SemaDeclCXX.cpp revision 215e4e17d00e12c38687a95502506d8f2ca3e646
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/AST/StmtVisitor.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/AST/TypeOrdering.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Lex/Preprocessor.h"
35#include "llvm/ADT/DenseSet.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/STLExtras.h"
38#include <map>
39#include <set>
40
41using namespace clang;
42
43//===----------------------------------------------------------------------===//
44// CheckDefaultArgumentVisitor
45//===----------------------------------------------------------------------===//
46
47namespace {
48  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
49  /// the default argument of a parameter to determine whether it
50  /// contains any ill-formed subexpressions. For example, this will
51  /// diagnose the use of local variables or parameters within the
52  /// default argument expression.
53  class CheckDefaultArgumentVisitor
54    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
55    Expr *DefaultArg;
56    Sema *S;
57
58  public:
59    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
60      : DefaultArg(defarg), S(s) {}
61
62    bool VisitExpr(Expr *Node);
63    bool VisitDeclRefExpr(DeclRefExpr *DRE);
64    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
65    bool VisitLambdaExpr(LambdaExpr *Lambda);
66  };
67
68  /// VisitExpr - Visit all of the children of this expression.
69  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
70    bool IsInvalid = false;
71    for (Stmt::child_range I = Node->children(); I; ++I)
72      IsInvalid |= Visit(*I);
73    return IsInvalid;
74  }
75
76  /// VisitDeclRefExpr - Visit a reference to a declaration, to
77  /// determine whether this declaration can be used in the default
78  /// argument expression.
79  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
80    NamedDecl *Decl = DRE->getDecl();
81    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
82      // C++ [dcl.fct.default]p9
83      //   Default arguments are evaluated each time the function is
84      //   called. The order of evaluation of function arguments is
85      //   unspecified. Consequently, parameters of a function shall not
86      //   be used in default argument expressions, even if they are not
87      //   evaluated. Parameters of a function declared before a default
88      //   argument expression are in scope and can hide namespace and
89      //   class member names.
90      return S->Diag(DRE->getSourceRange().getBegin(),
91                     diag::err_param_default_argument_references_param)
92         << Param->getDeclName() << DefaultArg->getSourceRange();
93    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
94      // C++ [dcl.fct.default]p7
95      //   Local variables shall not be used in default argument
96      //   expressions.
97      if (VDecl->isLocalVarDecl())
98        return S->Diag(DRE->getSourceRange().getBegin(),
99                       diag::err_param_default_argument_references_local)
100          << VDecl->getDeclName() << DefaultArg->getSourceRange();
101    }
102
103    return false;
104  }
105
106  /// VisitCXXThisExpr - Visit a C++ "this" expression.
107  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
108    // C++ [dcl.fct.default]p8:
109    //   The keyword this shall not be used in a default argument of a
110    //   member function.
111    return S->Diag(ThisE->getSourceRange().getBegin(),
112                   diag::err_param_default_argument_references_this)
113               << ThisE->getSourceRange();
114  }
115
116  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
117    // C++11 [expr.lambda.prim]p13:
118    //   A lambda-expression appearing in a default argument shall not
119    //   implicitly or explicitly capture any entity.
120    if (Lambda->capture_begin() == Lambda->capture_end())
121      return false;
122
123    return S->Diag(Lambda->getLocStart(),
124                   diag::err_lambda_capture_default_arg);
125  }
126}
127
128void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
129  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
130  // If we have an MSAny or unknown spec already, don't bother.
131  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
132    return;
133
134  const FunctionProtoType *Proto
135    = Method->getType()->getAs<FunctionProtoType>();
136
137  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
138
139  // If this function can throw any exceptions, make a note of that.
140  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
141    ClearExceptions();
142    ComputedEST = EST;
143    return;
144  }
145
146  // FIXME: If the call to this decl is using any of its default arguments, we
147  // need to search them for potentially-throwing calls.
148
149  // If this function has a basic noexcept, it doesn't affect the outcome.
150  if (EST == EST_BasicNoexcept)
151    return;
152
153  // If we have a throw-all spec at this point, ignore the function.
154  if (ComputedEST == EST_None)
155    return;
156
157  // If we're still at noexcept(true) and there's a nothrow() callee,
158  // change to that specification.
159  if (EST == EST_DynamicNone) {
160    if (ComputedEST == EST_BasicNoexcept)
161      ComputedEST = EST_DynamicNone;
162    return;
163  }
164
165  // Check out noexcept specs.
166  if (EST == EST_ComputedNoexcept) {
167    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
168    assert(NR != FunctionProtoType::NR_NoNoexcept &&
169           "Must have noexcept result for EST_ComputedNoexcept.");
170    assert(NR != FunctionProtoType::NR_Dependent &&
171           "Should not generate implicit declarations for dependent cases, "
172           "and don't know how to handle them anyway.");
173
174    // noexcept(false) -> no spec on the new function
175    if (NR == FunctionProtoType::NR_Throw) {
176      ClearExceptions();
177      ComputedEST = EST_None;
178    }
179    // noexcept(true) won't change anything either.
180    return;
181  }
182
183  assert(EST == EST_Dynamic && "EST case not considered earlier.");
184  assert(ComputedEST != EST_None &&
185         "Shouldn't collect exceptions when throw-all is guaranteed.");
186  ComputedEST = EST_Dynamic;
187  // Record the exceptions in this function's exception specification.
188  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
189                                          EEnd = Proto->exception_end();
190       E != EEnd; ++E)
191    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
192      Exceptions.push_back(*E);
193}
194
195void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
196  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
197    return;
198
199  // FIXME:
200  //
201  // C++0x [except.spec]p14:
202  //   [An] implicit exception-specification specifies the type-id T if and
203  // only if T is allowed by the exception-specification of a function directly
204  // invoked by f's implicit definition; f shall allow all exceptions if any
205  // function it directly invokes allows all exceptions, and f shall allow no
206  // exceptions if every function it directly invokes allows no exceptions.
207  //
208  // Note in particular that if an implicit exception-specification is generated
209  // for a function containing a throw-expression, that specification can still
210  // be noexcept(true).
211  //
212  // Note also that 'directly invoked' is not defined in the standard, and there
213  // is no indication that we should only consider potentially-evaluated calls.
214  //
215  // Ultimately we should implement the intent of the standard: the exception
216  // specification should be the set of exceptions which can be thrown by the
217  // implicit definition. For now, we assume that any non-nothrow expression can
218  // throw any exception.
219
220  if (E->CanThrow(*Context))
221    ComputedEST = EST_None;
222}
223
224bool
225Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
226                              SourceLocation EqualLoc) {
227  if (RequireCompleteType(Param->getLocation(), Param->getType(),
228                          diag::err_typecheck_decl_incomplete_type)) {
229    Param->setInvalidDecl();
230    return true;
231  }
232
233  // C++ [dcl.fct.default]p5
234  //   A default argument expression is implicitly converted (clause
235  //   4) to the parameter type. The default argument expression has
236  //   the same semantic constraints as the initializer expression in
237  //   a declaration of a variable of the parameter type, using the
238  //   copy-initialization semantics (8.5).
239  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
240                                                                    Param);
241  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
242                                                           EqualLoc);
243  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
244  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
245                                      MultiExprArg(*this, &Arg, 1));
246  if (Result.isInvalid())
247    return true;
248  Arg = Result.takeAs<Expr>();
249
250  CheckImplicitConversions(Arg, EqualLoc);
251  Arg = MaybeCreateExprWithCleanups(Arg);
252
253  // Okay: add the default argument to the parameter
254  Param->setDefaultArg(Arg);
255
256  // We have already instantiated this parameter; provide each of the
257  // instantiations with the uninstantiated default argument.
258  UnparsedDefaultArgInstantiationsMap::iterator InstPos
259    = UnparsedDefaultArgInstantiations.find(Param);
260  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
261    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
262      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
263
264    // We're done tracking this parameter's instantiations.
265    UnparsedDefaultArgInstantiations.erase(InstPos);
266  }
267
268  return false;
269}
270
271/// ActOnParamDefaultArgument - Check whether the default argument
272/// provided for a function parameter is well-formed. If so, attach it
273/// to the parameter declaration.
274void
275Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
276                                Expr *DefaultArg) {
277  if (!param || !DefaultArg)
278    return;
279
280  ParmVarDecl *Param = cast<ParmVarDecl>(param);
281  UnparsedDefaultArgLocs.erase(Param);
282
283  // Default arguments are only permitted in C++
284  if (!getLangOptions().CPlusPlus) {
285    Diag(EqualLoc, diag::err_param_default_argument)
286      << DefaultArg->getSourceRange();
287    Param->setInvalidDecl();
288    return;
289  }
290
291  // Check for unexpanded parameter packs.
292  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
293    Param->setInvalidDecl();
294    return;
295  }
296
297  // Check that the default argument is well-formed
298  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
299  if (DefaultArgChecker.Visit(DefaultArg)) {
300    Param->setInvalidDecl();
301    return;
302  }
303
304  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
305}
306
307/// ActOnParamUnparsedDefaultArgument - We've seen a default
308/// argument for a function parameter, but we can't parse it yet
309/// because we're inside a class definition. Note that this default
310/// argument will be parsed later.
311void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
312                                             SourceLocation EqualLoc,
313                                             SourceLocation ArgLoc) {
314  if (!param)
315    return;
316
317  ParmVarDecl *Param = cast<ParmVarDecl>(param);
318  if (Param)
319    Param->setUnparsedDefaultArg();
320
321  UnparsedDefaultArgLocs[Param] = ArgLoc;
322}
323
324/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
325/// the default argument for the parameter param failed.
326void Sema::ActOnParamDefaultArgumentError(Decl *param) {
327  if (!param)
328    return;
329
330  ParmVarDecl *Param = cast<ParmVarDecl>(param);
331
332  Param->setInvalidDecl();
333
334  UnparsedDefaultArgLocs.erase(Param);
335}
336
337/// CheckExtraCXXDefaultArguments - Check for any extra default
338/// arguments in the declarator, which is not a function declaration
339/// or definition and therefore is not permitted to have default
340/// arguments. This routine should be invoked for every declarator
341/// that is not a function declaration or definition.
342void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
343  // C++ [dcl.fct.default]p3
344  //   A default argument expression shall be specified only in the
345  //   parameter-declaration-clause of a function declaration or in a
346  //   template-parameter (14.1). It shall not be specified for a
347  //   parameter pack. If it is specified in a
348  //   parameter-declaration-clause, it shall not occur within a
349  //   declarator or abstract-declarator of a parameter-declaration.
350  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
351    DeclaratorChunk &chunk = D.getTypeObject(i);
352    if (chunk.Kind == DeclaratorChunk::Function) {
353      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
354        ParmVarDecl *Param =
355          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
356        if (Param->hasUnparsedDefaultArg()) {
357          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
358          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
359            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
360          delete Toks;
361          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
362        } else if (Param->getDefaultArg()) {
363          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
364            << Param->getDefaultArg()->getSourceRange();
365          Param->setDefaultArg(0);
366        }
367      }
368    }
369  }
370}
371
372// MergeCXXFunctionDecl - Merge two declarations of the same C++
373// function, once we already know that they have the same
374// type. Subroutine of MergeFunctionDecl. Returns true if there was an
375// error, false otherwise.
376bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
377  bool Invalid = false;
378
379  // C++ [dcl.fct.default]p4:
380  //   For non-template functions, default arguments can be added in
381  //   later declarations of a function in the same
382  //   scope. Declarations in different scopes have completely
383  //   distinct sets of default arguments. That is, declarations in
384  //   inner scopes do not acquire default arguments from
385  //   declarations in outer scopes, and vice versa. In a given
386  //   function declaration, all parameters subsequent to a
387  //   parameter with a default argument shall have default
388  //   arguments supplied in this or previous declarations. A
389  //   default argument shall not be redefined by a later
390  //   declaration (not even to the same value).
391  //
392  // C++ [dcl.fct.default]p6:
393  //   Except for member functions of class templates, the default arguments
394  //   in a member function definition that appears outside of the class
395  //   definition are added to the set of default arguments provided by the
396  //   member function declaration in the class definition.
397  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
398    ParmVarDecl *OldParam = Old->getParamDecl(p);
399    ParmVarDecl *NewParam = New->getParamDecl(p);
400
401    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
402
403      unsigned DiagDefaultParamID =
404        diag::err_param_default_argument_redefinition;
405
406      // MSVC accepts that default parameters be redefined for member functions
407      // of template class. The new default parameter's value is ignored.
408      Invalid = true;
409      if (getLangOptions().MicrosoftExt) {
410        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
411        if (MD && MD->getParent()->getDescribedClassTemplate()) {
412          // Merge the old default argument into the new parameter.
413          NewParam->setHasInheritedDefaultArg();
414          if (OldParam->hasUninstantiatedDefaultArg())
415            NewParam->setUninstantiatedDefaultArg(
416                                      OldParam->getUninstantiatedDefaultArg());
417          else
418            NewParam->setDefaultArg(OldParam->getInit());
419          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
420          Invalid = false;
421        }
422      }
423
424      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
425      // hint here. Alternatively, we could walk the type-source information
426      // for NewParam to find the last source location in the type... but it
427      // isn't worth the effort right now. This is the kind of test case that
428      // is hard to get right:
429      //   int f(int);
430      //   void g(int (*fp)(int) = f);
431      //   void g(int (*fp)(int) = &f);
432      Diag(NewParam->getLocation(), DiagDefaultParamID)
433        << NewParam->getDefaultArgRange();
434
435      // Look for the function declaration where the default argument was
436      // actually written, which may be a declaration prior to Old.
437      for (FunctionDecl *Older = Old->getPreviousDecl();
438           Older; Older = Older->getPreviousDecl()) {
439        if (!Older->getParamDecl(p)->hasDefaultArg())
440          break;
441
442        OldParam = Older->getParamDecl(p);
443      }
444
445      Diag(OldParam->getLocation(), diag::note_previous_definition)
446        << OldParam->getDefaultArgRange();
447    } else if (OldParam->hasDefaultArg()) {
448      // Merge the old default argument into the new parameter.
449      // It's important to use getInit() here;  getDefaultArg()
450      // strips off any top-level ExprWithCleanups.
451      NewParam->setHasInheritedDefaultArg();
452      if (OldParam->hasUninstantiatedDefaultArg())
453        NewParam->setUninstantiatedDefaultArg(
454                                      OldParam->getUninstantiatedDefaultArg());
455      else
456        NewParam->setDefaultArg(OldParam->getInit());
457    } else if (NewParam->hasDefaultArg()) {
458      if (New->getDescribedFunctionTemplate()) {
459        // Paragraph 4, quoted above, only applies to non-template functions.
460        Diag(NewParam->getLocation(),
461             diag::err_param_default_argument_template_redecl)
462          << NewParam->getDefaultArgRange();
463        Diag(Old->getLocation(), diag::note_template_prev_declaration)
464          << false;
465      } else if (New->getTemplateSpecializationKind()
466                   != TSK_ImplicitInstantiation &&
467                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
468        // C++ [temp.expr.spec]p21:
469        //   Default function arguments shall not be specified in a declaration
470        //   or a definition for one of the following explicit specializations:
471        //     - the explicit specialization of a function template;
472        //     - the explicit specialization of a member function template;
473        //     - the explicit specialization of a member function of a class
474        //       template where the class template specialization to which the
475        //       member function specialization belongs is implicitly
476        //       instantiated.
477        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
478          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
479          << New->getDeclName()
480          << NewParam->getDefaultArgRange();
481      } else if (New->getDeclContext()->isDependentContext()) {
482        // C++ [dcl.fct.default]p6 (DR217):
483        //   Default arguments for a member function of a class template shall
484        //   be specified on the initial declaration of the member function
485        //   within the class template.
486        //
487        // Reading the tea leaves a bit in DR217 and its reference to DR205
488        // leads me to the conclusion that one cannot add default function
489        // arguments for an out-of-line definition of a member function of a
490        // dependent type.
491        int WhichKind = 2;
492        if (CXXRecordDecl *Record
493              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
494          if (Record->getDescribedClassTemplate())
495            WhichKind = 0;
496          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
497            WhichKind = 1;
498          else
499            WhichKind = 2;
500        }
501
502        Diag(NewParam->getLocation(),
503             diag::err_param_default_argument_member_template_redecl)
504          << WhichKind
505          << NewParam->getDefaultArgRange();
506      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
507        CXXSpecialMember NewSM = getSpecialMember(Ctor),
508                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
509        if (NewSM != OldSM) {
510          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
511            << NewParam->getDefaultArgRange() << NewSM;
512          Diag(Old->getLocation(), diag::note_previous_declaration_special)
513            << OldSM;
514        }
515      }
516    }
517  }
518
519  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
520  // template has a constexpr specifier then all its declarations shall
521  // contain the constexpr specifier. [Note: An explicit specialization can
522  // differ from the template declaration with respect to the constexpr
523  // specifier. -- end note]
524  //
525  // FIXME: Don't reject changes in constexpr in explicit specializations.
526  if (New->isConstexpr() != Old->isConstexpr()) {
527    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
528      << New << New->isConstexpr();
529    Diag(Old->getLocation(), diag::note_previous_declaration);
530    Invalid = true;
531  }
532
533  if (CheckEquivalentExceptionSpec(Old, New))
534    Invalid = true;
535
536  return Invalid;
537}
538
539/// \brief Merge the exception specifications of two variable declarations.
540///
541/// This is called when there's a redeclaration of a VarDecl. The function
542/// checks if the redeclaration might have an exception specification and
543/// validates compatibility and merges the specs if necessary.
544void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
545  // Shortcut if exceptions are disabled.
546  if (!getLangOptions().CXXExceptions)
547    return;
548
549  assert(Context.hasSameType(New->getType(), Old->getType()) &&
550         "Should only be called if types are otherwise the same.");
551
552  QualType NewType = New->getType();
553  QualType OldType = Old->getType();
554
555  // We're only interested in pointers and references to functions, as well
556  // as pointers to member functions.
557  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
558    NewType = R->getPointeeType();
559    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
560  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
561    NewType = P->getPointeeType();
562    OldType = OldType->getAs<PointerType>()->getPointeeType();
563  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
564    NewType = M->getPointeeType();
565    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
566  }
567
568  if (!NewType->isFunctionProtoType())
569    return;
570
571  // There's lots of special cases for functions. For function pointers, system
572  // libraries are hopefully not as broken so that we don't need these
573  // workarounds.
574  if (CheckEquivalentExceptionSpec(
575        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
576        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
577    New->setInvalidDecl();
578  }
579}
580
581/// CheckCXXDefaultArguments - Verify that the default arguments for a
582/// function declaration are well-formed according to C++
583/// [dcl.fct.default].
584void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
585  unsigned NumParams = FD->getNumParams();
586  unsigned p;
587
588  // Find first parameter with a default argument
589  for (p = 0; p < NumParams; ++p) {
590    ParmVarDecl *Param = FD->getParamDecl(p);
591    if (Param->hasDefaultArg())
592      break;
593  }
594
595  // C++ [dcl.fct.default]p4:
596  //   In a given function declaration, all parameters
597  //   subsequent to a parameter with a default argument shall
598  //   have default arguments supplied in this or previous
599  //   declarations. A default argument shall not be redefined
600  //   by a later declaration (not even to the same value).
601  unsigned LastMissingDefaultArg = 0;
602  for (; p < NumParams; ++p) {
603    ParmVarDecl *Param = FD->getParamDecl(p);
604    if (!Param->hasDefaultArg()) {
605      if (Param->isInvalidDecl())
606        /* We already complained about this parameter. */;
607      else if (Param->getIdentifier())
608        Diag(Param->getLocation(),
609             diag::err_param_default_argument_missing_name)
610          << Param->getIdentifier();
611      else
612        Diag(Param->getLocation(),
613             diag::err_param_default_argument_missing);
614
615      LastMissingDefaultArg = p;
616    }
617  }
618
619  if (LastMissingDefaultArg > 0) {
620    // Some default arguments were missing. Clear out all of the
621    // default arguments up to (and including) the last missing
622    // default argument, so that we leave the function parameters
623    // in a semantically valid state.
624    for (p = 0; p <= LastMissingDefaultArg; ++p) {
625      ParmVarDecl *Param = FD->getParamDecl(p);
626      if (Param->hasDefaultArg()) {
627        Param->setDefaultArg(0);
628      }
629    }
630  }
631}
632
633// CheckConstexprParameterTypes - Check whether a function's parameter types
634// are all literal types. If so, return true. If not, produce a suitable
635// diagnostic depending on @p CCK and return false.
636static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
637                                         Sema::CheckConstexprKind CCK) {
638  unsigned ArgIndex = 0;
639  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
640  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
641       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
642    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
643    SourceLocation ParamLoc = PD->getLocation();
644    if (!(*i)->isDependentType() &&
645        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
646                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
647                                     << ArgIndex+1 << PD->getSourceRange()
648                                     << isa<CXXConstructorDecl>(FD) :
649                                   SemaRef.PDiag(),
650                                   /*AllowIncompleteType*/ true)) {
651      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
652        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
653          << ArgIndex+1 << PD->getSourceRange()
654          << isa<CXXConstructorDecl>(FD) << *i;
655      return false;
656    }
657  }
658  return true;
659}
660
661// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
662// the requirements of a constexpr function declaration or a constexpr
663// constructor declaration. Return true if it does, false if not.
664//
665// This implements C++11 [dcl.constexpr]p3,4, as amended by N3308.
666//
667// \param CCK Specifies whether to produce diagnostics if the function does not
668// satisfy the requirements.
669bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
670                                      CheckConstexprKind CCK) {
671  assert((CCK != CCK_NoteNonConstexprInstantiation ||
672          (NewFD->getTemplateInstantiationPattern() &&
673           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
674         "only constexpr templates can be instantiated non-constexpr");
675
676  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
677  if (MD && MD->isInstance()) {
678    // C++11 [dcl.constexpr]p4: In the definition of a constexpr constructor...
679    //  In addition, either its function-body shall be = delete or = default or
680    //  it shall satisfy the following constraints:
681    //  - the class shall not have any virtual base classes;
682    //
683    // We apply this to constexpr member functions too: the class cannot be a
684    // literal type, so the members are not permitted to be constexpr.
685    const CXXRecordDecl *RD = MD->getParent();
686    if (RD->getNumVBases()) {
687      // Note, this is still illegal if the body is = default, since the
688      // implicit body does not satisfy the requirements of a constexpr
689      // constructor. We also reject cases where the body is = delete, as
690      // required by N3308.
691      if (CCK != CCK_Instantiation) {
692        Diag(NewFD->getLocation(),
693             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
694                                    : diag::note_constexpr_tmpl_virtual_base)
695          << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
696          << RD->getNumVBases();
697        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
698               E = RD->vbases_end(); I != E; ++I)
699          Diag(I->getSourceRange().getBegin(),
700               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
701      }
702      return false;
703    }
704  }
705
706  if (!isa<CXXConstructorDecl>(NewFD)) {
707    // C++11 [dcl.constexpr]p3:
708    //  The definition of a constexpr function shall satisfy the following
709    //  constraints:
710    // - it shall not be virtual;
711    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
712    if (Method && Method->isVirtual()) {
713      if (CCK != CCK_Instantiation) {
714        Diag(NewFD->getLocation(),
715             CCK == CCK_Declaration ? diag::err_constexpr_virtual
716                                    : diag::note_constexpr_tmpl_virtual);
717
718        // If it's not obvious why this function is virtual, find an overridden
719        // function which uses the 'virtual' keyword.
720        const CXXMethodDecl *WrittenVirtual = Method;
721        while (!WrittenVirtual->isVirtualAsWritten())
722          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
723        if (WrittenVirtual != Method)
724          Diag(WrittenVirtual->getLocation(),
725               diag::note_overridden_virtual_function);
726      }
727      return false;
728    }
729
730    // - its return type shall be a literal type;
731    QualType RT = NewFD->getResultType();
732    if (!RT->isDependentType() &&
733        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
734                           PDiag(diag::err_constexpr_non_literal_return) :
735                           PDiag(),
736                           /*AllowIncompleteType*/ true)) {
737      if (CCK == CCK_NoteNonConstexprInstantiation)
738        Diag(NewFD->getLocation(),
739             diag::note_constexpr_tmpl_non_literal_return) << RT;
740      return false;
741    }
742  }
743
744  // - each of its parameter types shall be a literal type;
745  if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
746    return false;
747
748  return true;
749}
750
751/// Check the given declaration statement is legal within a constexpr function
752/// body. C++0x [dcl.constexpr]p3,p4.
753///
754/// \return true if the body is OK, false if we have diagnosed a problem.
755static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
756                                   DeclStmt *DS) {
757  // C++0x [dcl.constexpr]p3 and p4:
758  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
759  //  contain only
760  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
761         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
762    switch ((*DclIt)->getKind()) {
763    case Decl::StaticAssert:
764    case Decl::Using:
765    case Decl::UsingShadow:
766    case Decl::UsingDirective:
767    case Decl::UnresolvedUsingTypename:
768      //   - static_assert-declarations
769      //   - using-declarations,
770      //   - using-directives,
771      continue;
772
773    case Decl::Typedef:
774    case Decl::TypeAlias: {
775      //   - typedef declarations and alias-declarations that do not define
776      //     classes or enumerations,
777      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
778      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
779        // Don't allow variably-modified types in constexpr functions.
780        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
781        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
782          << TL.getSourceRange() << TL.getType()
783          << isa<CXXConstructorDecl>(Dcl);
784        return false;
785      }
786      continue;
787    }
788
789    case Decl::Enum:
790    case Decl::CXXRecord:
791      // As an extension, we allow the declaration (but not the definition) of
792      // classes and enumerations in all declarations, not just in typedef and
793      // alias declarations.
794      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
795        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
796          << isa<CXXConstructorDecl>(Dcl);
797        return false;
798      }
799      continue;
800
801    case Decl::Var:
802      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
803        << isa<CXXConstructorDecl>(Dcl);
804      return false;
805
806    default:
807      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
808        << isa<CXXConstructorDecl>(Dcl);
809      return false;
810    }
811  }
812
813  return true;
814}
815
816/// Check that the given field is initialized within a constexpr constructor.
817///
818/// \param Dcl The constexpr constructor being checked.
819/// \param Field The field being checked. This may be a member of an anonymous
820///        struct or union nested within the class being checked.
821/// \param Inits All declarations, including anonymous struct/union members and
822///        indirect members, for which any initialization was provided.
823/// \param Diagnosed Set to true if an error is produced.
824static void CheckConstexprCtorInitializer(Sema &SemaRef,
825                                          const FunctionDecl *Dcl,
826                                          FieldDecl *Field,
827                                          llvm::SmallSet<Decl*, 16> &Inits,
828                                          bool &Diagnosed) {
829  if (Field->isUnnamedBitfield())
830    return;
831
832  if (Field->isAnonymousStructOrUnion() &&
833      Field->getType()->getAsCXXRecordDecl()->isEmpty())
834    return;
835
836  if (!Inits.count(Field)) {
837    if (!Diagnosed) {
838      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
839      Diagnosed = true;
840    }
841    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
842  } else if (Field->isAnonymousStructOrUnion()) {
843    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
844    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
845         I != E; ++I)
846      // If an anonymous union contains an anonymous struct of which any member
847      // is initialized, all members must be initialized.
848      if (!RD->isUnion() || Inits.count(*I))
849        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
850  }
851}
852
853/// Check the body for the given constexpr function declaration only contains
854/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
855///
856/// \return true if the body is OK, false if we have diagnosed a problem.
857bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body,
858                                      bool IsInstantiation) {
859  if (isa<CXXTryStmt>(Body)) {
860    // C++11 [dcl.constexpr]p3:
861    //  The definition of a constexpr function shall satisfy the following
862    //  constraints: [...]
863    // - its function-body shall be = delete, = default, or a
864    //   compound-statement
865    //
866    // C++11 [dcl.constexpr]p4:
867    //  In the definition of a constexpr constructor, [...]
868    // - its function-body shall not be a function-try-block;
869    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
870      << isa<CXXConstructorDecl>(Dcl);
871    return false;
872  }
873
874  // - its function-body shall be [...] a compound-statement that contains only
875  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
876
877  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
878  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
879         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
880    switch ((*BodyIt)->getStmtClass()) {
881    case Stmt::NullStmtClass:
882      //   - null statements,
883      continue;
884
885    case Stmt::DeclStmtClass:
886      //   - static_assert-declarations
887      //   - using-declarations,
888      //   - using-directives,
889      //   - typedef declarations and alias-declarations that do not define
890      //     classes or enumerations,
891      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
892        return false;
893      continue;
894
895    case Stmt::ReturnStmtClass:
896      //   - and exactly one return statement;
897      if (isa<CXXConstructorDecl>(Dcl))
898        break;
899
900      ReturnStmts.push_back((*BodyIt)->getLocStart());
901      // FIXME
902      // - every constructor call and implicit conversion used in initializing
903      //   the return value shall be one of those allowed in a constant
904      //   expression.
905      // Deal with this as part of a general check that the function can produce
906      // a constant expression (for [dcl.constexpr]p5).
907      continue;
908
909    default:
910      break;
911    }
912
913    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
914      << isa<CXXConstructorDecl>(Dcl);
915    return false;
916  }
917
918  if (const CXXConstructorDecl *Constructor
919        = dyn_cast<CXXConstructorDecl>(Dcl)) {
920    const CXXRecordDecl *RD = Constructor->getParent();
921    // DR1359:
922    // - every non-variant non-static data member and base class sub-object
923    //   shall be initialized;
924    // - if the class is a non-empty union, or for each non-empty anonymous
925    //   union member of a non-union class, exactly one non-static data member
926    //   shall be initialized;
927    if (RD->isUnion()) {
928      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
929        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
930        return false;
931      }
932    } else if (!Constructor->isDependentContext() &&
933               !Constructor->isDelegatingConstructor()) {
934      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
935
936      // Skip detailed checking if we have enough initializers, and we would
937      // allow at most one initializer per member.
938      bool AnyAnonStructUnionMembers = false;
939      unsigned Fields = 0;
940      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
941           E = RD->field_end(); I != E; ++I, ++Fields) {
942        if ((*I)->isAnonymousStructOrUnion()) {
943          AnyAnonStructUnionMembers = true;
944          break;
945        }
946      }
947      if (AnyAnonStructUnionMembers ||
948          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
949        // Check initialization of non-static data members. Base classes are
950        // always initialized so do not need to be checked. Dependent bases
951        // might not have initializers in the member initializer list.
952        llvm::SmallSet<Decl*, 16> Inits;
953        for (CXXConstructorDecl::init_const_iterator
954               I = Constructor->init_begin(), E = Constructor->init_end();
955             I != E; ++I) {
956          if (FieldDecl *FD = (*I)->getMember())
957            Inits.insert(FD);
958          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
959            Inits.insert(ID->chain_begin(), ID->chain_end());
960        }
961
962        bool Diagnosed = false;
963        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
964             E = RD->field_end(); I != E; ++I)
965          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
966        if (Diagnosed)
967          return false;
968      }
969    }
970
971    // FIXME
972    // - every constructor involved in initializing non-static data members
973    //   and base class sub-objects shall be a constexpr constructor;
974    // - every assignment-expression that is an initializer-clause appearing
975    //   directly or indirectly within a brace-or-equal-initializer for
976    //   a non-static data member that is not named by a mem-initializer-id
977    //   shall be a constant expression; and
978    // - every implicit conversion used in converting a constructor argument
979    //   to the corresponding parameter type and converting
980    //   a full-expression to the corresponding member type shall be one of
981    //   those allowed in a constant expression.
982    // Deal with these as part of a general check that the function can produce
983    // a constant expression (for [dcl.constexpr]p5).
984  } else {
985    if (ReturnStmts.empty()) {
986      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
987      return false;
988    }
989    if (ReturnStmts.size() > 1) {
990      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
991      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
992        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
993      return false;
994    }
995  }
996
997  // C++11 [dcl.constexpr]p5:
998  //   if no function argument values exist such that the function invocation
999  //   substitution would produce a constant expression, the program is
1000  //   ill-formed; no diagnostic required.
1001  // C++11 [dcl.constexpr]p3:
1002  //   - every constructor call and implicit conversion used in initializing the
1003  //     return value shall be one of those allowed in a constant expression.
1004  // C++11 [dcl.constexpr]p4:
1005  //   - every constructor involved in initializing non-static data members and
1006  //     base class sub-objects shall be a constexpr constructor.
1007  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
1008  if (!IsInstantiation && !Expr::isPotentialConstantExpr(Dcl, Diags)) {
1009    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
1010      << isa<CXXConstructorDecl>(Dcl);
1011    for (size_t I = 0, N = Diags.size(); I != N; ++I)
1012      Diag(Diags[I].first, Diags[I].second);
1013    return false;
1014  }
1015
1016  return true;
1017}
1018
1019/// isCurrentClassName - Determine whether the identifier II is the
1020/// name of the class type currently being defined. In the case of
1021/// nested classes, this will only return true if II is the name of
1022/// the innermost class.
1023bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1024                              const CXXScopeSpec *SS) {
1025  assert(getLangOptions().CPlusPlus && "No class names in C!");
1026
1027  CXXRecordDecl *CurDecl;
1028  if (SS && SS->isSet() && !SS->isInvalid()) {
1029    DeclContext *DC = computeDeclContext(*SS, true);
1030    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1031  } else
1032    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1033
1034  if (CurDecl && CurDecl->getIdentifier())
1035    return &II == CurDecl->getIdentifier();
1036  else
1037    return false;
1038}
1039
1040/// \brief Check the validity of a C++ base class specifier.
1041///
1042/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1043/// and returns NULL otherwise.
1044CXXBaseSpecifier *
1045Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1046                         SourceRange SpecifierRange,
1047                         bool Virtual, AccessSpecifier Access,
1048                         TypeSourceInfo *TInfo,
1049                         SourceLocation EllipsisLoc) {
1050  QualType BaseType = TInfo->getType();
1051
1052  // C++ [class.union]p1:
1053  //   A union shall not have base classes.
1054  if (Class->isUnion()) {
1055    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1056      << SpecifierRange;
1057    return 0;
1058  }
1059
1060  if (EllipsisLoc.isValid() &&
1061      !TInfo->getType()->containsUnexpandedParameterPack()) {
1062    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1063      << TInfo->getTypeLoc().getSourceRange();
1064    EllipsisLoc = SourceLocation();
1065  }
1066
1067  if (BaseType->isDependentType())
1068    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1069                                          Class->getTagKind() == TTK_Class,
1070                                          Access, TInfo, EllipsisLoc);
1071
1072  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1073
1074  // Base specifiers must be record types.
1075  if (!BaseType->isRecordType()) {
1076    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1077    return 0;
1078  }
1079
1080  // C++ [class.union]p1:
1081  //   A union shall not be used as a base class.
1082  if (BaseType->isUnionType()) {
1083    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1084    return 0;
1085  }
1086
1087  // C++ [class.derived]p2:
1088  //   The class-name in a base-specifier shall not be an incompletely
1089  //   defined class.
1090  if (RequireCompleteType(BaseLoc, BaseType,
1091                          PDiag(diag::err_incomplete_base_class)
1092                            << SpecifierRange)) {
1093    Class->setInvalidDecl();
1094    return 0;
1095  }
1096
1097  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1098  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1099  assert(BaseDecl && "Record type has no declaration");
1100  BaseDecl = BaseDecl->getDefinition();
1101  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1102  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1103  assert(CXXBaseDecl && "Base type is not a C++ type");
1104
1105  // C++ [class]p3:
1106  //   If a class is marked final and it appears as a base-type-specifier in
1107  //   base-clause, the program is ill-formed.
1108  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1109    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1110      << CXXBaseDecl->getDeclName();
1111    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1112      << CXXBaseDecl->getDeclName();
1113    return 0;
1114  }
1115
1116  if (BaseDecl->isInvalidDecl())
1117    Class->setInvalidDecl();
1118
1119  // Create the base specifier.
1120  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1121                                        Class->getTagKind() == TTK_Class,
1122                                        Access, TInfo, EllipsisLoc);
1123}
1124
1125/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1126/// one entry in the base class list of a class specifier, for
1127/// example:
1128///    class foo : public bar, virtual private baz {
1129/// 'public bar' and 'virtual private baz' are each base-specifiers.
1130BaseResult
1131Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1132                         bool Virtual, AccessSpecifier Access,
1133                         ParsedType basetype, SourceLocation BaseLoc,
1134                         SourceLocation EllipsisLoc) {
1135  if (!classdecl)
1136    return true;
1137
1138  AdjustDeclIfTemplate(classdecl);
1139  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1140  if (!Class)
1141    return true;
1142
1143  TypeSourceInfo *TInfo = 0;
1144  GetTypeFromParser(basetype, &TInfo);
1145
1146  if (EllipsisLoc.isInvalid() &&
1147      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1148                                      UPPC_BaseType))
1149    return true;
1150
1151  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1152                                                      Virtual, Access, TInfo,
1153                                                      EllipsisLoc))
1154    return BaseSpec;
1155
1156  return true;
1157}
1158
1159/// \brief Performs the actual work of attaching the given base class
1160/// specifiers to a C++ class.
1161bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1162                                unsigned NumBases) {
1163 if (NumBases == 0)
1164    return false;
1165
1166  // Used to keep track of which base types we have already seen, so
1167  // that we can properly diagnose redundant direct base types. Note
1168  // that the key is always the unqualified canonical type of the base
1169  // class.
1170  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1171
1172  // Copy non-redundant base specifiers into permanent storage.
1173  unsigned NumGoodBases = 0;
1174  bool Invalid = false;
1175  for (unsigned idx = 0; idx < NumBases; ++idx) {
1176    QualType NewBaseType
1177      = Context.getCanonicalType(Bases[idx]->getType());
1178    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1179    if (KnownBaseTypes[NewBaseType]) {
1180      // C++ [class.mi]p3:
1181      //   A class shall not be specified as a direct base class of a
1182      //   derived class more than once.
1183      Diag(Bases[idx]->getSourceRange().getBegin(),
1184           diag::err_duplicate_base_class)
1185        << KnownBaseTypes[NewBaseType]->getType()
1186        << Bases[idx]->getSourceRange();
1187
1188      // Delete the duplicate base class specifier; we're going to
1189      // overwrite its pointer later.
1190      Context.Deallocate(Bases[idx]);
1191
1192      Invalid = true;
1193    } else {
1194      // Okay, add this new base class.
1195      KnownBaseTypes[NewBaseType] = Bases[idx];
1196      Bases[NumGoodBases++] = Bases[idx];
1197      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1198        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1199          if (RD->hasAttr<WeakAttr>())
1200            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1201    }
1202  }
1203
1204  // Attach the remaining base class specifiers to the derived class.
1205  Class->setBases(Bases, NumGoodBases);
1206
1207  // Delete the remaining (good) base class specifiers, since their
1208  // data has been copied into the CXXRecordDecl.
1209  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1210    Context.Deallocate(Bases[idx]);
1211
1212  return Invalid;
1213}
1214
1215/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1216/// class, after checking whether there are any duplicate base
1217/// classes.
1218void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1219                               unsigned NumBases) {
1220  if (!ClassDecl || !Bases || !NumBases)
1221    return;
1222
1223  AdjustDeclIfTemplate(ClassDecl);
1224  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1225                       (CXXBaseSpecifier**)(Bases), NumBases);
1226}
1227
1228static CXXRecordDecl *GetClassForType(QualType T) {
1229  if (const RecordType *RT = T->getAs<RecordType>())
1230    return cast<CXXRecordDecl>(RT->getDecl());
1231  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1232    return ICT->getDecl();
1233  else
1234    return 0;
1235}
1236
1237/// \brief Determine whether the type \p Derived is a C++ class that is
1238/// derived from the type \p Base.
1239bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1240  if (!getLangOptions().CPlusPlus)
1241    return false;
1242
1243  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1244  if (!DerivedRD)
1245    return false;
1246
1247  CXXRecordDecl *BaseRD = GetClassForType(Base);
1248  if (!BaseRD)
1249    return false;
1250
1251  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1252  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1253}
1254
1255/// \brief Determine whether the type \p Derived is a C++ class that is
1256/// derived from the type \p Base.
1257bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1258  if (!getLangOptions().CPlusPlus)
1259    return false;
1260
1261  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1262  if (!DerivedRD)
1263    return false;
1264
1265  CXXRecordDecl *BaseRD = GetClassForType(Base);
1266  if (!BaseRD)
1267    return false;
1268
1269  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1270}
1271
1272void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1273                              CXXCastPath &BasePathArray) {
1274  assert(BasePathArray.empty() && "Base path array must be empty!");
1275  assert(Paths.isRecordingPaths() && "Must record paths!");
1276
1277  const CXXBasePath &Path = Paths.front();
1278
1279  // We first go backward and check if we have a virtual base.
1280  // FIXME: It would be better if CXXBasePath had the base specifier for
1281  // the nearest virtual base.
1282  unsigned Start = 0;
1283  for (unsigned I = Path.size(); I != 0; --I) {
1284    if (Path[I - 1].Base->isVirtual()) {
1285      Start = I - 1;
1286      break;
1287    }
1288  }
1289
1290  // Now add all bases.
1291  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1292    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1293}
1294
1295/// \brief Determine whether the given base path includes a virtual
1296/// base class.
1297bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1298  for (CXXCastPath::const_iterator B = BasePath.begin(),
1299                                BEnd = BasePath.end();
1300       B != BEnd; ++B)
1301    if ((*B)->isVirtual())
1302      return true;
1303
1304  return false;
1305}
1306
1307/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1308/// conversion (where Derived and Base are class types) is
1309/// well-formed, meaning that the conversion is unambiguous (and
1310/// that all of the base classes are accessible). Returns true
1311/// and emits a diagnostic if the code is ill-formed, returns false
1312/// otherwise. Loc is the location where this routine should point to
1313/// if there is an error, and Range is the source range to highlight
1314/// if there is an error.
1315bool
1316Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1317                                   unsigned InaccessibleBaseID,
1318                                   unsigned AmbigiousBaseConvID,
1319                                   SourceLocation Loc, SourceRange Range,
1320                                   DeclarationName Name,
1321                                   CXXCastPath *BasePath) {
1322  // First, determine whether the path from Derived to Base is
1323  // ambiguous. This is slightly more expensive than checking whether
1324  // the Derived to Base conversion exists, because here we need to
1325  // explore multiple paths to determine if there is an ambiguity.
1326  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1327                     /*DetectVirtual=*/false);
1328  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1329  assert(DerivationOkay &&
1330         "Can only be used with a derived-to-base conversion");
1331  (void)DerivationOkay;
1332
1333  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1334    if (InaccessibleBaseID) {
1335      // Check that the base class can be accessed.
1336      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1337                                   InaccessibleBaseID)) {
1338        case AR_inaccessible:
1339          return true;
1340        case AR_accessible:
1341        case AR_dependent:
1342        case AR_delayed:
1343          break;
1344      }
1345    }
1346
1347    // Build a base path if necessary.
1348    if (BasePath)
1349      BuildBasePathArray(Paths, *BasePath);
1350    return false;
1351  }
1352
1353  // We know that the derived-to-base conversion is ambiguous, and
1354  // we're going to produce a diagnostic. Perform the derived-to-base
1355  // search just one more time to compute all of the possible paths so
1356  // that we can print them out. This is more expensive than any of
1357  // the previous derived-to-base checks we've done, but at this point
1358  // performance isn't as much of an issue.
