SemaDeclCXX.cpp revision 2943aed177b33ae3f14273b11a7b398e5276ec62
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/TypeOrdering.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Parse/DeclSpec.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Support/Compiler.h"
24#include <algorithm> // for std::equal
25#include <map>
26
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30// CheckDefaultArgumentVisitor
31//===----------------------------------------------------------------------===//
32
33namespace {
34  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
35  /// the default argument of a parameter to determine whether it
36  /// contains any ill-formed subexpressions. For example, this will
37  /// diagnose the use of local variables or parameters within the
38  /// default argument expression.
39  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
40    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
41    Expr *DefaultArg;
42    Sema *S;
43
44  public:
45    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
46      : DefaultArg(defarg), S(s) {}
47
48    bool VisitExpr(Expr *Node);
49    bool VisitDeclRefExpr(DeclRefExpr *DRE);
50    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
51  };
52
53  /// VisitExpr - Visit all of the children of this expression.
54  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
55    bool IsInvalid = false;
56    for (Stmt::child_iterator I = Node->child_begin(),
57         E = Node->child_end(); I != E; ++I)
58      IsInvalid |= Visit(*I);
59    return IsInvalid;
60  }
61
62  /// VisitDeclRefExpr - Visit a reference to a declaration, to
63  /// determine whether this declaration can be used in the default
64  /// argument expression.
65  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
66    NamedDecl *Decl = DRE->getDecl();
67    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
68      // C++ [dcl.fct.default]p9
69      //   Default arguments are evaluated each time the function is
70      //   called. The order of evaluation of function arguments is
71      //   unspecified. Consequently, parameters of a function shall not
72      //   be used in default argument expressions, even if they are not
73      //   evaluated. Parameters of a function declared before a default
74      //   argument expression are in scope and can hide namespace and
75      //   class member names.
76      return S->Diag(DRE->getSourceRange().getBegin(),
77                     diag::err_param_default_argument_references_param)
78         << Param->getDeclName() << DefaultArg->getSourceRange();
79    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
80      // C++ [dcl.fct.default]p7
81      //   Local variables shall not be used in default argument
82      //   expressions.
83      if (VDecl->isBlockVarDecl())
84        return S->Diag(DRE->getSourceRange().getBegin(),
85                       diag::err_param_default_argument_references_local)
86          << VDecl->getDeclName() << DefaultArg->getSourceRange();
87    }
88
89    return false;
90  }
91
92  /// VisitCXXThisExpr - Visit a C++ "this" expression.
93  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
94    // C++ [dcl.fct.default]p8:
95    //   The keyword this shall not be used in a default argument of a
96    //   member function.
97    return S->Diag(ThisE->getSourceRange().getBegin(),
98                   diag::err_param_default_argument_references_this)
99               << ThisE->getSourceRange();
100  }
101}
102
103/// ActOnParamDefaultArgument - Check whether the default argument
104/// provided for a function parameter is well-formed. If so, attach it
105/// to the parameter declaration.
106void
107Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc,
108                                ExprTy *defarg) {
109  ParmVarDecl *Param = (ParmVarDecl *)param;
110  ExprOwningPtr<Expr> DefaultArg(this, (Expr *)defarg);
111  QualType ParamType = Param->getType();
112
113  // Default arguments are only permitted in C++
114  if (!getLangOptions().CPlusPlus) {
115    Diag(EqualLoc, diag::err_param_default_argument)
116      << DefaultArg->getSourceRange();
117    Param->setInvalidDecl();
118    return;
119  }
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  Expr *DefaultArgPtr = DefaultArg.get();
128  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
129                                                 EqualLoc,
130                                                 Param->getDeclName(),
131                                                 /*DirectInit=*/false);
132  if (DefaultArgPtr != DefaultArg.get()) {
133    DefaultArg.take();
134    DefaultArg.reset(DefaultArgPtr);
135  }
136  if (DefaultInitFailed) {
137    return;
138  }
139
140  // Check that the default argument is well-formed
141  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
142  if (DefaultArgChecker.Visit(DefaultArg.get())) {
143    Param->setInvalidDecl();
144    return;
145  }
146
147  // Okay: add the default argument to the parameter
148  Param->setDefaultArg(DefaultArg.take());
149}
150
151/// ActOnParamUnparsedDefaultArgument - We've seen a default
152/// argument for a function parameter, but we can't parse it yet
153/// because we're inside a class definition. Note that this default
154/// argument will be parsed later.
155void Sema::ActOnParamUnparsedDefaultArgument(DeclTy *param,
156                                             SourceLocation EqualLoc) {
157  ParmVarDecl *Param = (ParmVarDecl*)param;
158  if (Param)
159    Param->setUnparsedDefaultArg();
160}
161
162/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
163/// the default argument for the parameter param failed.
164void Sema::ActOnParamDefaultArgumentError(DeclTy *param) {
165  ((ParmVarDecl*)param)->setInvalidDecl();
166}
167
168/// CheckExtraCXXDefaultArguments - Check for any extra default
169/// arguments in the declarator, which is not a function declaration
170/// or definition and therefore is not permitted to have default
171/// arguments. This routine should be invoked for every declarator
172/// that is not a function declaration or definition.
173void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
174  // C++ [dcl.fct.default]p3
175  //   A default argument expression shall be specified only in the
176  //   parameter-declaration-clause of a function declaration or in a
177  //   template-parameter (14.1). It shall not be specified for a
178  //   parameter pack. If it is specified in a
179  //   parameter-declaration-clause, it shall not occur within a
180  //   declarator or abstract-declarator of a parameter-declaration.
181  for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) {
182    DeclaratorChunk &chunk = D.getTypeObject(i);
183    if (chunk.Kind == DeclaratorChunk::Function) {
184      for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) {
185        ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param;
186        if (Param->hasUnparsedDefaultArg()) {
187          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
188          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
189            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
190          delete Toks;
191          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
192        } else if (Param->getDefaultArg()) {
193          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
194            << Param->getDefaultArg()->getSourceRange();
195          Param->setDefaultArg(0);
196        }
197      }
198    }
199  }
200}
201
202// MergeCXXFunctionDecl - Merge two declarations of the same C++
203// function, once we already know that they have the same
204// type. Subroutine of MergeFunctionDecl. Returns true if there was an
205// error, false otherwise.
206bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
207  bool Invalid = false;
208
209  // C++ [dcl.fct.default]p4:
210  //
211  //   For non-template functions, default arguments can be added in
212  //   later declarations of a function in the same
213  //   scope. Declarations in different scopes have completely
214  //   distinct sets of default arguments. That is, declarations in
215  //   inner scopes do not acquire default arguments from
216  //   declarations in outer scopes, and vice versa. In a given
217  //   function declaration, all parameters subsequent to a
218  //   parameter with a default argument shall have default
219  //   arguments supplied in this or previous declarations. A
220  //   default argument shall not be redefined by a later
221  //   declaration (not even to the same value).
222  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
223    ParmVarDecl *OldParam = Old->getParamDecl(p);
224    ParmVarDecl *NewParam = New->getParamDecl(p);
225
226    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
227      Diag(NewParam->getLocation(),
228           diag::err_param_default_argument_redefinition)
229        << NewParam->getDefaultArg()->getSourceRange();
230      Diag(OldParam->getLocation(), diag::note_previous_definition);
231      Invalid = true;
232    } else if (OldParam->getDefaultArg()) {
233      // Merge the old default argument into the new parameter
234      NewParam->setDefaultArg(OldParam->getDefaultArg());
235    }
236  }
237
238  return Invalid;
239}
240
241/// CheckCXXDefaultArguments - Verify that the default arguments for a
242/// function declaration are well-formed according to C++
243/// [dcl.fct.default].
244void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
245  unsigned NumParams = FD->getNumParams();
246  unsigned p;
247
248  // Find first parameter with a default argument
249  for (p = 0; p < NumParams; ++p) {
250    ParmVarDecl *Param = FD->getParamDecl(p);
251    if (Param->getDefaultArg())
252      break;
253  }
254
255  // C++ [dcl.fct.default]p4:
256  //   In a given function declaration, all parameters
257  //   subsequent to a parameter with a default argument shall
258  //   have default arguments supplied in this or previous
259  //   declarations. A default argument shall not be redefined
260  //   by a later declaration (not even to the same value).
261  unsigned LastMissingDefaultArg = 0;
262  for(; p < NumParams; ++p) {
263    ParmVarDecl *Param = FD->getParamDecl(p);
264    if (!Param->getDefaultArg()) {
265      if (Param->isInvalidDecl())
266        /* We already complained about this parameter. */;
267      else if (Param->getIdentifier())
268        Diag(Param->getLocation(),
269             diag::err_param_default_argument_missing_name)
270          << Param->getIdentifier();
271      else
272        Diag(Param->getLocation(),
273             diag::err_param_default_argument_missing);
274
275      LastMissingDefaultArg = p;
276    }
277  }
278
279  if (LastMissingDefaultArg > 0) {
280    // Some default arguments were missing. Clear out all of the
281    // default arguments up to (and including) the last missing
282    // default argument, so that we leave the function parameters
283    // in a semantically valid state.
284    for (p = 0; p <= LastMissingDefaultArg; ++p) {
285      ParmVarDecl *Param = FD->getParamDecl(p);
286      if (Param->getDefaultArg()) {
287        if (!Param->hasUnparsedDefaultArg())
288          Param->getDefaultArg()->Destroy(Context);
289        Param->setDefaultArg(0);
290      }
291    }
292  }
293}
294
295/// isCurrentClassName - Determine whether the identifier II is the
296/// name of the class type currently being defined. In the case of
297/// nested classes, this will only return true if II is the name of
298/// the innermost class.
299bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
300                              const CXXScopeSpec *SS) {
301  CXXRecordDecl *CurDecl;
302  if (SS) {
303    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
304    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
305  } else
306    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
307
308  if (CurDecl)
309    return &II == CurDecl->getIdentifier();
310  else
311    return false;
312}
313
314/// \brief Check the validity of a C++ base class specifier.
315///
316/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
317/// and returns NULL otherwise.
318CXXBaseSpecifier *
319Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
320                         SourceRange SpecifierRange,
321                         bool Virtual, AccessSpecifier Access,
322                         QualType BaseType,
323                         SourceLocation BaseLoc) {
324  // C++ [class.union]p1:
325  //   A union shall not have base classes.
