SemaDeclCXX.cpp revision 2eb0ce3610a877f75e95c66d6c2bff315e127009
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().MicrosoftExt) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDeclaration();
424           Older; Older = Older->getPreviousDeclaration()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
506  // template has a constexpr specifier then all its declarations shall
507  // contain the constexpr specifier. [Note: An explicit specialization can
508  // differ from the template declaration with respect to the constexpr
509  // specifier. -- end note]
510  //
511  // FIXME: Don't reject changes in constexpr in explicit specializations.
512  if (New->isConstexpr() != Old->isConstexpr()) {
513    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
514      << New << New->isConstexpr();
515    Diag(Old->getLocation(), diag::note_previous_declaration);
516    Invalid = true;
517  }
518
519  if (CheckEquivalentExceptionSpec(Old, New))
520    Invalid = true;
521
522  return Invalid;
523}
524
525/// \brief Merge the exception specifications of two variable declarations.
526///
527/// This is called when there's a redeclaration of a VarDecl. The function
528/// checks if the redeclaration might have an exception specification and
529/// validates compatibility and merges the specs if necessary.
530void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
531  // Shortcut if exceptions are disabled.
532  if (!getLangOptions().CXXExceptions)
533    return;
534
535  assert(Context.hasSameType(New->getType(), Old->getType()) &&
536         "Should only be called if types are otherwise the same.");
537
538  QualType NewType = New->getType();
539  QualType OldType = Old->getType();
540
541  // We're only interested in pointers and references to functions, as well
542  // as pointers to member functions.
543  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
544    NewType = R->getPointeeType();
545    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
546  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
547    NewType = P->getPointeeType();
548    OldType = OldType->getAs<PointerType>()->getPointeeType();
549  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
550    NewType = M->getPointeeType();
551    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
552  }
553
554  if (!NewType->isFunctionProtoType())
555    return;
556
557  // There's lots of special cases for functions. For function pointers, system
558  // libraries are hopefully not as broken so that we don't need these
559  // workarounds.
560  if (CheckEquivalentExceptionSpec(
561        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
562        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
563    New->setInvalidDecl();
564  }
565}
566
567/// CheckCXXDefaultArguments - Verify that the default arguments for a
568/// function declaration are well-formed according to C++
569/// [dcl.fct.default].
570void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
571  unsigned NumParams = FD->getNumParams();
572  unsigned p;
573
574  // Find first parameter with a default argument
575  for (p = 0; p < NumParams; ++p) {
576    ParmVarDecl *Param = FD->getParamDecl(p);
577    if (Param->hasDefaultArg())
578      break;
579  }
580
581  // C++ [dcl.fct.default]p4:
582  //   In a given function declaration, all parameters
583  //   subsequent to a parameter with a default argument shall
584  //   have default arguments supplied in this or previous
585  //   declarations. A default argument shall not be redefined
586  //   by a later declaration (not even to the same value).
587  unsigned LastMissingDefaultArg = 0;
588  for (; p < NumParams; ++p) {
589    ParmVarDecl *Param = FD->getParamDecl(p);
590    if (!Param->hasDefaultArg()) {
591      if (Param->isInvalidDecl())
592        /* We already complained about this parameter. */;
593      else if (Param->getIdentifier())
594        Diag(Param->getLocation(),
595             diag::err_param_default_argument_missing_name)
596          << Param->getIdentifier();
597      else
598        Diag(Param->getLocation(),
599             diag::err_param_default_argument_missing);
600
601      LastMissingDefaultArg = p;
602    }
603  }
604
605  if (LastMissingDefaultArg > 0) {
606    // Some default arguments were missing. Clear out all of the
607    // default arguments up to (and including) the last missing
608    // default argument, so that we leave the function parameters
609    // in a semantically valid state.
610    for (p = 0; p <= LastMissingDefaultArg; ++p) {
611      ParmVarDecl *Param = FD->getParamDecl(p);
612      if (Param->hasDefaultArg()) {
613        Param->setDefaultArg(0);
614      }
615    }
616  }
617}
618
619// CheckConstexprParameterTypes - Check whether a function's parameter types
620// are all literal types. If so, return true. If not, produce a suitable
621// diagnostic depending on @p CCK and return false.
622static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
623                                         Sema::CheckConstexprKind CCK) {
624  unsigned ArgIndex = 0;
625  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
626  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
627       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
628    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
629    SourceLocation ParamLoc = PD->getLocation();
630    if (!(*i)->isDependentType() &&
631        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
632                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
633                                     << ArgIndex+1 << PD->getSourceRange()
634                                     << isa<CXXConstructorDecl>(FD) :
635                                   SemaRef.PDiag(),
636                                   /*AllowIncompleteType*/ true)) {
637      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
638        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
639          << ArgIndex+1 << PD->getSourceRange()
640          << isa<CXXConstructorDecl>(FD) << *i;
641      return false;
642    }
643  }
644  return true;
645}
646
647// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
648// the requirements of a constexpr function declaration or a constexpr
649// constructor declaration. Return true if it does, false if not.
650//
651// This implements C++0x [dcl.constexpr]p3,4, as amended by N3308.
652//
653// \param CCK Specifies whether to produce diagnostics if the function does not
654// satisfy the requirements.
655bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
656                                      CheckConstexprKind CCK) {
657  assert((CCK != CCK_NoteNonConstexprInstantiation ||
658          (NewFD->getTemplateInstantiationPattern() &&
659           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
660         "only constexpr templates can be instantiated non-constexpr");
661
662  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(NewFD)) {
663    // C++0x [dcl.constexpr]p4:
664    //  In the definition of a constexpr constructor, each of the parameter
665    //  types shall be a literal type.
666    if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
667      return false;
668
669    //  In addition, either its function-body shall be = delete or = default or
670    //  it shall satisfy the following constraints:
671    //  - the class shall not have any virtual base classes;
672    const CXXRecordDecl *RD = CD->getParent();
673    if (RD->getNumVBases()) {
674      // Note, this is still illegal if the body is = default, since the
675      // implicit body does not satisfy the requirements of a constexpr
676      // constructor. We also reject cases where the body is = delete, as
677      // required by N3308.
678      if (CCK != CCK_Instantiation) {
679        Diag(NewFD->getLocation(),
680             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
681                                    : diag::note_constexpr_tmpl_virtual_base)
682          << RD->isStruct() << RD->getNumVBases();
683        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
684               E = RD->vbases_end(); I != E; ++I)
685          Diag(I->getSourceRange().getBegin(),
686               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
687      }
688      return false;
689    }
690  } else {
691    // C++0x [dcl.constexpr]p3:
692    //  The definition of a constexpr function shall satisfy the following
693    //  constraints:
694    // - it shall not be virtual;
695    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
696    if (Method && Method->isVirtual()) {
697      if (CCK != CCK_Instantiation) {
698        Diag(NewFD->getLocation(),
699             CCK == CCK_Declaration ? diag::err_constexpr_virtual
700                                    : diag::note_constexpr_tmpl_virtual);
701
702        // If it's not obvious why this function is virtual, find an overridden
703        // function which uses the 'virtual' keyword.
704        const CXXMethodDecl *WrittenVirtual = Method;
705        while (!WrittenVirtual->isVirtualAsWritten())
706          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
707        if (WrittenVirtual != Method)
708          Diag(WrittenVirtual->getLocation(),
709               diag::note_overridden_virtual_function);
710      }
711      return false;
712    }
713
714    // - its return type shall be a literal type;
715    QualType RT = NewFD->getResultType();
716    if (!RT->isDependentType() &&
717        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
718                           PDiag(diag::err_constexpr_non_literal_return) :
719                           PDiag(),
720                           /*AllowIncompleteType*/ true)) {
721      if (CCK == CCK_NoteNonConstexprInstantiation)
722        Diag(NewFD->getLocation(),
723             diag::note_constexpr_tmpl_non_literal_return) << RT;
724      return false;
725    }
726
727    // - each of its parameter types shall be a literal type;
728    if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
729      return false;
730  }
731
732  return true;
733}
734
735/// Check the given declaration statement is legal within a constexpr function
736/// body. C++0x [dcl.constexpr]p3,p4.
737///
738/// \return true if the body is OK, false if we have diagnosed a problem.
739static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
740                                   DeclStmt *DS) {
741  // C++0x [dcl.constexpr]p3 and p4:
742  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
743  //  contain only
744  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
745         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
746    switch ((*DclIt)->getKind()) {
747    case Decl::StaticAssert:
748    case Decl::Using:
749    case Decl::UsingShadow:
750    case Decl::UsingDirective:
751    case Decl::UnresolvedUsingTypename:
752      //   - static_assert-declarations
753      //   - using-declarations,
754      //   - using-directives,
755      continue;
756
757    case Decl::Typedef:
758    case Decl::TypeAlias: {
759      //   - typedef declarations and alias-declarations that do not define
760      //     classes or enumerations,
761      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
762      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
763        // Don't allow variably-modified types in constexpr functions.
764        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
765        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
766          << TL.getSourceRange() << TL.getType()
767          << isa<CXXConstructorDecl>(Dcl);
768        return false;
769      }
770      continue;
771    }
772
773    case Decl::Enum:
774    case Decl::CXXRecord:
775      // As an extension, we allow the declaration (but not the definition) of
776      // classes and enumerations in all declarations, not just in typedef and
777      // alias declarations.
778      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
779        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
780          << isa<CXXConstructorDecl>(Dcl);
781        return false;
782      }
783      continue;
784
785    case Decl::Var:
786      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
787        << isa<CXXConstructorDecl>(Dcl);
788      return false;
789
790    default:
791      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
792        << isa<CXXConstructorDecl>(Dcl);
793      return false;
794    }
795  }
796
797  return true;
798}
799
800/// Check that the given field is initialized within a constexpr constructor.
801///
802/// \param Dcl The constexpr constructor being checked.
803/// \param Field The field being checked. This may be a member of an anonymous
804///        struct or union nested within the class being checked.
805/// \param Inits All declarations, including anonymous struct/union members and
806///        indirect members, for which any initialization was provided.
807/// \param Diagnosed Set to true if an error is produced.
808static void CheckConstexprCtorInitializer(Sema &SemaRef,
809                                          const FunctionDecl *Dcl,
810                                          FieldDecl *Field,
811                                          llvm::SmallSet<Decl*, 16> &Inits,
812                                          bool &Diagnosed) {
813  if (Field->isUnnamedBitfield())
814    return;
815
816  if (!Inits.count(Field)) {
817    if (!Diagnosed) {
818      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
819      Diagnosed = true;
820    }
821    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
822  } else if (Field->isAnonymousStructOrUnion()) {
823    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
824    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
825         I != E; ++I)
826      // If an anonymous union contains an anonymous struct of which any member
827      // is initialized, all members must be initialized.
828      if (!RD->isUnion() || Inits.count(*I))
829        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
830  }
831}
832
833/// Check the body for the given constexpr function declaration only contains
834/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
835///
836/// \return true if the body is OK, false if we have diagnosed a problem.
837bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
838  if (isa<CXXTryStmt>(Body)) {
839    // C++0x [dcl.constexpr]p3:
840    //  The definition of a constexpr function shall satisfy the following
841    //  constraints: [...]
842    // - its function-body shall be = delete, = default, or a
843    //   compound-statement
844    //
845    // C++0x [dcl.constexpr]p4:
846    //  In the definition of a constexpr constructor, [...]
847    // - its function-body shall not be a function-try-block;
848    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
849      << isa<CXXConstructorDecl>(Dcl);
850    return false;
851  }
852
853  // - its function-body shall be [...] a compound-statement that contains only
854  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
855
856  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
857  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
858         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
859    switch ((*BodyIt)->getStmtClass()) {
860    case Stmt::NullStmtClass:
861      //   - null statements,
862      continue;
863
864    case Stmt::DeclStmtClass:
865      //   - static_assert-declarations
866      //   - using-declarations,
867      //   - using-directives,
868      //   - typedef declarations and alias-declarations that do not define
869      //     classes or enumerations,
870      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
871        return false;
872      continue;
873
874    case Stmt::ReturnStmtClass:
875      //   - and exactly one return statement;
876      if (isa<CXXConstructorDecl>(Dcl))
877        break;
878
879      ReturnStmts.push_back((*BodyIt)->getLocStart());
880      // FIXME
881      // - every constructor call and implicit conversion used in initializing
882      //   the return value shall be one of those allowed in a constant
883      //   expression.
884      // Deal with this as part of a general check that the function can produce
885      // a constant expression (for [dcl.constexpr]p5).
886      continue;
887
888    default:
889      break;
890    }
891
892    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
893      << isa<CXXConstructorDecl>(Dcl);
894    return false;
895  }
896
897  if (const CXXConstructorDecl *Constructor
898        = dyn_cast<CXXConstructorDecl>(Dcl)) {
899    const CXXRecordDecl *RD = Constructor->getParent();
900    // - every non-static data member and base class sub-object shall be
901    //   initialized;
902    if (RD->isUnion()) {
903      // DR1359: Exactly one member of a union shall be initialized.
904      if (Constructor->getNumCtorInitializers() == 0) {
905        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
906        return false;
907      }
908    } else if (!Constructor->isDependentContext() &&
909               !Constructor->isDelegatingConstructor()) {
910      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
911
912      // Skip detailed checking if we have enough initializers, and we would
913      // allow at most one initializer per member.
914      bool AnyAnonStructUnionMembers = false;
915      unsigned Fields = 0;
916      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
917           E = RD->field_end(); I != E; ++I, ++Fields) {
918        if ((*I)->isAnonymousStructOrUnion()) {
919          AnyAnonStructUnionMembers = true;
920          break;
921        }
922      }
923      if (AnyAnonStructUnionMembers ||
924          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
925        // Check initialization of non-static data members. Base classes are
926        // always initialized so do not need to be checked. Dependent bases
927        // might not have initializers in the member initializer list.