1359  Paths.clear();
1360  Paths.setRecordingPaths(true);
1361  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1362  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1363  (void)StillOkay;
1364
1365  // Build up a textual representation of the ambiguous paths, e.g.,
1366  // D -> B -> A, that will be used to illustrate the ambiguous
1367  // conversions in the diagnostic. We only print one of the paths
1368  // to each base class subobject.
1369  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1370
1371  Diag(Loc, AmbigiousBaseConvID)
1372  << Derived << Base << PathDisplayStr << Range << Name;
1373  return true;
1374}
1375
1376bool
1377Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1378                                   SourceLocation Loc, SourceRange Range,
1379                                   CXXCastPath *BasePath,
1380                                   bool IgnoreAccess) {
1381  return CheckDerivedToBaseConversion(Derived, Base,
1382                                      IgnoreAccess ? 0
1383                                       : diag::err_upcast_to_inaccessible_base,
1384                                      diag::err_ambiguous_derived_to_base_conv,
1385                                      Loc, Range, DeclarationName(),
1386                                      BasePath);
1387}
1388
1389
1390/// @brief Builds a string representing ambiguous paths from a
1391/// specific derived class to different subobjects of the same base
1392/// class.
1393///
1394/// This function builds a string that can be used in error messages
1395/// to show the different paths that one can take through the
1396/// inheritance hierarchy to go from the derived class to different
1397/// subobjects of a base class. The result looks something like this:
1398/// @code
1399/// struct D -> struct B -> struct A
1400/// struct D -> struct C -> struct A
1401/// @endcode
1402std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1403  std::string PathDisplayStr;
1404  std::set<unsigned> DisplayedPaths;
1405  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1406       Path != Paths.end(); ++Path) {
1407    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1408      // We haven't displayed a path to this particular base
1409      // class subobject yet.
1410      PathDisplayStr += "\n    ";
1411      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1412      for (CXXBasePath::const_iterator Element = Path->begin();
1413           Element != Path->end(); ++Element)
1414        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1415    }
1416  }
1417
1418  return PathDisplayStr;
1419}
1420
1421//===----------------------------------------------------------------------===//
1422// C++ class member Handling
1423//===----------------------------------------------------------------------===//
1424
1425/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1426bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1427                                SourceLocation ASLoc,
1428                                SourceLocation ColonLoc,
1429                                AttributeList *Attrs) {
1430  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1431  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1432                                                  ASLoc, ColonLoc);
1433  CurContext->addHiddenDecl(ASDecl);
1434  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1435}
1436
1437/// CheckOverrideControl - Check C++0x override control semantics.
1438void Sema::CheckOverrideControl(const Decl *D) {
1439  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1440  if (!MD || !MD->isVirtual())
1441    return;
1442
1443  if (MD->isDependentContext())
1444    return;
1445
1446  // C++0x [class.virtual]p3:
1447  //   If a virtual function is marked with the virt-specifier override and does
1448  //   not override a member function of a base class,
1449  //   the program is ill-formed.
1450  bool HasOverriddenMethods =
1451    MD->begin_overridden_methods() != MD->end_overridden_methods();
1452  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1453    Diag(MD->getLocation(),
1454                 diag::err_function_marked_override_not_overriding)
1455      << MD->getDeclName();
1456    return;
1457  }
1458}
1459
1460/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1461/// function overrides a virtual member function marked 'final', according to
1462/// C++0x [class.virtual]p3.
1463bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1464                                                  const CXXMethodDecl *Old) {
1465  if (!Old->hasAttr<FinalAttr>())
1466    return false;
1467
1468  Diag(New->getLocation(), diag::err_final_function_overridden)
1469    << New->getDeclName();
1470  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1471  return true;
1472}
1473
1474/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1475/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1476/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1477/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1478/// present but parsing it has been deferred.
1479Decl *
1480Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1481                               MultiTemplateParamsArg TemplateParameterLists,
1482                               Expr *BW, const VirtSpecifiers &VS,
1483                               bool HasDeferredInit) {
1484  const DeclSpec &DS = D.getDeclSpec();
1485  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1486  DeclarationName Name = NameInfo.getName();
1487  SourceLocation Loc = NameInfo.getLoc();
1488
1489  // For anonymous bitfields, the location should point to the type.
1490  if (Loc.isInvalid())
1491    Loc = D.getSourceRange().getBegin();
1492
1493  Expr *BitWidth = static_cast<Expr*>(BW);
1494
1495  assert(isa<CXXRecordDecl>(CurContext));
1496  assert(!DS.isFriendSpecified());
1497
1498  bool isFunc = D.isDeclarationOfFunction();
1499
1500  // C++ 9.2p6: A member shall not be declared to have automatic storage
1501  // duration (auto, register) or with the extern storage-class-specifier.
1502  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1503  // data members and cannot be applied to names declared const or static,
1504  // and cannot be applied to reference members.
1505  switch (DS.getStorageClassSpec()) {
1506    case DeclSpec::SCS_unspecified:
1507    case DeclSpec::SCS_typedef:
1508    case DeclSpec::SCS_static:
1509      // FALL THROUGH.
1510      break;
1511    case DeclSpec::SCS_mutable:
1512      if (isFunc) {
1513        if (DS.getStorageClassSpecLoc().isValid())
1514          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1515        else
1516          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1517
1518        // FIXME: It would be nicer if the keyword was ignored only for this
1519        // declarator. Otherwise we could get follow-up errors.
1520        D.getMutableDeclSpec().ClearStorageClassSpecs();
1521      }
1522      break;
1523    default:
1524      if (DS.getStorageClassSpecLoc().isValid())
1525        Diag(DS.getStorageClassSpecLoc(),
1526             diag::err_storageclass_invalid_for_member);
1527      else
1528        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1529      D.getMutableDeclSpec().ClearStorageClassSpecs();
1530  }
1531
1532  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1533                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1534                      !isFunc);
1535
1536  Decl *Member;
1537  if (isInstField) {
1538    CXXScopeSpec &SS = D.getCXXScopeSpec();
1539
1540    // Data members must have identifiers for names.
1541    if (Name.getNameKind() != DeclarationName::Identifier) {
1542      Diag(Loc, diag::err_bad_variable_name)
1543        << Name;
1544      return 0;
1545    }
1546
1547    IdentifierInfo *II = Name.getAsIdentifierInfo();
1548
1549    // Member field could not be with "template" keyword.
1550    // So TemplateParameterLists should be empty in this case.
1551    if (TemplateParameterLists.size()) {
1552      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1553      if (TemplateParams->size()) {
1554        // There is no such thing as a member field template.
1555        Diag(D.getIdentifierLoc(), diag::err_template_member)
1556            << II
1557            << SourceRange(TemplateParams->getTemplateLoc(),
1558                TemplateParams->getRAngleLoc());
1559      } else {
1560        // There is an extraneous 'template<>' for this member.
1561        Diag(TemplateParams->getTemplateLoc(),
1562            diag::err_template_member_noparams)
1563            << II
1564            << SourceRange(TemplateParams->getTemplateLoc(),
1565                TemplateParams->getRAngleLoc());
1566      }
1567      return 0;
1568    }
1569
1570    if (SS.isSet() && !SS.isInvalid()) {
1571      // The user provided a superfluous scope specifier inside a class
1572      // definition:
1573      //
1574      // class X {
1575      //   int X::member;
1576      // };
1577      DeclContext *DC = 0;
1578      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1579        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1580          << Name << FixItHint::CreateRemoval(SS.getRange());
1581      else
1582        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1583          << Name << SS.getRange();
1584
1585      SS.clear();
1586    }
1587
1588    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1589                         HasDeferredInit, AS);
1590    assert(Member && "HandleField never returns null");
1591  } else {
1592    assert(!HasDeferredInit);
1593
1594    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1595    if (!Member) {
1596      return 0;
1597    }
1598
1599    // Non-instance-fields can't have a bitfield.
1600    if (BitWidth) {
1601      if (Member->isInvalidDecl()) {
1602        // don't emit another diagnostic.
1603      } else if (isa<VarDecl>(Member)) {
1604        // C++ 9.6p3: A bit-field shall not be a static member.
1605        // "static member 'A' cannot be a bit-field"
1606        Diag(Loc, diag::err_static_not_bitfield)
1607          << Name << BitWidth->getSourceRange();
1608      } else if (isa<TypedefDecl>(Member)) {
1609        // "typedef member 'x' cannot be a bit-field"
1610        Diag(Loc, diag::err_typedef_not_bitfield)
1611          << Name << BitWidth->getSourceRange();
1612      } else {
1613        // A function typedef ("typedef int f(); f a;").
1614        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1615        Diag(Loc, diag::err_not_integral_type_bitfield)
1616          << Name << cast<ValueDecl>(Member)->getType()
1617          << BitWidth->getSourceRange();
1618      }
1619
1620      BitWidth = 0;
1621      Member->setInvalidDecl();
1622    }
1623
1624    Member->setAccess(AS);
1625
1626    // If we have declared a member function template, set the access of the
1627    // templated declaration as well.
1628    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1629      FunTmpl->getTemplatedDecl()->setAccess(AS);
1630  }
1631
1632  if (VS.isOverrideSpecified()) {
1633    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1634    if (!MD || !MD->isVirtual()) {
1635      Diag(Member->getLocStart(),
1636           diag::override_keyword_only_allowed_on_virtual_member_functions)
1637        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1638    } else
1639      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1640  }
1641  if (VS.isFinalSpecified()) {
1642    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1643    if (!MD || !MD->isVirtual()) {
1644      Diag(Member->getLocStart(),
1645           diag::override_keyword_only_allowed_on_virtual_member_functions)
1646      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1647    } else
1648      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1649  }
1650
1651  if (VS.getLastLocation().isValid()) {
1652    // Update the end location of a method that has a virt-specifiers.
1653    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1654      MD->setRangeEnd(VS.getLastLocation());
1655  }
1656
1657  CheckOverrideControl(Member);
1658
1659  assert((Name || isInstField) && "No identifier for non-field ?");
1660
1661  if (isInstField)
1662    FieldCollector->Add(cast<FieldDecl>(Member));
1663  return Member;
1664}
1665
1666/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1667/// in-class initializer for a non-static C++ class member, and after
1668/// instantiating an in-class initializer in a class template. Such actions
1669/// are deferred until the class is complete.
1670void
1671Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1672                                       Expr *InitExpr) {
1673  FieldDecl *FD = cast<FieldDecl>(D);
1674
1675  if (!InitExpr) {
1676    FD->setInvalidDecl();
1677    FD->removeInClassInitializer();
1678    return;
1679  }
1680
1681  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1682    FD->setInvalidDecl();
1683    FD->removeInClassInitializer();
1684    return;
1685  }
1686
1687  ExprResult Init = InitExpr;
1688  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1689    // FIXME: if there is no EqualLoc, this is list-initialization.
1690    Init = PerformCopyInitialization(
1691      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1692    if (Init.isInvalid()) {
1693      FD->setInvalidDecl();
1694      return;
1695    }
1696
1697    CheckImplicitConversions(Init.get(), EqualLoc);
1698  }
1699
1700  // C++0x [class.base.init]p7:
1701  //   The initialization of each base and member constitutes a
1702  //   full-expression.
1703  Init = MaybeCreateExprWithCleanups(Init);
1704  if (Init.isInvalid()) {
1705    FD->setInvalidDecl();
1706    return;
1707  }
1708
1709  InitExpr = Init.release();
1710
1711  FD->setInClassInitializer(InitExpr);
1712}
1713
1714/// \brief Find the direct and/or virtual base specifiers that
1715/// correspond to the given base type, for use in base initialization
1716/// within a constructor.
1717static bool FindBaseInitializer(Sema &SemaRef,
1718                                CXXRecordDecl *ClassDecl,
1719                                QualType BaseType,
1720                                const CXXBaseSpecifier *&DirectBaseSpec,
1721                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1722  // First, check for a direct base class.
1723  DirectBaseSpec = 0;
1724  for (CXXRecordDecl::base_class_const_iterator Base
1725         = ClassDecl->bases_begin();
1726       Base != ClassDecl->bases_end(); ++Base) {
1727    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1728      // We found a direct base of this type. That's what we're
1729      // initializing.
1730      DirectBaseSpec = &*Base;
1731      break;
1732    }
1733  }
1734
1735  // Check for a virtual base class.
1736  // FIXME: We might be able to short-circuit this if we know in advance that
1737  // there are no virtual bases.
1738  VirtualBaseSpec = 0;
1739  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1740    // We haven't found a base yet; search the class hierarchy for a
1741    // virtual base class.
1742    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1743                       /*DetectVirtual=*/false);
1744    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1745                              BaseType, Paths)) {
1746      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1747           Path != Paths.end(); ++Path) {
1748        if (Path->back().Base->isVirtual()) {
1749          VirtualBaseSpec = Path->back().Base;
1750          break;
1751        }
1752      }
1753    }
1754  }
1755
1756  return DirectBaseSpec || VirtualBaseSpec;
1757}
1758
1759/// \brief Handle a C++ member initializer using braced-init-list syntax.
1760MemInitResult
1761Sema::ActOnMemInitializer(Decl *ConstructorD,
1762                          Scope *S,
1763                          CXXScopeSpec &SS,
1764                          IdentifierInfo *MemberOrBase,
1765                          ParsedType TemplateTypeTy,
1766                          const DeclSpec &DS,
1767                          SourceLocation IdLoc,
1768                          Expr *InitList,
1769                          SourceLocation EllipsisLoc) {
1770  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1771                             DS, IdLoc, InitList,
1772                             EllipsisLoc);
1773}
1774
1775/// \brief Handle a C++ member initializer using parentheses syntax.
1776MemInitResult
1777Sema::ActOnMemInitializer(Decl *ConstructorD,
1778                          Scope *S,
1779                          CXXScopeSpec &SS,
1780                          IdentifierInfo *MemberOrBase,
1781                          ParsedType TemplateTypeTy,
1782                          const DeclSpec &DS,
1783                          SourceLocation IdLoc,
1784                          SourceLocation LParenLoc,
1785                          Expr **Args, unsigned NumArgs,
1786                          SourceLocation RParenLoc,
1787                          SourceLocation EllipsisLoc) {
1788  Expr *List = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1789                                           RParenLoc);
1790  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1791                             DS, IdLoc, List, EllipsisLoc);
1792}
1793
1794namespace {
1795
1796// Callback to only accept typo corrections that can be a valid C++ member
1797// intializer: either a non-static field member or a base class.
1798class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1799 public:
1800  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1801      : ClassDecl(ClassDecl) {}
1802
1803  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1804    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1805      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1806        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1807      else
1808        return isa<TypeDecl>(ND);
1809    }
1810    return false;
1811  }
1812
1813 private:
1814  CXXRecordDecl *ClassDecl;
1815};
1816
1817}
1818
1819/// \brief Handle a C++ member initializer.
1820MemInitResult
1821Sema::BuildMemInitializer(Decl *ConstructorD,
1822                          Scope *S,
1823                          CXXScopeSpec &SS,
1824                          IdentifierInfo *MemberOrBase,
1825                          ParsedType TemplateTypeTy,
1826                          const DeclSpec &DS,
1827                          SourceLocation IdLoc,
1828                          Expr *Init,
1829                          SourceLocation EllipsisLoc) {
1830  if (!ConstructorD)
1831    return true;
1832
1833  AdjustDeclIfTemplate(ConstructorD);
1834
1835  CXXConstructorDecl *Constructor
1836    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1837  if (!Constructor) {
1838    // The user wrote a constructor initializer on a function that is
1839    // not a C++ constructor. Ignore the error for now, because we may
1840    // have more member initializers coming; we'll diagnose it just
1841    // once in ActOnMemInitializers.
1842    return true;
1843  }
1844
1845  CXXRecordDecl *ClassDecl = Constructor->getParent();
1846
1847  // C++ [class.base.init]p2:
1848  //   Names in a mem-initializer-id are looked up in the scope of the
1849  //   constructor's class and, if not found in that scope, are looked
1850  //   up in the scope containing the constructor's definition.
1851  //   [Note: if the constructor's class contains a member with the
1852  //   same name as a direct or virtual base class of the class, a
1853  //   mem-initializer-id naming the member or base class and composed
1854  //   of a single identifier refers to the class member. A
1855  //   mem-initializer-id for the hidden base class may be specified
1856  //   using a qualified name. ]
1857  if (!SS.getScopeRep() && !TemplateTypeTy) {
1858    // Look for a member, first.
1859    DeclContext::lookup_result Result
1860      = ClassDecl->lookup(MemberOrBase);
1861    if (Result.first != Result.second) {
1862      ValueDecl *Member;
1863      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1864          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1865        if (EllipsisLoc.isValid())
1866          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1867            << MemberOrBase
1868            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1869
1870        return BuildMemberInitializer(Member, Init, IdLoc);
1871      }
1872    }
1873  }
1874  // It didn't name a member, so see if it names a class.
1875  QualType BaseType;
1876  TypeSourceInfo *TInfo = 0;
1877
1878  if (TemplateTypeTy) {
1879    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1880  } else if (DS.getTypeSpecType() == TST_decltype) {
1881    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1882  } else {
1883    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1884    LookupParsedName(R, S, &SS);
1885
1886    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1887    if (!TyD) {
1888      if (R.isAmbiguous()) return true;
1889
1890      // We don't want access-control diagnostics here.
1891      R.suppressDiagnostics();
1892
1893      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1894        bool NotUnknownSpecialization = false;
1895        DeclContext *DC = computeDeclContext(SS, false);
1896        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1897          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1898
1899        if (!NotUnknownSpecialization) {
1900          // When the scope specifier can refer to a member of an unknown
1901          // specialization, we take it as a type name.
1902          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1903                                       SS.getWithLocInContext(Context),
1904                                       *MemberOrBase, IdLoc);
1905          if (BaseType.isNull())
1906            return true;
1907
1908          R.clear();
1909          R.setLookupName(MemberOrBase);
1910        }
1911      }
1912
1913      // If no results were found, try to correct typos.
1914      TypoCorrection Corr;
1915      MemInitializerValidatorCCC Validator(ClassDecl);
1916      if (R.empty() && BaseType.isNull() &&
1917          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1918                              Validator, ClassDecl))) {
1919        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1920        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1921        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1922          // We have found a non-static data member with a similar
1923          // name to what was typed; complain and initialize that
1924          // member.
1925          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1926            << MemberOrBase << true << CorrectedQuotedStr
1927            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1928          Diag(Member->getLocation(), diag::note_previous_decl)
1929            << CorrectedQuotedStr;
1930
1931          return BuildMemberInitializer(Member, Init, IdLoc);
1932        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1933          const CXXBaseSpecifier *DirectBaseSpec;
1934          const CXXBaseSpecifier *VirtualBaseSpec;
1935          if (FindBaseInitializer(*this, ClassDecl,
1936                                  Context.getTypeDeclType(Type),
1937                                  DirectBaseSpec, VirtualBaseSpec)) {
1938            // We have found a direct or virtual base class with a
1939            // similar name to what was typed; complain and initialize
1940            // that base class.
1941            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1942              << MemberOrBase << false << CorrectedQuotedStr
1943              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1944
1945            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1946                                                             : VirtualBaseSpec;
1947            Diag(BaseSpec->getSourceRange().getBegin(),
1948                 diag::note_base_class_specified_here)
1949              << BaseSpec->getType()
1950              << BaseSpec->getSourceRange();
1951
1952            TyD = Type;
1953          }
1954        }
1955      }
1956
1957      if (!TyD && BaseType.isNull()) {
1958        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1959          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1960        return true;
1961      }
1962    }
1963
1964    if (BaseType.isNull()) {
1965      BaseType = Context.getTypeDeclType(TyD);
1966      if (SS.isSet()) {
1967        NestedNameSpecifier *Qualifier =
1968          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1969
1970        // FIXME: preserve source range information
1971        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1972      }
1973    }
1974  }
1975
1976  if (!TInfo)
1977    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1978
1979  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
1980}
1981
1982/// Checks a member initializer expression for cases where reference (or
1983/// pointer) members are bound to by-value parameters (or their addresses).
1984static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1985                                               Expr *Init,
1986                                               SourceLocation IdLoc) {
1987  QualType MemberTy = Member->getType();
1988
1989  // We only handle pointers and references currently.
1990  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1991  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1992    return;
1993
1994  const bool IsPointer = MemberTy->isPointerType();
1995  if (IsPointer) {
1996    if (const UnaryOperator *Op
1997          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1998      // The only case we're worried about with pointers requires taking the
1999      // address.
2000      if (Op->getOpcode() != UO_AddrOf)
2001        return;
2002
2003      Init = Op->getSubExpr();
2004    } else {
2005      // We only handle address-of expression initializers for pointers.
2006      return;
2007    }
2008  }
2009
2010  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2011    // Taking the address of a temporary will be diagnosed as a hard error.
2012    if (IsPointer)
2013      return;
2014
2015    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2016      << Member << Init->getSourceRange();
2017  } else if (const DeclRefExpr *DRE
2018               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2019    // We only warn when referring to a non-reference parameter declaration.
2020    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2021    if (!Parameter || Parameter->getType()->isReferenceType())
2022      return;
2023
2024    S.Diag(Init->getExprLoc(),
2025           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2026                     : diag::warn_bind_ref_member_to_parameter)
2027      << Member << Parameter << Init->getSourceRange();
2028  } else {
2029    // Other initializers are fine.
2030    return;
2031  }
2032
2033  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2034    << (unsigned)IsPointer;
2035}
2036
2037/// Checks an initializer expression for use of uninitialized fields, such as
2038/// containing the field that is being initialized. Returns true if there is an
2039/// uninitialized field was used an updates the SourceLocation parameter; false
2040/// otherwise.
2041static bool InitExprContainsUninitializedFields(const Stmt *S,
2042                                                const ValueDecl *LhsField,
2043                                                SourceLocation *L) {
2044  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2045
2046  if (isa<CallExpr>(S)) {
2047    // Do not descend into function calls or constructors, as the use
2048    // of an uninitialized field may be valid. One would have to inspect
2049    // the contents of the function/ctor to determine if it is safe or not.
2050    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2051    // may be safe, depending on what the function/ctor does.
2052    return false;
2053  }
2054  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2055    const NamedDecl *RhsField = ME->getMemberDecl();
2056
2057    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2058      // The member expression points to a static data member.
2059      assert(VD->isStaticDataMember() &&
2060             "Member points to non-static data member!");
2061      (void)VD;
2062      return false;
2063    }
2064
2065    if (isa<EnumConstantDecl>(RhsField)) {
2066      // The member expression points to an enum.
2067      return false;
2068    }
2069
2070    if (RhsField == LhsField) {
2071      // Initializing a field with itself. Throw a warning.
2072      // But wait; there are exceptions!
2073      // Exception #1:  The field may not belong to this record.
2074      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2075      const Expr *base = ME->getBase();
2076      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2077        // Even though the field matches, it does not belong to this record.
2078        return false;
2079      }
2080      // None of the exceptions triggered; return true to indicate an
2081      // uninitialized field was used.
2082      *L = ME->getMemberLoc();
2083      return true;
2084    }
2085  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2086    // sizeof/alignof doesn't reference contents, do not warn.
2087    return false;
2088  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2089    // address-of doesn't reference contents (the pointer may be dereferenced
2090    // in the same expression but it would be rare; and weird).
2091    if (UOE->getOpcode() == UO_AddrOf)
2092      return false;
2093  }
2094  for (Stmt::const_child_range it = S->children(); it; ++it) {
2095    if (!*it) {
2096      // An expression such as 'member(arg ?: "")' may trigger this.
2097      continue;
2098    }
2099    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2100      return true;
2101  }
2102  return false;
2103}
2104
2105MemInitResult
2106Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2107                             SourceLocation IdLoc) {
2108  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2109  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2110  assert((DirectMember || IndirectMember) &&
2111         "Member must be a FieldDecl or IndirectFieldDecl");
2112
2113  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2114    return true;
2115
2116  if (Member->isInvalidDecl())
2117    return true;
2118
2119  // Diagnose value-uses of fields to initialize themselves, e.g.
2120  //   foo(foo)
2121  // where foo is not also a parameter to the constructor.
2122  // TODO: implement -Wuninitialized and fold this into that framework.
2123  Expr **Args;
2124  unsigned NumArgs;
2125  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2126    Args = ParenList->getExprs();
2127    NumArgs = ParenList->getNumExprs();
2128  } else {
2129    InitListExpr *InitList = cast<InitListExpr>(Init);
2130    Args = InitList->getInits();
2131    NumArgs = InitList->getNumInits();
2132  }
2133  for (unsigned i = 0; i < NumArgs; ++i) {
2134    SourceLocation L;
2135    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
2136      // FIXME: Return true in the case when other fields are used before being
2137      // uninitialized. For example, let this field be the i'th field. When
2138      // initializing the i'th field, throw a warning if any of the >= i'th
2139      // fields are used, as they are not yet initialized.
2140      // Right now we are only handling the case where the i'th field uses
2141      // itself in its initializer.
2142      Diag(L, diag::warn_field_is_uninit);
2143    }
2144  }
2145
2146  SourceRange InitRange = Init->getSourceRange();
2147
2148  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2149    // Can't check initialization for a member of dependent type or when
2150    // any of the arguments are type-dependent expressions.
2151    DiscardCleanupsInEvaluationContext();
2152  } else {
2153    bool InitList = false;
2154    if (isa<InitListExpr>(Init)) {
2155      InitList = true;
2156      Args = &Init;
2157      NumArgs = 1;
2158    }
2159
2160    // Initialize the member.
2161    InitializedEntity MemberEntity =
2162      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2163                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2164    InitializationKind Kind =
2165      InitList ? InitializationKind::CreateDirectList(IdLoc)
2166               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2167                                                  InitRange.getEnd());
2168
2169    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2170    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2171                                            MultiExprArg(*this, Args, NumArgs),
2172                                            0);
2173    if (MemberInit.isInvalid())
2174      return true;
2175
2176    CheckImplicitConversions(MemberInit.get(),
2177                             InitRange.getBegin());
2178
2179    // C++0x [class.base.init]p7:
2180    //   The initialization of each base and member constitutes a
2181    //   full-expression.
2182    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2183    if (MemberInit.isInvalid())
2184      return true;
2185
2186    // If we are in a dependent context, template instantiation will
2187    // perform this type-checking again. Just save the arguments that we
2188    // received.
2189    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2190    // of the information that we have about the member
2191    // initializer. However, deconstructing the ASTs is a dicey process,
2192    // and this approach is far more likely to get the corner cases right.
2193    if (CurContext->isDependentContext()) {
2194      // The existing Init will do fine.
2195    } else {
2196      Init = MemberInit.get();
2197      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2198    }
2199  }
2200
2201  if (DirectMember) {
2202    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2203                                            InitRange.getBegin(), Init,
2204                                            InitRange.getEnd());
2205  } else {
2206    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2207                                            InitRange.getBegin(), Init,
2208                                            InitRange.getEnd());
2209  }
2210}
2211
2212MemInitResult
2213Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2214                                 CXXRecordDecl *ClassDecl) {
2215  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2216  if (!LangOpts.CPlusPlus0x)
2217    return Diag(NameLoc, diag::err_delegating_ctor)
2218      << TInfo->getTypeLoc().getLocalSourceRange();
2219  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2220
2221  bool InitList = true;
2222  Expr **Args = &Init;
2223  unsigned NumArgs = 1;
2224  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2225    InitList = false;
2226    Args = ParenList->getExprs();
2227    NumArgs = ParenList->getNumExprs();
2228  }
2229
2230  SourceRange InitRange = Init->getSourceRange();
2231  // Initialize the object.
2232  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2233                                     QualType(ClassDecl->getTypeForDecl(), 0));
2234  InitializationKind Kind =
2235    InitList ? InitializationKind::CreateDirectList(NameLoc)
2236             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2237                                                InitRange.getEnd());
2238  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2239  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2240                                              MultiExprArg(*this, Args,NumArgs),
2241                                              0);
2242  if (DelegationInit.isInvalid())
2243    return true;
2244
2245  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2246         "Delegating constructor with no target?");
2247
2248  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2249
2250  // C++0x [class.base.init]p7:
2251  //   The initialization of each base and member constitutes a
2252  //   full-expression.
2253  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2254  if (DelegationInit.isInvalid())
2255    return true;
2256
2257  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2258                                          DelegationInit.takeAs<Expr>(),
2259                                          InitRange.getEnd());
2260}
2261
2262MemInitResult
2263Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2264                           Expr *Init, CXXRecordDecl *ClassDecl,
2265                           SourceLocation EllipsisLoc) {
2266  SourceLocation BaseLoc
2267    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2268
2269  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2270    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2271             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2272
2273  // C++ [class.base.init]p2:
2274  //   [...] Unless the mem-initializer-id names a nonstatic data
2275  //   member of the constructor's class or a direct or virtual base
2276  //   of that class, the mem-initializer is ill-formed. A
2277  //   mem-initializer-list can initialize a base class using any
2278  //   name that denotes that base class type.
2279  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2280
2281  SourceRange InitRange = Init->getSourceRange();
2282  if (EllipsisLoc.isValid()) {
2283    // This is a pack expansion.
2284    if (!BaseType->containsUnexpandedParameterPack())  {
2285      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2286        << SourceRange(BaseLoc, InitRange.getEnd());
2287
2288      EllipsisLoc = SourceLocation();
2289    }
2290  } else {
2291    // Check for any unexpanded parameter packs.
2292    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2293      return true;
2294
2295    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2296      return true;
2297  }
2298
2299  // Check for direct and virtual base classes.
2300  const CXXBaseSpecifier *DirectBaseSpec = 0;
2301  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2302  if (!Dependent) {
2303    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2304                                       BaseType))
2305      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2306
2307    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2308                        VirtualBaseSpec);
2309
2310    // C++ [base.class.init]p2:
2311    // Unless the mem-initializer-id names a nonstatic data member of the
2312    // constructor's class or a direct or virtual base of that class, the
2313    // mem-initializer is ill-formed.
2314    if (!DirectBaseSpec && !VirtualBaseSpec) {
2315      // If the class has any dependent bases, then it's possible that
2316      // one of those types will resolve to the same type as
2317      // BaseType. Therefore, just treat this as a dependent base
2318      // class initialization.  FIXME: Should we try to check the
2319      // initialization anyway? It seems odd.
2320      if (ClassDecl->hasAnyDependentBases())
2321        Dependent = true;
2322      else
2323        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2324          << BaseType << Context.getTypeDeclType(ClassDecl)
2325          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2326    }
2327  }
2328
2329  if (Dependent) {
2330    DiscardCleanupsInEvaluationContext();
2331
2332    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2333                                            /*IsVirtual=*/false,
2334                                            InitRange.getBegin(), Init,
2335                                            InitRange.getEnd(), EllipsisLoc);
2336  }
2337
2338  // C++ [base.class.init]p2:
2339  //   If a mem-initializer-id is ambiguous because it designates both
2340  //   a direct non-virtual base class and an inherited virtual base
2341  //   class, the mem-initializer is ill-formed.
2342  if (DirectBaseSpec && VirtualBaseSpec)
2343    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2344      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2345
2346  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2347  if (!BaseSpec)
2348    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2349
2350  // Initialize the base.
2351  bool InitList = true;
2352  Expr **Args = &Init;
2353  unsigned NumArgs = 1;
2354  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2355    InitList = false;
2356    Args = ParenList->getExprs();
2357    NumArgs = ParenList->getNumExprs();
2358  }
2359
2360  InitializedEntity BaseEntity =
2361    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2362  InitializationKind Kind =
2363    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2364             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2365                                                InitRange.getEnd());
2366  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2367  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2368                                          MultiExprArg(*this, Args, NumArgs),
2369                                          0);
2370  if (BaseInit.isInvalid())
2371    return true;
2372
2373  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2374
2375  // C++0x [class.base.init]p7:
2376  //   The initialization of each base and member constitutes a
2377  //   full-expression.
2378  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2379  if (BaseInit.isInvalid())
2380    return true;
2381
2382  // If we are in a dependent context, template instantiation will
2383  // perform this type-checking again. Just save the arguments that we
2384  // received in a ParenListExpr.
2385  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2386  // of the information that we have about the base
2387  // initializer. However, deconstructing the ASTs is a dicey process,
2388  // and this approach is far more likely to get the corner cases right.
2389  if (CurContext->isDependentContext())
2390    BaseInit = Owned(Init);
2391
2392  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2393                                          BaseSpec->isVirtual(),
2394                                          InitRange.getBegin(),
2395                                          BaseInit.takeAs<Expr>(),
2396                                          InitRange.getEnd(), EllipsisLoc);
2397}
2398
2399// Create a static_cast\<T&&>(expr).
2400static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2401  QualType ExprType = E->getType();
2402  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2403  SourceLocation ExprLoc = E->getLocStart();
2404  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2405      TargetType, ExprLoc);
2406
2407  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2408                                   SourceRange(ExprLoc, ExprLoc),
2409                                   E->getSourceRange()).take();
2410}
2411
2412/// ImplicitInitializerKind - How an implicit base or member initializer should
2413/// initialize its base or member.
2414enum ImplicitInitializerKind {
2415  IIK_Default,
2416  IIK_Copy,
2417  IIK_Move
2418};
2419
2420static bool
2421BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2422                             ImplicitInitializerKind ImplicitInitKind,
2423                             CXXBaseSpecifier *BaseSpec,
2424                             bool IsInheritedVirtualBase,
2425                             CXXCtorInitializer *&CXXBaseInit) {
2426  InitializedEntity InitEntity
2427    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2428                                        IsInheritedVirtualBase);
2429
2430  ExprResult BaseInit;
2431
2432  switch (ImplicitInitKind) {
2433  case IIK_Default: {
2434    InitializationKind InitKind
2435      = InitializationKind::CreateDefault(Constructor->getLocation());
2436    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2437    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2438                               MultiExprArg(SemaRef, 0, 0));
2439    break;
2440  }
2441
2442  case IIK_Move:
2443  case IIK_Copy: {
2444    bool Moving = ImplicitInitKind == IIK_Move;
2445    ParmVarDecl *Param = Constructor->getParamDecl(0);
2446    QualType ParamType = Param->getType().getNonReferenceType();
2447
2448    Expr *CopyCtorArg =
2449      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2450                          SourceLocation(), Param,
2451                          Constructor->getLocation(), ParamType,
2452                          VK_LValue, 0);
2453
2454    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2455
2456    // Cast to the base class to avoid ambiguities.
2457    QualType ArgTy =
2458      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2459                                       ParamType.getQualifiers());
2460
2461    if (Moving) {
2462      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2463    }
2464
2465    CXXCastPath BasePath;
2466    BasePath.push_back(BaseSpec);
2467    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2468                                            CK_UncheckedDerivedToBase,
2469                                            Moving ? VK_XValue : VK_LValue,
2470                                            &BasePath).take();
2471
2472    InitializationKind InitKind
2473      = InitializationKind::CreateDirect(Constructor->getLocation(),
2474                                         SourceLocation(), SourceLocation());
2475    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2476                                   &CopyCtorArg, 1);
2477    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2478                               MultiExprArg(&CopyCtorArg, 1));
2479    break;
2480  }
2481  }
2482
2483  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2484  if (BaseInit.isInvalid())
2485    return true;
2486
2487  CXXBaseInit =
2488    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2489               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2490                                                        SourceLocation()),
2491                                             BaseSpec->isVirtual(),
2492                                             SourceLocation(),
2493                                             BaseInit.takeAs<Expr>(),
2494                                             SourceLocation(),
2495                                             SourceLocation());
2496
2497  return false;
2498}
2499
2500static bool RefersToRValueRef(Expr *MemRef) {
2501  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2502  return Referenced->getType()->isRValueReferenceType();
2503}
2504
2505static bool
2506BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2507                               ImplicitInitializerKind ImplicitInitKind,
2508                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2509                               CXXCtorInitializer *&CXXMemberInit) {
2510  if (Field->isInvalidDecl())
2511    return true;
2512
2513  SourceLocation Loc = Constructor->getLocation();
2514
2515  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2516    bool Moving = ImplicitInitKind == IIK_Move;
2517    ParmVarDecl *Param = Constructor->getParamDecl(0);
2518    QualType ParamType = Param->getType().getNonReferenceType();
2519
2520    // Suppress copying zero-width bitfields.
2521    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2522      return false;
2523
2524    Expr *MemberExprBase =
2525      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2526                          SourceLocation(), Param,
2527                          Loc, ParamType, VK_LValue, 0);
2528
2529    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2530
2531    if (Moving) {
2532      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2533    }
2534
2535    // Build a reference to this field within the parameter.
2536    CXXScopeSpec SS;
2537    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2538                              Sema::LookupMemberName);
2539    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2540                                  : cast<ValueDecl>(Field), AS_public);
2541    MemberLookup.resolveKind();
2542    ExprResult CtorArg
2543      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2544                                         ParamType, Loc,
2545                                         /*IsArrow=*/false,
2546                                         SS,
2547                                         /*TemplateKWLoc=*/SourceLocation(),
2548                                         /*FirstQualifierInScope=*/0,
2549                                         MemberLookup,
2550                                         /*TemplateArgs=*/0);
2551    if (CtorArg.isInvalid())
2552      return true;
2553
2554    // C++11 [class.copy]p15:
2555    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2556    //     with static_cast<T&&>(x.m);
2557    if (RefersToRValueRef(CtorArg.get())) {
2558      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2559    }
2560
2561    // When the field we are copying is an array, create index variables for
2562    // each dimension of the array. We use these index variables to subscript
2563    // the source array, and other clients (e.g., CodeGen) will perform the
2564    // necessary iteration with these index variables.
2565    SmallVector<VarDecl *, 4> IndexVariables;
2566    QualType BaseType = Field->getType();
2567    QualType SizeType = SemaRef.Context.getSizeType();
2568    bool InitializingArray = false;
2569    while (const ConstantArrayType *Array
2570                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2571      InitializingArray = true;
2572      // Create the iteration variable for this array index.
2573      IdentifierInfo *IterationVarName = 0;
2574      {
2575        SmallString<8> Str;
2576        llvm::raw_svector_ostream OS(Str);
2577        OS << "__i" << IndexVariables.size();
2578        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2579      }
2580      VarDecl *IterationVar
2581        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2582                          IterationVarName, SizeType,
2583                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2584                          SC_None, SC_None);
2585      IndexVariables.push_back(IterationVar);
2586
2587      // Create a reference to the iteration variable.
2588      ExprResult IterationVarRef
2589        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2590      assert(!IterationVarRef.isInvalid() &&
2591             "Reference to invented variable cannot fail!");
2592      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2593      assert(!IterationVarRef.isInvalid() &&
2594             "Conversion of invented variable cannot fail!");
2595
2596      // Subscript the array with this iteration variable.
2597      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2598                                                        IterationVarRef.take(),
2599                                                        Loc);
2600      if (CtorArg.isInvalid())
2601        return true;
2602
2603      BaseType = Array->getElementType();
2604    }
2605
2606    // The array subscript expression is an lvalue, which is wrong for moving.
2607    if (Moving && InitializingArray)
2608      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2609
2610    // Construct the entity that we will be initializing. For an array, this
2611    // will be first element in the array, which may require several levels
2612    // of array-subscript entities.
2613    SmallVector<InitializedEntity, 4> Entities;
2614    Entities.reserve(1 + IndexVariables.size());
2615    if (Indirect)
2616      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2617    else
2618      Entities.push_back(InitializedEntity::InitializeMember(Field));
2619    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2620      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2621                                                              0,
2622                                                              Entities.back()));
2623
2624    // Direct-initialize to use the copy constructor.
2625    InitializationKind InitKind =
2626      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2627
2628    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2629    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2630                                   &CtorArgE, 1);
2631
2632    ExprResult MemberInit
2633      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2634                        MultiExprArg(&CtorArgE, 1));
2635    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2636    if (MemberInit.isInvalid())
2637      return true;
2638
2639    if (Indirect) {
2640      assert(IndexVariables.size() == 0 &&
2641             "Indirect field improperly initialized");
2642      CXXMemberInit
2643        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2644                                                   Loc, Loc,
2645                                                   MemberInit.takeAs<Expr>(),
2646                                                   Loc);
2647    } else
2648      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2649                                                 Loc, MemberInit.takeAs<Expr>(),
2650                                                 Loc,
2651                                                 IndexVariables.data(),
2652                                                 IndexVariables.size());
2653    return false;
2654  }
2655
2656  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2657
2658  QualType FieldBaseElementType =
2659    SemaRef.Context.getBaseElementType(Field->getType());
2660
2661  if (FieldBaseElementType->isRecordType()) {
2662    InitializedEntity InitEntity
2663      = Indirect? InitializedEntity::InitializeMember(Indirect)
2664                : InitializedEntity::InitializeMember(Field);
2665    InitializationKind InitKind =
2666      InitializationKind::CreateDefault(Loc);
2667
2668    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2669    ExprResult MemberInit =
2670      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2671
2672    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2673    if (MemberInit.isInvalid())
2674      return true;
2675
2676    if (Indirect)
2677      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2678                                                               Indirect, Loc,
2679                                                               Loc,
2680                                                               MemberInit.get(),
2681                                                               Loc);
2682    else
2683      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2684                                                               Field, Loc, Loc,
2685                                                               MemberInit.get(),
2686                                                               Loc);
2687    return false;
2688  }
2689
2690  if (!Field->getParent()->isUnion()) {
2691    if (FieldBaseElementType->isReferenceType()) {
2692      SemaRef.Diag(Constructor->getLocation(),
2693                   diag::err_uninitialized_member_in_ctor)
2694      << (int)Constructor->isImplicit()
2695      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2696      << 0 << Field->getDeclName();
2697      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2698      return true;
2699    }
2700
2701    if (FieldBaseElementType.isConstQualified()) {
2702      SemaRef.Diag(Constructor->getLocation(),
2703                   diag::err_uninitialized_member_in_ctor)
2704      << (int)Constructor->isImplicit()
2705      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2706      << 1 << Field->getDeclName();
2707      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2708      return true;
2709    }
2710  }
2711
2712  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2713      FieldBaseElementType->isObjCRetainableType() &&
2714      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2715      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2716    // Instant objects:
2717    //   Default-initialize Objective-C pointers to NULL.
2718    CXXMemberInit
2719      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2720                                                 Loc, Loc,
2721                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2722                                                 Loc);
2723    return false;
2724  }
2725
2726  // Nothing to initialize.
2727  CXXMemberInit = 0;
2728  return false;
2729}
2730
2731namespace {
2732struct BaseAndFieldInfo {
2733  Sema &S;
2734  CXXConstructorDecl *Ctor;
2735  bool AnyErrorsInInits;
2736  ImplicitInitializerKind IIK;
2737  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2738  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2739
2740  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2741    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2742    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2743    if (Generated && Ctor->isCopyConstructor())
2744      IIK = IIK_Copy;
2745    else if (Generated && Ctor->isMoveConstructor())
2746      IIK = IIK_Move;
2747    else
2748      IIK = IIK_Default;
2749  }
2750
2751  bool isImplicitCopyOrMove() const {
2752    switch (IIK) {
2753    case IIK_Copy:
2754    case IIK_Move:
2755      return true;
2756
2757    case IIK_Default:
2758      return false;
2759    }
2760
2761    llvm_unreachable("Invalid ImplicitInitializerKind!");
2762  }
2763};
2764}
2765
2766/// \brief Determine whether the given indirect field declaration is somewhere
2767/// within an anonymous union.