326  if (Class->isUnion()) {
327    Diag(Class->getLocation(), diag::err_base_clause_on_union)
328      << SpecifierRange;
329    return 0;
330  }
331
332  if (BaseType->isDependentType())
333    return new CXXBaseSpecifier(SpecifierRange, Virtual,
334                                Class->getTagKind() == RecordDecl::TK_class,
335                                Access, BaseType);
336
337  // Base specifiers must be record types.
338  if (!BaseType->isRecordType()) {
339    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
340    return 0;
341  }
342
343  // C++ [class.union]p1:
344  //   A union shall not be used as a base class.
345  if (BaseType->isUnionType()) {
346    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
347    return 0;
348  }
349
350  // C++ [class.derived]p2:
351  //   The class-name in a base-specifier shall not be an incompletely
352  //   defined class.
353  if (DiagnoseIncompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
354                             SpecifierRange))
355    return 0;
356
357  // If the base class is polymorphic, the new one is, too.
358  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
359  assert(BaseDecl && "Record type has no declaration");
360  BaseDecl = BaseDecl->getDefinition(Context);
361  assert(BaseDecl && "Base type is not incomplete, but has no definition");
362  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
363    Class->setPolymorphic(true);
364
365  // C++ [dcl.init.aggr]p1:
366  //   An aggregate is [...] a class with [...] no base classes [...].
367  Class->setAggregate(false);
368  Class->setPOD(false);
369
370  // Create the base specifier.
371  // FIXME: Allocate via ASTContext?
372  return new CXXBaseSpecifier(SpecifierRange, Virtual,
373                              Class->getTagKind() == RecordDecl::TK_class,
374                              Access, BaseType);
375}
376
377/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
378/// one entry in the base class list of a class specifier, for
379/// example:
380///    class foo : public bar, virtual private baz {
381/// 'public bar' and 'virtual private baz' are each base-specifiers.
382Sema::BaseResult
383Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange,
384                         bool Virtual, AccessSpecifier Access,
385                         TypeTy *basetype, SourceLocation BaseLoc) {
386  CXXRecordDecl *Class = (CXXRecordDecl*)classdecl;
387  QualType BaseType = QualType::getFromOpaquePtr(basetype);
388  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
389                                                      Virtual, Access,
390                                                      BaseType, BaseLoc))
391    return BaseSpec;
392
393  return true;
394}
395
396/// \brief Performs the actual work of attaching the given base class
397/// specifiers to a C++ class.
398bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
399                                unsigned NumBases) {
400 if (NumBases == 0)
401    return false;
402
403  // Used to keep track of which base types we have already seen, so
404  // that we can properly diagnose redundant direct base types. Note
405  // that the key is always the unqualified canonical type of the base
406  // class.
407  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
408
409  // Copy non-redundant base specifiers into permanent storage.
410  unsigned NumGoodBases = 0;
411  bool Invalid = false;
412  for (unsigned idx = 0; idx < NumBases; ++idx) {
413    QualType NewBaseType
414      = Context.getCanonicalType(Bases[idx]->getType());
415    NewBaseType = NewBaseType.getUnqualifiedType();
416
417    if (KnownBaseTypes[NewBaseType]) {
418      // C++ [class.mi]p3:
419      //   A class shall not be specified as a direct base class of a
420      //   derived class more than once.
421      Diag(Bases[idx]->getSourceRange().getBegin(),
422           diag::err_duplicate_base_class)
423        << KnownBaseTypes[NewBaseType]->getType()
424        << Bases[idx]->getSourceRange();
425
426      // Delete the duplicate base class specifier; we're going to
427      // overwrite its pointer later.
428      delete Bases[idx];
429
430      Invalid = true;
431    } else {
432      // Okay, add this new base class.
433      KnownBaseTypes[NewBaseType] = Bases[idx];
434      Bases[NumGoodBases++] = Bases[idx];
435    }
436  }
437
438  // Attach the remaining base class specifiers to the derived class.
439  Class->setBases(Bases, NumGoodBases);
440
441  // Delete the remaining (good) base class specifiers, since their
442  // data has been copied into the CXXRecordDecl.
443  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
444    delete Bases[idx];
445
446  return Invalid;
447}
448
449/// ActOnBaseSpecifiers - Attach the given base specifiers to the
450/// class, after checking whether there are any duplicate base
451/// classes.
452void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,
453                               unsigned NumBases) {
454  if (!ClassDecl || !Bases || !NumBases)
455    return;
456
457  AdjustDeclIfTemplate(ClassDecl);
458  AttachBaseSpecifiers(cast<CXXRecordDecl>((Decl*)ClassDecl),
459                       (CXXBaseSpecifier**)(Bases), NumBases);
460}
461
462//===----------------------------------------------------------------------===//
463// C++ class member Handling
464//===----------------------------------------------------------------------===//
465
466/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
467/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
468/// bitfield width if there is one and 'InitExpr' specifies the initializer if
469/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
470/// declarators on it.
471Sema::DeclTy *
472Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
473                               ExprTy *BW, ExprTy *InitExpr,
474                               DeclTy *LastInGroup) {
475  const DeclSpec &DS = D.getDeclSpec();
476  DeclarationName Name = GetNameForDeclarator(D);
477  Expr *BitWidth = static_cast<Expr*>(BW);
478  Expr *Init = static_cast<Expr*>(InitExpr);
479  SourceLocation Loc = D.getIdentifierLoc();
480
481  bool isFunc = D.isFunctionDeclarator();
482
483  // C++ 9.2p6: A member shall not be declared to have automatic storage
484  // duration (auto, register) or with the extern storage-class-specifier.
485  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
486  // data members and cannot be applied to names declared const or static,
487  // and cannot be applied to reference members.
488  switch (DS.getStorageClassSpec()) {
489    case DeclSpec::SCS_unspecified:
490    case DeclSpec::SCS_typedef:
491    case DeclSpec::SCS_static:
492      // FALL THROUGH.
493      break;
494    case DeclSpec::SCS_mutable:
495      if (isFunc) {
496        if (DS.getStorageClassSpecLoc().isValid())
497          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
498        else
499          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
500
501        // FIXME: It would be nicer if the keyword was ignored only for this
502        // declarator. Otherwise we could get follow-up errors.
503        D.getMutableDeclSpec().ClearStorageClassSpecs();
504      } else {
505        QualType T = GetTypeForDeclarator(D, S);
506        diag::kind err = static_cast<diag::kind>(0);
507        if (T->isReferenceType())
508          err = diag::err_mutable_reference;
509        else if (T.isConstQualified())
510          err = diag::err_mutable_const;
511        if (err != 0) {
512          if (DS.getStorageClassSpecLoc().isValid())
513            Diag(DS.getStorageClassSpecLoc(), err);
514          else
515            Diag(DS.getThreadSpecLoc(), err);
516          // FIXME: It would be nicer if the keyword was ignored only for this
517          // declarator. Otherwise we could get follow-up errors.
518          D.getMutableDeclSpec().ClearStorageClassSpecs();
519        }
520      }
521      break;
522    default:
523      if (DS.getStorageClassSpecLoc().isValid())
524        Diag(DS.getStorageClassSpecLoc(),
525             diag::err_storageclass_invalid_for_member);
526      else
527        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
528      D.getMutableDeclSpec().ClearStorageClassSpecs();
529  }
530
531  if (!isFunc &&
532      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
533      D.getNumTypeObjects() == 0) {
534    // Check also for this case:
535    //
536    // typedef int f();
537    // f a;
538    //
539    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
540    isFunc = TDType->isFunctionType();
541  }
542
543  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
544                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
545                      !isFunc);
546
547  Decl *Member;
548  bool InvalidDecl = false;
549
550  if (isInstField)
551    Member = static_cast<Decl*>(ActOnField(S, cast<CXXRecordDecl>(CurContext),
552                                           Loc, D, BitWidth));
553  else
554    Member = static_cast<Decl*>(ActOnDeclarator(S, D, LastInGroup));
555
556  if (!Member) return LastInGroup;
557
558  assert((Name || isInstField) && "No identifier for non-field ?");
559
560  // set/getAccess is not part of Decl's interface to avoid bloating it with C++
561  // specific methods. Use a wrapper class that can be used with all C++ class
562  // member decls.
563  CXXClassMemberWrapper(Member).setAccess(AS);
564
565  // C++ [dcl.init.aggr]p1:
566  //   An aggregate is an array or a class (clause 9) with [...] no
567  //   private or protected non-static data members (clause 11).
568  // A POD must be an aggregate.
569  if (isInstField && (AS == AS_private || AS == AS_protected)) {
570    CXXRecordDecl *Record = cast<CXXRecordDecl>(CurContext);
571    Record->setAggregate(false);
572    Record->setPOD(false);
573  }
574
575  if (DS.isVirtualSpecified()) {
576    if (!isFunc || DS.getStorageClassSpec() == DeclSpec::SCS_static) {
577      Diag(DS.getVirtualSpecLoc(), diag::err_virtual_non_function);
578      InvalidDecl = true;
579    } else {
580      cast<CXXMethodDecl>(Member)->setVirtual();
581      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(CurContext);
582      CurClass->setAggregate(false);
583      CurClass->setPOD(false);
584      CurClass->setPolymorphic(true);
585    }
586  }
587
588  // FIXME: The above definition of virtual is not sufficient. A function is
589  // also virtual if it overrides an already virtual function. This is important
590  // to do here because it decides the validity of a pure specifier.
591
592  if (BitWidth) {
593    // C++ 9.6p2: Only when declaring an unnamed bit-field may the
594    // constant-expression be a value equal to zero.
595    // FIXME: Check this.
596
597    if (D.isFunctionDeclarator()) {
598      // FIXME: Emit diagnostic about only constructors taking base initializers
599      // or something similar, when constructor support is in place.
600      Diag(Loc, diag::err_not_bitfield_type)
601        << Name << BitWidth->getSourceRange();
602      InvalidDecl = true;
603
604    } else if (isInstField) {
605      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
606      if (!cast<FieldDecl>(Member)->getType()->isIntegralType()) {
607        Diag(Loc, diag::err_not_integral_type_bitfield)
608          << Name << BitWidth->getSourceRange();
609        InvalidDecl = true;
610      }
611
612    } else if (isa<FunctionDecl>(Member)) {
613      // A function typedef ("typedef int f(); f a;").