928        llvm::SmallSet<Decl*, 16> Inits;
929        for (CXXConstructorDecl::init_const_iterator
930               I = Constructor->init_begin(), E = Constructor->init_end();
931             I != E; ++I) {
932          if (FieldDecl *FD = (*I)->getMember())
933            Inits.insert(FD);
934          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
935            Inits.insert(ID->chain_begin(), ID->chain_end());
936        }
937
938        bool Diagnosed = false;
939        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
940             E = RD->field_end(); I != E; ++I)
941          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
942        if (Diagnosed)
943          return false;
944      }
945    }
946
947    // FIXME
948    // - every constructor involved in initializing non-static data members
949    //   and base class sub-objects shall be a constexpr constructor;
950    // - every assignment-expression that is an initializer-clause appearing
951    //   directly or indirectly within a brace-or-equal-initializer for
952    //   a non-static data member that is not named by a mem-initializer-id
953    //   shall be a constant expression; and
954    // - every implicit conversion used in converting a constructor argument
955    //   to the corresponding parameter type and converting
956    //   a full-expression to the corresponding member type shall be one of
957    //   those allowed in a constant expression.
958    // Deal with these as part of a general check that the function can produce
959    // a constant expression (for [dcl.constexpr]p5).
960  } else {
961    if (ReturnStmts.empty()) {
962      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
963      return false;
964    }
965    if (ReturnStmts.size() > 1) {
966      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
967      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
968        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
969      return false;
970    }
971  }
972
973  return true;
974}
975
976/// isCurrentClassName - Determine whether the identifier II is the
977/// name of the class type currently being defined. In the case of
978/// nested classes, this will only return true if II is the name of
979/// the innermost class.
980bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
981                              const CXXScopeSpec *SS) {
982  assert(getLangOptions().CPlusPlus && "No class names in C!");
983
984  CXXRecordDecl *CurDecl;
985  if (SS && SS->isSet() && !SS->isInvalid()) {
986    DeclContext *DC = computeDeclContext(*SS, true);
987    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
988  } else
989    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
990
991  if (CurDecl && CurDecl->getIdentifier())
992    return &II == CurDecl->getIdentifier();
993  else
994    return false;
995}
996
997/// \brief Check the validity of a C++ base class specifier.
998///
999/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1000/// and returns NULL otherwise.
1001CXXBaseSpecifier *
1002Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1003                         SourceRange SpecifierRange,
1004                         bool Virtual, AccessSpecifier Access,
1005                         TypeSourceInfo *TInfo,
1006                         SourceLocation EllipsisLoc) {
1007  QualType BaseType = TInfo->getType();
1008
1009  // C++ [class.union]p1:
1010  //   A union shall not have base classes.
1011  if (Class->isUnion()) {
1012    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1013      << SpecifierRange;
1014    return 0;
1015  }
1016
1017  if (EllipsisLoc.isValid() &&
1018      !TInfo->getType()->containsUnexpandedParameterPack()) {
1019    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1020      << TInfo->getTypeLoc().getSourceRange();
1021    EllipsisLoc = SourceLocation();
1022  }
1023
1024  if (BaseType->isDependentType())
1025    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1026                                          Class->getTagKind() == TTK_Class,
1027                                          Access, TInfo, EllipsisLoc);
1028
1029  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1030
1031  // Base specifiers must be record types.
1032  if (!BaseType->isRecordType()) {
1033    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1034    return 0;
1035  }
1036
1037  // C++ [class.union]p1:
1038  //   A union shall not be used as a base class.
1039  if (BaseType->isUnionType()) {
1040    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1041    return 0;
1042  }
1043
1044  // C++ [class.derived]p2:
1045  //   The class-name in a base-specifier shall not be an incompletely
1046  //   defined class.
1047  if (RequireCompleteType(BaseLoc, BaseType,
1048                          PDiag(diag::err_incomplete_base_class)
1049                            << SpecifierRange)) {
1050    Class->setInvalidDecl();
1051    return 0;
1052  }
1053
1054  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1055  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1056  assert(BaseDecl && "Record type has no declaration");
1057  BaseDecl = BaseDecl->getDefinition();
1058  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1059  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1060  assert(CXXBaseDecl && "Base type is not a C++ type");
1061
1062  // C++ [class]p3:
1063  //   If a class is marked final and it appears as a base-type-specifier in
1064  //   base-clause, the program is ill-formed.
1065  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1066    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1067      << CXXBaseDecl->getDeclName();
1068    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1069      << CXXBaseDecl->getDeclName();
1070    return 0;
1071  }
1072
1073  if (BaseDecl->isInvalidDecl())
1074    Class->setInvalidDecl();
1075
1076  // Create the base specifier.
1077  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1078                                        Class->getTagKind() == TTK_Class,
1079                                        Access, TInfo, EllipsisLoc);
1080}
1081
1082/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1083/// one entry in the base class list of a class specifier, for
1084/// example:
1085///    class foo : public bar, virtual private baz {
1086/// 'public bar' and 'virtual private baz' are each base-specifiers.
1087BaseResult
1088Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1089                         bool Virtual, AccessSpecifier Access,
1090                         ParsedType basetype, SourceLocation BaseLoc,
1091                         SourceLocation EllipsisLoc) {
1092  if (!classdecl)
1093    return true;
1094
1095  AdjustDeclIfTemplate(classdecl);
1096  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1097  if (!Class)
1098    return true;
1099
1100  TypeSourceInfo *TInfo = 0;
1101  GetTypeFromParser(basetype, &TInfo);
1102
1103  if (EllipsisLoc.isInvalid() &&
1104      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1105                                      UPPC_BaseType))
1106    return true;
1107
1108  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1109                                                      Virtual, Access, TInfo,
1110                                                      EllipsisLoc))
1111    return BaseSpec;
1112
1113  return true;
1114}
1115
1116/// \brief Performs the actual work of attaching the given base class
1117/// specifiers to a C++ class.
1118bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1119                                unsigned NumBases) {
1120 if (NumBases == 0)
1121    return false;
1122
1123  // Used to keep track of which base types we have already seen, so
1124  // that we can properly diagnose redundant direct base types. Note
1125  // that the key is always the unqualified canonical type of the base
1126  // class.
1127  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1128
1129  // Copy non-redundant base specifiers into permanent storage.
1130  unsigned NumGoodBases = 0;
1131  bool Invalid = false;
1132  for (unsigned idx = 0; idx < NumBases; ++idx) {
1133    QualType NewBaseType
1134      = Context.getCanonicalType(Bases[idx]->getType());
1135    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1136    if (KnownBaseTypes[NewBaseType]) {
1137      // C++ [class.mi]p3:
1138      //   A class shall not be specified as a direct base class of a
1139      //   derived class more than once.
1140      Diag(Bases[idx]->getSourceRange().getBegin(),
1141           diag::err_duplicate_base_class)
1142        << KnownBaseTypes[NewBaseType]->getType()
1143        << Bases[idx]->getSourceRange();
1144
1145      // Delete the duplicate base class specifier; we're going to
1146      // overwrite its pointer later.
1147      Context.Deallocate(Bases[idx]);
1148
1149      Invalid = true;
1150    } else {
1151      // Okay, add this new base class.
1152      KnownBaseTypes[NewBaseType] = Bases[idx];
1153      Bases[NumGoodBases++] = Bases[idx];
1154      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1155        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1156          if (RD->hasAttr<WeakAttr>())
1157            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1158    }
1159  }
1160
1161  // Attach the remaining base class specifiers to the derived class.
1162  Class->setBases(Bases, NumGoodBases);
1163
1164  // Delete the remaining (good) base class specifiers, since their
1165  // data has been copied into the CXXRecordDecl.
1166  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1167    Context.Deallocate(Bases[idx]);
1168
1169  return Invalid;
1170}
1171
1172/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1173/// class, after checking whether there are any duplicate base
1174/// classes.
1175void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1176                               unsigned NumBases) {
1177  if (!ClassDecl || !Bases || !NumBases)
1178    return;
1179
1180  AdjustDeclIfTemplate(ClassDecl);
1181  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1182                       (CXXBaseSpecifier**)(Bases), NumBases);
1183}
1184
1185static CXXRecordDecl *GetClassForType(QualType T) {
1186  if (const RecordType *RT = T->getAs<RecordType>())
1187    return cast<CXXRecordDecl>(RT->getDecl());
1188  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1189    return ICT->getDecl();
1190  else
1191    return 0;
1192}
1193
1194/// \brief Determine whether the type \p Derived is a C++ class that is
1195/// derived from the type \p Base.
1196bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1197  if (!getLangOptions().CPlusPlus)
1198    return false;
1199
1200  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1201  if (!DerivedRD)
1202    return false;
1203
1204  CXXRecordDecl *BaseRD = GetClassForType(Base);
1205  if (!BaseRD)
1206    return false;
1207
1208  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1209  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1210}
1211
1212/// \brief Determine whether the type \p Derived is a C++ class that is
1213/// derived from the type \p Base.
1214bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1215  if (!getLangOptions().CPlusPlus)
1216    return false;
1217
1218  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1219  if (!DerivedRD)
1220    return false;
1221
1222  CXXRecordDecl *BaseRD = GetClassForType(Base);
1223  if (!BaseRD)
1224    return false;
1225
1226  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1227}
1228
1229void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1230                              CXXCastPath &BasePathArray) {
1231  assert(BasePathArray.empty() && "Base path array must be empty!");
1232  assert(Paths.isRecordingPaths() && "Must record paths!");
1233
1234  const CXXBasePath &Path = Paths.front();
1235
1236  // We first go backward and check if we have a virtual base.
1237  // FIXME: It would be better if CXXBasePath had the base specifier for
1238  // the nearest virtual base.
1239  unsigned Start = 0;
1240  for (unsigned I = Path.size(); I != 0; --I) {
1241    if (Path[I - 1].Base->isVirtual()) {
1242      Start = I - 1;
1243      break;
1244    }
1245  }
1246
1247  // Now add all bases.
1248  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1249    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1250}
1251
1252/// \brief Determine whether the given base path includes a virtual
1253/// base class.
1254bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1255  for (CXXCastPath::const_iterator B = BasePath.begin(),
1256                                BEnd = BasePath.end();
1257       B != BEnd; ++B)
1258    if ((*B)->isVirtual())
1259      return true;
1260
1261  return false;
1262}
1263
1264/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1265/// conversion (where Derived and Base are class types) is
1266/// well-formed, meaning that the conversion is unambiguous (and
1267/// that all of the base classes are accessible). Returns true
1268/// and emits a diagnostic if the code is ill-formed, returns false
1269/// otherwise. Loc is the location where this routine should point to
1270/// if there is an error, and Range is the source range to highlight
1271/// if there is an error.
1272bool
1273Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1274                                   unsigned InaccessibleBaseID,
1275                                   unsigned AmbigiousBaseConvID,
1276                                   SourceLocation Loc, SourceRange Range,
1277                                   DeclarationName Name,
1278                                   CXXCastPath *BasePath) {
1279  // First, determine whether the path from Derived to Base is
1280  // ambiguous. This is slightly more expensive than checking whether
1281  // the Derived to Base conversion exists, because here we need to
1282  // explore multiple paths to determine if there is an ambiguity.
1283  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1284                     /*DetectVirtual=*/false);
1285  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1286  assert(DerivationOkay &&
1287         "Can only be used with a derived-to-base conversion");
1288  (void)DerivationOkay;
1289
1290  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1291    if (InaccessibleBaseID) {
1292      // Check that the base class can be accessed.
1293      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1294                                   InaccessibleBaseID)) {
1295        case AR_inaccessible:
1296          return true;
1297        case AR_accessible:
1298        case AR_dependent:
1299        case AR_delayed:
1300          break;
1301      }
1302    }
1303
1304    // Build a base path if necessary.
1305    if (BasePath)
1306      BuildBasePathArray(Paths, *BasePath);
1307    return false;
1308  }
1309
1310  // We know that the derived-to-base conversion is ambiguous, and
1311  // we're going to produce a diagnostic. Perform the derived-to-base
1312  // search just one more time to compute all of the possible paths so
1313  // that we can print them out. This is more expensive than any of
1314  // the previous derived-to-base checks we've done, but at this point
1315  // performance isn't as much of an issue.
1316  Paths.clear();
1317  Paths.setRecordingPaths(true);
1318  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1319  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1320  (void)StillOkay;
1321
1322  // Build up a textual representation of the ambiguous paths, e.g.,
1323  // D -> B -> A, that will be used to illustrate the ambiguous
1324  // conversions in the diagnostic. We only print one of the paths
1325  // to each base class subobject.
1326  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1327
1328  Diag(Loc, AmbigiousBaseConvID)
1329  << Derived << Base << PathDisplayStr << Range << Name;
1330  return true;
1331}
1332
1333bool
1334Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1335                                   SourceLocation Loc, SourceRange Range,
1336                                   CXXCastPath *BasePath,
1337                                   bool IgnoreAccess) {
1338  return CheckDerivedToBaseConversion(Derived, Base,
1339                                      IgnoreAccess ? 0
1340                                       : diag::err_upcast_to_inaccessible_base,
1341                                      diag::err_ambiguous_derived_to_base_conv,
1342                                      Loc, Range, DeclarationName(),
1343                                      BasePath);
1344}
1345
1346
1347/// @brief Builds a string representing ambiguous paths from a
1348/// specific derived class to different subobjects of the same base
1349/// class.
