SemaDeclCXX.cpp revision 2198ba12b73a8e6801d13f25de38031da6df46b6
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  if (CheckEquivalentExceptionSpec(
262          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
263          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
264    Invalid = true;
265  }
266
267  return Invalid;
268}
269
270/// CheckCXXDefaultArguments - Verify that the default arguments for a
271/// function declaration are well-formed according to C++
272/// [dcl.fct.default].
273void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
274  unsigned NumParams = FD->getNumParams();
275  unsigned p;
276
277  // Find first parameter with a default argument
278  for (p = 0; p < NumParams; ++p) {
279    ParmVarDecl *Param = FD->getParamDecl(p);
280    if (Param->getDefaultArg())
281      break;
282  }
283
284  // C++ [dcl.fct.default]p4:
285  //   In a given function declaration, all parameters
286  //   subsequent to a parameter with a default argument shall
287  //   have default arguments supplied in this or previous
288  //   declarations. A default argument shall not be redefined
289  //   by a later declaration (not even to the same value).
290  unsigned LastMissingDefaultArg = 0;
291  for(; p < NumParams; ++p) {
292    ParmVarDecl *Param = FD->getParamDecl(p);
293    if (!Param->getDefaultArg()) {
294      if (Param->isInvalidDecl())
295        /* We already complained about this parameter. */;
296      else if (Param->getIdentifier())
297        Diag(Param->getLocation(),
298             diag::err_param_default_argument_missing_name)
299          << Param->getIdentifier();
300      else
301        Diag(Param->getLocation(),
302             diag::err_param_default_argument_missing);
303
304      LastMissingDefaultArg = p;
305    }
306  }
307
308  if (LastMissingDefaultArg > 0) {
309    // Some default arguments were missing. Clear out all of the
310    // default arguments up to (and including) the last missing
311    // default argument, so that we leave the function parameters
312    // in a semantically valid state.
313    for (p = 0; p <= LastMissingDefaultArg; ++p) {
314      ParmVarDecl *Param = FD->getParamDecl(p);
315      if (Param->hasDefaultArg()) {
316        if (!Param->hasUnparsedDefaultArg())
317          Param->getDefaultArg()->Destroy(Context);
318        Param->setDefaultArg(0);
319      }
320    }
321  }
322}
323
324/// isCurrentClassName - Determine whether the identifier II is the
325/// name of the class type currently being defined. In the case of
326/// nested classes, this will only return true if II is the name of
327/// the innermost class.
328bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
329                              const CXXScopeSpec *SS) {
330  CXXRecordDecl *CurDecl;
331  if (SS && SS->isSet() && !SS->isInvalid()) {
332    DeclContext *DC = computeDeclContext(*SS);
333    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
334  } else
335    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
336
337  if (CurDecl)
338    return &II == CurDecl->getIdentifier();
339  else
340    return false;
341}
342
343/// \brief Check the validity of a C++ base class specifier.
344///
345/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
346/// and returns NULL otherwise.
347CXXBaseSpecifier *
348Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
349                         SourceRange SpecifierRange,
350                         bool Virtual, AccessSpecifier Access,
351                         QualType BaseType,
352                         SourceLocation BaseLoc) {
353  // C++ [class.union]p1:
354  //   A union shall not have base classes.
355  if (Class->isUnion()) {
356    Diag(Class->getLocation(), diag::err_base_clause_on_union)
357      << SpecifierRange;
358    return 0;
359  }
360
361  if (BaseType->isDependentType())
362    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
363                                Class->getTagKind() == RecordDecl::TK_class,
364                                Access, BaseType);
365
366  // Base specifiers must be record types.
367  if (!BaseType->isRecordType()) {
368    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
369    return 0;
370  }
371
372  // C++ [class.union]p1:
373  //   A union shall not be used as a base class.
374  if (BaseType->isUnionType()) {
375    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
376    return 0;
377  }
378
379  // C++ [class.derived]p2:
380  //   The class-name in a base-specifier shall not be an incompletely
381  //   defined class.
382  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
383                          SpecifierRange))
384    return 0;
385
386  // If the base class is polymorphic, the new one is, too.
387  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
388  assert(BaseDecl && "Record type has no declaration");
389  BaseDecl = BaseDecl->getDefinition(Context);
390  assert(BaseDecl && "Base type is not incomplete, but has no definition");
391  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
392    Class->setPolymorphic(true);
393
394  // C++ [dcl.init.aggr]p1:
395  //   An aggregate is [...] a class with [...] no base classes [...].
396  Class->setAggregate(false);
397  Class->setPOD(false);
398
399  if (Virtual) {
400    // C++ [class.ctor]p5:
401    //   A constructor is trivial if its class has no virtual base classes.
402    Class->setHasTrivialConstructor(false);
403
404    // C++ [class.copy]p6:
405    //   A copy constructor is trivial if its class has no virtual base classes.
406    Class->setHasTrivialCopyConstructor(false);
407
408    // C++ [class.copy]p11:
409    //   A copy assignment operator is trivial if its class has no virtual
410    //   base classes.
411    Class->setHasTrivialCopyAssignment(false);
412  } else {
413    // C++ [class.ctor]p5:
414    //   A constructor is trivial if all the direct base classes of its
415    //   class have trivial constructors.
416    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
417      Class->setHasTrivialConstructor(false);
418
419    // C++ [class.copy]p6:
420    //   A copy constructor is trivial if all the direct base classes of its
421    //   class have trivial copy constructors.
422    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
423      Class->setHasTrivialCopyConstructor(false);
424
425    // C++ [class.copy]p11:
426    //   A copy assignment operator is trivial if all the direct base classes
427    //   of its class have trivial copy assignment operators.
428    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
429      Class->setHasTrivialCopyAssignment(false);
430  }
431
432  // C++ [class.ctor]p3:
433  //   A destructor is trivial if all the direct base classes of its class
434  //   have trivial destructors.
435  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
436    Class->setHasTrivialDestructor(false);
437
438  // Create the base specifier.
439  // FIXME: Allocate via ASTContext?
440  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
441                              Class->getTagKind() == RecordDecl::TK_class,
442                              Access, BaseType);
443}
444
445/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
446/// one entry in the base class list of a class specifier, for
447/// example:
448///    class foo : public bar, virtual private baz {
449/// 'public bar' and 'virtual private baz' are each base-specifiers.
450Sema::BaseResult
451Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
452                         bool Virtual, AccessSpecifier Access,
453                         TypeTy *basetype, SourceLocation BaseLoc) {
454  if (!classdecl)
455    return true;
456
457  AdjustDeclIfTemplate(classdecl);
458  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
459  QualType BaseType = QualType::getFromOpaquePtr(basetype);
460  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
461                                                      Virtual, Access,
462                                                      BaseType, BaseLoc))
463    return BaseSpec;
464
465  return true;
466}
467
468/// \brief Performs the actual work of attaching the given base class
469/// specifiers to a C++ class.
470bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
471                                unsigned NumBases) {
472 if (NumBases == 0)
473    return false;
474
475  // Used to keep track of which base types we have already seen, so
476  // that we can properly diagnose redundant direct base types. Note
477  // that the key is always the unqualified canonical type of the base
478  // class.
479  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
480
481  // Copy non-redundant base specifiers into permanent storage.
482  unsigned NumGoodBases = 0;
483  bool Invalid = false;
484  for (unsigned idx = 0; idx < NumBases; ++idx) {
485    QualType NewBaseType
486      = Context.getCanonicalType(Bases[idx]->getType());
487    NewBaseType = NewBaseType.getUnqualifiedType();
488
489    if (KnownBaseTypes[NewBaseType]) {
490      // C++ [class.mi]p3:
491      //   A class shall not be specified as a direct base class of a
492      //   derived class more than once.
493      Diag(Bases[idx]->getSourceRange().getBegin(),
494           diag::err_duplicate_base_class)
495        << KnownBaseTypes[NewBaseType]->getType()
496        << Bases[idx]->getSourceRange();
497
498      // Delete the duplicate base class specifier; we're going to
499      // overwrite its pointer later.
500      Context.Deallocate(Bases[idx]);
501
502      Invalid = true;
503    } else {
504      // Okay, add this new base class.
505      KnownBaseTypes[NewBaseType] = Bases[idx];
506      Bases[NumGoodBases++] = Bases[idx];
507    }
508  }
509
510  // Attach the remaining base class specifiers to the derived class.
511  Class->setBases(Context, Bases, NumGoodBases);
512
513  // Delete the remaining (good) base class specifiers, since their
514  // data has been copied into the CXXRecordDecl.
515  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
516    Context.Deallocate(Bases[idx]);
517
518  return Invalid;
519}
520
521/// ActOnBaseSpecifiers - Attach the given base specifiers to the
522/// class, after checking whether there are any duplicate base
523/// classes.
524void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
525                               unsigned NumBases) {
526  if (!ClassDecl || !Bases || !NumBases)
527    return;
528
529  AdjustDeclIfTemplate(ClassDecl);
530  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
531                       (CXXBaseSpecifier**)(Bases), NumBases);
532}
533
534//===----------------------------------------------------------------------===//
535// C++ class member Handling
536//===----------------------------------------------------------------------===//
537
538/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
539/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
540/// bitfield width if there is one and 'InitExpr' specifies the initializer if
541/// any.
542Sema::DeclPtrTy
543Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
544                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
545  const DeclSpec &DS = D.getDeclSpec();
546  DeclarationName Name = GetNameForDeclarator(D);
547  Expr *BitWidth = static_cast<Expr*>(BW);
548  Expr *Init = static_cast<Expr*>(InitExpr);
549  SourceLocation Loc = D.getIdentifierLoc();
550
551  bool isFunc = D.isFunctionDeclarator();
552
553  assert(!DS.isFriendSpecified());
554
555  // C++ 9.2p6: A member shall not be declared to have automatic storage
556  // duration (auto, register) or with the extern storage-class-specifier.
557  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
558  // data members and cannot be applied to names declared const or static,
559  // and cannot be applied to reference members.
560  switch (DS.getStorageClassSpec()) {
561    case DeclSpec::SCS_unspecified:
562    case DeclSpec::SCS_typedef:
563    case DeclSpec::SCS_static:
564      // FALL THROUGH.
565      break;
566    case DeclSpec::SCS_mutable:
567      if (isFunc) {
568        if (DS.getStorageClassSpecLoc().isValid())
569          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
570        else
571          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
572
573        // FIXME: It would be nicer if the keyword was ignored only for this
574        // declarator. Otherwise we could get follow-up errors.
575        D.getMutableDeclSpec().ClearStorageClassSpecs();
576      } else {
577        QualType T = GetTypeForDeclarator(D, S);
578        diag::kind err = static_cast<diag::kind>(0);
579        if (T->isReferenceType())
580          err = diag::err_mutable_reference;
581        else if (T.isConstQualified())
582          err = diag::err_mutable_const;
583        if (err != 0) {
584          if (DS.getStorageClassSpecLoc().isValid())
585            Diag(DS.getStorageClassSpecLoc(), err);
586          else
587            Diag(DS.getThreadSpecLoc(), err);
588          // FIXME: It would be nicer if the keyword was ignored only for this
589          // declarator. Otherwise we could get follow-up errors.
590          D.getMutableDeclSpec().ClearStorageClassSpecs();
591        }
592      }
593      break;
594    default:
595      if (DS.getStorageClassSpecLoc().isValid())
596        Diag(DS.getStorageClassSpecLoc(),
597             diag::err_storageclass_invalid_for_member);
598      else
599        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
600      D.getMutableDeclSpec().ClearStorageClassSpecs();
601  }
602
603  if (!isFunc &&
604      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
605      D.getNumTypeObjects() == 0) {
606    // Check also for this case:
607    //
608    // typedef int f();
609    // f a;
610    //
611    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
612    isFunc = TDType->isFunctionType();
613  }
614
615  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
616                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
617                      !isFunc);
618
619  Decl *Member;
620  if (isInstField) {
621    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
622                         AS);
623    assert(Member && "HandleField never returns null");
624  } else {
625    Member = ActOnDeclarator(S, D).getAs<Decl>();
626    if (!Member) {
627      if (BitWidth) DeleteExpr(BitWidth);
628      return DeclPtrTy();
629    }
630
631    // Non-instance-fields can't have a bitfield.
632    if (BitWidth) {
633      if (Member->isInvalidDecl()) {
634        // don't emit another diagnostic.
635      } else if (isa<VarDecl>(Member)) {
636        // C++ 9.6p3: A bit-field shall not be a static member.
637        // "static member 'A' cannot be a bit-field"
638        Diag(Loc, diag::err_static_not_bitfield)
639          << Name << BitWidth->getSourceRange();
640      } else if (isa<TypedefDecl>(Member)) {
641        // "typedef member 'x' cannot be a bit-field"
642        Diag(Loc, diag::err_typedef_not_bitfield)
643          << Name << BitWidth->getSourceRange();
644      } else {
645        // A function typedef ("typedef int f(); f a;").
646        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
647        Diag(Loc, diag::err_not_integral_type_bitfield)
648          << Name << cast<ValueDecl>(Member)->getType()
649          << BitWidth->getSourceRange();
650      }
651
652      DeleteExpr(BitWidth);
653      BitWidth = 0;
654      Member->setInvalidDecl();
655    }
656
657    Member->setAccess(AS);
658  }
659
660  assert((Name || isInstField) && "No identifier for non-field ?");
661
662  if (Init)
663    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
664  if (Deleted) // FIXME: Source location is not very good.
665    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
666
667  if (isInstField) {
668    FieldCollector->Add(cast<FieldDecl>(Member));
669    return DeclPtrTy();
670  }
671  return DeclPtrTy::make(Member);
672}
673
674/// ActOnMemInitializer - Handle a C++ member initializer.
675Sema::MemInitResult
676Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
677                          Scope *S,
678                          const CXXScopeSpec &SS,
679                          IdentifierInfo *MemberOrBase,
680                          TypeTy *TemplateTypeTy,
681                          SourceLocation IdLoc,
682                          SourceLocation LParenLoc,
683                          ExprTy **Args, unsigned NumArgs,
684                          SourceLocation *CommaLocs,
685                          SourceLocation RParenLoc) {
686  if (!ConstructorD)
687    return true;
688
689  CXXConstructorDecl *Constructor
690    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
691  if (!Constructor) {
692    // The user wrote a constructor initializer on a function that is
693    // not a C++ constructor. Ignore the error for now, because we may
694    // have more member initializers coming; we'll diagnose it just
695    // once in ActOnMemInitializers.