614      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
615      Diag(Loc, diag::err_not_integral_type_bitfield)
616        << Name << BitWidth->getSourceRange();
617      InvalidDecl = true;
618
619    } else if (isa<TypedefDecl>(Member)) {
620      // "cannot declare 'A' to be a bit-field type"
621      Diag(Loc, diag::err_not_bitfield_type)
622        << Name << BitWidth->getSourceRange();
623      InvalidDecl = true;
624
625    } else {
626      assert(isa<CXXClassVarDecl>(Member) &&
627             "Didn't we cover all member kinds?");
628      // C++ 9.6p3: A bit-field shall not be a static member.
629      // "static member 'A' cannot be a bit-field"
630      Diag(Loc, diag::err_static_not_bitfield)
631        << Name << BitWidth->getSourceRange();
632      InvalidDecl = true;
633    }
634  }
635
636  if (Init) {
637    // C++ 9.2p4: A member-declarator can contain a constant-initializer only
638    // if it declares a static member of const integral or const enumeration
639    // type.
640    if (CXXClassVarDecl *CVD = dyn_cast<CXXClassVarDecl>(Member)) {
641      // ...static member of...
642      CVD->setInit(Init);
643      // ...const integral or const enumeration type.
644      if (Context.getCanonicalType(CVD->getType()).isConstQualified() &&
645          CVD->getType()->isIntegralType()) {
646        // constant-initializer
647        if (CheckForConstantInitializer(Init, CVD->getType()))
648          InvalidDecl = true;
649
650      } else {
651        // not const integral.
652        Diag(Loc, diag::err_member_initialization)
653          << Name << Init->getSourceRange();
654        InvalidDecl = true;
655      }
656
657    } else {
658      // not static member. perhaps virtual function?
659      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member)) {
660        // With declarators parsed the way they are, the parser cannot
661        // distinguish between a normal initializer and a pure-specifier.
662        // Thus this grotesque test.
663        IntegerLiteral *IL;
664        if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
665            Context.getCanonicalType(IL->getType()) == Context.IntTy) {
666          if (MD->isVirtual())
667            MD->setPure();
668          else {
669            Diag(Loc, diag::err_non_virtual_pure)
670              << Name << Init->getSourceRange();
671            InvalidDecl = true;
672          }
673        } else {
674          Diag(Loc, diag::err_member_function_initialization)
675            << Name << Init->getSourceRange();
676          InvalidDecl = true;
677        }
678      } else {
679        Diag(Loc, diag::err_member_initialization)
680          << Name << Init->getSourceRange();
681        InvalidDecl = true;
682      }
683    }
684  }
685
686  if (InvalidDecl)
687    Member->setInvalidDecl();
688
689  if (isInstField) {
690    FieldCollector->Add(cast<FieldDecl>(Member));
691    return LastInGroup;
692  }
693  return Member;
694}
695
696/// ActOnMemInitializer - Handle a C++ member initializer.
697Sema::MemInitResult
698Sema::ActOnMemInitializer(DeclTy *ConstructorD,
699                          Scope *S,
700                          IdentifierInfo *MemberOrBase,
701                          SourceLocation IdLoc,
702                          SourceLocation LParenLoc,
703                          ExprTy **Args, unsigned NumArgs,
704                          SourceLocation *CommaLocs,
705                          SourceLocation RParenLoc) {
706  CXXConstructorDecl *Constructor
707    = dyn_cast<CXXConstructorDecl>((Decl*)ConstructorD);
708  if (!Constructor) {
709    // The user wrote a constructor initializer on a function that is
710    // not a C++ constructor. Ignore the error for now, because we may
711    // have more member initializers coming; we'll diagnose it just
712    // once in ActOnMemInitializers.
713    return true;
714  }
715
716  CXXRecordDecl *ClassDecl = Constructor->getParent();
717
718  // C++ [class.base.init]p2:
719  //   Names in a mem-initializer-id are looked up in the scope of the
720  //   constructor’s class and, if not found in that scope, are looked
721  //   up in the scope containing the constructor’s
722  //   definition. [Note: if the constructor’s class contains a member
723  //   with the same name as a direct or virtual base class of the
724  //   class, a mem-initializer-id naming the member or base class and
725  //   composed of a single identifier refers to the class member. A
726  //   mem-initializer-id for the hidden base class may be specified
727  //   using a qualified name. ]
728  // Look for a member, first.
729  FieldDecl *Member = 0;
730  DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
731  if (Result.first != Result.second)
732    Member = dyn_cast<FieldDecl>(*Result.first);
733
734  // FIXME: Handle members of an anonymous union.
735
736  if (Member) {
737    // FIXME: Perform direct initialization of the member.
738    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
739  }
740
741  // It didn't name a member, so see if it names a class.
742  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
743  if (!BaseTy)
744    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
745      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
746
747  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
748  if (!BaseType->isRecordType())
749    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
750      << BaseType << SourceRange(IdLoc, RParenLoc);
751
752  // C++ [class.base.init]p2:
753  //   [...] Unless the mem-initializer-id names a nonstatic data
754  //   member of the constructor’s class or a direct or virtual base
755  //   of that class, the mem-initializer is ill-formed. A
756  //   mem-initializer-list can initialize a base class using any
757  //   name that denotes that base class type.
758
759  // First, check for a direct base class.
760  const CXXBaseSpecifier *DirectBaseSpec = 0;
761  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
762       Base != ClassDecl->bases_end(); ++Base) {
763    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
764        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
765      // We found a direct base of this type. That's what we're
766      // initializing.
767      DirectBaseSpec = &*Base;
768      break;
769    }
770  }
771
772  // Check for a virtual base class.
773  // FIXME: We might be able to short-circuit this if we know in
774  // advance that there are no virtual bases.
775  const CXXBaseSpecifier *VirtualBaseSpec = 0;
776  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
777    // We haven't found a base yet; search the class hierarchy for a
778    // virtual base class.
779    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
780                    /*DetectVirtual=*/false);
781    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
782      for (BasePaths::paths_iterator Path = Paths.begin();
783           Path != Paths.end(); ++Path) {
784        if (Path->back().Base->isVirtual()) {
785          VirtualBaseSpec = Path->back().Base;
786          break;
787        }
788      }
789    }
790  }
791
792  // C++ [base.class.init]p2:
793  //   If a mem-initializer-id is ambiguous because it designates both
794  //   a direct non-virtual base class and an inherited virtual base
795  //   class, the mem-initializer is ill-formed.
796  if (DirectBaseSpec && VirtualBaseSpec)
797    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
798      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
799
800  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
801}
802
803
804void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
805                                             DeclTy *TagDecl,
806                                             SourceLocation LBrac,
807                                             SourceLocation RBrac) {
808  TemplateDecl *Template = AdjustDeclIfTemplate(TagDecl);
809  ActOnFields(S, RLoc, TagDecl,
810              (DeclTy**)FieldCollector->getCurFields(),
811              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
812
813  if (!Template)
814    AddImplicitlyDeclaredMembersToClass(cast<CXXRecordDecl>((Decl*)TagDecl));
815}
816
817/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
818/// special functions, such as the default constructor, copy
819/// constructor, or destructor, to the given C++ class (C++
820/// [special]p1).  This routine can only be executed just before the
821/// definition of the class is complete.
822void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
823  QualType ClassType = Context.getTypeDeclType(ClassDecl);
824  ClassType = Context.getCanonicalType(ClassType);
825
826  if (!ClassDecl->hasUserDeclaredConstructor()) {
827    // C++ [class.ctor]p5:
828    //   A default constructor for a class X is a constructor of class X
829    //   that can be called without an argument. If there is no
830    //   user-declared constructor for class X, a default constructor is
831    //   implicitly declared. An implicitly-declared default constructor
832    //   is an inline public member of its class.
833    DeclarationName Name
834      = Context.DeclarationNames.getCXXConstructorName(ClassType);
835    CXXConstructorDecl *DefaultCon =
836      CXXConstructorDecl::Create(Context, ClassDecl,
837                                 ClassDecl->getLocation(), Name,
838                                 Context.getFunctionType(Context.VoidTy,
839                                                         0, 0, false, 0),
840                                 /*isExplicit=*/false,
841                                 /*isInline=*/true,
842                                 /*isImplicitlyDeclared=*/true);
843    DefaultCon->setAccess(AS_public);
844    DefaultCon->setImplicit();
845    ClassDecl->addDecl(DefaultCon);
846
847    // Notify the class that we've added a constructor.
848    ClassDecl->addedConstructor(Context, DefaultCon);
849  }
850
851  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
852    // C++ [class.copy]p4:
853    //   If the class definition does not explicitly declare a copy
854    //   constructor, one is declared implicitly.
855
856    // C++ [class.copy]p5:
857    //   The implicitly-declared copy constructor for a class X will
858    //   have the form
859    //
860    //       X::X(const X&)
861    //
862    //   if
863    bool HasConstCopyConstructor = true;
864
865    //     -- each direct or virtual base class B of X has a copy
866    //        constructor whose first parameter is of type const B& or
867    //        const volatile B&, and
868    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
869         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
870      const CXXRecordDecl *BaseClassDecl
871        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
872      HasConstCopyConstructor
873        = BaseClassDecl->hasConstCopyConstructor(Context);
874    }
875
876    //     -- for all the nonstatic data members of X that are of a
877    //        class type M (or array thereof), each such class type
878    //        has a copy constructor whose first parameter is of type
879    //        const M& or const volatile M&.
880    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
881         HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) {
882      QualType FieldType = (*Field)->getType();
883      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
884        FieldType = Array->getElementType();
885      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
886        const CXXRecordDecl *FieldClassDecl
887          = cast<CXXRecordDecl>(FieldClassType->getDecl());
888        HasConstCopyConstructor
889          = FieldClassDecl->hasConstCopyConstructor(Context);
890      }
891    }
892
893    //   Otherwise, the implicitly declared copy constructor will have
894    //   the form
895    //
896    //       X::X(X&)
897    QualType ArgType = ClassType;
898    if (HasConstCopyConstructor)
899      ArgType = ArgType.withConst();
900    ArgType = Context.getReferenceType(ArgType);
901
902    //   An implicitly-declared copy constructor is an inline public
903    //   member of its class.
904    DeclarationName Name
905      = Context.DeclarationNames.getCXXConstructorName(ClassType);
906    CXXConstructorDecl *CopyConstructor
907      = CXXConstructorDecl::Create(Context, ClassDecl,
908                                   ClassDecl->getLocation(), Name,
909                                   Context.getFunctionType(Context.VoidTy,
910                                                           &ArgType, 1,
911                                                           false, 0),
912                                   /*isExplicit=*/false,
913                                   /*isInline=*/true,
914                                   /*isImplicitlyDeclared=*/true);
915    CopyConstructor->setAccess(AS_public);
916    CopyConstructor->setImplicit();
917
918    // Add the parameter to the constructor.