1350///
1351/// This function builds a string that can be used in error messages
1352/// to show the different paths that one can take through the
1353/// inheritance hierarchy to go from the derived class to different
1354/// subobjects of a base class. The result looks something like this:
1355/// @code
1356/// struct D -> struct B -> struct A
1357/// struct D -> struct C -> struct A
1358/// @endcode
1359std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1360  std::string PathDisplayStr;
1361  std::set<unsigned> DisplayedPaths;
1362  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1363       Path != Paths.end(); ++Path) {
1364    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1365      // We haven't displayed a path to this particular base
1366      // class subobject yet.
1367      PathDisplayStr += "\n    ";
1368      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1369      for (CXXBasePath::const_iterator Element = Path->begin();
1370           Element != Path->end(); ++Element)
1371        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1372    }
1373  }
1374
1375  return PathDisplayStr;
1376}
1377
1378//===----------------------------------------------------------------------===//
1379// C++ class member Handling
1380//===----------------------------------------------------------------------===//
1381
1382/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1383bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1384                                SourceLocation ASLoc,
1385                                SourceLocation ColonLoc,
1386                                AttributeList *Attrs) {
1387  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1388  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1389                                                  ASLoc, ColonLoc);
1390  CurContext->addHiddenDecl(ASDecl);
1391  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1392}
1393
1394/// CheckOverrideControl - Check C++0x override control semantics.
1395void Sema::CheckOverrideControl(const Decl *D) {
1396  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1397  if (!MD || !MD->isVirtual())
1398    return;
1399
1400  if (MD->isDependentContext())
1401    return;
1402
1403  // C++0x [class.virtual]p3:
1404  //   If a virtual function is marked with the virt-specifier override and does
1405  //   not override a member function of a base class,
1406  //   the program is ill-formed.
1407  bool HasOverriddenMethods =
1408    MD->begin_overridden_methods() != MD->end_overridden_methods();
1409  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1410    Diag(MD->getLocation(),
1411                 diag::err_function_marked_override_not_overriding)
1412      << MD->getDeclName();
1413    return;
1414  }
1415}
1416
1417/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1418/// function overrides a virtual member function marked 'final', according to
1419/// C++0x [class.virtual]p3.
1420bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1421                                                  const CXXMethodDecl *Old) {
1422  if (!Old->hasAttr<FinalAttr>())
1423    return false;
1424
1425  Diag(New->getLocation(), diag::err_final_function_overridden)
1426    << New->getDeclName();
1427  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1428  return true;
1429}
1430
1431/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1432/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1433/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1434/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1435/// present but parsing it has been deferred.
1436Decl *
1437Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1438                               MultiTemplateParamsArg TemplateParameterLists,
1439                               Expr *BW, const VirtSpecifiers &VS,
1440                               bool HasDeferredInit) {
1441  const DeclSpec &DS = D.getDeclSpec();
1442  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1443  DeclarationName Name = NameInfo.getName();
1444  SourceLocation Loc = NameInfo.getLoc();
1445
1446  // For anonymous bitfields, the location should point to the type.
1447  if (Loc.isInvalid())
1448    Loc = D.getSourceRange().getBegin();
1449
1450  Expr *BitWidth = static_cast<Expr*>(BW);
1451
1452  assert(isa<CXXRecordDecl>(CurContext));
1453  assert(!DS.isFriendSpecified());
1454
1455  bool isFunc = D.isDeclarationOfFunction();
1456
1457  // C++ 9.2p6: A member shall not be declared to have automatic storage
1458  // duration (auto, register) or with the extern storage-class-specifier.
1459  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1460  // data members and cannot be applied to names declared const or static,
1461  // and cannot be applied to reference members.
1462  switch (DS.getStorageClassSpec()) {
1463    case DeclSpec::SCS_unspecified:
1464    case DeclSpec::SCS_typedef:
1465    case DeclSpec::SCS_static:
1466      // FALL THROUGH.
1467      break;
1468    case DeclSpec::SCS_mutable:
1469      if (isFunc) {
1470        if (DS.getStorageClassSpecLoc().isValid())
1471          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1472        else
1473          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1474
1475        // FIXME: It would be nicer if the keyword was ignored only for this
1476        // declarator. Otherwise we could get follow-up errors.
1477        D.getMutableDeclSpec().ClearStorageClassSpecs();
1478      }
1479      break;
1480    default:
1481      if (DS.getStorageClassSpecLoc().isValid())
1482        Diag(DS.getStorageClassSpecLoc(),
1483             diag::err_storageclass_invalid_for_member);
1484      else
1485        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1486      D.getMutableDeclSpec().ClearStorageClassSpecs();
1487  }
1488
1489  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1490                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1491                      !isFunc);
1492
1493  Decl *Member;
1494  if (isInstField) {
1495    CXXScopeSpec &SS = D.getCXXScopeSpec();
1496
1497    // Data members must have identifiers for names.
1498    if (Name.getNameKind() != DeclarationName::Identifier) {
1499      Diag(Loc, diag::err_bad_variable_name)
1500        << Name;
1501      return 0;
1502    }
1503
1504    IdentifierInfo *II = Name.getAsIdentifierInfo();
1505
1506    // Member field could not be with "template" keyword.
1507    // So TemplateParameterLists should be empty in this case.
1508    if (TemplateParameterLists.size()) {
1509      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1510      if (TemplateParams->size()) {
1511        // There is no such thing as a member field template.
1512        Diag(D.getIdentifierLoc(), diag::err_template_member)
1513            << II
1514            << SourceRange(TemplateParams->getTemplateLoc(),
1515                TemplateParams->getRAngleLoc());
1516      } else {
1517        // There is an extraneous 'template<>' for this member.
1518        Diag(TemplateParams->getTemplateLoc(),
1519            diag::err_template_member_noparams)
1520            << II
1521            << SourceRange(TemplateParams->getTemplateLoc(),
1522                TemplateParams->getRAngleLoc());
1523      }
1524      return 0;
1525    }
1526
1527    if (SS.isSet() && !SS.isInvalid()) {
1528      // The user provided a superfluous scope specifier inside a class
1529      // definition:
1530      //
1531      // class X {
1532      //   int X::member;
1533      // };
1534      DeclContext *DC = 0;
1535      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1536        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1537        << Name << FixItHint::CreateRemoval(SS.getRange());
1538      else
1539        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1540          << Name << SS.getRange();
1541
1542      SS.clear();
1543    }
1544
1545    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1546                         HasDeferredInit, AS);
1547    assert(Member && "HandleField never returns null");
1548  } else {
1549    assert(!HasDeferredInit);
1550
1551    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1552    if (!Member) {
1553      return 0;
1554    }
1555
1556    // Non-instance-fields can't have a bitfield.
1557    if (BitWidth) {
1558      if (Member->isInvalidDecl()) {
1559        // don't emit another diagnostic.
1560      } else if (isa<VarDecl>(Member)) {
1561        // C++ 9.6p3: A bit-field shall not be a static member.
1562        // "static member 'A' cannot be a bit-field"
1563        Diag(Loc, diag::err_static_not_bitfield)
1564          << Name << BitWidth->getSourceRange();
1565      } else if (isa<TypedefDecl>(Member)) {
1566        // "typedef member 'x' cannot be a bit-field"
1567        Diag(Loc, diag::err_typedef_not_bitfield)
1568          << Name << BitWidth->getSourceRange();
1569      } else {
1570        // A function typedef ("typedef int f(); f a;").
1571        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1572        Diag(Loc, diag::err_not_integral_type_bitfield)
1573          << Name << cast<ValueDecl>(Member)->getType()
1574          << BitWidth->getSourceRange();
1575      }
1576
1577      BitWidth = 0;
1578      Member->setInvalidDecl();
1579    }
1580
1581    Member->setAccess(AS);
1582
1583    // If we have declared a member function template, set the access of the
1584    // templated declaration as well.
1585    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1586      FunTmpl->getTemplatedDecl()->setAccess(AS);
1587  }
1588
1589  if (VS.isOverrideSpecified()) {
1590    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1591    if (!MD || !MD->isVirtual()) {
1592      Diag(Member->getLocStart(),
1593           diag::override_keyword_only_allowed_on_virtual_member_functions)
1594        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1595    } else
1596      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1597  }
1598  if (VS.isFinalSpecified()) {
1599    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1600    if (!MD || !MD->isVirtual()) {
1601      Diag(Member->getLocStart(),
1602           diag::override_keyword_only_allowed_on_virtual_member_functions)
1603      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1604    } else
1605      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1606  }
1607
1608  if (VS.getLastLocation().isValid()) {
1609    // Update the end location of a method that has a virt-specifiers.
1610    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1611      MD->setRangeEnd(VS.getLastLocation());
1612  }
1613
1614  CheckOverrideControl(Member);
1615
1616  assert((Name || isInstField) && "No identifier for non-field ?");
1617
1618  if (isInstField)
1619    FieldCollector->Add(cast<FieldDecl>(Member));
1620  return Member;
1621}
1622
1623/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1624/// in-class initializer for a non-static C++ class member, and after
1625/// instantiating an in-class initializer in a class template. Such actions
1626/// are deferred until the class is complete.
1627void
1628Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1629                                       Expr *InitExpr) {
1630  FieldDecl *FD = cast<FieldDecl>(D);
1631
1632  if (!InitExpr) {
1633    FD->setInvalidDecl();
1634    FD->removeInClassInitializer();
1635    return;
1636  }
1637
1638  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1639    FD->setInvalidDecl();
1640    FD->removeInClassInitializer();
1641    return;
1642  }
1643
1644  ExprResult Init = InitExpr;
1645  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1646    // FIXME: if there is no EqualLoc, this is list-initialization.
1647    Init = PerformCopyInitialization(
1648      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1649    if (Init.isInvalid()) {
1650      FD->setInvalidDecl();
1651      return;
1652    }
1653
1654    CheckImplicitConversions(Init.get(), EqualLoc);
1655  }
1656
1657  // C++0x [class.base.init]p7:
1658  //   The initialization of each base and member constitutes a
1659  //   full-expression.
1660  Init = MaybeCreateExprWithCleanups(Init);
1661  if (Init.isInvalid()) {
1662    FD->setInvalidDecl();
1663    return;
1664  }
1665
1666  InitExpr = Init.release();
1667
1668  FD->setInClassInitializer(InitExpr);
1669}
1670
1671/// \brief Find the direct and/or virtual base specifiers that
1672/// correspond to the given base type, for use in base initialization
1673/// within a constructor.
1674static bool FindBaseInitializer(Sema &SemaRef,
1675                                CXXRecordDecl *ClassDecl,
1676                                QualType BaseType,
1677                                const CXXBaseSpecifier *&DirectBaseSpec,
1678                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1679  // First, check for a direct base class.
1680  DirectBaseSpec = 0;
1681  for (CXXRecordDecl::base_class_const_iterator Base
1682         = ClassDecl->bases_begin();
1683       Base != ClassDecl->bases_end(); ++Base) {
1684    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1685      // We found a direct base of this type. That's what we're
1686      // initializing.
1687      DirectBaseSpec = &*Base;
1688      break;
1689    }
1690  }
1691
1692  // Check for a virtual base class.
1693  // FIXME: We might be able to short-circuit this if we know in advance that
1694  // there are no virtual bases.
1695  VirtualBaseSpec = 0;
1696  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1697    // We haven't found a base yet; search the class hierarchy for a
1698    // virtual base class.
1699    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1700                       /*DetectVirtual=*/false);
1701    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1702                              BaseType, Paths)) {
1703      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1704           Path != Paths.end(); ++Path) {
1705        if (Path->back().Base->isVirtual()) {
1706          VirtualBaseSpec = Path->back().Base;
1707          break;
1708        }
1709      }
1710    }
1711  }
1712
1713  return DirectBaseSpec || VirtualBaseSpec;
1714}
1715
1716/// \brief Handle a C++ member initializer using braced-init-list syntax.
1717MemInitResult
1718Sema::ActOnMemInitializer(Decl *ConstructorD,
1719                          Scope *S,
1720                          CXXScopeSpec &SS,
1721                          IdentifierInfo *MemberOrBase,
1722                          ParsedType TemplateTypeTy,
1723                          SourceLocation IdLoc,
1724                          Expr *InitList,
1725                          SourceLocation EllipsisLoc) {
1726  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1727                             IdLoc, MultiInitializer(InitList), EllipsisLoc);
1728}
1729
1730/// \brief Handle a C++ member initializer using parentheses syntax.
1731MemInitResult
1732Sema::ActOnMemInitializer(Decl *ConstructorD,
1733                          Scope *S,
1734                          CXXScopeSpec &SS,
1735                          IdentifierInfo *MemberOrBase,
1736                          ParsedType TemplateTypeTy,
1737                          SourceLocation IdLoc,
1738                          SourceLocation LParenLoc,
1739                          Expr **Args, unsigned NumArgs,
1740                          SourceLocation RParenLoc,
1741                          SourceLocation EllipsisLoc) {
1742  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1743                             IdLoc, MultiInitializer(LParenLoc, Args, NumArgs,
1744                                                     RParenLoc),
1745                             EllipsisLoc);
1746}
1747
1748/// \brief Handle a C++ member initializer.
1749MemInitResult
1750Sema::BuildMemInitializer(Decl *ConstructorD,
1751                          Scope *S,
1752                          CXXScopeSpec &SS,
1753                          IdentifierInfo *MemberOrBase,
1754                          ParsedType TemplateTypeTy,
1755                          SourceLocation IdLoc,
1756                          const MultiInitializer &Args,
1757                          SourceLocation EllipsisLoc) {
1758  if (!ConstructorD)
1759    return true;
1760
1761  AdjustDeclIfTemplate(ConstructorD);
1762
1763  CXXConstructorDecl *Constructor
1764    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1765  if (!Constructor) {
1766    // The user wrote a constructor initializer on a function that is
1767    // not a C++ constructor. Ignore the error for now, because we may
1768    // have more member initializers coming; we'll diagnose it just
1769    // once in ActOnMemInitializers.