696    return true;
697  }
698
699  CXXRecordDecl *ClassDecl = Constructor->getParent();
700
701  // C++ [class.base.init]p2:
702  //   Names in a mem-initializer-id are looked up in the scope of the
703  //   constructor’s class and, if not found in that scope, are looked
704  //   up in the scope containing the constructor’s
705  //   definition. [Note: if the constructor’s class contains a member
706  //   with the same name as a direct or virtual base class of the
707  //   class, a mem-initializer-id naming the member or base class and
708  //   composed of a single identifier refers to the class member. A
709  //   mem-initializer-id for the hidden base class may be specified
710  //   using a qualified name. ]
711  if (!SS.getScopeRep() && !TemplateTypeTy) {
712    // Look for a member, first.
713    FieldDecl *Member = 0;
714    DeclContext::lookup_result Result
715      = ClassDecl->lookup(MemberOrBase);
716    if (Result.first != Result.second)
717      Member = dyn_cast<FieldDecl>(*Result.first);
718
719    // FIXME: Handle members of an anonymous union.
720
721    if (Member)
722      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
723                                    RParenLoc);
724  }
725  // It didn't name a member, so see if it names a class.
726  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
727                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
728  if (!BaseTy)
729    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
730      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
731
732  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
733
734  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
735                              RParenLoc, ClassDecl);
736}
737
738Sema::MemInitResult
739Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
740                             unsigned NumArgs, SourceLocation IdLoc,
741                             SourceLocation RParenLoc) {
742  bool HasDependentArg = false;
743  for (unsigned i = 0; i < NumArgs; i++)
744    HasDependentArg |= Args[i]->isTypeDependent();
745
746  CXXConstructorDecl *C = 0;
747  QualType FieldType = Member->getType();
748  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
749    FieldType = Array->getElementType();
750  if (FieldType->isDependentType()) {
751    // Can't check init for dependent type.
752  } else if (FieldType->getAs<RecordType>()) {
753    if (!HasDependentArg)
754      C = PerformInitializationByConstructor(
755            FieldType, (Expr **)Args, NumArgs, IdLoc,
756            SourceRange(IdLoc, RParenLoc), Member->getDeclName(), IK_Direct);
757  } else if (NumArgs != 1) {
758    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
759                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
760  } else if (!HasDependentArg) {
761    Expr *NewExp = (Expr*)Args[0];
762    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
763      return true;
764    Args[0] = NewExp;
765  }
766  // FIXME: Perform direct initialization of the member.
767  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
768                                                  NumArgs, C, IdLoc);
769}
770
771Sema::MemInitResult
772Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
773                           unsigned NumArgs, SourceLocation IdLoc,
774                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
775  bool HasDependentArg = false;
776  for (unsigned i = 0; i < NumArgs; i++)
777    HasDependentArg |= Args[i]->isTypeDependent();
778
779  if (!BaseType->isDependentType()) {
780    if (!BaseType->isRecordType())
781      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
782        << BaseType << SourceRange(IdLoc, RParenLoc);
783
784    // C++ [class.base.init]p2:
785    //   [...] Unless the mem-initializer-id names a nonstatic data
786    //   member of the constructor’s class or a direct or virtual base
787    //   of that class, the mem-initializer is ill-formed. A
788    //   mem-initializer-list can initialize a base class using any
789    //   name that denotes that base class type.
790
791    // First, check for a direct base class.
792    const CXXBaseSpecifier *DirectBaseSpec = 0;
793    for (CXXRecordDecl::base_class_const_iterator Base =
794         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
795      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
796          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
797        // We found a direct base of this type. That's what we're
798        // initializing.
799        DirectBaseSpec = &*Base;
800        break;
801      }
802    }
803
804    // Check for a virtual base class.
805    // FIXME: We might be able to short-circuit this if we know in advance that
806    // there are no virtual bases.
807    const CXXBaseSpecifier *VirtualBaseSpec = 0;
808    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
809      // We haven't found a base yet; search the class hierarchy for a
810      // virtual base class.
811      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
812                      /*DetectVirtual=*/false);
813      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
814        for (BasePaths::paths_iterator Path = Paths.begin();
815             Path != Paths.end(); ++Path) {
816          if (Path->back().Base->isVirtual()) {
817            VirtualBaseSpec = Path->back().Base;
818            break;
819          }
820        }
821      }
822    }
823
824    // C++ [base.class.init]p2:
825    //   If a mem-initializer-id is ambiguous because it designates both
826    //   a direct non-virtual base class and an inherited virtual base
827    //   class, the mem-initializer is ill-formed.
828    if (DirectBaseSpec && VirtualBaseSpec)
829      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
830        << BaseType << SourceRange(IdLoc, RParenLoc);
831    // C++ [base.class.init]p2:
832    // Unless the mem-initializer-id names a nonstatic data membeer of the
833    // constructor's class ot a direst or virtual base of that class, the
834    // mem-initializer is ill-formed.
835    if (!DirectBaseSpec && !VirtualBaseSpec)
836      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
837      << BaseType << ClassDecl->getNameAsCString()
838      << SourceRange(IdLoc, RParenLoc);
839  }
840
841  CXXConstructorDecl *C = 0;
842  if (!BaseType->isDependentType() && !HasDependentArg) {
843    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
844                                            Context.getCanonicalType(BaseType));
845    C = PerformInitializationByConstructor(BaseType, (Expr **)Args, NumArgs,
846                                           IdLoc, SourceRange(IdLoc, RParenLoc),
847                                           Name, IK_Direct);
848  }
849
850  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
851                                                  NumArgs, C, IdLoc);
852}
853
854void
855Sema::BuildBaseOrMemberInitializers(ASTContext &C,
856                                 CXXConstructorDecl *Constructor,
857                                 CXXBaseOrMemberInitializer **Initializers,
858                                 unsigned NumInitializers
859                                 ) {
860  llvm::SmallVector<CXXBaseSpecifier *, 4>Bases;
861  llvm::SmallVector<FieldDecl *, 4>Members;
862
863  Constructor->setBaseOrMemberInitializers(C,
864                                           Initializers, NumInitializers,
865                                           Bases, Members);
866  for (unsigned int i = 0; i < Bases.size(); i++)
867    Diag(Bases[i]->getSourceRange().getBegin(),
868         diag::err_missing_default_constructor) << 0 << Bases[i]->getType();
869  for (unsigned int i = 0; i < Members.size(); i++)
870    Diag(Members[i]->getLocation(), diag::err_missing_default_constructor)
871          << 1 << Members[i]->getType();
872}
873
874static void *GetKeyForTopLevelField(FieldDecl *Field) {
875  // For anonymous unions, use the class declaration as the key.
876  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
877    if (RT->getDecl()->isAnonymousStructOrUnion())
878      return static_cast<void *>(RT->getDecl());
879  }
880  return static_cast<void *>(Field);
881}
882
883static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
884                             bool MemberMaybeAnon=false) {
885  // For fields injected into the class via declaration of an anonymous union,
886  // use its anonymous union class declaration as the unique key.
887  if (FieldDecl *Field = Member->getMember()) {
888    // After BuildBaseOrMemberInitializers call, Field is the anonymous union
889    // data member of the class. Data member used in the initializer list is
890    // in AnonUnionMember field.
891    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
892      Field = Member->getAnonUnionMember();
893    if (Field->getDeclContext()->isRecord()) {
894      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
895      if (RD->isAnonymousStructOrUnion())
896        return static_cast<void *>(RD);
897    }
898    return static_cast<void *>(Field);
899  }
900  return static_cast<RecordType *>(Member->getBaseClass());
901}
902
903void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
904                                SourceLocation ColonLoc,
905                                MemInitTy **MemInits, unsigned NumMemInits) {
906  if (!ConstructorDecl)
907    return;
908
909  CXXConstructorDecl *Constructor
910    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
911
912  if (!Constructor) {
913    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
914    return;
915  }
916  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
917  bool err = false;
918  for (unsigned i = 0; i < NumMemInits; i++) {
919    CXXBaseOrMemberInitializer *Member =
920      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
921    void *KeyToMember = GetKeyForMember(Member);
922    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
923    if (!PrevMember) {
924      PrevMember = Member;
925      continue;
926    }
927    if (FieldDecl *Field = Member->getMember())
928      Diag(Member->getSourceLocation(),
929           diag::error_multiple_mem_initialization)
930      << Field->getNameAsString();
931    else {
932      Type *BaseClass = Member->getBaseClass();
933      assert(BaseClass && "ActOnMemInitializers - neither field or base");
934      Diag(Member->getSourceLocation(),
935           diag::error_multiple_base_initialization)
936        << BaseClass->getDesugaredType(true);
937    }
938    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
939      << 0;
940    err = true;
941  }
942  if (!err)
943    BuildBaseOrMemberInitializers(Context, Constructor,
944                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
945                      NumMemInits);
946
947  if (!err && (Diags.getDiagnosticLevel(diag::warn_base_initialized)
948               != Diagnostic::Ignored ||
949               Diags.getDiagnosticLevel(diag::warn_field_initialized)
950               != Diagnostic::Ignored)) {
951    // Also issue warning if order of ctor-initializer list does not match order
952    // of 1) base class declarations and 2) order of non-static data members.
953    llvm::SmallVector<const void*, 32> AllBaseOrMembers;
954
955    CXXRecordDecl *ClassDecl
956      = cast<CXXRecordDecl>(Constructor->getDeclContext());
957    // Push virtual bases before others.
958    for (CXXRecordDecl::base_class_iterator VBase =
959         ClassDecl->vbases_begin(),
960         E = ClassDecl->vbases_end(); VBase != E; ++VBase)
961      AllBaseOrMembers.push_back(VBase->getType()->getAs<RecordType>());
962
963    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
964         E = ClassDecl->bases_end(); Base != E; ++Base) {
965      // Virtuals are alread in the virtual base list and are constructed
966      // first.
967      if (Base->isVirtual())
968        continue;
969      AllBaseOrMembers.push_back(Base->getType()->getAs<RecordType>());
970    }
971
972    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
973         E = ClassDecl->field_end(); Field != E; ++Field)
974      AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
975
976    int Last = AllBaseOrMembers.size();
977    int curIndex = 0;
978    CXXBaseOrMemberInitializer *PrevMember = 0;
979    for (unsigned i = 0; i < NumMemInits; i++) {
980      CXXBaseOrMemberInitializer *Member =
981        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
982      void *MemberInCtorList = GetKeyForMember(Member, true);
983
984      for (; curIndex < Last; curIndex++)
985        if (MemberInCtorList == AllBaseOrMembers[curIndex])
986          break;
987      if (curIndex == Last) {
988        assert(PrevMember && "Member not in member list?!");
989        // Initializer as specified in ctor-initializer list is out of order.
990        // Issue a warning diagnostic.
991        if (PrevMember->isBaseInitializer()) {
992          // Diagnostics is for an initialized base class.
993          Type *BaseClass = PrevMember->getBaseClass();
994          Diag(PrevMember->getSourceLocation(),
995               diag::warn_base_initialized)
996                << BaseClass->getDesugaredType(true);
997        } else {
998          FieldDecl *Field = PrevMember->getMember();
999          Diag(PrevMember->getSourceLocation(),
1000               diag::warn_field_initialized)
1001            << Field->getNameAsString();
1002        }
1003        // Also the note!
1004        if (FieldDecl *Field = Member->getMember())
1005          Diag(Member->getSourceLocation(),
1006               diag::note_fieldorbase_initialized_here) << 0
1007            << Field->getNameAsString();
1008        else {
1009          Type *BaseClass = Member->getBaseClass();
1010          Diag(Member->getSourceLocation(),
1011               diag::note_fieldorbase_initialized_here) << 1
1012            << BaseClass->getDesugaredType(true);
1013        }
1014        for (curIndex = 0; curIndex < Last; curIndex++)
1015          if (MemberInCtorList == AllBaseOrMembers[curIndex])
1016            break;
1017      }
1018      PrevMember = Member;
1019    }
1020  }
1021}
1022
1023void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1024  if (!CDtorDecl)
1025    return;
1026
1027  if (CXXConstructorDecl *Constructor
1028      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1029    BuildBaseOrMemberInitializers(Context,
1030                                     Constructor,
1031                                     (CXXBaseOrMemberInitializer **)0, 0);
1032}
1033
1034namespace {
1035  /// PureVirtualMethodCollector - traverses a class and its superclasses
1036  /// and determines if it has any pure virtual methods.
1037  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1038    ASTContext &Context;
1039
1040  public:
1041    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1042
1043  private:
1044    MethodList Methods;
1045
1046    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1047
1048  public:
1049    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1050      : Context(Ctx) {
1051
1052      MethodList List;
1053      Collect(RD, List);
1054
1055      // Copy the temporary list to methods, and make sure to ignore any
1056      // null entries.
1057      for (size_t i = 0, e = List.size(); i != e; ++i) {
1058        if (List[i])
1059          Methods.push_back(List[i]);
1060      }
1061    }
1062
1063    bool empty() const { return Methods.empty(); }
1064
1065    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1066    MethodList::const_iterator methods_end() { return Methods.end(); }
1067  };
1068
1069  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1070                                           MethodList& Methods) {
1071    // First, collect the pure virtual methods for the base classes.
1072    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1073         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1074      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1075        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1076        if (BaseDecl && BaseDecl->isAbstract())
1077          Collect(BaseDecl, Methods);
1078      }
1079    }
1080
1081    // Next, zero out any pure virtual methods that this class overrides.
1082    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1083
1084    MethodSetTy OverriddenMethods;
1085    size_t MethodsSize = Methods.size();
1086
1087    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1088         i != e; ++i) {
1089      // Traverse the record, looking for methods.
1090      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1091        // If the method is pure virtual, add it to the methods vector.
1092        if (MD->isPure()) {
1093          Methods.push_back(MD);
1094          continue;
1095        }
1096
1097        // Otherwise, record all the overridden methods in our set.
1098        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1099             E = MD->end_overridden_methods(); I != E; ++I) {
1100          // Keep track of the overridden methods.
1101          OverriddenMethods.insert(*I);
1102        }
1103      }
1104    }
1105
1106    // Now go through the methods and zero out all the ones we know are
1107    // overridden.
1108    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1109      if (OverriddenMethods.count(Methods[i]))
1110        Methods[i] = 0;
1111    }
1112
1113  }
1114}
1115
1116bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1117                                  unsigned DiagID, AbstractDiagSelID SelID,
1118                                  const CXXRecordDecl *CurrentRD) {
1119
1120  if (!getLangOptions().CPlusPlus)
1121    return false;
1122
1123  if (const ArrayType *AT = Context.getAsArrayType(T))
1124    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1125                                  CurrentRD);
1126
1127  if (const PointerType *PT = T->getAs<PointerType>()) {
1128    // Find the innermost pointer type.
1129    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1130      PT = T;
1131
1132    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1133      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1134                                    CurrentRD);
1135  }
1136
1137  const RecordType *RT = T->getAs<RecordType>();
1138  if (!RT)
1139    return false;
1140
1141  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1142  if (!RD)
1143    return false;
1144
1145  if (CurrentRD && CurrentRD != RD)
1146    return false;
1147
1148  if (!RD->isAbstract())
1149    return false;
1150
1151  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
1152
1153  // Check if we've already emitted the list of pure virtual functions for this
1154  // class.