919    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
920                                                 ClassDecl->getLocation(),
921                                                 /*IdentifierInfo=*/0,
922                                                 ArgType, VarDecl::None, 0);
923    CopyConstructor->setParams(Context, &FromParam, 1);
924
925    ClassDecl->addedConstructor(Context, CopyConstructor);
926    ClassDecl->addDecl(CopyConstructor);
927  }
928
929  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
930    // Note: The following rules are largely analoguous to the copy
931    // constructor rules. Note that virtual bases are not taken into account
932    // for determining the argument type of the operator. Note also that
933    // operators taking an object instead of a reference are allowed.
934    //
935    // C++ [class.copy]p10:
936    //   If the class definition does not explicitly declare a copy
937    //   assignment operator, one is declared implicitly.
938    //   The implicitly-defined copy assignment operator for a class X
939    //   will have the form
940    //
941    //       X& X::operator=(const X&)
942    //
943    //   if
944    bool HasConstCopyAssignment = true;
945
946    //       -- each direct base class B of X has a copy assignment operator
947    //          whose parameter is of type const B&, const volatile B& or B,
948    //          and
949    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
950         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
951      const CXXRecordDecl *BaseClassDecl
952        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
953      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
954    }
955
956    //       -- for all the nonstatic data members of X that are of a class
957    //          type M (or array thereof), each such class type has a copy
958    //          assignment operator whose parameter is of type const M&,
959    //          const volatile M& or M.
960    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
961         HasConstCopyAssignment && Field != ClassDecl->field_end(); ++Field) {
962      QualType FieldType = (*Field)->getType();
963      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
964        FieldType = Array->getElementType();
965      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
966        const CXXRecordDecl *FieldClassDecl
967          = cast<CXXRecordDecl>(FieldClassType->getDecl());
968        HasConstCopyAssignment
969          = FieldClassDecl->hasConstCopyAssignment(Context);
970      }
971    }
972
973    //   Otherwise, the implicitly declared copy assignment operator will
974    //   have the form
975    //
976    //       X& X::operator=(X&)
977    QualType ArgType = ClassType;
978    QualType RetType = Context.getReferenceType(ArgType);
979    if (HasConstCopyAssignment)
980      ArgType = ArgType.withConst();
981    ArgType = Context.getReferenceType(ArgType);
982
983    //   An implicitly-declared copy assignment operator is an inline public
984    //   member of its class.
985    DeclarationName Name =
986      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
987    CXXMethodDecl *CopyAssignment =
988      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
989                            Context.getFunctionType(RetType, &ArgType, 1,
990                                                    false, 0),
991                            /*isStatic=*/false, /*isInline=*/true);
992    CopyAssignment->setAccess(AS_public);
993    CopyAssignment->setImplicit();
994
995    // Add the parameter to the operator.
996    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
997                                                 ClassDecl->getLocation(),
998                                                 /*IdentifierInfo=*/0,
999                                                 ArgType, VarDecl::None, 0);
1000    CopyAssignment->setParams(Context, &FromParam, 1);
1001
1002    // Don't call addedAssignmentOperator. There is no way to distinguish an
1003    // implicit from an explicit assignment operator.
1004    ClassDecl->addDecl(CopyAssignment);
1005  }
1006
1007  if (!ClassDecl->hasUserDeclaredDestructor()) {
1008    // C++ [class.dtor]p2:
1009    //   If a class has no user-declared destructor, a destructor is
1010    //   declared implicitly. An implicitly-declared destructor is an
1011    //   inline public member of its class.
1012    DeclarationName Name
1013      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1014    CXXDestructorDecl *Destructor
1015      = CXXDestructorDecl::Create(Context, ClassDecl,
1016                                  ClassDecl->getLocation(), Name,
1017                                  Context.getFunctionType(Context.VoidTy,
1018                                                          0, 0, false, 0),
1019                                  /*isInline=*/true,
1020                                  /*isImplicitlyDeclared=*/true);
1021    Destructor->setAccess(AS_public);
1022    Destructor->setImplicit();
1023    ClassDecl->addDecl(Destructor);
1024  }
1025}
1026
1027/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1028/// parsing a top-level (non-nested) C++ class, and we are now
1029/// parsing those parts of the given Method declaration that could
1030/// not be parsed earlier (C++ [class.mem]p2), such as default
1031/// arguments. This action should enter the scope of the given
1032/// Method declaration as if we had just parsed the qualified method
1033/// name. However, it should not bring the parameters into scope;
1034/// that will be performed by ActOnDelayedCXXMethodParameter.
1035void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclTy *Method) {
1036  CXXScopeSpec SS;
1037  SS.setScopeRep(((FunctionDecl*)Method)->getDeclContext());
1038  ActOnCXXEnterDeclaratorScope(S, SS);
1039}
1040
1041/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1042/// C++ method declaration. We're (re-)introducing the given
1043/// function parameter into scope for use in parsing later parts of
1044/// the method declaration. For example, we could see an
1045/// ActOnParamDefaultArgument event for this parameter.
1046void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclTy *ParamD) {
1047  ParmVarDecl *Param = (ParmVarDecl*)ParamD;
1048
1049  // If this parameter has an unparsed default argument, clear it out
1050  // to make way for the parsed default argument.
1051  if (Param->hasUnparsedDefaultArg())
1052    Param->setDefaultArg(0);
1053
1054  S->AddDecl(Param);
1055  if (Param->getDeclName())
1056    IdResolver.AddDecl(Param);
1057}
1058
1059/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1060/// processing the delayed method declaration for Method. The method
1061/// declaration is now considered finished. There may be a separate
1062/// ActOnStartOfFunctionDef action later (not necessarily
1063/// immediately!) for this method, if it was also defined inside the
1064/// class body.
1065void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclTy *MethodD) {
1066  FunctionDecl *Method = (FunctionDecl*)MethodD;
1067  CXXScopeSpec SS;
1068  SS.setScopeRep(Method->getDeclContext());
1069  ActOnCXXExitDeclaratorScope(S, SS);
1070
1071  // Now that we have our default arguments, check the constructor
1072  // again. It could produce additional diagnostics or affect whether
1073  // the class has implicitly-declared destructors, among other
1074  // things.
1075  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) {
1076    if (CheckConstructor(Constructor))
1077      Constructor->setInvalidDecl();
1078  }
1079
1080  // Check the default arguments, which we may have added.
1081  if (!Method->isInvalidDecl())
1082    CheckCXXDefaultArguments(Method);
1083}
1084
1085/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1086/// the well-formedness of the constructor declarator @p D with type @p
1087/// R. If there are any errors in the declarator, this routine will
1088/// emit diagnostics and return true. Otherwise, it will return
1089/// false. Either way, the type @p R will be updated to reflect a
1090/// well-formed type for the constructor.
1091bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
1092                                      FunctionDecl::StorageClass& SC) {
1093  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1094  bool isInvalid = false;
1095
1096  // C++ [class.ctor]p3:
1097  //   A constructor shall not be virtual (10.3) or static (9.4). A
1098  //   constructor can be invoked for a const, volatile or const
1099  //   volatile object. A constructor shall not be declared const,
1100  //   volatile, or const volatile (9.3.2).
1101  if (isVirtual) {
1102    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1103      << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1104      << SourceRange(D.getIdentifierLoc());
1105    isInvalid = true;
1106  }
1107  if (SC == FunctionDecl::Static) {
1108    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1109      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1110      << SourceRange(D.getIdentifierLoc());
1111    isInvalid = true;
1112    SC = FunctionDecl::None;
1113  }
1114  if (D.getDeclSpec().hasTypeSpecifier()) {
1115    // Constructors don't have return types, but the parser will
1116    // happily parse something like:
1117    //
1118    //   class X {
1119    //     float X(float);
1120    //   };
1121    //
1122    // The return type will be eliminated later.
1123    Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
1124      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1125      << SourceRange(D.getIdentifierLoc());
1126  }
1127  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1128    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1129    if (FTI.TypeQuals & QualType::Const)
1130      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1131        << "const" << SourceRange(D.getIdentifierLoc());
1132    if (FTI.TypeQuals & QualType::Volatile)
1133      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1134        << "volatile" << SourceRange(D.getIdentifierLoc());
1135    if (FTI.TypeQuals & QualType::Restrict)
1136      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1137        << "restrict" << SourceRange(D.getIdentifierLoc());
1138  }
1139
1140  // Rebuild the function type "R" without any type qualifiers (in
1141  // case any of the errors above fired) and with "void" as the
1142  // return type, since constructors don't have return types. We
1143  // *always* have to do this, because GetTypeForDeclarator will
1144  // put in a result type of "int" when none was specified.
1145  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1146  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1147                              Proto->getNumArgs(),
1148                              Proto->isVariadic(),
1149                              0);
1150
1151  return isInvalid;
1152}
1153
1154/// CheckConstructor - Checks a fully-formed constructor for
1155/// well-formedness, issuing any diagnostics required. Returns true if
1156/// the constructor declarator is invalid.
1157bool Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1158  if (Constructor->isInvalidDecl())
1159    return true;
1160
1161  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1162  bool Invalid = false;
1163
1164  // C++ [class.copy]p3:
1165  //   A declaration of a constructor for a class X is ill-formed if
1166  //   its first parameter is of type (optionally cv-qualified) X and
1167  //   either there are no other parameters or else all other
1168  //   parameters have default arguments.
1169  if ((Constructor->getNumParams() == 1) ||
1170      (Constructor->getNumParams() > 1 &&
1171       Constructor->getParamDecl(1)->getDefaultArg() != 0)) {
1172    QualType ParamType = Constructor->getParamDecl(0)->getType();
1173    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1174    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1175      Diag(Constructor->getLocation(), diag::err_constructor_byvalue_arg)
1176        << SourceRange(Constructor->getParamDecl(0)->getLocation());
1177      Invalid = true;
1178    }
1179  }
1180
1181  // Notify the class that we've added a constructor.