1770    return true;
1771  }
1772
1773  CXXRecordDecl *ClassDecl = Constructor->getParent();
1774
1775  // C++ [class.base.init]p2:
1776  //   Names in a mem-initializer-id are looked up in the scope of the
1777  //   constructor's class and, if not found in that scope, are looked
1778  //   up in the scope containing the constructor's definition.
1779  //   [Note: if the constructor's class contains a member with the
1780  //   same name as a direct or virtual base class of the class, a
1781  //   mem-initializer-id naming the member or base class and composed
1782  //   of a single identifier refers to the class member. A
1783  //   mem-initializer-id for the hidden base class may be specified
1784  //   using a qualified name. ]
1785  if (!SS.getScopeRep() && !TemplateTypeTy) {
1786    // Look for a member, first.
1787    DeclContext::lookup_result Result
1788      = ClassDecl->lookup(MemberOrBase);
1789    if (Result.first != Result.second) {
1790      ValueDecl *Member;
1791      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1792          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1793        if (EllipsisLoc.isValid())
1794          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1795            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1796
1797        return BuildMemberInitializer(Member, Args, IdLoc);
1798      }
1799    }
1800  }
1801  // It didn't name a member, so see if it names a class.
1802  QualType BaseType;
1803  TypeSourceInfo *TInfo = 0;
1804
1805  if (TemplateTypeTy) {
1806    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1807  } else {
1808    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1809    LookupParsedName(R, S, &SS);
1810
1811    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1812    if (!TyD) {
1813      if (R.isAmbiguous()) return true;
1814
1815      // We don't want access-control diagnostics here.
1816      R.suppressDiagnostics();
1817
1818      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1819        bool NotUnknownSpecialization = false;
1820        DeclContext *DC = computeDeclContext(SS, false);
1821        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1822          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1823
1824        if (!NotUnknownSpecialization) {
1825          // When the scope specifier can refer to a member of an unknown
1826          // specialization, we take it as a type name.
1827          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1828                                       SS.getWithLocInContext(Context),
1829                                       *MemberOrBase, IdLoc);
1830          if (BaseType.isNull())
1831            return true;
1832
1833          R.clear();
1834          R.setLookupName(MemberOrBase);
1835        }
1836      }
1837
1838      // If no results were found, try to correct typos.
1839      TypoCorrection Corr;
1840      if (R.empty() && BaseType.isNull() &&
1841          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1842                              ClassDecl, false, CTC_NoKeywords))) {
1843        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1844        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1845        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1846          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1847            // We have found a non-static data member with a similar
1848            // name to what was typed; complain and initialize that
1849            // member.
1850            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1851              << MemberOrBase << true << CorrectedQuotedStr
1852              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1853            Diag(Member->getLocation(), diag::note_previous_decl)
1854              << CorrectedQuotedStr;
1855
1856            return BuildMemberInitializer(Member, Args, IdLoc);
1857          }
1858        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1859          const CXXBaseSpecifier *DirectBaseSpec;
1860          const CXXBaseSpecifier *VirtualBaseSpec;
1861          if (FindBaseInitializer(*this, ClassDecl,
1862                                  Context.getTypeDeclType(Type),
1863                                  DirectBaseSpec, VirtualBaseSpec)) {
1864            // We have found a direct or virtual base class with a
1865            // similar name to what was typed; complain and initialize
1866            // that base class.
1867            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1868              << MemberOrBase << false << CorrectedQuotedStr
1869              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1870
1871            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1872                                                             : VirtualBaseSpec;
1873            Diag(BaseSpec->getSourceRange().getBegin(),
1874                 diag::note_base_class_specified_here)
1875              << BaseSpec->getType()
1876              << BaseSpec->getSourceRange();
1877
1878            TyD = Type;
1879          }
1880        }
1881      }
1882
1883      if (!TyD && BaseType.isNull()) {
1884        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1885          << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1886        return true;
1887      }
1888    }
1889
1890    if (BaseType.isNull()) {
1891      BaseType = Context.getTypeDeclType(TyD);
1892      if (SS.isSet()) {
1893        NestedNameSpecifier *Qualifier =
1894          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1895
1896        // FIXME: preserve source range information
1897        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1898      }
1899    }
1900  }
1901
1902  if (!TInfo)
1903    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1904
1905  return BuildBaseInitializer(BaseType, TInfo, Args, ClassDecl, EllipsisLoc);
1906}
1907
1908/// Checks a member initializer expression for cases where reference (or
1909/// pointer) members are bound to by-value parameters (or their addresses).
1910static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1911                                               Expr *Init,
1912                                               SourceLocation IdLoc) {
1913  QualType MemberTy = Member->getType();
1914
1915  // We only handle pointers and references currently.
1916  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1917  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1918    return;
1919
1920  const bool IsPointer = MemberTy->isPointerType();
1921  if (IsPointer) {
1922    if (const UnaryOperator *Op
1923          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1924      // The only case we're worried about with pointers requires taking the
1925      // address.
1926      if (Op->getOpcode() != UO_AddrOf)
1927        return;
1928
1929      Init = Op->getSubExpr();
1930    } else {
1931      // We only handle address-of expression initializers for pointers.
1932      return;
1933    }
1934  }
1935
1936  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1937    // Taking the address of a temporary will be diagnosed as a hard error.
1938    if (IsPointer)
1939      return;
1940
1941    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1942      << Member << Init->getSourceRange();
1943  } else if (const DeclRefExpr *DRE
1944               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1945    // We only warn when referring to a non-reference parameter declaration.
1946    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1947    if (!Parameter || Parameter->getType()->isReferenceType())
1948      return;
1949
1950    S.Diag(Init->getExprLoc(),
1951           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1952                     : diag::warn_bind_ref_member_to_parameter)
1953      << Member << Parameter << Init->getSourceRange();
1954  } else {
1955    // Other initializers are fine.
1956    return;
1957  }
1958
1959  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
1960    << (unsigned)IsPointer;
1961}
1962
1963/// Checks an initializer expression for use of uninitialized fields, such as
1964/// containing the field that is being initialized. Returns true if there is an
1965/// uninitialized field was used an updates the SourceLocation parameter; false
1966/// otherwise.
1967static bool InitExprContainsUninitializedFields(const Stmt *S,
1968                                                const ValueDecl *LhsField,
1969                                                SourceLocation *L) {
1970  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1971
1972  if (isa<CallExpr>(S)) {
1973    // Do not descend into function calls or constructors, as the use
1974    // of an uninitialized field may be valid. One would have to inspect
1975    // the contents of the function/ctor to determine if it is safe or not.
1976    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1977    // may be safe, depending on what the function/ctor does.
1978    return false;
1979  }
1980  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1981    const NamedDecl *RhsField = ME->getMemberDecl();
1982
1983    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1984      // The member expression points to a static data member.
1985      assert(VD->isStaticDataMember() &&
1986             "Member points to non-static data member!");
1987      (void)VD;
1988      return false;
1989    }
1990
1991    if (isa<EnumConstantDecl>(RhsField)) {
1992      // The member expression points to an enum.
1993      return false;
1994    }
1995
1996    if (RhsField == LhsField) {
1997      // Initializing a field with itself. Throw a warning.
1998      // But wait; there are exceptions!
1999      // Exception #1:  The field may not belong to this record.
2000      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2001      const Expr *base = ME->getBase();
2002      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2003        // Even though the field matches, it does not belong to this record.
2004        return false;
2005      }
2006      // None of the exceptions triggered; return true to indicate an
2007      // uninitialized field was used.
2008      *L = ME->getMemberLoc();
2009      return true;
2010    }
2011  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2012    // sizeof/alignof doesn't reference contents, do not warn.
2013    return false;
2014  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2015    // address-of doesn't reference contents (the pointer may be dereferenced
2016    // in the same expression but it would be rare; and weird).
2017    if (UOE->getOpcode() == UO_AddrOf)
2018      return false;
2019  }
2020  for (Stmt::const_child_range it = S->children(); it; ++it) {
2021    if (!*it) {
2022      // An expression such as 'member(arg ?: "")' may trigger this.
2023      continue;
2024    }
2025    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2026      return true;
2027  }
2028  return false;
2029}
2030
2031MemInitResult
2032Sema::BuildMemberInitializer(ValueDecl *Member,
2033                             const MultiInitializer &Args,
2034                             SourceLocation IdLoc) {
2035  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2036  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2037  assert((DirectMember || IndirectMember) &&
2038         "Member must be a FieldDecl or IndirectFieldDecl");
2039
2040  if (Args.DiagnoseUnexpandedParameterPack(*this))
2041    return true;
2042
2043  if (Member->isInvalidDecl())
2044    return true;
2045
2046  // Diagnose value-uses of fields to initialize themselves, e.g.
2047  //   foo(foo)
2048  // where foo is not also a parameter to the constructor.
2049  // TODO: implement -Wuninitialized and fold this into that framework.
2050  for (MultiInitializer::iterator I = Args.begin(), E = Args.end();
2051       I != E; ++I) {
2052    SourceLocation L;
2053    Expr *Arg = *I;
2054    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Arg))
2055      Arg = DIE->getInit();
2056    if (InitExprContainsUninitializedFields(Arg, Member, &L)) {
2057      // FIXME: Return true in the case when other fields are used before being
2058      // uninitialized. For example, let this field be the i'th field. When
2059      // initializing the i'th field, throw a warning if any of the >= i'th
2060      // fields are used, as they are not yet initialized.
2061      // Right now we are only handling the case where the i'th field uses
2062      // itself in its initializer.
2063      Diag(L, diag::warn_field_is_uninit);
2064    }
2065  }
2066
2067  bool HasDependentArg = Args.isTypeDependent();
2068
2069  Expr *Init;
2070  if (Member->getType()->isDependentType() || HasDependentArg) {
2071    // Can't check initialization for a member of dependent type or when
2072    // any of the arguments are type-dependent expressions.
2073    Init = Args.CreateInitExpr(Context,Member->getType().getNonReferenceType());
2074
2075    DiscardCleanupsInEvaluationContext();
2076  } else {
2077    // Initialize the member.
2078    InitializedEntity MemberEntity =
2079      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2080                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2081    InitializationKind Kind =
2082      InitializationKind::CreateDirect(IdLoc, Args.getStartLoc(),
2083                                       Args.getEndLoc());
2084
2085    ExprResult MemberInit = Args.PerformInit(*this, MemberEntity, Kind);
2086    if (MemberInit.isInvalid())
2087      return true;
2088
2089    CheckImplicitConversions(MemberInit.get(), Args.getStartLoc());
2090
2091    // C++0x [class.base.init]p7:
2092    //   The initialization of each base and member constitutes a
2093    //   full-expression.
2094    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2095    if (MemberInit.isInvalid())
2096      return true;
2097
2098    // If we are in a dependent context, template instantiation will
2099    // perform this type-checking again. Just save the arguments that we
2100    // received in a ParenListExpr.
2101    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2102    // of the information that we have about the member
2103    // initializer. However, deconstructing the ASTs is a dicey process,
2104    // and this approach is far more likely to get the corner cases right.
2105    if (CurContext->isDependentContext()) {
2106      Init = Args.CreateInitExpr(Context,
2107                                 Member->getType().getNonReferenceType());
2108    } else {
2109      Init = MemberInit.get();
2110      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2111    }
2112  }
2113
2114  if (DirectMember) {
2115    return new (Context) CXXCtorInitializer(Context, DirectMember,
2116                                                    IdLoc, Args.getStartLoc(),
2117                                                    Init, Args.getEndLoc());
2118  } else {
2119    return new (Context) CXXCtorInitializer(Context, IndirectMember,
2120                                                    IdLoc, Args.getStartLoc(),
2121                                                    Init, Args.getEndLoc());
2122  }
2123}
2124
2125MemInitResult
2126Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
2127                                 const MultiInitializer &Args,
2128                                 CXXRecordDecl *ClassDecl) {
2129  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2130  if (!LangOpts.CPlusPlus0x)
2131    return Diag(NameLoc, diag::err_delegating_ctor)
2132      << TInfo->getTypeLoc().getLocalSourceRange();
2133  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2134
2135  // Initialize the object.
2136  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2137                                     QualType(ClassDecl->getTypeForDecl(), 0));
2138  InitializationKind Kind =
2139    InitializationKind::CreateDirect(NameLoc, Args.getStartLoc(),
2140                                     Args.getEndLoc());
2141
2142  ExprResult DelegationInit = Args.PerformInit(*this, DelegationEntity, Kind);
2143  if (DelegationInit.isInvalid())
2144    return true;
2145
2146  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2147         "Delegating constructor with no target?");
2148
2149  CheckImplicitConversions(DelegationInit.get(), Args.getStartLoc());
2150
2151  // C++0x [class.base.init]p7:
2152  //   The initialization of each base and member constitutes a
2153  //   full-expression.
2154  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2155  if (DelegationInit.isInvalid())
2156    return true;
2157
2158  return new (Context) CXXCtorInitializer(Context, TInfo, Args.getStartLoc(),
2159                                          DelegationInit.takeAs<Expr>(),
2160                                          Args.getEndLoc());
2161}
2162
2163MemInitResult
2164Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2165                           const MultiInitializer &Args,
2166                           CXXRecordDecl *ClassDecl,
2167                           SourceLocation EllipsisLoc) {
2168  bool HasDependentArg = Args.isTypeDependent();
2169
2170  SourceLocation BaseLoc
2171    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2172
2173  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2174    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2175             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2176
2177  // C++ [class.base.init]p2:
2178  //   [...] Unless the mem-initializer-id names a nonstatic data
2179  //   member of the constructor's class or a direct or virtual base
2180  //   of that class, the mem-initializer is ill-formed. A
2181  //   mem-initializer-list can initialize a base class using any
2182  //   name that denotes that base class type.
