the declarator for a destructor
5090  //   declaration.
5091  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5092  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5093    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5094      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5095  else if (const TemplateSpecializationType *TST =
5096             DeclaratorType->getAs<TemplateSpecializationType>())
5097    if (TST->isTypeAlias())
5098      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5099        << DeclaratorType << 1;
5100
5101  // C++ [class.dtor]p2:
5102  //   A destructor is used to destroy objects of its class type. A
5103  //   destructor takes no parameters, and no return type can be
5104  //   specified for it (not even void). The address of a destructor
5105  //   shall not be taken. A destructor shall not be static. A
5106  //   destructor can be invoked for a const, volatile or const
5107  //   volatile object. A destructor shall not be declared const,
5108  //   volatile or const volatile (9.3.2).
5109  if (SC == SC_Static) {
5110    if (!D.isInvalidType())
5111      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5112        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5113        << SourceRange(D.getIdentifierLoc())
5114        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5115
5116    SC = SC_None;
5117  }
5118  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5119    // Destructors don't have return types, but the parser will
5120    // happily parse something like:
5121    //
5122    //   class X {
5123    //     float ~X();
5124    //   };
5125    //
5126    // The return type will be eliminated later.
5127    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5128      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5129      << SourceRange(D.getIdentifierLoc());
5130  }
5131
5132  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5133  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5134    if (FTI.TypeQuals & Qualifiers::Const)
5135      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5136        << "const" << SourceRange(D.getIdentifierLoc());
5137    if (FTI.TypeQuals & Qualifiers::Volatile)
5138      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5139        << "volatile" << SourceRange(D.getIdentifierLoc());
5140    if (FTI.TypeQuals & Qualifiers::Restrict)
5141      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5142        << "restrict" << SourceRange(D.getIdentifierLoc());
5143    D.setInvalidType();
5144  }
5145
5146  // C++0x [class.dtor]p2:
5147  //   A destructor shall not be declared with a ref-qualifier.
5148  if (FTI.hasRefQualifier()) {
5149    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5150      << FTI.RefQualifierIsLValueRef
5151      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5152    D.setInvalidType();
5153  }
5154
5155  // Make sure we don't have any parameters.
5156  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5157    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5158
5159    // Delete the parameters.
5160    FTI.freeArgs();
5161    D.setInvalidType();
5162  }
5163
5164  // Make sure the destructor isn't variadic.
5165  if (FTI.isVariadic) {
5166    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5167    D.setInvalidType();
5168  }
5169
5170  // Rebuild the function type "R" without any type qualifiers or
5171  // parameters (in case any of the errors above fired) and with
5172  // "void" as the return type, since destructors don't have return
5173  // types.
5174  if (!D.isInvalidType())
5175    return R;
5176
5177  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5178  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5179  EPI.Variadic = false;
5180  EPI.TypeQuals = 0;
5181  EPI.RefQualifier = RQ_None;
5182  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5183}
5184
5185/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5186/// well-formednes of the conversion function declarator @p D with
5187/// type @p R. If there are any errors in the declarator, this routine
5188/// will emit diagnostics and return true. Otherwise, it will return
5189/// false. Either way, the type @p R will be updated to reflect a
5190/// well-formed type for the conversion operator.
5191void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5192                                     StorageClass& SC) {
5193  // C++ [class.conv.fct]p1:
5194  //   Neither parameter types nor return type can be specified. The
5195  //   type of a conversion function (8.3.5) is "function taking no
5196  //   parameter returning conversion-type-id."
5197  if (SC == SC_Static) {
5198    if (!D.isInvalidType())
5199      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5200        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5201        << SourceRange(D.getIdentifierLoc());
5202    D.setInvalidType();
5203    SC = SC_None;
5204  }
5205
5206  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5207
5208  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5209    // Conversion functions don't have return types, but the parser will
5210    // happily parse something like:
5211    //
5212    //   class X {
5213    //     float operator bool();
5214    //   };
5215    //
5216    // The return type will be changed later anyway.
5217    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5218      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5219      << SourceRange(D.getIdentifierLoc());
5220    D.setInvalidType();
5221  }
5222
5223  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5224
5225  // Make sure we don't have any parameters.
5226  if (Proto->getNumArgs() > 0) {
5227    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5228
5229    // Delete the parameters.
5230    D.getFunctionTypeInfo().freeArgs();
5231    D.setInvalidType();
5232  } else if (Proto->isVariadic()) {
5233    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5234    D.setInvalidType();
5235  }
5236
5237  // Diagnose "&operator bool()" and other such nonsense.  This
5238  // is actually a gcc extension which we don't support.
5239  if (Proto->getResultType() != ConvType) {
5240    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5241      << Proto->getResultType();
5242    D.setInvalidType();
5243    ConvType = Proto->getResultType();
5244  }
5245
5246  // C++ [class.conv.fct]p4:
5247  //   The conversion-type-id shall not represent a function type nor
5248  //   an array type.
5249  if (ConvType->isArrayType()) {
5250    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5251    ConvType = Context.getPointerType(ConvType);
5252    D.setInvalidType();
5253  } else if (ConvType->isFunctionType()) {
5254    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5255    ConvType = Context.getPointerType(ConvType);
5256    D.setInvalidType();
5257  }
5258
5259  // Rebuild the function type "R" without any parameters (in case any
5260  // of the errors above fired) and with the conversion type as the
5261  // return type.
5262  if (D.isInvalidType())
5263    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5264
5265  // C++0x explicit conversion operators.
5266  if (D.getDeclSpec().isExplicitSpecified())
5267    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5268         getLangOptions().CPlusPlus0x ?
5269           diag::warn_cxx98_compat_explicit_conversion_functions :
5270           diag::ext_explicit_conversion_functions)
5271      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5272}
5273
5274/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5275/// the declaration of the given C++ conversion function. This routine
5276/// is responsible for recording the conversion function in the C++
5277/// class, if possible.
5278Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5279  assert(Conversion && "Expected to receive a conversion function declaration");
5280
5281  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5282
5283  // Make sure we aren't redeclaring the conversion function.
5284  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5285
5286  // C++ [class.conv.fct]p1:
5287  //   [...] A conversion function is never used to convert a
5288  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5289  //   same object type (or a reference to it), to a (possibly
5290  //   cv-qualified) base class of that type (or a reference to it),
5291  //   or to (possibly cv-qualified) void.
5292  // FIXME: Suppress this warning if the conversion function ends up being a
5293  // virtual function that overrides a virtual function in a base class.
5294  QualType ClassType
5295    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5296  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5297    ConvType = ConvTypeRef->getPointeeType();
5298  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5299      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5300    /* Suppress diagnostics for instantiations. */;
5301  else if (ConvType->isRecordType()) {
5302    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5303    if (ConvType == ClassType)
5304      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5305        << ClassType;
5306    else if (IsDerivedFrom(ClassType, ConvType))
5307      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5308        <<  ClassType << ConvType;
5309  } else if (ConvType->isVoidType()) {
5310    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5311      << ClassType << ConvType;
5312  }
5313
5314  if (FunctionTemplateDecl *ConversionTemplate
5315                                = Conversion->getDescribedFunctionTemplate())
5316    return ConversionTemplate;
5317
5318  return Conversion;
5319}
5320
5321//===----------------------------------------------------------------------===//
5322// Namespace Handling
5323//===----------------------------------------------------------------------===//
5324
5325
5326
5327/// ActOnStartNamespaceDef - This is called at the start of a namespace
5328/// definition.
5329Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5330                                   SourceLocation InlineLoc,
5331                                   SourceLocation NamespaceLoc,
5332                                   SourceLocation IdentLoc,
5333                                   IdentifierInfo *II,
5334                                   SourceLocation LBrace,
5335                                   AttributeList *AttrList) {
5336  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5337  // For anonymous namespace, take the location of the left brace.
5338  SourceLocation Loc = II ? IdentLoc : LBrace;
5339  bool IsInline = InlineLoc.isValid();
5340  bool IsInvalid = false;
5341  bool IsStd = false;
5342  bool AddToKnown = false;
5343  Scope *DeclRegionScope = NamespcScope->getParent();
5344
5345  NamespaceDecl *PrevNS = 0;
5346  if (II) {
5347    // C++ [namespace.def]p2:
5348    //   The identifier in an original-namespace-definition shall not
5349    //   have been previously defined in the declarative region in
5350    //   which the original-namespace-definition appears. The
5351    //   identifier in an original-namespace-definition is the name of
5352    //   the namespace. Subsequently in that declarative region, it is
5353    //   treated as an original-namespace-name.
5354    //
5355    // Since namespace names are unique in their scope, and we don't
5356    // look through using directives, just look for any ordinary names.
5357
5358    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5359    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5360    Decl::IDNS_Namespace;
5361    NamedDecl *PrevDecl = 0;
5362    for (DeclContext::lookup_result R
5363         = CurContext->getRedeclContext()->lookup(II);
5364         R.first != R.second; ++R.first) {
5365      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5366        PrevDecl = *R.first;
5367        break;
5368      }
5369    }
5370
5371    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5372
5373    if (PrevNS) {
5374      // This is an extended namespace definition.
5375      if (IsInline != PrevNS->isInline()) {
5376        // inline-ness must match
5377        if (PrevNS->isInline()) {
5378          // The user probably just forgot the 'inline', so suggest that it
5379          // be added back.
5380          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5381            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5382        } else {
5383          Diag(Loc, diag::err_inline_namespace_mismatch)
5384            << IsInline;
5385        }
5386        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5387
5388        IsInline = PrevNS->isInline();
5389      }
5390    } else if (PrevDecl) {
5391      // This is an invalid name redefinition.
5392      Diag(Loc, diag::err_redefinition_different_kind)
5393        << II;
5394      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5395      IsInvalid = true;
5396      // Continue on to push Namespc as current DeclContext and return it.
5397    } else if (II->isStr("std") &&
5398               CurContext->getRedeclContext()->isTranslationUnit()) {
5399      // This is the first "real" definition of the namespace "std", so update
5400      // our cache of the "std" namespace to point at this definition.
5401      PrevNS = getStdNamespace();
5402      IsStd = true;
5403      AddToKnown = !IsInline;
5404    } else {
5405      // We've seen this namespace for the first time.
5406      AddToKnown = !IsInline;
5407    }
5408  } else {
5409    // Anonymous namespaces.
5410
5411    // Determine whether the parent already has an anonymous namespace.
5412    DeclContext *Parent = CurContext->getRedeclContext();
5413    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5414      PrevNS = TU->getAnonymousNamespace();
5415    } else {
5416      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5417      PrevNS = ND->getAnonymousNamespace();
5418    }
5419
5420    if (PrevNS && IsInline != PrevNS->isInline()) {
5421      // inline-ness must match
5422      Diag(Loc, diag::err_inline_namespace_mismatch)
5423        << IsInline;
5424      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5425
5426      // Recover by ignoring the new namespace's inline status.
5427      IsInline = PrevNS->isInline();
5428    }
5429  }
5430
5431  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5432                                                 StartLoc, Loc, II, PrevNS);
5433  if (IsInvalid)
5434    Namespc->setInvalidDecl();
5435
5436  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5437
5438  // FIXME: Should we be merging attributes?
5439  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5440    PushNamespaceVisibilityAttr(Attr, Loc);
5441
5442  if (IsStd)
5443    StdNamespace = Namespc;
5444  if (AddToKnown)
5445    KnownNamespaces[Namespc] = false;
5446
5447  if (II) {
5448    PushOnScopeChains(Namespc, DeclRegionScope);
5449  } else {
5450    // Link the anonymous namespace into its parent.
5451    DeclContext *Parent = CurContext->getRedeclContext();
5452    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5453      TU->setAnonymousNamespace(Namespc);
5454    } else {
5455      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5456    }
5457
5458    CurContext->addDecl(Namespc);
5459
5460    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5461    //   behaves as if it were replaced by
5462    //     namespace unique { /* empty body */ }
5463    //     using namespace unique;
5464    //     namespace unique { namespace-body }
5465    //   where all occurrences of 'unique' in a translation unit are
5466    //   replaced by the same identifier and this identifier differs
5467    //   from all other identifiers in the entire program.
5468
5469    // We just create the namespace with an empty name and then add an
5470    // implicit using declaration, just like the standard suggests.
5471    //
5472    // CodeGen enforces the "universally unique" aspect by giving all
5473    // declarations semantically contained within an anonymous
5474    // namespace internal linkage.
5475
5476    if (!PrevNS) {
5477      UsingDirectiveDecl* UD
5478        = UsingDirectiveDecl::Create(Context, CurContext,
5479                                     /* 'using' */ LBrace,
5480                                     /* 'namespace' */ SourceLocation(),
5481                                     /* qualifier */ NestedNameSpecifierLoc(),
5482                                     /* identifier */ SourceLocation(),
5483                                     Namespc,
5484                                     /* Ancestor */ CurContext);
5485      UD->setImplicit();
5486      CurContext->addDecl(UD);
5487    }
5488  }
5489
5490  // Although we could have an invalid decl (i.e. the namespace name is a
5491  // redefinition), push it as current DeclContext and try to continue parsing.
5492  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5493  // for the namespace has the declarations that showed up in that particular
5494  // namespace definition.
5495  PushDeclContext(NamespcScope, Namespc);
5496  return Namespc;
5497}
5498
5499/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5500/// is a namespace alias, returns the namespace it points to.
5501static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5502  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5503    return AD->getNamespace();
5504  return dyn_cast_or_null<NamespaceDecl>(D);
5505}
5506
5507/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5508/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5509void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5510  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5511  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5512  Namespc->setRBraceLoc(RBrace);
5513  PopDeclContext();
5514  if (Namespc->hasAttr<VisibilityAttr>())
5515    PopPragmaVisibility(true, RBrace);
5516}
5517
5518CXXRecordDecl *Sema::getStdBadAlloc() const {
5519  return cast_or_null<CXXRecordDecl>(
5520                                  StdBadAlloc.get(Context.getExternalSource()));
5521}
5522
5523NamespaceDecl *Sema::getStdNamespace() const {
5524  return cast_or_null<NamespaceDecl>(
5525                                 StdNamespace.get(Context.getExternalSource()));
5526}
5527
5528/// \brief Retrieve the special "std" namespace, which may require us to
5529/// implicitly define the namespace.
5530NamespaceDecl *Sema::getOrCreateStdNamespace() {
5531  if (!StdNamespace) {
5532    // The "std" namespace has not yet been defined, so build one implicitly.
5533    StdNamespace = NamespaceDecl::Create(Context,
5534                                         Context.getTranslationUnitDecl(),
5535                                         /*Inline=*/false,
5536                                         SourceLocation(), SourceLocation(),
5537                                         &PP.getIdentifierTable().get("std"),
5538                                         /*PrevDecl=*/0);
5539    getStdNamespace()->setImplicit(true);
5540  }
5541
5542  return getStdNamespace();
5543}
5544
5545bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5546  assert(getLangOptions().CPlusPlus &&
5547         "Looking for std::initializer_list outside of C++.");
5548
5549  // We're looking for implicit instantiations of
5550  // template <typename E> class std::initializer_list.
5551
5552  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5553    return false;
5554
5555  ClassTemplateDecl *Template = 0;
5556  const TemplateArgument *Arguments = 0;
5557
5558  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5559
5560    ClassTemplateSpecializationDecl *Specialization =
5561        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5562    if (!Specialization)
5563      return false;
5564
5565    Template = Specialization->getSpecializedTemplate();
5566    Arguments = Specialization->getTemplateArgs().data();
5567  } else if (const TemplateSpecializationType *TST =
5568                 Ty->getAs<TemplateSpecializationType>()) {
5569    Template = dyn_cast_or_null<ClassTemplateDecl>(
5570        TST->getTemplateName().getAsTemplateDecl());
5571    Arguments = TST->getArgs();
5572  }
5573  if (!Template)
5574    return false;
5575
5576  if (!StdInitializerList) {
5577    // Haven't recognized std::initializer_list yet, maybe this is it.
5578    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5579    if (TemplateClass->getIdentifier() !=
5580            &PP.getIdentifierTable().get("initializer_list") ||
5581        !getStdNamespace()->InEnclosingNamespaceSetOf(
5582            TemplateClass->getDeclContext()))
5583      return false;
5584    // This is a template called std::initializer_list, but is it the right
5585    // template?
5586    TemplateParameterList *Params = Template->getTemplateParameters();
5587    if (Params->getMinRequiredArguments() != 1)
5588      return false;
5589    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5590      return false;
5591
5592    // It's the right template.
5593    StdInitializerList = Template;
5594  }
5595
5596  if (Template != StdInitializerList)
5597    return false;
5598
5599  // This is an instance of std::initializer_list. Find the argument type.
5600  if (Element)
5601    *Element = Arguments[0].getAsType();
5602  return true;
5603}
5604
5605static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5606  NamespaceDecl *Std = S.getStdNamespace();
5607  if (!Std) {
5608    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5609    return 0;
5610  }
5611
5612  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5613                      Loc, Sema::LookupOrdinaryName);
5614  if (!S.LookupQualifiedName(Result, Std)) {
5615    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5616    return 0;
5617  }
5618  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5619  if (!Template) {
5620    Result.suppressDiagnostics();
5621    // We found something weird. Complain about the first thing we found.
5622    NamedDecl *Found = *Result.begin();
5623    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5624    return 0;
5625  }
5626
5627  // We found some template called std::initializer_list. Now verify that it's
5628  // correct.
5629  TemplateParameterList *Params = Template->getTemplateParameters();
5630  if (Params->getMinRequiredArguments() != 1 ||
5631      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5632    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5633    return 0;
5634  }
5635
5636  return Template;
5637}
5638
5639QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5640  if (!StdInitializerList) {
5641    StdInitializerList = LookupStdInitializerList(*this, Loc);
5642    if (!StdInitializerList)
5643      return QualType();
5644  }
5645
5646  TemplateArgumentListInfo Args(Loc, Loc);
5647  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5648                                       Context.getTrivialTypeSourceInfo(Element,
5649                                                                        Loc)));
5650  return Context.getCanonicalType(
5651      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5652}
5653
5654bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5655  // C++ [dcl.init.list]p2:
5656  //   A constructor is an initializer-list constructor if its first parameter
5657  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5658  //   std::initializer_list<E> for some type E, and either there are no other
5659  //   parameters or else all other parameters have default arguments.
5660  if (Ctor->getNumParams() < 1 ||
5661      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5662    return false;
5663
5664  QualType ArgType = Ctor->getParamDecl(0)->getType();
5665  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5666    ArgType = RT->getPointeeType().getUnqualifiedType();
5667
5668  return isStdInitializerList(ArgType, 0);
5669}
5670
5671/// \brief Determine whether a using statement is in a context where it will be
5672/// apply in all contexts.
5673static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5674  switch (CurContext->getDeclKind()) {
5675    case Decl::TranslationUnit:
5676      return true;
5677    case Decl::LinkageSpec:
5678      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5679    default:
5680      return false;
5681  }
5682}
5683
5684namespace {
5685
5686// Callback to only accept typo corrections that are namespaces.
5687class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5688 public:
5689  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5690    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5691      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5692    }
5693    return false;
5694  }
5695};
5696
5697}
5698
5699static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5700                                       CXXScopeSpec &SS,
5701                                       SourceLocation IdentLoc,
5702                                       IdentifierInfo *Ident) {
5703  NamespaceValidatorCCC Validator;
5704  R.clear();
5705  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5706                                               R.getLookupKind(), Sc, &SS,
5707                                               Validator)) {
5708    std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5709    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5710    if (DeclContext *DC = S.computeDeclContext(SS, false))
5711      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5712        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5713        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5714    else
5715      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5716        << Ident << CorrectedQuotedStr
5717        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5718
5719    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5720         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5721
5722    Ident = Corrected.getCorrectionAsIdentifierInfo();
5723    R.addDecl(Corrected.getCorrectionDecl());
5724    return true;
5725  }
5726  return false;
5727}
5728
5729Decl *Sema::ActOnUsingDirective(Scope *S,
5730                                          SourceLocation UsingLoc,
5731                                          SourceLocation NamespcLoc,
5732                                          CXXScopeSpec &SS,
5733                                          SourceLocation IdentLoc,
5734                                          IdentifierInfo *NamespcName,
5735                                          AttributeList *AttrList) {
5736  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5737  assert(NamespcName && "Invalid NamespcName.");
5738  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5739
5740  // This can only happen along a recovery path.
5741  while (S->getFlags() & Scope::TemplateParamScope)
5742    S = S->getParent();
5743  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5744
5745  UsingDirectiveDecl *UDir = 0;
5746  NestedNameSpecifier *Qualifier = 0;
5747  if (SS.isSet())
5748    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5749
5750  // Lookup namespace name.
5751  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5752  LookupParsedName(R, S, &SS);
5753  if (R.isAmbiguous())
5754    return 0;
5755
5756  if (R.empty()) {
5757    R.clear();
5758    // Allow "using namespace std;" or "using namespace ::std;" even if
5759    // "std" hasn't been defined yet, for GCC compatibility.
5760    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5761        NamespcName->isStr("std")) {
5762      Diag(IdentLoc, diag::ext_using_undefined_std);
5763      R.addDecl(getOrCreateStdNamespace());
5764      R.resolveKind();
5765    }
5766    // Otherwise, attempt typo correction.
5767    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5768  }
5769
5770  if (!R.empty()) {
5771    NamedDecl *Named = R.getFoundDecl();
5772    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5773        && "expected namespace decl");
5774    // C++ [namespace.udir]p1:
5775    //   A using-directive specifies that the names in the nominated
5776    //   namespace can be used in the scope in which the
5777    //   using-directive appears after the using-directive. During
5778    //   unqualified name lookup (3.4.1), the names appear as if they
5779    //   were declared in the nearest enclosing namespace which
5780    //   contains both the using-directive and the nominated
5781    //   namespace. [Note: in this context, "contains" means "contains
5782    //   directly or indirectly". ]
5783
5784    // Find enclosing context containing both using-directive and
5785    // nominated namespace.
5786    NamespaceDecl *NS = getNamespaceDecl(Named);
5787    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5788    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5789      CommonAncestor = CommonAncestor->getParent();
5790
5791    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5792                                      SS.getWithLocInContext(Context),
5793                                      IdentLoc, Named, CommonAncestor);
5794
5795    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5796        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5797      Diag(IdentLoc, diag::warn_using_directive_in_header);
5798    }
5799
5800    PushUsingDirective(S, UDir);
5801  } else {
5802    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5803  }
5804
5805  // FIXME: We ignore attributes for now.
5806  return UDir;
5807}
5808
5809void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5810  // If scope has associated entity, then using directive is at namespace
5811  // or translation unit scope. We add UsingDirectiveDecls, into
5812  // it's lookup structure.
5813  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
5814    Ctx->addDecl(UDir);
5815  else
5816    // Otherwise it is block-sope. using-directives will affect lookup
5817    // only to the end of scope.