2768static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2769  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2770                                      CEnd = F->chain_end();
2771       C != CEnd; ++C)
2772    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2773      if (Record->isUnion())
2774        return true;
2775
2776  return false;
2777}
2778
2779/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2780/// array type.
2781static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2782  if (T->isIncompleteArrayType())
2783    return true;
2784
2785  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2786    if (!ArrayT->getSize())
2787      return true;
2788
2789    T = ArrayT->getElementType();
2790  }
2791
2792  return false;
2793}
2794
2795static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2796                                    FieldDecl *Field,
2797                                    IndirectFieldDecl *Indirect = 0) {
2798
2799  // Overwhelmingly common case: we have a direct initializer for this field.
2800  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2801    Info.AllToInit.push_back(Init);
2802    return false;
2803  }
2804
2805  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2806  // has a brace-or-equal-initializer, the entity is initialized as specified
2807  // in [dcl.init].
2808  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2809    CXXCtorInitializer *Init;
2810    if (Indirect)
2811      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2812                                                      SourceLocation(),
2813                                                      SourceLocation(), 0,
2814                                                      SourceLocation());
2815    else
2816      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2817                                                      SourceLocation(),
2818                                                      SourceLocation(), 0,
2819                                                      SourceLocation());
2820    Info.AllToInit.push_back(Init);
2821    return false;
2822  }
2823
2824  // Don't build an implicit initializer for union members if none was
2825  // explicitly specified.
2826  if (Field->getParent()->isUnion() ||
2827      (Indirect && isWithinAnonymousUnion(Indirect)))
2828    return false;
2829
2830  // Don't initialize incomplete or zero-length arrays.
2831  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2832    return false;
2833
2834  // Don't try to build an implicit initializer if there were semantic
2835  // errors in any of the initializers (and therefore we might be
2836  // missing some that the user actually wrote).
2837  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2838    return false;
2839
2840  CXXCtorInitializer *Init = 0;
2841  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2842                                     Indirect, Init))
2843    return true;
2844
2845  if (Init)
2846    Info.AllToInit.push_back(Init);
2847
2848  return false;
2849}
2850
2851bool
2852Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2853                               CXXCtorInitializer *Initializer) {
2854  assert(Initializer->isDelegatingInitializer());
2855  Constructor->setNumCtorInitializers(1);
2856  CXXCtorInitializer **initializer =
2857    new (Context) CXXCtorInitializer*[1];
2858  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2859  Constructor->setCtorInitializers(initializer);
2860
2861  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2862    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2863    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2864  }
2865
2866  DelegatingCtorDecls.push_back(Constructor);
2867
2868  return false;
2869}
2870
2871bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2872                               CXXCtorInitializer **Initializers,
2873                               unsigned NumInitializers,
2874                               bool AnyErrors) {
2875  if (Constructor->isDependentContext()) {
2876    // Just store the initializers as written, they will be checked during
2877    // instantiation.
2878    if (NumInitializers > 0) {
2879      Constructor->setNumCtorInitializers(NumInitializers);
2880      CXXCtorInitializer **baseOrMemberInitializers =
2881        new (Context) CXXCtorInitializer*[NumInitializers];
2882      memcpy(baseOrMemberInitializers, Initializers,
2883             NumInitializers * sizeof(CXXCtorInitializer*));
2884      Constructor->setCtorInitializers(baseOrMemberInitializers);
2885    }
2886
2887    return false;
2888  }
2889
2890  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2891
2892  // We need to build the initializer AST according to order of construction
2893  // and not what user specified in the Initializers list.
2894  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2895  if (!ClassDecl)
2896    return true;
2897
2898  bool HadError = false;
2899
2900  for (unsigned i = 0; i < NumInitializers; i++) {
2901    CXXCtorInitializer *Member = Initializers[i];
2902
2903    if (Member->isBaseInitializer())
2904      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2905    else
2906      Info.AllBaseFields[Member->getAnyMember()] = Member;
2907  }
2908
2909  // Keep track of the direct virtual bases.
2910  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2911  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2912       E = ClassDecl->bases_end(); I != E; ++I) {
2913    if (I->isVirtual())
2914      DirectVBases.insert(I);
2915  }
2916
2917  // Push virtual bases before others.
2918  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2919       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2920
2921    if (CXXCtorInitializer *Value
2922        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2923      Info.AllToInit.push_back(Value);
2924    } else if (!AnyErrors) {
2925      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2926      CXXCtorInitializer *CXXBaseInit;
2927      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2928                                       VBase, IsInheritedVirtualBase,
2929                                       CXXBaseInit)) {
2930        HadError = true;
2931        continue;
2932      }
2933
2934      Info.AllToInit.push_back(CXXBaseInit);
2935    }
2936  }
2937
2938  // Non-virtual bases.
2939  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2940       E = ClassDecl->bases_end(); Base != E; ++Base) {
2941    // Virtuals are in the virtual base list and already constructed.
2942    if (Base->isVirtual())
2943      continue;
2944
2945    if (CXXCtorInitializer *Value
2946          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2947      Info.AllToInit.push_back(Value);
2948    } else if (!AnyErrors) {
2949      CXXCtorInitializer *CXXBaseInit;
2950      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2951                                       Base, /*IsInheritedVirtualBase=*/false,
2952                                       CXXBaseInit)) {
2953        HadError = true;
2954        continue;
2955      }
2956
2957      Info.AllToInit.push_back(CXXBaseInit);
2958    }
2959  }
2960
2961  // Fields.
2962  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2963                               MemEnd = ClassDecl->decls_end();
2964       Mem != MemEnd; ++Mem) {
2965    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2966      // C++ [class.bit]p2:
2967      //   A declaration for a bit-field that omits the identifier declares an
2968      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2969      //   initialized.
2970      if (F->isUnnamedBitfield())
2971        continue;
2972
2973      // If we're not generating the implicit copy/move constructor, then we'll
2974      // handle anonymous struct/union fields based on their individual
2975      // indirect fields.
2976      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2977        continue;
2978
2979      if (CollectFieldInitializer(*this, Info, F))
2980        HadError = true;
2981      continue;
2982    }
2983
2984    // Beyond this point, we only consider default initialization.
2985    if (Info.IIK != IIK_Default)
2986      continue;
2987
2988    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2989      if (F->getType()->isIncompleteArrayType()) {
2990        assert(ClassDecl->hasFlexibleArrayMember() &&
2991               "Incomplete array type is not valid");
2992        continue;
2993      }
2994
2995      // Initialize each field of an anonymous struct individually.
2996      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2997        HadError = true;
2998
2999      continue;
3000    }
3001  }
3002
3003  NumInitializers = Info.AllToInit.size();
3004  if (NumInitializers > 0) {
3005    Constructor->setNumCtorInitializers(NumInitializers);
3006    CXXCtorInitializer **baseOrMemberInitializers =
3007      new (Context) CXXCtorInitializer*[NumInitializers];
3008    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3009           NumInitializers * sizeof(CXXCtorInitializer*));
3010    Constructor->setCtorInitializers(baseOrMemberInitializers);
3011
3012    // Constructors implicitly reference the base and member
3013    // destructors.
3014    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3015                                           Constructor->getParent());
3016  }
3017
3018  return HadError;
3019}
3020
3021static void *GetKeyForTopLevelField(FieldDecl *Field) {
3022  // For anonymous unions, use the class declaration as the key.
3023  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3024    if (RT->getDecl()->isAnonymousStructOrUnion())
3025      return static_cast<void *>(RT->getDecl());
3026  }
3027  return static_cast<void *>(Field);
3028}
3029
3030static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3031  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3032}
3033
3034static void *GetKeyForMember(ASTContext &Context,
3035                             CXXCtorInitializer *Member) {
3036  if (!Member->isAnyMemberInitializer())
3037    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3038
3039  // For fields injected into the class via declaration of an anonymous union,
3040  // use its anonymous union class declaration as the unique key.
3041  FieldDecl *Field = Member->getAnyMember();
3042
3043  // If the field is a member of an anonymous struct or union, our key
3044  // is the anonymous record decl that's a direct child of the class.
3045  RecordDecl *RD = Field->getParent();
3046  if (RD->isAnonymousStructOrUnion()) {
3047    while (true) {
3048      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3049      if (Parent->isAnonymousStructOrUnion())
3050        RD = Parent;
3051      else
3052        break;
3053    }
3054
3055    return static_cast<void *>(RD);
3056  }
3057
3058  return static_cast<void *>(Field);
3059}
3060
3061static void
3062DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3063                                  const CXXConstructorDecl *Constructor,
3064                                  CXXCtorInitializer **Inits,
3065                                  unsigned NumInits) {
3066  if (Constructor->getDeclContext()->isDependentContext())
3067    return;
3068
3069  // Don't check initializers order unless the warning is enabled at the
3070  // location of at least one initializer.
3071  bool ShouldCheckOrder = false;
3072  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3073    CXXCtorInitializer *Init = Inits[InitIndex];
3074    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3075                                         Init->getSourceLocation())
3076          != DiagnosticsEngine::Ignored) {
3077      ShouldCheckOrder = true;
3078      break;
3079    }
3080  }
3081  if (!ShouldCheckOrder)
3082    return;
3083
3084  // Build the list of bases and members in the order that they'll
3085  // actually be initialized.  The explicit initializers should be in
3086  // this same order but may be missing things.
3087  SmallVector<const void*, 32> IdealInitKeys;
3088
3089  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3090
3091  // 1. Virtual bases.
3092  for (CXXRecordDecl::base_class_const_iterator VBase =
3093       ClassDecl->vbases_begin(),
3094       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3095    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3096
3097  // 2. Non-virtual bases.
3098  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3099       E = ClassDecl->bases_end(); Base != E; ++Base) {
3100    if (Base->isVirtual())
3101      continue;
3102    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3103  }
3104
3105  // 3. Direct fields.
3106  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3107       E = ClassDecl->field_end(); Field != E; ++Field) {
3108    if (Field->isUnnamedBitfield())
3109      continue;
3110
3111    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3112  }
3113
3114  unsigned NumIdealInits = IdealInitKeys.size();
3115  unsigned IdealIndex = 0;
3116
3117  CXXCtorInitializer *PrevInit = 0;
3118  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3119    CXXCtorInitializer *Init = Inits[InitIndex];
3120    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3121
3122    // Scan forward to try to find this initializer in the idealized
3123    // initializers list.
3124    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3125      if (InitKey == IdealInitKeys[IdealIndex])
3126        break;
3127
3128    // If we didn't find this initializer, it must be because we
3129    // scanned past it on a previous iteration.  That can only
3130    // happen if we're out of order;  emit a warning.
3131    if (IdealIndex == NumIdealInits && PrevInit) {
3132      Sema::SemaDiagnosticBuilder D =
3133        SemaRef.Diag(PrevInit->getSourceLocation(),
3134                     diag::warn_initializer_out_of_order);
3135
3136      if (PrevInit->isAnyMemberInitializer())
3137        D << 0 << PrevInit->getAnyMember()->getDeclName();
3138      else
3139        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3140
3141      if (Init->isAnyMemberInitializer())
3142        D << 0 << Init->getAnyMember()->getDeclName();
3143      else
3144        D << 1 << Init->getTypeSourceInfo()->getType();
3145
3146      // Move back to the initializer's location in the ideal list.
3147      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3148        if (InitKey == IdealInitKeys[IdealIndex])
3149          break;
3150
3151      assert(IdealIndex != NumIdealInits &&
3152             "initializer not found in initializer list");
3153    }
3154
3155    PrevInit = Init;
3156  }
3157}
3158
3159namespace {
3160bool CheckRedundantInit(Sema &S,
3161                        CXXCtorInitializer *Init,
3162                        CXXCtorInitializer *&PrevInit) {
3163  if (!PrevInit) {
3164    PrevInit = Init;
3165    return false;
3166  }
3167
3168  if (FieldDecl *Field = Init->getMember())
3169    S.Diag(Init->getSourceLocation(),
3170           diag::err_multiple_mem_initialization)
3171      << Field->getDeclName()
3172      << Init->getSourceRange();
3173  else {
3174    const Type *BaseClass = Init->getBaseClass();
3175    assert(BaseClass && "neither field nor base");
3176    S.Diag(Init->getSourceLocation(),
3177           diag::err_multiple_base_initialization)
3178      << QualType(BaseClass, 0)
3179      << Init->getSourceRange();
3180  }
3181  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3182    << 0 << PrevInit->getSourceRange();
3183
3184  return true;
3185}
3186
3187typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3188typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3189
3190bool CheckRedundantUnionInit(Sema &S,
3191                             CXXCtorInitializer *Init,
3192                             RedundantUnionMap &Unions) {
3193  FieldDecl *Field = Init->getAnyMember();
3194  RecordDecl *Parent = Field->getParent();
3195  NamedDecl *Child = Field;
3196
3197  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3198    if (Parent->isUnion()) {
3199      UnionEntry &En = Unions[Parent];
3200      if (En.first && En.first != Child) {
3201        S.Diag(Init->getSourceLocation(),
3202               diag::err_multiple_mem_union_initialization)
3203          << Field->getDeclName()
3204          << Init->getSourceRange();
3205        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3206          << 0 << En.second->getSourceRange();
3207        return true;
3208      }
3209      if (!En.first) {
3210        En.first = Child;
3211        En.second = Init;
3212      }
3213      if (!Parent->isAnonymousStructOrUnion())
3214        return false;
3215    }
3216
3217    Child = Parent;
3218    Parent = cast<RecordDecl>(Parent->getDeclContext());
3219  }
3220
3221  return false;
3222}
3223}
3224
3225/// ActOnMemInitializers - Handle the member initializers for a constructor.
3226void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3227                                SourceLocation ColonLoc,
3228                                CXXCtorInitializer **meminits,
3229                                unsigned NumMemInits,
3230                                bool AnyErrors) {
3231  if (!ConstructorDecl)
3232    return;
3233
3234  AdjustDeclIfTemplate(ConstructorDecl);
3235
3236  CXXConstructorDecl *Constructor
3237    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3238
3239  if (!Constructor) {
3240    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3241    return;
3242  }
3243
3244  CXXCtorInitializer **MemInits =
3245    reinterpret_cast<CXXCtorInitializer **>(meminits);
3246
3247  // Mapping for the duplicate initializers check.
3248  // For member initializers, this is keyed with a FieldDecl*.
3249  // For base initializers, this is keyed with a Type*.
3250  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3251
3252  // Mapping for the inconsistent anonymous-union initializers check.
3253  RedundantUnionMap MemberUnions;
3254
3255  bool HadError = false;
3256  for (unsigned i = 0; i < NumMemInits; i++) {
3257    CXXCtorInitializer *Init = MemInits[i];
3258
3259    // Set the source order index.
3260    Init->setSourceOrder(i);
3261
3262    if (Init->isAnyMemberInitializer()) {
3263      FieldDecl *Field = Init->getAnyMember();
3264      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3265          CheckRedundantUnionInit(*this, Init, MemberUnions))
3266        HadError = true;
3267    } else if (Init->isBaseInitializer()) {
3268      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3269      if (CheckRedundantInit(*this, Init, Members[Key]))
3270        HadError = true;
3271    } else {
3272      assert(Init->isDelegatingInitializer());
3273      // This must be the only initializer
3274      if (i != 0 || NumMemInits > 1) {
3275        Diag(MemInits[0]->getSourceLocation(),
3276             diag::err_delegating_initializer_alone)
3277          << MemInits[0]->getSourceRange();
3278        HadError = true;
3279        // We will treat this as being the only initializer.
3280      }
3281      SetDelegatingInitializer(Constructor, MemInits[i]);
3282      // Return immediately as the initializer is set.
3283      return;
3284    }
3285  }
3286
3287  if (HadError)
3288    return;
3289
3290  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3291
3292  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3293}
3294
3295void
3296Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3297                                             CXXRecordDecl *ClassDecl) {
3298  // Ignore dependent contexts. Also ignore unions, since their members never
3299  // have destructors implicitly called.
3300  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3301    return;
3302
3303  // FIXME: all the access-control diagnostics are positioned on the
3304  // field/base declaration.  That's probably good; that said, the
3305  // user might reasonably want to know why the destructor is being
3306  // emitted, and we currently don't say.
3307
3308  // Non-static data members.
3309  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3310       E = ClassDecl->field_end(); I != E; ++I) {
3311    FieldDecl *Field = *I;
3312    if (Field->isInvalidDecl())
3313      continue;
3314
3315    // Don't destroy incomplete or zero-length arrays.
3316    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3317      continue;
3318
3319    QualType FieldType = Context.getBaseElementType(Field->getType());
3320
3321    const RecordType* RT = FieldType->getAs<RecordType>();
3322    if (!RT)
3323      continue;
3324
3325    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3326    if (FieldClassDecl->isInvalidDecl())
3327      continue;
3328    if (FieldClassDecl->hasTrivialDestructor())
3329      continue;
3330
3331    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3332    assert(Dtor && "No dtor found for FieldClassDecl!");
3333    CheckDestructorAccess(Field->getLocation(), Dtor,
3334                          PDiag(diag::err_access_dtor_field)
3335                            << Field->getDeclName()
3336                            << FieldType);
3337
3338    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3339  }
3340
3341  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3342
3343  // Bases.
3344  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3345       E = ClassDecl->bases_end(); Base != E; ++Base) {
3346    // Bases are always records in a well-formed non-dependent class.
3347    const RecordType *RT = Base->getType()->getAs<RecordType>();
3348
3349    // Remember direct virtual bases.
3350    if (Base->isVirtual())
3351      DirectVirtualBases.insert(RT);
3352
3353    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3354    // If our base class is invalid, we probably can't get its dtor anyway.
3355    if (BaseClassDecl->isInvalidDecl())
3356      continue;
3357    // Ignore trivial destructors.
3358    if (BaseClassDecl->hasTrivialDestructor())
3359      continue;
3360
3361    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3362    assert(Dtor && "No dtor found for BaseClassDecl!");
3363
3364    // FIXME: caret should be on the start of the class name
3365    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3366                          PDiag(diag::err_access_dtor_base)
3367                            << Base->getType()
3368                            << Base->getSourceRange());
3369
3370    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3371  }
3372
3373  // Virtual bases.
3374  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3375       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3376
3377    // Bases are always records in a well-formed non-dependent class.
3378    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3379
3380    // Ignore direct virtual bases.
3381    if (DirectVirtualBases.count(RT))
3382      continue;
3383
3384    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3385    // If our base class is invalid, we probably can't get its dtor anyway.
3386    if (BaseClassDecl->isInvalidDecl())
3387      continue;
3388    // Ignore trivial destructors.
3389    if (BaseClassDecl->hasTrivialDestructor())
3390      continue;
3391
3392    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3393    assert(Dtor && "No dtor found for BaseClassDecl!");
3394    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3395                          PDiag(diag::err_access_dtor_vbase)
3396                            << VBase->getType());
3397
3398    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3399  }
3400}
3401
3402void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3403  if (!CDtorDecl)
3404    return;
3405
3406  if (CXXConstructorDecl *Constructor
3407      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3408    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3409}
3410
3411bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3412                                  unsigned DiagID, AbstractDiagSelID SelID) {
3413  if (SelID == -1)
3414    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3415  else
3416    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3417}
3418
3419bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3420                                  const PartialDiagnostic &PD) {
3421  if (!getLangOptions().CPlusPlus)
3422    return false;
3423
3424  if (const ArrayType *AT = Context.getAsArrayType(T))
3425    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3426
3427  if (const PointerType *PT = T->getAs<PointerType>()) {
3428    // Find the innermost pointer type.
3429    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3430      PT = T;
3431
3432    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3433      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3434  }
3435
3436  const RecordType *RT = T->getAs<RecordType>();
3437  if (!RT)
3438    return false;
3439
3440  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3441
3442  // We can't answer whether something is abstract until it has a
3443  // definition.  If it's currently being defined, we'll walk back
3444  // over all the declarations when we have a full definition.
3445  const CXXRecordDecl *Def = RD->getDefinition();
3446  if (!Def || Def->isBeingDefined())
3447    return false;
3448
3449  if (!RD->isAbstract())
3450    return false;
3451
3452  Diag(Loc, PD) << RD->getDeclName();
3453  DiagnoseAbstractType(RD);
3454
3455  return true;
3456}
3457
3458void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3459  // Check if we've already emitted the list of pure virtual functions
3460  // for this class.
3461  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3462    return;
3463
3464  CXXFinalOverriderMap FinalOverriders;
3465  RD->getFinalOverriders(FinalOverriders);
3466
3467  // Keep a set of seen pure methods so we won't diagnose the same method
3468  // more than once.
3469  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3470
3471  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3472                                   MEnd = FinalOverriders.end();
3473       M != MEnd;
3474       ++M) {
3475    for (OverridingMethods::iterator SO = M->second.begin(),
3476                                  SOEnd = M->second.end();
3477         SO != SOEnd; ++SO) {
3478      // C++ [class.abstract]p4:
3479      //   A class is abstract if it contains or inherits at least one
3480      //   pure virtual function for which the final overrider is pure
3481      //   virtual.
3482
3483      //
3484      if (SO->second.size() != 1)
3485        continue;
3486
3487      if (!SO->second.front().Method->isPure())
3488        continue;
3489
3490      if (!SeenPureMethods.insert(SO->second.front().Method))
3491        continue;
3492
3493      Diag(SO->second.front().Method->getLocation(),
3494           diag::note_pure_virtual_function)
3495        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3496    }
3497  }
3498
3499  if (!PureVirtualClassDiagSet)
3500    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3501  PureVirtualClassDiagSet->insert(RD);
3502}
3503
3504namespace {
3505struct AbstractUsageInfo {
3506  Sema &S;
3507  CXXRecordDecl *Record;
3508  CanQualType AbstractType;
3509  bool Invalid;
3510
3511  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3512    : S(S), Record(Record),
3513      AbstractType(S.Context.getCanonicalType(
3514                   S.Context.getTypeDeclType(Record))),
3515      Invalid(false) {}
3516
3517  void DiagnoseAbstractType() {
3518    if (Invalid) return;
3519    S.DiagnoseAbstractType(Record);
3520    Invalid = true;
3521  }
3522
3523  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3524};
3525
3526struct CheckAbstractUsage {
3527  AbstractUsageInfo &Info;
3528  const NamedDecl *Ctx;
3529
3530  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3531    : Info(Info), Ctx(Ctx) {}
3532
3533  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3534    switch (TL.getTypeLocClass()) {
3535#define ABSTRACT_TYPELOC(CLASS, PARENT)
3536#define TYPELOC(CLASS, PARENT) \
3537    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3538#include "clang/AST/TypeLocNodes.def"
3539    }
3540  }
3541
3542  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3543    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3544    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3545      if (!TL.getArg(I))
3546        continue;
3547
3548      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3549      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3550    }
3551  }
3552
3553  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3554    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3555  }
3556
3557  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3558    // Visit the type parameters from a permissive context.
3559    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3560      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3561      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3562        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3563          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3564      // TODO: other template argument types?
3565    }
3566  }
3567
3568  // Visit pointee types from a permissive context.
3569#define CheckPolymorphic(Type) \
3570  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3571    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3572  }
3573  CheckPolymorphic(PointerTypeLoc)
3574  CheckPolymorphic(ReferenceTypeLoc)
3575  CheckPolymorphic(MemberPointerTypeLoc)
3576  CheckPolymorphic(BlockPointerTypeLoc)
3577  CheckPolymorphic(AtomicTypeLoc)
3578
3579  /// Handle all the types we haven't given a more specific
3580  /// implementation for above.
3581  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3582    // Every other kind of type that we haven't called out already
3583    // that has an inner type is either (1) sugar or (2) contains that
3584    // inner type in some way as a subobject.
3585    if (TypeLoc Next = TL.getNextTypeLoc())
3586      return Visit(Next, Sel);
3587
3588    // If there's no inner type and we're in a permissive context,
3589    // don't diagnose.
3590    if (Sel == Sema::AbstractNone) return;
3591
3592    // Check whether the type matches the abstract type.
3593    QualType T = TL.getType();
3594    if (T->isArrayType()) {
3595      Sel = Sema::AbstractArrayType;
3596      T = Info.S.Context.getBaseElementType(T);
3597    }
3598    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3599    if (CT != Info.AbstractType) return;
3600
3601    // It matched; do some magic.
3602    if (Sel == Sema::AbstractArrayType) {
3603      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3604        << T << TL.getSourceRange();
3605    } else {
3606      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3607        << Sel << T << TL.getSourceRange();
3608    }
3609    Info.DiagnoseAbstractType();
3610  }
3611};
3612
3613void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3614                                  Sema::AbstractDiagSelID Sel) {
3615  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3616}
3617
3618}
3619
3620/// Check for invalid uses of an abstract type in a method declaration.
3621static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3622                                    CXXMethodDecl *MD) {
3623  // No need to do the check on definitions, which require that
3624  // the return/param types be complete.
3625  if (MD->doesThisDeclarationHaveABody())
3626    return;
3627
3628  // For safety's sake, just ignore it if we don't have type source
3629  // information.  This should never happen for non-implicit methods,
3630  // but...
3631  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3632    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3633}
3634
3635/// Check for invalid uses of an abstract type within a class definition.
3636static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3637                                    CXXRecordDecl *RD) {
3638  for (CXXRecordDecl::decl_iterator
3639         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3640    Decl *D = *I;
3641    if (D->isImplicit()) continue;
3642
3643    // Methods and method templates.
3644    if (isa<CXXMethodDecl>(D)) {
3645      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3646    } else if (isa<FunctionTemplateDecl>(D)) {
3647      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3648      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3649
3650    // Fields and static variables.
3651    } else if (isa<FieldDecl>(D)) {
3652      FieldDecl *FD = cast<FieldDecl>(D);
3653      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3654        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3655    } else if (isa<VarDecl>(D)) {
3656      VarDecl *VD = cast<VarDecl>(D);
3657      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3658        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3659
3660    // Nested classes and class templates.
3661    } else if (isa<CXXRecordDecl>(D)) {
3662      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3663    } else if (isa<ClassTemplateDecl>(D)) {
3664      CheckAbstractClassUsage(Info,
3665                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3666    }
3667  }
3668}
3669
3670/// \brief Perform semantic checks on a class definition that has been
3671/// completing, introducing implicitly-declared members, checking for
3672/// abstract types, etc.
3673void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3674  if (!Record)
3675    return;
3676
3677  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3678    AbstractUsageInfo Info(*this, Record);
3679    CheckAbstractClassUsage(Info, Record);
3680  }
3681
3682  // If this is not an aggregate type and has no user-declared constructor,
3683  // complain about any non-static data members of reference or const scalar
3684  // type, since they will never get initializers.
3685  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3686      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3687      !Record->isLambda()) {
3688    bool Complained = false;
3689    for (RecordDecl::field_iterator F = Record->field_begin(),
3690                                 FEnd = Record->field_end();
3691         F != FEnd; ++F) {
3692      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3693        continue;
3694
3695      if (F->getType()->isReferenceType() ||
3696          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3697        if (!Complained) {
3698          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3699            << Record->getTagKind() << Record;
3700          Complained = true;
3701        }
3702
3703        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3704          << F->getType()->isReferenceType()
3705          << F->getDeclName();
3706      }
3707    }
3708  }
3709
3710  if (Record->isDynamicClass() && !Record->isDependentType())
3711    DynamicClasses.push_back(Record);
3712
3713  if (Record->getIdentifier()) {
3714    // C++ [class.mem]p13:
3715    //   If T is the name of a class, then each of the following shall have a
3716    //   name different from T:
3717    //     - every member of every anonymous union that is a member of class T.
3718    //
3719    // C++ [class.mem]p14:
3720    //   In addition, if class T has a user-declared constructor (12.1), every
3721    //   non-static data member of class T shall have a name different from T.
3722    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3723         R.first != R.second; ++R.first) {
3724      NamedDecl *D = *R.first;
3725      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3726          isa<IndirectFieldDecl>(D)) {
3727        Diag(D->getLocation(), diag::err_member_name_of_class)
3728          << D->getDeclName();
3729        break;
3730      }
3731    }
3732  }
3733
3734  // Warn if the class has virtual methods but non-virtual public destructor.
3735  if (Record->isPolymorphic() && !Record->isDependentType()) {
3736    CXXDestructorDecl *dtor = Record->getDestructor();
3737    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3738      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3739           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3740  }
3741
3742  // See if a method overloads virtual methods in a base
3743  /// class without overriding any.
3744  if (!Record->isDependentType()) {
3745    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3746                                     MEnd = Record->method_end();
3747         M != MEnd; ++M) {
3748      if (!(*M)->isStatic())
3749        DiagnoseHiddenVirtualMethods(Record, *M);
3750    }
3751  }
3752
3753  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3754  // function that is not a constructor declares that member function to be
3755  // const. [...] The class of which that function is a member shall be
3756  // a literal type.
3757  //
3758  // It's fine to diagnose constructors here too: such constructors cannot
3759  // produce a constant expression, so are ill-formed (no diagnostic required).
3760  //
3761  // If the class has virtual bases, any constexpr members will already have
3762  // been diagnosed by the checks performed on the member declaration, so
3763  // suppress this (less useful) diagnostic.
3764  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3765      !Record->isLiteral() && !Record->getNumVBases()) {
3766    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3767                                     MEnd = Record->method_end();
3768         M != MEnd; ++M) {
3769      if (M->isConstexpr() && M->isInstance()) {
3770        switch (Record->getTemplateSpecializationKind()) {
3771        case TSK_ImplicitInstantiation:
3772        case TSK_ExplicitInstantiationDeclaration:
3773        case TSK_ExplicitInstantiationDefinition:
3774          // If a template instantiates to a non-literal type, but its members
3775          // instantiate to constexpr functions, the template is technically
3776          // ill-formed, but we allow it for sanity. Such members are treated as
3777          // non-constexpr.
3778          (*M)->setConstexpr(false);
3779          continue;
3780
3781        case TSK_Undeclared:
3782        case TSK_ExplicitSpecialization:
3783          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3784                             PDiag(diag::err_constexpr_method_non_literal));
3785          break;
3786        }
3787
3788        // Only produce one error per class.
3789        break;
3790      }
3791    }
3792  }
3793
3794  // Declare inherited constructors. We do this eagerly here because:
3795  // - The standard requires an eager diagnostic for conflicting inherited
3796  //   constructors from different classes.
3797  // - The lazy declaration of the other implicit constructors is so as to not
3798  //   waste space and performance on classes that are not meant to be
3799  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3800  //   have inherited constructors.
3801  DeclareInheritedConstructors(Record);
3802
3803  if (!Record->isDependentType())
3804    CheckExplicitlyDefaultedMethods(Record);
3805}
3806
3807void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3808  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3809                                      ME = Record->method_end();
3810       MI != ME; ++MI) {
3811    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3812      switch (getSpecialMember(*MI)) {
3813      case CXXDefaultConstructor:
3814        CheckExplicitlyDefaultedDefaultConstructor(
3815                                                  cast<CXXConstructorDecl>(*MI));
3816        break;
3817
3818      case CXXDestructor:
3819        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3820        break;
3821
3822      case CXXCopyConstructor:
3823        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3824        break;
3825
3826      case CXXCopyAssignment:
3827        CheckExplicitlyDefaultedCopyAssignment(*MI);
3828        break;
3829
3830      case CXXMoveConstructor:
3831        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3832        break;
3833
3834      case CXXMoveAssignment:
3835        CheckExplicitlyDefaultedMoveAssignment(*MI);
3836        break;
3837
3838      case CXXInvalid:
3839        llvm_unreachable("non-special member explicitly defaulted!");
3840      }
3841    }
3842  }
3843
3844}
3845
3846void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3847  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3848
3849  // Whether this was the first-declared instance of the constructor.
3850  // This affects whether we implicitly add an exception spec (and, eventually,
3851  // constexpr). It is also ill-formed to explicitly default a constructor such
3852  // that it would be deleted. (C++0x [decl.fct.def.default])
3853  bool First = CD == CD->getCanonicalDecl();
3854
3855  bool HadError = false;
3856  if (CD->getNumParams() != 0) {
3857    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3858      << CD->getSourceRange();
3859    HadError = true;
3860  }
3861
3862  ImplicitExceptionSpecification Spec
3863    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3864  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3865  if (EPI.ExceptionSpecType == EST_Delayed) {
3866    // Exception specification depends on some deferred part of the class. We'll
3867    // try again when the class's definition has been fully processed.
3868    return;
3869  }
3870  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3871                          *ExceptionType = Context.getFunctionType(
3872                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3873
3874  // C++11 [dcl.fct.def.default]p2:
3875  //   An explicitly-defaulted function may be declared constexpr only if it
3876  //   would have been implicitly declared as constexpr,
3877  if (CD->isConstexpr()) {
3878    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3879      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3880        << CXXDefaultConstructor;
3881      HadError = true;
3882    }
3883  }
3884  //   and may have an explicit exception-specification only if it is compatible
3885  //   with the exception-specification on the implicit declaration.
3886  if (CtorType->hasExceptionSpec()) {
3887    if (CheckEquivalentExceptionSpec(
3888          PDiag(diag::err_incorrect_defaulted_exception_spec)
3889            << CXXDefaultConstructor,
3890          PDiag(),
3891          ExceptionType, SourceLocation(),
3892          CtorType, CD->getLocation())) {
3893      HadError = true;
3894    }
3895  }
3896
3897  //   If a function is explicitly defaulted on its first declaration,
3898  if (First) {
3899    //  -- it is implicitly considered to be constexpr if the implicit
3900    //     definition would be,
3901    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3902
3903    //  -- it is implicitly considered to have the same
3904    //     exception-specification as if it had been implicitly declared
3905    //
3906    // FIXME: a compatible, but different, explicit exception specification
3907    // will be silently overridden. We should issue a warning if this happens.
3908    EPI.ExtInfo = CtorType->getExtInfo();
3909  }
3910
3911  if (HadError) {
3912    CD->setInvalidDecl();
3913    return;
3914  }
3915
3916  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3917    if (First) {
3918      CD->setDeletedAsWritten();
3919    } else {
3920      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3921        << CXXDefaultConstructor;
3922      CD->setInvalidDecl();
3923    }
3924  }
3925}
3926
3927void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3928  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3929
3930  // Whether this was the first-declared instance of the constructor.
3931  bool First = CD == CD->getCanonicalDecl();
3932
3933  bool HadError = false;
3934  if (CD->getNumParams() != 1) {
3935    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3936      << CD->getSourceRange();
3937    HadError = true;
3938  }
3939
3940  ImplicitExceptionSpecification Spec(Context);
3941  bool Const;
3942  llvm::tie(Spec, Const) =
3943    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3944
3945  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3946  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3947                          *ExceptionType = Context.getFunctionType(
3948                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3949
3950  // Check for parameter type matching.
3951  // This is a copy ctor so we know it's a cv-qualified reference to T.
3952  QualType ArgType = CtorType->getArgType(0);
3953  if (ArgType->getPointeeType().isVolatileQualified()) {
3954    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3955    HadError = true;
3956  }
3957  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3958    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3959    HadError = true;
3960  }
3961
3962  // C++11 [dcl.fct.def.default]p2:
3963  //   An explicitly-defaulted function may be declared constexpr only if it
3964  //   would have been implicitly declared as constexpr,
3965  if (CD->isConstexpr()) {
3966    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3967      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3968        << CXXCopyConstructor;
3969      HadError = true;
3970    }
3971  }
3972  //   and may have an explicit exception-specification only if it is compatible
3973  //   with the exception-specification on the implicit declaration.
3974  if (CtorType->hasExceptionSpec()) {
3975    if (CheckEquivalentExceptionSpec(
3976          PDiag(diag::err_incorrect_defaulted_exception_spec)
3977            << CXXCopyConstructor,
3978          PDiag(),
3979          ExceptionType, SourceLocation(),
3980          CtorType, CD->getLocation())) {
3981      HadError = true;
3982    }
3983  }
3984
3985  //   If a function is explicitly defaulted on its first declaration,
3986  if (First) {
3987    //  -- it is implicitly considered to be constexpr if the implicit
3988    //     definition would be,
3989    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3990
3991    //  -- it is implicitly considered to have the same
3992    //     exception-specification as if it had been implicitly declared, and
3993    //
3994    // FIXME: a compatible, but different, explicit exception specification
3995    // will be silently overridden. We should issue a warning if this happens.
3996    EPI.ExtInfo = CtorType->getExtInfo();
3997
3998    //  -- [...] it shall have the same parameter type as if it had been
3999    //     implicitly declared.
4000    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4001  }
4002
4003  if (HadError) {
4004    CD->setInvalidDecl();
4005    return;
4006  }
4007
4008  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
4009    if (First) {
4010      CD->setDeletedAsWritten();
4011    } else {
4012      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4013        << CXXCopyConstructor;
4014      CD->setInvalidDecl();
4015    }
4016  }
4017}
4018
4019void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
4020  assert(MD->isExplicitlyDefaulted());
4021
4022  // Whether this was the first-declared instance of the operator
4023  bool First = MD == MD->getCanonicalDecl();
4024
4025  bool HadError = false;
4026  if (MD->getNumParams() != 1) {
4027    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
4028      << MD->getSourceRange();
4029    HadError = true;
4030  }
4031
4032  QualType ReturnType =
4033    MD->getType()->getAs<FunctionType>()->getResultType();
4034  if (!ReturnType->isLValueReferenceType() ||
4035      !Context.hasSameType(
4036        Context.getCanonicalType(ReturnType->getPointeeType()),
4037        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4038    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
4039    HadError = true;
4040  }
4041
4042  ImplicitExceptionSpecification Spec(Context);
4043  bool Const;
4044  llvm::tie(Spec, Const) =
4045    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
4046
4047  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4048  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4049                          *ExceptionType = Context.getFunctionType(
4050                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4051
4052  QualType ArgType = OperType->getArgType(0);
4053  if (!ArgType->isLValueReferenceType()) {
4054    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4055    HadError = true;
4056  } else {
4057    if (ArgType->getPointeeType().isVolatileQualified()) {
4058      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
4059      HadError = true;
4060    }
4061    if (ArgType->getPointeeType().isConstQualified() && !Const) {
4062      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
4063      HadError = true;
4064    }
4065  }
4066
4067  if (OperType->getTypeQuals()) {
4068    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
4069    HadError = true;
4070  }
4071
4072  if (OperType->hasExceptionSpec()) {
4073    if (CheckEquivalentExceptionSpec(
4074          PDiag(diag::err_incorrect_defaulted_exception_spec)
4075            << CXXCopyAssignment,
4076          PDiag(),
4077          ExceptionType, SourceLocation(),
4078          OperType, MD->getLocation())) {
4079      HadError = true;
4080    }
4081  }
4082  if (First) {
4083    // We set the declaration to have the computed exception spec here.
4084    // We duplicate the one parameter type.
4085    EPI.RefQualifier = OperType->getRefQualifier();
4086    EPI.ExtInfo = OperType->getExtInfo();
4087    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4088  }
4089
4090  if (HadError) {
4091    MD->setInvalidDecl();
4092    return;
4093  }
4094
4095  if (ShouldDeleteCopyAssignmentOperator(MD)) {
4096    if (First) {
4097      MD->setDeletedAsWritten();
4098    } else {
4099      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4100        << CXXCopyAssignment;
4101      MD->setInvalidDecl();
4102    }
4103  }
4104}
4105
4106void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4107  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4108
4109  // Whether this was the first-declared instance of the constructor.
4110  bool First = CD == CD->getCanonicalDecl();
4111
4112  bool HadError = false;
4113  if (CD->getNumParams() != 1) {
4114    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4115      << CD->getSourceRange();
4116    HadError = true;
4117  }
4118
4119  ImplicitExceptionSpecification Spec(
4120      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4121
4122  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4123  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4124                          *ExceptionType = Context.getFunctionType(
4125                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4126
4127  // Check for parameter type matching.
4128  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4129  QualType ArgType = CtorType->getArgType(0);
4130  if (ArgType->getPointeeType().isVolatileQualified()) {
4131    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4132    HadError = true;
4133  }
4134  if (ArgType->getPointeeType().isConstQualified()) {
4135    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4136    HadError = true;
4137  }
4138
4139  // C++11 [dcl.fct.def.default]p2:
4140  //   An explicitly-defaulted function may be declared constexpr only if it
4141  //   would have been implicitly declared as constexpr,
4142  if (CD->isConstexpr()) {
4143    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4144      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4145        << CXXMoveConstructor;
4146      HadError = true;
4147    }
4148  }
4149  //   and may have an explicit exception-specification only if it is compatible
4150  //   with the exception-specification on the implicit declaration.
4151  if (CtorType->hasExceptionSpec()) {
4152    if (CheckEquivalentExceptionSpec(
4153          PDiag(diag::err_incorrect_defaulted_exception_spec)
4154            << CXXMoveConstructor,
4155          PDiag(),
4156          ExceptionType, SourceLocation(),
4157          CtorType, CD->getLocation())) {
4158      HadError = true;
4159    }
4160  }
4161
4162  //   If a function is explicitly defaulted on its first declaration,
4163  if (First) {
4164    //  -- it is implicitly considered to be constexpr if the implicit
4165    //     definition would be,
4166    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4167
4168    //  -- it is implicitly considered to have the same
4169    //     exception-specification as if it had been implicitly declared, and
4170    //
4171    // FIXME: a compatible, but different, explicit exception specification
4172    // will be silently overridden. We should issue a warning if this happens.
4173    EPI.ExtInfo = CtorType->getExtInfo();
4174
4175    //  -- [...] it shall have the same parameter type as if it had been
4176    //     implicitly declared.
4177    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4178  }
4179
4180  if (HadError) {
4181    CD->setInvalidDecl();
4182    return;
4183  }
4184
4185  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4186    if (First) {
4187      CD->setDeletedAsWritten();
4188    } else {
4189      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4190        << CXXMoveConstructor;
4191      CD->setInvalidDecl();
4192    }
4193  }
4194}
4195
4196void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4197  assert(MD->isExplicitlyDefaulted());
4198
4199  // Whether this was the first-declared instance of the operator
4200  bool First = MD == MD->getCanonicalDecl();
4201
4202  bool HadError = false;
4203  if (MD->getNumParams() != 1) {
4204    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4205      << MD->getSourceRange();
4206    HadError = true;
4207  }
4208
4209  QualType ReturnType =
4210    MD->getType()->getAs<FunctionType>()->getResultType();
4211  if (!ReturnType->isLValueReferenceType() ||
4212      !Context.hasSameType(
4213        Context.getCanonicalType(ReturnType->getPointeeType()),
4214        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4215    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4216    HadError = true;
4217  }
4218
4219  ImplicitExceptionSpecification Spec(
4220      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4221
4222  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4223  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4224                          *ExceptionType = Context.getFunctionType(
4225                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4226
4227  QualType ArgType = OperType->getArgType(0);
4228  if (!ArgType->isRValueReferenceType()) {
4229    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4230    HadError = true;
4231  } else {
4232    if (ArgType->getPointeeType().isVolatileQualified()) {
4233      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4234      HadError = true;
4235    }
4236    if (ArgType->getPointeeType().isConstQualified()) {
4237      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4238      HadError = true;
4239    }
4240  }
4241
4242  if (OperType->getTypeQuals()) {
4243    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4244    HadError = true;
4245  }
4246
4247  if (OperType->hasExceptionSpec()) {
4248    if (CheckEquivalentExceptionSpec(
4249          PDiag(diag::err_incorrect_defaulted_exception_spec)
4250            << CXXMoveAssignment,
4251          PDiag(),
4252          ExceptionType, SourceLocation(),
4253          OperType, MD->getLocation())) {
4254      HadError = true;
4255    }
4256  }
4257  if (First) {
4258    // We set the declaration to have the computed exception spec here.