2183  bool Dependent = BaseType->isDependentType() || HasDependentArg;
2184
2185  if (EllipsisLoc.isValid()) {
2186    // This is a pack expansion.
2187    if (!BaseType->containsUnexpandedParameterPack())  {
2188      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2189        << SourceRange(BaseLoc, Args.getEndLoc());
2190
2191      EllipsisLoc = SourceLocation();
2192    }
2193  } else {
2194    // Check for any unexpanded parameter packs.
2195    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2196      return true;
2197
2198    if (Args.DiagnoseUnexpandedParameterPack(*this))
2199      return true;
2200  }
2201
2202  // Check for direct and virtual base classes.
2203  const CXXBaseSpecifier *DirectBaseSpec = 0;
2204  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2205  if (!Dependent) {
2206    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2207                                       BaseType))
2208      return BuildDelegatingInitializer(BaseTInfo, Args, ClassDecl);
2209
2210    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2211                        VirtualBaseSpec);
2212
2213    // C++ [base.class.init]p2:
2214    // Unless the mem-initializer-id names a nonstatic data member of the
2215    // constructor's class or a direct or virtual base of that class, the
2216    // mem-initializer is ill-formed.
2217    if (!DirectBaseSpec && !VirtualBaseSpec) {
2218      // If the class has any dependent bases, then it's possible that
2219      // one of those types will resolve to the same type as
2220      // BaseType. Therefore, just treat this as a dependent base
2221      // class initialization.  FIXME: Should we try to check the
2222      // initialization anyway? It seems odd.
2223      if (ClassDecl->hasAnyDependentBases())
2224        Dependent = true;
2225      else
2226        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2227          << BaseType << Context.getTypeDeclType(ClassDecl)
2228          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2229    }
2230  }
2231
2232  if (Dependent) {
2233    // Can't check initialization for a base of dependent type or when
2234    // any of the arguments are type-dependent expressions.
2235    Expr *BaseInit = Args.CreateInitExpr(Context, BaseType);
2236
2237    DiscardCleanupsInEvaluationContext();
2238
2239    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2240                                            /*IsVirtual=*/false,
2241                                            Args.getStartLoc(), BaseInit,
2242                                            Args.getEndLoc(), EllipsisLoc);
2243  }
2244
2245  // C++ [base.class.init]p2:
2246  //   If a mem-initializer-id is ambiguous because it designates both
2247  //   a direct non-virtual base class and an inherited virtual base
2248  //   class, the mem-initializer is ill-formed.
2249  if (DirectBaseSpec && VirtualBaseSpec)
2250    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2251      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2252
2253  CXXBaseSpecifier *BaseSpec
2254    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2255  if (!BaseSpec)
2256    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2257
2258  // Initialize the base.
2259  InitializedEntity BaseEntity =
2260    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2261  InitializationKind Kind =
2262    InitializationKind::CreateDirect(BaseLoc, Args.getStartLoc(),
2263                                     Args.getEndLoc());
2264
2265  ExprResult BaseInit = Args.PerformInit(*this, BaseEntity, Kind);
2266  if (BaseInit.isInvalid())
2267    return true;
2268
2269  CheckImplicitConversions(BaseInit.get(), Args.getStartLoc());
2270
2271  // C++0x [class.base.init]p7:
2272  //   The initialization of each base and member constitutes a
2273  //   full-expression.
2274  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2275  if (BaseInit.isInvalid())
2276    return true;
2277
2278  // If we are in a dependent context, template instantiation will
2279  // perform this type-checking again. Just save the arguments that we
2280  // received in a ParenListExpr.
2281  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2282  // of the information that we have about the base
2283  // initializer. However, deconstructing the ASTs is a dicey process,
2284  // and this approach is far more likely to get the corner cases right.
2285  if (CurContext->isDependentContext())
2286    BaseInit = Owned(Args.CreateInitExpr(Context, BaseType));
2287
2288  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2289                                          BaseSpec->isVirtual(),
2290                                          Args.getStartLoc(),
2291                                          BaseInit.takeAs<Expr>(),
2292                                          Args.getEndLoc(), EllipsisLoc);
2293}
2294
2295// Create a static_cast\<T&&>(expr).
2296static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2297  QualType ExprType = E->getType();
2298  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2299  SourceLocation ExprLoc = E->getLocStart();
2300  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2301      TargetType, ExprLoc);
2302
2303  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2304                                   SourceRange(ExprLoc, ExprLoc),
2305                                   E->getSourceRange()).take();
2306}
2307
2308/// ImplicitInitializerKind - How an implicit base or member initializer should
2309/// initialize its base or member.
2310enum ImplicitInitializerKind {
2311  IIK_Default,
2312  IIK_Copy,
2313  IIK_Move
2314};
2315
2316static bool
2317BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2318                             ImplicitInitializerKind ImplicitInitKind,
2319                             CXXBaseSpecifier *BaseSpec,
2320                             bool IsInheritedVirtualBase,
2321                             CXXCtorInitializer *&CXXBaseInit) {
2322  InitializedEntity InitEntity
2323    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2324                                        IsInheritedVirtualBase);
2325
2326  ExprResult BaseInit;
2327
2328  switch (ImplicitInitKind) {
2329  case IIK_Default: {
2330    InitializationKind InitKind
2331      = InitializationKind::CreateDefault(Constructor->getLocation());
2332    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2333    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2334                               MultiExprArg(SemaRef, 0, 0));
2335    break;
2336  }
2337
2338  case IIK_Move:
2339  case IIK_Copy: {
2340    bool Moving = ImplicitInitKind == IIK_Move;
2341    ParmVarDecl *Param = Constructor->getParamDecl(0);
2342    QualType ParamType = Param->getType().getNonReferenceType();
2343
2344    Expr *CopyCtorArg =
2345      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2346                          Constructor->getLocation(), ParamType,
2347                          VK_LValue, 0);
2348
2349    // Cast to the base class to avoid ambiguities.
2350    QualType ArgTy =
2351      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2352                                       ParamType.getQualifiers());
2353
2354    if (Moving) {
2355      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2356    }
2357
2358    CXXCastPath BasePath;
2359    BasePath.push_back(BaseSpec);
2360    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2361                                            CK_UncheckedDerivedToBase,
2362                                            Moving ? VK_XValue : VK_LValue,
2363                                            &BasePath).take();
2364
2365    InitializationKind InitKind
2366      = InitializationKind::CreateDirect(Constructor->getLocation(),
2367                                         SourceLocation(), SourceLocation());
2368    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2369                                   &CopyCtorArg, 1);
2370    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2371                               MultiExprArg(&CopyCtorArg, 1));
2372    break;
2373  }
2374  }
2375
2376  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2377  if (BaseInit.isInvalid())
2378    return true;
2379
2380  CXXBaseInit =
2381    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2382               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2383                                                        SourceLocation()),
2384                                             BaseSpec->isVirtual(),
2385                                             SourceLocation(),
2386                                             BaseInit.takeAs<Expr>(),
2387                                             SourceLocation(),
2388                                             SourceLocation());
2389
2390  return false;
2391}
2392
2393static bool RefersToRValueRef(Expr *MemRef) {
2394  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2395  return Referenced->getType()->isRValueReferenceType();
2396}
2397
2398static bool
2399BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2400                               ImplicitInitializerKind ImplicitInitKind,
2401                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2402                               CXXCtorInitializer *&CXXMemberInit) {
2403  if (Field->isInvalidDecl())
2404    return true;
2405
2406  SourceLocation Loc = Constructor->getLocation();
2407
2408  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2409    bool Moving = ImplicitInitKind == IIK_Move;
2410    ParmVarDecl *Param = Constructor->getParamDecl(0);
2411    QualType ParamType = Param->getType().getNonReferenceType();
2412
2413    // Suppress copying zero-width bitfields.
2414    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2415      return false;
2416
2417    Expr *MemberExprBase =
2418      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2419                          Loc, ParamType, VK_LValue, 0);
2420
2421    if (Moving) {
2422      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2423    }
2424
2425    // Build a reference to this field within the parameter.
2426    CXXScopeSpec SS;
2427    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2428                              Sema::LookupMemberName);
2429    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2430                                  : cast<ValueDecl>(Field), AS_public);
2431    MemberLookup.resolveKind();
2432    ExprResult CtorArg
2433      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2434                                         ParamType, Loc,
2435                                         /*IsArrow=*/false,
2436                                         SS,
2437                                         /*FirstQualifierInScope=*/0,
2438                                         MemberLookup,
2439                                         /*TemplateArgs=*/0);
2440    if (CtorArg.isInvalid())
2441      return true;
2442
2443    // C++11 [class.copy]p15:
2444    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2445    //     with static_cast<T&&>(x.m);
2446    if (RefersToRValueRef(CtorArg.get())) {
2447      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2448    }
2449
2450    // When the field we are copying is an array, create index variables for
2451    // each dimension of the array. We use these index variables to subscript
2452    // the source array, and other clients (e.g., CodeGen) will perform the
2453    // necessary iteration with these index variables.
2454    SmallVector<VarDecl *, 4> IndexVariables;
2455    QualType BaseType = Field->getType();
2456    QualType SizeType = SemaRef.Context.getSizeType();
2457    bool InitializingArray = false;
2458    while (const ConstantArrayType *Array
2459                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2460      InitializingArray = true;
2461      // Create the iteration variable for this array index.
2462      IdentifierInfo *IterationVarName = 0;
2463      {
2464        llvm::SmallString<8> Str;
2465        llvm::raw_svector_ostream OS(Str);
2466        OS << "__i" << IndexVariables.size();
2467        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2468      }
2469      VarDecl *IterationVar
2470        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2471                          IterationVarName, SizeType,
2472                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2473                          SC_None, SC_None);
2474      IndexVariables.push_back(IterationVar);
2475
2476      // Create a reference to the iteration variable.
2477      ExprResult IterationVarRef
2478        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
2479      assert(!IterationVarRef.isInvalid() &&
2480             "Reference to invented variable cannot fail!");
2481
2482      // Subscript the array with this iteration variable.
2483      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2484                                                        IterationVarRef.take(),
2485                                                        Loc);
2486      if (CtorArg.isInvalid())
2487        return true;
2488
2489      BaseType = Array->getElementType();
2490    }
2491
2492    // The array subscript expression is an lvalue, which is wrong for moving.
2493    if (Moving && InitializingArray)
2494      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2495
2496    // Construct the entity that we will be initializing. For an array, this
2497    // will be first element in the array, which may require several levels
2498    // of array-subscript entities.
2499    SmallVector<InitializedEntity, 4> Entities;
2500    Entities.reserve(1 + IndexVariables.size());
2501    if (Indirect)
2502      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2503    else
2504      Entities.push_back(InitializedEntity::InitializeMember(Field));
2505    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2506      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2507                                                              0,
2508                                                              Entities.back()));
2509
2510    // Direct-initialize to use the copy constructor.
2511    InitializationKind InitKind =
2512      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2513
2514    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2515    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2516                                   &CtorArgE, 1);
2517
2518    ExprResult MemberInit
2519      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2520                        MultiExprArg(&CtorArgE, 1));
2521    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2522    if (MemberInit.isInvalid())
2523      return true;
2524
2525    if (Indirect) {
2526      assert(IndexVariables.size() == 0 &&
2527             "Indirect field improperly initialized");
2528      CXXMemberInit
2529        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2530                                                   Loc, Loc,
2531                                                   MemberInit.takeAs<Expr>(),
2532                                                   Loc);
2533    } else
2534      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2535                                                 Loc, MemberInit.takeAs<Expr>(),
2536                                                 Loc,
2537                                                 IndexVariables.data(),
2538                                                 IndexVariables.size());
2539    return false;
2540  }
2541
2542  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2543
2544  QualType FieldBaseElementType =
2545    SemaRef.Context.getBaseElementType(Field->getType());
2546
2547  if (FieldBaseElementType->isRecordType()) {
2548    InitializedEntity InitEntity
2549      = Indirect? InitializedEntity::InitializeMember(Indirect)
2550                : InitializedEntity::InitializeMember(Field);
2551    InitializationKind InitKind =
2552      InitializationKind::CreateDefault(Loc);
2553
2554    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2555    ExprResult MemberInit =
2556      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2557
2558    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2559    if (MemberInit.isInvalid())
2560      return true;
2561
2562    if (Indirect)
2563      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2564                                                               Indirect, Loc,
2565                                                               Loc,
2566                                                               MemberInit.get(),
2567                                                               Loc);
2568    else
2569      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2570                                                               Field, Loc, Loc,
2571                                                               MemberInit.get(),
2572                                                               Loc);
2573    return false;
2574  }
2575
2576  if (!Field->getParent()->isUnion()) {
2577    if (FieldBaseElementType->isReferenceType()) {
2578      SemaRef.Diag(Constructor->getLocation(),
2579                   diag::err_uninitialized_member_in_ctor)
2580      << (int)Constructor->isImplicit()
2581      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2582      << 0 << Field->getDeclName();
2583      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2584      return true;
2585    }
2586
2587    if (FieldBaseElementType.isConstQualified()) {
2588      SemaRef.Diag(Constructor->getLocation(),
2589                   diag::err_uninitialized_member_in_ctor)
2590      << (int)Constructor->isImplicit()
2591      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2592      << 1 << Field->getDeclName();
2593      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2594      return true;
2595    }
2596  }
2597
2598  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2599      FieldBaseElementType->isObjCRetainableType() &&
2600      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2601      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2602    // Instant objects:
2603    //   Default-initialize Objective-C pointers to NULL.