5818    S->PushUsingDirective(UDir);
5819}
5820
5821
5822Decl *Sema::ActOnUsingDeclaration(Scope *S,
5823                                  AccessSpecifier AS,
5824                                  bool HasUsingKeyword,
5825                                  SourceLocation UsingLoc,
5826                                  CXXScopeSpec &SS,
5827                                  UnqualifiedId &Name,
5828                                  AttributeList *AttrList,
5829                                  bool IsTypeName,
5830                                  SourceLocation TypenameLoc) {
5831  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5832
5833  switch (Name.getKind()) {
5834  case UnqualifiedId::IK_ImplicitSelfParam:
5835  case UnqualifiedId::IK_Identifier:
5836  case UnqualifiedId::IK_OperatorFunctionId:
5837  case UnqualifiedId::IK_LiteralOperatorId:
5838  case UnqualifiedId::IK_ConversionFunctionId:
5839    break;
5840
5841  case UnqualifiedId::IK_ConstructorName:
5842  case UnqualifiedId::IK_ConstructorTemplateId:
5843    // C++0x inherited constructors.
5844    Diag(Name.getSourceRange().getBegin(),
5845         getLangOptions().CPlusPlus0x ?
5846           diag::warn_cxx98_compat_using_decl_constructor :
5847           diag::err_using_decl_constructor)
5848      << SS.getRange();
5849
5850    if (getLangOptions().CPlusPlus0x) break;
5851
5852    return 0;
5853
5854  case UnqualifiedId::IK_DestructorName:
5855    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5856      << SS.getRange();
5857    return 0;
5858
5859  case UnqualifiedId::IK_TemplateId:
5860    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5861      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5862    return 0;
5863  }
5864
5865  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5866  DeclarationName TargetName = TargetNameInfo.getName();
5867  if (!TargetName)
5868    return 0;
5869
5870  // Warn about using declarations.
5871  // TODO: store that the declaration was written without 'using' and
5872  // talk about access decls instead of using decls in the
5873  // diagnostics.
5874  if (!HasUsingKeyword) {
5875    UsingLoc = Name.getSourceRange().getBegin();
5876
5877    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5878      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5879  }
5880
5881  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5882      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5883    return 0;
5884
5885  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5886                                        TargetNameInfo, AttrList,
5887                                        /* IsInstantiation */ false,
5888                                        IsTypeName, TypenameLoc);
5889  if (UD)
5890    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5891
5892  return UD;
5893}
5894
5895/// \brief Determine whether a using declaration considers the given
5896/// declarations as "equivalent", e.g., if they are redeclarations of
5897/// the same entity or are both typedefs of the same type.
5898static bool
5899IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5900                         bool &SuppressRedeclaration) {
5901  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5902    SuppressRedeclaration = false;
5903    return true;
5904  }
5905
5906  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5907    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5908      SuppressRedeclaration = true;
5909      return Context.hasSameType(TD1->getUnderlyingType(),
5910                                 TD2->getUnderlyingType());
5911    }
5912
5913  return false;
5914}
5915
5916
5917/// Determines whether to create a using shadow decl for a particular
5918/// decl, given the set of decls existing prior to this using lookup.
5919bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5920                                const LookupResult &Previous) {
5921  // Diagnose finding a decl which is not from a base class of the
5922  // current class.  We do this now because there are cases where this
5923  // function will silently decide not to build a shadow decl, which
5924  // will pre-empt further diagnostics.
5925  //
5926  // We don't need to do this in C++0x because we do the check once on
5927  // the qualifier.
5928  //
5929  // FIXME: diagnose the following if we care enough:
5930  //   struct A { int foo; };
5931  //   struct B : A { using A::foo; };
5932  //   template <class T> struct C : A {};
5933  //   template <class T> struct D : C<T> { using B::foo; } // <---
5934  // This is invalid (during instantiation) in C++03 because B::foo
5935  // resolves to the using decl in B, which is not a base class of D<T>.
5936  // We can't diagnose it immediately because C<T> is an unknown
5937  // specialization.  The UsingShadowDecl in D<T> then points directly
5938  // to A::foo, which will look well-formed when we instantiate.
5939  // The right solution is to not collapse the shadow-decl chain.
5940  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5941    DeclContext *OrigDC = Orig->getDeclContext();
5942
5943    // Handle enums and anonymous structs.
5944    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5945    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5946    while (OrigRec->isAnonymousStructOrUnion())
5947      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5948
5949    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5950      if (OrigDC == CurContext) {
5951        Diag(Using->getLocation(),
5952             diag::err_using_decl_nested_name_specifier_is_current_class)
5953          << Using->getQualifierLoc().getSourceRange();
5954        Diag(Orig->getLocation(), diag::note_using_decl_target);
5955        return true;
5956      }
5957
5958      Diag(Using->getQualifierLoc().getBeginLoc(),
5959           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5960        << Using->getQualifier()
5961        << cast<CXXRecordDecl>(CurContext)
5962        << Using->getQualifierLoc().getSourceRange();
5963      Diag(Orig->getLocation(), diag::note_using_decl_target);
5964      return true;
5965    }
5966  }
5967
5968  if (Previous.empty()) return false;
5969
5970  NamedDecl *Target = Orig;
5971  if (isa<UsingShadowDecl>(Target))
5972    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5973
5974  // If the target happens to be one of the previous declarations, we
5975  // don't have a conflict.
5976  //
5977  // FIXME: but we might be increasing its access, in which case we
5978  // should redeclare it.
5979  NamedDecl *NonTag = 0, *Tag = 0;
5980  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5981         I != E; ++I) {
5982    NamedDecl *D = (*I)->getUnderlyingDecl();
5983    bool Result;
5984    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5985      return Result;
5986
5987    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5988  }
5989
5990  if (Target->isFunctionOrFunctionTemplate()) {
5991    FunctionDecl *FD;
5992    if (isa<FunctionTemplateDecl>(Target))
5993      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5994    else
5995      FD = cast<FunctionDecl>(Target);
5996
5997    NamedDecl *OldDecl = 0;
5998    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5999    case Ovl_Overload:
6000      return false;
6001
6002    case Ovl_NonFunction:
6003      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6004      break;
6005
6006    // We found a decl with the exact signature.
6007    case Ovl_Match:
6008      // If we're in a record, we want to hide the target, so we
6009      // return true (without a diagnostic) to tell the caller not to
6010      // build a shadow decl.
6011      if (CurContext->isRecord())
6012        return true;
6013
6014      // If we're not in a record, this is an error.
6015      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6016      break;
6017    }
6018
6019    Diag(Target->getLocation(), diag::note_using_decl_target);
6020    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6021    return true;
6022  }
6023
6024  // Target is not a function.
6025
6026  if (isa<TagDecl>(Target)) {
6027    // No conflict between a tag and a non-tag.
6028    if (!Tag) return false;
6029
6030    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6031    Diag(Target->getLocation(), diag::note_using_decl_target);
6032    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6033    return true;
6034  }
6035
6036  // No conflict between a tag and a non-tag.
6037  if (!NonTag) return false;
6038
6039  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6040  Diag(Target->getLocation(), diag::note_using_decl_target);
6041  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6042  return true;
6043}
6044
6045/// Builds a shadow declaration corresponding to a 'using' declaration.
6046UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6047                                            UsingDecl *UD,
6048                                            NamedDecl *Orig) {
6049
6050  // If we resolved to another shadow declaration, just coalesce them.
6051  NamedDecl *Target = Orig;
6052  if (isa<UsingShadowDecl>(Target)) {
6053    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6054    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6055  }
6056
6057  UsingShadowDecl *Shadow
6058    = UsingShadowDecl::Create(Context, CurContext,
6059                              UD->getLocation(), UD, Target);
6060  UD->addShadowDecl(Shadow);
6061
6062  Shadow->setAccess(UD->getAccess());
6063  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6064    Shadow->setInvalidDecl();
6065
6066  if (S)
6067    PushOnScopeChains(Shadow, S);
6068  else
6069    CurContext->addDecl(Shadow);
6070
6071
6072  return Shadow;
6073}
6074
6075/// Hides a using shadow declaration.  This is required by the current
6076/// using-decl implementation when a resolvable using declaration in a
6077/// class is followed by a declaration which would hide or override
6078/// one or more of the using decl's targets; for example:
6079///
6080///   struct Base { void foo(int); };
6081///   struct Derived : Base {
6082///     using Base::foo;
6083///     void foo(int);
6084///   };
6085///
6086/// The governing language is C++03 [namespace.udecl]p12:
6087///
6088///   When a using-declaration brings names from a base class into a
6089///   derived class scope, member functions in the derived class
6090///   override and/or hide member functions with the same name and
6091///   parameter types in a base class (rather than conflicting).
6092///
6093/// There are two ways to implement this:
6094///   (1) optimistically create shadow decls when they're not hidden
6095///       by existing declarations, or
6096///   (2) don't create any shadow decls (or at least don't make them
6097///       visible) until we've fully parsed/instantiated the class.
6098/// The problem with (1) is that we might have to retroactively remove
6099/// a shadow decl, which requires several O(n) operations because the
6100/// decl structures are (very reasonably) not designed for removal.
6101/// (2) avoids this but is very fiddly and phase-dependent.
6102void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6103  if (Shadow->getDeclName().getNameKind() ==
6104        DeclarationName::CXXConversionFunctionName)
6105    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6106
6107  // Remove it from the DeclContext...
6108  Shadow->getDeclContext()->removeDecl(Shadow);
6109
6110  // ...and the scope, if applicable...
6111  if (S) {
6112    S->RemoveDecl(Shadow);
6113    IdResolver.RemoveDecl(Shadow);
6114  }
6115
6116  // ...and the using decl.
6117  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6118
6119  // TODO: complain somehow if Shadow was used.  It shouldn't
6120  // be possible for this to happen, because...?
6121}
6122
6123/// Builds a using declaration.
6124///
6125/// \param IsInstantiation - Whether this call arises from an
6126///   instantiation of an unresolved using declaration.  We treat
6127///   the lookup differently for these declarations.
6128NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6129                                       SourceLocation UsingLoc,
6130                                       CXXScopeSpec &SS,
6131                                       const DeclarationNameInfo &NameInfo,
6132                                       AttributeList *AttrList,
6133                                       bool IsInstantiation,
6134                                       bool IsTypeName,
6135                                       SourceLocation TypenameLoc) {
6136  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6137  SourceLocation IdentLoc = NameInfo.getLoc();
6138  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6139
6140  // FIXME: We ignore attributes for now.
6141
6142  if (SS.isEmpty()) {
6143    Diag(IdentLoc, diag::err_using_requires_qualname);
6144    return 0;
6145  }
6146
6147  // Do the redeclaration lookup in the current scope.
6148  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6149                        ForRedeclaration);
6150  Previous.setHideTags(false);
6151  if (S) {
6152    LookupName(Previous, S);
6153
6154    // It is really dumb that we have to do this.
6155    LookupResult::Filter F = Previous.makeFilter();
6156    while (F.hasNext()) {
6157      NamedDecl *D = F.next();
6158      if (!isDeclInScope(D, CurContext, S))
6159        F.erase();
6160    }
6161    F.done();
6162  } else {
6163    assert(IsInstantiation && "no scope in non-instantiation");
6164    assert(CurContext->isRecord() && "scope not record in instantiation");
6165    LookupQualifiedName(Previous, CurContext);
6166  }
6167
6168  // Check for invalid redeclarations.
6169  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6170    return 0;
6171
6172  // Check for bad qualifiers.
6173  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6174    return 0;
6175
6176  DeclContext *LookupContext = computeDeclContext(SS);
6177  NamedDecl *D;
6178  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6179  if (!LookupContext) {
6180    if (IsTypeName) {
6181      // FIXME: not all declaration name kinds are legal here
6182      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6183                                              UsingLoc, TypenameLoc,
6184                                              QualifierLoc,
6185                                              IdentLoc, NameInfo.getName());
6186    } else {
6187      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6188                                           QualifierLoc, NameInfo);
6189    }
6190  } else {
6191    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6192                          NameInfo, IsTypeName);
6193  }
6194  D->setAccess(AS);
6195  CurContext->addDecl(D);
6196
6197  if (!LookupContext) return D;
6198  UsingDecl *UD = cast<UsingDecl>(D);
6199
6200  if (RequireCompleteDeclContext(SS, LookupContext)) {
6201    UD->setInvalidDecl();
6202    return UD;
6203  }
6204
6205  // Constructor inheriting using decls get special treatment.
6206  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6207    if (CheckInheritedConstructorUsingDecl(UD))
6208      UD->setInvalidDecl();
6209    return UD;
6210  }
6211
6212  // Otherwise, look up the target name.
6213
6214  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6215
6216  // Unlike most lookups, we don't always want to hide tag
6217  // declarations: tag names are visible through the using declaration
6218  // even if hidden by ordinary names, *except* in a dependent context
6219  // where it's important for the sanity of two-phase lookup.
6220  if (!IsInstantiation)
6221    R.setHideTags(false);
6222
6223  LookupQualifiedName(R, LookupContext);
6224
6225  if (R.empty()) {
6226    Diag(IdentLoc, diag::err_no_member)
6227      << NameInfo.getName() << LookupContext << SS.getRange();
6228    UD->setInvalidDecl();
6229    return UD;
6230  }
6231
6232  if (R.isAmbiguous()) {
6233    UD->setInvalidDecl();
6234    return UD;
6235  }
6236
6237  if (IsTypeName) {
6238    // If we asked for a typename and got a non-type decl, error out.
6239    if (!R.getAsSingle<TypeDecl>()) {
6240      Diag(IdentLoc, diag::err_using_typename_non_type);
6241      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6242        Diag((*I)->getUnderlyingDecl()->getLocation(),
6243             diag::note_using_decl_target);
6244      UD->setInvalidDecl();
6245      return UD;
6246    }
6247  } else {
6248    // If we asked for a non-typename and we got a type, error out,
6249    // but only if this is an instantiation of an unresolved using
6250    // decl.  Otherwise just silently find the type name.
6251    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6252      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6253      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6254      UD->setInvalidDecl();
6255      return UD;
6256    }
6257  }
6258
6259  // C++0x N2914 [namespace.udecl]p6:
6260  // A using-declaration shall not name a namespace.
6261  if (R.getAsSingle<NamespaceDecl>()) {
6262    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6263      << SS.getRange();
6264    UD->setInvalidDecl();
6265    return UD;
6266  }
6267
6268  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6269    if (!CheckUsingShadowDecl(UD, *I, Previous))
6270      BuildUsingShadowDecl(S, UD, *I);
6271  }
6272
6273  return UD;
6274}
6275
6276/// Additional checks for a using declaration referring to a constructor name.
6277bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6278  if (UD->isTypeName()) {
6279    // FIXME: Cannot specify typename when specifying constructor
6280    return true;
6281  }
6282
6283  const Type *SourceType = UD->getQualifier()->getAsType();
6284  assert(SourceType &&
6285         "Using decl naming constructor doesn't have type in scope spec.");
6286  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6287
6288  // Check whether the named type is a direct base class.
6289  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6290  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6291  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6292       BaseIt != BaseE; ++BaseIt) {
6293    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6294    if (CanonicalSourceType == BaseType)
6295      break;
6296  }
6297
6298  if (BaseIt == BaseE) {
6299    // Did not find SourceType in the bases.
6300    Diag(UD->getUsingLocation(),
6301         diag::err_using_decl_constructor_not_in_direct_base)
6302      << UD->getNameInfo().getSourceRange()
6303      << QualType(SourceType, 0) << TargetClass;
6304    return true;
6305  }
6306
6307  BaseIt->setInheritConstructors();
6308
6309  return false;
6310}
6311
6312/// Checks that the given using declaration is not an invalid
6313/// redeclaration.  Note that this is checking only for the using decl
6314/// itself, not for any ill-formedness among the UsingShadowDecls.
6315bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6316                                       bool isTypeName,
6317                                       const CXXScopeSpec &SS,
6318                                       SourceLocation NameLoc,
6319                                       const LookupResult &Prev) {
6320  // C++03 [namespace.udecl]p8:
6321  // C++0x [namespace.udecl]p10:
6322  //   A using-declaration is a declaration and can therefore be used
6323  //   repeatedly where (and only where) multiple declarations are
6324  //   allowed.
6325  //
6326  // That's in non-member contexts.
6327  if (!CurContext->getRedeclContext()->isRecord())
6328    return false;
6329
6330  NestedNameSpecifier *Qual
6331    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6332
6333  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6334    NamedDecl *D = *I;
6335
6336    bool DTypename;
6337    NestedNameSpecifier *DQual;
6338    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6339      DTypename = UD->isTypeName();
6340      DQual = UD->getQualifier();
6341    } else if (UnresolvedUsingValueDecl *UD
6342                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6343      DTypename = false;
6344      DQual = UD->getQualifier();
6345    } else if (UnresolvedUsingTypenameDecl *UD
6346                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6347      DTypename = true;
6348      DQual = UD->getQualifier();
6349    } else continue;
6350
6351    // using decls differ if one says 'typename' and the other doesn't.
6352    // FIXME: non-dependent using decls?
6353    if (isTypeName != DTypename) continue;
6354
6355    // using decls differ if they name different scopes (but note that
6356    // template instantiation can cause this check to trigger when it
6357    // didn't before instantiation).
6358    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6359        Context.getCanonicalNestedNameSpecifier(DQual))
6360      continue;
6361
6362    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6363    Diag(D->getLocation(), diag::note_using_decl) << 1;
6364    return true;
6365  }
6366
6367  return false;
6368}
6369
6370
6371/// Checks that the given nested-name qualifier used in a using decl
6372/// in the current context is appropriately related to the current
6373/// scope.  If an error is found, diagnoses it and returns true.
6374bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6375                                   const CXXScopeSpec &SS,
6376                                   SourceLocation NameLoc) {
6377  DeclContext *NamedContext = computeDeclContext(SS);
6378
6379  if (!CurContext->isRecord()) {
6380    // C++03 [namespace.udecl]p3:
6381    // C++0x [namespace.udecl]p8:
6382    //   A using-declaration for a class member shall be a member-declaration.
6383
6384    // If we weren't able to compute a valid scope, it must be a
6385    // dependent class scope.
6386    if (!NamedContext || NamedContext->isRecord()) {
6387      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6388        << SS.getRange();
6389      return true;
6390    }
6391
6392    // Otherwise, everything is known to be fine.
6393    return false;
6394  }
6395
6396  // The current scope is a record.
6397
6398  // If the named context is dependent, we can't decide much.
6399  if (!NamedContext) {
6400    // FIXME: in C++0x, we can diagnose if we can prove that the
6401    // nested-name-specifier does not refer to a base class, which is
6402    // still possible in some cases.
6403
6404    // Otherwise we have to conservatively report that things might be
6405    // okay.
6406    return false;
6407  }
6408
6409  if (!NamedContext->isRecord()) {
6410    // Ideally this would point at the last name in the specifier,
6411    // but we don't have that level of source info.
6412    Diag(SS.getRange().getBegin(),
6413         diag::err_using_decl_nested_name_specifier_is_not_class)
6414      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6415    return true;
6416  }
6417
6418  if (!NamedContext->isDependentContext() &&
6419      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6420    return true;
6421
6422  if (getLangOptions().CPlusPlus0x) {
6423    // C++0x [namespace.udecl]p3:
6424    //   In a using-declaration used as a member-declaration, the
6425    //   nested-name-specifier shall name a base class of the class
6426    //   being defined.
6427
6428    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6429                                 cast<CXXRecordDecl>(NamedContext))) {
6430      if (CurContext == NamedContext) {
6431        Diag(NameLoc,
6432             diag::err_using_decl_nested_name_specifier_is_current_class)
6433          << SS.getRange();
6434        return true;
6435      }
6436
6437      Diag(SS.getRange().getBegin(),
6438           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6439        << (NestedNameSpecifier*) SS.getScopeRep()
6440        << cast<CXXRecordDecl>(CurContext)
6441        << SS.getRange();
6442      return true;
6443    }
6444
6445    return false;
6446  }
6447
6448  // C++03 [namespace.udecl]p4:
6449  //   A using-declaration used as a member-declaration shall refer
6450  //   to a member of a base class of the class being defined [etc.].
6451
6452  // Salient point: SS doesn't have to name a base class as long as
6453  // lookup only finds members from base classes.  Therefore we can
6454  // diagnose here only if we can prove that that can't happen,
6455  // i.e. if the class hierarchies provably don't intersect.
6456
6457  // TODO: it would be nice if "definitely valid" results were cached
6458  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6459  // need to be repeated.
6460
6461  struct UserData {
6462    llvm::DenseSet<const CXXRecordDecl*> Bases;
6463
6464    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6465      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6466      Data->Bases.insert(Base);
6467      return true;
6468    }
6469
6470    bool hasDependentBases(const CXXRecordDecl *Class) {
6471      return !Class->forallBases(collect, this);
6472    }
6473
6474    /// Returns true if the base is dependent or is one of the
6475    /// accumulated base classes.
6476    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6477      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6478      return !Data->Bases.count(Base);
6479    }
6480
6481    bool mightShareBases(const CXXRecordDecl *Class) {
6482      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6483    }
6484  };
6485
6486  UserData Data;
6487
6488  // Returns false if we find a dependent base.
6489  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6490    return false;
6491
6492  // Returns false if the class has a dependent base or if it or one
6493  // of its bases is present in the base set of the current context.
6494  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6495    return false;
6496
6497  Diag(SS.getRange().getBegin(),
6498       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6499    << (NestedNameSpecifier*) SS.getScopeRep()
6500    << cast<CXXRecordDecl>(CurContext)
6501    << SS.getRange();
6502
6503  return true;
6504}
6505
6506Decl *Sema::ActOnAliasDeclaration(Scope *S,
6507                                  AccessSpecifier AS,
6508                                  MultiTemplateParamsArg TemplateParamLists,
6509                                  SourceLocation UsingLoc,
6510                                  UnqualifiedId &Name,
6511                                  TypeResult Type) {
6512  // Skip up to the relevant declaration scope.
6513  while (S->getFlags() & Scope::TemplateParamScope)
6514    S = S->getParent();
6515  assert((S->getFlags() & Scope::DeclScope) &&
6516         "got alias-declaration outside of declaration scope");
6517
6518  if (Type.isInvalid())
6519    return 0;
6520
6521  bool Invalid = false;
6522  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6523  TypeSourceInfo *TInfo = 0;
6524  GetTypeFromParser(Type.get(), &TInfo);
6525
6526  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6527    return 0;
6528
6529  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6530                                      UPPC_DeclarationType)) {
6531    Invalid = true;
6532    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6533                                             TInfo->getTypeLoc().getBeginLoc());
6534  }
6535
6536  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6537  LookupName(Previous, S);
6538
6539  // Warn about shadowing the name of a template parameter.
6540  if (Previous.isSingleResult() &&
6541      Previous.getFoundDecl()->isTemplateParameter()) {
6542    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6543    Previous.clear();
6544  }
6545
6546  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6547         "name in alias declaration must be an identifier");
6548  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6549                                               Name.StartLocation,
6550                                               Name.Identifier, TInfo);
6551
6552  NewTD->setAccess(AS);
6553
6554  if (Invalid)
6555    NewTD->setInvalidDecl();
6556
6557  CheckTypedefForVariablyModifiedType(S, NewTD);
6558  Invalid |= NewTD->isInvalidDecl();
6559
6560  bool Redeclaration = false;
6561
6562  NamedDecl *NewND;
6563  if (TemplateParamLists.size()) {
6564    TypeAliasTemplateDecl *OldDecl = 0;
6565    TemplateParameterList *OldTemplateParams = 0;
6566
6567    if (TemplateParamLists.size() != 1) {
6568      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6569        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6570         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6571    }
6572    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6573
6574    // Only consider previous declarations in the same scope.