4259    // We duplicate the one parameter type.
4260    EPI.RefQualifier = OperType->getRefQualifier();
4261    EPI.ExtInfo = OperType->getExtInfo();
4262    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4263  }
4264
4265  if (HadError) {
4266    MD->setInvalidDecl();
4267    return;
4268  }
4269
4270  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4271    if (First) {
4272      MD->setDeletedAsWritten();
4273    } else {
4274      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4275        << CXXMoveAssignment;
4276      MD->setInvalidDecl();
4277    }
4278  }
4279}
4280
4281void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4282  assert(DD->isExplicitlyDefaulted());
4283
4284  // Whether this was the first-declared instance of the destructor.
4285  bool First = DD == DD->getCanonicalDecl();
4286
4287  ImplicitExceptionSpecification Spec
4288    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4289  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4290  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4291                          *ExceptionType = Context.getFunctionType(
4292                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4293
4294  if (DtorType->hasExceptionSpec()) {
4295    if (CheckEquivalentExceptionSpec(
4296          PDiag(diag::err_incorrect_defaulted_exception_spec)
4297            << CXXDestructor,
4298          PDiag(),
4299          ExceptionType, SourceLocation(),
4300          DtorType, DD->getLocation())) {
4301      DD->setInvalidDecl();
4302      return;
4303    }
4304  }
4305  if (First) {
4306    // We set the declaration to have the computed exception spec here.
4307    // There are no parameters.
4308    EPI.ExtInfo = DtorType->getExtInfo();
4309    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4310  }
4311
4312  if (ShouldDeleteDestructor(DD)) {
4313    if (First) {
4314      DD->setDeletedAsWritten();
4315    } else {
4316      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4317        << CXXDestructor;
4318      DD->setInvalidDecl();
4319    }
4320  }
4321}
4322
4323/// This function implements the following C++0x paragraphs:
4324///  - [class.ctor]/5
4325///  - [class.copy]/11
4326bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4327  assert(!MD->isInvalidDecl());
4328  CXXRecordDecl *RD = MD->getParent();
4329  assert(!RD->isDependentType() && "do deletion after instantiation");
4330  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4331    return false;
4332
4333  bool IsUnion = RD->isUnion();
4334  bool IsConstructor = false;
4335  bool IsAssignment = false;
4336  bool IsMove = false;
4337
4338  bool ConstArg = false;
4339
4340  switch (CSM) {
4341  case CXXDefaultConstructor:
4342    IsConstructor = true;
4343
4344    // C++11 [expr.lambda.prim]p19:
4345    //   The closure type associated with a lambda-expression has a
4346    //   deleted (8.4.3) default constructor.
4347    if (RD->isLambda())
4348      return true;
4349
4350    break;
4351  case CXXCopyConstructor:
4352    IsConstructor = true;
4353    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4354    break;
4355  case CXXMoveConstructor:
4356    IsConstructor = true;
4357    IsMove = true;
4358    break;
4359  default:
4360    llvm_unreachable("function only currently implemented for default ctors");
4361  }
4362
4363  SourceLocation Loc = MD->getLocation();
4364
4365  // Do access control from the special member function
4366  ContextRAII MethodContext(*this, MD);
4367
4368  bool AllConst = true;
4369
4370  // We do this because we should never actually use an anonymous
4371  // union's constructor.
4372  if (IsUnion && RD->isAnonymousStructOrUnion())
4373    return false;
4374
4375  // FIXME: We should put some diagnostic logic right into this function.
4376
4377  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4378                                          BE = RD->bases_end();
4379       BI != BE; ++BI) {
4380    // We'll handle this one later
4381    if (BI->isVirtual())
4382      continue;
4383
4384    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4385    assert(BaseDecl && "base isn't a CXXRecordDecl");
4386
4387    // Unless we have an assignment operator, the base's destructor must
4388    // be accessible and not deleted.
4389    if (!IsAssignment) {
4390      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4391      if (BaseDtor->isDeleted())
4392        return true;
4393      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4394          AR_accessible)
4395        return true;
4396    }
4397
4398    // Finding the corresponding member in the base should lead to a
4399    // unique, accessible, non-deleted function. If we are doing
4400    // a destructor, we have already checked this case.
4401    if (CSM != CXXDestructor) {
4402      SpecialMemberOverloadResult *SMOR =
4403        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4404                            false);
4405      if (!SMOR->hasSuccess())
4406        return true;
4407      CXXMethodDecl *BaseMember = SMOR->getMethod();
4408      if (IsConstructor) {
4409        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4410        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4411                                   PDiag()) != AR_accessible)
4412          return true;
4413
4414        // For a move operation, the corresponding operation must actually
4415        // be a move operation (and not a copy selected by overload
4416        // resolution) unless we are working on a trivially copyable class.
4417        if (IsMove && !BaseCtor->isMoveConstructor() &&
4418            !BaseDecl->isTriviallyCopyable())
4419          return true;
4420      }
4421    }
4422  }
4423
4424  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4425                                          BE = RD->vbases_end();
4426       BI != BE; ++BI) {
4427    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4428    assert(BaseDecl && "base isn't a CXXRecordDecl");
4429
4430    // Unless we have an assignment operator, the base's destructor must
4431    // be accessible and not deleted.
4432    if (!IsAssignment) {
4433      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4434      if (BaseDtor->isDeleted())
4435        return true;
4436      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4437          AR_accessible)
4438        return true;
4439    }
4440
4441    // Finding the corresponding member in the base should lead to a
4442    // unique, accessible, non-deleted function.
4443    if (CSM != CXXDestructor) {
4444      SpecialMemberOverloadResult *SMOR =
4445        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4446                            false);
4447      if (!SMOR->hasSuccess())
4448        return true;
4449      CXXMethodDecl *BaseMember = SMOR->getMethod();
4450      if (IsConstructor) {
4451        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4452        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4453                                   PDiag()) != AR_accessible)
4454          return true;
4455
4456        // For a move operation, the corresponding operation must actually
4457        // be a move operation (and not a copy selected by overload
4458        // resolution) unless we are working on a trivially copyable class.
4459        if (IsMove && !BaseCtor->isMoveConstructor() &&
4460            !BaseDecl->isTriviallyCopyable())
4461          return true;
4462      }
4463    }
4464  }
4465
4466  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4467                                     FE = RD->field_end();
4468       FI != FE; ++FI) {
4469    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4470      continue;
4471
4472    QualType FieldType = Context.getBaseElementType(FI->getType());
4473    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4474
4475    // For a default constructor, all references must be initialized in-class
4476    // and, if a union, it must have a non-const member.
4477    if (CSM == CXXDefaultConstructor) {
4478      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4479        return true;
4480
4481      if (IsUnion && !FieldType.isConstQualified())
4482        AllConst = false;
4483    // For a copy constructor, data members must not be of rvalue reference
4484    // type.
4485    } else if (CSM == CXXCopyConstructor) {
4486      if (FieldType->isRValueReferenceType())
4487        return true;
4488    }
4489
4490    if (FieldRecord) {
4491      // For a default constructor, a const member must have a user-provided
4492      // default constructor or else be explicitly initialized.
4493      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4494          !FI->hasInClassInitializer() &&
4495          !FieldRecord->hasUserProvidedDefaultConstructor())
4496        return true;
4497
4498      // Some additional restrictions exist on the variant members.
4499      if (!IsUnion && FieldRecord->isUnion() &&
4500          FieldRecord->isAnonymousStructOrUnion()) {
4501        // We're okay to reuse AllConst here since we only care about the
4502        // value otherwise if we're in a union.
4503        AllConst = true;
4504
4505        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4506                                           UE = FieldRecord->field_end();
4507             UI != UE; ++UI) {
4508          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4509          CXXRecordDecl *UnionFieldRecord =
4510            UnionFieldType->getAsCXXRecordDecl();
4511
4512          if (!UnionFieldType.isConstQualified())
4513            AllConst = false;
4514
4515          if (UnionFieldRecord) {
4516            // FIXME: Checking for accessibility and validity of this
4517            //        destructor is technically going beyond the
4518            //        standard, but this is believed to be a defect.
4519            if (!IsAssignment) {
4520              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4521              if (FieldDtor->isDeleted())
4522                return true;
4523              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4524                  AR_accessible)
4525                return true;
4526              if (!FieldDtor->isTrivial())
4527                return true;
4528            }
4529
4530            if (CSM != CXXDestructor) {
4531              SpecialMemberOverloadResult *SMOR =
4532                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4533                                    false, false, false);
4534              // FIXME: Checking for accessibility and validity of this
4535              //        corresponding member is technically going beyond the
4536              //        standard, but this is believed to be a defect.
4537              if (!SMOR->hasSuccess())
4538                return true;
4539
4540              CXXMethodDecl *FieldMember = SMOR->getMethod();
4541              // A member of a union must have a trivial corresponding
4542              // constructor.
4543              if (!FieldMember->isTrivial())
4544                return true;
4545
4546              if (IsConstructor) {
4547                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4548                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4549                                           PDiag()) != AR_accessible)
4550                return true;
4551              }
4552            }
4553          }
4554        }
4555
4556        // At least one member in each anonymous union must be non-const
4557        if (CSM == CXXDefaultConstructor && AllConst)
4558          return true;
4559
4560        // Don't try to initialize the anonymous union
4561        // This is technically non-conformant, but sanity demands it.
4562        continue;
4563      }
4564
4565      // Unless we're doing assignment, the field's destructor must be
4566      // accessible and not deleted.
4567      if (!IsAssignment) {
4568        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4569        if (FieldDtor->isDeleted())
4570          return true;
4571        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4572            AR_accessible)
4573          return true;
4574      }
4575
4576      // Check that the corresponding member of the field is accessible,
4577      // unique, and non-deleted. We don't do this if it has an explicit
4578      // initialization when default-constructing.
4579      if (CSM != CXXDestructor &&
4580          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4581        SpecialMemberOverloadResult *SMOR =
4582          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4583                              false);
4584        if (!SMOR->hasSuccess())
4585          return true;
4586
4587        CXXMethodDecl *FieldMember = SMOR->getMethod();
4588        if (IsConstructor) {
4589          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4590          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4591                                     PDiag()) != AR_accessible)
4592          return true;
4593
4594          // For a move operation, the corresponding operation must actually
4595          // be a move operation (and not a copy selected by overload
4596          // resolution) unless we are working on a trivially copyable class.
4597          if (IsMove && !FieldCtor->isMoveConstructor() &&
4598              !FieldRecord->isTriviallyCopyable())
4599            return true;
4600        }
4601
4602        // We need the corresponding member of a union to be trivial so that
4603        // we can safely copy them all simultaneously.
4604        // FIXME: Note that performing the check here (where we rely on the lack
4605        // of an in-class initializer) is technically ill-formed. However, this
4606        // seems most obviously to be a bug in the standard.
4607        if (IsUnion && !FieldMember->isTrivial())
4608          return true;
4609      }
4610    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4611               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4612      // We can't initialize a const member of non-class type to any value.
4613      return true;
4614    }
4615  }
4616
4617  // We can't have all const members in a union when default-constructing,
4618  // or else they're all nonsensical garbage values that can't be changed.
4619  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4620    return true;
4621
4622  return false;
4623}
4624
4625bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4626  CXXRecordDecl *RD = MD->getParent();
4627  assert(!RD->isDependentType() && "do deletion after instantiation");
4628  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4629    return false;
4630
4631  // C++11 [expr.lambda.prim]p19:
4632  //   The closure type associated with a lambda-expression has a
4633  //   [...] deleted copy assignment operator.
4634  if (RD->isLambda())
4635    return true;
4636
4637  SourceLocation Loc = MD->getLocation();
4638
4639  // Do access control from the constructor
4640  ContextRAII MethodContext(*this, MD);
4641
4642  bool Union = RD->isUnion();
4643
4644  unsigned ArgQuals =
4645    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4646      Qualifiers::Const : 0;
4647
4648  // We do this because we should never actually use an anonymous
4649  // union's constructor.
4650  if (Union && RD->isAnonymousStructOrUnion())
4651    return false;
4652
4653  // FIXME: We should put some diagnostic logic right into this function.
4654
4655  // C++0x [class.copy]/20
4656  //    A defaulted [copy] assignment operator for class X is defined as deleted
4657  //    if X has:
4658
4659  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4660                                          BE = RD->bases_end();
4661       BI != BE; ++BI) {
4662    // We'll handle this one later
4663    if (BI->isVirtual())
4664      continue;
4665
4666    QualType BaseType = BI->getType();
4667    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4668    assert(BaseDecl && "base isn't a CXXRecordDecl");
4669
4670    // -- a [direct base class] B that cannot be [copied] because overload
4671    //    resolution, as applied to B's [copy] assignment operator, results in
4672    //    an ambiguity or a function that is deleted or inaccessible from the
4673    //    assignment operator
4674    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4675                                                      0);
4676    if (!CopyOper || CopyOper->isDeleted())
4677      return true;
4678    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4679      return true;
4680  }
4681
4682  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4683                                          BE = RD->vbases_end();
4684       BI != BE; ++BI) {
4685    QualType BaseType = BI->getType();
4686    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4687    assert(BaseDecl && "base isn't a CXXRecordDecl");
4688
4689    // -- a [virtual base class] B that cannot be [copied] because overload
4690    //    resolution, as applied to B's [copy] assignment operator, results in
4691    //    an ambiguity or a function that is deleted or inaccessible from the
4692    //    assignment operator
4693    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4694                                                      0);
4695    if (!CopyOper || CopyOper->isDeleted())
4696      return true;
4697    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4698      return true;
4699  }
4700
4701  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4702                                     FE = RD->field_end();
4703       FI != FE; ++FI) {
4704    if (FI->isUnnamedBitfield())
4705      continue;
4706
4707    QualType FieldType = Context.getBaseElementType(FI->getType());
4708
4709    // -- a non-static data member of reference type
4710    if (FieldType->isReferenceType())
4711      return true;
4712
4713    // -- a non-static data member of const non-class type (or array thereof)
4714    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4715      return true;
4716
4717    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4718
4719    if (FieldRecord) {
4720      // This is an anonymous union
4721      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4722        // Anonymous unions inside unions do not variant members create
4723        if (!Union) {
4724          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4725                                             UE = FieldRecord->field_end();
4726               UI != UE; ++UI) {
4727            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4728            CXXRecordDecl *UnionFieldRecord =
4729              UnionFieldType->getAsCXXRecordDecl();
4730
4731            // -- a variant member with a non-trivial [copy] assignment operator
4732            //    and X is a union-like class
4733            if (UnionFieldRecord &&
4734                !UnionFieldRecord->hasTrivialCopyAssignment())
4735              return true;
4736          }
4737        }
4738
4739        // Don't try to initalize an anonymous union
4740        continue;
4741      // -- a variant member with a non-trivial [copy] assignment operator
4742      //    and X is a union-like class
4743      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4744          return true;
4745      }
4746
4747      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4748                                                        false, 0);
4749      if (!CopyOper || CopyOper->isDeleted())
4750        return true;
4751      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4752        return true;
4753    }
4754  }
4755
4756  return false;
4757}
4758
4759bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4760  CXXRecordDecl *RD = MD->getParent();
4761  assert(!RD->isDependentType() && "do deletion after instantiation");
4762  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4763    return false;
4764
4765  SourceLocation Loc = MD->getLocation();
4766
4767  // Do access control from the constructor
4768  ContextRAII MethodContext(*this, MD);
4769
4770  bool Union = RD->isUnion();
4771
4772  // We do this because we should never actually use an anonymous
4773  // union's constructor.
4774  if (Union && RD->isAnonymousStructOrUnion())
4775    return false;
4776
4777  // C++0x [class.copy]/20
4778  //    A defaulted [move] assignment operator for class X is defined as deleted
4779  //    if X has:
4780
4781  //    -- for the move constructor, [...] any direct or indirect virtual base
4782  //       class.
4783  if (RD->getNumVBases() != 0)
4784    return true;
4785
4786  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4787                                          BE = RD->bases_end();
4788       BI != BE; ++BI) {
4789
4790    QualType BaseType = BI->getType();
4791    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4792    assert(BaseDecl && "base isn't a CXXRecordDecl");
4793
4794    // -- a [direct base class] B that cannot be [moved] because overload
4795    //    resolution, as applied to B's [move] assignment operator, results in
4796    //    an ambiguity or a function that is deleted or inaccessible from the
4797    //    assignment operator
4798    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4799    if (!MoveOper || MoveOper->isDeleted())
4800      return true;
4801    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4802      return true;
4803
4804    // -- for the move assignment operator, a [direct base class] with a type
4805    //    that does not have a move assignment operator and is not trivially
4806    //    copyable.
4807    if (!MoveOper->isMoveAssignmentOperator() &&
4808        !BaseDecl->isTriviallyCopyable())
4809      return true;
4810  }
4811
4812  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4813                                     FE = RD->field_end();
4814       FI != FE; ++FI) {
4815    if (FI->isUnnamedBitfield())
4816      continue;
4817
4818    QualType FieldType = Context.getBaseElementType(FI->getType());
4819
4820    // -- a non-static data member of reference type
4821    if (FieldType->isReferenceType())
4822      return true;
4823
4824    // -- a non-static data member of const non-class type (or array thereof)
4825    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4826      return true;
4827
4828    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4829
4830    if (FieldRecord) {
4831      // This is an anonymous union
4832      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4833        // Anonymous unions inside unions do not variant members create
4834        if (!Union) {
4835          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4836                                             UE = FieldRecord->field_end();
4837               UI != UE; ++UI) {
4838            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4839            CXXRecordDecl *UnionFieldRecord =
4840              UnionFieldType->getAsCXXRecordDecl();
4841
4842            // -- a variant member with a non-trivial [move] assignment operator
4843            //    and X is a union-like class
4844            if (UnionFieldRecord &&
4845                !UnionFieldRecord->hasTrivialMoveAssignment())
4846              return true;
4847          }
4848        }
4849
4850        // Don't try to initalize an anonymous union
4851        continue;
4852      // -- a variant member with a non-trivial [move] assignment operator
4853      //    and X is a union-like class
4854      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4855          return true;
4856      }
4857
4858      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4859      if (!MoveOper || MoveOper->isDeleted())
4860        return true;
4861      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4862        return true;
4863
4864      // -- for the move assignment operator, a [non-static data member] with a
4865      //    type that does not have a move assignment operator and is not
4866      //    trivially copyable.
4867      if (!MoveOper->isMoveAssignmentOperator() &&
4868          !FieldRecord->isTriviallyCopyable())
4869        return true;
4870    }
4871  }
4872
4873  return false;
4874}
4875
4876bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4877  CXXRecordDecl *RD = DD->getParent();
4878  assert(!RD->isDependentType() && "do deletion after instantiation");
4879  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4880    return false;
4881
4882  SourceLocation Loc = DD->getLocation();
4883
4884  // Do access control from the destructor
4885  ContextRAII CtorContext(*this, DD);
4886
4887  bool Union = RD->isUnion();
4888
4889  // We do this because we should never actually use an anonymous
4890  // union's destructor.
4891  if (Union && RD->isAnonymousStructOrUnion())
4892    return false;
4893
4894  // C++0x [class.dtor]p5
4895  //    A defaulted destructor for a class X is defined as deleted if:
4896  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4897                                          BE = RD->bases_end();
4898       BI != BE; ++BI) {
4899    // We'll handle this one later
4900    if (BI->isVirtual())
4901      continue;
4902
4903    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4904    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4905    assert(BaseDtor && "base has no destructor");
4906
4907    // -- any direct or virtual base class has a deleted destructor or
4908    //    a destructor that is inaccessible from the defaulted destructor
4909    if (BaseDtor->isDeleted())
4910      return true;
4911    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4912        AR_accessible)
4913      return true;
4914  }
4915
4916  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4917                                          BE = RD->vbases_end();
4918       BI != BE; ++BI) {
4919    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4920    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4921    assert(BaseDtor && "base has no destructor");
4922
4923    // -- any direct or virtual base class has a deleted destructor or
4924    //    a destructor that is inaccessible from the defaulted destructor
4925    if (BaseDtor->isDeleted())
4926      return true;
4927    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4928        AR_accessible)
4929      return true;
4930  }
4931
4932  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4933                                     FE = RD->field_end();
4934       FI != FE; ++FI) {
4935    QualType FieldType = Context.getBaseElementType(FI->getType());
4936    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4937    if (FieldRecord) {
4938      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4939         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4940                                            UE = FieldRecord->field_end();
4941              UI != UE; ++UI) {
4942           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4943           CXXRecordDecl *UnionFieldRecord =
4944             UnionFieldType->getAsCXXRecordDecl();
4945
4946           // -- X is a union-like class that has a variant member with a non-
4947           //    trivial destructor.
4948           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4949             return true;
4950         }
4951      // Technically we are supposed to do this next check unconditionally.
4952      // But that makes absolutely no sense.
4953      } else {
4954        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4955
4956        // -- any of the non-static data members has class type M (or array
4957        //    thereof) and M has a deleted destructor or a destructor that is
4958        //    inaccessible from the defaulted destructor
4959        if (FieldDtor->isDeleted())
4960          return true;
4961        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4962          AR_accessible)
4963        return true;
4964
4965        // -- X is a union-like class that has a variant member with a non-
4966        //    trivial destructor.
4967        if (Union && !FieldDtor->isTrivial())
4968          return true;
4969      }
4970    }
4971  }
4972
4973  if (DD->isVirtual()) {
4974    FunctionDecl *OperatorDelete = 0;
4975    DeclarationName Name =
4976      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4977    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4978          false))
4979      return true;
4980  }
4981
4982
4983  return false;
4984}
4985
4986/// \brief Data used with FindHiddenVirtualMethod
4987namespace {
4988  struct FindHiddenVirtualMethodData {
4989    Sema *S;
4990    CXXMethodDecl *Method;
4991    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4992    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4993  };
4994}
4995
4996/// \brief Member lookup function that determines whether a given C++
4997/// method overloads virtual methods in a base class without overriding any,
4998/// to be used with CXXRecordDecl::lookupInBases().
4999static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5000                                    CXXBasePath &Path,
5001                                    void *UserData) {
5002  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5003
5004  FindHiddenVirtualMethodData &Data
5005    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5006
5007  DeclarationName Name = Data.Method->getDeclName();
5008  assert(Name.getNameKind() == DeclarationName::Identifier);
5009
5010  bool foundSameNameMethod = false;
5011  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5012  for (Path.Decls = BaseRecord->lookup(Name);
5013       Path.Decls.first != Path.Decls.second;
5014       ++Path.Decls.first) {
5015    NamedDecl *D = *Path.Decls.first;
5016    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5017      MD = MD->getCanonicalDecl();
5018      foundSameNameMethod = true;
5019      // Interested only in hidden virtual methods.
5020      if (!MD->isVirtual())
5021        continue;
5022      // If the method we are checking overrides a method from its base
5023      // don't warn about the other overloaded methods.
5024      if (!Data.S->IsOverload(Data.Method, MD, false))
5025        return true;
5026      // Collect the overload only if its hidden.
5027      if (!Data.OverridenAndUsingBaseMethods.count(MD))
5028        overloadedMethods.push_back(MD);
5029    }
5030  }
5031
5032  if (foundSameNameMethod)
5033    Data.OverloadedMethods.append(overloadedMethods.begin(),
5034                                   overloadedMethods.end());
5035  return foundSameNameMethod;
5036}
5037
5038/// \brief See if a method overloads virtual methods in a base class without
5039/// overriding any.
5040void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5041  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5042                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5043    return;
5044  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
5045    return;
5046
5047  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5048                     /*bool RecordPaths=*/false,
5049                     /*bool DetectVirtual=*/false);
5050  FindHiddenVirtualMethodData Data;
5051  Data.Method = MD;
5052  Data.S = this;
5053
5054  // Keep the base methods that were overriden or introduced in the subclass
5055  // by 'using' in a set. A base method not in this set is hidden.
5056  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
5057       res.first != res.second; ++res.first) {
5058    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
5059      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5060                                          E = MD->end_overridden_methods();
5061           I != E; ++I)
5062        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
5063    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
5064      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
5065        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
5066  }
5067
5068  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5069      !Data.OverloadedMethods.empty()) {
5070    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5071      << MD << (Data.OverloadedMethods.size() > 1);
5072
5073    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5074      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5075      Diag(overloadedMD->getLocation(),
5076           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5077    }
5078  }
5079}
5080
5081void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5082                                             Decl *TagDecl,
5083                                             SourceLocation LBrac,
5084                                             SourceLocation RBrac,
5085                                             AttributeList *AttrList) {
5086  if (!TagDecl)
5087    return;
5088
5089  AdjustDeclIfTemplate(TagDecl);
5090
5091  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5092              // strict aliasing violation!
5093              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5094              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5095
5096  CheckCompletedCXXClass(
5097                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5098}
5099
5100/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5101/// special functions, such as the default constructor, copy
5102/// constructor, or destructor, to the given C++ class (C++
5103/// [special]p1).  This routine can only be executed just before the
5104/// definition of the class is complete.
5105void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5106  if (!ClassDecl->hasUserDeclaredConstructor())
5107    ++ASTContext::NumImplicitDefaultConstructors;
5108
5109  if (!ClassDecl->hasUserDeclaredCopyConstructor())
5110    ++ASTContext::NumImplicitCopyConstructors;
5111
5112  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
5113    ++ASTContext::NumImplicitMoveConstructors;
5114
5115  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5116    ++ASTContext::NumImplicitCopyAssignmentOperators;
5117
5118    // If we have a dynamic class, then the copy assignment operator may be
5119    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5120    // it shows up in the right place in the vtable and that we diagnose
5121    // problems with the implicit exception specification.
5122    if (ClassDecl->isDynamicClass())
5123      DeclareImplicitCopyAssignment(ClassDecl);
5124  }
5125
5126  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
5127    ++ASTContext::NumImplicitMoveAssignmentOperators;
5128
5129    // Likewise for the move assignment operator.
5130    if (ClassDecl->isDynamicClass())
5131      DeclareImplicitMoveAssignment(ClassDecl);
5132  }
5133
5134  if (!ClassDecl->hasUserDeclaredDestructor()) {
5135    ++ASTContext::NumImplicitDestructors;
5136
5137    // If we have a dynamic class, then the destructor may be virtual, so we
5138    // have to declare the destructor immediately. This ensures that, e.g., it
5139    // shows up in the right place in the vtable and that we diagnose problems
5140    // with the implicit exception specification.
5141    if (ClassDecl->isDynamicClass())
5142      DeclareImplicitDestructor(ClassDecl);
5143  }
5144}
5145
5146void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5147  if (!D)
5148    return;
5149
5150  int NumParamList = D->getNumTemplateParameterLists();
5151  for (int i = 0; i < NumParamList; i++) {
5152    TemplateParameterList* Params = D->getTemplateParameterList(i);
5153    for (TemplateParameterList::iterator Param = Params->begin(),
5154                                      ParamEnd = Params->end();
5155          Param != ParamEnd; ++Param) {
5156      NamedDecl *Named = cast<NamedDecl>(*Param);
5157      if (Named->getDeclName()) {
5158        S->AddDecl(Named);
5159        IdResolver.AddDecl(Named);
5160      }
5161    }
5162  }
5163}
5164
5165void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5166  if (!D)
5167    return;
5168
5169  TemplateParameterList *Params = 0;
5170  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5171    Params = Template->getTemplateParameters();
5172  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5173           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5174    Params = PartialSpec->getTemplateParameters();
5175  else
5176    return;
5177
5178  for (TemplateParameterList::iterator Param = Params->begin(),
5179                                    ParamEnd = Params->end();
5180       Param != ParamEnd; ++Param) {
5181    NamedDecl *Named = cast<NamedDecl>(*Param);
5182    if (Named->getDeclName()) {
5183      S->AddDecl(Named);
5184      IdResolver.AddDecl(Named);
5185    }
5186  }
5187}
5188
5189void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5190  if (!RecordD) return;
5191  AdjustDeclIfTemplate(RecordD);
5192  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5193  PushDeclContext(S, Record);
5194}
5195
5196void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5197  if (!RecordD) return;
5198  PopDeclContext();
5199}
5200
5201/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5202/// parsing a top-level (non-nested) C++ class, and we are now
5203/// parsing those parts of the given Method declaration that could
5204/// not be parsed earlier (C++ [class.mem]p2), such as default
5205/// arguments. This action should enter the scope of the given
5206/// Method declaration as if we had just parsed the qualified method
5207/// name. However, it should not bring the parameters into scope;
5208/// that will be performed by ActOnDelayedCXXMethodParameter.
5209void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5210}
5211
5212/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5213/// C++ method declaration. We're (re-)introducing the given
5214/// function parameter into scope for use in parsing later parts of
5215/// the method declaration. For example, we could see an
5216/// ActOnParamDefaultArgument event for this parameter.
5217void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5218  if (!ParamD)
5219    return;
5220
5221  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5222
5223  // If this parameter has an unparsed default argument, clear it out
5224  // to make way for the parsed default argument.
5225  if (Param->hasUnparsedDefaultArg())
5226    Param->setDefaultArg(0);
5227
5228  S->AddDecl(Param);
5229  if (Param->getDeclName())
5230    IdResolver.AddDecl(Param);
5231}
5232
5233/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5234/// processing the delayed method declaration for Method. The method
5235/// declaration is now considered finished. There may be a separate
5236/// ActOnStartOfFunctionDef action later (not necessarily
5237/// immediately!) for this method, if it was also defined inside the
5238/// class body.
5239void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5240  if (!MethodD)
5241    return;
5242
5243  AdjustDeclIfTemplate(MethodD);
5244
5245  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5246
5247  // Now that we have our default arguments, check the constructor
5248  // again. It could produce additional diagnostics or affect whether
5249  // the class has implicitly-declared destructors, among other
5250  // things.
5251  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5252    CheckConstructor(Constructor);
5253
5254  // Check the default arguments, which we may have added.
5255  if (!Method->isInvalidDecl())
5256    CheckCXXDefaultArguments(Method);
5257}
5258
5259/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5260/// the well-formedness of the constructor declarator @p D with type @p
5261/// R. If there are any errors in the declarator, this routine will
5262/// emit diagnostics and set the invalid bit to true.  In any case, the type
5263/// will be updated to reflect a well-formed type for the constructor and
5264/// returned.
5265QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5266                                          StorageClass &SC) {
5267  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5268
5269  // C++ [class.ctor]p3:
5270  //   A constructor shall not be virtual (10.3) or static (9.4). A
5271  //   constructor can be invoked for a const, volatile or const
5272  //   volatile object. A constructor shall not be declared const,
5273  //   volatile, or const volatile (9.3.2).
5274  if (isVirtual) {
5275    if (!D.isInvalidType())
5276      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5277        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5278        << SourceRange(D.getIdentifierLoc());
5279    D.setInvalidType();
5280  }
5281  if (SC == SC_Static) {
5282    if (!D.isInvalidType())
5283      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5284        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5285        << SourceRange(D.getIdentifierLoc());
5286    D.setInvalidType();
5287    SC = SC_None;
5288  }
5289
5290  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5291  if (FTI.TypeQuals != 0) {
5292    if (FTI.TypeQuals & Qualifiers::Const)
5293      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5294        << "const" << SourceRange(D.getIdentifierLoc());
5295    if (FTI.TypeQuals & Qualifiers::Volatile)
5296      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5297        << "volatile" << SourceRange(D.getIdentifierLoc());
5298    if (FTI.TypeQuals & Qualifiers::Restrict)
5299      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5300        << "restrict" << SourceRange(D.getIdentifierLoc());
5301    D.setInvalidType();
5302  }
5303
5304  // C++0x [class.ctor]p4:
5305  //   A constructor shall not be declared with a ref-qualifier.
5306  if (FTI.hasRefQualifier()) {
5307    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5308      << FTI.RefQualifierIsLValueRef
5309      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5310    D.setInvalidType();
5311  }
5312
5313  // Rebuild the function type "R" without any type qualifiers (in
5314  // case any of the errors above fired) and with "void" as the
5315  // return type, since constructors don't have return types.
5316  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5317  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5318    return R;
5319
5320  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5321  EPI.TypeQuals = 0;
5322  EPI.RefQualifier = RQ_None;
5323
5324  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5325                                 Proto->getNumArgs(), EPI);
5326}
5327
5328/// CheckConstructor - Checks a fully-formed constructor for
5329/// well-formedness, issuing any diagnostics required. Returns true if
5330/// the constructor declarator is invalid.
5331void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5332  CXXRecordDecl *ClassDecl
5333    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5334  if (!ClassDecl)
5335    return Constructor->setInvalidDecl();
5336
5337  // C++ [class.copy]p3:
5338  //   A declaration of a constructor for a class X is ill-formed if
5339  //   its first parameter is of type (optionally cv-qualified) X and
5340  //   either there are no other parameters or else all other
5341  //   parameters have default arguments.
5342  if (!Constructor->isInvalidDecl() &&
5343      ((Constructor->getNumParams() == 1) ||
5344       (Constructor->getNumParams() > 1 &&
5345        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5346      Constructor->getTemplateSpecializationKind()
5347                                              != TSK_ImplicitInstantiation) {
5348    QualType ParamType = Constructor->getParamDecl(0)->getType();
5349    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5350    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5351      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5352      const char *ConstRef
5353        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5354                                                        : " const &";
5355      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5356        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5357
5358      // FIXME: Rather that making the constructor invalid, we should endeavor
5359      // to fix the type.
5360      Constructor->setInvalidDecl();
5361    }
5362  }
5363}
5364
5365/// CheckDestructor - Checks a fully-formed destructor definition for
5366/// well-formedness, issuing any diagnostics required.  Returns true
5367/// on error.
5368bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5369  CXXRecordDecl *RD = Destructor->getParent();
5370
5371  if (Destructor->isVirtual()) {
5372    SourceLocation Loc;
5373
5374    if (!Destructor->isImplicit())
5375      Loc = Destructor->getLocation();
5376    else
5377      Loc = RD->getLocation();
5378
5379    // If we have a virtual destructor, look up the deallocation function
5380    FunctionDecl *OperatorDelete = 0;
5381    DeclarationName Name =
5382    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5383    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5384      return true;
5385
5386    MarkFunctionReferenced(Loc, OperatorDelete);
5387
5388    Destructor->setOperatorDelete(OperatorDelete);
5389  }
5390
5391  return false;
5392}
5393
5394static inline bool
5395FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5396  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5397          FTI.ArgInfo[0].Param &&
5398          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5399}
5400
5401/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5402/// the well-formednes of the destructor declarator @p D with type @p
5403/// R. If there are any errors in the declarator, this routine will
5404/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5405/// will be updated to reflect a well-formed type for the destructor and
5406/// returned.
5407QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5408                                         StorageClass& SC) {
5409  // C++ [class.dtor]p1:
5410  //   [...] A typedef-name that names a class is a class-name
5411  //   (7.1.3); however, a typedef-name that names a class shall not
5412  //   be used as the identifier in the declarator for a destructor
5413  //   declaration.
5414  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5415  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5416    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5417      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5418  else if (const TemplateSpecializationType *TST =
5419             DeclaratorType->getAs<TemplateSpecializationType>())
5420    if (TST->isTypeAlias())
5421      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5422        << DeclaratorType << 1;
5423
5424  // C++ [class.dtor]p2:
5425  //   A destructor is used to destroy objects of its class type. A
5426  //   destructor takes no parameters, and no return type can be
5427  //   specified for it (not even void). The address of a destructor
5428  //   shall not be taken. A destructor shall not be static. A
5429  //   destructor can be invoked for a const, volatile or const
5430  //   volatile object. A destructor shall not be declared const,
5431  //   volatile or const volatile (9.3.2).
5432  if (SC == SC_Static) {
5433    if (!D.isInvalidType())
5434      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5435        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5436        << SourceRange(D.getIdentifierLoc())
5437        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5438
5439    SC = SC_None;
5440  }
5441  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5442    // Destructors don't have return types, but the parser will
5443    // happily parse something like:
5444    //
5445    //   class X {
5446    //     float ~X();
5447    //   };
5448    //
5449    // The return type will be eliminated later.
5450    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5451      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5452      << SourceRange(D.getIdentifierLoc());
5453  }
5454
5455  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5456  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5457    if (FTI.TypeQuals & Qualifiers::Const)
5458      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5459        << "const" << SourceRange(D.getIdentifierLoc());
5460    if (FTI.TypeQuals & Qualifiers::Volatile)
5461      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5462        << "volatile" << SourceRange(D.getIdentifierLoc());
5463    if (FTI.TypeQuals & Qualifiers::Restrict)
5464      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5465        << "restrict" << SourceRange(D.getIdentifierLoc());
5466    D.setInvalidType();
5467  }
5468
5469  // C++0x [class.dtor]p2:
5470  //   A destructor shall not be declared with a ref-qualifier.
5471  if (FTI.hasRefQualifier()) {
5472    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5473      << FTI.RefQualifierIsLValueRef
5474      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5475    D.setInvalidType();
5476  }
5477
5478  // Make sure we don't have any parameters.
5479  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5480    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5481
5482    // Delete the parameters.
5483    FTI.freeArgs();
5484    D.setInvalidType();
5485  }
5486
5487  // Make sure the destructor isn't variadic.
5488  if (FTI.isVariadic) {
5489    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5490    D.setInvalidType();
5491  }
5492
5493  // Rebuild the function type "R" without any type qualifiers or
5494  // parameters (in case any of the errors above fired) and with
5495  // "void" as the return type, since destructors don't have return
5496  // types.
5497  if (!D.isInvalidType())
5498    return R;
5499
5500  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5501  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5502  EPI.Variadic = false;
5503  EPI.TypeQuals = 0;
5504  EPI.RefQualifier = RQ_None;
5505  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5506}
5507
5508/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5509/// well-formednes of the conversion function declarator @p D with
5510/// type @p R. If there are any errors in the declarator, this routine
5511/// will emit diagnostics and return true. Otherwise, it will return
5512/// false. Either way, the type @p R will be updated to reflect a
5513/// well-formed type for the conversion operator.
5514void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5515                                     StorageClass& SC) {
5516  // C++ [class.conv.fct]p1:
5517  //   Neither parameter types nor return type can be specified. The
5518  //   type of a conversion function (8.3.5) is "function taking no
5519  //   parameter returning conversion-type-id."
5520  if (SC == SC_Static) {
5521    if (!D.isInvalidType())
5522      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5523        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5524        << SourceRange(D.getIdentifierLoc());
5525    D.setInvalidType();
5526    SC = SC_None;
5527  }
5528
5529  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5530
5531  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5532    // Conversion functions don't have return types, but the parser will
5533    // happily parse something like:
5534    //
5535    //   class X {
5536    //     float operator bool();
5537    //   };
5538    //
5539    // The return type will be changed later anyway.
5540    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5541      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5542      << SourceRange(D.getIdentifierLoc());
5543    D.setInvalidType();
5544  }
5545
5546  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5547
5548  // Make sure we don't have any parameters.
5549  if (Proto->getNumArgs() > 0) {
5550    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5551
5552    // Delete the parameters.
5553    D.getFunctionTypeInfo().freeArgs();
5554    D.setInvalidType();
5555  } else if (Proto->isVariadic()) {
5556    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5557    D.setInvalidType();
5558  }
5559
5560  // Diagnose "&operator bool()" and other such nonsense.  This
5561  // is actually a gcc extension which we don't support.
5562  if (Proto->getResultType() != ConvType) {
5563    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5564      << Proto->getResultType();
5565    D.setInvalidType();
5566    ConvType = Proto->getResultType();
5567  }
5568
5569  // C++ [class.conv.fct]p4:
5570  //   The conversion-type-id shall not represent a function type nor
5571  //   an array type.
5572  if (ConvType->isArrayType()) {
5573    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5574    ConvType = Context.getPointerType(ConvType);
5575    D.setInvalidType();
5576  } else if (ConvType->isFunctionType()) {
5577    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5578    ConvType = Context.getPointerType(ConvType);
5579    D.setInvalidType();
5580  }
5581
5582  // Rebuild the function type "R" without any parameters (in case any
5583  // of the errors above fired) and with the conversion type as the
5584  // return type.
5585  if (D.isInvalidType())
5586    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5587
5588  // C++0x explicit conversion operators.
5589  if (D.getDeclSpec().isExplicitSpecified())
5590    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5591         getLangOptions().CPlusPlus0x ?
5592           diag::warn_cxx98_compat_explicit_conversion_functions :
5593           diag::ext_explicit_conversion_functions)
5594      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5595}
5596
5597/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5598/// the declaration of the given C++ conversion function. This routine
5599/// is responsible for recording the conversion function in the C++
5600/// class, if possible.
5601Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5602  assert(Conversion && "Expected to receive a conversion function declaration");
5603
5604  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5605
5606  // Make sure we aren't redeclaring the conversion function.
5607  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5608
5609  // C++ [class.conv.fct]p1:
5610  //   [...] A conversion function is never used to convert a
5611  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5612  //   same object type (or a reference to it), to a (possibly
5613  //   cv-qualified) base class of that type (or a reference to it),
5614  //   or to (possibly cv-qualified) void.
5615  // FIXME: Suppress this warning if the conversion function ends up being a
5616  // virtual function that overrides a virtual function in a base class.
5617  QualType ClassType
5618    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5619  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5620    ConvType = ConvTypeRef->getPointeeType();
5621  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5622      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5623    /* Suppress diagnostics for instantiations. */;
5624  else if (ConvType->isRecordType()) {
5625    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5626    if (ConvType == ClassType)
5627      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5628        << ClassType;
5629    else if (IsDerivedFrom(ClassType, ConvType))
5630      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5631        <<  ClassType << ConvType;
5632  } else if (ConvType->isVoidType()) {
5633    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5634      << ClassType << ConvType;
5635  }
5636
5637  if (FunctionTemplateDecl *ConversionTemplate
5638                                = Conversion->getDescribedFunctionTemplate())
5639    return ConversionTemplate;
5640
5641  return Conversion;
5642}
5643
5644//===----------------------------------------------------------------------===//
5645// Namespace Handling
5646//===----------------------------------------------------------------------===//
5647
5648
5649
5650/// ActOnStartNamespaceDef - This is called at the start of a namespace
5651/// definition.
5652Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5653                                   SourceLocation InlineLoc,
5654                                   SourceLocation NamespaceLoc,
5655                                   SourceLocation IdentLoc,
5656                                   IdentifierInfo *II,
5657                                   SourceLocation LBrace,
5658                                   AttributeList *AttrList) {
5659  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5660  // For anonymous namespace, take the location of the left brace.