1155  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1156    return true;
1157
1158  PureVirtualMethodCollector Collector(Context, RD);
1159
1160  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1161       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1162    const CXXMethodDecl *MD = *I;
1163
1164    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1165      MD->getDeclName();
1166  }
1167
1168  if (!PureVirtualClassDiagSet)
1169    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1170  PureVirtualClassDiagSet->insert(RD);
1171
1172  return true;
1173}
1174
1175namespace {
1176  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1177    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1178    Sema &SemaRef;
1179    CXXRecordDecl *AbstractClass;
1180
1181    bool VisitDeclContext(const DeclContext *DC) {
1182      bool Invalid = false;
1183
1184      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1185           E = DC->decls_end(); I != E; ++I)
1186        Invalid |= Visit(*I);
1187
1188      return Invalid;
1189    }
1190
1191  public:
1192    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1193      : SemaRef(SemaRef), AbstractClass(ac) {
1194        Visit(SemaRef.Context.getTranslationUnitDecl());
1195    }
1196
1197    bool VisitFunctionDecl(const FunctionDecl *FD) {
1198      if (FD->isThisDeclarationADefinition()) {
1199        // No need to do the check if we're in a definition, because it requires
1200        // that the return/param types are complete.
1201        // because that requires
1202        return VisitDeclContext(FD);
1203      }
1204
1205      // Check the return type.
1206      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1207      bool Invalid =
1208        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1209                                       diag::err_abstract_type_in_decl,
1210                                       Sema::AbstractReturnType,
1211                                       AbstractClass);
1212
1213      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1214           E = FD->param_end(); I != E; ++I) {
1215        const ParmVarDecl *VD = *I;
1216        Invalid |=
1217          SemaRef.RequireNonAbstractType(VD->getLocation(),
1218                                         VD->getOriginalType(),
1219                                         diag::err_abstract_type_in_decl,
1220                                         Sema::AbstractParamType,
1221                                         AbstractClass);
1222      }
1223
1224      return Invalid;
1225    }
1226
1227    bool VisitDecl(const Decl* D) {
1228      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1229        return VisitDeclContext(DC);
1230
1231      return false;
1232    }
1233  };
1234}
1235
1236void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1237                                             DeclPtrTy TagDecl,
1238                                             SourceLocation LBrac,
1239                                             SourceLocation RBrac) {
1240  if (!TagDecl)
1241    return;
1242
1243  AdjustDeclIfTemplate(TagDecl);
1244  ActOnFields(S, RLoc, TagDecl,
1245              (DeclPtrTy*)FieldCollector->getCurFields(),
1246              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1247
1248  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1249  if (!RD->isAbstract()) {
1250    // Collect all the pure virtual methods and see if this is an abstract
1251    // class after all.
1252    PureVirtualMethodCollector Collector(Context, RD);
1253    if (!Collector.empty())
1254      RD->setAbstract(true);
1255  }
1256
1257  if (RD->isAbstract())
1258    AbstractClassUsageDiagnoser(*this, RD);
1259
1260  if (!RD->isDependentType())
1261    AddImplicitlyDeclaredMembersToClass(RD);
1262}
1263
1264/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1265/// special functions, such as the default constructor, copy
1266/// constructor, or destructor, to the given C++ class (C++
1267/// [special]p1).  This routine can only be executed just before the
1268/// definition of the class is complete.
1269void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1270  CanQualType ClassType
1271    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1272
1273  // FIXME: Implicit declarations have exception specifications, which are
1274  // the union of the specifications of the implicitly called functions.
1275
1276  if (!ClassDecl->hasUserDeclaredConstructor()) {
1277    // C++ [class.ctor]p5:
1278    //   A default constructor for a class X is a constructor of class X
1279    //   that can be called without an argument. If there is no
1280    //   user-declared constructor for class X, a default constructor is
1281    //   implicitly declared. An implicitly-declared default constructor
1282    //   is an inline public member of its class.
1283    DeclarationName Name
1284      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1285    CXXConstructorDecl *DefaultCon =
1286      CXXConstructorDecl::Create(Context, ClassDecl,
1287                                 ClassDecl->getLocation(), Name,
1288                                 Context.getFunctionType(Context.VoidTy,
1289                                                         0, 0, false, 0),
1290                                 /*isExplicit=*/false,
1291                                 /*isInline=*/true,
1292                                 /*isImplicitlyDeclared=*/true);
1293    DefaultCon->setAccess(AS_public);
1294    DefaultCon->setImplicit();
1295    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1296    ClassDecl->addDecl(DefaultCon);
1297  }
1298
1299  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1300    // C++ [class.copy]p4:
1301    //   If the class definition does not explicitly declare a copy
1302    //   constructor, one is declared implicitly.
1303
1304    // C++ [class.copy]p5:
1305    //   The implicitly-declared copy constructor for a class X will
1306    //   have the form
1307    //
1308    //       X::X(const X&)
1309    //
1310    //   if
1311    bool HasConstCopyConstructor = true;
1312
1313    //     -- each direct or virtual base class B of X has a copy
1314    //        constructor whose first parameter is of type const B& or
1315    //        const volatile B&, and
1316    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1317         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1318      const CXXRecordDecl *BaseClassDecl
1319        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1320      HasConstCopyConstructor
1321        = BaseClassDecl->hasConstCopyConstructor(Context);
1322    }
1323
1324    //     -- for all the nonstatic data members of X that are of a
1325    //        class type M (or array thereof), each such class type
1326    //        has a copy constructor whose first parameter is of type
1327    //        const M& or const volatile M&.
1328    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1329         HasConstCopyConstructor && Field != ClassDecl->field_end();
1330         ++Field) {
1331      QualType FieldType = (*Field)->getType();
1332      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1333        FieldType = Array->getElementType();
1334      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1335        const CXXRecordDecl *FieldClassDecl
1336          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1337        HasConstCopyConstructor
1338          = FieldClassDecl->hasConstCopyConstructor(Context);
1339      }
1340    }
1341
1342    //   Otherwise, the implicitly declared copy constructor will have
1343    //   the form
1344    //
1345    //       X::X(X&)
1346    QualType ArgType = ClassType;
1347    if (HasConstCopyConstructor)
1348      ArgType = ArgType.withConst();
1349    ArgType = Context.getLValueReferenceType(ArgType);
1350
1351    //   An implicitly-declared copy constructor is an inline public
1352    //   member of its class.
1353    DeclarationName Name
1354      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1355    CXXConstructorDecl *CopyConstructor
1356      = CXXConstructorDecl::Create(Context, ClassDecl,
1357                                   ClassDecl->getLocation(), Name,
1358                                   Context.getFunctionType(Context.VoidTy,
1359                                                           &ArgType, 1,
1360                                                           false, 0),
1361                                   /*isExplicit=*/false,
1362                                   /*isInline=*/true,
1363                                   /*isImplicitlyDeclared=*/true);
1364    CopyConstructor->setAccess(AS_public);
1365    CopyConstructor->setImplicit();
1366    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1367
1368    // Add the parameter to the constructor.
1369    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1370                                                 ClassDecl->getLocation(),
1371                                                 /*IdentifierInfo=*/0,
1372                                                 ArgType, VarDecl::None, 0);
1373    CopyConstructor->setParams(Context, &FromParam, 1);
1374    ClassDecl->addDecl(CopyConstructor);
1375  }
1376
1377  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1378    // Note: The following rules are largely analoguous to the copy
1379    // constructor rules. Note that virtual bases are not taken into account
1380    // for determining the argument type of the operator. Note also that
1381    // operators taking an object instead of a reference are allowed.
1382    //
1383    // C++ [class.copy]p10:
1384    //   If the class definition does not explicitly declare a copy
1385    //   assignment operator, one is declared implicitly.
1386    //   The implicitly-defined copy assignment operator for a class X
1387    //   will have the form
1388    //
1389    //       X& X::operator=(const X&)
1390    //
1391    //   if
1392    bool HasConstCopyAssignment = true;
1393
1394    //       -- each direct base class B of X has a copy assignment operator
1395    //          whose parameter is of type const B&, const volatile B& or B,
1396    //          and
1397    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1398         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1399      const CXXRecordDecl *BaseClassDecl
1400        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1401      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1402    }
1403
1404    //       -- for all the nonstatic data members of X that are of a class
1405    //          type M (or array thereof), each such class type has a copy
1406    //          assignment operator whose parameter is of type const M&,
1407    //          const volatile M& or M.
1408    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1409         HasConstCopyAssignment && Field != ClassDecl->field_end();
1410         ++Field) {
1411      QualType FieldType = (*Field)->getType();
1412      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1413        FieldType = Array->getElementType();
1414      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1415        const CXXRecordDecl *FieldClassDecl
1416          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1417        HasConstCopyAssignment
1418          = FieldClassDecl->hasConstCopyAssignment(Context);
1419      }
1420    }
1421
1422    //   Otherwise, the implicitly declared copy assignment operator will
1423    //   have the form
1424    //
1425    //       X& X::operator=(X&)
1426    QualType ArgType = ClassType;
1427    QualType RetType = Context.getLValueReferenceType(ArgType);
1428    if (HasConstCopyAssignment)
1429      ArgType = ArgType.withConst();
1430    ArgType = Context.getLValueReferenceType(ArgType);
1431
1432    //   An implicitly-declared copy assignment operator is an inline public
1433    //   member of its class.
1434    DeclarationName Name =
1435      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1436    CXXMethodDecl *CopyAssignment =
1437      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1438                            Context.getFunctionType(RetType, &ArgType, 1,
1439                                                    false, 0),
1440                            /*isStatic=*/false, /*isInline=*/true);
1441    CopyAssignment->setAccess(AS_public);
1442    CopyAssignment->setImplicit();
1443    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
1444    CopyAssignment->setCopyAssignment(true);
1445
1446    // Add the parameter to the operator.
1447    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1448                                                 ClassDecl->getLocation(),
1449                                                 /*IdentifierInfo=*/0,
1450                                                 ArgType, VarDecl::None, 0);
1451    CopyAssignment->setParams(Context, &FromParam, 1);
1452
1453    // Don't call addedAssignmentOperator. There is no way to distinguish an
1454    // implicit from an explicit assignment operator.
1455    ClassDecl->addDecl(CopyAssignment);
1456  }
1457
1458  if (!ClassDecl->hasUserDeclaredDestructor()) {
1459    // C++ [class.dtor]p2:
1460    //   If a class has no user-declared destructor, a destructor is
1461    //   declared implicitly. An implicitly-declared destructor is an
1462    //   inline public member of its class.
1463    DeclarationName Name
1464      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1465    CXXDestructorDecl *Destructor
1466      = CXXDestructorDecl::Create(Context, ClassDecl,
1467                                  ClassDecl->getLocation(), Name,
1468                                  Context.getFunctionType(Context.VoidTy,
1469                                                          0, 0, false, 0),
1470                                  /*isInline=*/true,
1471                                  /*isImplicitlyDeclared=*/true);
1472    Destructor->setAccess(AS_public);
1473    Destructor->setImplicit();
1474    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
1475    ClassDecl->addDecl(Destructor);
1476  }
1477}
1478
1479void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1480  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1481  if (!Template)
1482    return;
1483
1484  TemplateParameterList *Params = Template->getTemplateParameters();
1485  for (TemplateParameterList::iterator Param = Params->begin(),
1486                                    ParamEnd = Params->end();
1487       Param != ParamEnd; ++Param) {
1488    NamedDecl *Named = cast<NamedDecl>(*Param);
1489    if (Named->getDeclName()) {
1490      S->AddDecl(DeclPtrTy::make(Named));
1491      IdResolver.AddDecl(Named);
1492    }
1493  }
1494}
1495
1496/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1497/// parsing a top-level (non-nested) C++ class, and we are now
1498/// parsing those parts of the given Method declaration that could
1499/// not be parsed earlier (C++ [class.mem]p2), such as default
1500/// arguments. This action should enter the scope of the given
1501/// Method declaration as if we had just parsed the qualified method
1502/// name. However, it should not bring the parameters into scope;
1503/// that will be performed by ActOnDelayedCXXMethodParameter.
1504void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1505  if (!MethodD)
1506    return;
1507
1508  CXXScopeSpec SS;
1509  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1510  QualType ClassTy
1511    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1512  SS.setScopeRep(
1513    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1514  ActOnCXXEnterDeclaratorScope(S, SS);
1515}
1516
1517/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1518/// C++ method declaration. We're (re-)introducing the given
1519/// function parameter into scope for use in parsing later parts of
1520/// the method declaration. For example, we could see an
1521/// ActOnParamDefaultArgument event for this parameter.
1522void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1523  if (!ParamD)
1524    return;
1525
1526  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1527
1528  // If this parameter has an unparsed default argument, clear it out
1529  // to make way for the parsed default argument.
1530  if (Param->hasUnparsedDefaultArg())
1531    Param->setDefaultArg(0);
1532
1533  S->AddDecl(DeclPtrTy::make(Param));
1534  if (Param->getDeclName())
1535    IdResolver.AddDecl(Param);
1536}
1537
1538/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1539/// processing the delayed method declaration for Method. The method
1540/// declaration is now considered finished. There may be a separate
1541/// ActOnStartOfFunctionDef action later (not necessarily
1542/// immediately!) for this method, if it was also defined inside the
1543/// class body.
1544void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1545  if (!MethodD)
1546    return;
1547
1548  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1549  CXXScopeSpec SS;
1550  QualType ClassTy
1551    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1552  SS.setScopeRep(
1553    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1554  ActOnCXXExitDeclaratorScope(S, SS);
1555
1556  // Now that we have our default arguments, check the constructor
1557  // again. It could produce additional diagnostics or affect whether
1558  // the class has implicitly-declared destructors, among other
1559  // things.
1560  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1561    CheckConstructor(Constructor);
1562
1563  // Check the default arguments, which we may have added.
1564  if (!Method->isInvalidDecl())
1565    CheckCXXDefaultArguments(Method);
1566}
1567
1568/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1569/// the well-formedness of the constructor declarator @p D with type @p
1570/// R. If there are any errors in the declarator, this routine will
1571/// emit diagnostics and set the invalid bit to true.  In any case, the type
1572/// will be updated to reflect a well-formed type for the constructor and
1573/// returned.
1574QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1575                                          FunctionDecl::StorageClass &SC) {
1576  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1577
1578  // C++ [class.ctor]p3:
1579  //   A constructor shall not be virtual (10.3) or static (9.4). A
1580  //   constructor can be invoked for a const, volatile or const
1581  //   volatile object. A constructor shall not be declared const,
1582  //   volatile, or const volatile (9.3.2).