6575    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6576                         /*ExplicitInstantiationOrSpecialization*/false);
6577    if (!Previous.empty()) {
6578      Redeclaration = true;
6579
6580      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6581      if (!OldDecl && !Invalid) {
6582        Diag(UsingLoc, diag::err_redefinition_different_kind)
6583          << Name.Identifier;
6584
6585        NamedDecl *OldD = Previous.getRepresentativeDecl();
6586        if (OldD->getLocation().isValid())
6587          Diag(OldD->getLocation(), diag::note_previous_definition);
6588
6589        Invalid = true;
6590      }
6591
6592      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6593        if (TemplateParameterListsAreEqual(TemplateParams,
6594                                           OldDecl->getTemplateParameters(),
6595                                           /*Complain=*/true,
6596                                           TPL_TemplateMatch))
6597          OldTemplateParams = OldDecl->getTemplateParameters();
6598        else
6599          Invalid = true;
6600
6601        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6602        if (!Invalid &&
6603            !Context.hasSameType(OldTD->getUnderlyingType(),
6604                                 NewTD->getUnderlyingType())) {
6605          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6606          // but we can't reasonably accept it.
6607          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6608            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6609          if (OldTD->getLocation().isValid())
6610            Diag(OldTD->getLocation(), diag::note_previous_definition);
6611          Invalid = true;
6612        }
6613      }
6614    }
6615
6616    // Merge any previous default template arguments into our parameters,
6617    // and check the parameter list.
6618    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6619                                   TPC_TypeAliasTemplate))
6620      return 0;
6621
6622    TypeAliasTemplateDecl *NewDecl =
6623      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6624                                    Name.Identifier, TemplateParams,
6625                                    NewTD);
6626
6627    NewDecl->setAccess(AS);
6628
6629    if (Invalid)
6630      NewDecl->setInvalidDecl();
6631    else if (OldDecl)
6632      NewDecl->setPreviousDeclaration(OldDecl);
6633
6634    NewND = NewDecl;
6635  } else {
6636    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6637    NewND = NewTD;
6638  }
6639
6640  if (!Redeclaration)
6641    PushOnScopeChains(NewND, S);
6642
6643  return NewND;
6644}
6645
6646Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6647                                             SourceLocation NamespaceLoc,
6648                                             SourceLocation AliasLoc,
6649                                             IdentifierInfo *Alias,
6650                                             CXXScopeSpec &SS,
6651                                             SourceLocation IdentLoc,
6652                                             IdentifierInfo *Ident) {
6653
6654  // Lookup the namespace name.
6655  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6656  LookupParsedName(R, S, &SS);
6657
6658  // Check if we have a previous declaration with the same name.
6659  NamedDecl *PrevDecl
6660    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6661                       ForRedeclaration);
6662  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6663    PrevDecl = 0;
6664
6665  if (PrevDecl) {
6666    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6667      // We already have an alias with the same name that points to the same
6668      // namespace, so don't create a new one.
6669      // FIXME: At some point, we'll want to create the (redundant)
6670      // declaration to maintain better source information.
6671      if (!R.isAmbiguous() && !R.empty() &&
6672          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6673        return 0;
6674    }
6675
6676    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6677      diag::err_redefinition_different_kind;
6678    Diag(AliasLoc, DiagID) << Alias;
6679    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6680    return 0;
6681  }
6682
6683  if (R.isAmbiguous())
6684    return 0;
6685
6686  if (R.empty()) {
6687    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6688      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6689      return 0;
6690    }
6691  }
6692
6693  NamespaceAliasDecl *AliasDecl =
6694    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6695                               Alias, SS.getWithLocInContext(Context),
6696                               IdentLoc, R.getFoundDecl());
6697
6698  PushOnScopeChains(AliasDecl, S);
6699  return AliasDecl;
6700}
6701
6702namespace {
6703  /// \brief Scoped object used to handle the state changes required in Sema
6704  /// to implicitly define the body of a C++ member function;
6705  class ImplicitlyDefinedFunctionScope {
6706    Sema &S;
6707    Sema::ContextRAII SavedContext;
6708
6709  public:
6710    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6711      : S(S), SavedContext(S, Method)
6712    {
6713      S.PushFunctionScope();
6714      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6715    }
6716
6717    ~ImplicitlyDefinedFunctionScope() {
6718      S.PopExpressionEvaluationContext();
6719      S.PopFunctionScopeInfo();
6720    }
6721  };
6722}
6723
6724Sema::ImplicitExceptionSpecification
6725Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6726  // C++ [except.spec]p14:
6727  //   An implicitly declared special member function (Clause 12) shall have an
6728  //   exception-specification. [...]
6729  ImplicitExceptionSpecification ExceptSpec(Context);
6730  if (ClassDecl->isInvalidDecl())
6731    return ExceptSpec;
6732
6733  // Direct base-class constructors.
6734  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6735                                       BEnd = ClassDecl->bases_end();
6736       B != BEnd; ++B) {
6737    if (B->isVirtual()) // Handled below.
6738      continue;
6739
6740    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6741      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6742      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6743      // If this is a deleted function, add it anyway. This might be conformant
6744      // with the standard. This might not. I'm not sure. It might not matter.
6745      if (Constructor)
6746        ExceptSpec.CalledDecl(Constructor);
6747    }
6748  }
6749
6750  // Virtual base-class constructors.
6751  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6752                                       BEnd = ClassDecl->vbases_end();
6753       B != BEnd; ++B) {
6754    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6755      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6756      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6757      // If this is a deleted function, add it anyway. This might be conformant
6758      // with the standard. This might not. I'm not sure. It might not matter.
6759      if (Constructor)
6760        ExceptSpec.CalledDecl(Constructor);
6761    }
6762  }
6763
6764  // Field constructors.
6765  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6766                               FEnd = ClassDecl->field_end();
6767       F != FEnd; ++F) {
6768    if (F->hasInClassInitializer()) {
6769      if (Expr *E = F->getInClassInitializer())
6770        ExceptSpec.CalledExpr(E);
6771      else if (!F->isInvalidDecl())
6772        ExceptSpec.SetDelayed();
6773    } else if (const RecordType *RecordTy
6774              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6775      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6776      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6777      // If this is a deleted function, add it anyway. This might be conformant
6778      // with the standard. This might not. I'm not sure. It might not matter.
6779      // In particular, the problem is that this function never gets called. It
6780      // might just be ill-formed because this function attempts to refer to
6781      // a deleted function here.
6782      if (Constructor)
6783        ExceptSpec.CalledDecl(Constructor);
6784    }
6785  }
6786
6787  return ExceptSpec;
6788}
6789
6790CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6791                                                     CXXRecordDecl *ClassDecl) {
6792  // C++ [class.ctor]p5:
6793  //   A default constructor for a class X is a constructor of class X
6794  //   that can be called without an argument. If there is no
6795  //   user-declared constructor for class X, a default constructor is
6796  //   implicitly declared. An implicitly-declared default constructor
6797  //   is an inline public member of its class.
6798  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6799         "Should not build implicit default constructor!");
6800
6801  ImplicitExceptionSpecification Spec =
6802    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6803  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6804
6805  // Create the actual constructor declaration.
6806  CanQualType ClassType
6807    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6808  SourceLocation ClassLoc = ClassDecl->getLocation();
6809  DeclarationName Name
6810    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6811  DeclarationNameInfo NameInfo(Name, ClassLoc);
6812  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6813      Context, ClassDecl, ClassLoc, NameInfo,
6814      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
6815      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6816      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
6817        getLangOptions().CPlusPlus0x);
6818  DefaultCon->setAccess(AS_public);
6819  DefaultCon->setDefaulted();
6820  DefaultCon->setImplicit();
6821  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6822
6823  // Note that we have declared this constructor.
6824  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6825
6826  if (Scope *S = getScopeForContext(ClassDecl))
6827    PushOnScopeChains(DefaultCon, S, false);
6828  ClassDecl->addDecl(DefaultCon);
6829
6830  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6831    DefaultCon->setDeletedAsWritten();
6832
6833  return DefaultCon;
6834}
6835
6836void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6837                                            CXXConstructorDecl *Constructor) {
6838  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6839          !Constructor->doesThisDeclarationHaveABody() &&
6840          !Constructor->isDeleted()) &&
6841    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6842
6843  CXXRecordDecl *ClassDecl = Constructor->getParent();
6844  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6845
6846  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6847  DiagnosticErrorTrap Trap(Diags);
6848  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6849      Trap.hasErrorOccurred()) {
6850    Diag(CurrentLocation, diag::note_member_synthesized_at)
6851      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6852    Constructor->setInvalidDecl();
6853    return;
6854  }
6855
6856  SourceLocation Loc = Constructor->getLocation();
6857  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6858
6859  Constructor->setUsed();
6860  MarkVTableUsed(CurrentLocation, ClassDecl);
6861
6862  if (ASTMutationListener *L = getASTMutationListener()) {
6863    L->CompletedImplicitDefinition(Constructor);
6864  }
6865}
6866
6867/// Get any existing defaulted default constructor for the given class. Do not
6868/// implicitly define one if it does not exist.
6869static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6870                                                             CXXRecordDecl *D) {
6871  ASTContext &Context = Self.Context;
6872  QualType ClassType = Context.getTypeDeclType(D);
6873  DeclarationName ConstructorName
6874    = Context.DeclarationNames.getCXXConstructorName(
6875                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6876
6877  DeclContext::lookup_const_iterator Con, ConEnd;
6878  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6879       Con != ConEnd; ++Con) {
6880    // A function template cannot be defaulted.
6881    if (isa<FunctionTemplateDecl>(*Con))
6882      continue;
6883
6884    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6885    if (Constructor->isDefaultConstructor())
6886      return Constructor->isDefaulted() ? Constructor : 0;
6887  }
6888  return 0;
6889}
6890
6891void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6892  if (!D) return;
6893  AdjustDeclIfTemplate(D);
6894
6895  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6896  CXXConstructorDecl *CtorDecl
6897    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6898
6899  if (!CtorDecl) return;
6900
6901  // Compute the exception specification for the default constructor.
6902  const FunctionProtoType *CtorTy =
6903    CtorDecl->getType()->castAs<FunctionProtoType>();
6904  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6905    ImplicitExceptionSpecification Spec =
6906      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6907    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6908    assert(EPI.ExceptionSpecType != EST_Delayed);
6909
6910    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6911  }
6912
6913  // If the default constructor is explicitly defaulted, checking the exception
6914  // specification is deferred until now.
6915  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6916      !ClassDecl->isDependentType())
6917    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
6918}
6919
6920void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6921  // We start with an initial pass over the base classes to collect those that
6922  // inherit constructors from. If there are none, we can forgo all further
6923  // processing.
6924  typedef SmallVector<const RecordType *, 4> BasesVector;
6925  BasesVector BasesToInheritFrom;
6926  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6927                                          BaseE = ClassDecl->bases_end();
6928         BaseIt != BaseE; ++BaseIt) {
6929    if (BaseIt->getInheritConstructors()) {
6930      QualType Base = BaseIt->getType();
6931      if (Base->isDependentType()) {
6932        // If we inherit constructors from anything that is dependent, just
6933        // abort processing altogether. We'll get another chance for the
6934        // instantiations.
6935        return;
6936      }
6937      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6938    }
6939  }
6940  if (BasesToInheritFrom.empty())
6941    return;
6942
6943  // Now collect the constructors that we already have in the current class.
6944  // Those take precedence over inherited constructors.
6945  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6946  //   unless there is a user-declared constructor with the same signature in
6947  //   the class where the using-declaration appears.
6948  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6949  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6950                                    CtorE = ClassDecl->ctor_end();
6951       CtorIt != CtorE; ++CtorIt) {
6952    ExistingConstructors.insert(
6953        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6954  }
6955
6956  Scope *S = getScopeForContext(ClassDecl);
6957  DeclarationName CreatedCtorName =
6958      Context.DeclarationNames.getCXXConstructorName(
6959          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6960
6961  // Now comes the true work.
6962  // First, we keep a map from constructor types to the base that introduced
6963  // them. Needed for finding conflicting constructors. We also keep the
6964  // actually inserted declarations in there, for pretty diagnostics.
6965  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6966  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6967  ConstructorToSourceMap InheritedConstructors;
6968  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6969                             BaseE = BasesToInheritFrom.end();
6970       BaseIt != BaseE; ++BaseIt) {
6971    const RecordType *Base = *BaseIt;
6972    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6973    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6974    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6975                                      CtorE = BaseDecl->ctor_end();
6976         CtorIt != CtorE; ++CtorIt) {
6977      // Find the using declaration for inheriting this base's constructors.
6978      DeclarationName Name =
6979          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6980      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6981          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6982      SourceLocation UsingLoc = UD ? UD->getLocation() :
6983                                     ClassDecl->getLocation();
6984
6985      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6986      //   from the class X named in the using-declaration consists of actual
6987      //   constructors and notional constructors that result from the
6988      //   transformation of defaulted parameters as follows:
6989      //   - all non-template default constructors of X, and
6990      //   - for each non-template constructor of X that has at least one
6991      //     parameter with a default argument, the set of constructors that
6992      //     results from omitting any ellipsis parameter specification and
6993      //     successively omitting parameters with a default argument from the
6994      //     end of the parameter-type-list.
6995      CXXConstructorDecl *BaseCtor = *CtorIt;
6996      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6997      const FunctionProtoType *BaseCtorType =
6998          BaseCtor->getType()->getAs<FunctionProtoType>();
6999
7000      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7001                    maxParams = BaseCtor->getNumParams();
7002           params <= maxParams; ++params) {
7003        // Skip default constructors. They're never inherited.
7004        if (params == 0)
7005          continue;
7006        // Skip copy and move constructors for the same reason.
7007        if (CanBeCopyOrMove && params == 1)
7008          continue;
7009
7010        // Build up a function type for this particular constructor.
7011        // FIXME: The working paper does not consider that the exception spec
7012        // for the inheriting constructor might be larger than that of the
7013        // source. This code doesn't yet, either. When it does, this code will
7014        // need to be delayed until after exception specifications and in-class
7015        // member initializers are attached.
7016        const Type *NewCtorType;
7017        if (params == maxParams)
7018          NewCtorType = BaseCtorType;
7019        else {
7020          SmallVector<QualType, 16> Args;
7021          for (unsigned i = 0; i < params; ++i) {
7022            Args.push_back(BaseCtorType->getArgType(i));
7023          }
7024          FunctionProtoType::ExtProtoInfo ExtInfo =
7025              BaseCtorType->getExtProtoInfo();
7026          ExtInfo.Variadic = false;
7027          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7028                                                Args.data(), params, ExtInfo)
7029                       .getTypePtr();
7030        }
7031        const Type *CanonicalNewCtorType =
7032            Context.getCanonicalType(NewCtorType);
7033
7034        // Now that we have the type, first check if the class already has a
7035        // constructor with this signature.
7036        if (ExistingConstructors.count(CanonicalNewCtorType))
7037          continue;
7038
7039        // Then we check if we have already declared an inherited constructor
7040        // with this signature.
7041        std::pair<ConstructorToSourceMap::iterator, bool> result =
7042            InheritedConstructors.insert(std::make_pair(
7043                CanonicalNewCtorType,
7044                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7045        if (!result.second) {
7046          // Already in the map. If it came from a different class, that's an
7047          // error. Not if it's from the same.
7048          CanQualType PreviousBase = result.first->second.first;
7049          if (CanonicalBase != PreviousBase) {
7050            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7051            const CXXConstructorDecl *PrevBaseCtor =
7052                PrevCtor->getInheritedConstructor();
7053            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7054
7055            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7056            Diag(BaseCtor->getLocation(),
7057                 diag::note_using_decl_constructor_conflict_current_ctor);
7058            Diag(PrevBaseCtor->getLocation(),
7059                 diag::note_using_decl_constructor_conflict_previous_ctor);
7060            Diag(PrevCtor->getLocation(),
7061                 diag::note_using_decl_constructor_conflict_previous_using);
7062          }
7063          continue;
7064        }
7065
7066        // OK, we're there, now add the constructor.
7067        // C++0x [class.inhctor]p8: [...] that would be performed by a
7068        //   user-written inline constructor [...]
7069        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7070        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7071            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7072            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7073            /*ImplicitlyDeclared=*/true,
7074            // FIXME: Due to a defect in the standard, we treat inherited
7075            // constructors as constexpr even if that makes them ill-formed.
7076            /*Constexpr=*/BaseCtor->isConstexpr());
7077        NewCtor->setAccess(BaseCtor->getAccess());
7078
7079        // Build up the parameter decls and add them.
7080        SmallVector<ParmVarDecl *, 16> ParamDecls;
7081        for (unsigned i = 0; i < params; ++i) {
7082          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7083                                                   UsingLoc, UsingLoc,
7084                                                   /*IdentifierInfo=*/0,
7085                                                   BaseCtorType->getArgType(i),
7086                                                   /*TInfo=*/0, SC_None,
7087                                                   SC_None, /*DefaultArg=*/0));
7088        }
7089        NewCtor->setParams(ParamDecls);
7090        NewCtor->setInheritedConstructor(BaseCtor);
7091
7092        PushOnScopeChains(NewCtor, S, false);
7093        ClassDecl->addDecl(NewCtor);
7094        result.first->second.second = NewCtor;
7095      }
7096    }
7097  }
7098}
7099
7100Sema::ImplicitExceptionSpecification
7101Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7102  // C++ [except.spec]p14:
7103  //   An implicitly declared special member function (Clause 12) shall have
7104  //   an exception-specification.
7105  ImplicitExceptionSpecification ExceptSpec(Context);
7106  if (ClassDecl->isInvalidDecl())
7107    return ExceptSpec;
7108
7109  // Direct base-class destructors.
7110  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7111                                       BEnd = ClassDecl->bases_end();
7112       B != BEnd; ++B) {
7113    if (B->isVirtual()) // Handled below.
7114      continue;
7115
7116    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7117      ExceptSpec.CalledDecl(
7118                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7119  }
7120
7121  // Virtual base-class destructors.
7122  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7123                                       BEnd = ClassDecl->vbases_end();
7124       B != BEnd; ++B) {
7125    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7126      ExceptSpec.CalledDecl(
7127                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7128  }
7129
7130  // Field destructors.
7131  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7132                               FEnd = ClassDecl->field_end();
7133       F != FEnd; ++F) {
7134    if (const RecordType *RecordTy
7135        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7136      ExceptSpec.CalledDecl(
7137                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7138  }
7139
7140  return ExceptSpec;
7141}
7142
7143CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7144  // C++ [class.dtor]p2:
7145  //   If a class has no user-declared destructor, a destructor is
7146  //   declared implicitly. An implicitly-declared destructor is an
7147  //   inline public member of its class.
7148
7149  ImplicitExceptionSpecification Spec =
7150      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7151  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7152
7153  // Create the actual destructor declaration.
7154  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7155
7156  CanQualType ClassType
7157    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7158  SourceLocation ClassLoc = ClassDecl->getLocation();
7159  DeclarationName Name
7160    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7161  DeclarationNameInfo NameInfo(Name, ClassLoc);
7162  CXXDestructorDecl *Destructor
7163      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7164                                  /*isInline=*/true,
7165                                  /*isImplicitlyDeclared=*/true);
7166  Destructor->setAccess(AS_public);
7167  Destructor->setDefaulted();
7168  Destructor->setImplicit();
7169  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7170
7171  // Note that we have declared this destructor.
7172  ++ASTContext::NumImplicitDestructorsDeclared;
7173
7174  // Introduce this destructor into its scope.
7175  if (Scope *S = getScopeForContext(ClassDecl))
7176    PushOnScopeChains(Destructor, S, false);
7177  ClassDecl->addDecl(Destructor);
7178
7179  // This could be uniqued if it ever proves significant.
7180  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7181
7182  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7183    Destructor->setDeletedAsWritten();
7184
7185  AddOverriddenMethods(ClassDecl, Destructor);
7186
7187  return Destructor;
7188}
7189
7190void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7191                                    CXXDestructorDecl *Destructor) {
7192  assert((Destructor->isDefaulted() &&
7193          !Destructor->doesThisDeclarationHaveABody()) &&
7194         "DefineImplicitDestructor - call it for implicit default dtor");
7195  CXXRecordDecl *ClassDecl = Destructor->getParent();
7196  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7197
7198  if (Destructor->isInvalidDecl())
7199    return;
7200
7201  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7202
7203  DiagnosticErrorTrap Trap(Diags);
7204  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7205                                         Destructor->getParent());
7206
7207  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7208    Diag(CurrentLocation, diag::note_member_synthesized_at)
7209      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7210
7211    Destructor->setInvalidDecl();
7212    return;
7213  }
7214
7215  SourceLocation Loc = Destructor->getLocation();
7216  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7217  Destructor->setImplicitlyDefined(true);
7218  Destructor->setUsed();
7219  MarkVTableUsed(CurrentLocation, ClassDecl);
7220
7221  if (ASTMutationListener *L = getASTMutationListener()) {
7222    L->CompletedImplicitDefinition(Destructor);
7223  }
7224}
7225
7226void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7227                                         CXXDestructorDecl *destructor) {
7228  // C++11 [class.dtor]p3:
7229  //   A declaration of a destructor that does not have an exception-
7230  //   specification is implicitly considered to have the same exception-
7231  //   specification as an implicit declaration.
7232  const FunctionProtoType *dtorType = destructor->getType()->
7233                                        getAs<FunctionProtoType>();
7234  if (dtorType->hasExceptionSpec())
7235    return;
7236
7237  ImplicitExceptionSpecification exceptSpec =
7238      ComputeDefaultedDtorExceptionSpec(classDecl);
7239
7240  // Replace the destructor's type, building off the existing one. Fortunately,
7241  // the only thing of interest in the destructor type is its extended info.
7242  // The return and arguments are fixed.
7243  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7244  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7245  epi.NumExceptions = exceptSpec.size();
7246  epi.Exceptions = exceptSpec.data();
7247  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7248
7249  destructor->setType(ty);
7250
7251  // FIXME: If the destructor has a body that could throw, and the newly created
7252  // spec doesn't allow exceptions, we should emit a warning, because this
7253  // change in behavior can break conforming C++03 programs at runtime.
7254  // However, we don't have a body yet, so it needs to be done somewhere else.
7255}
7256
7257/// \brief Builds a statement that copies/moves the given entity from \p From to
7258/// \c To.
7259///
7260/// This routine is used to copy/move the members of a class with an
7261/// implicitly-declared copy/move assignment operator. When the entities being
7262/// copied are arrays, this routine builds for loops to copy them.
7263///
7264/// \param S The Sema object used for type-checking.
7265///
7266/// \param Loc The location where the implicit copy/move is being generated.
7267///
7268/// \param T The type of the expressions being copied/moved. Both expressions
7269/// must have this type.
7270///
7271/// \param To The expression we are copying/moving to.
7272///
7273/// \param From The expression we are copying/moving from.