2604    CXXMemberInit
2605      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2606                                                 Loc, Loc,
2607                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2608                                                 Loc);
2609    return false;
2610  }
2611
2612  // Nothing to initialize.
2613  CXXMemberInit = 0;
2614  return false;
2615}
2616
2617namespace {
2618struct BaseAndFieldInfo {
2619  Sema &S;
2620  CXXConstructorDecl *Ctor;
2621  bool AnyErrorsInInits;
2622  ImplicitInitializerKind IIK;
2623  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2624  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2625
2626  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2627    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2628    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2629    if (Generated && Ctor->isCopyConstructor())
2630      IIK = IIK_Copy;
2631    else if (Generated && Ctor->isMoveConstructor())
2632      IIK = IIK_Move;
2633    else
2634      IIK = IIK_Default;
2635  }
2636};
2637}
2638
2639/// \brief Determine whether the given indirect field declaration is somewhere
2640/// within an anonymous union.
2641static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2642  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2643                                      CEnd = F->chain_end();
2644       C != CEnd; ++C)
2645    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2646      if (Record->isUnion())
2647        return true;
2648
2649  return false;
2650}
2651
2652static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2653                                    FieldDecl *Field,
2654                                    IndirectFieldDecl *Indirect = 0) {
2655
2656  // Overwhelmingly common case: we have a direct initializer for this field.
2657  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2658    Info.AllToInit.push_back(Init);
2659    return false;
2660  }
2661
2662  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2663  // has a brace-or-equal-initializer, the entity is initialized as specified
2664  // in [dcl.init].
2665  if (Field->hasInClassInitializer()) {
2666    CXXCtorInitializer *Init;
2667    if (Indirect)
2668      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2669                                                      SourceLocation(),
2670                                                      SourceLocation(), 0,
2671                                                      SourceLocation());
2672    else
2673      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2674                                                      SourceLocation(),
2675                                                      SourceLocation(), 0,
2676                                                      SourceLocation());
2677    Info.AllToInit.push_back(Init);
2678    return false;
2679  }
2680
2681  // Don't build an implicit initializer for union members if none was
2682  // explicitly specified.
2683  if (Field->getParent()->isUnion() ||
2684      (Indirect && isWithinAnonymousUnion(Indirect)))
2685    return false;
2686
2687  // Don't try to build an implicit initializer if there were semantic
2688  // errors in any of the initializers (and therefore we might be
2689  // missing some that the user actually wrote).
2690  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2691    return false;
2692
2693  CXXCtorInitializer *Init = 0;
2694  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2695                                     Indirect, Init))
2696    return true;
2697
2698  if (Init)
2699    Info.AllToInit.push_back(Init);
2700
2701  return false;
2702}
2703
2704bool
2705Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2706                               CXXCtorInitializer *Initializer) {
2707  assert(Initializer->isDelegatingInitializer());
2708  Constructor->setNumCtorInitializers(1);
2709  CXXCtorInitializer **initializer =
2710    new (Context) CXXCtorInitializer*[1];
2711  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2712  Constructor->setCtorInitializers(initializer);
2713
2714  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2715    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2716    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2717  }
2718
2719  DelegatingCtorDecls.push_back(Constructor);
2720
2721  return false;
2722}
2723
2724bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2725                               CXXCtorInitializer **Initializers,
2726                               unsigned NumInitializers,
2727                               bool AnyErrors) {
2728  if (Constructor->isDependentContext()) {
2729    // Just store the initializers as written, they will be checked during
2730    // instantiation.
2731    if (NumInitializers > 0) {
2732      Constructor->setNumCtorInitializers(NumInitializers);
2733      CXXCtorInitializer **baseOrMemberInitializers =
2734        new (Context) CXXCtorInitializer*[NumInitializers];
2735      memcpy(baseOrMemberInitializers, Initializers,
2736             NumInitializers * sizeof(CXXCtorInitializer*));
2737      Constructor->setCtorInitializers(baseOrMemberInitializers);
2738    }
2739
2740    return false;
2741  }
2742
2743  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2744
2745  // We need to build the initializer AST according to order of construction
2746  // and not what user specified in the Initializers list.
2747  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2748  if (!ClassDecl)
2749    return true;
2750
2751  bool HadError = false;
2752
2753  for (unsigned i = 0; i < NumInitializers; i++) {
2754    CXXCtorInitializer *Member = Initializers[i];
2755
2756    if (Member->isBaseInitializer())
2757      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2758    else
2759      Info.AllBaseFields[Member->getAnyMember()] = Member;
2760  }
2761
2762  // Keep track of the direct virtual bases.
2763  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2764  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2765       E = ClassDecl->bases_end(); I != E; ++I) {
2766    if (I->isVirtual())
2767      DirectVBases.insert(I);
2768  }
2769
2770  // Push virtual bases before others.
2771  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2772       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2773
2774    if (CXXCtorInitializer *Value
2775        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2776      Info.AllToInit.push_back(Value);
2777    } else if (!AnyErrors) {
2778      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2779      CXXCtorInitializer *CXXBaseInit;
2780      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2781                                       VBase, IsInheritedVirtualBase,
2782                                       CXXBaseInit)) {
2783        HadError = true;
2784        continue;
2785      }
2786
2787      Info.AllToInit.push_back(CXXBaseInit);
2788    }
2789  }
2790
2791  // Non-virtual bases.
2792  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2793       E = ClassDecl->bases_end(); Base != E; ++Base) {
2794    // Virtuals are in the virtual base list and already constructed.
2795    if (Base->isVirtual())
2796      continue;
2797
2798    if (CXXCtorInitializer *Value
2799          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2800      Info.AllToInit.push_back(Value);
2801    } else if (!AnyErrors) {
2802      CXXCtorInitializer *CXXBaseInit;
2803      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2804                                       Base, /*IsInheritedVirtualBase=*/false,
2805                                       CXXBaseInit)) {
2806        HadError = true;
2807        continue;
2808      }
2809
2810      Info.AllToInit.push_back(CXXBaseInit);
2811    }
2812  }
2813
2814  // Fields.
2815  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2816                               MemEnd = ClassDecl->decls_end();
2817       Mem != MemEnd; ++Mem) {
2818    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2819      // C++ [class.bit]p2:
2820      //   A declaration for a bit-field that omits the identifier declares an
2821      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2822      //   initialized.
2823      if (F->isUnnamedBitfield())
2824        continue;
2825
2826      if (F->getType()->isIncompleteArrayType()) {
2827        assert(ClassDecl->hasFlexibleArrayMember() &&
2828               "Incomplete array type is not valid");
2829        continue;
2830      }
2831
2832      // If we're not generating the implicit copy/move constructor, then we'll
2833      // handle anonymous struct/union fields based on their individual
2834      // indirect fields.
2835      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2836        continue;
2837
2838      if (CollectFieldInitializer(*this, Info, F))
2839        HadError = true;
2840      continue;
2841    }
2842
2843    // Beyond this point, we only consider default initialization.
2844    if (Info.IIK != IIK_Default)
2845      continue;
2846
2847    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2848      if (F->getType()->isIncompleteArrayType()) {
2849        assert(ClassDecl->hasFlexibleArrayMember() &&
2850               "Incomplete array type is not valid");
2851        continue;
2852      }
2853
2854      // Initialize each field of an anonymous struct individually.
2855      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2856        HadError = true;
2857
2858      continue;
2859    }
2860  }
2861
2862  NumInitializers = Info.AllToInit.size();
2863  if (NumInitializers > 0) {
2864    Constructor->setNumCtorInitializers(NumInitializers);
2865    CXXCtorInitializer **baseOrMemberInitializers =
2866      new (Context) CXXCtorInitializer*[NumInitializers];
2867    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2868           NumInitializers * sizeof(CXXCtorInitializer*));
2869    Constructor->setCtorInitializers(baseOrMemberInitializers);
2870
2871    // Constructors implicitly reference the base and member
2872    // destructors.
2873    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2874                                           Constructor->getParent());
2875  }
2876
2877  return HadError;
2878}
2879
2880static void *GetKeyForTopLevelField(FieldDecl *Field) {
2881  // For anonymous unions, use the class declaration as the key.
2882  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2883    if (RT->getDecl()->isAnonymousStructOrUnion())
2884      return static_cast<void *>(RT->getDecl());
2885  }
2886  return static_cast<void *>(Field);
2887}
2888
2889static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2890  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2891}
2892
2893static void *GetKeyForMember(ASTContext &Context,
2894                             CXXCtorInitializer *Member) {
2895  if (!Member->isAnyMemberInitializer())
2896    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2897
2898  // For fields injected into the class via declaration of an anonymous union,
2899  // use its anonymous union class declaration as the unique key.
2900  FieldDecl *Field = Member->getAnyMember();
2901
2902  // If the field is a member of an anonymous struct or union, our key
2903  // is the anonymous record decl that's a direct child of the class.
2904  RecordDecl *RD = Field->getParent();
2905  if (RD->isAnonymousStructOrUnion()) {
2906    while (true) {
2907      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2908      if (Parent->isAnonymousStructOrUnion())
2909        RD = Parent;
2910      else
2911        break;
2912    }
2913
2914    return static_cast<void *>(RD);
2915  }
2916
2917  return static_cast<void *>(Field);
2918}
2919
2920static void
2921DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2922                                  const CXXConstructorDecl *Constructor,
2923                                  CXXCtorInitializer **Inits,
2924                                  unsigned NumInits) {
2925  if (Constructor->getDeclContext()->isDependentContext())
2926    return;
2927
2928  // Don't check initializers order unless the warning is enabled at the
2929  // location of at least one initializer.
2930  bool ShouldCheckOrder = false;
2931  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2932    CXXCtorInitializer *Init = Inits[InitIndex];
2933    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2934                                         Init->getSourceLocation())
2935          != DiagnosticsEngine::Ignored) {
2936      ShouldCheckOrder = true;
2937      break;
2938    }
2939  }
2940  if (!ShouldCheckOrder)
2941    return;
2942
2943  // Build the list of bases and members in the order that they'll
2944  // actually be initialized.  The explicit initializers should be in
2945  // this same order but may be missing things.
2946  SmallVector<const void*, 32> IdealInitKeys;
2947
2948  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2949
2950  // 1. Virtual bases.
2951  for (CXXRecordDecl::base_class_const_iterator VBase =
2952       ClassDecl->vbases_begin(),
2953       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2954    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2955
2956  // 2. Non-virtual bases.
2957  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2958       E = ClassDecl->bases_end(); Base != E; ++Base) {
2959    if (Base->isVirtual())
2960      continue;
2961    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2962  }
2963
2964  // 3. Direct fields.
2965  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2966       E = ClassDecl->field_end(); Field != E; ++Field) {
2967    if (Field->isUnnamedBitfield())
2968      continue;
2969
2970    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2971  }
2972
2973  unsigned NumIdealInits = IdealInitKeys.size();
2974  unsigned IdealIndex = 0;
2975
2976  CXXCtorInitializer *PrevInit = 0;
2977  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2978    CXXCtorInitializer *Init = Inits[InitIndex];
2979    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2980
2981    // Scan forward to try to find this initializer in the idealized
2982    // initializers list.
2983    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2984      if (InitKey == IdealInitKeys[IdealIndex])
2985        break;
2986
2987    // If we didn't find this initializer, it must be because we
2988    // scanned past it on a previous iteration.  That can only
2989    // happen if we're out of order;  emit a warning.
2990    if (IdealIndex == NumIdealInits && PrevInit) {
2991      Sema::SemaDiagnosticBuilder D =
2992        SemaRef.Diag(PrevInit->getSourceLocation(),
2993                     diag::warn_initializer_out_of_order);
2994
2995      if (PrevInit->isAnyMemberInitializer())
2996        D << 0 << PrevInit->getAnyMember()->getDeclName();
2997      else
2998        D << 1 << PrevInit->getTypeSourceInfo()->getType();
2999
3000      if (Init->isAnyMemberInitializer())
3001        D << 0 << Init->getAnyMember()->getDeclName();
3002      else
3003        D << 1 << Init->getTypeSourceInfo()->getType();
3004
3005      // Move back to the initializer's location in the ideal list.