5661  SourceLocation Loc = II ? IdentLoc : LBrace;
5662  bool IsInline = InlineLoc.isValid();
5663  bool IsInvalid = false;
5664  bool IsStd = false;
5665  bool AddToKnown = false;
5666  Scope *DeclRegionScope = NamespcScope->getParent();
5667
5668  NamespaceDecl *PrevNS = 0;
5669  if (II) {
5670    // C++ [namespace.def]p2:
5671    //   The identifier in an original-namespace-definition shall not
5672    //   have been previously defined in the declarative region in
5673    //   which the original-namespace-definition appears. The
5674    //   identifier in an original-namespace-definition is the name of
5675    //   the namespace. Subsequently in that declarative region, it is
5676    //   treated as an original-namespace-name.
5677    //
5678    // Since namespace names are unique in their scope, and we don't
5679    // look through using directives, just look for any ordinary names.
5680
5681    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5682    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5683    Decl::IDNS_Namespace;
5684    NamedDecl *PrevDecl = 0;
5685    for (DeclContext::lookup_result R
5686         = CurContext->getRedeclContext()->lookup(II);
5687         R.first != R.second; ++R.first) {
5688      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5689        PrevDecl = *R.first;
5690        break;
5691      }
5692    }
5693
5694    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5695
5696    if (PrevNS) {
5697      // This is an extended namespace definition.
5698      if (IsInline != PrevNS->isInline()) {
5699        // inline-ness must match
5700        if (PrevNS->isInline()) {
5701          // The user probably just forgot the 'inline', so suggest that it
5702          // be added back.
5703          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5704            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5705        } else {
5706          Diag(Loc, diag::err_inline_namespace_mismatch)
5707            << IsInline;
5708        }
5709        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5710
5711        IsInline = PrevNS->isInline();
5712      }
5713    } else if (PrevDecl) {
5714      // This is an invalid name redefinition.
5715      Diag(Loc, diag::err_redefinition_different_kind)
5716        << II;
5717      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5718      IsInvalid = true;
5719      // Continue on to push Namespc as current DeclContext and return it.
5720    } else if (II->isStr("std") &&
5721               CurContext->getRedeclContext()->isTranslationUnit()) {
5722      // This is the first "real" definition of the namespace "std", so update
5723      // our cache of the "std" namespace to point at this definition.
5724      PrevNS = getStdNamespace();
5725      IsStd = true;
5726      AddToKnown = !IsInline;
5727    } else {
5728      // We've seen this namespace for the first time.
5729      AddToKnown = !IsInline;
5730    }
5731  } else {
5732    // Anonymous namespaces.
5733
5734    // Determine whether the parent already has an anonymous namespace.
5735    DeclContext *Parent = CurContext->getRedeclContext();
5736    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5737      PrevNS = TU->getAnonymousNamespace();
5738    } else {
5739      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5740      PrevNS = ND->getAnonymousNamespace();
5741    }
5742
5743    if (PrevNS && IsInline != PrevNS->isInline()) {
5744      // inline-ness must match
5745      Diag(Loc, diag::err_inline_namespace_mismatch)
5746        << IsInline;
5747      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5748
5749      // Recover by ignoring the new namespace's inline status.
5750      IsInline = PrevNS->isInline();
5751    }
5752  }
5753
5754  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5755                                                 StartLoc, Loc, II, PrevNS);
5756  if (IsInvalid)
5757    Namespc->setInvalidDecl();
5758
5759  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5760
5761  // FIXME: Should we be merging attributes?
5762  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5763    PushNamespaceVisibilityAttr(Attr, Loc);
5764
5765  if (IsStd)
5766    StdNamespace = Namespc;
5767  if (AddToKnown)
5768    KnownNamespaces[Namespc] = false;
5769
5770  if (II) {
5771    PushOnScopeChains(Namespc, DeclRegionScope);
5772  } else {
5773    // Link the anonymous namespace into its parent.
5774    DeclContext *Parent = CurContext->getRedeclContext();
5775    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5776      TU->setAnonymousNamespace(Namespc);
5777    } else {
5778      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5779    }
5780
5781    CurContext->addDecl(Namespc);
5782
5783    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5784    //   behaves as if it were replaced by
5785    //     namespace unique { /* empty body */ }
5786    //     using namespace unique;
5787    //     namespace unique { namespace-body }
5788    //   where all occurrences of 'unique' in a translation unit are
5789    //   replaced by the same identifier and this identifier differs
5790    //   from all other identifiers in the entire program.
5791
5792    // We just create the namespace with an empty name and then add an
5793    // implicit using declaration, just like the standard suggests.
5794    //
5795    // CodeGen enforces the "universally unique" aspect by giving all
5796    // declarations semantically contained within an anonymous
5797    // namespace internal linkage.
5798
5799    if (!PrevNS) {
5800      UsingDirectiveDecl* UD
5801        = UsingDirectiveDecl::Create(Context, CurContext,
5802                                     /* 'using' */ LBrace,
5803                                     /* 'namespace' */ SourceLocation(),
5804                                     /* qualifier */ NestedNameSpecifierLoc(),
5805                                     /* identifier */ SourceLocation(),
5806                                     Namespc,
5807                                     /* Ancestor */ CurContext);
5808      UD->setImplicit();
5809      CurContext->addDecl(UD);
5810    }
5811  }
5812
5813  // Although we could have an invalid decl (i.e. the namespace name is a
5814  // redefinition), push it as current DeclContext and try to continue parsing.
5815  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5816  // for the namespace has the declarations that showed up in that particular
5817  // namespace definition.
5818  PushDeclContext(NamespcScope, Namespc);
5819  return Namespc;
5820}
5821
5822/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5823/// is a namespace alias, returns the namespace it points to.
5824static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5825  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5826    return AD->getNamespace();
5827  return dyn_cast_or_null<NamespaceDecl>(D);
5828}
5829
5830/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5831/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5832void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5833  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5834  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5835  Namespc->setRBraceLoc(RBrace);
5836  PopDeclContext();
5837  if (Namespc->hasAttr<VisibilityAttr>())
5838    PopPragmaVisibility(true, RBrace);
5839}
5840
5841CXXRecordDecl *Sema::getStdBadAlloc() const {
5842  return cast_or_null<CXXRecordDecl>(
5843                                  StdBadAlloc.get(Context.getExternalSource()));
5844}
5845
5846NamespaceDecl *Sema::getStdNamespace() const {
5847  return cast_or_null<NamespaceDecl>(
5848                                 StdNamespace.get(Context.getExternalSource()));
5849}
5850
5851/// \brief Retrieve the special "std" namespace, which may require us to
5852/// implicitly define the namespace.
5853NamespaceDecl *Sema::getOrCreateStdNamespace() {
5854  if (!StdNamespace) {
5855    // The "std" namespace has not yet been defined, so build one implicitly.
5856    StdNamespace = NamespaceDecl::Create(Context,
5857                                         Context.getTranslationUnitDecl(),
5858                                         /*Inline=*/false,
5859                                         SourceLocation(), SourceLocation(),
5860                                         &PP.getIdentifierTable().get("std"),
5861                                         /*PrevDecl=*/0);
5862    getStdNamespace()->setImplicit(true);
5863  }
5864
5865  return getStdNamespace();
5866}
5867
5868bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5869  assert(getLangOptions().CPlusPlus &&
5870         "Looking for std::initializer_list outside of C++.");
5871
5872  // We're looking for implicit instantiations of
5873  // template <typename E> class std::initializer_list.
5874
5875  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5876    return false;
5877
5878  ClassTemplateDecl *Template = 0;
5879  const TemplateArgument *Arguments = 0;
5880
5881  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5882
5883    ClassTemplateSpecializationDecl *Specialization =
5884        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5885    if (!Specialization)
5886      return false;
5887
5888    Template = Specialization->getSpecializedTemplate();
5889    Arguments = Specialization->getTemplateArgs().data();
5890  } else if (const TemplateSpecializationType *TST =
5891                 Ty->getAs<TemplateSpecializationType>()) {
5892    Template = dyn_cast_or_null<ClassTemplateDecl>(
5893        TST->getTemplateName().getAsTemplateDecl());
5894    Arguments = TST->getArgs();
5895  }
5896  if (!Template)
5897    return false;
5898
5899  if (!StdInitializerList) {
5900    // Haven't recognized std::initializer_list yet, maybe this is it.
5901    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5902    if (TemplateClass->getIdentifier() !=
5903            &PP.getIdentifierTable().get("initializer_list") ||
5904        !getStdNamespace()->InEnclosingNamespaceSetOf(
5905            TemplateClass->getDeclContext()))
5906      return false;
5907    // This is a template called std::initializer_list, but is it the right
5908    // template?
5909    TemplateParameterList *Params = Template->getTemplateParameters();
5910    if (Params->getMinRequiredArguments() != 1)
5911      return false;
5912    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5913      return false;
5914
5915    // It's the right template.
5916    StdInitializerList = Template;
5917  }
5918
5919  if (Template != StdInitializerList)
5920    return false;
5921
5922  // This is an instance of std::initializer_list. Find the argument type.
5923  if (Element)
5924    *Element = Arguments[0].getAsType();
5925  return true;
5926}
5927
5928static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5929  NamespaceDecl *Std = S.getStdNamespace();
5930  if (!Std) {
5931    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5932    return 0;
5933  }
5934
5935  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5936                      Loc, Sema::LookupOrdinaryName);
5937  if (!S.LookupQualifiedName(Result, Std)) {
5938    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5939    return 0;
5940  }
5941  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5942  if (!Template) {
5943    Result.suppressDiagnostics();
5944    // We found something weird. Complain about the first thing we found.
5945    NamedDecl *Found = *Result.begin();
5946    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5947    return 0;
5948  }
5949
5950  // We found some template called std::initializer_list. Now verify that it's
5951  // correct.
5952  TemplateParameterList *Params = Template->getTemplateParameters();
5953  if (Params->getMinRequiredArguments() != 1 ||
5954      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5955    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5956    return 0;
5957  }
5958
5959  return Template;
5960}
5961
5962QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5963  if (!StdInitializerList) {
5964    StdInitializerList = LookupStdInitializerList(*this, Loc);
5965    if (!StdInitializerList)
5966      return QualType();
5967  }
5968
5969  TemplateArgumentListInfo Args(Loc, Loc);
5970  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5971                                       Context.getTrivialTypeSourceInfo(Element,
5972                                                                        Loc)));
5973  return Context.getCanonicalType(
5974      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5975}
5976
5977bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5978  // C++ [dcl.init.list]p2:
5979  //   A constructor is an initializer-list constructor if its first parameter
5980  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5981  //   std::initializer_list<E> for some type E, and either there are no other
5982  //   parameters or else all other parameters have default arguments.
5983  if (Ctor->getNumParams() < 1 ||
5984      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5985    return false;
5986
5987  QualType ArgType = Ctor->getParamDecl(0)->getType();
5988  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5989    ArgType = RT->getPointeeType().getUnqualifiedType();
5990
5991  return isStdInitializerList(ArgType, 0);
5992}
5993
5994/// \brief Determine whether a using statement is in a context where it will be
5995/// apply in all contexts.
5996static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5997  switch (CurContext->getDeclKind()) {
5998    case Decl::TranslationUnit:
5999      return true;
6000    case Decl::LinkageSpec:
6001      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
6002    default:
6003      return false;
6004  }
6005}
6006
6007namespace {
6008
6009// Callback to only accept typo corrections that are namespaces.
6010class NamespaceValidatorCCC : public CorrectionCandidateCallback {
6011 public:
6012  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
6013    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
6014      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
6015    }
6016    return false;
6017  }
6018};
6019
6020}
6021
6022static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6023                                       CXXScopeSpec &SS,
6024                                       SourceLocation IdentLoc,
6025                                       IdentifierInfo *Ident) {
6026  NamespaceValidatorCCC Validator;
6027  R.clear();
6028  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6029                                               R.getLookupKind(), Sc, &SS,
6030                                               Validator)) {
6031    std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
6032    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
6033    if (DeclContext *DC = S.computeDeclContext(SS, false))
6034      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
6035        << Ident << DC << CorrectedQuotedStr << SS.getRange()
6036        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6037    else
6038      S.Diag(IdentLoc, diag::err_using_directive_suggest)
6039        << Ident << CorrectedQuotedStr
6040        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6041
6042    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
6043         diag::note_namespace_defined_here) << CorrectedQuotedStr;
6044
6045    Ident = Corrected.getCorrectionAsIdentifierInfo();
6046    R.addDecl(Corrected.getCorrectionDecl());
6047    return true;
6048  }
6049  return false;
6050}
6051
6052Decl *Sema::ActOnUsingDirective(Scope *S,
6053                                          SourceLocation UsingLoc,
6054                                          SourceLocation NamespcLoc,
6055                                          CXXScopeSpec &SS,
6056                                          SourceLocation IdentLoc,
6057                                          IdentifierInfo *NamespcName,
6058                                          AttributeList *AttrList) {
6059  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6060  assert(NamespcName && "Invalid NamespcName.");
6061  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6062
6063  // This can only happen along a recovery path.
6064  while (S->getFlags() & Scope::TemplateParamScope)
6065    S = S->getParent();
6066  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6067
6068  UsingDirectiveDecl *UDir = 0;
6069  NestedNameSpecifier *Qualifier = 0;
6070  if (SS.isSet())
6071    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6072
6073  // Lookup namespace name.
6074  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6075  LookupParsedName(R, S, &SS);
6076  if (R.isAmbiguous())
6077    return 0;
6078
6079  if (R.empty()) {
6080    R.clear();
6081    // Allow "using namespace std;" or "using namespace ::std;" even if
6082    // "std" hasn't been defined yet, for GCC compatibility.
6083    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6084        NamespcName->isStr("std")) {
6085      Diag(IdentLoc, diag::ext_using_undefined_std);
6086      R.addDecl(getOrCreateStdNamespace());
6087      R.resolveKind();
6088    }
6089    // Otherwise, attempt typo correction.
6090    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6091  }
6092
6093  if (!R.empty()) {
6094    NamedDecl *Named = R.getFoundDecl();
6095    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6096        && "expected namespace decl");
6097    // C++ [namespace.udir]p1:
6098    //   A using-directive specifies that the names in the nominated
6099    //   namespace can be used in the scope in which the
6100    //   using-directive appears after the using-directive. During
6101    //   unqualified name lookup (3.4.1), the names appear as if they
6102    //   were declared in the nearest enclosing namespace which
6103    //   contains both the using-directive and the nominated
6104    //   namespace. [Note: in this context, "contains" means "contains
6105    //   directly or indirectly". ]
6106
6107    // Find enclosing context containing both using-directive and
6108    // nominated namespace.
6109    NamespaceDecl *NS = getNamespaceDecl(Named);
6110    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6111    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6112      CommonAncestor = CommonAncestor->getParent();
6113
6114    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6115                                      SS.getWithLocInContext(Context),
6116                                      IdentLoc, Named, CommonAncestor);
6117
6118    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6119        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6120      Diag(IdentLoc, diag::warn_using_directive_in_header);
6121    }
6122
6123    PushUsingDirective(S, UDir);
6124  } else {
6125    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6126  }
6127
6128  // FIXME: We ignore attributes for now.
6129  return UDir;
6130}
6131
6132void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6133  // If scope has associated entity, then using directive is at namespace
6134  // or translation unit scope. We add UsingDirectiveDecls, into
6135  // it's lookup structure.
6136  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
6137    Ctx->addDecl(UDir);
6138  else
6139    // Otherwise it is block-sope. using-directives will affect lookup
6140    // only to the end of scope.
6141    S->PushUsingDirective(UDir);
6142}
6143
6144
6145Decl *Sema::ActOnUsingDeclaration(Scope *S,
6146                                  AccessSpecifier AS,
6147                                  bool HasUsingKeyword,
6148                                  SourceLocation UsingLoc,
6149                                  CXXScopeSpec &SS,
6150                                  UnqualifiedId &Name,
6151                                  AttributeList *AttrList,
6152                                  bool IsTypeName,
6153                                  SourceLocation TypenameLoc) {
6154  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6155
6156  switch (Name.getKind()) {
6157  case UnqualifiedId::IK_ImplicitSelfParam:
6158  case UnqualifiedId::IK_Identifier:
6159  case UnqualifiedId::IK_OperatorFunctionId:
6160  case UnqualifiedId::IK_LiteralOperatorId:
6161  case UnqualifiedId::IK_ConversionFunctionId:
6162    break;
6163
6164  case UnqualifiedId::IK_ConstructorName:
6165  case UnqualifiedId::IK_ConstructorTemplateId:
6166    // C++0x inherited constructors.
6167    Diag(Name.getSourceRange().getBegin(),
6168         getLangOptions().CPlusPlus0x ?
6169           diag::warn_cxx98_compat_using_decl_constructor :
6170           diag::err_using_decl_constructor)
6171      << SS.getRange();
6172
6173    if (getLangOptions().CPlusPlus0x) break;
6174
6175    return 0;
6176
6177  case UnqualifiedId::IK_DestructorName:
6178    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
6179      << SS.getRange();
6180    return 0;
6181
6182  case UnqualifiedId::IK_TemplateId:
6183    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
6184      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6185    return 0;
6186  }
6187
6188  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6189  DeclarationName TargetName = TargetNameInfo.getName();
6190  if (!TargetName)
6191    return 0;
6192
6193  // Warn about using declarations.
6194  // TODO: store that the declaration was written without 'using' and
6195  // talk about access decls instead of using decls in the
6196  // diagnostics.
6197  if (!HasUsingKeyword) {
6198    UsingLoc = Name.getSourceRange().getBegin();
6199
6200    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6201      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6202  }
6203
6204  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6205      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6206    return 0;
6207
6208  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6209                                        TargetNameInfo, AttrList,
6210                                        /* IsInstantiation */ false,
6211                                        IsTypeName, TypenameLoc);
6212  if (UD)
6213    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6214
6215  return UD;
6216}
6217
6218/// \brief Determine whether a using declaration considers the given
6219/// declarations as "equivalent", e.g., if they are redeclarations of
6220/// the same entity or are both typedefs of the same type.
6221static bool
6222IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6223                         bool &SuppressRedeclaration) {
6224  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6225    SuppressRedeclaration = false;
6226    return true;
6227  }
6228
6229  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6230    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6231      SuppressRedeclaration = true;
6232      return Context.hasSameType(TD1->getUnderlyingType(),
6233                                 TD2->getUnderlyingType());
6234    }
6235
6236  return false;
6237}
6238
6239
6240/// Determines whether to create a using shadow decl for a particular
6241/// decl, given the set of decls existing prior to this using lookup.
6242bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6243                                const LookupResult &Previous) {
6244  // Diagnose finding a decl which is not from a base class of the
6245  // current class.  We do this now because there are cases where this
6246  // function will silently decide not to build a shadow decl, which
6247  // will pre-empt further diagnostics.
6248  //
6249  // We don't need to do this in C++0x because we do the check once on
6250  // the qualifier.
6251  //
6252  // FIXME: diagnose the following if we care enough:
6253  //   struct A { int foo; };
6254  //   struct B : A { using A::foo; };
6255  //   template <class T> struct C : A {};
6256  //   template <class T> struct D : C<T> { using B::foo; } // <---
6257  // This is invalid (during instantiation) in C++03 because B::foo
6258  // resolves to the using decl in B, which is not a base class of D<T>.
6259  // We can't diagnose it immediately because C<T> is an unknown
6260  // specialization.  The UsingShadowDecl in D<T> then points directly
6261  // to A::foo, which will look well-formed when we instantiate.
6262  // The right solution is to not collapse the shadow-decl chain.
6263  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
6264    DeclContext *OrigDC = Orig->getDeclContext();
6265
6266    // Handle enums and anonymous structs.
6267    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6268    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6269    while (OrigRec->isAnonymousStructOrUnion())
6270      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6271
6272    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6273      if (OrigDC == CurContext) {
6274        Diag(Using->getLocation(),
6275             diag::err_using_decl_nested_name_specifier_is_current_class)
6276          << Using->getQualifierLoc().getSourceRange();
6277        Diag(Orig->getLocation(), diag::note_using_decl_target);
6278        return true;
6279      }
6280
6281      Diag(Using->getQualifierLoc().getBeginLoc(),
6282           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6283        << Using->getQualifier()
6284        << cast<CXXRecordDecl>(CurContext)
6285        << Using->getQualifierLoc().getSourceRange();
6286      Diag(Orig->getLocation(), diag::note_using_decl_target);
6287      return true;
6288    }
6289  }
6290
6291  if (Previous.empty()) return false;
6292
6293  NamedDecl *Target = Orig;
6294  if (isa<UsingShadowDecl>(Target))
6295    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6296
6297  // If the target happens to be one of the previous declarations, we
6298  // don't have a conflict.
6299  //
6300  // FIXME: but we might be increasing its access, in which case we
6301  // should redeclare it.
6302  NamedDecl *NonTag = 0, *Tag = 0;
6303  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6304         I != E; ++I) {
6305    NamedDecl *D = (*I)->getUnderlyingDecl();
6306    bool Result;
6307    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6308      return Result;
6309
6310    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6311  }
6312
6313  if (Target->isFunctionOrFunctionTemplate()) {
6314    FunctionDecl *FD;
6315    if (isa<FunctionTemplateDecl>(Target))
6316      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6317    else
6318      FD = cast<FunctionDecl>(Target);
6319
6320    NamedDecl *OldDecl = 0;
6321    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6322    case Ovl_Overload:
6323      return false;
6324
6325    case Ovl_NonFunction:
6326      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6327      break;
6328
6329    // We found a decl with the exact signature.
6330    case Ovl_Match:
6331      // If we're in a record, we want to hide the target, so we
6332      // return true (without a diagnostic) to tell the caller not to
6333      // build a shadow decl.
6334      if (CurContext->isRecord())
6335        return true;
6336
6337      // If we're not in a record, this is an error.
6338      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6339      break;
6340    }
6341
6342    Diag(Target->getLocation(), diag::note_using_decl_target);
6343    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6344    return true;
6345  }
6346
6347  // Target is not a function.
6348
6349  if (isa<TagDecl>(Target)) {
6350    // No conflict between a tag and a non-tag.
6351    if (!Tag) return false;
6352
6353    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6354    Diag(Target->getLocation(), diag::note_using_decl_target);
6355    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6356    return true;
6357  }
6358
6359  // No conflict between a tag and a non-tag.
6360  if (!NonTag) return false;
6361
6362  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6363  Diag(Target->getLocation(), diag::note_using_decl_target);
6364  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6365  return true;
6366}
6367
6368/// Builds a shadow declaration corresponding to a 'using' declaration.
6369UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6370                                            UsingDecl *UD,
6371                                            NamedDecl *Orig) {
6372
6373  // If we resolved to another shadow declaration, just coalesce them.
6374  NamedDecl *Target = Orig;
6375  if (isa<UsingShadowDecl>(Target)) {
6376    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6377    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6378  }
6379
6380  UsingShadowDecl *Shadow
6381    = UsingShadowDecl::Create(Context, CurContext,
6382                              UD->getLocation(), UD, Target);
6383  UD->addShadowDecl(Shadow);
6384
6385  Shadow->setAccess(UD->getAccess());
6386  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6387    Shadow->setInvalidDecl();
6388
6389  if (S)
6390    PushOnScopeChains(Shadow, S);
6391  else
6392    CurContext->addDecl(Shadow);
6393
6394
6395  return Shadow;
6396}
6397
6398/// Hides a using shadow declaration.  This is required by the current
6399/// using-decl implementation when a resolvable using declaration in a
6400/// class is followed by a declaration which would hide or override
6401/// one or more of the using decl's targets; for example:
6402///
6403///   struct Base { void foo(int); };
6404///   struct Derived : Base {
6405///     using Base::foo;
6406///     void foo(int);
6407///   };
6408///
6409/// The governing language is C++03 [namespace.udecl]p12:
6410///
6411///   When a using-declaration brings names from a base class into a
6412///   derived class scope, member functions in the derived class
6413///   override and/or hide member functions with the same name and
6414///   parameter types in a base class (rather than conflicting).
6415///
6416/// There are two ways to implement this:
6417///   (1) optimistically create shadow decls when they're not hidden
6418///       by existing declarations, or
6419///   (2) don't create any shadow decls (or at least don't make them
6420///       visible) until we've fully parsed/instantiated the class.
6421/// The problem with (1) is that we might have to retroactively remove
6422/// a shadow decl, which requires several O(n) operations because the
6423/// decl structures are (very reasonably) not designed for removal.
6424/// (2) avoids this but is very fiddly and phase-dependent.
6425void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6426  if (Shadow->getDeclName().getNameKind() ==
6427        DeclarationName::CXXConversionFunctionName)
6428    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6429
6430  // Remove it from the DeclContext...
6431  Shadow->getDeclContext()->removeDecl(Shadow);
6432
6433  // ...and the scope, if applicable...
6434  if (S) {
6435    S->RemoveDecl(Shadow);
6436    IdResolver.RemoveDecl(Shadow);
6437  }
6438
6439  // ...and the using decl.
6440  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6441
6442  // TODO: complain somehow if Shadow was used.  It shouldn't
6443  // be possible for this to happen, because...?
6444}
6445
6446/// Builds a using declaration.
6447///
6448/// \param IsInstantiation - Whether this call arises from an
6449///   instantiation of an unresolved using declaration.  We treat
6450///   the lookup differently for these declarations.
6451NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6452                                       SourceLocation UsingLoc,
6453                                       CXXScopeSpec &SS,
6454                                       const DeclarationNameInfo &NameInfo,
6455                                       AttributeList *AttrList,
6456                                       bool IsInstantiation,
6457                                       bool IsTypeName,
6458                                       SourceLocation TypenameLoc) {
6459  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6460  SourceLocation IdentLoc = NameInfo.getLoc();
6461  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6462
6463  // FIXME: We ignore attributes for now.
6464
6465  if (SS.isEmpty()) {
6466    Diag(IdentLoc, diag::err_using_requires_qualname);
6467    return 0;
6468  }
6469
6470  // Do the redeclaration lookup in the current scope.
6471  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6472                        ForRedeclaration);
6473  Previous.setHideTags(false);
6474  if (S) {
6475    LookupName(Previous, S);
6476
6477    // It is really dumb that we have to do this.
6478    LookupResult::Filter F = Previous.makeFilter();
6479    while (F.hasNext()) {
6480      NamedDecl *D = F.next();
6481      if (!isDeclInScope(D, CurContext, S))
6482        F.erase();
6483    }
6484    F.done();
6485  } else {
6486    assert(IsInstantiation && "no scope in non-instantiation");
6487    assert(CurContext->isRecord() && "scope not record in instantiation");
6488    LookupQualifiedName(Previous, CurContext);
6489  }
6490
6491  // Check for invalid redeclarations.
6492  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6493    return 0;
6494
6495  // Check for bad qualifiers.
6496  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6497    return 0;
6498
6499  DeclContext *LookupContext = computeDeclContext(SS);
6500  NamedDecl *D;
6501  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6502  if (!LookupContext) {
6503    if (IsTypeName) {
6504      // FIXME: not all declaration name kinds are legal here
6505      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6506                                              UsingLoc, TypenameLoc,
6507                                              QualifierLoc,
6508                                              IdentLoc, NameInfo.getName());
6509    } else {
6510      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6511                                           QualifierLoc, NameInfo);
6512    }
6513  } else {
6514    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6515                          NameInfo, IsTypeName);
6516  }
6517  D->setAccess(AS);
6518  CurContext->addDecl(D);
6519
6520  if (!LookupContext) return D;
6521  UsingDecl *UD = cast<UsingDecl>(D);
6522
6523  if (RequireCompleteDeclContext(SS, LookupContext)) {
6524    UD->setInvalidDecl();
6525    return UD;
6526  }
6527
6528  // Constructor inheriting using decls get special treatment.
6529  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6530    if (CheckInheritedConstructorUsingDecl(UD))
6531      UD->setInvalidDecl();
6532    return UD;
6533  }
6534
6535  // Otherwise, look up the target name.
6536
6537  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6538
6539  // Unlike most lookups, we don't always want to hide tag
6540  // declarations: tag names are visible through the using declaration
6541  // even if hidden by ordinary names, *except* in a dependent context
6542  // where it's important for the sanity of two-phase lookup.
6543  if (!IsInstantiation)
6544    R.setHideTags(false);
6545
6546  LookupQualifiedName(R, LookupContext);
6547
6548  if (R.empty()) {
6549    Diag(IdentLoc, diag::err_no_member)
6550      << NameInfo.getName() << LookupContext << SS.getRange();
6551    UD->setInvalidDecl();
6552    return UD;
6553  }
6554
6555  if (R.isAmbiguous()) {
6556    UD->setInvalidDecl();
6557    return UD;
6558  }
6559
6560  if (IsTypeName) {
6561    // If we asked for a typename and got a non-type decl, error out.
6562    if (!R.getAsSingle<TypeDecl>()) {
6563      Diag(IdentLoc, diag::err_using_typename_non_type);
6564      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6565        Diag((*I)->getUnderlyingDecl()->getLocation(),
6566             diag::note_using_decl_target);
6567      UD->setInvalidDecl();
6568      return UD;
6569    }
6570  } else {
6571    // If we asked for a non-typename and we got a type, error out,
6572    // but only if this is an instantiation of an unresolved using
6573    // decl.  Otherwise just silently find the type name.
6574    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6575      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6576      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6577      UD->setInvalidDecl();
6578      return UD;
6579    }
6580  }
6581
6582  // C++0x N2914 [namespace.udecl]p6:
6583  // A using-declaration shall not name a namespace.
6584  if (R.getAsSingle<NamespaceDecl>()) {
6585    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6586      << SS.getRange();
6587    UD->setInvalidDecl();
6588    return UD;
6589  }
6590
6591  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6592    if (!CheckUsingShadowDecl(UD, *I, Previous))
6593      BuildUsingShadowDecl(S, UD, *I);
6594  }
6595
6596  return UD;
6597}
6598
6599/// Additional checks for a using declaration referring to a constructor name.
6600bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6601  if (UD->isTypeName()) {
6602    // FIXME: Cannot specify typename when specifying constructor
6603    return true;
6604  }
6605
6606  const Type *SourceType = UD->getQualifier()->getAsType();
6607  assert(SourceType &&
6608         "Using decl naming constructor doesn't have type in scope spec.");
6609  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6610
6611  // Check whether the named type is a direct base class.
6612  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6613  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6614  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6615       BaseIt != BaseE; ++BaseIt) {
6616    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6617    if (CanonicalSourceType == BaseType)
6618      break;
6619  }
6620
6621  if (BaseIt == BaseE) {
6622    // Did not find SourceType in the bases.
6623    Diag(UD->getUsingLocation(),
6624         diag::err_using_decl_constructor_not_in_direct_base)
6625      << UD->getNameInfo().getSourceRange()
6626      << QualType(SourceType, 0) << TargetClass;
6627    return true;
6628  }
6629
6630  BaseIt->setInheritConstructors();
6631
6632  return false;
6633}
6634
6635/// Checks that the given using declaration is not an invalid
6636/// redeclaration.  Note that this is checking only for the using decl
6637/// itself, not for any ill-formedness among the UsingShadowDecls.
6638bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6639                                       bool isTypeName,
6640                                       const CXXScopeSpec &SS,
6641                                       SourceLocation NameLoc,
6642                                       const LookupResult &Prev) {
6643  // C++03 [namespace.udecl]p8:
6644  // C++0x [namespace.udecl]p10:
6645  //   A using-declaration is a declaration and can therefore be used
6646  //   repeatedly where (and only where) multiple declarations are
6647  //   allowed.
6648  //
6649  // That's in non-member contexts.
6650  if (!CurContext->getRedeclContext()->isRecord())
6651    return false;
6652
6653  NestedNameSpecifier *Qual
6654    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6655
6656  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6657    NamedDecl *D = *I;
6658
6659    bool DTypename;
6660    NestedNameSpecifier *DQual;
6661    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6662      DTypename = UD->isTypeName();
6663      DQual = UD->getQualifier();
6664    } else if (UnresolvedUsingValueDecl *UD
6665                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6666      DTypename = false;
6667      DQual = UD->getQualifier();
6668    } else if (UnresolvedUsingTypenameDecl *UD
6669                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6670      DTypename = true;
6671      DQual = UD->getQualifier();
6672    } else continue;
6673
6674    // using decls differ if one says 'typename' and the other doesn't.
6675    // FIXME: non-dependent using decls?
6676    if (isTypeName != DTypename) continue;
6677
6678    // using decls differ if they name different scopes (but note that
6679    // template instantiation can cause this check to trigger when it
6680    // didn't before instantiation).
6681    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6682        Context.getCanonicalNestedNameSpecifier(DQual))
6683      continue;
6684
6685    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6686    Diag(D->getLocation(), diag::note_using_decl) << 1;
6687    return true;
6688  }
6689
6690  return false;
6691}
6692
6693
6694/// Checks that the given nested-name qualifier used in a using decl
6695/// in the current context is appropriately related to the current
6696/// scope.  If an error is found, diagnoses it and returns true.
6697bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6698                                   const CXXScopeSpec &SS,
6699                                   SourceLocation NameLoc) {
6700  DeclContext *NamedContext = computeDeclContext(SS);
6701
6702  if (!CurContext->isRecord()) {
6703    // C++03 [namespace.udecl]p3:
6704    // C++0x [namespace.udecl]p8:
6705    //   A using-declaration for a class member shall be a member-declaration.
6706
6707    // If we weren't able to compute a valid scope, it must be a
6708    // dependent class scope.
6709    if (!NamedContext || NamedContext->isRecord()) {
6710      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6711        << SS.getRange();
6712      return true;
6713    }
6714
6715    // Otherwise, everything is known to be fine.
6716    return false;
6717  }
6718
6719  // The current scope is a record.
6720
6721  // If the named context is dependent, we can't decide much.
6722  if (!NamedContext) {
6723    // FIXME: in C++0x, we can diagnose if we can prove that the
6724    // nested-name-specifier does not refer to a base class, which is
6725    // still possible in some cases.
6726
6727    // Otherwise we have to conservatively report that things might be
6728    // okay.
6729    return false;
6730  }
6731
6732  if (!NamedContext->isRecord()) {
6733    // Ideally this would point at the last name in the specifier,
6734    // but we don't have that level of source info.
6735    Diag(SS.getRange().getBegin(),
6736         diag::err_using_decl_nested_name_specifier_is_not_class)
6737      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6738    return true;
6739  }
6740
6741  if (!NamedContext->isDependentContext() &&
6742      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6743    return true;
6744
6745  if (getLangOptions().CPlusPlus0x) {
6746    // C++0x [namespace.udecl]p3:
6747    //   In a using-declaration used as a member-declaration, the
6748    //   nested-name-specifier shall name a base class of the class
6749    //   being defined.
6750
6751    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6752                                 cast<CXXRecordDecl>(NamedContext))) {
6753      if (CurContext == NamedContext) {
6754        Diag(NameLoc,
6755             diag::err_using_decl_nested_name_specifier_is_current_class)
6756          << SS.getRange();
6757        return true;
6758      }
6759
6760      Diag(SS.getRange().getBegin(),
6761           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6762        << (NestedNameSpecifier*) SS.getScopeRep()
6763        << cast<CXXRecordDecl>(CurContext)
6764        << SS.getRange();
6765      return true;
6766    }
6767
6768    return false;
6769  }
6770
6771  // C++03 [namespace.udecl]p4:
6772  //   A using-declaration used as a member-declaration shall refer
6773  //   to a member of a base class of the class being defined [etc.].
6774
6775  // Salient point: SS doesn't have to name a base class as long as
6776  // lookup only finds members from base classes.  Therefore we can
6777  // diagnose here only if we can prove that that can't happen,
6778  // i.e. if the class hierarchies provably don't intersect.
6779
6780  // TODO: it would be nice if "definitely valid" results were cached
6781  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6782  // need to be repeated.
6783
6784  struct UserData {
6785    llvm::DenseSet<const CXXRecordDecl*> Bases;
6786
6787    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6788      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6789      Data->Bases.insert(Base);
6790      return true;
6791    }
6792
6793    bool hasDependentBases(const CXXRecordDecl *Class) {
6794      return !Class->forallBases(collect, this);
6795    }
6796
6797    /// Returns true if the base is dependent or is one of the
6798    /// accumulated base classes.
6799    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6800      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6801      return !Data->Bases.count(Base);
6802    }
6803
6804    bool mightShareBases(const CXXRecordDecl *Class) {
6805      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6806    }
6807  };
6808
6809  UserData Data;
6810
6811  // Returns false if we find a dependent base.
6812  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6813    return false;
6814
6815  // Returns false if the class has a dependent base or if it or one
6816  // of its bases is present in the base set of the current context.
6817  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6818    return false;
6819
6820  Diag(SS.getRange().getBegin(),
6821       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6822    << (NestedNameSpecifier*) SS.getScopeRep()
6823    << cast<CXXRecordDecl>(CurContext)
6824    << SS.getRange();
6825
6826  return true;
6827}
6828
6829Decl *Sema::ActOnAliasDeclaration(Scope *S,
6830                                  AccessSpecifier AS,
6831                                  MultiTemplateParamsArg TemplateParamLists,
6832                                  SourceLocation UsingLoc,
6833                                  UnqualifiedId &Name,
6834                                  TypeResult Type) {
6835  // Skip up to the relevant declaration scope.
6836  while (S->getFlags() & Scope::TemplateParamScope)
6837    S = S->getParent();
6838  assert((S->getFlags() & Scope::DeclScope) &&
6839         "got alias-declaration outside of declaration scope");
6840
6841  if (Type.isInvalid())
6842    return 0;
6843
6844  bool Invalid = false;
6845  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6846  TypeSourceInfo *TInfo = 0;
6847  GetTypeFromParser(Type.get(), &TInfo);
6848
6849  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6850    return 0;
6851
6852  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6853                                      UPPC_DeclarationType)) {
6854    Invalid = true;
6855    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6856                                             TInfo->getTypeLoc().getBeginLoc());
6857  }
6858
6859  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6860  LookupName(Previous, S);
6861
6862  // Warn about shadowing the name of a template parameter.
6863  if (Previous.isSingleResult() &&
6864      Previous.getFoundDecl()->isTemplateParameter()) {
6865    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6866    Previous.clear();
6867  }
6868
6869  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6870         "name in alias declaration must be an identifier");
6871  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6872                                               Name.StartLocation,
6873                                               Name.Identifier, TInfo);
6874
6875  NewTD->setAccess(AS);
6876
6877  if (Invalid)
6878    NewTD->setInvalidDecl();
6879
6880  CheckTypedefForVariablyModifiedType(S, NewTD);
6881  Invalid |= NewTD->isInvalidDecl();
6882
6883  bool Redeclaration = false;
6884
6885  NamedDecl *NewND;
6886  if (TemplateParamLists.size()) {
6887    TypeAliasTemplateDecl *OldDecl = 0;
6888    TemplateParameterList *OldTemplateParams = 0;
6889
6890    if (TemplateParamLists.size() != 1) {
6891      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6892        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6893         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6894    }
6895    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6896
6897    // Only consider previous declarations in the same scope.
6898    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6899                         /*ExplicitInstantiationOrSpecialization*/false);
6900    if (!Previous.empty()) {
6901      Redeclaration = true;
6902
6903      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6904      if (!OldDecl && !Invalid) {
6905        Diag(UsingLoc, diag::err_redefinition_different_kind)
6906          << Name.Identifier;
6907
6908        NamedDecl *OldD = Previous.getRepresentativeDecl();
6909        if (OldD->getLocation().isValid())
6910          Diag(OldD->getLocation(), diag::note_previous_definition);
6911
6912        Invalid = true;
6913      }
6914
6915      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6916        if (TemplateParameterListsAreEqual(TemplateParams,
6917                                           OldDecl->getTemplateParameters(),
6918                                           /*Complain=*/true,
6919                                           TPL_TemplateMatch))
6920          OldTemplateParams = OldDecl->getTemplateParameters();
6921        else
6922          Invalid = true;
6923
6924        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6925        if (!Invalid &&
6926            !Context.hasSameType(OldTD->getUnderlyingType(),
6927                                 NewTD->getUnderlyingType())) {
6928          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6929          // but we can't reasonably accept it.
6930          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6931            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6932          if (OldTD->getLocation().isValid())
6933            Diag(OldTD->getLocation(), diag::note_previous_definition);
6934          Invalid = true;
6935        }
6936      }
6937    }
6938
6939    // Merge any previous default template arguments into our parameters,
6940    // and check the parameter list.
6941    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6942                                   TPC_TypeAliasTemplate))
6943      return 0;
6944
6945    TypeAliasTemplateDecl *NewDecl =
6946      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6947                                    Name.Identifier, TemplateParams,
6948                                    NewTD);
6949
6950    NewDecl->setAccess(AS);
6951
6952    if (Invalid)
6953      NewDecl->setInvalidDecl();
6954    else if (OldDecl)
6955      NewDecl->setPreviousDeclaration(OldDecl);
6956
6957    NewND = NewDecl;
6958  } else {
6959    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6960    NewND = NewTD;
6961  }
6962
6963  if (!Redeclaration)
6964    PushOnScopeChains(NewND, S);
6965
6966  return NewND;
6967}
6968
6969Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6970                                             SourceLocation NamespaceLoc,
6971                                             SourceLocation AliasLoc,
6972                                             IdentifierInfo *Alias,
6973                                             CXXScopeSpec &SS,
6974                                             SourceLocation IdentLoc,
6975                                             IdentifierInfo *Ident) {
6976
6977  // Lookup the namespace name.
6978  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6979  LookupParsedName(R, S, &SS);
6980
6981  // Check if we have a previous declaration with the same name.
6982  NamedDecl *PrevDecl
6983    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6984                       ForRedeclaration);
6985  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6986    PrevDecl = 0;
6987
6988  if (PrevDecl) {
6989    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6990      // We already have an alias with the same name that points to the same
6991      // namespace, so don't create a new one.
6992      // FIXME: At some point, we'll want to create the (redundant)
6993      // declaration to maintain better source information.
6994      if (!R.isAmbiguous() && !R.empty() &&
6995          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6996        return 0;
6997    }
6998
6999    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
7000      diag::err_redefinition_different_kind;
7001    Diag(AliasLoc, DiagID) << Alias;
7002    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7003    return 0;
7004  }
7005
7006  if (R.isAmbiguous())
7007    return 0;
7008
7009  if (R.empty()) {
7010    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
7011      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
7012      return 0;
7013    }
7014  }
7015
7016  NamespaceAliasDecl *AliasDecl =
7017    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
7018                               Alias, SS.getWithLocInContext(Context),
7019                               IdentLoc, R.getFoundDecl());
7020
7021  PushOnScopeChains(AliasDecl, S);
7022  return AliasDecl;
7023}
7024
7025namespace {
7026  /// \brief Scoped object used to handle the state changes required in Sema
7027  /// to implicitly define the body of a C++ member function;
7028  class ImplicitlyDefinedFunctionScope {
7029    Sema &S;
7030    Sema::ContextRAII SavedContext;
7031
7032  public:
7033    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
7034      : S(S), SavedContext(S, Method)
7035    {
7036      S.PushFunctionScope();
7037      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
7038    }
7039
7040    ~ImplicitlyDefinedFunctionScope() {
7041      S.PopExpressionEvaluationContext();
7042      S.PopFunctionScopeInfo();
7043    }
7044  };
7045}
7046
7047Sema::ImplicitExceptionSpecification
7048Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7049  // C++ [except.spec]p14:
7050  //   An implicitly declared special member function (Clause 12) shall have an
7051  //   exception-specification. [...]