1583  if (isVirtual) {
1584    if (!D.isInvalidType())
1585      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1586        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1587        << SourceRange(D.getIdentifierLoc());
1588    D.setInvalidType();
1589  }
1590  if (SC == FunctionDecl::Static) {
1591    if (!D.isInvalidType())
1592      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1593        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1594        << SourceRange(D.getIdentifierLoc());
1595    D.setInvalidType();
1596    SC = FunctionDecl::None;
1597  }
1598
1599  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1600  if (FTI.TypeQuals != 0) {
1601    if (FTI.TypeQuals & QualType::Const)
1602      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1603        << "const" << SourceRange(D.getIdentifierLoc());
1604    if (FTI.TypeQuals & QualType::Volatile)
1605      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1606        << "volatile" << SourceRange(D.getIdentifierLoc());
1607    if (FTI.TypeQuals & QualType::Restrict)
1608      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1609        << "restrict" << SourceRange(D.getIdentifierLoc());
1610  }
1611
1612  // Rebuild the function type "R" without any type qualifiers (in
1613  // case any of the errors above fired) and with "void" as the
1614  // return type, since constructors don't have return types. We
1615  // *always* have to do this, because GetTypeForDeclarator will
1616  // put in a result type of "int" when none was specified.
1617  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1618  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1619                                 Proto->getNumArgs(),
1620                                 Proto->isVariadic(), 0);
1621}
1622
1623/// CheckConstructor - Checks a fully-formed constructor for
1624/// well-formedness, issuing any diagnostics required. Returns true if
1625/// the constructor declarator is invalid.
1626void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1627  CXXRecordDecl *ClassDecl
1628    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1629  if (!ClassDecl)
1630    return Constructor->setInvalidDecl();
1631
1632  // C++ [class.copy]p3:
1633  //   A declaration of a constructor for a class X is ill-formed if
1634  //   its first parameter is of type (optionally cv-qualified) X and
1635  //   either there are no other parameters or else all other
1636  //   parameters have default arguments.
1637  if (!Constructor->isInvalidDecl() &&
1638      ((Constructor->getNumParams() == 1) ||
1639       (Constructor->getNumParams() > 1 &&
1640        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1641    QualType ParamType = Constructor->getParamDecl(0)->getType();
1642    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1643    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1644      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1645      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1646        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1647      Constructor->setInvalidDecl();
1648    }
1649  }
1650
1651  // Notify the class that we've added a constructor.
1652  ClassDecl->addedConstructor(Context, Constructor);
1653}
1654
1655static inline bool
1656FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1657  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1658          FTI.ArgInfo[0].Param &&
1659          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1660}
1661
1662/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1663/// the well-formednes of the destructor declarator @p D with type @p
1664/// R. If there are any errors in the declarator, this routine will
1665/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1666/// will be updated to reflect a well-formed type for the destructor and
1667/// returned.
1668QualType Sema::CheckDestructorDeclarator(Declarator &D,
1669                                         FunctionDecl::StorageClass& SC) {
1670  // C++ [class.dtor]p1:
1671  //   [...] A typedef-name that names a class is a class-name
1672  //   (7.1.3); however, a typedef-name that names a class shall not
1673  //   be used as the identifier in the declarator for a destructor
1674  //   declaration.
1675  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1676  if (isa<TypedefType>(DeclaratorType)) {
1677    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1678      << DeclaratorType;
1679    D.setInvalidType();
1680  }
1681
1682  // C++ [class.dtor]p2:
1683  //   A destructor is used to destroy objects of its class type. A
1684  //   destructor takes no parameters, and no return type can be
1685  //   specified for it (not even void). The address of a destructor
1686  //   shall not be taken. A destructor shall not be static. A
1687  //   destructor can be invoked for a const, volatile or const
1688  //   volatile object. A destructor shall not be declared const,
1689  //   volatile or const volatile (9.3.2).
1690  if (SC == FunctionDecl::Static) {
1691    if (!D.isInvalidType())
1692      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1693        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1694        << SourceRange(D.getIdentifierLoc());
1695    SC = FunctionDecl::None;
1696    D.setInvalidType();
1697  }
1698  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1699    // Destructors don't have return types, but the parser will
1700    // happily parse something like:
1701    //
1702    //   class X {
1703    //     float ~X();
1704    //   };
1705    //
1706    // The return type will be eliminated later.
1707    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1708      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1709      << SourceRange(D.getIdentifierLoc());
1710  }
1711
1712  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1713  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1714    if (FTI.TypeQuals & QualType::Const)
1715      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1716        << "const" << SourceRange(D.getIdentifierLoc());
1717    if (FTI.TypeQuals & QualType::Volatile)
1718      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1719        << "volatile" << SourceRange(D.getIdentifierLoc());
1720    if (FTI.TypeQuals & QualType::Restrict)
1721      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1722        << "restrict" << SourceRange(D.getIdentifierLoc());
1723    D.setInvalidType();
1724  }
1725
1726  // Make sure we don't have any parameters.
1727  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1728    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1729
1730    // Delete the parameters.
1731    FTI.freeArgs();
1732    D.setInvalidType();
1733  }
1734
1735  // Make sure the destructor isn't variadic.
1736  if (FTI.isVariadic) {
1737    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1738    D.setInvalidType();
1739  }
1740
1741  // Rebuild the function type "R" without any type qualifiers or
1742  // parameters (in case any of the errors above fired) and with
1743  // "void" as the return type, since destructors don't have return
1744  // types. We *always* have to do this, because GetTypeForDeclarator
1745  // will put in a result type of "int" when none was specified.
1746  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1747}
1748
1749/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1750/// well-formednes of the conversion function declarator @p D with
1751/// type @p R. If there are any errors in the declarator, this routine
1752/// will emit diagnostics and return true. Otherwise, it will return
1753/// false. Either way, the type @p R will be updated to reflect a
1754/// well-formed type for the conversion operator.
1755void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1756                                     FunctionDecl::StorageClass& SC) {
1757  // C++ [class.conv.fct]p1:
1758  //   Neither parameter types nor return type can be specified. The
1759  //   type of a conversion function (8.3.5) is "function taking no
1760  //   parameter returning conversion-type-id."
1761  if (SC == FunctionDecl::Static) {
1762    if (!D.isInvalidType())
1763      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1764        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1765        << SourceRange(D.getIdentifierLoc());
1766    D.setInvalidType();
1767    SC = FunctionDecl::None;
1768  }
1769  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1770    // Conversion functions don't have return types, but the parser will
1771    // happily parse something like:
1772    //
1773    //   class X {
1774    //     float operator bool();
1775    //   };
1776    //
1777    // The return type will be changed later anyway.
1778    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1779      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1780      << SourceRange(D.getIdentifierLoc());
1781  }
1782
1783  // Make sure we don't have any parameters.
1784  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1785    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1786
1787    // Delete the parameters.
1788    D.getTypeObject(0).Fun.freeArgs();
1789    D.setInvalidType();
1790  }
1791
1792  // Make sure the conversion function isn't variadic.
1793  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1794    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1795    D.setInvalidType();
1796  }
1797
1798  // C++ [class.conv.fct]p4:
1799  //   The conversion-type-id shall not represent a function type nor
1800  //   an array type.
1801  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1802  if (ConvType->isArrayType()) {
1803    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1804    ConvType = Context.getPointerType(ConvType);
1805    D.setInvalidType();
1806  } else if (ConvType->isFunctionType()) {
1807    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1808    ConvType = Context.getPointerType(ConvType);
1809    D.setInvalidType();
1810  }
1811
1812  // Rebuild the function type "R" without any parameters (in case any
1813  // of the errors above fired) and with the conversion type as the
1814  // return type.
1815  R = Context.getFunctionType(ConvType, 0, 0, false,
1816                              R->getAsFunctionProtoType()->getTypeQuals());
1817
1818  // C++0x explicit conversion operators.
1819  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1820    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1821         diag::warn_explicit_conversion_functions)
1822      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1823}
1824
1825/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1826/// the declaration of the given C++ conversion function. This routine
1827/// is responsible for recording the conversion function in the C++
1828/// class, if possible.
1829Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1830  assert(Conversion && "Expected to receive a conversion function declaration");
1831
1832  // Set the lexical context of this conversion function
1833  Conversion->setLexicalDeclContext(CurContext);
1834
1835  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1836
1837  // Make sure we aren't redeclaring the conversion function.
1838  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1839
1840  // C++ [class.conv.fct]p1:
1841  //   [...] A conversion function is never used to convert a
1842  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1843  //   same object type (or a reference to it), to a (possibly
1844  //   cv-qualified) base class of that type (or a reference to it),
1845  //   or to (possibly cv-qualified) void.
1846  // FIXME: Suppress this warning if the conversion function ends up being a
1847  // virtual function that overrides a virtual function in a base class.
1848  QualType ClassType
1849    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1850  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
1851    ConvType = ConvTypeRef->getPointeeType();
1852  if (ConvType->isRecordType()) {
1853    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1854    if (ConvType == ClassType)
1855      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1856        << ClassType;
1857    else if (IsDerivedFrom(ClassType, ConvType))
1858      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1859        <<  ClassType << ConvType;
1860  } else if (ConvType->isVoidType()) {
1861    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1862      << ClassType << ConvType;
1863  }
1864
1865  if (Conversion->getPreviousDeclaration()) {
1866    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1867    for (OverloadedFunctionDecl::function_iterator
1868           Conv = Conversions->function_begin(),
1869           ConvEnd = Conversions->function_end();
1870         Conv != ConvEnd; ++Conv) {
1871      if (*Conv
1872            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1873        *Conv = Conversion;
1874        return DeclPtrTy::make(Conversion);
1875      }
1876    }
1877    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1878  } else
1879    ClassDecl->addConversionFunction(Context, Conversion);
1880
1881  return DeclPtrTy::make(Conversion);
1882}
1883
1884//===----------------------------------------------------------------------===//
1885// Namespace Handling
1886//===----------------------------------------------------------------------===//
1887
1888/// ActOnStartNamespaceDef - This is called at the start of a namespace
1889/// definition.
1890Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1891                                             SourceLocation IdentLoc,
1892                                             IdentifierInfo *II,
1893                                             SourceLocation LBrace) {
1894  NamespaceDecl *Namespc =
1895      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1896  Namespc->setLBracLoc(LBrace);
1897
1898  Scope *DeclRegionScope = NamespcScope->getParent();
1899
1900  if (II) {
1901    // C++ [namespace.def]p2:
1902    // The identifier in an original-namespace-definition shall not have been
1903    // previously defined in the declarative region in which the
1904    // original-namespace-definition appears. The identifier in an
1905    // original-namespace-definition is the name of the namespace. Subsequently
1906    // in that declarative region, it is treated as an original-namespace-name.
1907
1908    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1909                                     true);
1910
1911    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1912      // This is an extended namespace definition.
1913      // Attach this namespace decl to the chain of extended namespace
1914      // definitions.
1915      OrigNS->setNextNamespace(Namespc);
1916      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1917
1918      // Remove the previous declaration from the scope.
1919      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1920        IdResolver.RemoveDecl(OrigNS);
1921        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1922      }
1923    } else if (PrevDecl) {
1924      // This is an invalid name redefinition.
1925      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1926       << Namespc->getDeclName();
1927      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1928      Namespc->setInvalidDecl();
1929      // Continue on to push Namespc as current DeclContext and return it.
1930    }
1931
1932    PushOnScopeChains(Namespc, DeclRegionScope);
1933  } else {
1934    // FIXME: Handle anonymous namespaces
1935  }
1936
1937  // Although we could have an invalid decl (i.e. the namespace name is a
1938  // redefinition), push it as current DeclContext and try to continue parsing.
1939  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1940  // for the namespace has the declarations that showed up in that particular
1941  // namespace definition.
1942  PushDeclContext(NamespcScope, Namespc);
1943  return DeclPtrTy::make(Namespc);
1944}
1945
1946/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1947/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1948void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1949  Decl *Dcl = D.getAs<Decl>();
1950  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1951  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1952  Namespc->setRBracLoc(RBrace);
1953  PopDeclContext();
1954}
1955
1956Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1957                                          SourceLocation UsingLoc,
1958                                          SourceLocation NamespcLoc,
1959                                          const CXXScopeSpec &SS,
1960                                          SourceLocation IdentLoc,
1961                                          IdentifierInfo *NamespcName,
1962                                          AttributeList *AttrList) {
1963  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1964  assert(NamespcName && "Invalid NamespcName.");
1965  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1966  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1967
1968  UsingDirectiveDecl *UDir = 0;
1969
1970  // Lookup namespace name.
1971  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1972                                    LookupNamespaceName, false);
1973  if (R.isAmbiguous()) {
1974    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1975    return DeclPtrTy();
1976  }
1977  if (NamedDecl *NS = R) {
1978    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1979    // C++ [namespace.udir]p1:
1980    //   A using-directive specifies that the names in the nominated
1981    //   namespace can be used in the scope in which the
1982    //   using-directive appears after the using-directive. During
1983    //   unqualified name lookup (3.4.1), the names appear as if they
1984    //   were declared in the nearest enclosing namespace which
1985    //   contains both the using-directive and the nominated
1986    //   namespace. [Note: in this context, "contains" means "contains
1987    //   directly or indirectly". ]
1988
1989    // Find enclosing context containing both using-directive and
1990    // nominated namespace.
1991    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1992    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1993      CommonAncestor = CommonAncestor->getParent();
1994
1995    UDir = UsingDirectiveDecl::Create(Context,
1996                                      CurContext, UsingLoc,
1997                                      NamespcLoc,
1998                                      SS.getRange(),
1999                                      (NestedNameSpecifier *)SS.getScopeRep(),
2000                                      IdentLoc,
2001                                      cast<NamespaceDecl>(NS),
2002                                      CommonAncestor);
2003    PushUsingDirective(S, UDir);
2004  } else {
2005    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2006  }
2007
2008  // FIXME: We ignore attributes for now.
2009  delete AttrList;
2010  return DeclPtrTy::make(UDir);
2011}
2012
2013void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2014  // If scope has associated entity, then using directive is at namespace
2015  // or translation unit scope. We add UsingDirectiveDecls, into
2016  // it's lookup structure.
2017  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2018    Ctx->addDecl(UDir);
2019  else
2020    // Otherwise it is block-sope. using-directives will affect lookup
2021    // only to the end of scope.
2022    S->PushUsingDirective(DeclPtrTy::make(UDir));
2023}
2024
2025
2026Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2027                                          SourceLocation UsingLoc,
2028                                          const CXXScopeSpec &SS,
2029                                          SourceLocation IdentLoc,
2030                                          IdentifierInfo *TargetName,
2031                                          OverloadedOperatorKind Op,
2032                                          AttributeList *AttrList,
2033                                          bool IsTypeName) {
2034  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2035  assert((TargetName || Op) && "Invalid TargetName.");
2036  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2037  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2038
2039  UsingDecl *UsingAlias = 0;
2040
2041  DeclarationName Name;
2042  if (TargetName)
2043    Name = TargetName;
2044  else
2045    Name = Context.DeclarationNames.getCXXOperatorName(Op);
2046
2047  // Lookup target name.