1182  ClassDecl->addedConstructor(Context, Constructor);
1183
1184  return Invalid;
1185}
1186
1187/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1188/// the well-formednes of the destructor declarator @p D with type @p
1189/// R. If there are any errors in the declarator, this routine will
1190/// emit diagnostics and return true. Otherwise, it will return
1191/// false. Either way, the type @p R will be updated to reflect a
1192/// well-formed type for the destructor.
1193bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
1194                                     FunctionDecl::StorageClass& SC) {
1195  bool isInvalid = false;
1196
1197  // C++ [class.dtor]p1:
1198  //   [...] A typedef-name that names a class is a class-name
1199  //   (7.1.3); however, a typedef-name that names a class shall not
1200  //   be used as the identifier in the declarator for a destructor
1201  //   declaration.
1202  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1203  if (DeclaratorType->getAsTypedefType()) {
1204    Diag(D.getIdentifierLoc(),  diag::err_destructor_typedef_name)
1205      << DeclaratorType;
1206    isInvalid = true;
1207  }
1208
1209  // C++ [class.dtor]p2:
1210  //   A destructor is used to destroy objects of its class type. A
1211  //   destructor takes no parameters, and no return type can be
1212  //   specified for it (not even void). The address of a destructor
1213  //   shall not be taken. A destructor shall not be static. A
1214  //   destructor can be invoked for a const, volatile or const
1215  //   volatile object. A destructor shall not be declared const,
1216  //   volatile or const volatile (9.3.2).
1217  if (SC == FunctionDecl::Static) {
1218    Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1219      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1220      << SourceRange(D.getIdentifierLoc());
1221    isInvalid = true;
1222    SC = FunctionDecl::None;
1223  }
1224  if (D.getDeclSpec().hasTypeSpecifier()) {
1225    // Destructors don't have return types, but the parser will
1226    // happily parse something like:
1227    //
1228    //   class X {
1229    //     float ~X();
1230    //   };
1231    //
1232    // The return type will be eliminated later.
1233    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1234      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1235      << SourceRange(D.getIdentifierLoc());
1236  }
1237  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1238    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1239    if (FTI.TypeQuals & QualType::Const)
1240      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1241        << "const" << SourceRange(D.getIdentifierLoc());
1242    if (FTI.TypeQuals & QualType::Volatile)
1243      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1244        << "volatile" << SourceRange(D.getIdentifierLoc());
1245    if (FTI.TypeQuals & QualType::Restrict)
1246      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1247        << "restrict" << SourceRange(D.getIdentifierLoc());
1248  }
1249
1250  // Make sure we don't have any parameters.
1251  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1252    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1253
1254    // Delete the parameters.
1255    D.getTypeObject(0).Fun.freeArgs();
1256  }
1257
1258  // Make sure the destructor isn't variadic.
1259  if (R->getAsFunctionProtoType()->isVariadic())
1260    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1261
1262  // Rebuild the function type "R" without any type qualifiers or
1263  // parameters (in case any of the errors above fired) and with
1264  // "void" as the return type, since destructors don't have return
1265  // types. We *always* have to do this, because GetTypeForDeclarator
1266  // will put in a result type of "int" when none was specified.
1267  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1268
1269  return isInvalid;
1270}
1271
1272/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1273/// well-formednes of the conversion function declarator @p D with
1274/// type @p R. If there are any errors in the declarator, this routine
1275/// will emit diagnostics and return true. Otherwise, it will return
1276/// false. Either way, the type @p R will be updated to reflect a
1277/// well-formed type for the conversion operator.
1278bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1279                                     FunctionDecl::StorageClass& SC) {
1280  bool isInvalid = false;
1281
1282  // C++ [class.conv.fct]p1:
1283  //   Neither parameter types nor return type can be specified. The
1284  //   type of a conversion function (8.3.5) is “function taking no
1285  //   parameter returning conversion-type-id.”
1286  if (SC == FunctionDecl::Static) {
1287    Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1288      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1289      << SourceRange(D.getIdentifierLoc());
1290    isInvalid = true;
1291    SC = FunctionDecl::None;
1292  }
1293  if (D.getDeclSpec().hasTypeSpecifier()) {
1294    // Conversion functions don't have return types, but the parser will
1295    // happily parse something like:
1296    //
1297    //   class X {
1298    //     float operator bool();
1299    //   };
1300    //
1301    // The return type will be changed later anyway.
1302    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1303      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1304      << SourceRange(D.getIdentifierLoc());
1305  }
1306
1307  // Make sure we don't have any parameters.
1308  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1309    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1310
1311    // Delete the parameters.
1312    D.getTypeObject(0).Fun.freeArgs();
1313  }
1314
1315  // Make sure the conversion function isn't variadic.
1316  if (R->getAsFunctionProtoType()->isVariadic())
1317    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1318
1319  // C++ [class.conv.fct]p4:
1320  //   The conversion-type-id shall not represent a function type nor
1321  //   an array type.
1322  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1323  if (ConvType->isArrayType()) {
1324    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1325    ConvType = Context.getPointerType(ConvType);
1326  } else if (ConvType->isFunctionType()) {
1327    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1328    ConvType = Context.getPointerType(ConvType);
1329  }
1330
1331  // Rebuild the function type "R" without any parameters (in case any
1332  // of the errors above fired) and with the conversion type as the
1333  // return type.
1334  R = Context.getFunctionType(ConvType, 0, 0, false,
1335                              R->getAsFunctionProtoType()->getTypeQuals());
1336
1337  // C++0x explicit conversion operators.
1338  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1339    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1340         diag::warn_explicit_conversion_functions)
1341      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1342
1343  return isInvalid;
1344}
1345
1346/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1347/// the declaration of the given C++ conversion function. This routine
1348/// is responsible for recording the conversion function in the C++
1349/// class, if possible.
1350Sema::DeclTy *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1351  assert(Conversion && "Expected to receive a conversion function declaration");
1352
1353  // Set the lexical context of this conversion function
1354  Conversion->setLexicalDeclContext(CurContext);
1355
1356  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1357
1358  // Make sure we aren't redeclaring the conversion function.
1359  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1360
1361  // C++ [class.conv.fct]p1:
1362  //   [...] A conversion function is never used to convert a
1363  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1364  //   same object type (or a reference to it), to a (possibly
1365  //   cv-qualified) base class of that type (or a reference to it),
1366  //   or to (possibly cv-qualified) void.
1367  // FIXME: Suppress this warning if the conversion function ends up
1368  // being a virtual function that overrides a virtual function in a
1369  // base class.
1370  QualType ClassType
1371    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1372  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1373    ConvType = ConvTypeRef->getPointeeType();
1374  if (ConvType->isRecordType()) {
1375    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1376    if (ConvType == ClassType)
1377      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1378        << ClassType;
1379    else if (IsDerivedFrom(ClassType, ConvType))
1380      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1381        <<  ClassType << ConvType;
1382  } else if (ConvType->isVoidType()) {
1383    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1384      << ClassType << ConvType;
1385  }
1386
1387  if (Conversion->getPreviousDeclaration()) {
1388    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1389    for (OverloadedFunctionDecl::function_iterator
1390           Conv = Conversions->function_begin(),
1391           ConvEnd = Conversions->function_end();
1392         Conv != ConvEnd; ++Conv) {
1393      if (*Conv == Conversion->getPreviousDeclaration()) {
1394        *Conv = Conversion;
1395        return (DeclTy *)Conversion;
1396      }
1397    }
1398    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1399  } else
1400    ClassDecl->addConversionFunction(Context, Conversion);
1401
1402  return (DeclTy *)Conversion;
1403}
1404
1405//===----------------------------------------------------------------------===//
1406// Namespace Handling
1407//===----------------------------------------------------------------------===//
1408
1409/// ActOnStartNamespaceDef - This is called at the start of a namespace
1410/// definition.
1411Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1412                                           SourceLocation IdentLoc,
1413                                           IdentifierInfo *II,
1414                                           SourceLocation LBrace) {
1415  NamespaceDecl *Namespc =
1416      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1417  Namespc->setLBracLoc(LBrace);
1418
1419  Scope *DeclRegionScope = NamespcScope->getParent();
1420
1421  if (II) {
1422    // C++ [namespace.def]p2:
1423    // The identifier in an original-namespace-definition shall not have been
1424    // previously defined in the declarative region in which the
1425    // original-namespace-definition appears. The identifier in an
1426    // original-namespace-definition is the name of the namespace. Subsequently
1427    // in that declarative region, it is treated as an original-namespace-name.
1428
1429    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1430                                     true);
1431
1432    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1433      // This is an extended namespace definition.
1434      // Attach this namespace decl to the chain of extended namespace
1435      // definitions.
1436      OrigNS->setNextNamespace(Namespc);
1437      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1438
1439      // Remove the previous declaration from the scope.
1440      if (DeclRegionScope->isDeclScope(OrigNS)) {
1441        IdResolver.RemoveDecl(OrigNS);
1442        DeclRegionScope->RemoveDecl(OrigNS);
1443      }
1444    } else if (PrevDecl) {
1445      // This is an invalid name redefinition.
1446      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1447       << Namespc->getDeclName();
1448      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1449      Namespc->setInvalidDecl();
1450      // Continue on to push Namespc as current DeclContext and return it.
1451    }
1452
1453    PushOnScopeChains(Namespc, DeclRegionScope);
1454  } else {
1455    // FIXME: Handle anonymous namespaces
1456  }
1457
1458  // Although we could have an invalid decl (i.e. the namespace name is a
1459  // redefinition), push it as current DeclContext and try to continue parsing.
1460  // FIXME: We should be able to push Namespc here, so that the
1461  // each DeclContext for the namespace has the declarations
1462  // that showed up in that particular namespace definition.
1463  PushDeclContext(NamespcScope, Namespc);
1464  return Namespc;
1465}
1466
1467/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1468/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1469void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) {
1470  Decl *Dcl = static_cast<Decl *>(D);
1471  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1472  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1473  Namespc->setRBracLoc(RBrace);
1474  PopDeclContext();
1475}
1476
1477Sema::DeclTy *Sema::ActOnUsingDirective(Scope *S,
1478                                        SourceLocation UsingLoc,
1479                                        SourceLocation NamespcLoc,
1480                                        const CXXScopeSpec &SS,
1481                                        SourceLocation IdentLoc,
1482                                        IdentifierInfo *NamespcName,
1483                                        AttributeList *AttrList) {
1484  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1485  assert(NamespcName && "Invalid NamespcName.");
1486  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1487  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1488
1489  UsingDirectiveDecl *UDir = 0;
1490
1491  // Lookup namespace name.