7052  ImplicitExceptionSpecification ExceptSpec(Context);
7053  if (ClassDecl->isInvalidDecl())
7054    return ExceptSpec;
7055
7056  // Direct base-class constructors.
7057  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7058                                       BEnd = ClassDecl->bases_end();
7059       B != BEnd; ++B) {
7060    if (B->isVirtual()) // Handled below.
7061      continue;
7062
7063    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7064      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7065      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7066      // If this is a deleted function, add it anyway. This might be conformant
7067      // with the standard. This might not. I'm not sure. It might not matter.
7068      if (Constructor)
7069        ExceptSpec.CalledDecl(Constructor);
7070    }
7071  }
7072
7073  // Virtual base-class constructors.
7074  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7075                                       BEnd = ClassDecl->vbases_end();
7076       B != BEnd; ++B) {
7077    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7078      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7079      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7080      // If this is a deleted function, add it anyway. This might be conformant
7081      // with the standard. This might not. I'm not sure. It might not matter.
7082      if (Constructor)
7083        ExceptSpec.CalledDecl(Constructor);
7084    }
7085  }
7086
7087  // Field constructors.
7088  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7089                               FEnd = ClassDecl->field_end();
7090       F != FEnd; ++F) {
7091    if (F->hasInClassInitializer()) {
7092      if (Expr *E = F->getInClassInitializer())
7093        ExceptSpec.CalledExpr(E);
7094      else if (!F->isInvalidDecl())
7095        ExceptSpec.SetDelayed();
7096    } else if (const RecordType *RecordTy
7097              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7098      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7099      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7100      // If this is a deleted function, add it anyway. This might be conformant
7101      // with the standard. This might not. I'm not sure. It might not matter.
7102      // In particular, the problem is that this function never gets called. It
7103      // might just be ill-formed because this function attempts to refer to
7104      // a deleted function here.
7105      if (Constructor)
7106        ExceptSpec.CalledDecl(Constructor);
7107    }
7108  }
7109
7110  return ExceptSpec;
7111}
7112
7113CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7114                                                     CXXRecordDecl *ClassDecl) {
7115  // C++ [class.ctor]p5:
7116  //   A default constructor for a class X is a constructor of class X
7117  //   that can be called without an argument. If there is no
7118  //   user-declared constructor for class X, a default constructor is
7119  //   implicitly declared. An implicitly-declared default constructor
7120  //   is an inline public member of its class.
7121  assert(!ClassDecl->hasUserDeclaredConstructor() &&
7122         "Should not build implicit default constructor!");
7123
7124  ImplicitExceptionSpecification Spec =
7125    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7126  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7127
7128  // Create the actual constructor declaration.
7129  CanQualType ClassType
7130    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7131  SourceLocation ClassLoc = ClassDecl->getLocation();
7132  DeclarationName Name
7133    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7134  DeclarationNameInfo NameInfo(Name, ClassLoc);
7135  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7136      Context, ClassDecl, ClassLoc, NameInfo,
7137      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
7138      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7139      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
7140        getLangOptions().CPlusPlus0x);
7141  DefaultCon->setAccess(AS_public);
7142  DefaultCon->setDefaulted();
7143  DefaultCon->setImplicit();
7144  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7145
7146  // Note that we have declared this constructor.
7147  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7148
7149  if (Scope *S = getScopeForContext(ClassDecl))
7150    PushOnScopeChains(DefaultCon, S, false);
7151  ClassDecl->addDecl(DefaultCon);
7152
7153  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7154    DefaultCon->setDeletedAsWritten();
7155
7156  return DefaultCon;
7157}
7158
7159void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7160                                            CXXConstructorDecl *Constructor) {
7161  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7162          !Constructor->doesThisDeclarationHaveABody() &&
7163          !Constructor->isDeleted()) &&
7164    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7165
7166  CXXRecordDecl *ClassDecl = Constructor->getParent();
7167  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7168
7169  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
7170  DiagnosticErrorTrap Trap(Diags);
7171  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
7172      Trap.hasErrorOccurred()) {
7173    Diag(CurrentLocation, diag::note_member_synthesized_at)
7174      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7175    Constructor->setInvalidDecl();
7176    return;
7177  }
7178
7179  SourceLocation Loc = Constructor->getLocation();
7180  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7181
7182  Constructor->setUsed();
7183  MarkVTableUsed(CurrentLocation, ClassDecl);
7184
7185  if (ASTMutationListener *L = getASTMutationListener()) {
7186    L->CompletedImplicitDefinition(Constructor);
7187  }
7188}
7189
7190/// Get any existing defaulted default constructor for the given class. Do not
7191/// implicitly define one if it does not exist.
7192static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
7193                                                             CXXRecordDecl *D) {
7194  ASTContext &Context = Self.Context;
7195  QualType ClassType = Context.getTypeDeclType(D);
7196  DeclarationName ConstructorName
7197    = Context.DeclarationNames.getCXXConstructorName(
7198                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
7199
7200  DeclContext::lookup_const_iterator Con, ConEnd;
7201  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
7202       Con != ConEnd; ++Con) {
7203    // A function template cannot be defaulted.
7204    if (isa<FunctionTemplateDecl>(*Con))
7205      continue;
7206
7207    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
7208    if (Constructor->isDefaultConstructor())
7209      return Constructor->isDefaulted() ? Constructor : 0;
7210  }
7211  return 0;
7212}
7213
7214void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7215  if (!D) return;
7216  AdjustDeclIfTemplate(D);
7217
7218  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7219  CXXConstructorDecl *CtorDecl
7220    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
7221
7222  if (!CtorDecl) return;
7223
7224  // Compute the exception specification for the default constructor.
7225  const FunctionProtoType *CtorTy =
7226    CtorDecl->getType()->castAs<FunctionProtoType>();
7227  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
7228    ImplicitExceptionSpecification Spec =
7229      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7230    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7231    assert(EPI.ExceptionSpecType != EST_Delayed);
7232
7233    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7234  }
7235
7236  // If the default constructor is explicitly defaulted, checking the exception
7237  // specification is deferred until now.
7238  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7239      !ClassDecl->isDependentType())
7240    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7241}
7242
7243void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7244  // We start with an initial pass over the base classes to collect those that
7245  // inherit constructors from. If there are none, we can forgo all further
7246  // processing.
7247  typedef SmallVector<const RecordType *, 4> BasesVector;
7248  BasesVector BasesToInheritFrom;
7249  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7250                                          BaseE = ClassDecl->bases_end();
7251         BaseIt != BaseE; ++BaseIt) {
7252    if (BaseIt->getInheritConstructors()) {
7253      QualType Base = BaseIt->getType();
7254      if (Base->isDependentType()) {
7255        // If we inherit constructors from anything that is dependent, just
7256        // abort processing altogether. We'll get another chance for the
7257        // instantiations.
7258        return;
7259      }
7260      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7261    }
7262  }
7263  if (BasesToInheritFrom.empty())
7264    return;
7265
7266  // Now collect the constructors that we already have in the current class.
7267  // Those take precedence over inherited constructors.
7268  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7269  //   unless there is a user-declared constructor with the same signature in
7270  //   the class where the using-declaration appears.
7271  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7272  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7273                                    CtorE = ClassDecl->ctor_end();
7274       CtorIt != CtorE; ++CtorIt) {
7275    ExistingConstructors.insert(
7276        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7277  }
7278
7279  Scope *S = getScopeForContext(ClassDecl);
7280  DeclarationName CreatedCtorName =
7281      Context.DeclarationNames.getCXXConstructorName(
7282          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7283
7284  // Now comes the true work.
7285  // First, we keep a map from constructor types to the base that introduced
7286  // them. Needed for finding conflicting constructors. We also keep the
7287  // actually inserted declarations in there, for pretty diagnostics.
7288  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7289  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7290  ConstructorToSourceMap InheritedConstructors;
7291  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7292                             BaseE = BasesToInheritFrom.end();
7293       BaseIt != BaseE; ++BaseIt) {
7294    const RecordType *Base = *BaseIt;
7295    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7296    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7297    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7298                                      CtorE = BaseDecl->ctor_end();
7299         CtorIt != CtorE; ++CtorIt) {
7300      // Find the using declaration for inheriting this base's constructors.
7301      DeclarationName Name =
7302          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7303      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7304          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7305      SourceLocation UsingLoc = UD ? UD->getLocation() :
7306                                     ClassDecl->getLocation();
7307
7308      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7309      //   from the class X named in the using-declaration consists of actual
7310      //   constructors and notional constructors that result from the
7311      //   transformation of defaulted parameters as follows:
7312      //   - all non-template default constructors of X, and
7313      //   - for each non-template constructor of X that has at least one
7314      //     parameter with a default argument, the set of constructors that
7315      //     results from omitting any ellipsis parameter specification and
7316      //     successively omitting parameters with a default argument from the
7317      //     end of the parameter-type-list.
7318      CXXConstructorDecl *BaseCtor = *CtorIt;
7319      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7320      const FunctionProtoType *BaseCtorType =
7321          BaseCtor->getType()->getAs<FunctionProtoType>();
7322
7323      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7324                    maxParams = BaseCtor->getNumParams();
7325           params <= maxParams; ++params) {
7326        // Skip default constructors. They're never inherited.
7327        if (params == 0)
7328          continue;
7329        // Skip copy and move constructors for the same reason.
7330        if (CanBeCopyOrMove && params == 1)
7331          continue;
7332
7333        // Build up a function type for this particular constructor.
7334        // FIXME: The working paper does not consider that the exception spec
7335        // for the inheriting constructor might be larger than that of the
7336        // source. This code doesn't yet, either. When it does, this code will
7337        // need to be delayed until after exception specifications and in-class
7338        // member initializers are attached.
7339        const Type *NewCtorType;
7340        if (params == maxParams)
7341          NewCtorType = BaseCtorType;
7342        else {
7343          SmallVector<QualType, 16> Args;
7344          for (unsigned i = 0; i < params; ++i) {
7345            Args.push_back(BaseCtorType->getArgType(i));
7346          }
7347          FunctionProtoType::ExtProtoInfo ExtInfo =
7348              BaseCtorType->getExtProtoInfo();
7349          ExtInfo.Variadic = false;
7350          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7351                                                Args.data(), params, ExtInfo)
7352                       .getTypePtr();
7353        }
7354        const Type *CanonicalNewCtorType =
7355            Context.getCanonicalType(NewCtorType);
7356
7357        // Now that we have the type, first check if the class already has a
7358        // constructor with this signature.
7359        if (ExistingConstructors.count(CanonicalNewCtorType))
7360          continue;
7361
7362        // Then we check if we have already declared an inherited constructor
7363        // with this signature.
7364        std::pair<ConstructorToSourceMap::iterator, bool> result =
7365            InheritedConstructors.insert(std::make_pair(
7366                CanonicalNewCtorType,
7367                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7368        if (!result.second) {
7369          // Already in the map. If it came from a different class, that's an
7370          // error. Not if it's from the same.
7371          CanQualType PreviousBase = result.first->second.first;
7372          if (CanonicalBase != PreviousBase) {
7373            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7374            const CXXConstructorDecl *PrevBaseCtor =
7375                PrevCtor->getInheritedConstructor();
7376            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7377
7378            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7379            Diag(BaseCtor->getLocation(),
7380                 diag::note_using_decl_constructor_conflict_current_ctor);
7381            Diag(PrevBaseCtor->getLocation(),
7382                 diag::note_using_decl_constructor_conflict_previous_ctor);
7383            Diag(PrevCtor->getLocation(),
7384                 diag::note_using_decl_constructor_conflict_previous_using);
7385          }
7386          continue;
7387        }
7388
7389        // OK, we're there, now add the constructor.
7390        // C++0x [class.inhctor]p8: [...] that would be performed by a
7391        //   user-written inline constructor [...]
7392        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7393        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7394            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7395            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7396            /*ImplicitlyDeclared=*/true,
7397            // FIXME: Due to a defect in the standard, we treat inherited
7398            // constructors as constexpr even if that makes them ill-formed.
7399            /*Constexpr=*/BaseCtor->isConstexpr());
7400        NewCtor->setAccess(BaseCtor->getAccess());
7401
7402        // Build up the parameter decls and add them.
7403        SmallVector<ParmVarDecl *, 16> ParamDecls;
7404        for (unsigned i = 0; i < params; ++i) {
7405          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7406                                                   UsingLoc, UsingLoc,
7407                                                   /*IdentifierInfo=*/0,
7408                                                   BaseCtorType->getArgType(i),
7409                                                   /*TInfo=*/0, SC_None,
7410                                                   SC_None, /*DefaultArg=*/0));
7411        }
7412        NewCtor->setParams(ParamDecls);
7413        NewCtor->setInheritedConstructor(BaseCtor);
7414
7415        PushOnScopeChains(NewCtor, S, false);
7416        ClassDecl->addDecl(NewCtor);
7417        result.first->second.second = NewCtor;
7418      }
7419    }
7420  }
7421}
7422
7423Sema::ImplicitExceptionSpecification
7424Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7425  // C++ [except.spec]p14:
7426  //   An implicitly declared special member function (Clause 12) shall have
7427  //   an exception-specification.
7428  ImplicitExceptionSpecification ExceptSpec(Context);
7429  if (ClassDecl->isInvalidDecl())
7430    return ExceptSpec;
7431
7432  // Direct base-class destructors.
7433  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7434                                       BEnd = ClassDecl->bases_end();
7435       B != BEnd; ++B) {
7436    if (B->isVirtual()) // Handled below.
7437      continue;
7438
7439    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7440      ExceptSpec.CalledDecl(
7441                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7442  }
7443
7444  // Virtual base-class destructors.
7445  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7446                                       BEnd = ClassDecl->vbases_end();
7447       B != BEnd; ++B) {
7448    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7449      ExceptSpec.CalledDecl(
7450                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7451  }
7452
7453  // Field destructors.
7454  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7455                               FEnd = ClassDecl->field_end();
7456       F != FEnd; ++F) {
7457    if (const RecordType *RecordTy
7458        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7459      ExceptSpec.CalledDecl(
7460                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7461  }
7462
7463  return ExceptSpec;
7464}
7465
7466CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7467  // C++ [class.dtor]p2:
7468  //   If a class has no user-declared destructor, a destructor is
7469  //   declared implicitly. An implicitly-declared destructor is an
7470  //   inline public member of its class.
7471
7472  ImplicitExceptionSpecification Spec =
7473      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7474  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7475
7476  // Create the actual destructor declaration.
7477  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7478
7479  CanQualType ClassType
7480    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7481  SourceLocation ClassLoc = ClassDecl->getLocation();
7482  DeclarationName Name
7483    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7484  DeclarationNameInfo NameInfo(Name, ClassLoc);
7485  CXXDestructorDecl *Destructor
7486      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7487                                  /*isInline=*/true,
7488                                  /*isImplicitlyDeclared=*/true);
7489  Destructor->setAccess(AS_public);
7490  Destructor->setDefaulted();
7491  Destructor->setImplicit();
7492  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7493
7494  // Note that we have declared this destructor.
7495  ++ASTContext::NumImplicitDestructorsDeclared;
7496
7497  // Introduce this destructor into its scope.
7498  if (Scope *S = getScopeForContext(ClassDecl))
7499    PushOnScopeChains(Destructor, S, false);
7500  ClassDecl->addDecl(Destructor);
7501
7502  // This could be uniqued if it ever proves significant.
7503  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7504
7505  if (ShouldDeleteDestructor(Destructor))
7506    Destructor->setDeletedAsWritten();
7507
7508  AddOverriddenMethods(ClassDecl, Destructor);
7509
7510  return Destructor;
7511}
7512
7513void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7514                                    CXXDestructorDecl *Destructor) {
7515  assert((Destructor->isDefaulted() &&
7516          !Destructor->doesThisDeclarationHaveABody()) &&
7517         "DefineImplicitDestructor - call it for implicit default dtor");
7518  CXXRecordDecl *ClassDecl = Destructor->getParent();
7519  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7520
7521  if (Destructor->isInvalidDecl())
7522    return;
7523
7524  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7525
7526  DiagnosticErrorTrap Trap(Diags);
7527  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7528                                         Destructor->getParent());
7529
7530  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7531    Diag(CurrentLocation, diag::note_member_synthesized_at)
7532      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7533
7534    Destructor->setInvalidDecl();
7535    return;
7536  }
7537
7538  SourceLocation Loc = Destructor->getLocation();
7539  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7540  Destructor->setImplicitlyDefined(true);
7541  Destructor->setUsed();
7542  MarkVTableUsed(CurrentLocation, ClassDecl);
7543
7544  if (ASTMutationListener *L = getASTMutationListener()) {
7545    L->CompletedImplicitDefinition(Destructor);
7546  }
7547}
7548
7549void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7550                                         CXXDestructorDecl *destructor) {
7551  // C++11 [class.dtor]p3:
7552  //   A declaration of a destructor that does not have an exception-
7553  //   specification is implicitly considered to have the same exception-
7554  //   specification as an implicit declaration.
7555  const FunctionProtoType *dtorType = destructor->getType()->
7556                                        getAs<FunctionProtoType>();
7557  if (dtorType->hasExceptionSpec())
7558    return;
7559
7560  ImplicitExceptionSpecification exceptSpec =
7561      ComputeDefaultedDtorExceptionSpec(classDecl);
7562
7563  // Replace the destructor's type, building off the existing one. Fortunately,
7564  // the only thing of interest in the destructor type is its extended info.
7565  // The return and arguments are fixed.
7566  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7567  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7568  epi.NumExceptions = exceptSpec.size();
7569  epi.Exceptions = exceptSpec.data();
7570  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7571
7572  destructor->setType(ty);
7573
7574  // FIXME: If the destructor has a body that could throw, and the newly created
7575  // spec doesn't allow exceptions, we should emit a warning, because this
7576  // change in behavior can break conforming C++03 programs at runtime.
7577  // However, we don't have a body yet, so it needs to be done somewhere else.
7578}
7579
7580/// \brief Builds a statement that copies/moves the given entity from \p From to
7581/// \c To.
7582///
7583/// This routine is used to copy/move the members of a class with an
7584/// implicitly-declared copy/move assignment operator. When the entities being
7585/// copied are arrays, this routine builds for loops to copy them.
7586///
7587/// \param S The Sema object used for type-checking.
7588///
7589/// \param Loc The location where the implicit copy/move is being generated.
7590///
7591/// \param T The type of the expressions being copied/moved. Both expressions
7592/// must have this type.
7593///
7594/// \param To The expression we are copying/moving to.
7595///
7596/// \param From The expression we are copying/moving from.
7597///
7598/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7599/// Otherwise, it's a non-static member subobject.
7600///
7601/// \param Copying Whether we're copying or moving.
7602///
7603/// \param Depth Internal parameter recording the depth of the recursion.
7604///
7605/// \returns A statement or a loop that copies the expressions.
7606static StmtResult
7607BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7608                      Expr *To, Expr *From,
7609                      bool CopyingBaseSubobject, bool Copying,
7610                      unsigned Depth = 0) {
7611  // C++0x [class.copy]p28:
7612  //   Each subobject is assigned in the manner appropriate to its type:
7613  //
7614  //     - if the subobject is of class type, as if by a call to operator= with
7615  //       the subobject as the object expression and the corresponding
7616  //       subobject of x as a single function argument (as if by explicit
7617  //       qualification; that is, ignoring any possible virtual overriding
7618  //       functions in more derived classes);
7619  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7620    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7621
7622    // Look for operator=.
7623    DeclarationName Name
7624      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7625    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7626    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7627
7628    // Filter out any result that isn't a copy/move-assignment operator.
7629    LookupResult::Filter F = OpLookup.makeFilter();
7630    while (F.hasNext()) {
7631      NamedDecl *D = F.next();
7632      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7633        if (Copying ? Method->isCopyAssignmentOperator() :
7634                      Method->isMoveAssignmentOperator())
7635          continue;
7636
7637      F.erase();
7638    }
7639    F.done();
7640
7641    // Suppress the protected check (C++ [class.protected]) for each of the
7642    // assignment operators we found. This strange dance is required when
7643    // we're assigning via a base classes's copy-assignment operator. To
7644    // ensure that we're getting the right base class subobject (without
7645    // ambiguities), we need to cast "this" to that subobject type; to
7646    // ensure that we don't go through the virtual call mechanism, we need
7647    // to qualify the operator= name with the base class (see below). However,
7648    // this means that if the base class has a protected copy assignment
7649    // operator, the protected member access check will fail. So, we
7650    // rewrite "protected" access to "public" access in this case, since we
7651    // know by construction that we're calling from a derived class.
7652    if (CopyingBaseSubobject) {
7653      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7654           L != LEnd; ++L) {
7655        if (L.getAccess() == AS_protected)
7656          L.setAccess(AS_public);
7657      }
7658    }
7659
7660    // Create the nested-name-specifier that will be used to qualify the
7661    // reference to operator=; this is required to suppress the virtual
7662    // call mechanism.
7663    CXXScopeSpec SS;
7664    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7665    SS.MakeTrivial(S.Context,
7666                   NestedNameSpecifier::Create(S.Context, 0, false,
7667                                               CanonicalT),
7668                   Loc);
7669
7670    // Create the reference to operator=.
7671    ExprResult OpEqualRef
7672      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7673                                   /*TemplateKWLoc=*/SourceLocation(),
7674                                   /*FirstQualifierInScope=*/0,
7675                                   OpLookup,
7676                                   /*TemplateArgs=*/0,
7677                                   /*SuppressQualifierCheck=*/true);
7678    if (OpEqualRef.isInvalid())
7679      return StmtError();
7680
7681    // Build the call to the assignment operator.
7682
7683    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7684                                                  OpEqualRef.takeAs<Expr>(),
7685                                                  Loc, &From, 1, Loc);
7686    if (Call.isInvalid())
7687      return StmtError();
7688
7689    return S.Owned(Call.takeAs<Stmt>());
7690  }
7691
7692  //     - if the subobject is of scalar type, the built-in assignment
7693  //       operator is used.
7694  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7695  if (!ArrayTy) {
7696    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7697    if (Assignment.isInvalid())
7698      return StmtError();
7699
7700    return S.Owned(Assignment.takeAs<Stmt>());
7701  }
7702
7703  //     - if the subobject is an array, each element is assigned, in the
7704  //       manner appropriate to the element type;
7705
7706  // Construct a loop over the array bounds, e.g.,
7707  //
7708  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7709  //
7710  // that will copy each of the array elements.
7711  QualType SizeType = S.Context.getSizeType();
7712
7713  // Create the iteration variable.
7714  IdentifierInfo *IterationVarName = 0;
7715  {
7716    SmallString<8> Str;
7717    llvm::raw_svector_ostream OS(Str);
7718    OS << "__i" << Depth;
7719    IterationVarName = &S.Context.Idents.get(OS.str());
7720  }
7721  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7722                                          IterationVarName, SizeType,
7723                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7724                                          SC_None, SC_None);
7725
7726  // Initialize the iteration variable to zero.
7727  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7728  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7729
7730  // Create a reference to the iteration variable; we'll use this several
7731  // times throughout.
7732  Expr *IterationVarRef
7733    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7734  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7735  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7736  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7737
7738  // Create the DeclStmt that holds the iteration variable.
7739  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7740
7741  // Create the comparison against the array bound.
7742  llvm::APInt Upper
7743    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7744  Expr *Comparison
7745    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7746                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7747                                     BO_NE, S.Context.BoolTy,
7748                                     VK_RValue, OK_Ordinary, Loc);
7749
7750  // Create the pre-increment of the iteration variable.
7751  Expr *Increment
7752    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7753                                    VK_LValue, OK_Ordinary, Loc);
7754
7755  // Subscript the "from" and "to" expressions with the iteration variable.
7756  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7757                                                         IterationVarRefRVal,
7758                                                         Loc));
7759  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7760                                                       IterationVarRefRVal,
7761                                                       Loc));
7762  if (!Copying) // Cast to rvalue
7763    From = CastForMoving(S, From);
7764
7765  // Build the copy/move for an individual element of the array.
7766  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7767                                          To, From, CopyingBaseSubobject,
7768                                          Copying, Depth + 1);
7769  if (Copy.isInvalid())
7770    return StmtError();
7771
7772  // Construct the loop that copies all elements of this array.
7773  return S.ActOnForStmt(Loc, Loc, InitStmt,
7774                        S.MakeFullExpr(Comparison),
7775                        0, S.MakeFullExpr(Increment),
7776                        Loc, Copy.take());
7777}
7778
7779std::pair<Sema::ImplicitExceptionSpecification, bool>
7780Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7781                                                   CXXRecordDecl *ClassDecl) {
7782  if (ClassDecl->isInvalidDecl())
7783    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7784
7785  // C++ [class.copy]p10:
7786  //   If the class definition does not explicitly declare a copy
7787  //   assignment operator, one is declared implicitly.
7788  //   The implicitly-defined copy assignment operator for a class X
7789  //   will have the form
7790  //
7791  //       X& X::operator=(const X&)
7792  //
7793  //   if
7794  bool HasConstCopyAssignment = true;
7795
7796  //       -- each direct base class B of X has a copy assignment operator
7797  //          whose parameter is of type const B&, const volatile B& or B,
7798  //          and
7799  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7800                                       BaseEnd = ClassDecl->bases_end();
7801       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7802    // We'll handle this below
7803    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7804      continue;
7805
7806    assert(!Base->getType()->isDependentType() &&
7807           "Cannot generate implicit members for class with dependent bases.");
7808    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7809    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7810                            &HasConstCopyAssignment);
7811  }
7812
7813  // In C++11, the above citation has "or virtual" added
7814  if (LangOpts.CPlusPlus0x) {
7815    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7816                                         BaseEnd = ClassDecl->vbases_end();
7817         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7818      assert(!Base->getType()->isDependentType() &&
7819             "Cannot generate implicit members for class with dependent bases.");
7820      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7821      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7822                              &HasConstCopyAssignment);
7823    }
7824  }
7825
7826  //       -- for all the nonstatic data members of X that are of a class
7827  //          type M (or array thereof), each such class type has a copy
7828  //          assignment operator whose parameter is of type const M&,
7829  //          const volatile M& or M.
7830  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7831                                  FieldEnd = ClassDecl->field_end();
7832       HasConstCopyAssignment && Field != FieldEnd;
7833       ++Field) {
7834    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7835    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7836      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7837                              &HasConstCopyAssignment);
7838    }
7839  }
7840
7841  //   Otherwise, the implicitly declared copy assignment operator will
7842  //   have the form
7843  //
7844  //       X& X::operator=(X&)
7845
7846  // C++ [except.spec]p14:
7847  //   An implicitly declared special member function (Clause 12) shall have an
7848  //   exception-specification. [...]
7849
7850  // It is unspecified whether or not an implicit copy assignment operator
7851  // attempts to deduplicate calls to assignment operators of virtual bases are
7852  // made. As such, this exception specification is effectively unspecified.
7853  // Based on a similar decision made for constness in C++0x, we're erring on
7854  // the side of assuming such calls to be made regardless of whether they
7855  // actually happen.
7856  ImplicitExceptionSpecification ExceptSpec(Context);
7857  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7858  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7859                                       BaseEnd = ClassDecl->bases_end();
7860       Base != BaseEnd; ++Base) {
7861    if (Base->isVirtual())
7862      continue;
7863
7864    CXXRecordDecl *BaseClassDecl
7865      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7866    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7867                                                            ArgQuals, false, 0))
7868      ExceptSpec.CalledDecl(CopyAssign);
7869  }
7870
7871  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7872                                       BaseEnd = ClassDecl->vbases_end();
7873       Base != BaseEnd; ++Base) {
7874    CXXRecordDecl *BaseClassDecl
7875      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7876    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7877                                                            ArgQuals, false, 0))
7878      ExceptSpec.CalledDecl(CopyAssign);
7879  }
7880
7881  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7882                                  FieldEnd = ClassDecl->field_end();
7883       Field != FieldEnd;
7884       ++Field) {
7885    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7886    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7887      if (CXXMethodDecl *CopyAssign =
7888          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7889        ExceptSpec.CalledDecl(CopyAssign);
7890    }
7891  }
7892
7893  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7894}
7895
7896CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7897  // Note: The following rules are largely analoguous to the copy
7898  // constructor rules. Note that virtual bases are not taken into account
7899  // for determining the argument type of the operator. Note also that
7900  // operators taking an object instead of a reference are allowed.
7901
7902  ImplicitExceptionSpecification Spec(Context);
7903  bool Const;
7904  llvm::tie(Spec, Const) =
7905    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7906
7907  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7908  QualType RetType = Context.getLValueReferenceType(ArgType);
7909  if (Const)
7910    ArgType = ArgType.withConst();
7911  ArgType = Context.getLValueReferenceType(ArgType);
7912
7913  //   An implicitly-declared copy assignment operator is an inline public
7914  //   member of its class.
7915  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7916  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7917  SourceLocation ClassLoc = ClassDecl->getLocation();
7918  DeclarationNameInfo NameInfo(Name, ClassLoc);
7919  CXXMethodDecl *CopyAssignment
7920    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7921                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7922                            /*TInfo=*/0, /*isStatic=*/false,
7923                            /*StorageClassAsWritten=*/SC_None,
7924                            /*isInline=*/true, /*isConstexpr=*/false,
7925                            SourceLocation());
7926  CopyAssignment->setAccess(AS_public);
7927  CopyAssignment->setDefaulted();
7928  CopyAssignment->setImplicit();
7929  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7930
7931  // Add the parameter to the operator.
7932  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7933                                               ClassLoc, ClassLoc, /*Id=*/0,
7934                                               ArgType, /*TInfo=*/0,
7935                                               SC_None,
7936                                               SC_None, 0);
7937  CopyAssignment->setParams(FromParam);
7938
7939  // Note that we have added this copy-assignment operator.
7940  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7941
7942  if (Scope *S = getScopeForContext(ClassDecl))
7943    PushOnScopeChains(CopyAssignment, S, false);
7944  ClassDecl->addDecl(CopyAssignment);
7945
7946  // C++0x [class.copy]p19:
7947  //   ....  If the class definition does not explicitly declare a copy
7948  //   assignment operator, there is no user-declared move constructor, and
7949  //   there is no user-declared move assignment operator, a copy assignment
7950  //   operator is implicitly declared as defaulted.
7951  if ((ClassDecl->hasUserDeclaredMoveConstructor() &&
7952          !getLangOptions().MicrosoftMode) ||
7953      ClassDecl->hasUserDeclaredMoveAssignment() ||
7954      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7955    CopyAssignment->setDeletedAsWritten();
7956
7957  AddOverriddenMethods(ClassDecl, CopyAssignment);
7958  return CopyAssignment;
7959}
7960
7961void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7962                                        CXXMethodDecl *CopyAssignOperator) {
7963  assert((CopyAssignOperator->isDefaulted() &&
7964          CopyAssignOperator->isOverloadedOperator() &&
7965          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7966          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7967         "DefineImplicitCopyAssignment called for wrong function");
7968
7969  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7970
7971  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7972    CopyAssignOperator->setInvalidDecl();
7973    return;
7974  }
7975
7976  CopyAssignOperator->setUsed();
7977
7978  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7979  DiagnosticErrorTrap Trap(Diags);
7980
7981  // C++0x [class.copy]p30:
7982  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7983  //   for a non-union class X performs memberwise copy assignment of its
7984  //   subobjects. The direct base classes of X are assigned first, in the
7985  //   order of their declaration in the base-specifier-list, and then the
7986  //   immediate non-static data members of X are assigned, in the order in
7987  //   which they were declared in the class definition.
7988
7989  // The statements that form the synthesized function body.
7990  ASTOwningVector<Stmt*> Statements(*this);
7991
7992  // The parameter for the "other" object, which we are copying from.
7993  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7994  Qualifiers OtherQuals = Other->getType().getQualifiers();
7995  QualType OtherRefType = Other->getType();
7996  if (const LValueReferenceType *OtherRef
7997                                = OtherRefType->getAs<LValueReferenceType>()) {
7998    OtherRefType = OtherRef->getPointeeType();
7999    OtherQuals = OtherRefType.getQualifiers();
8000  }
8001
8002  // Our location for everything implicitly-generated.
8003  SourceLocation Loc = CopyAssignOperator->getLocation();
8004
8005  // Construct a reference to the "other" object. We'll be using this
8006  // throughout the generated ASTs.
8007  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8008  assert(OtherRef && "Reference to parameter cannot fail!");
8009
8010  // Construct the "this" pointer. We'll be using this throughout the generated
8011  // ASTs.
8012  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8013  assert(This && "Reference to this cannot fail!");
8014
8015  // Assign base classes.
8016  bool Invalid = false;
8017  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8018       E = ClassDecl->bases_end(); Base != E; ++Base) {
8019    // Form the assignment:
8020    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
8021    QualType BaseType = Base->getType().getUnqualifiedType();
8022    if (!BaseType->isRecordType()) {
8023      Invalid = true;
8024      continue;
8025    }
8026
8027    CXXCastPath BasePath;
8028    BasePath.push_back(Base);
8029
8030    // Construct the "from" expression, which is an implicit cast to the
8031    // appropriately-qualified base type.
8032    Expr *From = OtherRef;
8033    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
8034                             CK_UncheckedDerivedToBase,
8035                             VK_LValue, &BasePath).take();
8036
8037    // Dereference "this".
8038    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8039
8040    // Implicitly cast "this" to the appropriately-qualified base type.
8041    To = ImpCastExprToType(To.take(),
8042                           Context.getCVRQualifiedType(BaseType,
8043                                     CopyAssignOperator->getTypeQualifiers()),
8044                           CK_UncheckedDerivedToBase,
8045                           VK_LValue, &BasePath);
8046
8047    // Build the copy.
8048    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
8049                                            To.get(), From,
8050                                            /*CopyingBaseSubobject=*/true,
8051                                            /*Copying=*/true);
8052    if (Copy.isInvalid()) {
8053      Diag(CurrentLocation, diag::note_member_synthesized_at)
8054        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8055      CopyAssignOperator->setInvalidDecl();
8056      return;
8057    }
8058
8059    // Success! Record the copy.
8060    Statements.push_back(Copy.takeAs<Expr>());
8061  }
8062
8063  // \brief Reference to the __builtin_memcpy function.
8064  Expr *BuiltinMemCpyRef = 0;
8065  // \brief Reference to the __builtin_objc_memmove_collectable function.
8066  Expr *CollectableMemCpyRef = 0;
8067
8068  // Assign non-static members.
8069  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8070                                  FieldEnd = ClassDecl->field_end();
8071       Field != FieldEnd; ++Field) {
8072    if (Field->isUnnamedBitfield())
8073      continue;
8074
8075    // Check for members of reference type; we can't copy those.
8076    if (Field->getType()->isReferenceType()) {
8077      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8078        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8079      Diag(Field->getLocation(), diag::note_declared_at);
8080      Diag(CurrentLocation, diag::note_member_synthesized_at)
8081        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8082      Invalid = true;
8083      continue;
8084    }
8085
8086    // Check for members of const-qualified, non-class type.
8087    QualType BaseType = Context.getBaseElementType(Field->getType());
8088    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8089      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8090        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8091      Diag(Field->getLocation(), diag::note_declared_at);
8092      Diag(CurrentLocation, diag::note_member_synthesized_at)
8093        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8094      Invalid = true;
8095      continue;
8096    }
8097
8098    // Suppress assigning zero-width bitfields.
8099    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8100      continue;
8101
8102    QualType FieldType = Field->getType().getNonReferenceType();
8103    if (FieldType->isIncompleteArrayType()) {
8104      assert(ClassDecl->hasFlexibleArrayMember() &&
8105             "Incomplete array type is not valid");
8106      continue;
8107    }
8108
8109    // Build references to the field in the object we're copying from and to.
8110    CXXScopeSpec SS; // Intentionally empty
8111    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8112                              LookupMemberName);
8113    MemberLookup.addDecl(*Field);
8114    MemberLookup.resolveKind();
8115    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8116                                               Loc, /*IsArrow=*/false,
8117                                               SS, SourceLocation(), 0,
8118                                               MemberLookup, 0);
8119    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8120                                             Loc, /*IsArrow=*/true,
8121                                             SS, SourceLocation(), 0,
8122                                             MemberLookup, 0);
8123    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8124    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8125
8126    // If the field should be copied with __builtin_memcpy rather than via
8127    // explicit assignments, do so. This optimization only applies for arrays
8128    // of scalars and arrays of class type with trivial copy-assignment
8129    // operators.
8130    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8131        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
8132      // Compute the size of the memory buffer to be copied.
8133      QualType SizeType = Context.getSizeType();
8134      llvm::APInt Size(Context.getTypeSize(SizeType),
8135                       Context.getTypeSizeInChars(BaseType).getQuantity());
8136      for (const ConstantArrayType *Array
8137              = Context.getAsConstantArrayType(FieldType);
8138           Array;
8139           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8140        llvm::APInt ArraySize
8141          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8142        Size *= ArraySize;
8143      }
8144
8145      // Take the address of the field references for "from" and "to".
8146      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
8147      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
8148
8149      bool NeedsCollectableMemCpy =
8150          (BaseType->isRecordType() &&
8151           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8152
8153      if (NeedsCollectableMemCpy) {
8154        if (!CollectableMemCpyRef) {
8155          // Create a reference to the __builtin_objc_memmove_collectable function.
8156          LookupResult R(*this,
8157                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8158                         Loc, LookupOrdinaryName);
8159          LookupName(R, TUScope, true);
8160
8161          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8162          if (!CollectableMemCpy) {
8163            // Something went horribly wrong earlier, and we will have
8164            // complained about it.
8165            Invalid = true;
8166            continue;
8167          }
8168
8169          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8170                                                  CollectableMemCpy->getType(),
8171                                                  VK_LValue, Loc, 0).take();
8172          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8173        }
8174      }
8175      // Create a reference to the __builtin_memcpy builtin function.
8176      else if (!BuiltinMemCpyRef) {
8177        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8178                       LookupOrdinaryName);
8179        LookupName(R, TUScope, true);
8180
8181        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8182        if (!BuiltinMemCpy) {
8183          // Something went horribly wrong earlier, and we will have complained
8184          // about it.
8185          Invalid = true;
8186          continue;
8187        }
8188
8189        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8190                                            BuiltinMemCpy->getType(),
8191                                            VK_LValue, Loc, 0).take();
8192        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8193      }
8194
8195      ASTOwningVector<Expr*> CallArgs(*this);
8196      CallArgs.push_back(To.takeAs<Expr>());
8197      CallArgs.push_back(From.takeAs<Expr>());
8198      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8199      ExprResult Call = ExprError();
8200      if (NeedsCollectableMemCpy)
8201        Call = ActOnCallExpr(/*Scope=*/0,
8202                             CollectableMemCpyRef,
8203                             Loc, move_arg(CallArgs),
8204                             Loc);
8205      else
8206        Call = ActOnCallExpr(/*Scope=*/0,
8207                             BuiltinMemCpyRef,
8208                             Loc, move_arg(CallArgs),
8209                             Loc);
8210
8211      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8212      Statements.push_back(Call.takeAs<Expr>());
8213      continue;
8214    }
8215
8216    // Build the copy of this field.
8217    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
8218                                            To.get(), From.get(),
8219                                            /*CopyingBaseSubobject=*/false,
8220                                            /*Copying=*/true);
8221    if (Copy.isInvalid()) {
8222      Diag(CurrentLocation, diag::note_member_synthesized_at)
8223        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8224      CopyAssignOperator->setInvalidDecl();
8225      return;
8226    }
8227
8228    // Success! Record the copy.
8229    Statements.push_back(Copy.takeAs<Stmt>());
8230  }
8231
8232  if (!Invalid) {
8233    // Add a "return *this;"
8234    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8235
8236    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8237    if (Return.isInvalid())
8238      Invalid = true;
8239    else {
8240      Statements.push_back(Return.takeAs<Stmt>());
8241
8242      if (Trap.hasErrorOccurred()) {
8243        Diag(CurrentLocation, diag::note_member_synthesized_at)
8244          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8245        Invalid = true;
8246      }
8247    }
8248  }
8249
8250  if (Invalid) {
8251    CopyAssignOperator->setInvalidDecl();
8252    return;
8253  }
8254
8255  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8256                                            /*isStmtExpr=*/false);
8257  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8258  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8259
8260  if (ASTMutationListener *L = getASTMutationListener()) {
8261    L->CompletedImplicitDefinition(CopyAssignOperator);
8262  }
8263}
8264
8265Sema::ImplicitExceptionSpecification
8266Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8267  ImplicitExceptionSpecification ExceptSpec(Context);
8268
8269  if (ClassDecl->isInvalidDecl())
8270    return ExceptSpec;
8271
8272  // C++0x [except.spec]p14:
8273  //   An implicitly declared special member function (Clause 12) shall have an
8274  //   exception-specification. [...]
8275
8276  // It is unspecified whether or not an implicit move assignment operator
8277  // attempts to deduplicate calls to assignment operators of virtual bases are
8278  // made. As such, this exception specification is effectively unspecified.
8279  // Based on a similar decision made for constness in C++0x, we're erring on
8280  // the side of assuming such calls to be made regardless of whether they
8281  // actually happen.
8282  // Note that a move constructor is not implicitly declared when there are
8283  // virtual bases, but it can still be user-declared and explicitly defaulted.
8284  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8285                                       BaseEnd = ClassDecl->bases_end();
8286       Base != BaseEnd; ++Base) {
8287    if (Base->isVirtual())
8288      continue;
8289
8290    CXXRecordDecl *BaseClassDecl
8291      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8292    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8293                                                           false, 0))
8294      ExceptSpec.CalledDecl(MoveAssign);
8295  }
8296
8297  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8298                                       BaseEnd = ClassDecl->vbases_end();
8299       Base != BaseEnd; ++Base) {
8300    CXXRecordDecl *BaseClassDecl
8301      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8302    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8303                                                           false, 0))
8304      ExceptSpec.CalledDecl(MoveAssign);
8305  }
8306
8307  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8308                                  FieldEnd = ClassDecl->field_end();
8309       Field != FieldEnd;
8310       ++Field) {
8311    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8312    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8313      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8314                                                             false, 0))
8315        ExceptSpec.CalledDecl(MoveAssign);
8316    }
8317  }
8318
8319  return ExceptSpec;
8320}
8321
8322CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8323  // Note: The following rules are largely analoguous to the move
8324  // constructor rules.
8325
8326  ImplicitExceptionSpecification Spec(
8327      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8328
8329  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8330  QualType RetType = Context.getLValueReferenceType(ArgType);
8331  ArgType = Context.getRValueReferenceType(ArgType);
8332
8333  //   An implicitly-declared move assignment operator is an inline public
8334  //   member of its class.
8335  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8336  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8337  SourceLocation ClassLoc = ClassDecl->getLocation();
8338  DeclarationNameInfo NameInfo(Name, ClassLoc);
8339  CXXMethodDecl *MoveAssignment
8340    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8341                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8342                            /*TInfo=*/0, /*isStatic=*/false,
8343                            /*StorageClassAsWritten=*/SC_None,
8344                            /*isInline=*/true,
8345                            /*isConstexpr=*/false,
8346                            SourceLocation());
8347  MoveAssignment->setAccess(AS_public);
8348  MoveAssignment->setDefaulted();
8349  MoveAssignment->setImplicit();
8350  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8351
8352  // Add the parameter to the operator.