2048  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
2049
2050  if (NamedDecl *NS = R) {
2051    if (IsTypeName && !isa<TypeDecl>(NS)) {
2052      Diag(IdentLoc, diag::err_using_typename_non_type);
2053    }
2054    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2055        NS->getLocation(), UsingLoc, NS,
2056        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
2057        IsTypeName);
2058    PushOnScopeChains(UsingAlias, S);
2059  } else {
2060    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
2061  }
2062
2063  // FIXME: We ignore attributes for now.
2064  delete AttrList;
2065  return DeclPtrTy::make(UsingAlias);
2066}
2067
2068/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2069/// is a namespace alias, returns the namespace it points to.
2070static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2071  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2072    return AD->getNamespace();
2073  return dyn_cast_or_null<NamespaceDecl>(D);
2074}
2075
2076Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2077                                             SourceLocation NamespaceLoc,
2078                                             SourceLocation AliasLoc,
2079                                             IdentifierInfo *Alias,
2080                                             const CXXScopeSpec &SS,
2081                                             SourceLocation IdentLoc,
2082                                             IdentifierInfo *Ident) {
2083
2084  // Lookup the namespace name.
2085  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
2086
2087  // Check if we have a previous declaration with the same name.
2088  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
2089    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2090      // We already have an alias with the same name that points to the same
2091      // namespace, so don't create a new one.
2092      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
2093        return DeclPtrTy();
2094    }
2095
2096    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2097      diag::err_redefinition_different_kind;
2098    Diag(AliasLoc, DiagID) << Alias;
2099    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2100    return DeclPtrTy();
2101  }
2102
2103  if (R.isAmbiguous()) {
2104    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2105    return DeclPtrTy();
2106  }
2107
2108  if (!R) {
2109    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2110    return DeclPtrTy();
2111  }
2112
2113  NamespaceAliasDecl *AliasDecl =
2114    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2115                               Alias, SS.getRange(),
2116                               (NestedNameSpecifier *)SS.getScopeRep(),
2117                               IdentLoc, R);
2118
2119  CurContext->addDecl(AliasDecl);
2120  return DeclPtrTy::make(AliasDecl);
2121}
2122
2123void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2124                                            CXXConstructorDecl *Constructor) {
2125  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2126          !Constructor->isUsed()) &&
2127    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2128
2129  CXXRecordDecl *ClassDecl
2130    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2131  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2132  // Before the implicitly-declared default constructor for a class is
2133  // implicitly defined, all the implicitly-declared default constructors
2134  // for its base class and its non-static data members shall have been
2135  // implicitly defined.
2136  bool err = false;
2137  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2138       E = ClassDecl->bases_end(); Base != E; ++Base) {
2139    CXXRecordDecl *BaseClassDecl
2140      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2141    if (!BaseClassDecl->hasTrivialConstructor()) {
2142      if (CXXConstructorDecl *BaseCtor =
2143            BaseClassDecl->getDefaultConstructor(Context))
2144        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2145      else {
2146        Diag(CurrentLocation, diag::err_defining_default_ctor)
2147          << Context.getTagDeclType(ClassDecl) << 1
2148          << Context.getTagDeclType(BaseClassDecl);
2149        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2150              << Context.getTagDeclType(BaseClassDecl);
2151        err = true;
2152      }
2153    }
2154  }
2155  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2156       E = ClassDecl->field_end(); Field != E; ++Field) {
2157    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2158    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2159      FieldType = Array->getElementType();
2160    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2161      CXXRecordDecl *FieldClassDecl
2162        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2163      if (!FieldClassDecl->hasTrivialConstructor()) {
2164        if (CXXConstructorDecl *FieldCtor =
2165            FieldClassDecl->getDefaultConstructor(Context))
2166          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2167        else {
2168          Diag(CurrentLocation, diag::err_defining_default_ctor)
2169          << Context.getTagDeclType(ClassDecl) << 0 <<
2170              Context.getTagDeclType(FieldClassDecl);
2171          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2172          << Context.getTagDeclType(FieldClassDecl);
2173          err = true;
2174        }
2175      }
2176    } else if (FieldType->isReferenceType()) {
2177      Diag(CurrentLocation, diag::err_unintialized_member)
2178        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2179      Diag((*Field)->getLocation(), diag::note_declared_at);
2180      err = true;
2181    } else if (FieldType.isConstQualified()) {
2182      Diag(CurrentLocation, diag::err_unintialized_member)
2183        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2184       Diag((*Field)->getLocation(), diag::note_declared_at);
2185      err = true;
2186    }
2187  }
2188  if (!err)
2189    Constructor->setUsed();
2190  else
2191    Constructor->setInvalidDecl();
2192}
2193
2194void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2195                                            CXXDestructorDecl *Destructor) {
2196  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2197         "DefineImplicitDestructor - call it for implicit default dtor");
2198
2199  CXXRecordDecl *ClassDecl
2200  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2201  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2202  // C++ [class.dtor] p5
2203  // Before the implicitly-declared default destructor for a class is
2204  // implicitly defined, all the implicitly-declared default destructors
2205  // for its base class and its non-static data members shall have been
2206  // implicitly defined.
2207  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2208       E = ClassDecl->bases_end(); Base != E; ++Base) {
2209    CXXRecordDecl *BaseClassDecl
2210      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2211    if (!BaseClassDecl->hasTrivialDestructor()) {
2212      if (CXXDestructorDecl *BaseDtor =
2213          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2214        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2215      else
2216        assert(false &&
2217               "DefineImplicitDestructor - missing dtor in a base class");
2218    }
2219  }
2220
2221  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2222       E = ClassDecl->field_end(); Field != E; ++Field) {
2223    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2224    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2225      FieldType = Array->getElementType();
2226    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2227      CXXRecordDecl *FieldClassDecl
2228        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2229      if (!FieldClassDecl->hasTrivialDestructor()) {
2230        if (CXXDestructorDecl *FieldDtor =
2231            const_cast<CXXDestructorDecl*>(
2232                                        FieldClassDecl->getDestructor(Context)))
2233          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2234        else
2235          assert(false &&
2236          "DefineImplicitDestructor - missing dtor in class of a data member");
2237      }
2238    }
2239  }
2240  Destructor->setUsed();
2241}
2242
2243void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2244                                          CXXMethodDecl *MethodDecl) {
2245  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2246          MethodDecl->getOverloadedOperator() == OO_Equal &&
2247          !MethodDecl->isUsed()) &&
2248         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2249
2250  CXXRecordDecl *ClassDecl
2251    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2252
2253  // C++[class.copy] p12
2254  // Before the implicitly-declared copy assignment operator for a class is
2255  // implicitly defined, all implicitly-declared copy assignment operators
2256  // for its direct base classes and its nonstatic data members shall have
2257  // been implicitly defined.
2258  bool err = false;
2259  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2260       E = ClassDecl->bases_end(); Base != E; ++Base) {
2261    CXXRecordDecl *BaseClassDecl
2262      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2263    if (CXXMethodDecl *BaseAssignOpMethod =
2264          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2265      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2266  }
2267  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2268       E = ClassDecl->field_end(); Field != E; ++Field) {
2269    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2270    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2271      FieldType = Array->getElementType();
2272    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2273      CXXRecordDecl *FieldClassDecl
2274        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2275      if (CXXMethodDecl *FieldAssignOpMethod =
2276          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2277        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2278    } else if (FieldType->isReferenceType()) {
2279      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2280      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2281      Diag(Field->getLocation(), diag::note_declared_at);
2282      Diag(CurrentLocation, diag::note_first_required_here);
2283      err = true;
2284    } else if (FieldType.isConstQualified()) {
2285      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2286      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2287      Diag(Field->getLocation(), diag::note_declared_at);
2288      Diag(CurrentLocation, diag::note_first_required_here);
2289      err = true;
2290    }
2291  }
2292  if (!err)
2293    MethodDecl->setUsed();
2294}
2295
2296CXXMethodDecl *
2297Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2298                              CXXRecordDecl *ClassDecl) {
2299  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2300  QualType RHSType(LHSType);
2301  // If class's assignment operator argument is const/volatile qualified,
2302  // look for operator = (const/volatile B&). Otherwise, look for
2303  // operator = (B&).
2304  if (ParmDecl->getType().isConstQualified())
2305    RHSType.addConst();
2306  if (ParmDecl->getType().isVolatileQualified())
2307    RHSType.addVolatile();
2308  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2309                                                          LHSType,
2310                                                          SourceLocation()));
2311  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2312                                                          RHSType,
2313                                                          SourceLocation()));
2314  Expr *Args[2] = { &*LHS, &*RHS };
2315  OverloadCandidateSet CandidateSet;
2316  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2317                              CandidateSet);
2318  OverloadCandidateSet::iterator Best;
2319  if (BestViableFunction(CandidateSet,
2320                         ClassDecl->getLocation(), Best) == OR_Success)
2321    return cast<CXXMethodDecl>(Best->Function);
2322  assert(false &&
2323         "getAssignOperatorMethod - copy assignment operator method not found");
2324  return 0;
2325}
2326
2327void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2328                                   CXXConstructorDecl *CopyConstructor,
2329                                   unsigned TypeQuals) {
2330  assert((CopyConstructor->isImplicit() &&
2331          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2332          !CopyConstructor->isUsed()) &&
2333         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2334
2335  CXXRecordDecl *ClassDecl
2336    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2337  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2338  // C++ [class.copy] p209
2339  // Before the implicitly-declared copy constructor for a class is
2340  // implicitly defined, all the implicitly-declared copy constructors
2341  // for its base class and its non-static data members shall have been
2342  // implicitly defined.
2343  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2344       Base != ClassDecl->bases_end(); ++Base) {
2345    CXXRecordDecl *BaseClassDecl
2346      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2347    if (CXXConstructorDecl *BaseCopyCtor =
2348        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2349      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2350  }
2351  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2352                                  FieldEnd = ClassDecl->field_end();
2353       Field != FieldEnd; ++Field) {
2354    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2355    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2356      FieldType = Array->getElementType();
2357    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2358      CXXRecordDecl *FieldClassDecl
2359        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2360      if (CXXConstructorDecl *FieldCopyCtor =
2361          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2362        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2363    }
2364  }
2365  CopyConstructor->setUsed();
2366}
2367
2368/// BuildCXXConstructExpr - Creates a complete call to a constructor,
2369/// including handling of its default argument expressions.
2370Expr *Sema::BuildCXXConstructExpr(ASTContext &C,
2371                                  QualType DeclInitType,
2372                                  CXXConstructorDecl *Constructor,
2373                                  bool Elidable,
2374                                  Expr **Exprs, unsigned NumExprs) {
2375  CXXConstructExpr *Temp = CXXConstructExpr::Create(C, DeclInitType,
2376                                                    Constructor,
2377                                                    Elidable, Exprs, NumExprs);
2378  // default arguments must be added to constructor call expression.
2379  FunctionDecl *FDecl = cast<FunctionDecl>(Constructor);
2380  unsigned NumArgsInProto = FDecl->param_size();
2381  for (unsigned j = NumExprs; j != NumArgsInProto; j++) {
2382    Expr *DefaultExpr = FDecl->getParamDecl(j)->getDefaultArg();
2383
2384    // If the default expression creates temporaries, we need to
2385    // push them to the current stack of expression temporaries so they'll
2386    // be properly destroyed.
2387    if (CXXExprWithTemporaries *E
2388        = dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
2389      assert(!E->shouldDestroyTemporaries() &&
2390             "Can't destroy temporaries in a default argument expr!");
2391      for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
2392        ExprTemporaries.push_back(E->getTemporary(I));
2393    }
2394    Expr *Arg = new (C) CXXDefaultArgExpr(FDecl->getParamDecl(j));
2395    Temp->setArg(j, Arg);
2396  }
2397  return Temp;
2398}
2399
2400void Sema::InitializeVarWithConstructor(VarDecl *VD,
2401                                        CXXConstructorDecl *Constructor,
2402                                        QualType DeclInitType,
2403                                        Expr **Exprs, unsigned NumExprs) {
2404  Expr *Temp = BuildCXXConstructExpr(Context,
2405                                     DeclInitType, Constructor,
2406                                     false, Exprs, NumExprs);
2407  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2408  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
2409  VD->setInit(Context, Temp);
2410}
2411
2412void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType)
2413{
2414  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2415                                  DeclInitType->getAs<RecordType>()->getDecl());
2416  if (!ClassDecl->hasTrivialDestructor())
2417    if (CXXDestructorDecl *Destructor =
2418        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2419      MarkDeclarationReferenced(VD->getLocation(), Destructor);
2420}
2421
2422/// AddCXXDirectInitializerToDecl - This action is called immediately after
2423/// ActOnDeclarator, when a C++ direct initializer is present.
2424/// e.g: "int x(1);"
2425void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2426                                         SourceLocation LParenLoc,
2427                                         MultiExprArg Exprs,
2428                                         SourceLocation *CommaLocs,
2429                                         SourceLocation RParenLoc) {
2430  unsigned NumExprs = Exprs.size();
2431  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2432  Decl *RealDecl = Dcl.getAs<Decl>();
2433
2434  // If there is no declaration, there was an error parsing it.  Just ignore
2435  // the initializer.
2436  if (RealDecl == 0)
2437    return;
2438
2439  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2440  if (!VDecl) {
2441    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2442    RealDecl->setInvalidDecl();
2443    return;
2444  }
2445
2446  // FIXME: Need to handle dependent types and expressions here.
2447
2448  // We will treat direct-initialization as a copy-initialization:
2449  //    int x(1);  -as-> int x = 1;
2450  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2451  //
2452  // Clients that want to distinguish between the two forms, can check for
2453  // direct initializer using VarDecl::hasCXXDirectInitializer().
2454  // A major benefit is that clients that don't particularly care about which
2455  // exactly form was it (like the CodeGen) can handle both cases without
2456  // special case code.
2457
2458  // C++ 8.5p11:
2459  // The form of initialization (using parentheses or '=') is generally
2460  // insignificant, but does matter when the entity being initialized has a
2461  // class type.
2462  QualType DeclInitType = VDecl->getType();
2463  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2464    DeclInitType = Array->getElementType();
2465
2466  // FIXME: This isn't the right place to complete the type.