7274///
7275/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7276/// Otherwise, it's a non-static member subobject.
7277///
7278/// \param Copying Whether we're copying or moving.
7279///
7280/// \param Depth Internal parameter recording the depth of the recursion.
7281///
7282/// \returns A statement or a loop that copies the expressions.
7283static StmtResult
7284BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7285                      Expr *To, Expr *From,
7286                      bool CopyingBaseSubobject, bool Copying,
7287                      unsigned Depth = 0) {
7288  // C++0x [class.copy]p28:
7289  //   Each subobject is assigned in the manner appropriate to its type:
7290  //
7291  //     - if the subobject is of class type, as if by a call to operator= with
7292  //       the subobject as the object expression and the corresponding
7293  //       subobject of x as a single function argument (as if by explicit
7294  //       qualification; that is, ignoring any possible virtual overriding
7295  //       functions in more derived classes);
7296  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7297    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7298
7299    // Look for operator=.
7300    DeclarationName Name
7301      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7302    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7303    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7304
7305    // Filter out any result that isn't a copy/move-assignment operator.
7306    LookupResult::Filter F = OpLookup.makeFilter();
7307    while (F.hasNext()) {
7308      NamedDecl *D = F.next();
7309      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7310        if (Copying ? Method->isCopyAssignmentOperator() :
7311                      Method->isMoveAssignmentOperator())
7312          continue;
7313
7314      F.erase();
7315    }
7316    F.done();
7317
7318    // Suppress the protected check (C++ [class.protected]) for each of the
7319    // assignment operators we found. This strange dance is required when
7320    // we're assigning via a base classes's copy-assignment operator. To
7321    // ensure that we're getting the right base class subobject (without
7322    // ambiguities), we need to cast "this" to that subobject type; to
7323    // ensure that we don't go through the virtual call mechanism, we need
7324    // to qualify the operator= name with the base class (see below). However,
7325    // this means that if the base class has a protected copy assignment
7326    // operator, the protected member access check will fail. So, we
7327    // rewrite "protected" access to "public" access in this case, since we
7328    // know by construction that we're calling from a derived class.
7329    if (CopyingBaseSubobject) {
7330      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7331           L != LEnd; ++L) {
7332        if (L.getAccess() == AS_protected)
7333          L.setAccess(AS_public);
7334      }
7335    }
7336
7337    // Create the nested-name-specifier that will be used to qualify the
7338    // reference to operator=; this is required to suppress the virtual
7339    // call mechanism.
7340    CXXScopeSpec SS;
7341    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7342    SS.MakeTrivial(S.Context,
7343                   NestedNameSpecifier::Create(S.Context, 0, false,
7344                                               CanonicalT),
7345                   Loc);
7346
7347    // Create the reference to operator=.
7348    ExprResult OpEqualRef
7349      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7350                                   /*TemplateKWLoc=*/SourceLocation(),
7351                                   /*FirstQualifierInScope=*/0,
7352                                   OpLookup,
7353                                   /*TemplateArgs=*/0,
7354                                   /*SuppressQualifierCheck=*/true);
7355    if (OpEqualRef.isInvalid())
7356      return StmtError();
7357
7358    // Build the call to the assignment operator.
7359
7360    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7361                                                  OpEqualRef.takeAs<Expr>(),
7362                                                  Loc, &From, 1, Loc);
7363    if (Call.isInvalid())
7364      return StmtError();
7365
7366    return S.Owned(Call.takeAs<Stmt>());
7367  }
7368
7369  //     - if the subobject is of scalar type, the built-in assignment
7370  //       operator is used.
7371  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7372  if (!ArrayTy) {
7373    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7374    if (Assignment.isInvalid())
7375      return StmtError();
7376
7377    return S.Owned(Assignment.takeAs<Stmt>());
7378  }
7379
7380  //     - if the subobject is an array, each element is assigned, in the
7381  //       manner appropriate to the element type;
7382
7383  // Construct a loop over the array bounds, e.g.,
7384  //
7385  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7386  //
7387  // that will copy each of the array elements.
7388  QualType SizeType = S.Context.getSizeType();
7389
7390  // Create the iteration variable.
7391  IdentifierInfo *IterationVarName = 0;
7392  {
7393    SmallString<8> Str;
7394    llvm::raw_svector_ostream OS(Str);
7395    OS << "__i" << Depth;
7396    IterationVarName = &S.Context.Idents.get(OS.str());
7397  }
7398  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7399                                          IterationVarName, SizeType,
7400                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7401                                          SC_None, SC_None);
7402
7403  // Initialize the iteration variable to zero.
7404  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7405  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7406
7407  // Create a reference to the iteration variable; we'll use this several
7408  // times throughout.
7409  Expr *IterationVarRef
7410    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7411  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7412  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7413  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7414
7415  // Create the DeclStmt that holds the iteration variable.
7416  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7417
7418  // Create the comparison against the array bound.
7419  llvm::APInt Upper
7420    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7421  Expr *Comparison
7422    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7423                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7424                                     BO_NE, S.Context.BoolTy,
7425                                     VK_RValue, OK_Ordinary, Loc);
7426
7427  // Create the pre-increment of the iteration variable.
7428  Expr *Increment
7429    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7430                                    VK_LValue, OK_Ordinary, Loc);
7431
7432  // Subscript the "from" and "to" expressions with the iteration variable.
7433  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7434                                                         IterationVarRefRVal,
7435                                                         Loc));
7436  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7437                                                       IterationVarRefRVal,
7438                                                       Loc));
7439  if (!Copying) // Cast to rvalue
7440    From = CastForMoving(S, From);
7441
7442  // Build the copy/move for an individual element of the array.
7443  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7444                                          To, From, CopyingBaseSubobject,
7445                                          Copying, Depth + 1);
7446  if (Copy.isInvalid())
7447    return StmtError();
7448
7449  // Construct the loop that copies all elements of this array.
7450  return S.ActOnForStmt(Loc, Loc, InitStmt,
7451                        S.MakeFullExpr(Comparison),
7452                        0, S.MakeFullExpr(Increment),
7453                        Loc, Copy.take());
7454}
7455
7456std::pair<Sema::ImplicitExceptionSpecification, bool>
7457Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7458                                                   CXXRecordDecl *ClassDecl) {
7459  if (ClassDecl->isInvalidDecl())
7460    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7461
7462  // C++ [class.copy]p10:
7463  //   If the class definition does not explicitly declare a copy
7464  //   assignment operator, one is declared implicitly.
7465  //   The implicitly-defined copy assignment operator for a class X
7466  //   will have the form
7467  //
7468  //       X& X::operator=(const X&)
7469  //
7470  //   if
7471  bool HasConstCopyAssignment = true;
7472
7473  //       -- each direct base class B of X has a copy assignment operator
7474  //          whose parameter is of type const B&, const volatile B& or B,
7475  //          and
7476  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7477                                       BaseEnd = ClassDecl->bases_end();
7478       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7479    // We'll handle this below
7480    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7481      continue;
7482
7483    assert(!Base->getType()->isDependentType() &&
7484           "Cannot generate implicit members for class with dependent bases.");
7485    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7486    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7487                            &HasConstCopyAssignment);
7488  }
7489
7490  // In C++11, the above citation has "or virtual" added
7491  if (LangOpts.CPlusPlus0x) {
7492    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7493                                         BaseEnd = ClassDecl->vbases_end();
7494         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7495      assert(!Base->getType()->isDependentType() &&
7496             "Cannot generate implicit members for class with dependent bases.");
7497      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7498      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7499                              &HasConstCopyAssignment);
7500    }
7501  }
7502
7503  //       -- for all the nonstatic data members of X that are of a class
7504  //          type M (or array thereof), each such class type has a copy
7505  //          assignment operator whose parameter is of type const M&,
7506  //          const volatile M& or M.
7507  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7508                                  FieldEnd = ClassDecl->field_end();
7509       HasConstCopyAssignment && Field != FieldEnd;
7510       ++Field) {
7511    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7512    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7513      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7514                              &HasConstCopyAssignment);
7515    }
7516  }
7517
7518  //   Otherwise, the implicitly declared copy assignment operator will
7519  //   have the form
7520  //
7521  //       X& X::operator=(X&)
7522
7523  // C++ [except.spec]p14:
7524  //   An implicitly declared special member function (Clause 12) shall have an
7525  //   exception-specification. [...]
7526
7527  // It is unspecified whether or not an implicit copy assignment operator
7528  // attempts to deduplicate calls to assignment operators of virtual bases are
7529  // made. As such, this exception specification is effectively unspecified.
7530  // Based on a similar decision made for constness in C++0x, we're erring on
7531  // the side of assuming such calls to be made regardless of whether they
7532  // actually happen.
7533  ImplicitExceptionSpecification ExceptSpec(Context);
7534  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7535  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7536                                       BaseEnd = ClassDecl->bases_end();
7537       Base != BaseEnd; ++Base) {
7538    if (Base->isVirtual())
7539      continue;
7540
7541    CXXRecordDecl *BaseClassDecl
7542      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7543    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7544                                                            ArgQuals, false, 0))
7545      ExceptSpec.CalledDecl(CopyAssign);
7546  }
7547
7548  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7549                                       BaseEnd = ClassDecl->vbases_end();
7550       Base != BaseEnd; ++Base) {
7551    CXXRecordDecl *BaseClassDecl
7552      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7553    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7554                                                            ArgQuals, false, 0))
7555      ExceptSpec.CalledDecl(CopyAssign);
7556  }
7557
7558  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7559                                  FieldEnd = ClassDecl->field_end();
7560       Field != FieldEnd;
7561       ++Field) {
7562    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7563    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7564      if (CXXMethodDecl *CopyAssign =
7565          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7566        ExceptSpec.CalledDecl(CopyAssign);
7567    }
7568  }
7569
7570  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7571}
7572
7573CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7574  // Note: The following rules are largely analoguous to the copy
7575  // constructor rules. Note that virtual bases are not taken into account
7576  // for determining the argument type of the operator. Note also that
7577  // operators taking an object instead of a reference are allowed.
7578
7579  ImplicitExceptionSpecification Spec(Context);
7580  bool Const;
7581  llvm::tie(Spec, Const) =
7582    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7583
7584  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7585  QualType RetType = Context.getLValueReferenceType(ArgType);
7586  if (Const)
7587    ArgType = ArgType.withConst();
7588  ArgType = Context.getLValueReferenceType(ArgType);
7589
7590  //   An implicitly-declared copy assignment operator is an inline public
7591  //   member of its class.
7592  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7593  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7594  SourceLocation ClassLoc = ClassDecl->getLocation();
7595  DeclarationNameInfo NameInfo(Name, ClassLoc);
7596  CXXMethodDecl *CopyAssignment
7597    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7598                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7599                            /*TInfo=*/0, /*isStatic=*/false,
7600                            /*StorageClassAsWritten=*/SC_None,
7601                            /*isInline=*/true, /*isConstexpr=*/false,
7602                            SourceLocation());
7603  CopyAssignment->setAccess(AS_public);
7604  CopyAssignment->setDefaulted();
7605  CopyAssignment->setImplicit();
7606  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7607
7608  // Add the parameter to the operator.
7609  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7610                                               ClassLoc, ClassLoc, /*Id=*/0,
7611                                               ArgType, /*TInfo=*/0,
7612                                               SC_None,
7613                                               SC_None, 0);
7614  CopyAssignment->setParams(FromParam);
7615
7616  // Note that we have added this copy-assignment operator.
7617  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7618
7619  if (Scope *S = getScopeForContext(ClassDecl))
7620    PushOnScopeChains(CopyAssignment, S, false);
7621  ClassDecl->addDecl(CopyAssignment);
7622
7623  // C++0x [class.copy]p19:
7624  //   ....  If the class definition does not explicitly declare a copy
7625  //   assignment operator, there is no user-declared move constructor, and
7626  //   there is no user-declared move assignment operator, a copy assignment
7627  //   operator is implicitly declared as defaulted.
7628  if ((ClassDecl->hasUserDeclaredMoveConstructor() &&
7629          !getLangOptions().MicrosoftMode) ||
7630      ClassDecl->hasUserDeclaredMoveAssignment() ||
7631      ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
7632    CopyAssignment->setDeletedAsWritten();
7633
7634  AddOverriddenMethods(ClassDecl, CopyAssignment);
7635  return CopyAssignment;
7636}
7637
7638void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7639                                        CXXMethodDecl *CopyAssignOperator) {
7640  assert((CopyAssignOperator->isDefaulted() &&
7641          CopyAssignOperator->isOverloadedOperator() &&
7642          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7643          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7644         "DefineImplicitCopyAssignment called for wrong function");
7645
7646  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7647
7648  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7649    CopyAssignOperator->setInvalidDecl();
7650    return;
7651  }
7652
7653  CopyAssignOperator->setUsed();
7654
7655  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7656  DiagnosticErrorTrap Trap(Diags);
7657
7658  // C++0x [class.copy]p30:
7659  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7660  //   for a non-union class X performs memberwise copy assignment of its
7661  //   subobjects. The direct base classes of X are assigned first, in the
7662  //   order of their declaration in the base-specifier-list, and then the
7663  //   immediate non-static data members of X are assigned, in the order in
7664  //   which they were declared in the class definition.
7665
7666  // The statements that form the synthesized function body.
7667  ASTOwningVector<Stmt*> Statements(*this);
7668
7669  // The parameter for the "other" object, which we are copying from.
7670  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7671  Qualifiers OtherQuals = Other->getType().getQualifiers();
7672  QualType OtherRefType = Other->getType();
7673  if (const LValueReferenceType *OtherRef
7674                                = OtherRefType->getAs<LValueReferenceType>()) {
7675    OtherRefType = OtherRef->getPointeeType();
7676    OtherQuals = OtherRefType.getQualifiers();
7677  }
7678
7679  // Our location for everything implicitly-generated.
7680  SourceLocation Loc = CopyAssignOperator->getLocation();
7681
7682  // Construct a reference to the "other" object. We'll be using this
7683  // throughout the generated ASTs.
7684  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7685  assert(OtherRef && "Reference to parameter cannot fail!");
7686
7687  // Construct the "this" pointer. We'll be using this throughout the generated
7688  // ASTs.
7689  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7690  assert(This && "Reference to this cannot fail!");
7691
7692  // Assign base classes.
7693  bool Invalid = false;
7694  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7695       E = ClassDecl->bases_end(); Base != E; ++Base) {
7696    // Form the assignment:
7697    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7698    QualType BaseType = Base->getType().getUnqualifiedType();
7699    if (!BaseType->isRecordType()) {
7700      Invalid = true;
7701      continue;
7702    }
7703
7704    CXXCastPath BasePath;
7705    BasePath.push_back(Base);
7706
7707    // Construct the "from" expression, which is an implicit cast to the
7708    // appropriately-qualified base type.
7709    Expr *From = OtherRef;
7710    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7711                             CK_UncheckedDerivedToBase,
7712                             VK_LValue, &BasePath).take();
7713
7714    // Dereference "this".
7715    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7716
7717    // Implicitly cast "this" to the appropriately-qualified base type.
7718    To = ImpCastExprToType(To.take(),
7719                           Context.getCVRQualifiedType(BaseType,
7720                                     CopyAssignOperator->getTypeQualifiers()),
7721                           CK_UncheckedDerivedToBase,
7722                           VK_LValue, &BasePath);
7723
7724    // Build the copy.
7725    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7726                                            To.get(), From,
7727                                            /*CopyingBaseSubobject=*/true,
7728                                            /*Copying=*/true);
7729    if (Copy.isInvalid()) {
7730      Diag(CurrentLocation, diag::note_member_synthesized_at)
7731        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7732      CopyAssignOperator->setInvalidDecl();
7733      return;
7734    }
7735
7736    // Success! Record the copy.
7737    Statements.push_back(Copy.takeAs<Expr>());
7738  }
7739
7740  // \brief Reference to the __builtin_memcpy function.
7741  Expr *BuiltinMemCpyRef = 0;
7742  // \brief Reference to the __builtin_objc_memmove_collectable function.
7743  Expr *CollectableMemCpyRef = 0;
7744
7745  // Assign non-static members.
7746  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7747                                  FieldEnd = ClassDecl->field_end();
7748       Field != FieldEnd; ++Field) {
7749    if (Field->isUnnamedBitfield())
7750      continue;
7751
7752    // Check for members of reference type; we can't copy those.
7753    if (Field->getType()->isReferenceType()) {
7754      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7755        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7756      Diag(Field->getLocation(), diag::note_declared_at);
7757      Diag(CurrentLocation, diag::note_member_synthesized_at)
7758        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7759      Invalid = true;
7760      continue;
7761    }
7762
7763    // Check for members of const-qualified, non-class type.
7764    QualType BaseType = Context.getBaseElementType(Field->getType());
7765    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7766      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7767        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7768      Diag(Field->getLocation(), diag::note_declared_at);
7769      Diag(CurrentLocation, diag::note_member_synthesized_at)
7770        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7771      Invalid = true;
7772      continue;
7773    }
7774
7775    // Suppress assigning zero-width bitfields.
7776    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7777      continue;
7778
7779    QualType FieldType = Field->getType().getNonReferenceType();
7780    if (FieldType->isIncompleteArrayType()) {
7781      assert(ClassDecl->hasFlexibleArrayMember() &&
7782             "Incomplete array type is not valid");
7783      continue;
7784    }
7785
7786    // Build references to the field in the object we're copying from and to.
7787    CXXScopeSpec SS; // Intentionally empty
7788    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7789                              LookupMemberName);
7790    MemberLookup.addDecl(*Field);
7791    MemberLookup.resolveKind();
7792    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7793                                               Loc, /*IsArrow=*/false,
7794                                               SS, SourceLocation(), 0,
7795                                               MemberLookup, 0);
7796    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7797                                             Loc, /*IsArrow=*/true,
7798                                             SS, SourceLocation(), 0,
7799                                             MemberLookup, 0);
7800    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7801    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7802
7803    // If the field should be copied with __builtin_memcpy rather than via
7804    // explicit assignments, do so. This optimization only applies for arrays
7805    // of scalars and arrays of class type with trivial copy-assignment
7806    // operators.
7807    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7808        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7809      // Compute the size of the memory buffer to be copied.
7810      QualType SizeType = Context.getSizeType();
7811      llvm::APInt Size(Context.getTypeSize(SizeType),
7812                       Context.getTypeSizeInChars(BaseType).getQuantity());
7813      for (const ConstantArrayType *Array
7814              = Context.getAsConstantArrayType(FieldType);
7815           Array;
7816           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7817        llvm::APInt ArraySize
7818          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7819        Size *= ArraySize;
7820      }
7821
7822      // Take the address of the field references for "from" and "to".
7823      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7824      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7825
7826      bool NeedsCollectableMemCpy =
7827          (BaseType->isRecordType() &&
7828           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7829
7830      if (NeedsCollectableMemCpy) {
7831        if (!CollectableMemCpyRef) {
7832          // Create a reference to the __builtin_objc_memmove_collectable function.
7833          LookupResult R(*this,
7834                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7835                         Loc, LookupOrdinaryName);
7836          LookupName(R, TUScope, true);
7837
7838          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7839          if (!CollectableMemCpy) {
7840            // Something went horribly wrong earlier, and we will have
7841            // complained about it.
7842            Invalid = true;
7843            continue;
7844          }
7845
7846          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7847                                                  CollectableMemCpy->getType(),
7848                                                  VK_LValue, Loc, 0).take();
7849          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7850        }
7851      }
7852      // Create a reference to the __builtin_memcpy builtin function.
7853      else if (!BuiltinMemCpyRef) {
7854        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7855                       LookupOrdinaryName);
7856        LookupName(R, TUScope, true);
7857
7858        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7859        if (!BuiltinMemCpy) {
7860          // Something went horribly wrong earlier, and we will have complained
7861          // about it.
7862          Invalid = true;
7863          continue;
7864        }
7865
7866        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7867                                            BuiltinMemCpy->getType(),
7868                                            VK_LValue, Loc, 0).take();
7869        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7870      }
7871
7872      ASTOwningVector<Expr*> CallArgs(*this);
7873      CallArgs.push_back(To.takeAs<Expr>());
7874      CallArgs.push_back(From.takeAs<Expr>());
7875      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7876      ExprResult Call = ExprError();
7877      if (NeedsCollectableMemCpy)
7878        Call = ActOnCallExpr(/*Scope=*/0,
7879                             CollectableMemCpyRef,
7880                             Loc, move_arg(CallArgs),
7881                             Loc);
7882      else
7883        Call = ActOnCallExpr(/*Scope=*/0,
7884                             BuiltinMemCpyRef,
7885                             Loc, move_arg(CallArgs),
7886                             Loc);
7887
7888      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7889      Statements.push_back(Call.takeAs<Expr>());
7890      continue;
7891    }
7892
7893    // Build the copy of this field.
7894    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7895                                            To.get(), From.get(),
7896                                            /*CopyingBaseSubobject=*/false,
7897                                            /*Copying=*/true);
7898    if (Copy.isInvalid()) {
7899      Diag(CurrentLocation, diag::note_member_synthesized_at)
7900        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7901      CopyAssignOperator->setInvalidDecl();
7902      return;
7903    }
7904
7905    // Success! Record the copy.
7906    Statements.push_back(Copy.takeAs<Stmt>());
7907  }
7908
7909  if (!Invalid) {
7910    // Add a "return *this;"
7911    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7912
7913    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7914    if (Return.isInvalid())
7915      Invalid = true;
7916    else {
7917      Statements.push_back(Return.takeAs<Stmt>());
7918
7919      if (Trap.hasErrorOccurred()) {
7920        Diag(CurrentLocation, diag::note_member_synthesized_at)
7921          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7922        Invalid = true;
7923      }
7924    }
7925  }
7926
7927  if (Invalid) {
7928    CopyAssignOperator->setInvalidDecl();
7929    return;
7930  }
7931
7932  StmtResult Body;
7933  {
7934    CompoundScopeRAII CompoundScope(*this);
7935    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7936                             /*isStmtExpr=*/false);
7937    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7938  }
7939  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7940
7941  if (ASTMutationListener *L = getASTMutationListener()) {
7942    L->CompletedImplicitDefinition(CopyAssignOperator);
7943  }
7944}
7945
7946Sema::ImplicitExceptionSpecification
7947Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
7948  ImplicitExceptionSpecification ExceptSpec(Context);
7949
7950  if (ClassDecl->isInvalidDecl())
7951    return ExceptSpec;
7952
7953  // C++0x [except.spec]p14:
7954  //   An implicitly declared special member function (Clause 12) shall have an
7955  //   exception-specification. [...]
7956
7957  // It is unspecified whether or not an implicit move assignment operator
7958  // attempts to deduplicate calls to assignment operators of virtual bases are
7959  // made. As such, this exception specification is effectively unspecified.
7960  // Based on a similar decision made for constness in C++0x, we're erring on
7961  // the side of assuming such calls to be made regardless of whether they
7962  // actually happen.
7963  // Note that a move constructor is not implicitly declared when there are
7964  // virtual bases, but it can still be user-declared and explicitly defaulted.