1492  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1493                                    LookupNamespaceName, false);
1494  if (R.isAmbiguous()) {
1495    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1496    return 0;
1497  }
1498  if (NamedDecl *NS = R) {
1499    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1500    // C++ [namespace.udir]p1:
1501    //   A using-directive specifies that the names in the nominated
1502    //   namespace can be used in the scope in which the
1503    //   using-directive appears after the using-directive. During
1504    //   unqualified name lookup (3.4.1), the names appear as if they
1505    //   were declared in the nearest enclosing namespace which
1506    //   contains both the using-directive and the nominated
1507    //   namespace. [Note: in this context, “contains” means “contains
1508    //   directly or indirectly”. ]
1509
1510    // Find enclosing context containing both using-directive and
1511    // nominated namespace.
1512    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1513    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1514      CommonAncestor = CommonAncestor->getParent();
1515
1516    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc,
1517                                      NamespcLoc, IdentLoc,
1518                                      cast<NamespaceDecl>(NS),
1519                                      CommonAncestor);
1520    PushUsingDirective(S, UDir);
1521  } else {
1522    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1523  }
1524
1525  // FIXME: We ignore attributes for now.
1526  delete AttrList;
1527  return UDir;
1528}
1529
1530void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1531  // If scope has associated entity, then using directive is at namespace
1532  // or translation unit scope. We add UsingDirectiveDecls, into
1533  // it's lookup structure.
1534  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1535    Ctx->addDecl(UDir);
1536  else
1537    // Otherwise it is block-sope. using-directives will affect lookup
1538    // only to the end of scope.
1539    S->PushUsingDirective(UDir);
1540}
1541
1542/// AddCXXDirectInitializerToDecl - This action is called immediately after
1543/// ActOnDeclarator, when a C++ direct initializer is present.
1544/// e.g: "int x(1);"
1545void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc,
1546                                         ExprTy **ExprTys, unsigned NumExprs,
1547                                         SourceLocation *CommaLocs,
1548                                         SourceLocation RParenLoc) {
1549  assert(NumExprs != 0 && ExprTys && "missing expressions");
1550  Decl *RealDecl = static_cast<Decl *>(Dcl);
1551
1552  // If there is no declaration, there was an error parsing it.  Just ignore
1553  // the initializer.
1554  if (RealDecl == 0) {
1555    for (unsigned i = 0; i != NumExprs; ++i)
1556      static_cast<Expr *>(ExprTys[i])->Destroy(Context);
1557    return;
1558  }
1559
1560  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1561  if (!VDecl) {
1562    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1563    RealDecl->setInvalidDecl();
1564    return;
1565  }
1566
1567  // We will treat direct-initialization as a copy-initialization:
1568  //    int x(1);  -as-> int x = 1;
1569  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1570  //
1571  // Clients that want to distinguish between the two forms, can check for
1572  // direct initializer using VarDecl::hasCXXDirectInitializer().
1573  // A major benefit is that clients that don't particularly care about which
1574  // exactly form was it (like the CodeGen) can handle both cases without
1575  // special case code.
1576
1577  // C++ 8.5p11:
1578  // The form of initialization (using parentheses or '=') is generally
1579  // insignificant, but does matter when the entity being initialized has a
1580  // class type.
1581  QualType DeclInitType = VDecl->getType();
1582  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1583    DeclInitType = Array->getElementType();
1584
1585  if (VDecl->getType()->isRecordType()) {
1586    CXXConstructorDecl *Constructor
1587      = PerformInitializationByConstructor(DeclInitType,
1588                                           (Expr **)ExprTys, NumExprs,
1589                                           VDecl->getLocation(),
1590                                           SourceRange(VDecl->getLocation(),
1591                                                       RParenLoc),
1592                                           VDecl->getDeclName(),
1593                                           IK_Direct);
1594    if (!Constructor) {
1595      RealDecl->setInvalidDecl();
1596    }
1597
1598    // Let clients know that initialization was done with a direct
1599    // initializer.
1600    VDecl->setCXXDirectInitializer(true);
1601
1602    // FIXME: Add ExprTys and Constructor to the RealDecl as part of
1603    // the initializer.
1604    return;
1605  }
1606
1607  if (NumExprs > 1) {
1608    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1609      << SourceRange(VDecl->getLocation(), RParenLoc);
1610    RealDecl->setInvalidDecl();
1611    return;
1612  }
1613
1614  // Let clients know that initialization was done with a direct initializer.
1615  VDecl->setCXXDirectInitializer(true);
1616
1617  assert(NumExprs == 1 && "Expected 1 expression");
1618  // Set the init expression, handles conversions.
1619  AddInitializerToDecl(Dcl, ExprArg(*this, ExprTys[0]), /*DirectInit=*/true);
1620}
1621
1622/// PerformInitializationByConstructor - Perform initialization by
1623/// constructor (C++ [dcl.init]p14), which may occur as part of
1624/// direct-initialization or copy-initialization. We are initializing
1625/// an object of type @p ClassType with the given arguments @p
1626/// Args. @p Loc is the location in the source code where the
1627/// initializer occurs (e.g., a declaration, member initializer,
1628/// functional cast, etc.) while @p Range covers the whole
1629/// initialization. @p InitEntity is the entity being initialized,
1630/// which may by the name of a declaration or a type. @p Kind is the
1631/// kind of initialization we're performing, which affects whether
1632/// explicit constructors will be considered. When successful, returns
1633/// the constructor that will be used to perform the initialization;
1634/// when the initialization fails, emits a diagnostic and returns
1635/// null.
1636CXXConstructorDecl *
1637Sema::PerformInitializationByConstructor(QualType ClassType,
1638                                         Expr **Args, unsigned NumArgs,
1639                                         SourceLocation Loc, SourceRange Range,
1640                                         DeclarationName InitEntity,
1641                                         InitializationKind Kind) {
1642  const RecordType *ClassRec = ClassType->getAsRecordType();
1643  assert(ClassRec && "Can only initialize a class type here");
1644
1645  // C++ [dcl.init]p14:
1646  //
1647  //   If the initialization is direct-initialization, or if it is
1648  //   copy-initialization where the cv-unqualified version of the
1649  //   source type is the same class as, or a derived class of, the
1650  //   class of the destination, constructors are considered. The
1651  //   applicable constructors are enumerated (13.3.1.3), and the
1652  //   best one is chosen through overload resolution (13.3). The
1653  //   constructor so selected is called to initialize the object,
1654  //   with the initializer expression(s) as its argument(s). If no
1655  //   constructor applies, or the overload resolution is ambiguous,
1656  //   the initialization is ill-formed.
1657  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1658  OverloadCandidateSet CandidateSet;
1659
1660  // Add constructors to the overload set.
1661  DeclarationName ConstructorName
1662    = Context.DeclarationNames.getCXXConstructorName(
1663                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
1664  DeclContext::lookup_const_iterator Con, ConEnd;
1665  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
1666       Con != ConEnd; ++Con) {
1667    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1668    if ((Kind == IK_Direct) ||
1669        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1670        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1671      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1672  }
1673
1674  // FIXME: When we decide not to synthesize the implicitly-declared
1675  // constructors, we'll need to make them appear here.
1676
1677  OverloadCandidateSet::iterator Best;
1678  switch (BestViableFunction(CandidateSet, Best)) {
1679  case OR_Success:
1680    // We found a constructor. Return it.
1681    return cast<CXXConstructorDecl>(Best->Function);
1682
1683  case OR_No_Viable_Function:
1684    if (InitEntity)
1685      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1686        << InitEntity << Range;
1687    else
1688      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1689        << ClassType << Range;
1690    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1691    return 0;
1692
1693  case OR_Ambiguous:
1694    if (InitEntity)
1695      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
1696    else
1697      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
1698    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1699    return 0;
1700
1701  case OR_Deleted:
1702    if (InitEntity)
1703      Diag(Loc, diag::err_ovl_deleted_init)
1704        << Best->Function->isDeleted()
1705        << InitEntity << Range;
1706    else
1707      Diag(Loc, diag::err_ovl_deleted_init)
1708        << Best->Function->isDeleted()
1709        << InitEntity << Range;
1710    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1711    return 0;
1712  }
1713
1714  return 0;
1715}
1716
1717/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1718/// determine whether they are reference-related,
1719/// reference-compatible, reference-compatible with added
1720/// qualification, or incompatible, for use in C++ initialization by
1721/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1722/// type, and the first type (T1) is the pointee type of the reference
1723/// type being initialized.
1724Sema::ReferenceCompareResult
1725Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1726                                   bool& DerivedToBase) {
1727  assert(!T1->isReferenceType() && "T1 must be the pointee type of the reference type");
1728  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1729
1730  T1 = Context.getCanonicalType(T1);
1731  T2 = Context.getCanonicalType(T2);
1732  QualType UnqualT1 = T1.getUnqualifiedType();
1733  QualType UnqualT2 = T2.getUnqualifiedType();
1734
1735  // C++ [dcl.init.ref]p4:
1736  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1737  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1738  //   T1 is a base class of T2.
1739  if (UnqualT1 == UnqualT2)
1740    DerivedToBase = false;
1741  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1742    DerivedToBase = true;
1743  else
1744    return Ref_Incompatible;
1745
1746  // At this point, we know that T1 and T2 are reference-related (at
1747  // least).
1748
1749  // C++ [dcl.init.ref]p4:
1750  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1751  //   reference-related to T2 and cv1 is the same cv-qualification
1752  //   as, or greater cv-qualification than, cv2. For purposes of
1753  //   overload resolution, cases for which cv1 is greater
1754  //   cv-qualification than cv2 are identified as
1755  //   reference-compatible with added qualification (see 13.3.3.2).
1756  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1757    return Ref_Compatible;
1758  else if (T1.isMoreQualifiedThan(T2))
1759    return Ref_Compatible_With_Added_Qualification;
1760  else
1761    return Ref_Related;
1762}
1763
1764/// CheckReferenceInit - Check the initialization of a reference
1765/// variable with the given initializer (C++ [dcl.init.ref]). Init is
1766/// the initializer (either a simple initializer or an initializer
1767/// list), and DeclType is the type of the declaration. When ICS is
1768/// non-null, this routine will compute the implicit conversion
1769/// sequence according to C++ [over.ics.ref] and will not produce any
1770/// diagnostics; when ICS is null, it will emit diagnostics when any
1771/// errors are found. Either way, a return value of true indicates
1772/// that there was a failure, a return value of false indicates that
1773/// the reference initialization succeeded.