2467  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2468                          diag::err_typecheck_decl_incomplete_type)) {
2469    VDecl->setInvalidDecl();
2470    return;
2471  }
2472
2473  if (VDecl->getType()->isRecordType()) {
2474    CXXConstructorDecl *Constructor
2475      = PerformInitializationByConstructor(DeclInitType,
2476                                           (Expr **)Exprs.get(), NumExprs,
2477                                           VDecl->getLocation(),
2478                                           SourceRange(VDecl->getLocation(),
2479                                                       RParenLoc),
2480                                           VDecl->getDeclName(),
2481                                           IK_Direct);
2482    if (!Constructor)
2483      RealDecl->setInvalidDecl();
2484    else {
2485      VDecl->setCXXDirectInitializer(true);
2486      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2487                                   (Expr**)Exprs.release(), NumExprs);
2488      FinalizeVarWithDestructor(VDecl, DeclInitType);
2489    }
2490    return;
2491  }
2492
2493  if (NumExprs > 1) {
2494    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2495      << SourceRange(VDecl->getLocation(), RParenLoc);
2496    RealDecl->setInvalidDecl();
2497    return;
2498  }
2499
2500  // Let clients know that initialization was done with a direct initializer.
2501  VDecl->setCXXDirectInitializer(true);
2502
2503  assert(NumExprs == 1 && "Expected 1 expression");
2504  // Set the init expression, handles conversions.
2505  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2506                       /*DirectInit=*/true);
2507}
2508
2509/// PerformInitializationByConstructor - Perform initialization by
2510/// constructor (C++ [dcl.init]p14), which may occur as part of
2511/// direct-initialization or copy-initialization. We are initializing
2512/// an object of type @p ClassType with the given arguments @p
2513/// Args. @p Loc is the location in the source code where the
2514/// initializer occurs (e.g., a declaration, member initializer,
2515/// functional cast, etc.) while @p Range covers the whole
2516/// initialization. @p InitEntity is the entity being initialized,
2517/// which may by the name of a declaration or a type. @p Kind is the
2518/// kind of initialization we're performing, which affects whether
2519/// explicit constructors will be considered. When successful, returns
2520/// the constructor that will be used to perform the initialization;
2521/// when the initialization fails, emits a diagnostic and returns
2522/// null.
2523CXXConstructorDecl *
2524Sema::PerformInitializationByConstructor(QualType ClassType,
2525                                         Expr **Args, unsigned NumArgs,
2526                                         SourceLocation Loc, SourceRange Range,
2527                                         DeclarationName InitEntity,
2528                                         InitializationKind Kind) {
2529  const RecordType *ClassRec = ClassType->getAs<RecordType>();
2530  assert(ClassRec && "Can only initialize a class type here");
2531
2532  // C++ [dcl.init]p14:
2533  //
2534  //   If the initialization is direct-initialization, or if it is
2535  //   copy-initialization where the cv-unqualified version of the
2536  //   source type is the same class as, or a derived class of, the
2537  //   class of the destination, constructors are considered. The
2538  //   applicable constructors are enumerated (13.3.1.3), and the
2539  //   best one is chosen through overload resolution (13.3). The
2540  //   constructor so selected is called to initialize the object,
2541  //   with the initializer expression(s) as its argument(s). If no
2542  //   constructor applies, or the overload resolution is ambiguous,
2543  //   the initialization is ill-formed.
2544  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2545  OverloadCandidateSet CandidateSet;
2546
2547  // Add constructors to the overload set.
2548  DeclarationName ConstructorName
2549    = Context.DeclarationNames.getCXXConstructorName(
2550                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2551  DeclContext::lookup_const_iterator Con, ConEnd;
2552  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2553       Con != ConEnd; ++Con) {
2554    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2555    if ((Kind == IK_Direct) ||
2556        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2557        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2558      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2559  }
2560
2561  // FIXME: When we decide not to synthesize the implicitly-declared
2562  // constructors, we'll need to make them appear here.
2563
2564  OverloadCandidateSet::iterator Best;
2565  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2566  case OR_Success:
2567    // We found a constructor. Return it.
2568    return cast<CXXConstructorDecl>(Best->Function);
2569
2570  case OR_No_Viable_Function:
2571    if (InitEntity)
2572      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2573        << InitEntity << Range;
2574    else
2575      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2576        << ClassType << Range;
2577    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2578    return 0;
2579
2580  case OR_Ambiguous:
2581    if (InitEntity)
2582      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2583    else
2584      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2585    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2586    return 0;
2587
2588  case OR_Deleted:
2589    if (InitEntity)
2590      Diag(Loc, diag::err_ovl_deleted_init)
2591        << Best->Function->isDeleted()
2592        << InitEntity << Range;
2593    else
2594      Diag(Loc, diag::err_ovl_deleted_init)
2595        << Best->Function->isDeleted()
2596        << InitEntity << Range;
2597    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2598    return 0;
2599  }
2600
2601  return 0;
2602}
2603
2604/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2605/// determine whether they are reference-related,
2606/// reference-compatible, reference-compatible with added
2607/// qualification, or incompatible, for use in C++ initialization by
2608/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2609/// type, and the first type (T1) is the pointee type of the reference
2610/// type being initialized.
2611Sema::ReferenceCompareResult
2612Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2613                                   bool& DerivedToBase) {
2614  assert(!T1->isReferenceType() &&
2615    "T1 must be the pointee type of the reference type");
2616  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2617
2618  T1 = Context.getCanonicalType(T1);
2619  T2 = Context.getCanonicalType(T2);
2620  QualType UnqualT1 = T1.getUnqualifiedType();
2621  QualType UnqualT2 = T2.getUnqualifiedType();
2622
2623  // C++ [dcl.init.ref]p4:
2624  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2625  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2626  //   T1 is a base class of T2.
2627  if (UnqualT1 == UnqualT2)
2628    DerivedToBase = false;
2629  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2630    DerivedToBase = true;
2631  else
2632    return Ref_Incompatible;
2633
2634  // At this point, we know that T1 and T2 are reference-related (at
2635  // least).
2636
2637  // C++ [dcl.init.ref]p4:
2638  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2639  //   reference-related to T2 and cv1 is the same cv-qualification
2640  //   as, or greater cv-qualification than, cv2. For purposes of
2641  //   overload resolution, cases for which cv1 is greater
2642  //   cv-qualification than cv2 are identified as
2643  //   reference-compatible with added qualification (see 13.3.3.2).
2644  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2645    return Ref_Compatible;
2646  else if (T1.isMoreQualifiedThan(T2))
2647    return Ref_Compatible_With_Added_Qualification;
2648  else
2649    return Ref_Related;
2650}
2651
2652/// CheckReferenceInit - Check the initialization of a reference
2653/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2654/// the initializer (either a simple initializer or an initializer
2655/// list), and DeclType is the type of the declaration. When ICS is
2656/// non-null, this routine will compute the implicit conversion
2657/// sequence according to C++ [over.ics.ref] and will not produce any
2658/// diagnostics; when ICS is null, it will emit diagnostics when any
2659/// errors are found. Either way, a return value of true indicates
2660/// that there was a failure, a return value of false indicates that
2661/// the reference initialization succeeded.
2662///
2663/// When @p SuppressUserConversions, user-defined conversions are
2664/// suppressed.
2665/// When @p AllowExplicit, we also permit explicit user-defined
2666/// conversion functions.
2667/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2668bool
2669Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2670                         ImplicitConversionSequence *ICS,
2671                         bool SuppressUserConversions,
2672                         bool AllowExplicit, bool ForceRValue) {
2673  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2674
2675  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2676  QualType T2 = Init->getType();
2677
2678  // If the initializer is the address of an overloaded function, try
2679  // to resolve the overloaded function. If all goes well, T2 is the
2680  // type of the resulting function.
2681  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2682    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2683                                                          ICS != 0);
2684    if (Fn) {
2685      // Since we're performing this reference-initialization for
2686      // real, update the initializer with the resulting function.
2687      if (!ICS) {
2688        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2689          return true;
2690
2691        FixOverloadedFunctionReference(Init, Fn);
2692      }
2693
2694      T2 = Fn->getType();
2695    }
2696  }
2697
2698  // Compute some basic properties of the types and the initializer.
2699  bool isRValRef = DeclType->isRValueReferenceType();
2700  bool DerivedToBase = false;
2701  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2702                                                  Init->isLvalue(Context);
2703  ReferenceCompareResult RefRelationship
2704    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2705
2706  // Most paths end in a failed conversion.
2707  if (ICS)
2708    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2709
2710  // C++ [dcl.init.ref]p5:
2711  //   A reference to type "cv1 T1" is initialized by an expression
2712  //   of type "cv2 T2" as follows:
2713
2714  //     -- If the initializer expression
2715
2716  // Rvalue references cannot bind to lvalues (N2812).
2717  // There is absolutely no situation where they can. In particular, note that
2718  // this is ill-formed, even if B has a user-defined conversion to A&&:
2719  //   B b;
2720  //   A&& r = b;
2721  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2722    if (!ICS)
2723      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2724        << Init->getSourceRange();
2725    return true;
2726  }
2727
2728  bool BindsDirectly = false;
2729  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2730  //          reference-compatible with "cv2 T2," or
2731  //
2732  // Note that the bit-field check is skipped if we are just computing
2733  // the implicit conversion sequence (C++ [over.best.ics]p2).
2734  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2735      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2736    BindsDirectly = true;
2737
2738    if (ICS) {
2739      // C++ [over.ics.ref]p1:
2740      //   When a parameter of reference type binds directly (8.5.3)
2741      //   to an argument expression, the implicit conversion sequence
2742      //   is the identity conversion, unless the argument expression
2743      //   has a type that is a derived class of the parameter type,
2744      //   in which case the implicit conversion sequence is a
2745      //   derived-to-base Conversion (13.3.3.1).
2746      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2747      ICS->Standard.First = ICK_Identity;
2748      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2749      ICS->Standard.Third = ICK_Identity;
2750      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2751      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2752      ICS->Standard.ReferenceBinding = true;
2753      ICS->Standard.DirectBinding = true;
2754      ICS->Standard.RRefBinding = false;
2755      ICS->Standard.CopyConstructor = 0;
2756
2757      // Nothing more to do: the inaccessibility/ambiguity check for
2758      // derived-to-base conversions is suppressed when we're
2759      // computing the implicit conversion sequence (C++
2760      // [over.best.ics]p2).
2761      return false;
2762    } else {
2763      // Perform the conversion.
2764      // FIXME: Binding to a subobject of the lvalue is going to require more
2765      // AST annotation than this.
2766      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
2767    }
2768  }
2769
2770  //       -- has a class type (i.e., T2 is a class type) and can be
2771  //          implicitly converted to an lvalue of type "cv3 T3,"
2772  //          where "cv1 T1" is reference-compatible with "cv3 T3"
2773  //          92) (this conversion is selected by enumerating the
2774  //          applicable conversion functions (13.3.1.6) and choosing
2775  //          the best one through overload resolution (13.3)),
2776  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2777    // FIXME: Look for conversions in base classes!
2778    CXXRecordDecl *T2RecordDecl
2779      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2780
2781    OverloadCandidateSet CandidateSet;
2782    OverloadedFunctionDecl *Conversions
2783      = T2RecordDecl->getConversionFunctions();
2784    for (OverloadedFunctionDecl::function_iterator Func
2785           = Conversions->function_begin();
2786         Func != Conversions->function_end(); ++Func) {
2787      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2788
2789      // If the conversion function doesn't return a reference type,
2790      // it can't be considered for this conversion.
2791      if (Conv->getConversionType()->isLValueReferenceType() &&
2792          (AllowExplicit || !Conv->isExplicit()))
2793        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2794    }
2795
2796    OverloadCandidateSet::iterator Best;
2797    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2798    case OR_Success:
2799      // This is a direct binding.
2800      BindsDirectly = true;
2801
2802      if (ICS) {
2803        // C++ [over.ics.ref]p1:
2804        //
2805        //   [...] If the parameter binds directly to the result of
2806        //   applying a conversion function to the argument
2807        //   expression, the implicit conversion sequence is a
2808        //   user-defined conversion sequence (13.3.3.1.2), with the
2809        //   second standard conversion sequence either an identity
2810        //   conversion or, if the conversion function returns an
2811        //   entity of a type that is a derived class of the parameter
2812        //   type, a derived-to-base Conversion.
2813        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2814        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2815        ICS->UserDefined.After = Best->FinalConversion;
2816        ICS->UserDefined.ConversionFunction = Best->Function;
2817        assert(ICS->UserDefined.After.ReferenceBinding &&
2818               ICS->UserDefined.After.DirectBinding &&
2819               "Expected a direct reference binding!");
2820        return false;
2821      } else {
2822        // Perform the conversion.
2823        // FIXME: Binding to a subobject of the lvalue is going to require more
2824        // AST annotation than this.
2825        ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
2826      }
2827      break;
2828
2829    case OR_Ambiguous:
2830      assert(false && "Ambiguous reference binding conversions not implemented.");
2831      return true;
2832
2833    case OR_No_Viable_Function:
2834    case OR_Deleted:
2835      // There was no suitable conversion, or we found a deleted
2836      // conversion; continue with other checks.
2837      break;
2838    }
2839  }
2840
2841  if (BindsDirectly) {
2842    // C++ [dcl.init.ref]p4:
2843    //   [...] In all cases where the reference-related or
2844    //   reference-compatible relationship of two types is used to
2845    //   establish the validity of a reference binding, and T1 is a
2846    //   base class of T2, a program that necessitates such a binding
2847    //   is ill-formed if T1 is an inaccessible (clause 11) or
2848    //   ambiguous (10.2) base class of T2.
2849    //
2850    // Note that we only check this condition when we're allowed to
2851    // complain about errors, because we should not be checking for
2852    // ambiguity (or inaccessibility) unless the reference binding
2853    // actually happens.
2854    if (DerivedToBase)
2855      return CheckDerivedToBaseConversion(T2, T1,
2856                                          Init->getSourceRange().getBegin(),
2857                                          Init->getSourceRange());
2858    else
2859      return false;
2860  }
2861
2862  //     -- Otherwise, the reference shall be to a non-volatile const
2863  //        type (i.e., cv1 shall be const), or the reference shall be an
2864  //        rvalue reference and the initializer expression shall be an rvalue.
2865  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2866    if (!ICS)
2867      Diag(Init->getSourceRange().getBegin(),
2868           diag::err_not_reference_to_const_init)
2869        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2870        << T2 << Init->getSourceRange();
2871    return true;
2872  }
2873
2874  //       -- If the initializer expression is an rvalue, with T2 a
2875  //          class type, and "cv1 T1" is reference-compatible with
2876  //          "cv2 T2," the reference is bound in one of the
2877  //          following ways (the choice is implementation-defined):
2878  //
2879  //          -- The reference is bound to the object represented by
2880  //             the rvalue (see 3.10) or to a sub-object within that
2881  //             object.
2882  //
2883  //          -- A temporary of type "cv1 T2" [sic] is created, and
2884  //             a constructor is called to copy the entire rvalue
2885  //             object into the temporary. The reference is bound to
2886  //             the temporary or to a sub-object within the
2887  //             temporary.