8353  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8354                                               ClassLoc, ClassLoc, /*Id=*/0,
8355                                               ArgType, /*TInfo=*/0,
8356                                               SC_None,
8357                                               SC_None, 0);
8358  MoveAssignment->setParams(FromParam);
8359
8360  // Note that we have added this copy-assignment operator.
8361  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8362
8363  // C++0x [class.copy]p9:
8364  //   If the definition of a class X does not explicitly declare a move
8365  //   assignment operator, one will be implicitly declared as defaulted if and
8366  //   only if:
8367  //   [...]
8368  //   - the move assignment operator would not be implicitly defined as
8369  //     deleted.
8370  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8371    // Cache this result so that we don't try to generate this over and over
8372    // on every lookup, leaking memory and wasting time.
8373    ClassDecl->setFailedImplicitMoveAssignment();
8374    return 0;
8375  }
8376
8377  if (Scope *S = getScopeForContext(ClassDecl))
8378    PushOnScopeChains(MoveAssignment, S, false);
8379  ClassDecl->addDecl(MoveAssignment);
8380
8381  AddOverriddenMethods(ClassDecl, MoveAssignment);
8382  return MoveAssignment;
8383}
8384
8385void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8386                                        CXXMethodDecl *MoveAssignOperator) {
8387  assert((MoveAssignOperator->isDefaulted() &&
8388          MoveAssignOperator->isOverloadedOperator() &&
8389          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8390          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8391         "DefineImplicitMoveAssignment called for wrong function");
8392
8393  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8394
8395  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8396    MoveAssignOperator->setInvalidDecl();
8397    return;
8398  }
8399
8400  MoveAssignOperator->setUsed();
8401
8402  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8403  DiagnosticErrorTrap Trap(Diags);
8404
8405  // C++0x [class.copy]p28:
8406  //   The implicitly-defined or move assignment operator for a non-union class
8407  //   X performs memberwise move assignment of its subobjects. The direct base
8408  //   classes of X are assigned first, in the order of their declaration in the
8409  //   base-specifier-list, and then the immediate non-static data members of X
8410  //   are assigned, in the order in which they were declared in the class
8411  //   definition.
8412
8413  // The statements that form the synthesized function body.
8414  ASTOwningVector<Stmt*> Statements(*this);
8415
8416  // The parameter for the "other" object, which we are move from.
8417  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8418  QualType OtherRefType = Other->getType()->
8419      getAs<RValueReferenceType>()->getPointeeType();
8420  assert(OtherRefType.getQualifiers() == 0 &&
8421         "Bad argument type of defaulted move assignment");
8422
8423  // Our location for everything implicitly-generated.
8424  SourceLocation Loc = MoveAssignOperator->getLocation();
8425
8426  // Construct a reference to the "other" object. We'll be using this
8427  // throughout the generated ASTs.
8428  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8429  assert(OtherRef && "Reference to parameter cannot fail!");
8430  // Cast to rvalue.
8431  OtherRef = CastForMoving(*this, OtherRef);
8432
8433  // Construct the "this" pointer. We'll be using this throughout the generated
8434  // ASTs.
8435  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8436  assert(This && "Reference to this cannot fail!");
8437
8438  // Assign base classes.
8439  bool Invalid = false;
8440  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8441       E = ClassDecl->bases_end(); Base != E; ++Base) {
8442    // Form the assignment:
8443    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8444    QualType BaseType = Base->getType().getUnqualifiedType();
8445    if (!BaseType->isRecordType()) {
8446      Invalid = true;
8447      continue;
8448    }
8449
8450    CXXCastPath BasePath;
8451    BasePath.push_back(Base);
8452
8453    // Construct the "from" expression, which is an implicit cast to the
8454    // appropriately-qualified base type.
8455    Expr *From = OtherRef;
8456    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8457                             VK_XValue, &BasePath).take();
8458
8459    // Dereference "this".
8460    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8461
8462    // Implicitly cast "this" to the appropriately-qualified base type.
8463    To = ImpCastExprToType(To.take(),
8464                           Context.getCVRQualifiedType(BaseType,
8465                                     MoveAssignOperator->getTypeQualifiers()),
8466                           CK_UncheckedDerivedToBase,
8467                           VK_LValue, &BasePath);
8468
8469    // Build the move.
8470    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8471                                            To.get(), From,
8472                                            /*CopyingBaseSubobject=*/true,
8473                                            /*Copying=*/false);
8474    if (Move.isInvalid()) {
8475      Diag(CurrentLocation, diag::note_member_synthesized_at)
8476        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8477      MoveAssignOperator->setInvalidDecl();
8478      return;
8479    }
8480
8481    // Success! Record the move.
8482    Statements.push_back(Move.takeAs<Expr>());
8483  }
8484
8485  // \brief Reference to the __builtin_memcpy function.
8486  Expr *BuiltinMemCpyRef = 0;
8487  // \brief Reference to the __builtin_objc_memmove_collectable function.
8488  Expr *CollectableMemCpyRef = 0;
8489
8490  // Assign non-static members.
8491  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8492                                  FieldEnd = ClassDecl->field_end();
8493       Field != FieldEnd; ++Field) {
8494    if (Field->isUnnamedBitfield())
8495      continue;
8496
8497    // Check for members of reference type; we can't move those.
8498    if (Field->getType()->isReferenceType()) {
8499      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8500        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8501      Diag(Field->getLocation(), diag::note_declared_at);
8502      Diag(CurrentLocation, diag::note_member_synthesized_at)
8503        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8504      Invalid = true;
8505      continue;
8506    }
8507
8508    // Check for members of const-qualified, non-class type.
8509    QualType BaseType = Context.getBaseElementType(Field->getType());
8510    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8511      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8512        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8513      Diag(Field->getLocation(), diag::note_declared_at);
8514      Diag(CurrentLocation, diag::note_member_synthesized_at)
8515        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8516      Invalid = true;
8517      continue;
8518    }
8519
8520    // Suppress assigning zero-width bitfields.
8521    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8522      continue;
8523
8524    QualType FieldType = Field->getType().getNonReferenceType();
8525    if (FieldType->isIncompleteArrayType()) {
8526      assert(ClassDecl->hasFlexibleArrayMember() &&
8527             "Incomplete array type is not valid");
8528      continue;
8529    }
8530
8531    // Build references to the field in the object we're copying from and to.
8532    CXXScopeSpec SS; // Intentionally empty
8533    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8534                              LookupMemberName);
8535    MemberLookup.addDecl(*Field);
8536    MemberLookup.resolveKind();
8537    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8538                                               Loc, /*IsArrow=*/false,
8539                                               SS, SourceLocation(), 0,
8540                                               MemberLookup, 0);
8541    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8542                                             Loc, /*IsArrow=*/true,
8543                                             SS, SourceLocation(), 0,
8544                                             MemberLookup, 0);
8545    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8546    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8547
8548    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8549        "Member reference with rvalue base must be rvalue except for reference "
8550        "members, which aren't allowed for move assignment.");
8551
8552    // If the field should be copied with __builtin_memcpy rather than via
8553    // explicit assignments, do so. This optimization only applies for arrays
8554    // of scalars and arrays of class type with trivial move-assignment
8555    // operators.
8556    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8557        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8558      // Compute the size of the memory buffer to be copied.
8559      QualType SizeType = Context.getSizeType();
8560      llvm::APInt Size(Context.getTypeSize(SizeType),
8561                       Context.getTypeSizeInChars(BaseType).getQuantity());
8562      for (const ConstantArrayType *Array
8563              = Context.getAsConstantArrayType(FieldType);
8564           Array;
8565           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8566        llvm::APInt ArraySize
8567          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8568        Size *= ArraySize;
8569      }
8570
8571      // Take the address of the field references for "from" and "to". We
8572      // directly construct UnaryOperators here because semantic analysis
8573      // does not permit us to take the address of an xvalue.
8574      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8575                             Context.getPointerType(From.get()->getType()),
8576                             VK_RValue, OK_Ordinary, Loc);
8577      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8578                           Context.getPointerType(To.get()->getType()),
8579                           VK_RValue, OK_Ordinary, Loc);
8580
8581      bool NeedsCollectableMemCpy =
8582          (BaseType->isRecordType() &&
8583           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8584
8585      if (NeedsCollectableMemCpy) {
8586        if (!CollectableMemCpyRef) {
8587          // Create a reference to the __builtin_objc_memmove_collectable function.
8588          LookupResult R(*this,
8589                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8590                         Loc, LookupOrdinaryName);
8591          LookupName(R, TUScope, true);
8592
8593          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8594          if (!CollectableMemCpy) {
8595            // Something went horribly wrong earlier, and we will have
8596            // complained about it.
8597            Invalid = true;
8598            continue;
8599          }
8600
8601          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8602                                                  CollectableMemCpy->getType(),
8603                                                  VK_LValue, Loc, 0).take();
8604          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8605        }
8606      }
8607      // Create a reference to the __builtin_memcpy builtin function.
8608      else if (!BuiltinMemCpyRef) {
8609        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8610                       LookupOrdinaryName);
8611        LookupName(R, TUScope, true);
8612
8613        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8614        if (!BuiltinMemCpy) {
8615          // Something went horribly wrong earlier, and we will have complained
8616          // about it.
8617          Invalid = true;
8618          continue;
8619        }
8620
8621        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8622                                            BuiltinMemCpy->getType(),
8623                                            VK_LValue, Loc, 0).take();
8624        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8625      }
8626
8627      ASTOwningVector<Expr*> CallArgs(*this);
8628      CallArgs.push_back(To.takeAs<Expr>());
8629      CallArgs.push_back(From.takeAs<Expr>());
8630      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8631      ExprResult Call = ExprError();
8632      if (NeedsCollectableMemCpy)
8633        Call = ActOnCallExpr(/*Scope=*/0,
8634                             CollectableMemCpyRef,
8635                             Loc, move_arg(CallArgs),
8636                             Loc);
8637      else
8638        Call = ActOnCallExpr(/*Scope=*/0,
8639                             BuiltinMemCpyRef,
8640                             Loc, move_arg(CallArgs),
8641                             Loc);
8642
8643      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8644      Statements.push_back(Call.takeAs<Expr>());
8645      continue;
8646    }
8647
8648    // Build the move of this field.
8649    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8650                                            To.get(), From.get(),
8651                                            /*CopyingBaseSubobject=*/false,
8652                                            /*Copying=*/false);
8653    if (Move.isInvalid()) {
8654      Diag(CurrentLocation, diag::note_member_synthesized_at)
8655        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8656      MoveAssignOperator->setInvalidDecl();
8657      return;
8658    }
8659
8660    // Success! Record the copy.
8661    Statements.push_back(Move.takeAs<Stmt>());
8662  }
8663
8664  if (!Invalid) {
8665    // Add a "return *this;"
8666    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8667
8668    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8669    if (Return.isInvalid())
8670      Invalid = true;
8671    else {
8672      Statements.push_back(Return.takeAs<Stmt>());
8673
8674      if (Trap.hasErrorOccurred()) {
8675        Diag(CurrentLocation, diag::note_member_synthesized_at)
8676          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8677        Invalid = true;
8678      }
8679    }
8680  }
8681
8682  if (Invalid) {
8683    MoveAssignOperator->setInvalidDecl();
8684    return;
8685  }
8686
8687  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8688                                            /*isStmtExpr=*/false);
8689  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8690  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8691
8692  if (ASTMutationListener *L = getASTMutationListener()) {
8693    L->CompletedImplicitDefinition(MoveAssignOperator);
8694  }
8695}
8696
8697std::pair<Sema::ImplicitExceptionSpecification, bool>
8698Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8699  if (ClassDecl->isInvalidDecl())
8700    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8701
8702  // C++ [class.copy]p5:
8703  //   The implicitly-declared copy constructor for a class X will
8704  //   have the form
8705  //
8706  //       X::X(const X&)
8707  //
8708  //   if
8709  // FIXME: It ought to be possible to store this on the record.
8710  bool HasConstCopyConstructor = true;
8711
8712  //     -- each direct or virtual base class B of X has a copy
8713  //        constructor whose first parameter is of type const B& or
8714  //        const volatile B&, and
8715  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8716                                       BaseEnd = ClassDecl->bases_end();
8717       HasConstCopyConstructor && Base != BaseEnd;
8718       ++Base) {
8719    // Virtual bases are handled below.
8720    if (Base->isVirtual())
8721      continue;
8722
8723    CXXRecordDecl *BaseClassDecl
8724      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8725    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8726                             &HasConstCopyConstructor);
8727  }
8728
8729  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8730                                       BaseEnd = ClassDecl->vbases_end();
8731       HasConstCopyConstructor && Base != BaseEnd;
8732       ++Base) {
8733    CXXRecordDecl *BaseClassDecl
8734      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8735    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8736                             &HasConstCopyConstructor);
8737  }
8738
8739  //     -- for all the nonstatic data members of X that are of a
8740  //        class type M (or array thereof), each such class type
8741  //        has a copy constructor whose first parameter is of type
8742  //        const M& or const volatile M&.
8743  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8744                                  FieldEnd = ClassDecl->field_end();
8745       HasConstCopyConstructor && Field != FieldEnd;
8746       ++Field) {
8747    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8748    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8749      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8750                               &HasConstCopyConstructor);
8751    }
8752  }
8753  //   Otherwise, the implicitly declared copy constructor will have
8754  //   the form
8755  //
8756  //       X::X(X&)
8757
8758  // C++ [except.spec]p14:
8759  //   An implicitly declared special member function (Clause 12) shall have an
8760  //   exception-specification. [...]
8761  ImplicitExceptionSpecification ExceptSpec(Context);
8762  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8763  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8764                                       BaseEnd = ClassDecl->bases_end();
8765       Base != BaseEnd;
8766       ++Base) {
8767    // Virtual bases are handled below.
8768    if (Base->isVirtual())
8769      continue;
8770
8771    CXXRecordDecl *BaseClassDecl
8772      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8773    if (CXXConstructorDecl *CopyConstructor =
8774          LookupCopyingConstructor(BaseClassDecl, Quals))
8775      ExceptSpec.CalledDecl(CopyConstructor);
8776  }
8777  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8778                                       BaseEnd = ClassDecl->vbases_end();
8779       Base != BaseEnd;
8780       ++Base) {
8781    CXXRecordDecl *BaseClassDecl
8782      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8783    if (CXXConstructorDecl *CopyConstructor =
8784          LookupCopyingConstructor(BaseClassDecl, Quals))
8785      ExceptSpec.CalledDecl(CopyConstructor);
8786  }
8787  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8788                                  FieldEnd = ClassDecl->field_end();
8789       Field != FieldEnd;
8790       ++Field) {
8791    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8792    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8793      if (CXXConstructorDecl *CopyConstructor =
8794        LookupCopyingConstructor(FieldClassDecl, Quals))
8795      ExceptSpec.CalledDecl(CopyConstructor);
8796    }
8797  }
8798
8799  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8800}
8801
8802CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8803                                                    CXXRecordDecl *ClassDecl) {
8804  // C++ [class.copy]p4:
8805  //   If the class definition does not explicitly declare a copy
8806  //   constructor, one is declared implicitly.
8807
8808  ImplicitExceptionSpecification Spec(Context);
8809  bool Const;
8810  llvm::tie(Spec, Const) =
8811    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8812
8813  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8814  QualType ArgType = ClassType;
8815  if (Const)
8816    ArgType = ArgType.withConst();
8817  ArgType = Context.getLValueReferenceType(ArgType);
8818
8819  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8820
8821  DeclarationName Name
8822    = Context.DeclarationNames.getCXXConstructorName(
8823                                           Context.getCanonicalType(ClassType));
8824  SourceLocation ClassLoc = ClassDecl->getLocation();
8825  DeclarationNameInfo NameInfo(Name, ClassLoc);
8826
8827  //   An implicitly-declared copy constructor is an inline public
8828  //   member of its class.
8829  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8830      Context, ClassDecl, ClassLoc, NameInfo,
8831      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8832      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8833      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8834        getLangOptions().CPlusPlus0x);
8835  CopyConstructor->setAccess(AS_public);
8836  CopyConstructor->setDefaulted();
8837  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8838
8839  // Note that we have declared this constructor.
8840  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8841
8842  // Add the parameter to the constructor.
8843  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8844                                               ClassLoc, ClassLoc,
8845                                               /*IdentifierInfo=*/0,
8846                                               ArgType, /*TInfo=*/0,
8847                                               SC_None,
8848                                               SC_None, 0);
8849  CopyConstructor->setParams(FromParam);
8850
8851  if (Scope *S = getScopeForContext(ClassDecl))
8852    PushOnScopeChains(CopyConstructor, S, false);
8853  ClassDecl->addDecl(CopyConstructor);
8854
8855  // C++11 [class.copy]p8:
8856  //   ... If the class definition does not explicitly declare a copy
8857  //   constructor, there is no user-declared move constructor, and there is no
8858  //   user-declared move assignment operator, a copy constructor is implicitly
8859  //   declared as defaulted.
8860  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8861      (ClassDecl->hasUserDeclaredMoveAssignment() &&
8862          !getLangOptions().MicrosoftMode) ||
8863      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8864    CopyConstructor->setDeletedAsWritten();
8865
8866  return CopyConstructor;
8867}
8868
8869void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8870                                   CXXConstructorDecl *CopyConstructor) {
8871  assert((CopyConstructor->isDefaulted() &&
8872          CopyConstructor->isCopyConstructor() &&
8873          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8874         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8875
8876  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8877  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8878
8879  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8880  DiagnosticErrorTrap Trap(Diags);
8881
8882  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8883      Trap.hasErrorOccurred()) {
8884    Diag(CurrentLocation, diag::note_member_synthesized_at)
8885      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8886    CopyConstructor->setInvalidDecl();
8887  }  else {
8888    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8889                                               CopyConstructor->getLocation(),
8890                                               MultiStmtArg(*this, 0, 0),
8891                                               /*isStmtExpr=*/false)
8892                                                              .takeAs<Stmt>());
8893    CopyConstructor->setImplicitlyDefined(true);
8894  }
8895
8896  CopyConstructor->setUsed();
8897  if (ASTMutationListener *L = getASTMutationListener()) {
8898    L->CompletedImplicitDefinition(CopyConstructor);
8899  }
8900}
8901
8902Sema::ImplicitExceptionSpecification
8903Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8904  // C++ [except.spec]p14:
8905  //   An implicitly declared special member function (Clause 12) shall have an
8906  //   exception-specification. [...]
8907  ImplicitExceptionSpecification ExceptSpec(Context);
8908  if (ClassDecl->isInvalidDecl())
8909    return ExceptSpec;
8910
8911  // Direct base-class constructors.
8912  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8913                                       BEnd = ClassDecl->bases_end();
8914       B != BEnd; ++B) {
8915    if (B->isVirtual()) // Handled below.
8916      continue;
8917
8918    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8919      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8920      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8921      // If this is a deleted function, add it anyway. This might be conformant
8922      // with the standard. This might not. I'm not sure. It might not matter.
8923      if (Constructor)
8924        ExceptSpec.CalledDecl(Constructor);
8925    }
8926  }
8927
8928  // Virtual base-class constructors.
8929  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8930                                       BEnd = ClassDecl->vbases_end();
8931       B != BEnd; ++B) {
8932    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8933      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8934      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8935      // If this is a deleted function, add it anyway. This might be conformant
8936      // with the standard. This might not. I'm not sure. It might not matter.
8937      if (Constructor)
8938        ExceptSpec.CalledDecl(Constructor);
8939    }
8940  }
8941
8942  // Field constructors.
8943  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8944                               FEnd = ClassDecl->field_end();
8945       F != FEnd; ++F) {
8946    if (const RecordType *RecordTy
8947              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8948      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8949      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8950      // If this is a deleted function, add it anyway. This might be conformant
8951      // with the standard. This might not. I'm not sure. It might not matter.
8952      // In particular, the problem is that this function never gets called. It
8953      // might just be ill-formed because this function attempts to refer to
8954      // a deleted function here.
8955      if (Constructor)
8956        ExceptSpec.CalledDecl(Constructor);
8957    }
8958  }
8959
8960  return ExceptSpec;
8961}
8962
8963CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8964                                                    CXXRecordDecl *ClassDecl) {
8965  ImplicitExceptionSpecification Spec(
8966      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8967
8968  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8969  QualType ArgType = Context.getRValueReferenceType(ClassType);
8970
8971  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8972
8973  DeclarationName Name
8974    = Context.DeclarationNames.getCXXConstructorName(
8975                                           Context.getCanonicalType(ClassType));
8976  SourceLocation ClassLoc = ClassDecl->getLocation();
8977  DeclarationNameInfo NameInfo(Name, ClassLoc);
8978
8979  // C++0x [class.copy]p11:
8980  //   An implicitly-declared copy/move constructor is an inline public
8981  //   member of its class.
8982  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8983      Context, ClassDecl, ClassLoc, NameInfo,
8984      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8985      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8986      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8987        getLangOptions().CPlusPlus0x);
8988  MoveConstructor->setAccess(AS_public);
8989  MoveConstructor->setDefaulted();
8990  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8991
8992  // Add the parameter to the constructor.
8993  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8994                                               ClassLoc, ClassLoc,
8995                                               /*IdentifierInfo=*/0,
8996                                               ArgType, /*TInfo=*/0,
8997                                               SC_None,
8998                                               SC_None, 0);
8999  MoveConstructor->setParams(FromParam);
9000
9001  // C++0x [class.copy]p9:
9002  //   If the definition of a class X does not explicitly declare a move
9003  //   constructor, one will be implicitly declared as defaulted if and only if:
9004  //   [...]
9005  //   - the move constructor would not be implicitly defined as deleted.
9006  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
9007    // Cache this result so that we don't try to generate this over and over
9008    // on every lookup, leaking memory and wasting time.
9009    ClassDecl->setFailedImplicitMoveConstructor();
9010    return 0;
9011  }
9012
9013  // Note that we have declared this constructor.
9014  ++ASTContext::NumImplicitMoveConstructorsDeclared;
9015
9016  if (Scope *S = getScopeForContext(ClassDecl))
9017    PushOnScopeChains(MoveConstructor, S, false);
9018  ClassDecl->addDecl(MoveConstructor);
9019
9020  return MoveConstructor;
9021}
9022
9023void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
9024                                   CXXConstructorDecl *MoveConstructor) {
9025  assert((MoveConstructor->isDefaulted() &&
9026          MoveConstructor->isMoveConstructor() &&
9027          !MoveConstructor->doesThisDeclarationHaveABody()) &&
9028         "DefineImplicitMoveConstructor - call it for implicit move ctor");
9029
9030  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
9031  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
9032
9033  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
9034  DiagnosticErrorTrap Trap(Diags);
9035
9036  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
9037      Trap.hasErrorOccurred()) {
9038    Diag(CurrentLocation, diag::note_member_synthesized_at)
9039      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
9040    MoveConstructor->setInvalidDecl();
9041  }  else {
9042    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
9043                                               MoveConstructor->getLocation(),
9044                                               MultiStmtArg(*this, 0, 0),
9045                                               /*isStmtExpr=*/false)
9046                                                              .takeAs<Stmt>());
9047    MoveConstructor->setImplicitlyDefined(true);
9048  }
9049
9050  MoveConstructor->setUsed();
9051
9052  if (ASTMutationListener *L = getASTMutationListener()) {
9053    L->CompletedImplicitDefinition(MoveConstructor);
9054  }
9055}
9056
9057ExprResult
9058Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9059                            CXXConstructorDecl *Constructor,
9060                            MultiExprArg ExprArgs,
9061                            bool HadMultipleCandidates,
9062                            bool RequiresZeroInit,
9063                            unsigned ConstructKind,
9064                            SourceRange ParenRange) {
9065  bool Elidable = false;
9066
9067  // C++0x [class.copy]p34:
9068  //   When certain criteria are met, an implementation is allowed to
9069  //   omit the copy/move construction of a class object, even if the
9070  //   copy/move constructor and/or destructor for the object have
9071  //   side effects. [...]
9072  //     - when a temporary class object that has not been bound to a
9073  //       reference (12.2) would be copied/moved to a class object
9074  //       with the same cv-unqualified type, the copy/move operation
9075  //       can be omitted by constructing the temporary object
9076  //       directly into the target of the omitted copy/move
9077  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9078      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
9079    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
9080    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9081  }
9082
9083  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9084                               Elidable, move(ExprArgs), HadMultipleCandidates,
9085                               RequiresZeroInit, ConstructKind, ParenRange);
9086}
9087
9088/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9089/// including handling of its default argument expressions.
9090ExprResult
9091Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9092                            CXXConstructorDecl *Constructor, bool Elidable,
9093                            MultiExprArg ExprArgs,
9094                            bool HadMultipleCandidates,
9095                            bool RequiresZeroInit,
9096                            unsigned ConstructKind,
9097                            SourceRange ParenRange) {
9098  unsigned NumExprs = ExprArgs.size();
9099  Expr **Exprs = (Expr **)ExprArgs.release();
9100
9101  for (specific_attr_iterator<NonNullAttr>
9102           i = Constructor->specific_attr_begin<NonNullAttr>(),
9103           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
9104    const NonNullAttr *NonNull = *i;
9105    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
9106  }
9107
9108  MarkFunctionReferenced(ConstructLoc, Constructor);
9109  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9110                                        Constructor, Elidable, Exprs, NumExprs,
9111                                        HadMultipleCandidates, /*FIXME*/false,
9112                                        RequiresZeroInit,
9113              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9114                                        ParenRange));
9115}
9116
9117bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9118                                        CXXConstructorDecl *Constructor,
9119                                        MultiExprArg Exprs,
9120                                        bool HadMultipleCandidates) {
9121  // FIXME: Provide the correct paren SourceRange when available.
9122  ExprResult TempResult =
9123    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9124                          move(Exprs), HadMultipleCandidates, false,
9125                          CXXConstructExpr::CK_Complete, SourceRange());
9126  if (TempResult.isInvalid())
9127    return true;
9128
9129  Expr *Temp = TempResult.takeAs<Expr>();
9130  CheckImplicitConversions(Temp, VD->getLocation());
9131  MarkFunctionReferenced(VD->getLocation(), Constructor);
9132  Temp = MaybeCreateExprWithCleanups(Temp);
9133  VD->setInit(Temp);
9134
9135  return false;
9136}
9137
9138void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9139  if (VD->isInvalidDecl()) return;
9140
9141  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9142  if (ClassDecl->isInvalidDecl()) return;
9143  if (ClassDecl->hasTrivialDestructor()) return;
9144  if (ClassDecl->isDependentContext()) return;
9145
9146  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9147  MarkFunctionReferenced(VD->getLocation(), Destructor);
9148  CheckDestructorAccess(VD->getLocation(), Destructor,
9149                        PDiag(diag::err_access_dtor_var)
9150                        << VD->getDeclName()
9151                        << VD->getType());
9152
9153  if (!VD->hasGlobalStorage()) return;
9154
9155  // Emit warning for non-trivial dtor in global scope (a real global,
9156  // class-static, function-static).
9157  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9158
9159  // TODO: this should be re-enabled for static locals by !CXAAtExit
9160  if (!VD->isStaticLocal())
9161    Diag(VD->getLocation(), diag::warn_global_destructor);
9162}
9163
9164/// \brief Given a constructor and the set of arguments provided for the
9165/// constructor, convert the arguments and add any required default arguments
9166/// to form a proper call to this constructor.
9167///
9168/// \returns true if an error occurred, false otherwise.
9169bool
9170Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9171                              MultiExprArg ArgsPtr,
9172                              SourceLocation Loc,
9173                              ASTOwningVector<Expr*> &ConvertedArgs) {
9174  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9175  unsigned NumArgs = ArgsPtr.size();
9176  Expr **Args = (Expr **)ArgsPtr.get();
9177
9178  const FunctionProtoType *Proto
9179    = Constructor->getType()->getAs<FunctionProtoType>();
9180  assert(Proto && "Constructor without a prototype?");
9181  unsigned NumArgsInProto = Proto->getNumArgs();
9182
9183  // If too few arguments are available, we'll fill in the rest with defaults.
9184  if (NumArgs < NumArgsInProto)
9185    ConvertedArgs.reserve(NumArgsInProto);
9186  else
9187    ConvertedArgs.reserve(NumArgs);
9188
9189  VariadicCallType CallType =
9190    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9191  SmallVector<Expr *, 8> AllArgs;
9192  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9193                                        Proto, 0, Args, NumArgs, AllArgs,
9194                                        CallType);
9195  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9196    ConvertedArgs.push_back(AllArgs[i]);
9197  return Invalid;
9198}
9199
9200static inline bool
9201CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9202                                       const FunctionDecl *FnDecl) {
9203  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9204  if (isa<NamespaceDecl>(DC)) {
9205    return SemaRef.Diag(FnDecl->getLocation(),
9206                        diag::err_operator_new_delete_declared_in_namespace)
9207      << FnDecl->getDeclName();
9208  }
9209
9210  if (isa<TranslationUnitDecl>(DC) &&
9211      FnDecl->getStorageClass() == SC_Static) {
9212    return SemaRef.Diag(FnDecl->getLocation(),
9213                        diag::err_operator_new_delete_declared_static)
9214      << FnDecl->getDeclName();
9215  }
9216
9217  return false;
9218}
9219
9220static inline bool
9221CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9222                            CanQualType ExpectedResultType,
9223                            CanQualType ExpectedFirstParamType,
9224                            unsigned DependentParamTypeDiag,
9225                            unsigned InvalidParamTypeDiag) {
9226  QualType ResultType =
9227    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9228
9229  // Check that the result type is not dependent.
9230  if (ResultType->isDependentType())
9231    return SemaRef.Diag(FnDecl->getLocation(),
9232                        diag::err_operator_new_delete_dependent_result_type)
9233    << FnDecl->getDeclName() << ExpectedResultType;
9234
9235  // Check that the result type is what we expect.
9236  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9237    return SemaRef.Diag(FnDecl->getLocation(),
9238                        diag::err_operator_new_delete_invalid_result_type)
9239    << FnDecl->getDeclName() << ExpectedResultType;
9240
9241  // A function template must have at least 2 parameters.
9242  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9243    return SemaRef.Diag(FnDecl->getLocation(),
9244                      diag::err_operator_new_delete_template_too_few_parameters)
9245        << FnDecl->getDeclName();
9246
9247  // The function decl must have at least 1 parameter.
9248  if (FnDecl->getNumParams() == 0)
9249    return SemaRef.Diag(FnDecl->getLocation(),
9250                        diag::err_operator_new_delete_too_few_parameters)
9251      << FnDecl->getDeclName();
9252
9253  // Check the the first parameter type is not dependent.
9254  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9255  if (FirstParamType->isDependentType())
9256    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9257      << FnDecl->getDeclName() << ExpectedFirstParamType;
9258
9259  // Check that the first parameter type is what we expect.
9260  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9261      ExpectedFirstParamType)
9262    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9263    << FnDecl->getDeclName() << ExpectedFirstParamType;
9264
9265  return false;
9266}
9267
9268static bool
9269CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9270  // C++ [basic.stc.dynamic.allocation]p1:
9271  //   A program is ill-formed if an allocation function is declared in a
9272  //   namespace scope other than global scope or declared static in global
9273  //   scope.
9274  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9275    return true;
9276
9277  CanQualType SizeTy =
9278    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9279
9280  // C++ [basic.stc.dynamic.allocation]p1:
9281  //  The return type shall be void*. The first parameter shall have type
9282  //  std::size_t.
9283  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9284                                  SizeTy,
9285                                  diag::err_operator_new_dependent_param_type,
9286                                  diag::err_operator_new_param_type))
9287    return true;
9288
9289  // C++ [basic.stc.dynamic.allocation]p1:
9290  //  The first parameter shall not have an associated default argument.
9291  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9292    return SemaRef.Diag(FnDecl->getLocation(),
9293                        diag::err_operator_new_default_arg)
9294      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9295
9296  return false;
9297}
9298
9299static bool
9300CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9301  // C++ [basic.stc.dynamic.deallocation]p1:
9302  //   A program is ill-formed if deallocation functions are declared in a
9303  //   namespace scope other than global scope or declared static in global
9304  //   scope.
9305  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9306    return true;
9307
9308  // C++ [basic.stc.dynamic.deallocation]p2:
9309  //   Each deallocation function shall return void and its first parameter
9310  //   shall be void*.
9311  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9312                                  SemaRef.Context.VoidPtrTy,
9313                                 diag::err_operator_delete_dependent_param_type,
9314                                 diag::err_operator_delete_param_type))
9315    return true;
9316
9317  return false;
9318}
9319
9320/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9321/// of this overloaded operator is well-formed. If so, returns false;
9322/// otherwise, emits appropriate diagnostics and returns true.
9323bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9324  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9325         "Expected an overloaded operator declaration");
9326
9327  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9328
9329  // C++ [over.oper]p5:
9330  //   The allocation and deallocation functions, operator new,
9331  //   operator new[], operator delete and operator delete[], are
9332  //   described completely in 3.7.3. The attributes and restrictions
9333  //   found in the rest of this subclause do not apply to them unless
9334  //   explicitly stated in 3.7.3.
9335  if (Op == OO_Delete || Op == OO_Array_Delete)
9336    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9337
9338  if (Op == OO_New || Op == OO_Array_New)
9339    return CheckOperatorNewDeclaration(*this, FnDecl);
9340
9341  // C++ [over.oper]p6:
9342  //   An operator function shall either be a non-static member
9343  //   function or be a non-member function and have at least one
9344  //   parameter whose type is a class, a reference to a class, an
9345  //   enumeration, or a reference to an enumeration.
9346  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9347    if (MethodDecl->isStatic())
9348      return Diag(FnDecl->getLocation(),
9349                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9350  } else {
9351    bool ClassOrEnumParam = false;
9352    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9353                                   ParamEnd = FnDecl->param_end();
9354         Param != ParamEnd; ++Param) {
9355      QualType ParamType = (*Param)->getType().getNonReferenceType();
9356      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9357          ParamType->isEnumeralType()) {
9358        ClassOrEnumParam = true;
9359        break;
9360      }
9361    }
9362
9363    if (!ClassOrEnumParam)
9364      return Diag(FnDecl->getLocation(),
9365                  diag::err_operator_overload_needs_class_or_enum)
9366        << FnDecl->getDeclName();
9367  }
9368
9369  // C++ [over.oper]p8:
9370  //   An operator function cannot have default arguments (8.3.6),
9371  //   except where explicitly stated below.
9372  //
9373  // Only the function-call operator allows default arguments
9374  // (C++ [over.call]p1).
9375  if (Op != OO_Call) {
9376    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9377         Param != FnDecl->param_end(); ++Param) {
9378      if ((*Param)->hasDefaultArg())
9379        return Diag((*Param)->getLocation(),
9380                    diag::err_operator_overload_default_arg)
9381          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9382    }
9383  }
9384
9385  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9386    { false, false, false }
9387#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9388    , { Unary, Binary, MemberOnly }
9389#include "clang/Basic/OperatorKinds.def"
9390  };
9391
9392  bool CanBeUnaryOperator = OperatorUses[Op][0];
9393  bool CanBeBinaryOperator = OperatorUses[Op][1];
9394  bool MustBeMemberOperator = OperatorUses[Op][2];
9395
9396  // C++ [over.oper]p8:
9397  //   [...] Operator functions cannot have more or fewer parameters
9398  //   than the number required for the corresponding operator, as
9399  //   described in the rest of this subclause.
9400  unsigned NumParams = FnDecl->getNumParams()
9401                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9402  if (Op != OO_Call &&
9403      ((NumParams == 1 && !CanBeUnaryOperator) ||
9404       (NumParams == 2 && !CanBeBinaryOperator) ||
9405       (NumParams < 1) || (NumParams > 2))) {
9406    // We have the wrong number of parameters.
9407    unsigned ErrorKind;
9408    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9409      ErrorKind = 2;  // 2 -> unary or binary.
9410    } else if (CanBeUnaryOperator) {
9411      ErrorKind = 0;  // 0 -> unary
9412    } else {
9413      assert(CanBeBinaryOperator &&
9414             "All non-call overloaded operators are unary or binary!");
9415      ErrorKind = 1;  // 1 -> binary
9416    }
9417
9418    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9419      << FnDecl->getDeclName() << NumParams << ErrorKind;
9420  }
9421
9422  // Overloaded operators other than operator() cannot be variadic.
9423  if (Op != OO_Call &&
9424      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9425    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9426      << FnDecl->getDeclName();
9427  }
9428
9429  // Some operators must be non-static member functions.
9430  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9431    return Diag(FnDecl->getLocation(),
9432                diag::err_operator_overload_must_be_member)
9433      << FnDecl->getDeclName();
9434  }
9435
9436  // C++ [over.inc]p1:
9437  //   The user-defined function called operator++ implements the
9438  //   prefix and postfix ++ operator. If this function is a member
9439  //   function with no parameters, or a non-member function with one
9440  //   parameter of class or enumeration type, it defines the prefix
9441  //   increment operator ++ for objects of that type. If the function
9442  //   is a member function with one parameter (which shall be of type
9443  //   int) or a non-member function with two parameters (the second
9444  //   of which shall be of type int), it defines the postfix
9445  //   increment operator ++ for objects of that type.
9446  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9447    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9448    bool ParamIsInt = false;
9449    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9450      ParamIsInt = BT->getKind() == BuiltinType::Int;
9451
9452    if (!ParamIsInt)
9453      return Diag(LastParam->getLocation(),
9454                  diag::err_operator_overload_post_incdec_must_be_int)
9455        << LastParam->getType() << (Op == OO_MinusMinus);
9456  }
9457
9458  return false;
9459}
9460
9461/// CheckLiteralOperatorDeclaration - Check whether the declaration
9462/// of this literal operator function is well-formed. If so, returns
9463/// false; otherwise, emits appropriate diagnostics and returns true.
9464bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9465  DeclContext *DC = FnDecl->getDeclContext();
9466  Decl::Kind Kind = DC->getDeclKind();
9467  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9468      Kind != Decl::LinkageSpec) {
9469    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9470      << FnDecl->getDeclName();
9471    return true;
9472  }
9473
9474  bool Valid = false;
9475
9476  // template <char...> type operator "" name() is the only valid template
9477  // signature, and the only valid signature with no parameters.
9478  if (FnDecl->param_size() == 0) {
9479    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9480      // Must have only one template parameter
9481      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9482      if (Params->size() == 1) {
9483        NonTypeTemplateParmDecl *PmDecl =
9484          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9485
9486        // The template parameter must be a char parameter pack.
9487        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9488            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9489          Valid = true;
9490      }
9491    }
9492  } else {
9493    // Check the first parameter
9494    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9495
9496    QualType T = (*Param)->getType();
9497
9498    // unsigned long long int, long double, and any character type are allowed
9499    // as the only parameters.
9500    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9501        Context.hasSameType(T, Context.LongDoubleTy) ||
9502        Context.hasSameType(T, Context.CharTy) ||
9503        Context.hasSameType(T, Context.WCharTy) ||
9504        Context.hasSameType(T, Context.Char16Ty) ||
9505        Context.hasSameType(T, Context.Char32Ty)) {
9506      if (++Param == FnDecl->param_end())
9507        Valid = true;
9508      goto FinishedParams;
9509    }
9510
9511    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9512    const PointerType *PT = T->getAs<PointerType>();
9513    if (!PT)
9514      goto FinishedParams;
9515    T = PT->getPointeeType();
9516    if (!T.isConstQualified())
9517      goto FinishedParams;
9518    T = T.getUnqualifiedType();
9519
9520    // Move on to the second parameter;
9521    ++Param;
9522
9523    // If there is no second parameter, the first must be a const char *
9524    if (Param == FnDecl->param_end()) {
9525      if (Context.hasSameType(T, Context.CharTy))
9526        Valid = true;
9527      goto FinishedParams;
9528    }
9529
9530    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9531    // are allowed as the first parameter to a two-parameter function
9532    if (!(Context.hasSameType(T, Context.CharTy) ||
9533          Context.hasSameType(T, Context.WCharTy) ||
9534          Context.hasSameType(T, Context.Char16Ty) ||
9535          Context.hasSameType(T, Context.Char32Ty)))
9536      goto FinishedParams;
9537
9538    // The second and final parameter must be an std::size_t
9539    T = (*Param)->getType().getUnqualifiedType();
9540    if (Context.hasSameType(T, Context.getSizeType()) &&
9541        ++Param == FnDecl->param_end())
9542      Valid = true;
9543  }
9544
9545  // FIXME: This diagnostic is absolutely terrible.
9546FinishedParams:
9547  if (!Valid) {
9548    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9549      << FnDecl->getDeclName();
9550    return true;
9551  }
9552
9553  StringRef LiteralName
9554    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9555  if (LiteralName[0] != '_') {
9556    // C++0x [usrlit.suffix]p1:
9557    //   Literal suffix identifiers that do not start with an underscore are
9558    //   reserved for future standardization.
9559    bool IsHexFloat = true;
9560    if (LiteralName.size() > 1 &&
9561        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9562      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9563        if (!isdigit(LiteralName[I])) {
9564          IsHexFloat = false;
9565          break;
9566        }
9567      }
9568    }
9569
9570    if (IsHexFloat)
9571      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9572        << LiteralName;
9573    else
9574      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9575  }
9576
9577  return false;
9578}
9579
9580/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9581/// linkage specification, including the language and (if present)
9582/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9583/// the location of the language string literal, which is provided
9584/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9585/// the '{' brace. Otherwise, this linkage specification does not
9586/// have any braces.
9587Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9588                                           SourceLocation LangLoc,
9589                                           StringRef Lang,
9590                                           SourceLocation LBraceLoc) {
9591  LinkageSpecDecl::LanguageIDs Language;
9592  if (Lang == "\"C\"")
9593    Language = LinkageSpecDecl::lang_c;
9594  else if (Lang == "\"C++\"")
9595    Language = LinkageSpecDecl::lang_cxx;
9596  else {
9597    Diag(LangLoc, diag::err_bad_language);
9598    return 0;
9599  }
9600
9601  // FIXME: Add all the various semantics of linkage specifications
9602
9603  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9604                                               ExternLoc, LangLoc, Language);
9605  CurContext->addDecl(D);
9606  PushDeclContext(S, D);
9607  return D;
9608}
9609
9610/// ActOnFinishLinkageSpecification - Complete the definition of
9611/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9612/// valid, it's the position of the closing '}' brace in a linkage
9613/// specification that uses braces.
9614Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9615                                            Decl *LinkageSpec,
9616                                            SourceLocation RBraceLoc) {
9617  if (LinkageSpec) {
9618    if (RBraceLoc.isValid()) {
9619      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9620      LSDecl->setRBraceLoc(RBraceLoc);
9621    }
9622    PopDeclContext();
9623  }
9624  return LinkageSpec;
9625}
9626
9627/// \brief Perform semantic analysis for the variable declaration that
9628/// occurs within a C++ catch clause, returning the newly-created
9629/// variable.
9630VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9631                                         TypeSourceInfo *TInfo,
9632                                         SourceLocation StartLoc,
9633                                         SourceLocation Loc,
9634                                         IdentifierInfo *Name) {
9635  bool Invalid = false;
9636  QualType ExDeclType = TInfo->getType();
9637
9638  // Arrays and functions decay.
9639  if (ExDeclType->isArrayType())
9640    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9641  else if (ExDeclType->isFunctionType())
9642    ExDeclType = Context.getPointerType(ExDeclType);
9643
9644  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9645  // The exception-declaration shall not denote a pointer or reference to an
9646  // incomplete type, other than [cv] void*.