7965  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7966                                       BaseEnd = ClassDecl->bases_end();
7967       Base != BaseEnd; ++Base) {
7968    if (Base->isVirtual())
7969      continue;
7970
7971    CXXRecordDecl *BaseClassDecl
7972      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7973    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7974                                                           false, 0))
7975      ExceptSpec.CalledDecl(MoveAssign);
7976  }
7977
7978  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7979                                       BaseEnd = ClassDecl->vbases_end();
7980       Base != BaseEnd; ++Base) {
7981    CXXRecordDecl *BaseClassDecl
7982      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7983    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7984                                                           false, 0))
7985      ExceptSpec.CalledDecl(MoveAssign);
7986  }
7987
7988  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7989                                  FieldEnd = ClassDecl->field_end();
7990       Field != FieldEnd;
7991       ++Field) {
7992    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7993    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7994      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
7995                                                             false, 0))
7996        ExceptSpec.CalledDecl(MoveAssign);
7997    }
7998  }
7999
8000  return ExceptSpec;
8001}
8002
8003CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8004  // Note: The following rules are largely analoguous to the move
8005  // constructor rules.
8006
8007  ImplicitExceptionSpecification Spec(
8008      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8009
8010  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8011  QualType RetType = Context.getLValueReferenceType(ArgType);
8012  ArgType = Context.getRValueReferenceType(ArgType);
8013
8014  //   An implicitly-declared move assignment operator is an inline public
8015  //   member of its class.
8016  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8017  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8018  SourceLocation ClassLoc = ClassDecl->getLocation();
8019  DeclarationNameInfo NameInfo(Name, ClassLoc);
8020  CXXMethodDecl *MoveAssignment
8021    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8022                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8023                            /*TInfo=*/0, /*isStatic=*/false,
8024                            /*StorageClassAsWritten=*/SC_None,
8025                            /*isInline=*/true,
8026                            /*isConstexpr=*/false,
8027                            SourceLocation());
8028  MoveAssignment->setAccess(AS_public);
8029  MoveAssignment->setDefaulted();
8030  MoveAssignment->setImplicit();
8031  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8032
8033  // Add the parameter to the operator.
8034  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8035                                               ClassLoc, ClassLoc, /*Id=*/0,
8036                                               ArgType, /*TInfo=*/0,
8037                                               SC_None,
8038                                               SC_None, 0);
8039  MoveAssignment->setParams(FromParam);
8040
8041  // Note that we have added this copy-assignment operator.
8042  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8043
8044  // C++0x [class.copy]p9:
8045  //   If the definition of a class X does not explicitly declare a move
8046  //   assignment operator, one will be implicitly declared as defaulted if and
8047  //   only if:
8048  //   [...]
8049  //   - the move assignment operator would not be implicitly defined as
8050  //     deleted.
8051  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8052    // Cache this result so that we don't try to generate this over and over
8053    // on every lookup, leaking memory and wasting time.
8054    ClassDecl->setFailedImplicitMoveAssignment();
8055    return 0;
8056  }
8057
8058  if (Scope *S = getScopeForContext(ClassDecl))
8059    PushOnScopeChains(MoveAssignment, S, false);
8060  ClassDecl->addDecl(MoveAssignment);
8061
8062  AddOverriddenMethods(ClassDecl, MoveAssignment);
8063  return MoveAssignment;
8064}
8065
8066void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8067                                        CXXMethodDecl *MoveAssignOperator) {
8068  assert((MoveAssignOperator->isDefaulted() &&
8069          MoveAssignOperator->isOverloadedOperator() &&
8070          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8071          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8072         "DefineImplicitMoveAssignment called for wrong function");
8073
8074  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8075
8076  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8077    MoveAssignOperator->setInvalidDecl();
8078    return;
8079  }
8080
8081  MoveAssignOperator->setUsed();
8082
8083  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8084  DiagnosticErrorTrap Trap(Diags);
8085
8086  // C++0x [class.copy]p28:
8087  //   The implicitly-defined or move assignment operator for a non-union class
8088  //   X performs memberwise move assignment of its subobjects. The direct base
8089  //   classes of X are assigned first, in the order of their declaration in the
8090  //   base-specifier-list, and then the immediate non-static data members of X
8091  //   are assigned, in the order in which they were declared in the class
8092  //   definition.
8093
8094  // The statements that form the synthesized function body.
8095  ASTOwningVector<Stmt*> Statements(*this);
8096
8097  // The parameter for the "other" object, which we are move from.
8098  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8099  QualType OtherRefType = Other->getType()->
8100      getAs<RValueReferenceType>()->getPointeeType();
8101  assert(OtherRefType.getQualifiers() == 0 &&
8102         "Bad argument type of defaulted move assignment");
8103
8104  // Our location for everything implicitly-generated.
8105  SourceLocation Loc = MoveAssignOperator->getLocation();
8106
8107  // Construct a reference to the "other" object. We'll be using this
8108  // throughout the generated ASTs.
8109  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8110  assert(OtherRef && "Reference to parameter cannot fail!");
8111  // Cast to rvalue.
8112  OtherRef = CastForMoving(*this, OtherRef);
8113
8114  // Construct the "this" pointer. We'll be using this throughout the generated
8115  // ASTs.
8116  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8117  assert(This && "Reference to this cannot fail!");
8118
8119  // Assign base classes.
8120  bool Invalid = false;
8121  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8122       E = ClassDecl->bases_end(); Base != E; ++Base) {
8123    // Form the assignment:
8124    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8125    QualType BaseType = Base->getType().getUnqualifiedType();
8126    if (!BaseType->isRecordType()) {
8127      Invalid = true;
8128      continue;
8129    }
8130
8131    CXXCastPath BasePath;
8132    BasePath.push_back(Base);
8133
8134    // Construct the "from" expression, which is an implicit cast to the
8135    // appropriately-qualified base type.
8136    Expr *From = OtherRef;
8137    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8138                             VK_XValue, &BasePath).take();
8139
8140    // Dereference "this".
8141    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8142
8143    // Implicitly cast "this" to the appropriately-qualified base type.
8144    To = ImpCastExprToType(To.take(),
8145                           Context.getCVRQualifiedType(BaseType,
8146                                     MoveAssignOperator->getTypeQualifiers()),
8147                           CK_UncheckedDerivedToBase,
8148                           VK_LValue, &BasePath);
8149
8150    // Build the move.
8151    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8152                                            To.get(), From,
8153                                            /*CopyingBaseSubobject=*/true,
8154                                            /*Copying=*/false);
8155    if (Move.isInvalid()) {
8156      Diag(CurrentLocation, diag::note_member_synthesized_at)
8157        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8158      MoveAssignOperator->setInvalidDecl();
8159      return;
8160    }
8161
8162    // Success! Record the move.
8163    Statements.push_back(Move.takeAs<Expr>());
8164  }
8165
8166  // \brief Reference to the __builtin_memcpy function.
8167  Expr *BuiltinMemCpyRef = 0;
8168  // \brief Reference to the __builtin_objc_memmove_collectable function.
8169  Expr *CollectableMemCpyRef = 0;
8170
8171  // Assign non-static members.
8172  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8173                                  FieldEnd = ClassDecl->field_end();
8174       Field != FieldEnd; ++Field) {
8175    if (Field->isUnnamedBitfield())
8176      continue;
8177
8178    // Check for members of reference type; we can't move those.
8179    if (Field->getType()->isReferenceType()) {
8180      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8181        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8182      Diag(Field->getLocation(), diag::note_declared_at);
8183      Diag(CurrentLocation, diag::note_member_synthesized_at)
8184        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8185      Invalid = true;
8186      continue;
8187    }
8188
8189    // Check for members of const-qualified, non-class type.
8190    QualType BaseType = Context.getBaseElementType(Field->getType());
8191    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8192      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8193        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8194      Diag(Field->getLocation(), diag::note_declared_at);
8195      Diag(CurrentLocation, diag::note_member_synthesized_at)
8196        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8197      Invalid = true;
8198      continue;
8199    }
8200
8201    // Suppress assigning zero-width bitfields.
8202    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8203      continue;
8204
8205    QualType FieldType = Field->getType().getNonReferenceType();
8206    if (FieldType->isIncompleteArrayType()) {
8207      assert(ClassDecl->hasFlexibleArrayMember() &&
8208             "Incomplete array type is not valid");
8209      continue;
8210    }
8211
8212    // Build references to the field in the object we're copying from and to.
8213    CXXScopeSpec SS; // Intentionally empty
8214    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8215                              LookupMemberName);
8216    MemberLookup.addDecl(*Field);
8217    MemberLookup.resolveKind();
8218    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8219                                               Loc, /*IsArrow=*/false,
8220                                               SS, SourceLocation(), 0,
8221                                               MemberLookup, 0);
8222    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8223                                             Loc, /*IsArrow=*/true,
8224                                             SS, SourceLocation(), 0,
8225                                             MemberLookup, 0);
8226    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8227    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8228
8229    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8230        "Member reference with rvalue base must be rvalue except for reference "
8231        "members, which aren't allowed for move assignment.");
8232
8233    // If the field should be copied with __builtin_memcpy rather than via
8234    // explicit assignments, do so. This optimization only applies for arrays
8235    // of scalars and arrays of class type with trivial move-assignment
8236    // operators.
8237    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8238        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8239      // Compute the size of the memory buffer to be copied.
8240      QualType SizeType = Context.getSizeType();
8241      llvm::APInt Size(Context.getTypeSize(SizeType),
8242                       Context.getTypeSizeInChars(BaseType).getQuantity());
8243      for (const ConstantArrayType *Array
8244              = Context.getAsConstantArrayType(FieldType);
8245           Array;
8246           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8247        llvm::APInt ArraySize
8248          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8249        Size *= ArraySize;
8250      }
8251
8252      // Take the address of the field references for "from" and "to". We
8253      // directly construct UnaryOperators here because semantic analysis
8254      // does not permit us to take the address of an xvalue.
8255      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8256                             Context.getPointerType(From.get()->getType()),
8257                             VK_RValue, OK_Ordinary, Loc);
8258      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8259                           Context.getPointerType(To.get()->getType()),
8260                           VK_RValue, OK_Ordinary, Loc);
8261
8262      bool NeedsCollectableMemCpy =
8263          (BaseType->isRecordType() &&
8264           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8265
8266      if (NeedsCollectableMemCpy) {
8267        if (!CollectableMemCpyRef) {
8268          // Create a reference to the __builtin_objc_memmove_collectable function.
8269          LookupResult R(*this,
8270                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8271                         Loc, LookupOrdinaryName);
8272          LookupName(R, TUScope, true);
8273
8274          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8275          if (!CollectableMemCpy) {
8276            // Something went horribly wrong earlier, and we will have
8277            // complained about it.
8278            Invalid = true;
8279            continue;
8280          }
8281
8282          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8283                                                  CollectableMemCpy->getType(),
8284                                                  VK_LValue, Loc, 0).take();
8285          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8286        }
8287      }
8288      // Create a reference to the __builtin_memcpy builtin function.
8289      else if (!BuiltinMemCpyRef) {
8290        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8291                       LookupOrdinaryName);
8292        LookupName(R, TUScope, true);
8293
8294        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8295        if (!BuiltinMemCpy) {
8296          // Something went horribly wrong earlier, and we will have complained
8297          // about it.
8298          Invalid = true;
8299          continue;
8300        }
8301
8302        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8303                                            BuiltinMemCpy->getType(),
8304                                            VK_LValue, Loc, 0).take();
8305        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8306      }
8307
8308      ASTOwningVector<Expr*> CallArgs(*this);
8309      CallArgs.push_back(To.takeAs<Expr>());
8310      CallArgs.push_back(From.takeAs<Expr>());
8311      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8312      ExprResult Call = ExprError();
8313      if (NeedsCollectableMemCpy)
8314        Call = ActOnCallExpr(/*Scope=*/0,
8315                             CollectableMemCpyRef,
8316                             Loc, move_arg(CallArgs),
8317                             Loc);
8318      else
8319        Call = ActOnCallExpr(/*Scope=*/0,
8320                             BuiltinMemCpyRef,
8321                             Loc, move_arg(CallArgs),
8322                             Loc);
8323
8324      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8325      Statements.push_back(Call.takeAs<Expr>());
8326      continue;
8327    }
8328
8329    // Build the move of this field.
8330    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8331                                            To.get(), From.get(),
8332                                            /*CopyingBaseSubobject=*/false,
8333                                            /*Copying=*/false);
8334    if (Move.isInvalid()) {
8335      Diag(CurrentLocation, diag::note_member_synthesized_at)
8336        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8337      MoveAssignOperator->setInvalidDecl();
8338      return;
8339    }
8340
8341    // Success! Record the copy.
8342    Statements.push_back(Move.takeAs<Stmt>());
8343  }
8344
8345  if (!Invalid) {
8346    // Add a "return *this;"
8347    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8348
8349    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8350    if (Return.isInvalid())
8351      Invalid = true;
8352    else {
8353      Statements.push_back(Return.takeAs<Stmt>());
8354
8355      if (Trap.hasErrorOccurred()) {
8356        Diag(CurrentLocation, diag::note_member_synthesized_at)
8357          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8358        Invalid = true;
8359      }
8360    }
8361  }
8362
8363  if (Invalid) {
8364    MoveAssignOperator->setInvalidDecl();
8365    return;
8366  }
8367
8368  StmtResult Body;
8369  {
8370    CompoundScopeRAII CompoundScope(*this);
8371    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8372                             /*isStmtExpr=*/false);
8373    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8374  }
8375  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8376
8377  if (ASTMutationListener *L = getASTMutationListener()) {
8378    L->CompletedImplicitDefinition(MoveAssignOperator);
8379  }
8380}
8381
8382std::pair<Sema::ImplicitExceptionSpecification, bool>
8383Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8384  if (ClassDecl->isInvalidDecl())
8385    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8386
8387  // C++ [class.copy]p5:
8388  //   The implicitly-declared copy constructor for a class X will
8389  //   have the form
8390  //
8391  //       X::X(const X&)
8392  //
8393  //   if
8394  // FIXME: It ought to be possible to store this on the record.
8395  bool HasConstCopyConstructor = true;
8396
8397  //     -- each direct or virtual base class B of X has a copy
8398  //        constructor whose first parameter is of type const B& or
8399  //        const volatile B&, and
8400  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8401                                       BaseEnd = ClassDecl->bases_end();
8402       HasConstCopyConstructor && Base != BaseEnd;
8403       ++Base) {
8404    // Virtual bases are handled below.
8405    if (Base->isVirtual())
8406      continue;
8407
8408    CXXRecordDecl *BaseClassDecl
8409      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8410    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8411                             &HasConstCopyConstructor);
8412  }
8413
8414  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8415                                       BaseEnd = ClassDecl->vbases_end();
8416       HasConstCopyConstructor && Base != BaseEnd;
8417       ++Base) {
8418    CXXRecordDecl *BaseClassDecl
8419      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8420    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8421                             &HasConstCopyConstructor);
8422  }
8423
8424  //     -- for all the nonstatic data members of X that are of a
8425  //        class type M (or array thereof), each such class type
8426  //        has a copy constructor whose first parameter is of type
8427  //        const M& or const volatile M&.
8428  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8429                                  FieldEnd = ClassDecl->field_end();
8430       HasConstCopyConstructor && Field != FieldEnd;
8431       ++Field) {
8432    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8433    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8434      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8435                               &HasConstCopyConstructor);
8436    }
8437  }
8438  //   Otherwise, the implicitly declared copy constructor will have
8439  //   the form
8440  //
8441  //       X::X(X&)
8442
8443  // C++ [except.spec]p14:
8444  //   An implicitly declared special member function (Clause 12) shall have an
8445  //   exception-specification. [...]
8446  ImplicitExceptionSpecification ExceptSpec(Context);
8447  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8448  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8449                                       BaseEnd = ClassDecl->bases_end();
8450       Base != BaseEnd;
8451       ++Base) {
8452    // Virtual bases are handled below.
8453    if (Base->isVirtual())
8454      continue;
8455
8456    CXXRecordDecl *BaseClassDecl
8457      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8458    if (CXXConstructorDecl *CopyConstructor =
8459          LookupCopyingConstructor(BaseClassDecl, Quals))
8460      ExceptSpec.CalledDecl(CopyConstructor);
8461  }
8462  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8463                                       BaseEnd = ClassDecl->vbases_end();
8464       Base != BaseEnd;
8465       ++Base) {
8466    CXXRecordDecl *BaseClassDecl
8467      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8468    if (CXXConstructorDecl *CopyConstructor =
8469          LookupCopyingConstructor(BaseClassDecl, Quals))
8470      ExceptSpec.CalledDecl(CopyConstructor);
8471  }
8472  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8473                                  FieldEnd = ClassDecl->field_end();
8474       Field != FieldEnd;
8475       ++Field) {
8476    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8477    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8478      if (CXXConstructorDecl *CopyConstructor =
8479        LookupCopyingConstructor(FieldClassDecl, Quals))
8480      ExceptSpec.CalledDecl(CopyConstructor);
8481    }
8482  }
8483
8484  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8485}
8486
8487CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8488                                                    CXXRecordDecl *ClassDecl) {
8489  // C++ [class.copy]p4:
8490  //   If the class definition does not explicitly declare a copy
8491  //   constructor, one is declared implicitly.
8492
8493  ImplicitExceptionSpecification Spec(Context);
8494  bool Const;
8495  llvm::tie(Spec, Const) =
8496    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8497
8498  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8499  QualType ArgType = ClassType;
8500  if (Const)
8501    ArgType = ArgType.withConst();
8502  ArgType = Context.getLValueReferenceType(ArgType);
8503
8504  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8505
8506  DeclarationName Name
8507    = Context.DeclarationNames.getCXXConstructorName(
8508                                           Context.getCanonicalType(ClassType));
8509  SourceLocation ClassLoc = ClassDecl->getLocation();
8510  DeclarationNameInfo NameInfo(Name, ClassLoc);
8511
8512  //   An implicitly-declared copy constructor is an inline public
8513  //   member of its class.
8514  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8515      Context, ClassDecl, ClassLoc, NameInfo,
8516      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8517      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8518      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8519        getLangOptions().CPlusPlus0x);
8520  CopyConstructor->setAccess(AS_public);
8521  CopyConstructor->setDefaulted();
8522  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8523
8524  // Note that we have declared this constructor.
8525  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8526
8527  // Add the parameter to the constructor.
8528  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8529                                               ClassLoc, ClassLoc,
8530                                               /*IdentifierInfo=*/0,
8531                                               ArgType, /*TInfo=*/0,
8532                                               SC_None,
8533                                               SC_None, 0);
8534  CopyConstructor->setParams(FromParam);
8535
8536  if (Scope *S = getScopeForContext(ClassDecl))
8537    PushOnScopeChains(CopyConstructor, S, false);
8538  ClassDecl->addDecl(CopyConstructor);
8539
8540  // C++11 [class.copy]p8:
8541  //   ... If the class definition does not explicitly declare a copy
8542  //   constructor, there is no user-declared move constructor, and there is no
8543  //   user-declared move assignment operator, a copy constructor is implicitly
8544  //   declared as defaulted.
8545  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8546      (ClassDecl->hasUserDeclaredMoveAssignment() &&
8547          !getLangOptions().MicrosoftMode) ||
8548      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8549    CopyConstructor->setDeletedAsWritten();
8550
8551  return CopyConstructor;
8552}
8553
8554void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8555                                   CXXConstructorDecl *CopyConstructor) {
8556  assert((CopyConstructor->isDefaulted() &&
8557          CopyConstructor->isCopyConstructor() &&
8558          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8559         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8560
8561  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8562  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8563
8564  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8565  DiagnosticErrorTrap Trap(Diags);
8566
8567  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8568      Trap.hasErrorOccurred()) {
8569    Diag(CurrentLocation, diag::note_member_synthesized_at)
8570      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8571    CopyConstructor->setInvalidDecl();
8572  }  else {
8573    Sema::CompoundScopeRAII CompoundScope(*this);
8574    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8575                                               CopyConstructor->getLocation(),
8576                                               MultiStmtArg(*this, 0, 0),
8577                                               /*isStmtExpr=*/false)
8578                                                              .takeAs<Stmt>());
8579    CopyConstructor->setImplicitlyDefined(true);
8580  }
8581
8582  CopyConstructor->setUsed();
8583  if (ASTMutationListener *L = getASTMutationListener()) {
8584    L->CompletedImplicitDefinition(CopyConstructor);
8585  }
8586}
8587
8588Sema::ImplicitExceptionSpecification
8589Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8590  // C++ [except.spec]p14:
8591  //   An implicitly declared special member function (Clause 12) shall have an
8592  //   exception-specification. [...]
8593  ImplicitExceptionSpecification ExceptSpec(Context);
8594  if (ClassDecl->isInvalidDecl())
8595    return ExceptSpec;
8596
8597  // Direct base-class constructors.
8598  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8599                                       BEnd = ClassDecl->bases_end();
8600       B != BEnd; ++B) {
8601    if (B->isVirtual()) // Handled below.
8602      continue;
8603
8604    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8605      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8606      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8607      // If this is a deleted function, add it anyway. This might be conformant
8608      // with the standard. This might not. I'm not sure. It might not matter.
8609      if (Constructor)
8610        ExceptSpec.CalledDecl(Constructor);
8611    }
8612  }
8613
8614  // Virtual base-class constructors.
8615  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8616                                       BEnd = ClassDecl->vbases_end();
8617       B != BEnd; ++B) {
8618    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8619      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8620      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8621      // If this is a deleted function, add it anyway. This might be conformant
8622      // with the standard. This might not. I'm not sure. It might not matter.
8623      if (Constructor)
8624        ExceptSpec.CalledDecl(Constructor);
8625    }
8626  }
8627
8628  // Field constructors.
8629  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8630                               FEnd = ClassDecl->field_end();
8631       F != FEnd; ++F) {
8632    if (const RecordType *RecordTy
8633              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8634      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8635      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8636      // If this is a deleted function, add it anyway. This might be conformant
8637      // with the standard. This might not. I'm not sure. It might not matter.
8638      // In particular, the problem is that this function never gets called. It
8639      // might just be ill-formed because this function attempts to refer to
8640      // a deleted function here.
8641      if (Constructor)
8642        ExceptSpec.CalledDecl(Constructor);
8643    }
8644  }
8645
8646  return ExceptSpec;
8647}
8648
8649CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8650                                                    CXXRecordDecl *ClassDecl) {
8651  ImplicitExceptionSpecification Spec(
8652      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8653
8654  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8655  QualType ArgType = Context.getRValueReferenceType(ClassType);
8656
8657  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8658
8659  DeclarationName Name
8660    = Context.DeclarationNames.getCXXConstructorName(
8661                                           Context.getCanonicalType(ClassType));
8662  SourceLocation ClassLoc = ClassDecl->getLocation();
8663  DeclarationNameInfo NameInfo(Name, ClassLoc);
8664
8665  // C++0x [class.copy]p11:
8666  //   An implicitly-declared copy/move constructor is an inline public
8667  //   member of its class.
8668  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8669      Context, ClassDecl, ClassLoc, NameInfo,
8670      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8671      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8672      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8673        getLangOptions().CPlusPlus0x);
8674  MoveConstructor->setAccess(AS_public);
8675  MoveConstructor->setDefaulted();
8676  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8677
8678  // Add the parameter to the constructor.