2888  //
2889  //          The constructor that would be used to make the copy
2890  //          shall be callable whether or not the copy is actually
2891  //          done.
2892  //
2893  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2894  // freedom, so we will always take the first option and never build
2895  // a temporary in this case. FIXME: We will, however, have to check
2896  // for the presence of a copy constructor in C++98/03 mode.
2897  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2898      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2899    if (ICS) {
2900      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2901      ICS->Standard.First = ICK_Identity;
2902      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2903      ICS->Standard.Third = ICK_Identity;
2904      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2905      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2906      ICS->Standard.ReferenceBinding = true;
2907      ICS->Standard.DirectBinding = false;
2908      ICS->Standard.RRefBinding = isRValRef;
2909      ICS->Standard.CopyConstructor = 0;
2910    } else {
2911      // FIXME: Binding to a subobject of the rvalue is going to require more
2912      // AST annotation than this.
2913      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/false);
2914    }
2915    return false;
2916  }
2917
2918  //       -- Otherwise, a temporary of type "cv1 T1" is created and
2919  //          initialized from the initializer expression using the
2920  //          rules for a non-reference copy initialization (8.5). The
2921  //          reference is then bound to the temporary. If T1 is
2922  //          reference-related to T2, cv1 must be the same
2923  //          cv-qualification as, or greater cv-qualification than,
2924  //          cv2; otherwise, the program is ill-formed.
2925  if (RefRelationship == Ref_Related) {
2926    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2927    // we would be reference-compatible or reference-compatible with
2928    // added qualification. But that wasn't the case, so the reference
2929    // initialization fails.
2930    if (!ICS)
2931      Diag(Init->getSourceRange().getBegin(),
2932           diag::err_reference_init_drops_quals)
2933        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2934        << T2 << Init->getSourceRange();
2935    return true;
2936  }
2937
2938  // If at least one of the types is a class type, the types are not
2939  // related, and we aren't allowed any user conversions, the
2940  // reference binding fails. This case is important for breaking
2941  // recursion, since TryImplicitConversion below will attempt to
2942  // create a temporary through the use of a copy constructor.
2943  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2944      (T1->isRecordType() || T2->isRecordType())) {
2945    if (!ICS)
2946      Diag(Init->getSourceRange().getBegin(),
2947           diag::err_typecheck_convert_incompatible)
2948        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2949    return true;
2950  }
2951
2952  // Actually try to convert the initializer to T1.
2953  if (ICS) {
2954    // C++ [over.ics.ref]p2:
2955    //
2956    //   When a parameter of reference type is not bound directly to
2957    //   an argument expression, the conversion sequence is the one
2958    //   required to convert the argument expression to the
2959    //   underlying type of the reference according to
2960    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2961    //   to copy-initializing a temporary of the underlying type with
2962    //   the argument expression. Any difference in top-level
2963    //   cv-qualification is subsumed by the initialization itself
2964    //   and does not constitute a conversion.
2965    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2966    // Of course, that's still a reference binding.
2967    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2968      ICS->Standard.ReferenceBinding = true;
2969      ICS->Standard.RRefBinding = isRValRef;
2970    } else if(ICS->ConversionKind ==
2971              ImplicitConversionSequence::UserDefinedConversion) {
2972      ICS->UserDefined.After.ReferenceBinding = true;
2973      ICS->UserDefined.After.RRefBinding = isRValRef;
2974    }
2975    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2976  } else {
2977    return PerformImplicitConversion(Init, T1, "initializing");
2978  }
2979}
2980
2981/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2982/// of this overloaded operator is well-formed. If so, returns false;
2983/// otherwise, emits appropriate diagnostics and returns true.
2984bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2985  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2986         "Expected an overloaded operator declaration");
2987
2988  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2989
2990  // C++ [over.oper]p5:
2991  //   The allocation and deallocation functions, operator new,
2992  //   operator new[], operator delete and operator delete[], are
2993  //   described completely in 3.7.3. The attributes and restrictions
2994  //   found in the rest of this subclause do not apply to them unless
2995  //   explicitly stated in 3.7.3.
2996  // FIXME: Write a separate routine for checking this. For now, just allow it.
2997  if (Op == OO_New || Op == OO_Array_New ||
2998      Op == OO_Delete || Op == OO_Array_Delete)
2999    return false;
3000
3001  // C++ [over.oper]p6:
3002  //   An operator function shall either be a non-static member
3003  //   function or be a non-member function and have at least one
3004  //   parameter whose type is a class, a reference to a class, an
3005  //   enumeration, or a reference to an enumeration.
3006  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
3007    if (MethodDecl->isStatic())
3008      return Diag(FnDecl->getLocation(),
3009                  diag::err_operator_overload_static) << FnDecl->getDeclName();
3010  } else {
3011    bool ClassOrEnumParam = false;
3012    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
3013                                   ParamEnd = FnDecl->param_end();
3014         Param != ParamEnd; ++Param) {
3015      QualType ParamType = (*Param)->getType().getNonReferenceType();
3016      if (ParamType->isDependentType() || ParamType->isRecordType() ||
3017          ParamType->isEnumeralType()) {
3018        ClassOrEnumParam = true;
3019        break;
3020      }
3021    }
3022
3023    if (!ClassOrEnumParam)
3024      return Diag(FnDecl->getLocation(),
3025                  diag::err_operator_overload_needs_class_or_enum)
3026        << FnDecl->getDeclName();
3027  }
3028
3029  // C++ [over.oper]p8:
3030  //   An operator function cannot have default arguments (8.3.6),
3031  //   except where explicitly stated below.
3032  //
3033  // Only the function-call operator allows default arguments
3034  // (C++ [over.call]p1).
3035  if (Op != OO_Call) {
3036    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
3037         Param != FnDecl->param_end(); ++Param) {
3038      if ((*Param)->hasUnparsedDefaultArg())
3039        return Diag((*Param)->getLocation(),
3040                    diag::err_operator_overload_default_arg)
3041          << FnDecl->getDeclName();
3042      else if (Expr *DefArg = (*Param)->getDefaultArg())
3043        return Diag((*Param)->getLocation(),
3044                    diag::err_operator_overload_default_arg)
3045          << FnDecl->getDeclName() << DefArg->getSourceRange();
3046    }
3047  }
3048
3049  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
3050    { false, false, false }
3051#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
3052    , { Unary, Binary, MemberOnly }
3053#include "clang/Basic/OperatorKinds.def"
3054  };
3055
3056  bool CanBeUnaryOperator = OperatorUses[Op][0];
3057  bool CanBeBinaryOperator = OperatorUses[Op][1];
3058  bool MustBeMemberOperator = OperatorUses[Op][2];
3059
3060  // C++ [over.oper]p8:
3061  //   [...] Operator functions cannot have more or fewer parameters
3062  //   than the number required for the corresponding operator, as
3063  //   described in the rest of this subclause.
3064  unsigned NumParams = FnDecl->getNumParams()
3065                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
3066  if (Op != OO_Call &&
3067      ((NumParams == 1 && !CanBeUnaryOperator) ||
3068       (NumParams == 2 && !CanBeBinaryOperator) ||
3069       (NumParams < 1) || (NumParams > 2))) {
3070    // We have the wrong number of parameters.
3071    unsigned ErrorKind;
3072    if (CanBeUnaryOperator && CanBeBinaryOperator) {
3073      ErrorKind = 2;  // 2 -> unary or binary.
3074    } else if (CanBeUnaryOperator) {
3075      ErrorKind = 0;  // 0 -> unary
3076    } else {
3077      assert(CanBeBinaryOperator &&
3078             "All non-call overloaded operators are unary or binary!");
3079      ErrorKind = 1;  // 1 -> binary
3080    }
3081
3082    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
3083      << FnDecl->getDeclName() << NumParams << ErrorKind;
3084  }
3085
3086  // Overloaded operators other than operator() cannot be variadic.
3087  if (Op != OO_Call &&
3088      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
3089    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
3090      << FnDecl->getDeclName();
3091  }
3092
3093  // Some operators must be non-static member functions.
3094  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
3095    return Diag(FnDecl->getLocation(),
3096                diag::err_operator_overload_must_be_member)
3097      << FnDecl->getDeclName();
3098  }
3099
3100  // C++ [over.inc]p1:
3101  //   The user-defined function called operator++ implements the
3102  //   prefix and postfix ++ operator. If this function is a member
3103  //   function with no parameters, or a non-member function with one
3104  //   parameter of class or enumeration type, it defines the prefix
3105  //   increment operator ++ for objects of that type. If the function
3106  //   is a member function with one parameter (which shall be of type
3107  //   int) or a non-member function with two parameters (the second
3108  //   of which shall be of type int), it defines the postfix
3109  //   increment operator ++ for objects of that type.
3110  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
3111    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
3112    bool ParamIsInt = false;
3113    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
3114      ParamIsInt = BT->getKind() == BuiltinType::Int;
3115
3116    if (!ParamIsInt)
3117      return Diag(LastParam->getLocation(),
3118                  diag::err_operator_overload_post_incdec_must_be_int)
3119        << LastParam->getType() << (Op == OO_MinusMinus);
3120  }
3121
3122  // Notify the class if it got an assignment operator.
3123  if (Op == OO_Equal) {
3124    // Would have returned earlier otherwise.
3125    assert(isa<CXXMethodDecl>(FnDecl) &&
3126      "Overloaded = not member, but not filtered.");
3127    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3128    Method->getParent()->addedAssignmentOperator(Context, Method);
3129  }
3130
3131  return false;
3132}
3133
3134/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3135/// linkage specification, including the language and (if present)
3136/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3137/// the location of the language string literal, which is provided
3138/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3139/// the '{' brace. Otherwise, this linkage specification does not
3140/// have any braces.
3141Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3142                                                     SourceLocation ExternLoc,
3143                                                     SourceLocation LangLoc,
3144                                                     const char *Lang,
3145                                                     unsigned StrSize,
3146                                                     SourceLocation LBraceLoc) {
3147  LinkageSpecDecl::LanguageIDs Language;
3148  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3149    Language = LinkageSpecDecl::lang_c;
3150  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3151    Language = LinkageSpecDecl::lang_cxx;
3152  else {
3153    Diag(LangLoc, diag::err_bad_language);
3154    return DeclPtrTy();
3155  }
3156
3157  // FIXME: Add all the various semantics of linkage specifications
3158
3159  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3160                                               LangLoc, Language,
3161                                               LBraceLoc.isValid());
3162  CurContext->addDecl(D);
3163  PushDeclContext(S, D);
3164  return DeclPtrTy::make(D);
3165}
3166
3167/// ActOnFinishLinkageSpecification - Completely the definition of
3168/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3169/// valid, it's the position of the closing '}' brace in a linkage
3170/// specification that uses braces.
3171Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3172                                                      DeclPtrTy LinkageSpec,
3173                                                      SourceLocation RBraceLoc) {
3174  if (LinkageSpec)
3175    PopDeclContext();
3176  return LinkageSpec;
3177}
3178
3179/// \brief Perform semantic analysis for the variable declaration that
3180/// occurs within a C++ catch clause, returning the newly-created
3181/// variable.
3182VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3183                                         IdentifierInfo *Name,
3184                                         SourceLocation Loc,
3185                                         SourceRange Range) {
3186  bool Invalid = false;
3187
3188  // Arrays and functions decay.
3189  if (ExDeclType->isArrayType())
3190    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3191  else if (ExDeclType->isFunctionType())
3192    ExDeclType = Context.getPointerType(ExDeclType);
3193
3194  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3195  // The exception-declaration shall not denote a pointer or reference to an
3196  // incomplete type, other than [cv] void*.
3197  // N2844 forbids rvalue references.
3198  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3199    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3200    Invalid = true;
3201  }
3202
3203  QualType BaseType = ExDeclType;
3204  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3205  unsigned DK = diag::err_catch_incomplete;
3206  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
3207    BaseType = Ptr->getPointeeType();
3208    Mode = 1;
3209    DK = diag::err_catch_incomplete_ptr;
3210  } else if(const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
3211    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3212    BaseType = Ref->getPointeeType();
3213    Mode = 2;
3214    DK = diag::err_catch_incomplete_ref;
3215  }
3216  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3217      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3218    Invalid = true;
3219
3220  if (!Invalid && !ExDeclType->isDependentType() &&
3221      RequireNonAbstractType(Loc, ExDeclType,
3222                             diag::err_abstract_type_in_decl,
3223                             AbstractVariableType))
3224    Invalid = true;
3225
3226  // FIXME: Need to test for ability to copy-construct and destroy the
3227  // exception variable.
3228
3229  // FIXME: Need to check for abstract classes.
3230
3231  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3232                                    Name, ExDeclType, VarDecl::None,
3233                                    Range.getBegin());
3234
3235  if (Invalid)
3236    ExDecl->setInvalidDecl();
3237
3238  return ExDecl;
3239}
3240
3241/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3242/// handler.
3243Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3244  QualType ExDeclType = GetTypeForDeclarator(D, S);
3245
3246  bool Invalid = D.isInvalidType();
3247  IdentifierInfo *II = D.getIdentifier();
3248  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3249    // The scope should be freshly made just for us. There is just no way
3250    // it contains any previous declaration.
3251    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3252    if (PrevDecl->isTemplateParameter()) {
3253      // Maybe we will complain about the shadowed template parameter.
3254      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3255    }
3256  }
3257
3258  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3259    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3260      << D.getCXXScopeSpec().getRange();
3261    Invalid = true;
3262  }
3263
3264  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3265                                              D.getIdentifier(),
3266                                              D.getIdentifierLoc(),
3267                                            D.getDeclSpec().getSourceRange());
3268
3269  if (Invalid)
3270    ExDecl->setInvalidDecl();
3271
3272  // Add the exception declaration into this scope.
3273  if (II)
3274    PushOnScopeChains(ExDecl, S);
3275  else
3276    CurContext->addDecl(ExDecl);
3277
3278  ProcessDeclAttributes(S, ExDecl, D);
3279  return DeclPtrTy::make(ExDecl);
3280}
3281
3282Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3283                                                   ExprArg assertexpr,
3284                                                   ExprArg assertmessageexpr) {
3285  Expr *AssertExpr = (Expr *)assertexpr.get();
3286  StringLiteral *AssertMessage =
3287    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3288
3289  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3290    llvm::APSInt Value(32);
3291    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3292      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3293        AssertExpr->getSourceRange();
3294      return DeclPtrTy();
3295    }
3296
3297    if (Value == 0) {
3298      std::string str(AssertMessage->getStrData(),
3299                      AssertMessage->getByteLength());
3300      Diag(AssertLoc, diag::err_static_assert_failed)
3301        << str << AssertExpr->getSourceRange();
3302    }
3303  }
3304
3305  assertexpr.release();
3306  assertmessageexpr.release();
3307  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3308                                        AssertExpr, AssertMessage);
3309
3310  CurContext->addDecl(Decl);
3311  return DeclPtrTy::make(Decl);
3312}
3313
3314Sema::DeclPtrTy Sema::ActOnFriendDecl(Scope *S,
3315                       llvm::PointerUnion<const DeclSpec*,Declarator*> DU,
3316                                      bool IsDefinition) {
3317  Declarator *D = DU.dyn_cast<Declarator*>();
3318  const DeclSpec &DS = (D ? D->getDeclSpec() : *DU.get<const DeclSpec*>());
3319
3320  assert(DS.isFriendSpecified());
3321  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
3322
3323  // If there's no declarator, then this can only be a friend class
3324  // declaration (or else it's just syntactically invalid).