3006      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3007        if (InitKey == IdealInitKeys[IdealIndex])
3008          break;
3009
3010      assert(IdealIndex != NumIdealInits &&
3011             "initializer not found in initializer list");
3012    }
3013
3014    PrevInit = Init;
3015  }
3016}
3017
3018namespace {
3019bool CheckRedundantInit(Sema &S,
3020                        CXXCtorInitializer *Init,
3021                        CXXCtorInitializer *&PrevInit) {
3022  if (!PrevInit) {
3023    PrevInit = Init;
3024    return false;
3025  }
3026
3027  if (FieldDecl *Field = Init->getMember())
3028    S.Diag(Init->getSourceLocation(),
3029           diag::err_multiple_mem_initialization)
3030      << Field->getDeclName()
3031      << Init->getSourceRange();
3032  else {
3033    const Type *BaseClass = Init->getBaseClass();
3034    assert(BaseClass && "neither field nor base");
3035    S.Diag(Init->getSourceLocation(),
3036           diag::err_multiple_base_initialization)
3037      << QualType(BaseClass, 0)
3038      << Init->getSourceRange();
3039  }
3040  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3041    << 0 << PrevInit->getSourceRange();
3042
3043  return true;
3044}
3045
3046typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3047typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3048
3049bool CheckRedundantUnionInit(Sema &S,
3050                             CXXCtorInitializer *Init,
3051                             RedundantUnionMap &Unions) {
3052  FieldDecl *Field = Init->getAnyMember();
3053  RecordDecl *Parent = Field->getParent();
3054  if (!Parent->isAnonymousStructOrUnion())
3055    return false;
3056
3057  NamedDecl *Child = Field;
3058  do {
3059    if (Parent->isUnion()) {
3060      UnionEntry &En = Unions[Parent];
3061      if (En.first && En.first != Child) {
3062        S.Diag(Init->getSourceLocation(),
3063               diag::err_multiple_mem_union_initialization)
3064          << Field->getDeclName()
3065          << Init->getSourceRange();
3066        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3067          << 0 << En.second->getSourceRange();
3068        return true;
3069      } else if (!En.first) {
3070        En.first = Child;
3071        En.second = Init;
3072      }
3073    }
3074
3075    Child = Parent;
3076    Parent = cast<RecordDecl>(Parent->getDeclContext());
3077  } while (Parent->isAnonymousStructOrUnion());
3078
3079  return false;
3080}
3081}
3082
3083/// ActOnMemInitializers - Handle the member initializers for a constructor.
3084void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3085                                SourceLocation ColonLoc,
3086                                CXXCtorInitializer **meminits,
3087                                unsigned NumMemInits,
3088                                bool AnyErrors) {
3089  if (!ConstructorDecl)
3090    return;
3091
3092  AdjustDeclIfTemplate(ConstructorDecl);
3093
3094  CXXConstructorDecl *Constructor
3095    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3096
3097  if (!Constructor) {
3098    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3099    return;
3100  }
3101
3102  CXXCtorInitializer **MemInits =
3103    reinterpret_cast<CXXCtorInitializer **>(meminits);
3104
3105  // Mapping for the duplicate initializers check.
3106  // For member initializers, this is keyed with a FieldDecl*.
3107  // For base initializers, this is keyed with a Type*.
3108  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3109
3110  // Mapping for the inconsistent anonymous-union initializers check.
3111  RedundantUnionMap MemberUnions;
3112
3113  bool HadError = false;
3114  for (unsigned i = 0; i < NumMemInits; i++) {
3115    CXXCtorInitializer *Init = MemInits[i];
3116
3117    // Set the source order index.
3118    Init->setSourceOrder(i);
3119
3120    if (Init->isAnyMemberInitializer()) {
3121      FieldDecl *Field = Init->getAnyMember();
3122      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3123          CheckRedundantUnionInit(*this, Init, MemberUnions))
3124        HadError = true;
3125    } else if (Init->isBaseInitializer()) {
3126      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3127      if (CheckRedundantInit(*this, Init, Members[Key]))
3128        HadError = true;
3129    } else {
3130      assert(Init->isDelegatingInitializer());
3131      // This must be the only initializer
3132      if (i != 0 || NumMemInits > 1) {
3133        Diag(MemInits[0]->getSourceLocation(),
3134             diag::err_delegating_initializer_alone)
3135          << MemInits[0]->getSourceRange();
3136        HadError = true;
3137        // We will treat this as being the only initializer.
3138      }
3139      SetDelegatingInitializer(Constructor, MemInits[i]);
3140      // Return immediately as the initializer is set.
3141      return;
3142    }
3143  }
3144
3145  if (HadError)
3146    return;
3147
3148  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3149
3150  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3151}
3152
3153void
3154Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3155                                             CXXRecordDecl *ClassDecl) {
3156  // Ignore dependent contexts. Also ignore unions, since their members never
3157  // have destructors implicitly called.
3158  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3159    return;
3160
3161  // FIXME: all the access-control diagnostics are positioned on the
3162  // field/base declaration.  That's probably good; that said, the
3163  // user might reasonably want to know why the destructor is being
3164  // emitted, and we currently don't say.
3165
3166  // Non-static data members.
3167  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3168       E = ClassDecl->field_end(); I != E; ++I) {
3169    FieldDecl *Field = *I;
3170    if (Field->isInvalidDecl())
3171      continue;
3172    QualType FieldType = Context.getBaseElementType(Field->getType());
3173
3174    const RecordType* RT = FieldType->getAs<RecordType>();
3175    if (!RT)
3176      continue;
3177
3178    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3179    if (FieldClassDecl->isInvalidDecl())
3180      continue;
3181    if (FieldClassDecl->hasTrivialDestructor())
3182      continue;
3183
3184    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3185    assert(Dtor && "No dtor found for FieldClassDecl!");
3186    CheckDestructorAccess(Field->getLocation(), Dtor,
3187                          PDiag(diag::err_access_dtor_field)
3188                            << Field->getDeclName()
3189                            << FieldType);
3190
3191    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3192  }
3193
3194  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3195
3196  // Bases.
3197  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3198       E = ClassDecl->bases_end(); Base != E; ++Base) {
3199    // Bases are always records in a well-formed non-dependent class.
3200    const RecordType *RT = Base->getType()->getAs<RecordType>();
3201
3202    // Remember direct virtual bases.
3203    if (Base->isVirtual())
3204      DirectVirtualBases.insert(RT);
3205
3206    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3207    // If our base class is invalid, we probably can't get its dtor anyway.
3208    if (BaseClassDecl->isInvalidDecl())
3209      continue;
3210    // Ignore trivial destructors.
3211    if (BaseClassDecl->hasTrivialDestructor())
3212      continue;
3213
3214    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3215    assert(Dtor && "No dtor found for BaseClassDecl!");
3216
3217    // FIXME: caret should be on the start of the class name
3218    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3219                          PDiag(diag::err_access_dtor_base)
3220                            << Base->getType()
3221                            << Base->getSourceRange());
3222
3223    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3224  }
3225
3226  // Virtual bases.
3227  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3228       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3229
3230    // Bases are always records in a well-formed non-dependent class.
3231    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3232
3233    // Ignore direct virtual bases.
3234    if (DirectVirtualBases.count(RT))
3235      continue;
3236
3237    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3238    // If our base class is invalid, we probably can't get its dtor anyway.
3239    if (BaseClassDecl->isInvalidDecl())
3240      continue;
3241    // Ignore trivial destructors.
3242    if (BaseClassDecl->hasTrivialDestructor())
3243      continue;
3244
3245    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3246    assert(Dtor && "No dtor found for BaseClassDecl!");
3247    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3248                          PDiag(diag::err_access_dtor_vbase)
3249                            << VBase->getType());
3250
3251    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3252  }
3253}
3254
3255void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3256  if (!CDtorDecl)
3257    return;
3258
3259  if (CXXConstructorDecl *Constructor
3260      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3261    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3262}
3263
3264bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3265                                  unsigned DiagID, AbstractDiagSelID SelID) {
3266  if (SelID == -1)
3267    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3268  else
3269    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3270}
3271
3272bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3273                                  const PartialDiagnostic &PD) {
3274  if (!getLangOptions().CPlusPlus)
3275    return false;
3276
3277  if (const ArrayType *AT = Context.getAsArrayType(T))
3278    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3279
3280  if (const PointerType *PT = T->getAs<PointerType>()) {
3281    // Find the innermost pointer type.
3282    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3283      PT = T;
3284
3285    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3286      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3287  }
3288
3289  const RecordType *RT = T->getAs<RecordType>();
3290  if (!RT)
3291    return false;
3292
3293  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3294
3295  // We can't answer whether something is abstract until it has a
3296  // definition.  If it's currently being defined, we'll walk back
3297  // over all the declarations when we have a full definition.
3298  const CXXRecordDecl *Def = RD->getDefinition();
3299  if (!Def || Def->isBeingDefined())
3300    return false;
3301
3302  if (!RD->isAbstract())
3303    return false;
3304
3305  Diag(Loc, PD) << RD->getDeclName();
3306  DiagnoseAbstractType(RD);
3307
3308  return true;
3309}
3310
3311void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3312  // Check if we've already emitted the list of pure virtual functions
3313  // for this class.
3314  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3315    return;
3316
3317  CXXFinalOverriderMap FinalOverriders;
3318  RD->getFinalOverriders(FinalOverriders);
3319
3320  // Keep a set of seen pure methods so we won't diagnose the same method
3321  // more than once.
3322  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3323
3324  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3325                                   MEnd = FinalOverriders.end();
3326       M != MEnd;
3327       ++M) {
3328    for (OverridingMethods::iterator SO = M->second.begin(),
3329                                  SOEnd = M->second.end();
3330         SO != SOEnd; ++SO) {
3331      // C++ [class.abstract]p4:
3332      //   A class is abstract if it contains or inherits at least one
3333      //   pure virtual function for which the final overrider is pure
3334      //   virtual.
3335
3336      //
3337      if (SO->second.size() != 1)
3338        continue;
3339
3340      if (!SO->second.front().Method->isPure())
3341        continue;
3342
3343      if (!SeenPureMethods.insert(SO->second.front().Method))
3344        continue;
3345
3346      Diag(SO->second.front().Method->getLocation(),
3347           diag::note_pure_virtual_function)
3348        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3349    }
3350  }
3351
3352  if (!PureVirtualClassDiagSet)
3353    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3354  PureVirtualClassDiagSet->insert(RD);
3355}
3356
3357namespace {
3358struct AbstractUsageInfo {
3359  Sema &S;
3360  CXXRecordDecl *Record;
3361  CanQualType AbstractType;
3362  bool Invalid;
3363
3364  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3365    : S(S), Record(Record),
3366      AbstractType(S.Context.getCanonicalType(
3367                   S.Context.getTypeDeclType(Record))),
3368      Invalid(false) {}
3369
3370  void DiagnoseAbstractType() {
3371    if (Invalid) return;
3372    S.DiagnoseAbstractType(Record);
3373    Invalid = true;
3374  }
3375
3376  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3377};
3378
3379struct CheckAbstractUsage {
3380  AbstractUsageInfo &Info;
3381  const NamedDecl *Ctx;
3382
3383  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3384    : Info(Info), Ctx(Ctx) {}
3385
3386  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3387    switch (TL.getTypeLocClass()) {
3388#define ABSTRACT_TYPELOC(CLASS, PARENT)
3389#define TYPELOC(CLASS, PARENT) \
3390    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3391#include "clang/AST/TypeLocNodes.def"
3392    }
3393  }
3394
3395  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3396    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3397    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3398      if (!TL.getArg(I))
3399        continue;
3400
3401      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3402      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3403    }
3404  }
3405
3406  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3407    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3408  }
3409
3410  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3411    // Visit the type parameters from a permissive context.
3412    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3413      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3414      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3415        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3416          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3417      // TODO: other template argument types?
3418    }
3419  }
3420
3421  // Visit pointee types from a permissive context.
3422#define CheckPolymorphic(Type) \
3423  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3424    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3425  }
3426  CheckPolymorphic(PointerTypeLoc)
3427  CheckPolymorphic(ReferenceTypeLoc)
3428  CheckPolymorphic(MemberPointerTypeLoc)
3429  CheckPolymorphic(BlockPointerTypeLoc)
3430  CheckPolymorphic(AtomicTypeLoc)
3431
3432  /// Handle all the types we haven't given a more specific
3433  /// implementation for above.
3434  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3435    // Every other kind of type that we haven't called out already
3436    // that has an inner type is either (1) sugar or (2) contains that
3437    // inner type in some way as a subobject.
3438    if (TypeLoc Next = TL.getNextTypeLoc())
3439      return Visit(Next, Sel);
3440
3441    // If there's no inner type and we're in a permissive context,
3442    // don't diagnose.
3443    if (Sel == Sema::AbstractNone) return;
3444
3445    // Check whether the type matches the abstract type.
3446    QualType T = TL.getType();
3447    if (T->isArrayType()) {
3448      Sel = Sema::AbstractArrayType;
3449      T = Info.S.Context.getBaseElementType(T);
3450    }
3451    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3452    if (CT != Info.AbstractType) return;
3453
3454    // It matched; do some magic.
3455    if (Sel == Sema::AbstractArrayType) {
3456      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3457        << T << TL.getSourceRange();
3458    } else {
3459      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3460        << Sel << T << TL.getSourceRange();
3461    }
3462    Info.DiagnoseAbstractType();
3463  }
3464};
3465
3466void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3467                                  Sema::AbstractDiagSelID Sel) {
3468  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3469}
3470
3471}
3472
3473/// Check for invalid uses of an abstract type in a method declaration.
3474static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3475                                    CXXMethodDecl *MD) {
3476  // No need to do the check on definitions, which require that
3477  // the return/param types be complete.
3478  if (MD->doesThisDeclarationHaveABody())
3479    return;
3480
3481  // For safety's sake, just ignore it if we don't have type source
3482  // information.  This should never happen for non-implicit methods,
3483  // but...
3484  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3485    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3486}
3487
3488/// Check for invalid uses of an abstract type within a class definition.
3489static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3490                                    CXXRecordDecl *RD) {
3491  for (CXXRecordDecl::decl_iterator
3492         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3493    Decl *D = *I;
3494    if (D->isImplicit()) continue;
3495
3496    // Methods and method templates.
3497    if (isa<CXXMethodDecl>(D)) {
3498      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3499    } else if (isa<FunctionTemplateDecl>(D)) {
3500      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3501      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3502
3503    // Fields and static variables.
3504    } else if (isa<FieldDecl>(D)) {
3505      FieldDecl *FD = cast<FieldDecl>(D);
3506      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3507        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3508    } else if (isa<VarDecl>(D)) {
3509      VarDecl *VD = cast<VarDecl>(D);
3510      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3511        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3512
3513    // Nested classes and class templates.