8679  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8680                                               ClassLoc, ClassLoc,
8681                                               /*IdentifierInfo=*/0,
8682                                               ArgType, /*TInfo=*/0,
8683                                               SC_None,
8684                                               SC_None, 0);
8685  MoveConstructor->setParams(FromParam);
8686
8687  // C++0x [class.copy]p9:
8688  //   If the definition of a class X does not explicitly declare a move
8689  //   constructor, one will be implicitly declared as defaulted if and only if:
8690  //   [...]
8691  //   - the move constructor would not be implicitly defined as deleted.
8692  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8693    // Cache this result so that we don't try to generate this over and over
8694    // on every lookup, leaking memory and wasting time.
8695    ClassDecl->setFailedImplicitMoveConstructor();
8696    return 0;
8697  }
8698
8699  // Note that we have declared this constructor.
8700  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8701
8702  if (Scope *S = getScopeForContext(ClassDecl))
8703    PushOnScopeChains(MoveConstructor, S, false);
8704  ClassDecl->addDecl(MoveConstructor);
8705
8706  return MoveConstructor;
8707}
8708
8709void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8710                                   CXXConstructorDecl *MoveConstructor) {
8711  assert((MoveConstructor->isDefaulted() &&
8712          MoveConstructor->isMoveConstructor() &&
8713          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8714         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8715
8716  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8717  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8718
8719  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8720  DiagnosticErrorTrap Trap(Diags);
8721
8722  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8723      Trap.hasErrorOccurred()) {
8724    Diag(CurrentLocation, diag::note_member_synthesized_at)
8725      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8726    MoveConstructor->setInvalidDecl();
8727  }  else {
8728    Sema::CompoundScopeRAII CompoundScope(*this);
8729    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8730                                               MoveConstructor->getLocation(),
8731                                               MultiStmtArg(*this, 0, 0),
8732                                               /*isStmtExpr=*/false)
8733                                                              .takeAs<Stmt>());
8734    MoveConstructor->setImplicitlyDefined(true);
8735  }
8736
8737  MoveConstructor->setUsed();
8738
8739  if (ASTMutationListener *L = getASTMutationListener()) {
8740    L->CompletedImplicitDefinition(MoveConstructor);
8741  }
8742}
8743
8744bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
8745  return FD->isDeleted() &&
8746         (FD->isDefaulted() || FD->isImplicit()) &&
8747         isa<CXXMethodDecl>(FD);
8748}
8749
8750/// \brief Mark the call operator of the given lambda closure type as "used".
8751static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
8752  CXXMethodDecl *CallOperator
8753  = cast<CXXMethodDecl>(
8754      *Lambda->lookup(
8755        S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
8756  CallOperator->setReferenced();
8757  CallOperator->setUsed();
8758}
8759
8760void Sema::DefineImplicitLambdaToFunctionPointerConversion(
8761       SourceLocation CurrentLocation,
8762       CXXConversionDecl *Conv)
8763{
8764  CXXRecordDecl *Lambda = Conv->getParent();
8765
8766  // Make sure that the lambda call operator is marked used.
8767  markLambdaCallOperatorUsed(*this, Lambda);
8768
8769  Conv->setUsed();
8770
8771  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8772  DiagnosticErrorTrap Trap(Diags);
8773
8774  // Return the address of the __invoke function.
8775  DeclarationName InvokeName = &Context.Idents.get("__invoke");
8776  CXXMethodDecl *Invoke
8777    = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
8778  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
8779                                       VK_LValue, Conv->getLocation()).take();
8780  assert(FunctionRef && "Can't refer to __invoke function?");
8781  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
8782  Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
8783                                           Conv->getLocation(),
8784                                           Conv->getLocation()));
8785
8786  // Fill in the __invoke function with a dummy implementation. IR generation
8787  // will fill in the actual details.
8788  Invoke->setUsed();
8789  Invoke->setReferenced();
8790  Invoke->setBody(new (Context) CompoundStmt(Context, 0, 0, Conv->getLocation(),
8791                                             Conv->getLocation()));
8792
8793  if (ASTMutationListener *L = getASTMutationListener()) {
8794    L->CompletedImplicitDefinition(Conv);
8795    L->CompletedImplicitDefinition(Invoke);
8796  }
8797}
8798
8799void Sema::DefineImplicitLambdaToBlockPointerConversion(
8800       SourceLocation CurrentLocation,
8801       CXXConversionDecl *Conv)
8802{
8803  // Make sure that the lambda call operator is marked used.
8804  markLambdaCallOperatorUsed(*this, Conv->getParent());
8805  Conv->setUsed();
8806
8807  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8808  DiagnosticErrorTrap Trap(Diags);
8809
8810  // Copy-initialize the lambda object as needed to capture
8811  Expr *This = ActOnCXXThis(CurrentLocation).take();
8812  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
8813  ExprResult Init = PerformCopyInitialization(
8814                      InitializedEntity::InitializeBlock(CurrentLocation,
8815                                                         DerefThis->getType(),
8816                                                         /*NRVO=*/false),
8817                      CurrentLocation, DerefThis);
8818  if (!Init.isInvalid())
8819    Init = ActOnFinishFullExpr(Init.take());
8820
8821  if (!Init.isInvalid())
8822    Conv->setLambdaToBlockPointerCopyInit(Init.take());
8823  else {
8824    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8825  }
8826
8827  // Introduce a bogus body, which IR generation will override anyway.
8828  Conv->setBody(new (Context) CompoundStmt(Context, 0, 0, Conv->getLocation(),
8829                                           Conv->getLocation()));
8830
8831  if (ASTMutationListener *L = getASTMutationListener()) {
8832    L->CompletedImplicitDefinition(Conv);
8833  }
8834}
8835
8836ExprResult
8837Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8838                            CXXConstructorDecl *Constructor,
8839                            MultiExprArg ExprArgs,
8840                            bool HadMultipleCandidates,
8841                            bool RequiresZeroInit,
8842                            unsigned ConstructKind,
8843                            SourceRange ParenRange) {
8844  bool Elidable = false;
8845
8846  // C++0x [class.copy]p34:
8847  //   When certain criteria are met, an implementation is allowed to
8848  //   omit the copy/move construction of a class object, even if the
8849  //   copy/move constructor and/or destructor for the object have
8850  //   side effects. [...]
8851  //     - when a temporary class object that has not been bound to a
8852  //       reference (12.2) would be copied/moved to a class object
8853  //       with the same cv-unqualified type, the copy/move operation
8854  //       can be omitted by constructing the temporary object
8855  //       directly into the target of the omitted copy/move
8856  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8857      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
8858    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8859    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8860  }
8861
8862  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8863                               Elidable, move(ExprArgs), HadMultipleCandidates,
8864                               RequiresZeroInit, ConstructKind, ParenRange);
8865}
8866
8867/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8868/// including handling of its default argument expressions.
8869ExprResult
8870Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8871                            CXXConstructorDecl *Constructor, bool Elidable,
8872                            MultiExprArg ExprArgs,
8873                            bool HadMultipleCandidates,
8874                            bool RequiresZeroInit,
8875                            unsigned ConstructKind,
8876                            SourceRange ParenRange) {
8877  unsigned NumExprs = ExprArgs.size();
8878  Expr **Exprs = (Expr **)ExprArgs.release();
8879
8880  for (specific_attr_iterator<NonNullAttr>
8881           i = Constructor->specific_attr_begin<NonNullAttr>(),
8882           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
8883    const NonNullAttr *NonNull = *i;
8884    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
8885  }
8886
8887  MarkFunctionReferenced(ConstructLoc, Constructor);
8888  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
8889                                        Constructor, Elidable, Exprs, NumExprs,
8890                                        HadMultipleCandidates, /*FIXME*/false,
8891                                        RequiresZeroInit,
8892              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
8893                                        ParenRange));
8894}
8895
8896bool Sema::InitializeVarWithConstructor(VarDecl *VD,
8897                                        CXXConstructorDecl *Constructor,
8898                                        MultiExprArg Exprs,
8899                                        bool HadMultipleCandidates) {
8900  // FIXME: Provide the correct paren SourceRange when available.
8901  ExprResult TempResult =
8902    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
8903                          move(Exprs), HadMultipleCandidates, false,
8904                          CXXConstructExpr::CK_Complete, SourceRange());
8905  if (TempResult.isInvalid())
8906    return true;
8907
8908  Expr *Temp = TempResult.takeAs<Expr>();
8909  CheckImplicitConversions(Temp, VD->getLocation());
8910  MarkFunctionReferenced(VD->getLocation(), Constructor);
8911  Temp = MaybeCreateExprWithCleanups(Temp);
8912  VD->setInit(Temp);
8913
8914  return false;
8915}
8916
8917void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
8918  if (VD->isInvalidDecl()) return;
8919
8920  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
8921  if (ClassDecl->isInvalidDecl()) return;
8922  if (ClassDecl->hasIrrelevantDestructor()) return;
8923  if (ClassDecl->isDependentContext()) return;
8924
8925  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
8926  MarkFunctionReferenced(VD->getLocation(), Destructor);
8927  CheckDestructorAccess(VD->getLocation(), Destructor,
8928                        PDiag(diag::err_access_dtor_var)
8929                        << VD->getDeclName()
8930                        << VD->getType());
8931  DiagnoseUseOfDecl(Destructor, VD->getLocation());
8932
8933  if (!VD->hasGlobalStorage()) return;
8934
8935  // Emit warning for non-trivial dtor in global scope (a real global,
8936  // class-static, function-static).
8937  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
8938
8939  // TODO: this should be re-enabled for static locals by !CXAAtExit
8940  if (!VD->isStaticLocal())
8941    Diag(VD->getLocation(), diag::warn_global_destructor);
8942}
8943
8944/// \brief Given a constructor and the set of arguments provided for the
8945/// constructor, convert the arguments and add any required default arguments
8946/// to form a proper call to this constructor.
8947///
8948/// \returns true if an error occurred, false otherwise.
8949bool
8950Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
8951                              MultiExprArg ArgsPtr,
8952                              SourceLocation Loc,
8953                              ASTOwningVector<Expr*> &ConvertedArgs) {
8954  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
8955  unsigned NumArgs = ArgsPtr.size();
8956  Expr **Args = (Expr **)ArgsPtr.get();
8957
8958  const FunctionProtoType *Proto
8959    = Constructor->getType()->getAs<FunctionProtoType>();
8960  assert(Proto && "Constructor without a prototype?");
8961  unsigned NumArgsInProto = Proto->getNumArgs();
8962
8963  // If too few arguments are available, we'll fill in the rest with defaults.
8964  if (NumArgs < NumArgsInProto)
8965    ConvertedArgs.reserve(NumArgsInProto);
8966  else
8967    ConvertedArgs.reserve(NumArgs);
8968
8969  VariadicCallType CallType =
8970    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
8971  SmallVector<Expr *, 8> AllArgs;
8972  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
8973                                        Proto, 0, Args, NumArgs, AllArgs,
8974                                        CallType);
8975  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
8976  return Invalid;
8977}
8978
8979static inline bool
8980CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
8981                                       const FunctionDecl *FnDecl) {
8982  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
8983  if (isa<NamespaceDecl>(DC)) {
8984    return SemaRef.Diag(FnDecl->getLocation(),
8985                        diag::err_operator_new_delete_declared_in_namespace)
8986      << FnDecl->getDeclName();
8987  }
8988
8989  if (isa<TranslationUnitDecl>(DC) &&
8990      FnDecl->getStorageClass() == SC_Static) {
8991    return SemaRef.Diag(FnDecl->getLocation(),
8992                        diag::err_operator_new_delete_declared_static)
8993      << FnDecl->getDeclName();
8994  }
8995
8996  return false;
8997}
8998
8999static inline bool
9000CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9001                            CanQualType ExpectedResultType,
9002                            CanQualType ExpectedFirstParamType,
9003                            unsigned DependentParamTypeDiag,
9004                            unsigned InvalidParamTypeDiag) {
9005  QualType ResultType =
9006    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9007
9008  // Check that the result type is not dependent.
9009  if (ResultType->isDependentType())
9010    return SemaRef.Diag(FnDecl->getLocation(),
9011                        diag::err_operator_new_delete_dependent_result_type)
9012    << FnDecl->getDeclName() << ExpectedResultType;
9013
9014  // Check that the result type is what we expect.
9015  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9016    return SemaRef.Diag(FnDecl->getLocation(),
9017                        diag::err_operator_new_delete_invalid_result_type)
9018    << FnDecl->getDeclName() << ExpectedResultType;
9019
9020  // A function template must have at least 2 parameters.
9021  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9022    return SemaRef.Diag(FnDecl->getLocation(),
9023                      diag::err_operator_new_delete_template_too_few_parameters)
9024        << FnDecl->getDeclName();
9025
9026  // The function decl must have at least 1 parameter.
9027  if (FnDecl->getNumParams() == 0)
9028    return SemaRef.Diag(FnDecl->getLocation(),
9029                        diag::err_operator_new_delete_too_few_parameters)
9030      << FnDecl->getDeclName();
9031
9032  // Check the the first parameter type is not dependent.
9033  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9034  if (FirstParamType->isDependentType())
9035    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9036      << FnDecl->getDeclName() << ExpectedFirstParamType;
9037
9038  // Check that the first parameter type is what we expect.
9039  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9040      ExpectedFirstParamType)
9041    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9042    << FnDecl->getDeclName() << ExpectedFirstParamType;
9043
9044  return false;
9045}
9046
9047static bool
9048CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9049  // C++ [basic.stc.dynamic.allocation]p1:
9050  //   A program is ill-formed if an allocation function is declared in a
9051  //   namespace scope other than global scope or declared static in global
9052  //   scope.
9053  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9054    return true;
9055
9056  CanQualType SizeTy =
9057    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9058
9059  // C++ [basic.stc.dynamic.allocation]p1:
9060  //  The return type shall be void*. The first parameter shall have type
9061  //  std::size_t.
9062  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9063                                  SizeTy,
9064                                  diag::err_operator_new_dependent_param_type,
9065                                  diag::err_operator_new_param_type))
9066    return true;
9067
9068  // C++ [basic.stc.dynamic.allocation]p1:
9069  //  The first parameter shall not have an associated default argument.
9070  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9071    return SemaRef.Diag(FnDecl->getLocation(),
9072                        diag::err_operator_new_default_arg)
9073      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9074
9075  return false;
9076}
9077
9078static bool
9079CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9080  // C++ [basic.stc.dynamic.deallocation]p1:
9081  //   A program is ill-formed if deallocation functions are declared in a
9082  //   namespace scope other than global scope or declared static in global
9083  //   scope.
9084  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9085    return true;
9086
9087  // C++ [basic.stc.dynamic.deallocation]p2:
9088  //   Each deallocation function shall return void and its first parameter
9089  //   shall be void*.
9090  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9091                                  SemaRef.Context.VoidPtrTy,
9092                                 diag::err_operator_delete_dependent_param_type,
9093                                 diag::err_operator_delete_param_type))
9094    return true;
9095
9096  return false;
9097}
9098
9099/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9100/// of this overloaded operator is well-formed. If so, returns false;
9101/// otherwise, emits appropriate diagnostics and returns true.
9102bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9103  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9104         "Expected an overloaded operator declaration");
9105
9106  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9107
9108  // C++ [over.oper]p5:
9109  //   The allocation and deallocation functions, operator new,
9110  //   operator new[], operator delete and operator delete[], are
9111  //   described completely in 3.7.3. The attributes and restrictions
9112  //   found in the rest of this subclause do not apply to them unless
9113  //   explicitly stated in 3.7.3.
9114  if (Op == OO_Delete || Op == OO_Array_Delete)
9115    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9116
9117  if (Op == OO_New || Op == OO_Array_New)
9118    return CheckOperatorNewDeclaration(*this, FnDecl);
9119
9120  // C++ [over.oper]p6:
9121  //   An operator function shall either be a non-static member
9122  //   function or be a non-member function and have at least one
9123  //   parameter whose type is a class, a reference to a class, an
9124  //   enumeration, or a reference to an enumeration.
9125  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9126    if (MethodDecl->isStatic())
9127      return Diag(FnDecl->getLocation(),
9128                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9129  } else {
9130    bool ClassOrEnumParam = false;
9131    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9132                                   ParamEnd = FnDecl->param_end();
9133         Param != ParamEnd; ++Param) {
9134      QualType ParamType = (*Param)->getType().getNonReferenceType();
9135      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9136          ParamType->isEnumeralType()) {
9137        ClassOrEnumParam = true;
9138        break;
9139      }
9140    }
9141
9142    if (!ClassOrEnumParam)
9143      return Diag(FnDecl->getLocation(),
9144                  diag::err_operator_overload_needs_class_or_enum)
9145        << FnDecl->getDeclName();
9146  }
9147
9148  // C++ [over.oper]p8:
9149  //   An operator function cannot have default arguments (8.3.6),
9150  //   except where explicitly stated below.
9151  //
9152  // Only the function-call operator allows default arguments
9153  // (C++ [over.call]p1).
9154  if (Op != OO_Call) {
9155    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9156         Param != FnDecl->param_end(); ++Param) {
9157      if ((*Param)->hasDefaultArg())
9158        return Diag((*Param)->getLocation(),
9159                    diag::err_operator_overload_default_arg)
9160          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9161    }
9162  }
9163
9164  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9165    { false, false, false }
9166#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9167    , { Unary, Binary, MemberOnly }
9168#include "clang/Basic/OperatorKinds.def"
9169  };
9170
9171  bool CanBeUnaryOperator = OperatorUses[Op][0];
9172  bool CanBeBinaryOperator = OperatorUses[Op][1];
9173  bool MustBeMemberOperator = OperatorUses[Op][2];
9174
9175  // C++ [over.oper]p8:
9176  //   [...] Operator functions cannot have more or fewer parameters
9177  //   than the number required for the corresponding operator, as
9178  //   described in the rest of this subclause.
9179  unsigned NumParams = FnDecl->getNumParams()
9180                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9181  if (Op != OO_Call &&
9182      ((NumParams == 1 && !CanBeUnaryOperator) ||
9183       (NumParams == 2 && !CanBeBinaryOperator) ||
9184       (NumParams < 1) || (NumParams > 2))) {
9185    // We have the wrong number of parameters.
9186    unsigned ErrorKind;
9187    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9188      ErrorKind = 2;  // 2 -> unary or binary.
9189    } else if (CanBeUnaryOperator) {
9190      ErrorKind = 0;  // 0 -> unary
9191    } else {
9192      assert(CanBeBinaryOperator &&
9193             "All non-call overloaded operators are unary or binary!");
9194      ErrorKind = 1;  // 1 -> binary
9195    }
9196
9197    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9198      << FnDecl->getDeclName() << NumParams << ErrorKind;
9199  }
9200
9201  // Overloaded operators other than operator() cannot be variadic.
9202  if (Op != OO_Call &&
9203      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9204    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9205      << FnDecl->getDeclName();
9206  }
9207
9208  // Some operators must be non-static member functions.
9209  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9210    return Diag(FnDecl->getLocation(),
9211                diag::err_operator_overload_must_be_member)
9212      << FnDecl->getDeclName();
9213  }
9214
9215  // C++ [over.inc]p1:
9216  //   The user-defined function called operator++ implements the
9217  //   prefix and postfix ++ operator. If this function is a member
9218  //   function with no parameters, or a non-member function with one
9219  //   parameter of class or enumeration type, it defines the prefix
9220  //   increment operator ++ for objects of that type. If the function
9221  //   is a member function with one parameter (which shall be of type
9222  //   int) or a non-member function with two parameters (the second
9223  //   of which shall be of type int), it defines the postfix
9224  //   increment operator ++ for objects of that type.
9225  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9226    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9227    bool ParamIsInt = false;
9228    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9229      ParamIsInt = BT->getKind() == BuiltinType::Int;
9230
9231    if (!ParamIsInt)
9232      return Diag(LastParam->getLocation(),
9233                  diag::err_operator_overload_post_incdec_must_be_int)
9234        << LastParam->getType() << (Op == OO_MinusMinus);
9235  }
9236
9237  return false;
9238}
9239
9240/// CheckLiteralOperatorDeclaration - Check whether the declaration
9241/// of this literal operator function is well-formed. If so, returns
9242/// false; otherwise, emits appropriate diagnostics and returns true.
9243bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9244  DeclContext *DC = FnDecl->getDeclContext();
9245  Decl::Kind Kind = DC->getDeclKind();
9246  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9247      Kind != Decl::LinkageSpec) {
9248    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9249      << FnDecl->getDeclName();
9250    return true;
9251  }
9252
9253  bool Valid = false;
9254
9255  // template <char...> type operator "" name() is the only valid template
9256  // signature, and the only valid signature with no parameters.
9257  if (FnDecl->param_size() == 0) {
9258    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9259      // Must have only one template parameter
9260      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9261      if (Params->size() == 1) {
9262        NonTypeTemplateParmDecl *PmDecl =
9263          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9264
9265        // The template parameter must be a char parameter pack.
9266        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9267            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9268          Valid = true;
9269      }
9270    }
9271  } else {
9272    // Check the first parameter
9273    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9274
9275    QualType T = (*Param)->getType();
9276
9277    // unsigned long long int, long double, and any character type are allowed
9278    // as the only parameters.
9279    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9280        Context.hasSameType(T, Context.LongDoubleTy) ||
9281        Context.hasSameType(T, Context.CharTy) ||
9282        Context.hasSameType(T, Context.WCharTy) ||
9283        Context.hasSameType(T, Context.Char16Ty) ||
9284        Context.hasSameType(T, Context.Char32Ty)) {
9285      if (++Param == FnDecl->param_end())
9286        Valid = true;
9287      goto FinishedParams;
9288    }
9289
9290    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9291    const PointerType *PT = T->getAs<PointerType>();
9292    if (!PT)
9293      goto FinishedParams;
9294    T = PT->getPointeeType();
9295    if (!T.isConstQualified())
9296      goto FinishedParams;
9297    T = T.getUnqualifiedType();
9298
9299    // Move on to the second parameter;
9300    ++Param;
9301
9302    // If there is no second parameter, the first must be a const char *
9303    if (Param == FnDecl->param_end()) {
9304      if (Context.hasSameType(T, Context.CharTy))
9305        Valid = true;
9306      goto FinishedParams;
9307    }
9308
9309    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9310    // are allowed as the first parameter to a two-parameter function
9311    if (!(Context.hasSameType(T, Context.CharTy) ||
9312          Context.hasSameType(T, Context.WCharTy) ||
9313          Context.hasSameType(T, Context.Char16Ty) ||
9314          Context.hasSameType(T, Context.Char32Ty)))
9315      goto FinishedParams;
9316
9317    // The second and final parameter must be an std::size_t
9318    T = (*Param)->getType().getUnqualifiedType();
9319    if (Context.hasSameType(T, Context.getSizeType()) &&
9320        ++Param == FnDecl->param_end())
9321      Valid = true;
9322  }
9323
9324  // FIXME: This diagnostic is absolutely terrible.
9325FinishedParams:
9326  if (!Valid) {
9327    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9328      << FnDecl->getDeclName();
9329    return true;
9330  }
9331
9332  StringRef LiteralName
9333    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9334  if (LiteralName[0] != '_') {
9335    // C++0x [usrlit.suffix]p1:
9336    //   Literal suffix identifiers that do not start with an underscore are
9337    //   reserved for future standardization.