1774///
1775/// When @p SuppressUserConversions, user-defined conversions are
1776/// suppressed.
1777/// When @p AllowExplicit, we also permit explicit user-defined
1778/// conversion functions.
1779bool
1780Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
1781                         ImplicitConversionSequence *ICS,
1782                         bool SuppressUserConversions,
1783                         bool AllowExplicit) {
1784  assert(DeclType->isReferenceType() && "Reference init needs a reference");
1785
1786  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
1787  QualType T2 = Init->getType();
1788
1789  // If the initializer is the address of an overloaded function, try
1790  // to resolve the overloaded function. If all goes well, T2 is the
1791  // type of the resulting function.
1792  if (T2->isOverloadType()) {
1793    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
1794                                                          ICS != 0);
1795    if (Fn) {
1796      // Since we're performing this reference-initialization for
1797      // real, update the initializer with the resulting function.
1798      if (!ICS) {
1799        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
1800          return true;
1801
1802        FixOverloadedFunctionReference(Init, Fn);
1803      }
1804
1805      T2 = Fn->getType();
1806    }
1807  }
1808
1809  // Compute some basic properties of the types and the initializer.
1810  bool DerivedToBase = false;
1811  Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
1812  ReferenceCompareResult RefRelationship
1813    = CompareReferenceRelationship(T1, T2, DerivedToBase);
1814
1815  // Most paths end in a failed conversion.
1816  if (ICS)
1817    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
1818
1819  // C++ [dcl.init.ref]p5:
1820  //   A reference to type “cv1 T1” is initialized by an expression
1821  //   of type “cv2 T2” as follows:
1822
1823  //     -- If the initializer expression
1824
1825  bool BindsDirectly = false;
1826  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
1827  //          reference-compatible with “cv2 T2,” or
1828  //
1829  // Note that the bit-field check is skipped if we are just computing
1830  // the implicit conversion sequence (C++ [over.best.ics]p2).
1831  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
1832      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1833    BindsDirectly = true;
1834
1835    if (ICS) {
1836      // C++ [over.ics.ref]p1:
1837      //   When a parameter of reference type binds directly (8.5.3)
1838      //   to an argument expression, the implicit conversion sequence
1839      //   is the identity conversion, unless the argument expression
1840      //   has a type that is a derived class of the parameter type,
1841      //   in which case the implicit conversion sequence is a
1842      //   derived-to-base Conversion (13.3.3.1).
1843      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1844      ICS->Standard.First = ICK_Identity;
1845      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1846      ICS->Standard.Third = ICK_Identity;
1847      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1848      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1849      ICS->Standard.ReferenceBinding = true;
1850      ICS->Standard.DirectBinding = true;
1851
1852      // Nothing more to do: the inaccessibility/ambiguity check for
1853      // derived-to-base conversions is suppressed when we're
1854      // computing the implicit conversion sequence (C++
1855      // [over.best.ics]p2).
1856      return false;
1857    } else {
1858      // Perform the conversion.
1859      // FIXME: Binding to a subobject of the lvalue is going to require
1860      // more AST annotation than this.
1861      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1862    }
1863  }
1864
1865  //       -- has a class type (i.e., T2 is a class type) and can be
1866  //          implicitly converted to an lvalue of type “cv3 T3,”
1867  //          where “cv1 T1” is reference-compatible with “cv3 T3”
1868  //          92) (this conversion is selected by enumerating the
1869  //          applicable conversion functions (13.3.1.6) and choosing
1870  //          the best one through overload resolution (13.3)),
1871  if (!SuppressUserConversions && T2->isRecordType()) {
1872    // FIXME: Look for conversions in base classes!
1873    CXXRecordDecl *T2RecordDecl
1874      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
1875
1876    OverloadCandidateSet CandidateSet;
1877    OverloadedFunctionDecl *Conversions
1878      = T2RecordDecl->getConversionFunctions();
1879    for (OverloadedFunctionDecl::function_iterator Func
1880           = Conversions->function_begin();
1881         Func != Conversions->function_end(); ++Func) {
1882      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1883
1884      // If the conversion function doesn't return a reference type,
1885      // it can't be considered for this conversion.
1886      // FIXME: This will change when we support rvalue references.
1887      if (Conv->getConversionType()->isReferenceType() &&
1888          (AllowExplicit || !Conv->isExplicit()))
1889        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
1890    }
1891
1892    OverloadCandidateSet::iterator Best;
1893    switch (BestViableFunction(CandidateSet, Best)) {
1894    case OR_Success:
1895      // This is a direct binding.
1896      BindsDirectly = true;
1897
1898      if (ICS) {
1899        // C++ [over.ics.ref]p1:
1900        //
1901        //   [...] If the parameter binds directly to the result of
1902        //   applying a conversion function to the argument
1903        //   expression, the implicit conversion sequence is a
1904        //   user-defined conversion sequence (13.3.3.1.2), with the
1905        //   second standard conversion sequence either an identity
1906        //   conversion or, if the conversion function returns an
1907        //   entity of a type that is a derived class of the parameter
1908        //   type, a derived-to-base Conversion.
1909        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
1910        ICS->UserDefined.Before = Best->Conversions[0].Standard;
1911        ICS->UserDefined.After = Best->FinalConversion;
1912        ICS->UserDefined.ConversionFunction = Best->Function;
1913        assert(ICS->UserDefined.After.ReferenceBinding &&
1914               ICS->UserDefined.After.DirectBinding &&
1915               "Expected a direct reference binding!");
1916        return false;
1917      } else {
1918        // Perform the conversion.
1919        // FIXME: Binding to a subobject of the lvalue is going to require
1920        // more AST annotation than this.
1921        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1922      }
1923      break;
1924
1925    case OR_Ambiguous:
1926      assert(false && "Ambiguous reference binding conversions not implemented.");
1927      return true;
1928
1929    case OR_No_Viable_Function:
1930    case OR_Deleted:
1931      // There was no suitable conversion, or we found a deleted
1932      // conversion; continue with other checks.
1933      break;
1934    }
1935  }
1936
1937  if (BindsDirectly) {
1938    // C++ [dcl.init.ref]p4:
1939    //   [...] In all cases where the reference-related or
1940    //   reference-compatible relationship of two types is used to
1941    //   establish the validity of a reference binding, and T1 is a
1942    //   base class of T2, a program that necessitates such a binding
1943    //   is ill-formed if T1 is an inaccessible (clause 11) or
1944    //   ambiguous (10.2) base class of T2.
1945    //
1946    // Note that we only check this condition when we're allowed to
1947    // complain about errors, because we should not be checking for
1948    // ambiguity (or inaccessibility) unless the reference binding
1949    // actually happens.
1950    if (DerivedToBase)
1951      return CheckDerivedToBaseConversion(T2, T1,
1952                                          Init->getSourceRange().getBegin(),
1953                                          Init->getSourceRange());
1954    else
1955      return false;
1956  }
1957
1958  //     -- Otherwise, the reference shall be to a non-volatile const
1959  //        type (i.e., cv1 shall be const).
1960  if (T1.getCVRQualifiers() != QualType::Const) {
1961    if (!ICS)
1962      Diag(Init->getSourceRange().getBegin(),
1963           diag::err_not_reference_to_const_init)
1964        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
1965        << T2 << Init->getSourceRange();
1966    return true;
1967  }
1968
1969  //       -- If the initializer expression is an rvalue, with T2 a
1970  //          class type, and “cv1 T1” is reference-compatible with
1971  //          “cv2 T2,” the reference is bound in one of the
1972  //          following ways (the choice is implementation-defined):
1973  //
1974  //          -- The reference is bound to the object represented by
1975  //             the rvalue (see 3.10) or to a sub-object within that
1976  //             object.
1977  //
1978  //          -- A temporary of type “cv1 T2” [sic] is created, and
1979  //             a constructor is called to copy the entire rvalue
1980  //             object into the temporary. The reference is bound to
1981  //             the temporary or to a sub-object within the
1982  //             temporary.
1983  //
1984  //          The constructor that would be used to make the copy
1985  //          shall be callable whether or not the copy is actually
1986  //          done.
1987  //
1988  // Note that C++0x [dcl.ref.init]p5 takes away this implementation
1989  // freedom, so we will always take the first option and never build
1990  // a temporary in this case. FIXME: We will, however, have to check
1991  // for the presence of a copy constructor in C++98/03 mode.
1992  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
1993      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1994    if (ICS) {
1995      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1996      ICS->Standard.First = ICK_Identity;
1997      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1998      ICS->Standard.Third = ICK_Identity;
1999      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2000      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2001      ICS->Standard.ReferenceBinding = true;
2002      ICS->Standard.DirectBinding = false;
2003    } else {
2004      // FIXME: Binding to a subobject of the rvalue is going to require
2005      // more AST annotation than this.
2006      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2007    }
2008    return false;
2009  }
2010
2011  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2012  //          initialized from the initializer expression using the
2013  //          rules for a non-reference copy initialization (8.5). The
2014  //          reference is then bound to the temporary. If T1 is
2015  //          reference-related to T2, cv1 must be the same
2016  //          cv-qualification as, or greater cv-qualification than,
2017  //          cv2; otherwise, the program is ill-formed.
2018  if (RefRelationship == Ref_Related) {
2019    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2020    // we would be reference-compatible or reference-compatible with
2021    // added qualification. But that wasn't the case, so the reference
2022    // initialization fails.
2023    if (!ICS)
2024      Diag(Init->getSourceRange().getBegin(),
2025           diag::err_reference_init_drops_quals)
2026        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2027        << T2 << Init->getSourceRange();
2028    return true;
2029  }
2030
2031  // If at least one of the types is a class type, the types are not
2032  // related, and we aren't allowed any user conversions, the
2033  // reference binding fails. This case is important for breaking
2034  // recursion, since TryImplicitConversion below will attempt to
2035  // create a temporary through the use of a copy constructor.
2036  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2037      (T1->isRecordType() || T2->isRecordType())) {
2038    if (!ICS)
2039      Diag(Init->getSourceRange().getBegin(),
2040           diag::err_typecheck_convert_incompatible)
2041        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2042    return true;
2043  }
2044
2045  // Actually try to convert the initializer to T1.