9647  // N2844 forbids rvalue references.
9648  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9649    Diag(Loc, diag::err_catch_rvalue_ref);
9650    Invalid = true;
9651  }
9652
9653  QualType BaseType = ExDeclType;
9654  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9655  unsigned DK = diag::err_catch_incomplete;
9656  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9657    BaseType = Ptr->getPointeeType();
9658    Mode = 1;
9659    DK = diag::err_catch_incomplete_ptr;
9660  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9661    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9662    BaseType = Ref->getPointeeType();
9663    Mode = 2;
9664    DK = diag::err_catch_incomplete_ref;
9665  }
9666  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9667      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9668    Invalid = true;
9669
9670  if (!Invalid && !ExDeclType->isDependentType() &&
9671      RequireNonAbstractType(Loc, ExDeclType,
9672                             diag::err_abstract_type_in_decl,
9673                             AbstractVariableType))
9674    Invalid = true;
9675
9676  // Only the non-fragile NeXT runtime currently supports C++ catches
9677  // of ObjC types, and no runtime supports catching ObjC types by value.
9678  if (!Invalid && getLangOptions().ObjC1) {
9679    QualType T = ExDeclType;
9680    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9681      T = RT->getPointeeType();
9682
9683    if (T->isObjCObjectType()) {
9684      Diag(Loc, diag::err_objc_object_catch);
9685      Invalid = true;
9686    } else if (T->isObjCObjectPointerType()) {
9687      if (!getLangOptions().ObjCNonFragileABI)
9688        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9689    }
9690  }
9691
9692  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9693                                    ExDeclType, TInfo, SC_None, SC_None);
9694  ExDecl->setExceptionVariable(true);
9695
9696  // In ARC, infer 'retaining' for variables of retainable type.
9697  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9698    Invalid = true;
9699
9700  if (!Invalid && !ExDeclType->isDependentType()) {
9701    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9702      // C++ [except.handle]p16:
9703      //   The object declared in an exception-declaration or, if the
9704      //   exception-declaration does not specify a name, a temporary (12.2) is
9705      //   copy-initialized (8.5) from the exception object. [...]
9706      //   The object is destroyed when the handler exits, after the destruction
9707      //   of any automatic objects initialized within the handler.
9708      //
9709      // We just pretend to initialize the object with itself, then make sure
9710      // it can be destroyed later.
9711      QualType initType = ExDeclType;
9712
9713      InitializedEntity entity =
9714        InitializedEntity::InitializeVariable(ExDecl);
9715      InitializationKind initKind =
9716        InitializationKind::CreateCopy(Loc, SourceLocation());
9717
9718      Expr *opaqueValue =
9719        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9720      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9721      ExprResult result = sequence.Perform(*this, entity, initKind,
9722                                           MultiExprArg(&opaqueValue, 1));
9723      if (result.isInvalid())
9724        Invalid = true;
9725      else {
9726        // If the constructor used was non-trivial, set this as the
9727        // "initializer".
9728        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9729        if (!construct->getConstructor()->isTrivial()) {
9730          Expr *init = MaybeCreateExprWithCleanups(construct);
9731          ExDecl->setInit(init);
9732        }
9733
9734        // And make sure it's destructable.
9735        FinalizeVarWithDestructor(ExDecl, recordType);
9736      }
9737    }
9738  }
9739
9740  if (Invalid)
9741    ExDecl->setInvalidDecl();
9742
9743  return ExDecl;
9744}
9745
9746/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9747/// handler.
9748Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9749  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9750  bool Invalid = D.isInvalidType();
9751
9752  // Check for unexpanded parameter packs.
9753  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9754                                               UPPC_ExceptionType)) {
9755    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9756                                             D.getIdentifierLoc());
9757    Invalid = true;
9758  }
9759
9760  IdentifierInfo *II = D.getIdentifier();
9761  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9762                                             LookupOrdinaryName,
9763                                             ForRedeclaration)) {
9764    // The scope should be freshly made just for us. There is just no way
9765    // it contains any previous declaration.
9766    assert(!S->isDeclScope(PrevDecl));
9767    if (PrevDecl->isTemplateParameter()) {
9768      // Maybe we will complain about the shadowed template parameter.
9769      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9770      PrevDecl = 0;
9771    }
9772  }
9773
9774  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9775    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9776      << D.getCXXScopeSpec().getRange();
9777    Invalid = true;
9778  }
9779
9780  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9781                                              D.getSourceRange().getBegin(),
9782                                              D.getIdentifierLoc(),
9783                                              D.getIdentifier());
9784  if (Invalid)
9785    ExDecl->setInvalidDecl();
9786
9787  // Add the exception declaration into this scope.
9788  if (II)
9789    PushOnScopeChains(ExDecl, S);
9790  else
9791    CurContext->addDecl(ExDecl);
9792
9793  ProcessDeclAttributes(S, ExDecl, D);
9794  return ExDecl;
9795}
9796
9797Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9798                                         Expr *AssertExpr,
9799                                         Expr *AssertMessageExpr_,
9800                                         SourceLocation RParenLoc) {
9801  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9802
9803  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9804    // In a static_assert-declaration, the constant-expression shall be a
9805    // constant expression that can be contextually converted to bool.
9806    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9807    if (Converted.isInvalid())
9808      return 0;
9809
9810    llvm::APSInt Cond;
9811    if (VerifyIntegerConstantExpression(Converted.get(), &Cond,
9812          PDiag(diag::err_static_assert_expression_is_not_constant),
9813          /*AllowFold=*/false).isInvalid())
9814      return 0;
9815
9816    if (!Cond)
9817      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9818        << AssertMessage->getString() << AssertExpr->getSourceRange();
9819  }
9820
9821  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9822    return 0;
9823
9824  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9825                                        AssertExpr, AssertMessage, RParenLoc);
9826
9827  CurContext->addDecl(Decl);
9828  return Decl;
9829}
9830
9831/// \brief Perform semantic analysis of the given friend type declaration.
9832///
9833/// \returns A friend declaration that.
9834FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9835                                      SourceLocation FriendLoc,
9836                                      TypeSourceInfo *TSInfo) {
9837  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9838
9839  QualType T = TSInfo->getType();
9840  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9841
9842  // C++03 [class.friend]p2:
9843  //   An elaborated-type-specifier shall be used in a friend declaration
9844  //   for a class.*
9845  //
9846  //   * The class-key of the elaborated-type-specifier is required.
9847  if (!ActiveTemplateInstantiations.empty()) {
9848    // Do not complain about the form of friend template types during
9849    // template instantiation; we will already have complained when the
9850    // template was declared.
9851  } else if (!T->isElaboratedTypeSpecifier()) {
9852    // If we evaluated the type to a record type, suggest putting
9853    // a tag in front.
9854    if (const RecordType *RT = T->getAs<RecordType>()) {
9855      RecordDecl *RD = RT->getDecl();
9856
9857      std::string InsertionText = std::string(" ") + RD->getKindName();
9858
9859      Diag(TypeRange.getBegin(),
9860           getLangOptions().CPlusPlus0x ?
9861             diag::warn_cxx98_compat_unelaborated_friend_type :
9862             diag::ext_unelaborated_friend_type)
9863        << (unsigned) RD->getTagKind()
9864        << T
9865        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9866                                      InsertionText);
9867    } else {
9868      Diag(FriendLoc,
9869           getLangOptions().CPlusPlus0x ?
9870             diag::warn_cxx98_compat_nonclass_type_friend :
9871             diag::ext_nonclass_type_friend)
9872        << T
9873        << SourceRange(FriendLoc, TypeRange.getEnd());
9874    }
9875  } else if (T->getAs<EnumType>()) {
9876    Diag(FriendLoc,
9877         getLangOptions().CPlusPlus0x ?
9878           diag::warn_cxx98_compat_enum_friend :
9879           diag::ext_enum_friend)
9880      << T
9881      << SourceRange(FriendLoc, TypeRange.getEnd());
9882  }
9883
9884  // C++0x [class.friend]p3:
9885  //   If the type specifier in a friend declaration designates a (possibly
9886  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9887  //   the friend declaration is ignored.
9888
9889  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9890  // in [class.friend]p3 that we do not implement.
9891
9892  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9893}
9894
9895/// Handle a friend tag declaration where the scope specifier was
9896/// templated.
9897Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9898                                    unsigned TagSpec, SourceLocation TagLoc,
9899                                    CXXScopeSpec &SS,
9900                                    IdentifierInfo *Name, SourceLocation NameLoc,
9901                                    AttributeList *Attr,
9902                                    MultiTemplateParamsArg TempParamLists) {
9903  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9904
9905  bool isExplicitSpecialization = false;
9906  bool Invalid = false;
9907
9908  if (TemplateParameterList *TemplateParams
9909        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9910                                                  TempParamLists.get(),
9911                                                  TempParamLists.size(),
9912                                                  /*friend*/ true,
9913                                                  isExplicitSpecialization,
9914                                                  Invalid)) {
9915    if (TemplateParams->size() > 0) {
9916      // This is a declaration of a class template.
9917      if (Invalid)
9918        return 0;
9919
9920      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9921                                SS, Name, NameLoc, Attr,
9922                                TemplateParams, AS_public,
9923                                /*ModulePrivateLoc=*/SourceLocation(),
9924                                TempParamLists.size() - 1,
9925                   (TemplateParameterList**) TempParamLists.release()).take();
9926    } else {
9927      // The "template<>" header is extraneous.
9928      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9929        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9930      isExplicitSpecialization = true;
9931    }
9932  }
9933
9934  if (Invalid) return 0;
9935
9936  bool isAllExplicitSpecializations = true;
9937  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9938    if (TempParamLists.get()[I]->size()) {
9939      isAllExplicitSpecializations = false;
9940      break;
9941    }
9942  }
9943
9944  // FIXME: don't ignore attributes.
9945
9946  // If it's explicit specializations all the way down, just forget
9947  // about the template header and build an appropriate non-templated
9948  // friend.  TODO: for source fidelity, remember the headers.
9949  if (isAllExplicitSpecializations) {
9950    if (SS.isEmpty()) {
9951      bool Owned = false;
9952      bool IsDependent = false;
9953      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9954                      Attr, AS_public,
9955                      /*ModulePrivateLoc=*/SourceLocation(),
9956                      MultiTemplateParamsArg(), Owned, IsDependent,
9957                      /*ScopedEnumKWLoc=*/SourceLocation(),
9958                      /*ScopedEnumUsesClassTag=*/false,
9959                      /*UnderlyingType=*/TypeResult());
9960    }
9961
9962    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9963    ElaboratedTypeKeyword Keyword
9964      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9965    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9966                                   *Name, NameLoc);
9967    if (T.isNull())
9968      return 0;
9969
9970    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9971    if (isa<DependentNameType>(T)) {
9972      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9973      TL.setElaboratedKeywordLoc(TagLoc);
9974      TL.setQualifierLoc(QualifierLoc);
9975      TL.setNameLoc(NameLoc);
9976    } else {
9977      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9978      TL.setElaboratedKeywordLoc(TagLoc);
9979      TL.setQualifierLoc(QualifierLoc);
9980      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9981    }
9982
9983    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9984                                            TSI, FriendLoc);
9985    Friend->setAccess(AS_public);
9986    CurContext->addDecl(Friend);
9987    return Friend;
9988  }
9989
9990  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9991
9992
9993
9994  // Handle the case of a templated-scope friend class.  e.g.
9995  //   template <class T> class A<T>::B;
9996  // FIXME: we don't support these right now.
9997  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9998  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9999  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10000  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10001  TL.setElaboratedKeywordLoc(TagLoc);
10002  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10003  TL.setNameLoc(NameLoc);
10004
10005  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10006                                          TSI, FriendLoc);
10007  Friend->setAccess(AS_public);
10008  Friend->setUnsupportedFriend(true);
10009  CurContext->addDecl(Friend);
10010  return Friend;
10011}
10012
10013
10014/// Handle a friend type declaration.  This works in tandem with
10015/// ActOnTag.
10016///
10017/// Notes on friend class templates:
10018///
10019/// We generally treat friend class declarations as if they were
10020/// declaring a class.  So, for example, the elaborated type specifier
10021/// in a friend declaration is required to obey the restrictions of a
10022/// class-head (i.e. no typedefs in the scope chain), template
10023/// parameters are required to match up with simple template-ids, &c.
10024/// However, unlike when declaring a template specialization, it's
10025/// okay to refer to a template specialization without an empty
10026/// template parameter declaration, e.g.
10027///   friend class A<T>::B<unsigned>;
10028/// We permit this as a special case; if there are any template
10029/// parameters present at all, require proper matching, i.e.
10030///   template <> template <class T> friend class A<int>::B;
10031Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10032                                MultiTemplateParamsArg TempParams) {
10033  SourceLocation Loc = DS.getSourceRange().getBegin();
10034
10035  assert(DS.isFriendSpecified());
10036  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10037
10038  // Try to convert the decl specifier to a type.  This works for
10039  // friend templates because ActOnTag never produces a ClassTemplateDecl
10040  // for a TUK_Friend.
10041  Declarator TheDeclarator(DS, Declarator::MemberContext);
10042  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10043  QualType T = TSI->getType();
10044  if (TheDeclarator.isInvalidType())
10045    return 0;
10046
10047  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10048    return 0;
10049
10050  // This is definitely an error in C++98.  It's probably meant to
10051  // be forbidden in C++0x, too, but the specification is just
10052  // poorly written.
10053  //
10054  // The problem is with declarations like the following:
10055  //   template <T> friend A<T>::foo;
10056  // where deciding whether a class C is a friend or not now hinges
10057  // on whether there exists an instantiation of A that causes
10058  // 'foo' to equal C.  There are restrictions on class-heads
10059  // (which we declare (by fiat) elaborated friend declarations to
10060  // be) that makes this tractable.
10061  //
10062  // FIXME: handle "template <> friend class A<T>;", which
10063  // is possibly well-formed?  Who even knows?
10064  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10065    Diag(Loc, diag::err_tagless_friend_type_template)
10066      << DS.getSourceRange();
10067    return 0;
10068  }
10069
10070  // C++98 [class.friend]p1: A friend of a class is a function
10071  //   or class that is not a member of the class . . .
10072  // This is fixed in DR77, which just barely didn't make the C++03
10073  // deadline.  It's also a very silly restriction that seriously
10074  // affects inner classes and which nobody else seems to implement;
10075  // thus we never diagnose it, not even in -pedantic.
10076  //
10077  // But note that we could warn about it: it's always useless to
10078  // friend one of your own members (it's not, however, worthless to
10079  // friend a member of an arbitrary specialization of your template).
10080
10081  Decl *D;
10082  if (unsigned NumTempParamLists = TempParams.size())
10083    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10084                                   NumTempParamLists,
10085                                   TempParams.release(),
10086                                   TSI,
10087                                   DS.getFriendSpecLoc());
10088  else
10089    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10090
10091  if (!D)
10092    return 0;
10093
10094  D->setAccess(AS_public);
10095  CurContext->addDecl(D);
10096
10097  return D;
10098}
10099
10100Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10101                                    MultiTemplateParamsArg TemplateParams) {
10102  const DeclSpec &DS = D.getDeclSpec();
10103
10104  assert(DS.isFriendSpecified());
10105  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10106
10107  SourceLocation Loc = D.getIdentifierLoc();
10108  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10109
10110  // C++ [class.friend]p1
10111  //   A friend of a class is a function or class....
10112  // Note that this sees through typedefs, which is intended.
10113  // It *doesn't* see through dependent types, which is correct
10114  // according to [temp.arg.type]p3:
10115  //   If a declaration acquires a function type through a
10116  //   type dependent on a template-parameter and this causes
10117  //   a declaration that does not use the syntactic form of a
10118  //   function declarator to have a function type, the program
10119  //   is ill-formed.
10120  if (!TInfo->getType()->isFunctionType()) {
10121    Diag(Loc, diag::err_unexpected_friend);
10122
10123    // It might be worthwhile to try to recover by creating an
10124    // appropriate declaration.
10125    return 0;
10126  }
10127
10128  // C++ [namespace.memdef]p3
10129  //  - If a friend declaration in a non-local class first declares a
10130  //    class or function, the friend class or function is a member
10131  //    of the innermost enclosing namespace.
10132  //  - The name of the friend is not found by simple name lookup
10133  //    until a matching declaration is provided in that namespace
10134  //    scope (either before or after the class declaration granting
10135  //    friendship).
10136  //  - If a friend function is called, its name may be found by the
10137  //    name lookup that considers functions from namespaces and
10138  //    classes associated with the types of the function arguments.
10139  //  - When looking for a prior declaration of a class or a function
10140  //    declared as a friend, scopes outside the innermost enclosing
10141  //    namespace scope are not considered.
10142
10143  CXXScopeSpec &SS = D.getCXXScopeSpec();
10144  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10145  DeclarationName Name = NameInfo.getName();
10146  assert(Name);
10147
10148  // Check for unexpanded parameter packs.
10149  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10150      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10151      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10152    return 0;
10153
10154  // The context we found the declaration in, or in which we should
10155  // create the declaration.
10156  DeclContext *DC;
10157  Scope *DCScope = S;
10158  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10159                        ForRedeclaration);
10160
10161  // FIXME: there are different rules in local classes
10162
10163  // There are four cases here.
10164  //   - There's no scope specifier, in which case we just go to the
10165  //     appropriate scope and look for a function or function template
10166  //     there as appropriate.
10167  // Recover from invalid scope qualifiers as if they just weren't there.
10168  if (SS.isInvalid() || !SS.isSet()) {
10169    // C++0x [namespace.memdef]p3:
10170    //   If the name in a friend declaration is neither qualified nor
10171    //   a template-id and the declaration is a function or an
10172    //   elaborated-type-specifier, the lookup to determine whether
10173    //   the entity has been previously declared shall not consider
10174    //   any scopes outside the innermost enclosing namespace.
10175    // C++0x [class.friend]p11:
10176    //   If a friend declaration appears in a local class and the name
10177    //   specified is an unqualified name, a prior declaration is
10178    //   looked up without considering scopes that are outside the
10179    //   innermost enclosing non-class scope. For a friend function
10180    //   declaration, if there is no prior declaration, the program is
10181    //   ill-formed.
10182    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10183    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10184
10185    // Find the appropriate context according to the above.
10186    DC = CurContext;
10187    while (true) {
10188      // Skip class contexts.  If someone can cite chapter and verse
10189      // for this behavior, that would be nice --- it's what GCC and
10190      // EDG do, and it seems like a reasonable intent, but the spec
10191      // really only says that checks for unqualified existing
10192      // declarations should stop at the nearest enclosing namespace,
10193      // not that they should only consider the nearest enclosing
10194      // namespace.
10195      while (DC->isRecord())
10196        DC = DC->getParent();
10197
10198      LookupQualifiedName(Previous, DC);
10199
10200      // TODO: decide what we think about using declarations.
10201      if (isLocal || !Previous.empty())
10202        break;
10203
10204      if (isTemplateId) {
10205        if (isa<TranslationUnitDecl>(DC)) break;
10206      } else {
10207        if (DC->isFileContext()) break;
10208      }
10209      DC = DC->getParent();
10210    }
10211
10212    // C++ [class.friend]p1: A friend of a class is a function or
10213    //   class that is not a member of the class . . .
10214    // C++11 changes this for both friend types and functions.
10215    // Most C++ 98 compilers do seem to give an error here, so
10216    // we do, too.
10217    if (!Previous.empty() && DC->Equals(CurContext))
10218      Diag(DS.getFriendSpecLoc(),
10219           getLangOptions().CPlusPlus0x ?
10220             diag::warn_cxx98_compat_friend_is_member :
10221             diag::err_friend_is_member);
10222
10223    DCScope = getScopeForDeclContext(S, DC);
10224
10225    // C++ [class.friend]p6:
10226    //   A function can be defined in a friend declaration of a class if and
10227    //   only if the class is a non-local class (9.8), the function name is
10228    //   unqualified, and the function has namespace scope.
10229    if (isLocal && D.isFunctionDefinition()) {
10230      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10231    }
10232
10233  //   - There's a non-dependent scope specifier, in which case we
10234  //     compute it and do a previous lookup there for a function
10235  //     or function template.
10236  } else if (!SS.getScopeRep()->isDependent()) {
10237    DC = computeDeclContext(SS);
10238    if (!DC) return 0;
10239
10240    if (RequireCompleteDeclContext(SS, DC)) return 0;
10241
10242    LookupQualifiedName(Previous, DC);
10243
10244    // Ignore things found implicitly in the wrong scope.
10245    // TODO: better diagnostics for this case.  Suggesting the right
10246    // qualified scope would be nice...
10247    LookupResult::Filter F = Previous.makeFilter();
10248    while (F.hasNext()) {
10249      NamedDecl *D = F.next();
10250      if (!DC->InEnclosingNamespaceSetOf(
10251              D->getDeclContext()->getRedeclContext()))
10252        F.erase();
10253    }
10254    F.done();
10255
10256    if (Previous.empty()) {
10257      D.setInvalidType();
10258      Diag(Loc, diag::err_qualified_friend_not_found)
10259          << Name << TInfo->getType();
10260      return 0;
10261    }
10262
10263    // C++ [class.friend]p1: A friend of a class is a function or
10264    //   class that is not a member of the class . . .
10265    if (DC->Equals(CurContext))
10266      Diag(DS.getFriendSpecLoc(),
10267           getLangOptions().CPlusPlus0x ?
10268             diag::warn_cxx98_compat_friend_is_member :
10269             diag::err_friend_is_member);
10270
10271    if (D.isFunctionDefinition()) {
10272      // C++ [class.friend]p6:
10273      //   A function can be defined in a friend declaration of a class if and
10274      //   only if the class is a non-local class (9.8), the function name is
10275      //   unqualified, and the function has namespace scope.
10276      SemaDiagnosticBuilder DB
10277        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10278
10279      DB << SS.getScopeRep();
10280      if (DC->isFileContext())
10281        DB << FixItHint::CreateRemoval(SS.getRange());
10282      SS.clear();
10283    }
10284
10285  //   - There's a scope specifier that does not match any template
10286  //     parameter lists, in which case we use some arbitrary context,
10287  //     create a method or method template, and wait for instantiation.
10288  //   - There's a scope specifier that does match some template
10289  //     parameter lists, which we don't handle right now.
10290  } else {
10291    if (D.isFunctionDefinition()) {
10292      // C++ [class.friend]p6:
10293      //   A function can be defined in a friend declaration of a class if and
10294      //   only if the class is a non-local class (9.8), the function name is
10295      //   unqualified, and the function has namespace scope.
10296      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10297        << SS.getScopeRep();
10298    }
10299
10300    DC = CurContext;
10301    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10302  }
10303
10304  if (!DC->isRecord()) {
10305    // This implies that it has to be an operator or function.
10306    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10307        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10308        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10309      Diag(Loc, diag::err_introducing_special_friend) <<
10310        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10311         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10312      return 0;
10313    }
10314  }
10315
10316  // FIXME: This is an egregious hack to cope with cases where the scope stack
10317  // does not contain the declaration context, i.e., in an out-of-line
10318  // definition of a class.
10319  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10320  if (!DCScope) {
10321    FakeDCScope.setEntity(DC);
10322    DCScope = &FakeDCScope;
10323  }
10324
10325  bool AddToScope = true;
10326  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10327                                          move(TemplateParams), AddToScope);
10328  if (!ND) return 0;
10329
10330  assert(ND->getDeclContext() == DC);
10331  assert(ND->getLexicalDeclContext() == CurContext);
10332
10333  // Add the function declaration to the appropriate lookup tables,
10334  // adjusting the redeclarations list as necessary.  We don't
10335  // want to do this yet if the friending class is dependent.
10336  //
10337  // Also update the scope-based lookup if the target context's
10338  // lookup context is in lexical scope.
10339  if (!CurContext->isDependentContext()) {
10340    DC = DC->getRedeclContext();
10341    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10342    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10343      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10344  }
10345
10346  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10347                                       D.getIdentifierLoc(), ND,
10348                                       DS.getFriendSpecLoc());
10349  FrD->setAccess(AS_public);
10350  CurContext->addDecl(FrD);
10351
10352  if (ND->isInvalidDecl())
10353    FrD->setInvalidDecl();
10354  else {
10355    FunctionDecl *FD;
10356    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10357      FD = FTD->getTemplatedDecl();
10358    else
10359      FD = cast<FunctionDecl>(ND);
10360
10361    // Mark templated-scope function declarations as unsupported.
10362    if (FD->getNumTemplateParameterLists())
10363      FrD->setUnsupportedFriend(true);
10364  }
10365
10366  return ND;
10367}
10368
10369void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10370  AdjustDeclIfTemplate(Dcl);
10371
10372  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10373  if (!Fn) {
10374    Diag(DelLoc, diag::err_deleted_non_function);
10375    return;
10376  }
10377  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10378    Diag(DelLoc, diag::err_deleted_decl_not_first);
10379    Diag(Prev->getLocation(), diag::note_previous_declaration);
10380    // If the declaration wasn't the first, we delete the function anyway for
10381    // recovery.
10382  }
10383  Fn->setDeletedAsWritten();
10384}
10385
10386void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10387  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10388
10389  if (MD) {
10390    if (MD->getParent()->isDependentType()) {
10391      MD->setDefaulted();
10392      MD->setExplicitlyDefaulted();
10393      return;
10394    }
10395
10396    CXXSpecialMember Member = getSpecialMember(MD);
10397    if (Member == CXXInvalid) {
10398      Diag(DefaultLoc, diag::err_default_special_members);
10399      return;
10400    }
10401
10402    MD->setDefaulted();
10403    MD->setExplicitlyDefaulted();
10404
10405    // If this definition appears within the record, do the checking when
10406    // the record is complete.
10407    const FunctionDecl *Primary = MD;
10408    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10409      // Find the uninstantiated declaration that actually had the '= default'
10410      // on it.
10411      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10412
10413    if (Primary == Primary->getCanonicalDecl())
10414      return;
10415
10416    switch (Member) {
10417    case CXXDefaultConstructor: {
10418      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10419      CheckExplicitlyDefaultedDefaultConstructor(CD);
10420      if (!CD->isInvalidDecl())
10421        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10422      break;
10423    }
10424
10425    case CXXCopyConstructor: {
10426      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10427      CheckExplicitlyDefaultedCopyConstructor(CD);
10428      if (!CD->isInvalidDecl())
10429        DefineImplicitCopyConstructor(DefaultLoc, CD);
10430      break;
10431    }
10432
10433    case CXXCopyAssignment: {
10434      CheckExplicitlyDefaultedCopyAssignment(MD);
10435      if (!MD->isInvalidDecl())
10436        DefineImplicitCopyAssignment(DefaultLoc, MD);
10437      break;
10438    }
10439
10440    case CXXDestructor: {
10441      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10442      CheckExplicitlyDefaultedDestructor(DD);
10443      if (!DD->isInvalidDecl())
10444        DefineImplicitDestructor(DefaultLoc, DD);
10445      break;
10446    }
10447
10448    case CXXMoveConstructor: {
10449      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10450      CheckExplicitlyDefaultedMoveConstructor(CD);
10451      if (!CD->isInvalidDecl())
10452        DefineImplicitMoveConstructor(DefaultLoc, CD);
10453      break;
10454    }
10455
10456    case CXXMoveAssignment: {
10457      CheckExplicitlyDefaultedMoveAssignment(MD);
10458      if (!MD->isInvalidDecl())
10459        DefineImplicitMoveAssignment(DefaultLoc, MD);
10460      break;
10461    }
10462
10463    case CXXInvalid:
10464      llvm_unreachable("Invalid special member.");
10465    }
10466  } else {
10467    Diag(DefaultLoc, diag::err_default_special_members);
10468  }
10469}
10470
10471static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10472  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10473    Stmt *SubStmt = *CI;
10474    if (!SubStmt)
10475      continue;
10476    if (isa<ReturnStmt>(SubStmt))
10477      Self.Diag(SubStmt->getSourceRange().getBegin(),
10478           diag::err_return_in_constructor_handler);
10479    if (!isa<Expr>(SubStmt))
10480      SearchForReturnInStmt(Self, SubStmt);
10481  }
10482}
10483
10484void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10485  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10486    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10487    SearchForReturnInStmt(*this, Handler);
10488  }
10489}
10490
10491bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10492                                             const CXXMethodDecl *Old) {
10493  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10494  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10495
10496  if (Context.hasSameType(NewTy, OldTy) ||
10497      NewTy->isDependentType() || OldTy->isDependentType())
10498    return false;
10499
10500  // Check if the return types are covariant
10501  QualType NewClassTy, OldClassTy;
10502
10503  /// Both types must be pointers or references to classes.
10504  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10505    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10506      NewClassTy = NewPT->getPointeeType();
10507      OldClassTy = OldPT->getPointeeType();
10508    }
10509  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10510    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10511      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10512        NewClassTy = NewRT->getPointeeType();
10513        OldClassTy = OldRT->getPointeeType();
10514      }
10515    }
10516  }
10517
10518  // The return types aren't either both pointers or references to a class type.
10519  if (NewClassTy.isNull()) {
10520    Diag(New->getLocation(),
10521         diag::err_different_return_type_for_overriding_virtual_function)
10522      << New->getDeclName() << NewTy << OldTy;
10523    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10524
10525    return true;
10526  }
10527
10528  // C++ [class.virtual]p6:
10529  //   If the return type of D::f differs from the return type of B::f, the
10530  //   class type in the return type of D::f shall be complete at the point of
10531  //   declaration of D::f or shall be the class type D.
10532  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10533    if (!RT->isBeingDefined() &&
10534        RequireCompleteType(New->getLocation(), NewClassTy,
10535                            PDiag(diag::err_covariant_return_incomplete)
10536                              << New->getDeclName()))
10537    return true;
10538  }
10539
10540  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10541    // Check if the new class derives from the old class.
10542    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10543      Diag(New->getLocation(),
10544           diag::err_covariant_return_not_derived)
10545      << New->getDeclName() << NewTy << OldTy;
10546      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10547      return true;
10548    }
10549
10550    // Check if we the conversion from derived to base is valid.
10551    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10552                    diag::err_covariant_return_inaccessible_base,
10553                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10554                    // FIXME: Should this point to the return type?
10555                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10556      // FIXME: this note won't trigger for delayed access control
10557      // diagnostics, and it's impossible to get an undelayed error
10558      // here from access control during the original parse because
10559      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10560      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10561      return true;
10562    }
10563  }
10564
10565  // The qualifiers of the return types must be the same.
10566  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10567    Diag(New->getLocation(),
10568         diag::err_covariant_return_type_different_qualifications)
10569    << New->getDeclName() << NewTy << OldTy;
10570    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10571    return true;
10572  };
10573
10574
10575  // The new class type must have the same or less qualifiers as the old type.
10576  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10577    Diag(New->getLocation(),
10578         diag::err_covariant_return_type_class_type_more_qualified)
10579    << New->getDeclName() << NewTy << OldTy;
10580    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10581    return true;
10582  };
10583
10584  return false;
10585}
10586
10587/// \brief Mark the given method pure.
10588///
10589/// \param Method the method to be marked pure.
10590///
10591/// \param InitRange the source range that covers the "0" initializer.
10592bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10593  SourceLocation EndLoc = InitRange.getEnd();
10594  if (EndLoc.isValid())
10595    Method->setRangeEnd(EndLoc);
10596
10597  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10598    Method->setPure();
10599    return false;
10600  }
10601
10602  if (!Method->isInvalidDecl())
10603    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10604      << Method->getDeclName() << InitRange;
10605  return true;
10606}
10607
10608/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10609/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10610/// is a fresh scope pushed for just this purpose.
10611///
10612/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10613/// static data member of class X, names should be looked up in the scope of
10614/// class X.
10615void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10616  // If there is no declaration, there was an error parsing it.
10617  if (D == 0 || D->isInvalidDecl()) return;
10618
10619  // We should only get called for declarations with scope specifiers, like:
10620  //   int foo::bar;
10621  assert(D->isOutOfLine());
10622  EnterDeclaratorContext(S, D->getDeclContext());
10623}
10624
10625/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10626/// initializer for the out-of-line declaration 'D'.
10627void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10628  // If there is no declaration, there was an error parsing it.
10629  if (D == 0 || D->isInvalidDecl()) return;
10630
10631  assert(D->isOutOfLine());
10632  ExitDeclaratorContext(S);
10633}
10634
10635/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10636/// C++ if/switch/while/for statement.
10637/// e.g: "if (int x = f()) {...}"
10638DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10639  // C++ 6.4p2:
10640  // The declarator shall not specify a function or an array.
10641  // The type-specifier-seq shall not contain typedef and shall not declare a
10642  // new class or enumeration.
10643  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10644         "Parser allowed 'typedef' as storage class of condition decl.");
10645
10646  Decl *Dcl = ActOnDeclarator(S, D);
10647  if (!Dcl)
10648    return true;
10649
10650  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10651    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10652      << D.getSourceRange();
10653    return true;
10654  }
10655
10656  return Dcl;
10657}
10658
10659void Sema::LoadExternalVTableUses() {
10660  if (!ExternalSource)
10661    return;
10662
10663  SmallVector<ExternalVTableUse, 4> VTables;
10664  ExternalSource->ReadUsedVTables(VTables);
10665  SmallVector<VTableUse, 4> NewUses;
10666  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10667    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10668      = VTablesUsed.find(VTables[I].Record);
10669    // Even if a definition wasn't required before, it may be required now.
10670    if (Pos != VTablesUsed.end()) {
10671      if (!Pos->second && VTables[I].DefinitionRequired)
10672        Pos->second = true;
10673      continue;
10674    }
10675
10676    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10677    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10678  }
10679
10680  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10681}
10682
10683void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10684                          bool DefinitionRequired) {
10685  // Ignore any vtable uses in unevaluated operands or for classes that do
10686  // not have a vtable.
10687  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10688      CurContext->isDependentContext() ||
10689      ExprEvalContexts.back().Context == Unevaluated)
10690    return;
10691
10692  // Try to insert this class into the map.
10693  LoadExternalVTableUses();
10694  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10695  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10696    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10697  if (!Pos.second) {
10698    // If we already had an entry, check to see if we are promoting this vtable
10699    // to required a definition. If so, we need to reappend to the VTableUses
10700    // list, since we may have already processed the first entry.
10701    if (DefinitionRequired && !Pos.first->second) {
10702      Pos.first->second = true;
10703    } else {
10704      // Otherwise, we can early exit.
10705      return;
10706    }
10707  }
10708
10709  // Local classes need to have their virtual members marked
10710  // immediately. For all other classes, we mark their virtual members
10711  // at the end of the translation unit.
10712  if (Class->isLocalClass())
10713    MarkVirtualMembersReferenced(Loc, Class);
10714  else
10715    VTableUses.push_back(std::make_pair(Class, Loc));
10716}
10717
10718bool Sema::DefineUsedVTables() {
10719  LoadExternalVTableUses();
10720  if (VTableUses.empty())
10721    return false;
10722
10723  // Note: The VTableUses vector could grow as a result of marking
10724  // the members of a class as "used", so we check the size each
10725  // time through the loop and prefer indices (with are stable) to
10726  // iterators (which are not).
10727  bool DefinedAnything = false;
10728  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10729    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10730    if (!Class)
10731      continue;
10732
10733    SourceLocation Loc = VTableUses[I].second;
10734
10735    // If this class has a key function, but that key function is
10736    // defined in another translation unit, we don't need to emit the
10737    // vtable even though we're using it.
10738    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10739    if (KeyFunction && !KeyFunction->hasBody()) {
10740      switch (KeyFunction->getTemplateSpecializationKind()) {
10741      case TSK_Undeclared:
10742      case TSK_ExplicitSpecialization:
10743      case TSK_ExplicitInstantiationDeclaration:
10744        // The key function is in another translation unit.
10745        continue;
10746
10747      case TSK_ExplicitInstantiationDefinition:
10748      case TSK_ImplicitInstantiation:
10749        // We will be instantiating the key function.
10750        break;
10751      }
10752    } else if (!KeyFunction) {
10753      // If we have a class with no key function that is the subject
10754      // of an explicit instantiation declaration, suppress the
10755      // vtable; it will live with the explicit instantiation
10756      // definition.
10757      bool IsExplicitInstantiationDeclaration
10758        = Class->getTemplateSpecializationKind()
10759                                      == TSK_ExplicitInstantiationDeclaration;
10760      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10761                                 REnd = Class->redecls_end();
10762           R != REnd; ++R) {
10763        TemplateSpecializationKind TSK
10764          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10765        if (TSK == TSK_ExplicitInstantiationDeclaration)
10766          IsExplicitInstantiationDeclaration = true;
10767        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10768          IsExplicitInstantiationDeclaration = false;
10769          break;
10770        }
10771      }
10772
10773      if (IsExplicitInstantiationDeclaration)
10774        continue;
10775    }
10776
10777    // Mark all of the virtual members of this class as referenced, so
10778    // that we can build a vtable. Then, tell the AST consumer that a
10779    // vtable for this class is required.
10780    DefinedAnything = true;
10781    MarkVirtualMembersReferenced(Loc, Class);
10782    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10783    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10784
10785    // Optionally warn if we're emitting a weak vtable.
10786    if (Class->getLinkage() == ExternalLinkage &&
10787        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10788      const FunctionDecl *KeyFunctionDef = 0;
10789      if (!KeyFunction ||
10790          (KeyFunction->hasBody(KeyFunctionDef) &&
10791           KeyFunctionDef->isInlined()))
10792        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10793             TSK_ExplicitInstantiationDefinition
10794             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10795          << Class;
10796    }
10797  }
10798  VTableUses.clear();
10799
10800  return DefinedAnything;
10801}
10802
10803void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10804                                        const CXXRecordDecl *RD) {
10805  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10806       e = RD->method_end(); i != e; ++i) {
10807    CXXMethodDecl *MD = *i;
10808
10809    // C++ [basic.def.odr]p2:
10810    //   [...] A virtual member function is used if it is not pure. [...]
10811    if (MD->isVirtual() && !MD->isPure())
10812      MarkFunctionReferenced(Loc, MD);
10813  }
10814
10815  // Only classes that have virtual bases need a VTT.
10816  if (RD->getNumVBases() == 0)
10817    return;
10818
10819  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10820           e = RD->bases_end(); i != e; ++i) {
10821    const CXXRecordDecl *Base =
10822        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10823    if (Base->getNumVBases() == 0)
10824      continue;
10825    MarkVirtualMembersReferenced(Loc, Base);
10826  }
10827}
10828
10829/// SetIvarInitializers - This routine builds initialization ASTs for the
10830/// Objective-C implementation whose ivars need be initialized.
10831void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10832  if (!getLangOptions().CPlusPlus)
10833    return;
10834  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10835    SmallVector<ObjCIvarDecl*, 8> ivars;
10836    CollectIvarsToConstructOrDestruct(OID, ivars);
10837    if (ivars.empty())
10838      return;
10839    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10840    for (unsigned i = 0; i < ivars.size(); i++) {
10841      FieldDecl *Field = ivars[i];
10842      if (Field->isInvalidDecl())
10843        continue;
10844
10845      CXXCtorInitializer *Member;
10846      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10847      InitializationKind InitKind =
10848        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10849
10850      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10851      ExprResult MemberInit =
10852        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10853      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10854      // Note, MemberInit could actually come back empty if no initialization
10855      // is required (e.g., because it would call a trivial default constructor)
10856      if (!MemberInit.get() || MemberInit.isInvalid())
10857        continue;
10858
10859      Member =
10860        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10861                                         SourceLocation(),
10862                                         MemberInit.takeAs<Expr>(),
10863                                         SourceLocation());
10864      AllToInit.push_back(Member);
10865
10866      // Be sure that the destructor is accessible and is marked as referenced.
10867      if (const RecordType *RecordTy
10868                  = Context.getBaseElementType(Field->getType())
10869                                                        ->getAs<RecordType>()) {
10870                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10871        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10872          MarkFunctionReferenced(Field->getLocation(), Destructor);
10873          CheckDestructorAccess(Field->getLocation(), Destructor,
10874                            PDiag(diag::err_access_dtor_ivar)
10875                              << Context.getBaseElementType(Field->getType()));
10876        }
10877      }
10878    }
10879    ObjCImplementation->setIvarInitializers(Context,
10880                                            AllToInit.data(), AllToInit.size());
10881  }
10882}
10883
10884static
10885void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10886                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10887                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10888                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10889                           Sema &S) {
10890  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10891                                                   CE = Current.end();
10892  if (Ctor->isInvalidDecl())
10893    return;
10894
10895  const FunctionDecl *FNTarget = 0;
10896  CXXConstructorDecl *Target;
10897
10898  // We ignore the result here since if we don't have a body, Target will be
10899  // null below.
10900  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10901  Target
10902= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10903
10904  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10905                     // Avoid dereferencing a null pointer here.
10906                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10907
10908  if (!Current.insert(Canonical))
10909    return;
10910
10911  // We know that beyond here, we aren't chaining into a cycle.
10912  if (!Target || !Target->isDelegatingConstructor() ||
10913      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10914    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10915      Valid.insert(*CI);
10916    Current.clear();
10917  // We've hit a cycle.
10918  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10919             Current.count(TCanonical)) {
10920    // If we haven't diagnosed this cycle yet, do so now.
10921    if (!Invalid.count(TCanonical)) {
10922      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10923             diag::warn_delegating_ctor_cycle)
10924        << Ctor;
10925
10926      // Don't add a note for a function delegating directo to itself.
10927      if (TCanonical != Canonical)
10928        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10929
10930      CXXConstructorDecl *C = Target;
10931      while (C->getCanonicalDecl() != Canonical) {
10932        (void)C->getTargetConstructor()->hasBody(FNTarget);
10933        assert(FNTarget && "Ctor cycle through bodiless function");
10934
10935        C
10936       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10937        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10938      }
10939    }
10940
10941    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10942      Invalid.insert(*CI);
10943    Current.clear();
10944  } else {
10945    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10946  }
10947}
10948
10949
10950void Sema::CheckDelegatingCtorCycles() {
10951  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10952
10953  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10954                                                   CE = Current.end();
10955
10956  for (DelegatingCtorDeclsType::iterator
10957         I = DelegatingCtorDecls.begin(ExternalSource),
10958         E = DelegatingCtorDecls.end();
10959       I != E; ++I) {
10960   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10961  }
10962
10963  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10964    (*CI)->setInvalidDecl();
10965}
10966
10967/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
10968Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
10969  // Implicitly declared functions (e.g. copy constructors) are
10970  // __host__ __device__
10971  if (D->isImplicit())
10972    return CFT_HostDevice;
10973
10974  if (D->hasAttr<CUDAGlobalAttr>())
10975    return CFT_Global;
10976
10977  if (D->hasAttr<CUDADeviceAttr>()) {
10978    if (D->hasAttr<CUDAHostAttr>())
10979      return CFT_HostDevice;
10980    else
10981      return CFT_Device;
10982  }
10983
10984  return CFT_Host;
10985}
10986
10987bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
10988                           CUDAFunctionTarget CalleeTarget) {
10989  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
10990  // Callable from the device only."
10991  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
10992    return true;
10993
10994  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
10995  // Callable from the host only."
10996  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
10997  // Callable from the host only."
10998  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
10999      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11000    return true;
11001
11002  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11003    return true;
11004
11005  return false;
11006}
11007