9338    bool IsHexFloat = true;
9339    if (LiteralName.size() > 1 &&
9340        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9341      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9342        if (!isdigit(LiteralName[I])) {
9343          IsHexFloat = false;
9344          break;
9345        }
9346      }
9347    }
9348
9349    if (IsHexFloat)
9350      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9351        << LiteralName;
9352    else
9353      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9354  }
9355
9356  return false;
9357}
9358
9359/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9360/// linkage specification, including the language and (if present)
9361/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9362/// the location of the language string literal, which is provided
9363/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9364/// the '{' brace. Otherwise, this linkage specification does not
9365/// have any braces.
9366Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9367                                           SourceLocation LangLoc,
9368                                           StringRef Lang,
9369                                           SourceLocation LBraceLoc) {
9370  LinkageSpecDecl::LanguageIDs Language;
9371  if (Lang == "\"C\"")
9372    Language = LinkageSpecDecl::lang_c;
9373  else if (Lang == "\"C++\"")
9374    Language = LinkageSpecDecl::lang_cxx;
9375  else {
9376    Diag(LangLoc, diag::err_bad_language);
9377    return 0;
9378  }
9379
9380  // FIXME: Add all the various semantics of linkage specifications
9381
9382  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9383                                               ExternLoc, LangLoc, Language);
9384  CurContext->addDecl(D);
9385  PushDeclContext(S, D);
9386  return D;
9387}
9388
9389/// ActOnFinishLinkageSpecification - Complete the definition of
9390/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9391/// valid, it's the position of the closing '}' brace in a linkage
9392/// specification that uses braces.
9393Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9394                                            Decl *LinkageSpec,
9395                                            SourceLocation RBraceLoc) {
9396  if (LinkageSpec) {
9397    if (RBraceLoc.isValid()) {
9398      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9399      LSDecl->setRBraceLoc(RBraceLoc);
9400    }
9401    PopDeclContext();
9402  }
9403  return LinkageSpec;
9404}
9405
9406/// \brief Perform semantic analysis for the variable declaration that
9407/// occurs within a C++ catch clause, returning the newly-created
9408/// variable.
9409VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9410                                         TypeSourceInfo *TInfo,
9411                                         SourceLocation StartLoc,
9412                                         SourceLocation Loc,
9413                                         IdentifierInfo *Name) {
9414  bool Invalid = false;
9415  QualType ExDeclType = TInfo->getType();
9416
9417  // Arrays and functions decay.
9418  if (ExDeclType->isArrayType())
9419    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9420  else if (ExDeclType->isFunctionType())
9421    ExDeclType = Context.getPointerType(ExDeclType);
9422
9423  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9424  // The exception-declaration shall not denote a pointer or reference to an
9425  // incomplete type, other than [cv] void*.
9426  // N2844 forbids rvalue references.
9427  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9428    Diag(Loc, diag::err_catch_rvalue_ref);
9429    Invalid = true;
9430  }
9431
9432  QualType BaseType = ExDeclType;
9433  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9434  unsigned DK = diag::err_catch_incomplete;
9435  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9436    BaseType = Ptr->getPointeeType();
9437    Mode = 1;
9438    DK = diag::err_catch_incomplete_ptr;
9439  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9440    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9441    BaseType = Ref->getPointeeType();
9442    Mode = 2;
9443    DK = diag::err_catch_incomplete_ref;
9444  }
9445  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9446      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9447    Invalid = true;
9448
9449  if (!Invalid && !ExDeclType->isDependentType() &&
9450      RequireNonAbstractType(Loc, ExDeclType,
9451                             diag::err_abstract_type_in_decl,
9452                             AbstractVariableType))
9453    Invalid = true;
9454
9455  // Only the non-fragile NeXT runtime currently supports C++ catches
9456  // of ObjC types, and no runtime supports catching ObjC types by value.
9457  if (!Invalid && getLangOptions().ObjC1) {
9458    QualType T = ExDeclType;
9459    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9460      T = RT->getPointeeType();
9461
9462    if (T->isObjCObjectType()) {
9463      Diag(Loc, diag::err_objc_object_catch);
9464      Invalid = true;
9465    } else if (T->isObjCObjectPointerType()) {
9466      if (!getLangOptions().ObjCNonFragileABI)
9467        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9468    }
9469  }
9470
9471  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9472                                    ExDeclType, TInfo, SC_None, SC_None);
9473  ExDecl->setExceptionVariable(true);
9474
9475  // In ARC, infer 'retaining' for variables of retainable type.
9476  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9477    Invalid = true;
9478
9479  if (!Invalid && !ExDeclType->isDependentType()) {
9480    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9481      // C++ [except.handle]p16:
9482      //   The object declared in an exception-declaration or, if the
9483      //   exception-declaration does not specify a name, a temporary (12.2) is
9484      //   copy-initialized (8.5) from the exception object. [...]
9485      //   The object is destroyed when the handler exits, after the destruction
9486      //   of any automatic objects initialized within the handler.
9487      //
9488      // We just pretend to initialize the object with itself, then make sure
9489      // it can be destroyed later.
9490      QualType initType = ExDeclType;
9491
9492      InitializedEntity entity =
9493        InitializedEntity::InitializeVariable(ExDecl);
9494      InitializationKind initKind =
9495        InitializationKind::CreateCopy(Loc, SourceLocation());
9496
9497      Expr *opaqueValue =
9498        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9499      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9500      ExprResult result = sequence.Perform(*this, entity, initKind,
9501                                           MultiExprArg(&opaqueValue, 1));
9502      if (result.isInvalid())
9503        Invalid = true;
9504      else {
9505        // If the constructor used was non-trivial, set this as the
9506        // "initializer".
9507        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9508        if (!construct->getConstructor()->isTrivial()) {
9509          Expr *init = MaybeCreateExprWithCleanups(construct);
9510          ExDecl->setInit(init);
9511        }
9512
9513        // And make sure it's destructable.
9514        FinalizeVarWithDestructor(ExDecl, recordType);
9515      }
9516    }
9517  }
9518
9519  if (Invalid)
9520    ExDecl->setInvalidDecl();
9521
9522  return ExDecl;
9523}
9524
9525/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9526/// handler.
9527Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9528  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9529  bool Invalid = D.isInvalidType();
9530
9531  // Check for unexpanded parameter packs.
9532  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9533                                               UPPC_ExceptionType)) {
9534    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9535                                             D.getIdentifierLoc());
9536    Invalid = true;
9537  }
9538
9539  IdentifierInfo *II = D.getIdentifier();
9540  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9541                                             LookupOrdinaryName,
9542                                             ForRedeclaration)) {
9543    // The scope should be freshly made just for us. There is just no way
9544    // it contains any previous declaration.
9545    assert(!S->isDeclScope(PrevDecl));
9546    if (PrevDecl->isTemplateParameter()) {
9547      // Maybe we will complain about the shadowed template parameter.
9548      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9549      PrevDecl = 0;
9550    }
9551  }
9552
9553  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9554    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9555      << D.getCXXScopeSpec().getRange();
9556    Invalid = true;
9557  }
9558
9559  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9560                                              D.getSourceRange().getBegin(),
9561                                              D.getIdentifierLoc(),
9562                                              D.getIdentifier());
9563  if (Invalid)
9564    ExDecl->setInvalidDecl();
9565
9566  // Add the exception declaration into this scope.
9567  if (II)
9568    PushOnScopeChains(ExDecl, S);
9569  else
9570    CurContext->addDecl(ExDecl);
9571
9572  ProcessDeclAttributes(S, ExDecl, D);
9573  return ExDecl;
9574}
9575
9576Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9577                                         Expr *AssertExpr,
9578                                         Expr *AssertMessageExpr_,
9579                                         SourceLocation RParenLoc) {
9580  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9581
9582  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9583    // In a static_assert-declaration, the constant-expression shall be a
9584    // constant expression that can be contextually converted to bool.
9585    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9586    if (Converted.isInvalid())
9587      return 0;
9588
9589    llvm::APSInt Cond;
9590    if (VerifyIntegerConstantExpression(Converted.get(), &Cond,
9591          PDiag(diag::err_static_assert_expression_is_not_constant),
9592          /*AllowFold=*/false).isInvalid())
9593      return 0;
9594
9595    if (!Cond)
9596      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9597        << AssertMessage->getString() << AssertExpr->getSourceRange();
9598  }
9599
9600  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9601    return 0;
9602
9603  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9604                                        AssertExpr, AssertMessage, RParenLoc);
9605
9606  CurContext->addDecl(Decl);
9607  return Decl;
9608}
9609
9610/// \brief Perform semantic analysis of the given friend type declaration.
9611///
9612/// \returns A friend declaration that.
9613FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9614                                      SourceLocation FriendLoc,
9615                                      TypeSourceInfo *TSInfo) {
9616  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9617
9618  QualType T = TSInfo->getType();
9619  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9620
9621  // C++03 [class.friend]p2:
9622  //   An elaborated-type-specifier shall be used in a friend declaration
9623  //   for a class.*
9624  //
9625  //   * The class-key of the elaborated-type-specifier is required.
9626  if (!ActiveTemplateInstantiations.empty()) {
9627    // Do not complain about the form of friend template types during
9628    // template instantiation; we will already have complained when the
9629    // template was declared.
9630  } else if (!T->isElaboratedTypeSpecifier()) {
9631    // If we evaluated the type to a record type, suggest putting
9632    // a tag in front.
9633    if (const RecordType *RT = T->getAs<RecordType>()) {
9634      RecordDecl *RD = RT->getDecl();
9635
9636      std::string InsertionText = std::string(" ") + RD->getKindName();
9637
9638      Diag(TypeRange.getBegin(),
9639           getLangOptions().CPlusPlus0x ?
9640             diag::warn_cxx98_compat_unelaborated_friend_type :
9641             diag::ext_unelaborated_friend_type)
9642        << (unsigned) RD->getTagKind()
9643        << T
9644        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9645                                      InsertionText);
9646    } else {
9647      Diag(FriendLoc,
9648           getLangOptions().CPlusPlus0x ?
9649             diag::warn_cxx98_compat_nonclass_type_friend :
9650             diag::ext_nonclass_type_friend)
9651        << T
9652        << SourceRange(FriendLoc, TypeRange.getEnd());
9653    }
9654  } else if (T->getAs<EnumType>()) {
9655    Diag(FriendLoc,
9656         getLangOptions().CPlusPlus0x ?
9657           diag::warn_cxx98_compat_enum_friend :
9658           diag::ext_enum_friend)
9659      << T
9660      << SourceRange(FriendLoc, TypeRange.getEnd());
9661  }
9662
9663  // C++0x [class.friend]p3:
9664  //   If the type specifier in a friend declaration designates a (possibly
9665  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9666  //   the friend declaration is ignored.
9667
9668  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9669  // in [class.friend]p3 that we do not implement.
9670
9671  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9672}
9673
9674/// Handle a friend tag declaration where the scope specifier was
9675/// templated.
9676Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9677                                    unsigned TagSpec, SourceLocation TagLoc,
9678                                    CXXScopeSpec &SS,
9679                                    IdentifierInfo *Name, SourceLocation NameLoc,
9680                                    AttributeList *Attr,
9681                                    MultiTemplateParamsArg TempParamLists) {
9682  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9683
9684  bool isExplicitSpecialization = false;
9685  bool Invalid = false;
9686
9687  if (TemplateParameterList *TemplateParams
9688        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9689                                                  TempParamLists.get(),
9690                                                  TempParamLists.size(),
9691                                                  /*friend*/ true,
9692                                                  isExplicitSpecialization,
9693                                                  Invalid)) {
9694    if (TemplateParams->size() > 0) {
9695      // This is a declaration of a class template.
9696      if (Invalid)
9697        return 0;
9698
9699      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9700                                SS, Name, NameLoc, Attr,
9701                                TemplateParams, AS_public,
9702                                /*ModulePrivateLoc=*/SourceLocation(),
9703                                TempParamLists.size() - 1,
9704                   (TemplateParameterList**) TempParamLists.release()).take();
9705    } else {
9706      // The "template<>" header is extraneous.
9707      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9708        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9709      isExplicitSpecialization = true;
9710    }
9711  }
9712
9713  if (Invalid) return 0;
9714
9715  bool isAllExplicitSpecializations = true;
9716  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9717    if (TempParamLists.get()[I]->size()) {
9718      isAllExplicitSpecializations = false;
9719      break;
9720    }
9721  }
9722
9723  // FIXME: don't ignore attributes.
9724
9725  // If it's explicit specializations all the way down, just forget
9726  // about the template header and build an appropriate non-templated
9727  // friend.  TODO: for source fidelity, remember the headers.
9728  if (isAllExplicitSpecializations) {
9729    if (SS.isEmpty()) {
9730      bool Owned = false;
9731      bool IsDependent = false;
9732      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9733                      Attr, AS_public,
9734                      /*ModulePrivateLoc=*/SourceLocation(),
9735                      MultiTemplateParamsArg(), Owned, IsDependent,
9736                      /*ScopedEnumKWLoc=*/SourceLocation(),
9737                      /*ScopedEnumUsesClassTag=*/false,
9738                      /*UnderlyingType=*/TypeResult());
9739    }
9740
9741    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9742    ElaboratedTypeKeyword Keyword
9743      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9744    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9745                                   *Name, NameLoc);
9746    if (T.isNull())
9747      return 0;
9748
9749    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9750    if (isa<DependentNameType>(T)) {
9751      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9752      TL.setElaboratedKeywordLoc(TagLoc);
9753      TL.setQualifierLoc(QualifierLoc);
9754      TL.setNameLoc(NameLoc);
9755    } else {
9756      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9757      TL.setElaboratedKeywordLoc(TagLoc);
9758      TL.setQualifierLoc(QualifierLoc);
9759      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9760    }
9761
9762    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9763                                            TSI, FriendLoc);
9764    Friend->setAccess(AS_public);
9765    CurContext->addDecl(Friend);
9766    return Friend;
9767  }
9768
9769  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9770
9771
9772
9773  // Handle the case of a templated-scope friend class.  e.g.
9774  //   template <class T> class A<T>::B;
9775  // FIXME: we don't support these right now.
9776  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9777  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9778  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9779  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9780  TL.setElaboratedKeywordLoc(TagLoc);
9781  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9782  TL.setNameLoc(NameLoc);
9783
9784  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9785                                          TSI, FriendLoc);
9786  Friend->setAccess(AS_public);
9787  Friend->setUnsupportedFriend(true);
9788  CurContext->addDecl(Friend);
9789  return Friend;
9790}
9791
9792
9793/// Handle a friend type declaration.  This works in tandem with
9794/// ActOnTag.
9795///
9796/// Notes on friend class templates:
9797///
9798/// We generally treat friend class declarations as if they were
9799/// declaring a class.  So, for example, the elaborated type specifier
9800/// in a friend declaration is required to obey the restrictions of a
9801/// class-head (i.e. no typedefs in the scope chain), template
9802/// parameters are required to match up with simple template-ids, &c.
9803/// However, unlike when declaring a template specialization, it's
9804/// okay to refer to a template specialization without an empty
9805/// template parameter declaration, e.g.
9806///   friend class A<T>::B<unsigned>;
9807/// We permit this as a special case; if there are any template
9808/// parameters present at all, require proper matching, i.e.
9809///   template <> template <class T> friend class A<int>::B;
9810Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
9811                                MultiTemplateParamsArg TempParams) {
9812  SourceLocation Loc = DS.getSourceRange().getBegin();
9813
9814  assert(DS.isFriendSpecified());
9815  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9816
9817  // Try to convert the decl specifier to a type.  This works for
9818  // friend templates because ActOnTag never produces a ClassTemplateDecl
9819  // for a TUK_Friend.
9820  Declarator TheDeclarator(DS, Declarator::MemberContext);
9821  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
9822  QualType T = TSI->getType();
9823  if (TheDeclarator.isInvalidType())
9824    return 0;
9825
9826  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
9827    return 0;
9828
9829  // This is definitely an error in C++98.  It's probably meant to
9830  // be forbidden in C++0x, too, but the specification is just
9831  // poorly written.
9832  //
9833  // The problem is with declarations like the following:
9834  //   template <T> friend A<T>::foo;
9835  // where deciding whether a class C is a friend or not now hinges
9836  // on whether there exists an instantiation of A that causes
9837  // 'foo' to equal C.  There are restrictions on class-heads
9838  // (which we declare (by fiat) elaborated friend declarations to
9839  // be) that makes this tractable.
9840  //
9841  // FIXME: handle "template <> friend class A<T>;", which
9842  // is possibly well-formed?  Who even knows?
9843  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
9844    Diag(Loc, diag::err_tagless_friend_type_template)
9845      << DS.getSourceRange();
9846    return 0;
9847  }
9848
9849  // C++98 [class.friend]p1: A friend of a class is a function
9850  //   or class that is not a member of the class . . .
9851  // This is fixed in DR77, which just barely didn't make the C++03
9852  // deadline.  It's also a very silly restriction that seriously
9853  // affects inner classes and which nobody else seems to implement;
9854  // thus we never diagnose it, not even in -pedantic.
9855  //
9856  // But note that we could warn about it: it's always useless to
9857  // friend one of your own members (it's not, however, worthless to
9858  // friend a member of an arbitrary specialization of your template).
9859
9860  Decl *D;
9861  if (unsigned NumTempParamLists = TempParams.size())
9862    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
9863                                   NumTempParamLists,
9864                                   TempParams.release(),
9865                                   TSI,
9866                                   DS.getFriendSpecLoc());
9867  else
9868    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
9869
9870  if (!D)
9871    return 0;
9872
9873  D->setAccess(AS_public);
9874  CurContext->addDecl(D);
9875
9876  return D;
9877}
9878
9879Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
9880                                    MultiTemplateParamsArg TemplateParams) {
9881  const DeclSpec &DS = D.getDeclSpec();
9882
9883  assert(DS.isFriendSpecified());
9884  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9885
9886  SourceLocation Loc = D.getIdentifierLoc();
9887  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9888
9889  // C++ [class.friend]p1
9890  //   A friend of a class is a function or class....
9891  // Note that this sees through typedefs, which is intended.
9892  // It *doesn't* see through dependent types, which is correct
9893  // according to [temp.arg.type]p3:
9894  //   If a declaration acquires a function type through a
9895  //   type dependent on a template-parameter and this causes
9896  //   a declaration that does not use the syntactic form of a
9897  //   function declarator to have a function type, the program
9898  //   is ill-formed.
9899  if (!TInfo->getType()->isFunctionType()) {
9900    Diag(Loc, diag::err_unexpected_friend);
9901
9902    // It might be worthwhile to try to recover by creating an
9903    // appropriate declaration.
9904    return 0;
9905  }
9906
9907  // C++ [namespace.memdef]p3
9908  //  - If a friend declaration in a non-local class first declares a
9909  //    class or function, the friend class or function is a member
9910  //    of the innermost enclosing namespace.
9911  //  - The name of the friend is not found by simple name lookup
9912  //    until a matching declaration is provided in that namespace
9913  //    scope (either before or after the class declaration granting
9914  //    friendship).
9915  //  - If a friend function is called, its name may be found by the
9916  //    name lookup that considers functions from namespaces and
9917  //    classes associated with the types of the function arguments.
9918  //  - When looking for a prior declaration of a class or a function
9919  //    declared as a friend, scopes outside the innermost enclosing
9920  //    namespace scope are not considered.
9921
9922  CXXScopeSpec &SS = D.getCXXScopeSpec();
9923  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9924  DeclarationName Name = NameInfo.getName();
9925  assert(Name);
9926
9927  // Check for unexpanded parameter packs.
9928  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
9929      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
9930      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
9931    return 0;
9932
9933  // The context we found the declaration in, or in which we should
9934  // create the declaration.
9935  DeclContext *DC;
9936  Scope *DCScope = S;
9937  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
9938                        ForRedeclaration);
9939
9940  // FIXME: there are different rules in local classes
9941
9942  // There are four cases here.
9943  //   - There's no scope specifier, in which case we just go to the
9944  //     appropriate scope and look for a function or function template
9945  //     there as appropriate.
9946  // Recover from invalid scope qualifiers as if they just weren't there.
9947  if (SS.isInvalid() || !SS.isSet()) {
9948    // C++0x [namespace.memdef]p3:
9949    //   If the name in a friend declaration is neither qualified nor
9950    //   a template-id and the declaration is a function or an
9951    //   elaborated-type-specifier, the lookup to determine whether
9952    //   the entity has been previously declared shall not consider
9953    //   any scopes outside the innermost enclosing namespace.
9954    // C++0x [class.friend]p11:
9955    //   If a friend declaration appears in a local class and the name
9956    //   specified is an unqualified name, a prior declaration is
9957    //   looked up without considering scopes that are outside the
9958    //   innermost enclosing non-class scope. For a friend function
9959    //   declaration, if there is no prior declaration, the program is
9960    //   ill-formed.
9961    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
9962    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
9963
9964    // Find the appropriate context according to the above.
9965    DC = CurContext;
9966    while (true) {
9967      // Skip class contexts.  If someone can cite chapter and verse
9968      // for this behavior, that would be nice --- it's what GCC and
9969      // EDG do, and it seems like a reasonable intent, but the spec
9970      // really only says that checks for unqualified existing
9971      // declarations should stop at the nearest enclosing namespace,
9972      // not that they should only consider the nearest enclosing
9973      // namespace.
9974      while (DC->isRecord())
9975        DC = DC->getParent();
9976
9977      LookupQualifiedName(Previous, DC);
9978
9979      // TODO: decide what we think about using declarations.
9980      if (isLocal || !Previous.empty())
9981        break;
9982
9983      if (isTemplateId) {
9984        if (isa<TranslationUnitDecl>(DC)) break;
9985      } else {
9986        if (DC->isFileContext()) break;
9987      }
9988      DC = DC->getParent();
9989    }
9990
9991    // C++ [class.friend]p1: A friend of a class is a function or
9992    //   class that is not a member of the class . . .
9993    // C++11 changes this for both friend types and functions.
9994    // Most C++ 98 compilers do seem to give an error here, so
9995    // we do, too.
9996    if (!Previous.empty() && DC->Equals(CurContext))
9997      Diag(DS.getFriendSpecLoc(),
9998           getLangOptions().CPlusPlus0x ?
9999             diag::warn_cxx98_compat_friend_is_member :
10000             diag::err_friend_is_member);
10001
10002    DCScope = getScopeForDeclContext(S, DC);
10003
10004    // C++ [class.friend]p6:
10005    //   A function can be defined in a friend declaration of a class if and
10006    //   only if the class is a non-local class (9.8), the function name is
10007    //   unqualified, and the function has namespace scope.
10008    if (isLocal && D.isFunctionDefinition()) {
10009      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10010    }
10011
10012  //   - There's a non-dependent scope specifier, in which case we
10013  //     compute it and do a previous lookup there for a function
10014  //     or function template.
10015  } else if (!SS.getScopeRep()->isDependent()) {
10016    DC = computeDeclContext(SS);
10017    if (!DC) return 0;
10018
10019    if (RequireCompleteDeclContext(SS, DC)) return 0;
10020
10021    LookupQualifiedName(Previous, DC);
10022
10023    // Ignore things found implicitly in the wrong scope.