2046  if (ICS) {
2047    /// C++ [over.ics.ref]p2:
2048    ///
2049    ///   When a parameter of reference type is not bound directly to
2050    ///   an argument expression, the conversion sequence is the one
2051    ///   required to convert the argument expression to the
2052    ///   underlying type of the reference according to
2053    ///   13.3.3.1. Conceptually, this conversion sequence corresponds
2054    ///   to copy-initializing a temporary of the underlying type with
2055    ///   the argument expression. Any difference in top-level
2056    ///   cv-qualification is subsumed by the initialization itself
2057    ///   and does not constitute a conversion.
2058    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2059    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2060  } else {
2061    return PerformImplicitConversion(Init, T1, "initializing");
2062  }
2063}
2064
2065/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2066/// of this overloaded operator is well-formed. If so, returns false;
2067/// otherwise, emits appropriate diagnostics and returns true.
2068bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2069  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2070         "Expected an overloaded operator declaration");
2071
2072  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2073
2074  // C++ [over.oper]p5:
2075  //   The allocation and deallocation functions, operator new,
2076  //   operator new[], operator delete and operator delete[], are
2077  //   described completely in 3.7.3. The attributes and restrictions
2078  //   found in the rest of this subclause do not apply to them unless
2079  //   explicitly stated in 3.7.3.
2080  // FIXME: Write a separate routine for checking this. For now, just
2081  // allow it.
2082  if (Op == OO_New || Op == OO_Array_New ||
2083      Op == OO_Delete || Op == OO_Array_Delete)
2084    return false;
2085
2086  // C++ [over.oper]p6:
2087  //   An operator function shall either be a non-static member
2088  //   function or be a non-member function and have at least one
2089  //   parameter whose type is a class, a reference to a class, an
2090  //   enumeration, or a reference to an enumeration.
2091  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2092    if (MethodDecl->isStatic())
2093      return Diag(FnDecl->getLocation(),
2094                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2095  } else {
2096    bool ClassOrEnumParam = false;
2097    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2098                                   ParamEnd = FnDecl->param_end();
2099         Param != ParamEnd; ++Param) {
2100      QualType ParamType = (*Param)->getType().getNonReferenceType();
2101      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
2102        ClassOrEnumParam = true;
2103        break;
2104      }
2105    }
2106
2107    if (!ClassOrEnumParam)
2108      return Diag(FnDecl->getLocation(),
2109                  diag::err_operator_overload_needs_class_or_enum)
2110        << FnDecl->getDeclName();
2111  }
2112
2113  // C++ [over.oper]p8:
2114  //   An operator function cannot have default arguments (8.3.6),
2115  //   except where explicitly stated below.
2116  //
2117  // Only the function-call operator allows default arguments
2118  // (C++ [over.call]p1).
2119  if (Op != OO_Call) {
2120    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2121         Param != FnDecl->param_end(); ++Param) {
2122      if ((*Param)->hasUnparsedDefaultArg())
2123        return Diag((*Param)->getLocation(),
2124                    diag::err_operator_overload_default_arg)
2125          << FnDecl->getDeclName();
2126      else if (Expr *DefArg = (*Param)->getDefaultArg())
2127        return Diag((*Param)->getLocation(),
2128                    diag::err_operator_overload_default_arg)
2129          << FnDecl->getDeclName() << DefArg->getSourceRange();
2130    }
2131  }
2132
2133  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2134    { false, false, false }
2135#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2136    , { Unary, Binary, MemberOnly }
2137#include "clang/Basic/OperatorKinds.def"
2138  };
2139
2140  bool CanBeUnaryOperator = OperatorUses[Op][0];
2141  bool CanBeBinaryOperator = OperatorUses[Op][1];
2142  bool MustBeMemberOperator = OperatorUses[Op][2];
2143
2144  // C++ [over.oper]p8:
2145  //   [...] Operator functions cannot have more or fewer parameters
2146  //   than the number required for the corresponding operator, as
2147  //   described in the rest of this subclause.
2148  unsigned NumParams = FnDecl->getNumParams()
2149                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2150  if (Op != OO_Call &&
2151      ((NumParams == 1 && !CanBeUnaryOperator) ||
2152       (NumParams == 2 && !CanBeBinaryOperator) ||
2153       (NumParams < 1) || (NumParams > 2))) {
2154    // We have the wrong number of parameters.
2155    unsigned ErrorKind;
2156    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2157      ErrorKind = 2;  // 2 -> unary or binary.
2158    } else if (CanBeUnaryOperator) {
2159      ErrorKind = 0;  // 0 -> unary
2160    } else {
2161      assert(CanBeBinaryOperator &&
2162             "All non-call overloaded operators are unary or binary!");
2163      ErrorKind = 1;  // 1 -> binary
2164    }
2165
2166    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2167      << FnDecl->getDeclName() << NumParams << ErrorKind;
2168  }
2169
2170  // Overloaded operators other than operator() cannot be variadic.
2171  if (Op != OO_Call &&
2172      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2173    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2174      << FnDecl->getDeclName();
2175  }
2176
2177  // Some operators must be non-static member functions.
2178  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2179    return Diag(FnDecl->getLocation(),
2180                diag::err_operator_overload_must_be_member)
2181      << FnDecl->getDeclName();
2182  }
2183
2184  // C++ [over.inc]p1:
2185  //   The user-defined function called operator++ implements the
2186  //   prefix and postfix ++ operator. If this function is a member
2187  //   function with no parameters, or a non-member function with one
2188  //   parameter of class or enumeration type, it defines the prefix
2189  //   increment operator ++ for objects of that type. If the function
2190  //   is a member function with one parameter (which shall be of type
2191  //   int) or a non-member function with two parameters (the second
2192  //   of which shall be of type int), it defines the postfix
2193  //   increment operator ++ for objects of that type.
2194  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2195    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2196    bool ParamIsInt = false;
2197    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2198      ParamIsInt = BT->getKind() == BuiltinType::Int;
2199
2200    if (!ParamIsInt)
2201      return Diag(LastParam->getLocation(),
2202                  diag::err_operator_overload_post_incdec_must_be_int)
2203        << LastParam->getType() << (Op == OO_MinusMinus);
2204  }
2205
2206  // Notify the class if it got an assignment operator.
2207  if (Op == OO_Equal) {
2208    // Would have returned earlier otherwise.
2209    assert(isa<CXXMethodDecl>(FnDecl) &&
2210      "Overloaded = not member, but not filtered.");
2211    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2212    Method->getParent()->addedAssignmentOperator(Context, Method);
2213  }
2214
2215  return false;
2216}
2217
2218/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2219/// linkage specification, including the language and (if present)
2220/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2221/// the location of the language string literal, which is provided
2222/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2223/// the '{' brace. Otherwise, this linkage specification does not
2224/// have any braces.
2225Sema::DeclTy *Sema::ActOnStartLinkageSpecification(Scope *S,
2226                                                   SourceLocation ExternLoc,
2227                                                   SourceLocation LangLoc,
2228                                                   const char *Lang,
2229                                                   unsigned StrSize,
2230                                                   SourceLocation LBraceLoc) {
2231  LinkageSpecDecl::LanguageIDs Language;
2232  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2233    Language = LinkageSpecDecl::lang_c;
2234  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2235    Language = LinkageSpecDecl::lang_cxx;
2236  else {
2237    Diag(LangLoc, diag::err_bad_language);
2238    return 0;
2239  }
2240
2241  // FIXME: Add all the various semantics of linkage specifications
2242
2243  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2244                                               LangLoc, Language,
2245                                               LBraceLoc.isValid());
2246  CurContext->addDecl(D);
2247  PushDeclContext(S, D);
2248  return D;
2249}
2250
2251/// ActOnFinishLinkageSpecification - Completely the definition of
2252/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2253/// valid, it's the position of the closing '}' brace in a linkage
2254/// specification that uses braces.
2255Sema::DeclTy *Sema::ActOnFinishLinkageSpecification(Scope *S,
2256                                                    DeclTy *LinkageSpec,
2257                                                    SourceLocation RBraceLoc) {
2258  if (LinkageSpec)
2259    PopDeclContext();
2260  return LinkageSpec;
2261}
2262
2263/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
2264/// handler.
2265Sema::DeclTy *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D)
2266{
2267  QualType ExDeclType = GetTypeForDeclarator(D, S);
2268  SourceLocation Begin = D.getDeclSpec().getSourceRange().getBegin();
2269
2270  bool Invalid = false;
2271
2272  // Arrays and functions decay.
2273  if (ExDeclType->isArrayType())
2274    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2275  else if (ExDeclType->isFunctionType())
2276    ExDeclType = Context.getPointerType(ExDeclType);
2277
2278  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2279  // The exception-declaration shall not denote a pointer or reference to an
2280  // incomplete type, other than [cv] void*.
2281  QualType BaseType = ExDeclType;
2282  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2283  unsigned DK = diag::err_catch_incomplete;
2284  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2285    BaseType = Ptr->getPointeeType();
2286    Mode = 1;
2287    DK = diag::err_catch_incomplete_ptr;
2288  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2289    BaseType = Ref->getPointeeType();
2290    Mode = 2;
2291    DK = diag::err_catch_incomplete_ref;
2292  }
2293  if ((Mode == 0 || !BaseType->isVoidType()) &&
2294      DiagnoseIncompleteType(Begin, BaseType, DK))
2295    Invalid = true;
2296
2297  // FIXME: Need to test for ability to copy-construct and destroy the
2298  // exception variable.
2299  // FIXME: Need to check for abstract classes.
2300
2301  IdentifierInfo *II = D.getIdentifier();
2302  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2303    // The scope should be freshly made just for us. There is just no way
2304    // it contains any previous declaration.
2305    assert(!S->isDeclScope(PrevDecl));
2306    if (PrevDecl->isTemplateParameter()) {
2307      // Maybe we will complain about the shadowed template parameter.
2308      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2309
2310    }
2311  }
2312
2313  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
2314                                    II, ExDeclType, VarDecl::None, Begin);
2315  if (D.getInvalidType() || Invalid)
2316    ExDecl->setInvalidDecl();
2317
2318  if (D.getCXXScopeSpec().isSet()) {
2319    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
2320      << D.getCXXScopeSpec().getRange();
2321    ExDecl->setInvalidDecl();
2322  }
2323
2324  // Add the exception declaration into this scope.
2325  S->AddDecl(ExDecl);
2326  if (II)
2327    IdResolver.AddDecl(ExDecl);
2328
2329  ProcessDeclAttributes(ExDecl, D);
2330  return ExDecl;
2331}
2332