3325  if (!D) {
3326    SourceLocation Loc = DS.getSourceRange().getBegin();
3327
3328    QualType T;
3329    DeclContext *DC;
3330
3331    // In C++0x, we just accept any old type.
3332    if (getLangOptions().CPlusPlus0x) {
3333      bool invalid = false;
3334      QualType T = ConvertDeclSpecToType(DS, Loc, invalid);
3335      if (invalid)
3336        return DeclPtrTy();
3337
3338      // The semantic context in which to create the decl.  If it's not
3339      // a record decl (or we don't yet know if it is), create it in the
3340      // current context.
3341      DC = CurContext;
3342      if (const RecordType *RT = T->getAs<RecordType>())
3343        DC = RT->getDecl()->getDeclContext();
3344
3345    // The C++98 rules are somewhat more complex.
3346    } else {
3347      // C++ [class.friend]p2:
3348      //   An elaborated-type-specifier shall be used in a friend declaration
3349      //   for a class.*
3350      //   * The class-key of the elaborated-type-specifier is required.
3351      CXXRecordDecl *RD = 0;
3352
3353      switch (DS.getTypeSpecType()) {
3354      case DeclSpec::TST_class:
3355      case DeclSpec::TST_struct:
3356      case DeclSpec::TST_union:
3357        RD = dyn_cast_or_null<CXXRecordDecl>((Decl*) DS.getTypeRep());
3358        if (!RD) return DeclPtrTy();
3359        break;
3360
3361      case DeclSpec::TST_typename:
3362        if (const RecordType *RT =
3363            ((const Type*) DS.getTypeRep())->getAs<RecordType>())
3364          RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
3365        // fallthrough
3366      default:
3367        if (RD) {
3368          Diag(DS.getFriendSpecLoc(), diag::err_unelaborated_friend_type)
3369            << (RD->isUnion())
3370            << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
3371                                         RD->isUnion() ? " union" : " class");
3372          return DeclPtrTy::make(RD);
3373        }
3374
3375        Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
3376          << DS.getSourceRange();
3377        return DeclPtrTy();
3378      }
3379
3380      // The record declaration we get from friend declarations is not
3381      // canonicalized; see ActOnTag.
3382      assert(RD);
3383
3384      // C++ [class.friend]p2: A class shall not be defined inside
3385      //   a friend declaration.
3386      if (RD->isDefinition())
3387        Diag(DS.getFriendSpecLoc(), diag::err_friend_decl_defines_class)
3388          << RD->getSourceRange();
3389
3390      // C++98 [class.friend]p1: A friend of a class is a function
3391      //   or class that is not a member of the class . . .
3392      // But that's a silly restriction which nobody implements for
3393      // inner classes, and C++0x removes it anyway, so we only report
3394      // this (as a warning) if we're being pedantic.
3395      //
3396      // Also, definitions currently get treated in a way that causes
3397      // this error, so only report it if we didn't see a definition.
3398      else if (RD->getDeclContext() == CurContext &&
3399               !getLangOptions().CPlusPlus0x)
3400        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
3401
3402      T = QualType(RD->getTypeForDecl(), 0);
3403      DC = RD->getDeclContext();
3404    }
3405
3406    FriendClassDecl *FCD = FriendClassDecl::Create(Context, DC, Loc, T,
3407                                                   DS.getFriendSpecLoc());
3408    FCD->setLexicalDeclContext(CurContext);
3409
3410    if (CurContext->isDependentContext())
3411      CurContext->addHiddenDecl(FCD);
3412    else
3413      CurContext->addDecl(FCD);
3414
3415    return DeclPtrTy::make(FCD);
3416  }
3417
3418  // We have a declarator.
3419  assert(D);
3420
3421  SourceLocation Loc = D->getIdentifierLoc();
3422  QualType T = GetTypeForDeclarator(*D, S);
3423
3424  // C++ [class.friend]p1
3425  //   A friend of a class is a function or class....
3426  // Note that this sees through typedefs, which is intended.
3427  if (!T->isFunctionType()) {
3428    Diag(Loc, diag::err_unexpected_friend);
3429
3430    // It might be worthwhile to try to recover by creating an
3431    // appropriate declaration.
3432    return DeclPtrTy();
3433  }
3434
3435  // C++ [namespace.memdef]p3
3436  //  - If a friend declaration in a non-local class first declares a
3437  //    class or function, the friend class or function is a member
3438  //    of the innermost enclosing namespace.
3439  //  - The name of the friend is not found by simple name lookup
3440  //    until a matching declaration is provided in that namespace
3441  //    scope (either before or after the class declaration granting
3442  //    friendship).
3443  //  - If a friend function is called, its name may be found by the
3444  //    name lookup that considers functions from namespaces and
3445  //    classes associated with the types of the function arguments.
3446  //  - When looking for a prior declaration of a class or a function
3447  //    declared as a friend, scopes outside the innermost enclosing
3448  //    namespace scope are not considered.
3449
3450  CXXScopeSpec &ScopeQual = D->getCXXScopeSpec();
3451  DeclarationName Name = GetNameForDeclarator(*D);
3452  assert(Name);
3453
3454  // The existing declaration we found.
3455  FunctionDecl *FD = NULL;
3456
3457  // The context we found the declaration in, or in which we should
3458  // create the declaration.
3459  DeclContext *DC;
3460
3461  // FIXME: handle local classes
3462
3463  // Recover from invalid scope qualifiers as if they just weren't there.
3464  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
3465    DC = computeDeclContext(ScopeQual);
3466
3467    // FIXME: handle dependent contexts
3468    if (!DC) return DeclPtrTy();
3469
3470    Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3471
3472    // If searching in that context implicitly found a declaration in
3473    // a different context, treat it like it wasn't found at all.
3474    // TODO: better diagnostics for this case.  Suggesting the right
3475    // qualified scope would be nice...
3476    if (!Dec || Dec->getDeclContext() != DC) {
3477      D->setInvalidType();
3478      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
3479      return DeclPtrTy();
3480    }
3481
3482    // C++ [class.friend]p1: A friend of a class is a function or
3483    //   class that is not a member of the class . . .
3484    if (DC == CurContext)
3485      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3486
3487    FD = cast<FunctionDecl>(Dec);
3488
3489  // Otherwise walk out to the nearest namespace scope looking for matches.
3490  } else {
3491    // TODO: handle local class contexts.
3492
3493    DC = CurContext;
3494    while (true) {
3495      // Skip class contexts.  If someone can cite chapter and verse
3496      // for this behavior, that would be nice --- it's what GCC and
3497      // EDG do, and it seems like a reasonable intent, but the spec
3498      // really only says that checks for unqualified existing
3499      // declarations should stop at the nearest enclosing namespace,
3500      // not that they should only consider the nearest enclosing
3501      // namespace.
3502      while (DC->isRecord()) DC = DC->getParent();
3503
3504      Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3505
3506      // TODO: decide what we think about using declarations.
3507      if (Dec) {
3508        FD = cast<FunctionDecl>(Dec);
3509        break;
3510      }
3511      if (DC->isFileContext()) break;
3512      DC = DC->getParent();
3513    }
3514
3515    // C++ [class.friend]p1: A friend of a class is a function or
3516    //   class that is not a member of the class . . .
3517    // C++0x changes this for both friend types and functions.
3518    // Most C++ 98 compilers do seem to give an error here, so
3519    // we do, too.
3520    if (FD && DC == CurContext && !getLangOptions().CPlusPlus0x)
3521      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3522  }
3523
3524  bool Redeclaration = (FD != 0);
3525
3526  // If we found a match, create a friend function declaration with
3527  // that function as the previous declaration.
3528  if (Redeclaration) {
3529    // Create it in the semantic context of the original declaration.
3530    DC = FD->getDeclContext();
3531
3532  // If we didn't find something matching the type exactly, create
3533  // a declaration.  This declaration should only be findable via
3534  // argument-dependent lookup.
3535  } else {
3536    assert(DC->isFileContext());
3537
3538    // This implies that it has to be an operator or function.
3539    if (D->getKind() == Declarator::DK_Constructor ||
3540        D->getKind() == Declarator::DK_Destructor ||
3541        D->getKind() == Declarator::DK_Conversion) {
3542      Diag(Loc, diag::err_introducing_special_friend) <<
3543        (D->getKind() == Declarator::DK_Constructor ? 0 :
3544         D->getKind() == Declarator::DK_Destructor ? 1 : 2);
3545      return DeclPtrTy();
3546    }
3547  }
3548
3549  NamedDecl *ND = ActOnFunctionDeclarator(S, *D, DC, T,
3550                                          /* PrevDecl = */ FD,
3551                                          MultiTemplateParamsArg(*this),
3552                                          IsDefinition,
3553                                          Redeclaration);
3554  FD = cast_or_null<FriendFunctionDecl>(ND);
3555
3556  // If this is a dependent context, just add the decl to the
3557  // class's decl list and don't both with the lookup tables.  This
3558  // doesn't affect lookup because any call that might find this
3559  // function via ADL necessarily has to involve dependently-typed
3560  // arguments and hence can't be resolved until
3561  // template-instantiation anyway.
3562  if (CurContext->isDependentContext())
3563    CurContext->addHiddenDecl(FD);
3564  else
3565    CurContext->addDecl(FD);
3566
3567  return DeclPtrTy::make(FD);
3568}
3569
3570void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3571  Decl *Dcl = dcl.getAs<Decl>();
3572  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3573  if (!Fn) {
3574    Diag(DelLoc, diag::err_deleted_non_function);
3575    return;
3576  }
3577  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3578    Diag(DelLoc, diag::err_deleted_decl_not_first);
3579    Diag(Prev->getLocation(), diag::note_previous_declaration);
3580    // If the declaration wasn't the first, we delete the function anyway for
3581    // recovery.
3582  }
3583  Fn->setDeleted();
3584}
3585
3586static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3587  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3588       ++CI) {
3589    Stmt *SubStmt = *CI;
3590    if (!SubStmt)
3591      continue;
3592    if (isa<ReturnStmt>(SubStmt))
3593      Self.Diag(SubStmt->getSourceRange().getBegin(),
3594           diag::err_return_in_constructor_handler);
3595    if (!isa<Expr>(SubStmt))
3596      SearchForReturnInStmt(Self, SubStmt);
3597  }
3598}
3599
3600void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3601  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3602    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3603    SearchForReturnInStmt(*this, Handler);
3604  }
3605}
3606
3607bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3608                                             const CXXMethodDecl *Old) {
3609  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3610  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3611
3612  QualType CNewTy = Context.getCanonicalType(NewTy);
3613  QualType COldTy = Context.getCanonicalType(OldTy);
3614
3615  if (CNewTy == COldTy &&
3616      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3617    return false;
3618
3619  // Check if the return types are covariant
3620  QualType NewClassTy, OldClassTy;
3621
3622  /// Both types must be pointers or references to classes.
3623  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3624    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3625      NewClassTy = NewPT->getPointeeType();
3626      OldClassTy = OldPT->getPointeeType();
3627    }
3628  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3629    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3630      NewClassTy = NewRT->getPointeeType();
3631      OldClassTy = OldRT->getPointeeType();
3632    }
3633  }
3634
3635  // The return types aren't either both pointers or references to a class type.
3636  if (NewClassTy.isNull()) {
3637    Diag(New->getLocation(),
3638         diag::err_different_return_type_for_overriding_virtual_function)
3639      << New->getDeclName() << NewTy << OldTy;
3640    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3641
3642    return true;
3643  }
3644
3645  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3646    // Check if the new class derives from the old class.
3647    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3648      Diag(New->getLocation(),
3649           diag::err_covariant_return_not_derived)
3650      << New->getDeclName() << NewTy << OldTy;
3651      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3652      return true;
3653    }
3654
3655    // Check if we the conversion from derived to base is valid.
3656    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3657                      diag::err_covariant_return_inaccessible_base,
3658                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3659                      // FIXME: Should this point to the return type?
3660                      New->getLocation(), SourceRange(), New->getDeclName())) {
3661      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3662      return true;
3663    }
3664  }
3665
3666  // The qualifiers of the return types must be the same.
3667  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3668    Diag(New->getLocation(),
3669         diag::err_covariant_return_type_different_qualifications)
3670    << New->getDeclName() << NewTy << OldTy;
3671    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3672    return true;
3673  };
3674
3675
3676  // The new class type must have the same or less qualifiers as the old type.
3677  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3678    Diag(New->getLocation(),
3679         diag::err_covariant_return_type_class_type_more_qualified)
3680    << New->getDeclName() << NewTy << OldTy;
3681    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3682    return true;
3683  };
3684
3685  return false;
3686}
3687
3688bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
3689                                                const CXXMethodDecl *Old)
3690{
3691  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
3692                                  diag::note_overridden_virtual_function,
3693                                  Old->getType()->getAsFunctionProtoType(),
3694                                  Old->getLocation(),
3695                                  New->getType()->getAsFunctionProtoType(),
3696                                  New->getLocation());
3697}
3698
3699/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3700/// initializer for the declaration 'Dcl'.
3701/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3702/// static data member of class X, names should be looked up in the scope of
3703/// class X.
3704void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3705  Decl *D = Dcl.getAs<Decl>();
3706  // If there is no declaration, there was an error parsing it.
3707  if (D == 0)
3708    return;
3709
3710  // Check whether it is a declaration with a nested name specifier like
3711  // int foo::bar;
3712  if (!D->isOutOfLine())
3713    return;
3714
3715  // C++ [basic.lookup.unqual]p13
3716  //
3717  // A name used in the definition of a static data member of class X
3718  // (after the qualified-id of the static member) is looked up as if the name
3719  // was used in a member function of X.
3720
3721  // Change current context into the context of the initializing declaration.
3722  EnterDeclaratorContext(S, D->getDeclContext());
3723}
3724
3725/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3726/// initializer for the declaration 'Dcl'.
3727void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3728  Decl *D = Dcl.getAs<Decl>();
3729  // If there is no declaration, there was an error parsing it.
3730  if (D == 0)
3731    return;
3732
3733  // Check whether it is a declaration with a nested name specifier like
3734  // int foo::bar;
3735  if (!D->isOutOfLine())
3736    return;
3737
3738  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3739  ExitDeclaratorContext(S);
3740}
3741