10024    // TODO: better diagnostics for this case.  Suggesting the right
10025    // qualified scope would be nice...
10026    LookupResult::Filter F = Previous.makeFilter();
10027    while (F.hasNext()) {
10028      NamedDecl *D = F.next();
10029      if (!DC->InEnclosingNamespaceSetOf(
10030              D->getDeclContext()->getRedeclContext()))
10031        F.erase();
10032    }
10033    F.done();
10034
10035    if (Previous.empty()) {
10036      D.setInvalidType();
10037      Diag(Loc, diag::err_qualified_friend_not_found)
10038          << Name << TInfo->getType();
10039      return 0;
10040    }
10041
10042    // C++ [class.friend]p1: A friend of a class is a function or
10043    //   class that is not a member of the class . . .
10044    if (DC->Equals(CurContext))
10045      Diag(DS.getFriendSpecLoc(),
10046           getLangOptions().CPlusPlus0x ?
10047             diag::warn_cxx98_compat_friend_is_member :
10048             diag::err_friend_is_member);
10049
10050    if (D.isFunctionDefinition()) {
10051      // C++ [class.friend]p6:
10052      //   A function can be defined in a friend declaration of a class if and
10053      //   only if the class is a non-local class (9.8), the function name is
10054      //   unqualified, and the function has namespace scope.
10055      SemaDiagnosticBuilder DB
10056        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10057
10058      DB << SS.getScopeRep();
10059      if (DC->isFileContext())
10060        DB << FixItHint::CreateRemoval(SS.getRange());
10061      SS.clear();
10062    }
10063
10064  //   - There's a scope specifier that does not match any template
10065  //     parameter lists, in which case we use some arbitrary context,
10066  //     create a method or method template, and wait for instantiation.
10067  //   - There's a scope specifier that does match some template
10068  //     parameter lists, which we don't handle right now.
10069  } else {
10070    if (D.isFunctionDefinition()) {
10071      // C++ [class.friend]p6:
10072      //   A function can be defined in a friend declaration of a class if and
10073      //   only if the class is a non-local class (9.8), the function name is
10074      //   unqualified, and the function has namespace scope.
10075      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10076        << SS.getScopeRep();
10077    }
10078
10079    DC = CurContext;
10080    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10081  }
10082
10083  if (!DC->isRecord()) {
10084    // This implies that it has to be an operator or function.
10085    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10086        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10087        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10088      Diag(Loc, diag::err_introducing_special_friend) <<
10089        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10090         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10091      return 0;
10092    }
10093  }
10094
10095  // FIXME: This is an egregious hack to cope with cases where the scope stack
10096  // does not contain the declaration context, i.e., in an out-of-line
10097  // definition of a class.
10098  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10099  if (!DCScope) {
10100    FakeDCScope.setEntity(DC);
10101    DCScope = &FakeDCScope;
10102  }
10103
10104  bool AddToScope = true;
10105  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10106                                          move(TemplateParams), AddToScope);
10107  if (!ND) return 0;
10108
10109  assert(ND->getDeclContext() == DC);
10110  assert(ND->getLexicalDeclContext() == CurContext);
10111
10112  // Add the function declaration to the appropriate lookup tables,
10113  // adjusting the redeclarations list as necessary.  We don't
10114  // want to do this yet if the friending class is dependent.
10115  //
10116  // Also update the scope-based lookup if the target context's
10117  // lookup context is in lexical scope.
10118  if (!CurContext->isDependentContext()) {
10119    DC = DC->getRedeclContext();
10120    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10121    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10122      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10123  }
10124
10125  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10126                                       D.getIdentifierLoc(), ND,
10127                                       DS.getFriendSpecLoc());
10128  FrD->setAccess(AS_public);
10129  CurContext->addDecl(FrD);
10130
10131  if (ND->isInvalidDecl())
10132    FrD->setInvalidDecl();
10133  else {
10134    FunctionDecl *FD;
10135    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10136      FD = FTD->getTemplatedDecl();
10137    else
10138      FD = cast<FunctionDecl>(ND);
10139
10140    // Mark templated-scope function declarations as unsupported.
10141    if (FD->getNumTemplateParameterLists())
10142      FrD->setUnsupportedFriend(true);
10143  }
10144
10145  return ND;
10146}
10147
10148void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10149  AdjustDeclIfTemplate(Dcl);
10150
10151  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10152  if (!Fn) {
10153    Diag(DelLoc, diag::err_deleted_non_function);
10154    return;
10155  }
10156  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10157    Diag(DelLoc, diag::err_deleted_decl_not_first);
10158    Diag(Prev->getLocation(), diag::note_previous_declaration);
10159    // If the declaration wasn't the first, we delete the function anyway for
10160    // recovery.
10161  }
10162  Fn->setDeletedAsWritten();
10163}
10164
10165void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10166  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10167
10168  if (MD) {
10169    if (MD->getParent()->isDependentType()) {
10170      MD->setDefaulted();
10171      MD->setExplicitlyDefaulted();
10172      return;
10173    }
10174
10175    CXXSpecialMember Member = getSpecialMember(MD);
10176    if (Member == CXXInvalid) {
10177      Diag(DefaultLoc, diag::err_default_special_members);
10178      return;
10179    }
10180
10181    MD->setDefaulted();
10182    MD->setExplicitlyDefaulted();
10183
10184    // If this definition appears within the record, do the checking when
10185    // the record is complete.
10186    const FunctionDecl *Primary = MD;
10187    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10188      // Find the uninstantiated declaration that actually had the '= default'
10189      // on it.
10190      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10191
10192    if (Primary == Primary->getCanonicalDecl())
10193      return;
10194
10195    switch (Member) {
10196    case CXXDefaultConstructor: {
10197      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10198      CheckExplicitlyDefaultedDefaultConstructor(CD);
10199      if (!CD->isInvalidDecl())
10200        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10201      break;
10202    }
10203
10204    case CXXCopyConstructor: {
10205      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10206      CheckExplicitlyDefaultedCopyConstructor(CD);
10207      if (!CD->isInvalidDecl())
10208        DefineImplicitCopyConstructor(DefaultLoc, CD);
10209      break;
10210    }
10211
10212    case CXXCopyAssignment: {
10213      CheckExplicitlyDefaultedCopyAssignment(MD);
10214      if (!MD->isInvalidDecl())
10215        DefineImplicitCopyAssignment(DefaultLoc, MD);
10216      break;
10217    }
10218
10219    case CXXDestructor: {
10220      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10221      CheckExplicitlyDefaultedDestructor(DD);
10222      if (!DD->isInvalidDecl())
10223        DefineImplicitDestructor(DefaultLoc, DD);
10224      break;
10225    }
10226
10227    case CXXMoveConstructor: {
10228      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10229      CheckExplicitlyDefaultedMoveConstructor(CD);
10230      if (!CD->isInvalidDecl())
10231        DefineImplicitMoveConstructor(DefaultLoc, CD);
10232      break;
10233    }
10234
10235    case CXXMoveAssignment: {
10236      CheckExplicitlyDefaultedMoveAssignment(MD);
10237      if (!MD->isInvalidDecl())
10238        DefineImplicitMoveAssignment(DefaultLoc, MD);
10239      break;
10240    }
10241
10242    case CXXInvalid:
10243      llvm_unreachable("Invalid special member.");
10244    }
10245  } else {
10246    Diag(DefaultLoc, diag::err_default_special_members);
10247  }
10248}
10249
10250static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10251  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10252    Stmt *SubStmt = *CI;
10253    if (!SubStmt)
10254      continue;
10255    if (isa<ReturnStmt>(SubStmt))
10256      Self.Diag(SubStmt->getSourceRange().getBegin(),
10257           diag::err_return_in_constructor_handler);
10258    if (!isa<Expr>(SubStmt))
10259      SearchForReturnInStmt(Self, SubStmt);
10260  }
10261}
10262
10263void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10264  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10265    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10266    SearchForReturnInStmt(*this, Handler);
10267  }
10268}
10269
10270bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10271                                             const CXXMethodDecl *Old) {
10272  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10273  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10274
10275  if (Context.hasSameType(NewTy, OldTy) ||
10276      NewTy->isDependentType() || OldTy->isDependentType())
10277    return false;
10278
10279  // Check if the return types are covariant
10280  QualType NewClassTy, OldClassTy;
10281
10282  /// Both types must be pointers or references to classes.
10283  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10284    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10285      NewClassTy = NewPT->getPointeeType();
10286      OldClassTy = OldPT->getPointeeType();
10287    }
10288  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10289    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10290      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10291        NewClassTy = NewRT->getPointeeType();
10292        OldClassTy = OldRT->getPointeeType();
10293      }
10294    }
10295  }
10296
10297  // The return types aren't either both pointers or references to a class type.
10298  if (NewClassTy.isNull()) {
10299    Diag(New->getLocation(),
10300         diag::err_different_return_type_for_overriding_virtual_function)
10301      << New->getDeclName() << NewTy << OldTy;
10302    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10303
10304    return true;
10305  }
10306
10307  // C++ [class.virtual]p6:
10308  //   If the return type of D::f differs from the return type of B::f, the
10309  //   class type in the return type of D::f shall be complete at the point of
10310  //   declaration of D::f or shall be the class type D.
10311  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10312    if (!RT->isBeingDefined() &&
10313        RequireCompleteType(New->getLocation(), NewClassTy,
10314                            PDiag(diag::err_covariant_return_incomplete)
10315                              << New->getDeclName()))
10316    return true;
10317  }
10318
10319  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10320    // Check if the new class derives from the old class.
10321    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10322      Diag(New->getLocation(),
10323           diag::err_covariant_return_not_derived)
10324      << New->getDeclName() << NewTy << OldTy;
10325      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10326      return true;
10327    }
10328
10329    // Check if we the conversion from derived to base is valid.
10330    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10331                    diag::err_covariant_return_inaccessible_base,
10332                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10333                    // FIXME: Should this point to the return type?
10334                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10335      // FIXME: this note won't trigger for delayed access control
10336      // diagnostics, and it's impossible to get an undelayed error
10337      // here from access control during the original parse because
10338      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10339      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10340      return true;
10341    }
10342  }
10343
10344  // The qualifiers of the return types must be the same.
10345  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10346    Diag(New->getLocation(),
10347         diag::err_covariant_return_type_different_qualifications)
10348    << New->getDeclName() << NewTy << OldTy;
10349    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10350    return true;
10351  };
10352
10353
10354  // The new class type must have the same or less qualifiers as the old type.
10355  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10356    Diag(New->getLocation(),
10357         diag::err_covariant_return_type_class_type_more_qualified)
10358    << New->getDeclName() << NewTy << OldTy;
10359    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10360    return true;
10361  };
10362
10363  return false;
10364}
10365
10366/// \brief Mark the given method pure.
10367///
10368/// \param Method the method to be marked pure.
10369///
10370/// \param InitRange the source range that covers the "0" initializer.
10371bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10372  SourceLocation EndLoc = InitRange.getEnd();
10373  if (EndLoc.isValid())
10374    Method->setRangeEnd(EndLoc);
10375
10376  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10377    Method->setPure();
10378    return false;
10379  }
10380
10381  if (!Method->isInvalidDecl())
10382    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10383      << Method->getDeclName() << InitRange;
10384  return true;
10385}
10386
10387/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10388/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10389/// is a fresh scope pushed for just this purpose.
10390///
10391/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10392/// static data member of class X, names should be looked up in the scope of
10393/// class X.
10394void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10395  // If there is no declaration, there was an error parsing it.
10396  if (D == 0 || D->isInvalidDecl()) return;
10397
10398  // We should only get called for declarations with scope specifiers, like:
10399  //   int foo::bar;
10400  assert(D->isOutOfLine());
10401  EnterDeclaratorContext(S, D->getDeclContext());
10402}
10403
10404/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10405/// initializer for the out-of-line declaration 'D'.
10406void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10407  // If there is no declaration, there was an error parsing it.
10408  if (D == 0 || D->isInvalidDecl()) return;
10409
10410  assert(D->isOutOfLine());
10411  ExitDeclaratorContext(S);
10412}
10413
10414/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10415/// C++ if/switch/while/for statement.
10416/// e.g: "if (int x = f()) {...}"
10417DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10418  // C++ 6.4p2:
10419  // The declarator shall not specify a function or an array.
10420  // The type-specifier-seq shall not contain typedef and shall not declare a
10421  // new class or enumeration.
10422  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10423         "Parser allowed 'typedef' as storage class of condition decl.");
10424
10425  Decl *Dcl = ActOnDeclarator(S, D);
10426  if (!Dcl)
10427    return true;
10428
10429  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10430    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10431      << D.getSourceRange();
10432    return true;
10433  }
10434
10435  return Dcl;
10436}
10437
10438void Sema::LoadExternalVTableUses() {
10439  if (!ExternalSource)
10440    return;
10441
10442  SmallVector<ExternalVTableUse, 4> VTables;
10443  ExternalSource->ReadUsedVTables(VTables);
10444  SmallVector<VTableUse, 4> NewUses;
10445  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10446    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10447      = VTablesUsed.find(VTables[I].Record);
10448    // Even if a definition wasn't required before, it may be required now.
10449    if (Pos != VTablesUsed.end()) {
10450      if (!Pos->second && VTables[I].DefinitionRequired)
10451        Pos->second = true;
10452      continue;
10453    }
10454
10455    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10456    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10457  }
10458
10459  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10460}
10461
10462void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10463                          bool DefinitionRequired) {
10464  // Ignore any vtable uses in unevaluated operands or for classes that do
10465  // not have a vtable.
10466  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10467      CurContext->isDependentContext() ||
10468      ExprEvalContexts.back().Context == Unevaluated)
10469    return;
10470
10471  // Try to insert this class into the map.
10472  LoadExternalVTableUses();
10473  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10474  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10475    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10476  if (!Pos.second) {
10477    // If we already had an entry, check to see if we are promoting this vtable
10478    // to required a definition. If so, we need to reappend to the VTableUses
10479    // list, since we may have already processed the first entry.
10480    if (DefinitionRequired && !Pos.first->second) {
10481      Pos.first->second = true;
10482    } else {
10483      // Otherwise, we can early exit.
10484      return;
10485    }
10486  }
10487
10488  // Local classes need to have their virtual members marked
10489  // immediately. For all other classes, we mark their virtual members
10490  // at the end of the translation unit.
10491  if (Class->isLocalClass())
10492    MarkVirtualMembersReferenced(Loc, Class);
10493  else
10494    VTableUses.push_back(std::make_pair(Class, Loc));
10495}
10496
10497bool Sema::DefineUsedVTables() {
10498  LoadExternalVTableUses();
10499  if (VTableUses.empty())
10500    return false;
10501
10502  // Note: The VTableUses vector could grow as a result of marking
10503  // the members of a class as "used", so we check the size each
10504  // time through the loop and prefer indices (with are stable) to
10505  // iterators (which are not).
10506  bool DefinedAnything = false;
10507  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10508    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10509    if (!Class)
10510      continue;
10511
10512    SourceLocation Loc = VTableUses[I].second;
10513
10514    // If this class has a key function, but that key function is
10515    // defined in another translation unit, we don't need to emit the
10516    // vtable even though we're using it.
10517    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10518    if (KeyFunction && !KeyFunction->hasBody()) {
10519      switch (KeyFunction->getTemplateSpecializationKind()) {
10520      case TSK_Undeclared:
10521      case TSK_ExplicitSpecialization:
10522      case TSK_ExplicitInstantiationDeclaration:
10523        // The key function is in another translation unit.
10524        continue;
10525
10526      case TSK_ExplicitInstantiationDefinition:
10527      case TSK_ImplicitInstantiation:
10528        // We will be instantiating the key function.
10529        break;
10530      }
10531    } else if (!KeyFunction) {
10532      // If we have a class with no key function that is the subject
10533      // of an explicit instantiation declaration, suppress the
10534      // vtable; it will live with the explicit instantiation
10535      // definition.
10536      bool IsExplicitInstantiationDeclaration
10537        = Class->getTemplateSpecializationKind()
10538                                      == TSK_ExplicitInstantiationDeclaration;
10539      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10540                                 REnd = Class->redecls_end();
10541           R != REnd; ++R) {
10542        TemplateSpecializationKind TSK
10543          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10544        if (TSK == TSK_ExplicitInstantiationDeclaration)
10545          IsExplicitInstantiationDeclaration = true;
10546        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10547          IsExplicitInstantiationDeclaration = false;
10548          break;
10549        }
10550      }
10551
10552      if (IsExplicitInstantiationDeclaration)
10553        continue;
10554    }
10555
10556    // Mark all of the virtual members of this class as referenced, so
10557    // that we can build a vtable. Then, tell the AST consumer that a
10558    // vtable for this class is required.
10559    DefinedAnything = true;
10560    MarkVirtualMembersReferenced(Loc, Class);
10561    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10562    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10563
10564    // Optionally warn if we're emitting a weak vtable.
10565    if (Class->getLinkage() == ExternalLinkage &&
10566        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10567      const FunctionDecl *KeyFunctionDef = 0;
10568      if (!KeyFunction ||
10569          (KeyFunction->hasBody(KeyFunctionDef) &&
10570           KeyFunctionDef->isInlined()))
10571        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10572             TSK_ExplicitInstantiationDefinition
10573             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10574          << Class;
10575    }
10576  }
10577  VTableUses.clear();
10578
10579  return DefinedAnything;
10580}
10581
10582void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10583                                        const CXXRecordDecl *RD) {
10584  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10585       e = RD->method_end(); i != e; ++i) {
10586    CXXMethodDecl *MD = *i;
10587
10588    // C++ [basic.def.odr]p2:
10589    //   [...] A virtual member function is used if it is not pure. [...]
10590    if (MD->isVirtual() && !MD->isPure())
10591      MarkFunctionReferenced(Loc, MD);
10592  }
10593
10594  // Only classes that have virtual bases need a VTT.
10595  if (RD->getNumVBases() == 0)
10596    return;
10597
10598  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10599           e = RD->bases_end(); i != e; ++i) {
10600    const CXXRecordDecl *Base =
10601        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10602    if (Base->getNumVBases() == 0)
10603      continue;
10604    MarkVirtualMembersReferenced(Loc, Base);
10605  }
10606}
10607
10608/// SetIvarInitializers - This routine builds initialization ASTs for the
10609/// Objective-C implementation whose ivars need be initialized.
10610void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10611  if (!getLangOptions().CPlusPlus)
10612    return;
10613  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10614    SmallVector<ObjCIvarDecl*, 8> ivars;
10615    CollectIvarsToConstructOrDestruct(OID, ivars);
10616    if (ivars.empty())
10617      return;
10618    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10619    for (unsigned i = 0; i < ivars.size(); i++) {
10620      FieldDecl *Field = ivars[i];
10621      if (Field->isInvalidDecl())
10622        continue;
10623
10624      CXXCtorInitializer *Member;
10625      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10626      InitializationKind InitKind =
10627        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10628
10629      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10630      ExprResult MemberInit =
10631        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10632      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10633      // Note, MemberInit could actually come back empty if no initialization
10634      // is required (e.g., because it would call a trivial default constructor)
10635      if (!MemberInit.get() || MemberInit.isInvalid())
10636        continue;
10637
10638      Member =
10639        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10640                                         SourceLocation(),
10641                                         MemberInit.takeAs<Expr>(),
10642                                         SourceLocation());
10643      AllToInit.push_back(Member);
10644
10645      // Be sure that the destructor is accessible and is marked as referenced.
10646      if (const RecordType *RecordTy
10647                  = Context.getBaseElementType(Field->getType())
10648                                                        ->getAs<RecordType>()) {
10649                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10650        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10651          MarkFunctionReferenced(Field->getLocation(), Destructor);
10652          CheckDestructorAccess(Field->getLocation(), Destructor,
10653                            PDiag(diag::err_access_dtor_ivar)
10654                              << Context.getBaseElementType(Field->getType()));
10655        }
10656      }
10657    }
10658    ObjCImplementation->setIvarInitializers(Context,
10659                                            AllToInit.data(), AllToInit.size());
10660  }
10661}
10662
10663static
10664void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10665                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10666                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10667                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10668                           Sema &S) {
10669  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10670                                                   CE = Current.end();
10671  if (Ctor->isInvalidDecl())
10672    return;
10673
10674  const FunctionDecl *FNTarget = 0;
10675  CXXConstructorDecl *Target;
10676
10677  // We ignore the result here since if we don't have a body, Target will be
10678  // null below.
10679  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10680  Target
10681= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10682
10683  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10684                     // Avoid dereferencing a null pointer here.
10685                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10686
10687  if (!Current.insert(Canonical))
10688    return;
10689
10690  // We know that beyond here, we aren't chaining into a cycle.
10691  if (!Target || !Target->isDelegatingConstructor() ||
10692      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10693    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10694      Valid.insert(*CI);
10695    Current.clear();
10696  // We've hit a cycle.
10697  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10698             Current.count(TCanonical)) {
10699    // If we haven't diagnosed this cycle yet, do so now.
10700    if (!Invalid.count(TCanonical)) {
10701      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10702             diag::warn_delegating_ctor_cycle)
10703        << Ctor;
10704
10705      // Don't add a note for a function delegating directo to itself.
10706      if (TCanonical != Canonical)
10707        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10708
10709      CXXConstructorDecl *C = Target;
10710      while (C->getCanonicalDecl() != Canonical) {
10711        (void)C->getTargetConstructor()->hasBody(FNTarget);
10712        assert(FNTarget && "Ctor cycle through bodiless function");
10713
10714        C
10715       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10716        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10717      }
10718    }
10719
10720    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10721      Invalid.insert(*CI);
10722    Current.clear();
10723  } else {
10724    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10725  }
10726}
10727
10728
10729void Sema::CheckDelegatingCtorCycles() {
10730  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10731
10732  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10733                                                   CE = Current.end();
10734
10735  for (DelegatingCtorDeclsType::iterator
10736         I = DelegatingCtorDecls.begin(ExternalSource),
10737         E = DelegatingCtorDecls.end();
10738       I != E; ++I) {
10739   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10740  }
10741
10742  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10743    (*CI)->setInvalidDecl();
10744}
10745
10746/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
10747Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
10748  // Implicitly declared functions (e.g. copy constructors) are
10749  // __host__ __device__
10750  if (D->isImplicit())
10751    return CFT_HostDevice;
10752
10753  if (D->hasAttr<CUDAGlobalAttr>())
10754    return CFT_Global;
10755
10756  if (D->hasAttr<CUDADeviceAttr>()) {
10757    if (D->hasAttr<CUDAHostAttr>())
10758      return CFT_HostDevice;
10759    else
10760      return CFT_Device;
10761  }
10762
10763  return CFT_Host;
10764}
10765
10766bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
10767                           CUDAFunctionTarget CalleeTarget) {
10768  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
10769  // Callable from the device only."
10770  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
10771    return true;
10772
10773  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
10774  // Callable from the host only."
10775  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
10776  // Callable from the host only."
10777  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
10778      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
10779    return true;
10780
10781  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
10782    return true;
10783
10784  return false;
10785}
10786