3514    } else if (isa<CXXRecordDecl>(D)) {
3515      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3516    } else if (isa<ClassTemplateDecl>(D)) {
3517      CheckAbstractClassUsage(Info,
3518                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3519    }
3520  }
3521}
3522
3523/// \brief Perform semantic checks on a class definition that has been
3524/// completing, introducing implicitly-declared members, checking for
3525/// abstract types, etc.
3526void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3527  if (!Record)
3528    return;
3529
3530  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3531    AbstractUsageInfo Info(*this, Record);
3532    CheckAbstractClassUsage(Info, Record);
3533  }
3534
3535  // If this is not an aggregate type and has no user-declared constructor,
3536  // complain about any non-static data members of reference or const scalar
3537  // type, since they will never get initializers.
3538  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3539      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3540    bool Complained = false;
3541    for (RecordDecl::field_iterator F = Record->field_begin(),
3542                                 FEnd = Record->field_end();
3543         F != FEnd; ++F) {
3544      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3545        continue;
3546
3547      if (F->getType()->isReferenceType() ||
3548          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3549        if (!Complained) {
3550          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3551            << Record->getTagKind() << Record;
3552          Complained = true;
3553        }
3554
3555        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3556          << F->getType()->isReferenceType()
3557          << F->getDeclName();
3558      }
3559    }
3560  }
3561
3562  if (Record->isDynamicClass() && !Record->isDependentType())
3563    DynamicClasses.push_back(Record);
3564
3565  if (Record->getIdentifier()) {
3566    // C++ [class.mem]p13:
3567    //   If T is the name of a class, then each of the following shall have a
3568    //   name different from T:
3569    //     - every member of every anonymous union that is a member of class T.
3570    //
3571    // C++ [class.mem]p14:
3572    //   In addition, if class T has a user-declared constructor (12.1), every
3573    //   non-static data member of class T shall have a name different from T.
3574    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3575         R.first != R.second; ++R.first) {
3576      NamedDecl *D = *R.first;
3577      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3578          isa<IndirectFieldDecl>(D)) {
3579        Diag(D->getLocation(), diag::err_member_name_of_class)
3580          << D->getDeclName();
3581        break;
3582      }
3583    }
3584  }
3585
3586  // Warn if the class has virtual methods but non-virtual public destructor.
3587  if (Record->isPolymorphic() && !Record->isDependentType()) {
3588    CXXDestructorDecl *dtor = Record->getDestructor();
3589    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3590      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3591           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3592  }
3593
3594  // See if a method overloads virtual methods in a base
3595  /// class without overriding any.
3596  if (!Record->isDependentType()) {
3597    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3598                                     MEnd = Record->method_end();
3599         M != MEnd; ++M) {
3600      if (!(*M)->isStatic())
3601        DiagnoseHiddenVirtualMethods(Record, *M);
3602    }
3603  }
3604
3605  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3606  // function that is not a constructor declares that member function to be
3607  // const. [...] The class of which that function is a member shall be
3608  // a literal type.
3609  //
3610  // It's fine to diagnose constructors here too: such constructors cannot
3611  // produce a constant expression, so are ill-formed (no diagnostic required).
3612  //
3613  // If the class has virtual bases, any constexpr members will already have
3614  // been diagnosed by the checks performed on the member declaration, so
3615  // suppress this (less useful) diagnostic.
3616  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3617      !Record->isLiteral() && !Record->getNumVBases()) {
3618    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3619                                     MEnd = Record->method_end();
3620         M != MEnd; ++M) {
3621      if ((*M)->isConstexpr()) {
3622        switch (Record->getTemplateSpecializationKind()) {
3623        case TSK_ImplicitInstantiation:
3624        case TSK_ExplicitInstantiationDeclaration:
3625        case TSK_ExplicitInstantiationDefinition:
3626          // If a template instantiates to a non-literal type, but its members
3627          // instantiate to constexpr functions, the template is technically
3628          // ill-formed, but we allow it for sanity. Such members are treated as
3629          // non-constexpr.
3630          (*M)->setConstexpr(false);
3631          continue;
3632
3633        case TSK_Undeclared:
3634        case TSK_ExplicitSpecialization:
3635          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3636                             PDiag(diag::err_constexpr_method_non_literal));
3637          break;
3638        }
3639
3640        // Only produce one error per class.
3641        break;
3642      }
3643    }
3644  }
3645
3646  // Declare inherited constructors. We do this eagerly here because:
3647  // - The standard requires an eager diagnostic for conflicting inherited
3648  //   constructors from different classes.
3649  // - The lazy declaration of the other implicit constructors is so as to not
3650  //   waste space and performance on classes that are not meant to be
3651  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3652  //   have inherited constructors.
3653  DeclareInheritedConstructors(Record);
3654
3655  if (!Record->isDependentType())
3656    CheckExplicitlyDefaultedMethods(Record);
3657}
3658
3659void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3660  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3661                                      ME = Record->method_end();
3662       MI != ME; ++MI) {
3663    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3664      switch (getSpecialMember(*MI)) {
3665      case CXXDefaultConstructor:
3666        CheckExplicitlyDefaultedDefaultConstructor(
3667                                                  cast<CXXConstructorDecl>(*MI));
3668        break;
3669
3670      case CXXDestructor:
3671        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3672        break;
3673
3674      case CXXCopyConstructor:
3675        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3676        break;
3677
3678      case CXXCopyAssignment:
3679        CheckExplicitlyDefaultedCopyAssignment(*MI);
3680        break;
3681
3682      case CXXMoveConstructor:
3683        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3684        break;
3685
3686      case CXXMoveAssignment:
3687        CheckExplicitlyDefaultedMoveAssignment(*MI);
3688        break;
3689
3690      case CXXInvalid:
3691        llvm_unreachable("non-special member explicitly defaulted!");
3692      }
3693    }
3694  }
3695
3696}
3697
3698void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3699  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3700
3701  // Whether this was the first-declared instance of the constructor.
3702  // This affects whether we implicitly add an exception spec (and, eventually,
3703  // constexpr). It is also ill-formed to explicitly default a constructor such
3704  // that it would be deleted. (C++0x [decl.fct.def.default])
3705  bool First = CD == CD->getCanonicalDecl();
3706
3707  bool HadError = false;
3708  if (CD->getNumParams() != 0) {
3709    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3710      << CD->getSourceRange();
3711    HadError = true;
3712  }
3713
3714  ImplicitExceptionSpecification Spec
3715    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3716  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3717  if (EPI.ExceptionSpecType == EST_Delayed) {
3718    // Exception specification depends on some deferred part of the class. We'll
3719    // try again when the class's definition has been fully processed.
3720    return;
3721  }
3722  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3723                          *ExceptionType = Context.getFunctionType(
3724                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3725
3726  if (CtorType->hasExceptionSpec()) {
3727    if (CheckEquivalentExceptionSpec(
3728          PDiag(diag::err_incorrect_defaulted_exception_spec)
3729            << CXXDefaultConstructor,
3730          PDiag(),
3731          ExceptionType, SourceLocation(),
3732          CtorType, CD->getLocation())) {
3733      HadError = true;
3734    }
3735  } else if (First) {
3736    // We set the declaration to have the computed exception spec here.
3737    // We know there are no parameters.
3738    EPI.ExtInfo = CtorType->getExtInfo();
3739    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3740  }
3741
3742  if (HadError) {
3743    CD->setInvalidDecl();
3744    return;
3745  }
3746
3747  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3748    if (First) {
3749      CD->setDeletedAsWritten();
3750    } else {
3751      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3752        << CXXDefaultConstructor;
3753      CD->setInvalidDecl();
3754    }
3755  }
3756}
3757
3758void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3759  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3760
3761  // Whether this was the first-declared instance of the constructor.
3762  bool First = CD == CD->getCanonicalDecl();
3763
3764  bool HadError = false;
3765  if (CD->getNumParams() != 1) {
3766    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3767      << CD->getSourceRange();
3768    HadError = true;
3769  }
3770
3771  ImplicitExceptionSpecification Spec(Context);
3772  bool Const;
3773  llvm::tie(Spec, Const) =
3774    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3775
3776  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3777  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3778                          *ExceptionType = Context.getFunctionType(
3779                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3780
3781  // Check for parameter type matching.
3782  // This is a copy ctor so we know it's a cv-qualified reference to T.
3783  QualType ArgType = CtorType->getArgType(0);
3784  if (ArgType->getPointeeType().isVolatileQualified()) {
3785    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3786    HadError = true;
3787  }
3788  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3789    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3790    HadError = true;
3791  }
3792
3793  if (CtorType->hasExceptionSpec()) {
3794    if (CheckEquivalentExceptionSpec(
3795          PDiag(diag::err_incorrect_defaulted_exception_spec)
3796            << CXXCopyConstructor,
3797          PDiag(),
3798          ExceptionType, SourceLocation(),
3799          CtorType, CD->getLocation())) {
3800      HadError = true;
3801    }
3802  } else if (First) {
3803    // We set the declaration to have the computed exception spec here.
3804    // We duplicate the one parameter type.
3805    EPI.ExtInfo = CtorType->getExtInfo();
3806    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3807  }
3808
3809  if (HadError) {
3810    CD->setInvalidDecl();
3811    return;
3812  }
3813
3814  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3815    if (First) {
3816      CD->setDeletedAsWritten();
3817    } else {
3818      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3819        << CXXCopyConstructor;
3820      CD->setInvalidDecl();
3821    }
3822  }
3823}
3824
3825void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3826  assert(MD->isExplicitlyDefaulted());
3827
3828  // Whether this was the first-declared instance of the operator
3829  bool First = MD == MD->getCanonicalDecl();
3830
3831  bool HadError = false;
3832  if (MD->getNumParams() != 1) {
3833    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3834      << MD->getSourceRange();
3835    HadError = true;
3836  }
3837
3838  QualType ReturnType =
3839    MD->getType()->getAs<FunctionType>()->getResultType();
3840  if (!ReturnType->isLValueReferenceType() ||
3841      !Context.hasSameType(
3842        Context.getCanonicalType(ReturnType->getPointeeType()),
3843        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3844    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3845    HadError = true;
3846  }
3847
3848  ImplicitExceptionSpecification Spec(Context);
3849  bool Const;
3850  llvm::tie(Spec, Const) =
3851    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3852
3853  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3854  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3855                          *ExceptionType = Context.getFunctionType(
3856                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3857
3858  QualType ArgType = OperType->getArgType(0);
3859  if (!ArgType->isLValueReferenceType()) {
3860    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3861    HadError = true;
3862  } else {
3863    if (ArgType->getPointeeType().isVolatileQualified()) {
3864      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3865      HadError = true;
3866    }
3867    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3868      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3869      HadError = true;
3870    }
3871  }
3872
3873  if (OperType->getTypeQuals()) {
3874    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3875    HadError = true;
3876  }
3877
3878  if (OperType->hasExceptionSpec()) {
3879    if (CheckEquivalentExceptionSpec(
3880          PDiag(diag::err_incorrect_defaulted_exception_spec)
3881            << CXXCopyAssignment,
3882          PDiag(),
3883          ExceptionType, SourceLocation(),
3884          OperType, MD->getLocation())) {
3885      HadError = true;
3886    }
3887  } else if (First) {
3888    // We set the declaration to have the computed exception spec here.
3889    // We duplicate the one parameter type.
3890    EPI.RefQualifier = OperType->getRefQualifier();
3891    EPI.ExtInfo = OperType->getExtInfo();
3892    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3893  }
3894
3895  if (HadError) {
3896    MD->setInvalidDecl();
3897    return;
3898  }
3899
3900  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3901    if (First) {
3902      MD->setDeletedAsWritten();
3903    } else {
3904      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3905        << CXXCopyAssignment;
3906      MD->setInvalidDecl();
3907    }
3908  }
3909}
3910
3911void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
3912  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
3913
3914  // Whether this was the first-declared instance of the constructor.
3915  bool First = CD == CD->getCanonicalDecl();
3916
3917  bool HadError = false;
3918  if (CD->getNumParams() != 1) {
3919    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
3920      << CD->getSourceRange();
3921    HadError = true;
3922  }
3923
3924  ImplicitExceptionSpecification Spec(
3925      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
3926
3927  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3928  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3929                          *ExceptionType = Context.getFunctionType(
3930                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3931
3932  // Check for parameter type matching.
3933  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
3934  QualType ArgType = CtorType->getArgType(0);
3935  if (ArgType->getPointeeType().isVolatileQualified()) {
3936    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
3937    HadError = true;
3938  }
3939  if (ArgType->getPointeeType().isConstQualified()) {
3940    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
3941    HadError = true;
3942  }
3943
3944  if (CtorType->hasExceptionSpec()) {
3945    if (CheckEquivalentExceptionSpec(
3946          PDiag(diag::err_incorrect_defaulted_exception_spec)
3947            << CXXMoveConstructor,
3948          PDiag(),
3949          ExceptionType, SourceLocation(),
3950          CtorType, CD->getLocation())) {
3951      HadError = true;
3952    }
3953  } else if (First) {
3954    // We set the declaration to have the computed exception spec here.
3955    // We duplicate the one parameter type.
3956    EPI.ExtInfo = CtorType->getExtInfo();
3957    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3958  }
3959
3960  if (HadError) {
3961    CD->setInvalidDecl();
3962    return;
3963  }
3964
3965  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
3966    if (First) {
3967      CD->setDeletedAsWritten();
3968    } else {
3969      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3970        << CXXMoveConstructor;
3971      CD->setInvalidDecl();
3972    }
3973  }
3974}
3975
3976void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
3977  assert(MD->isExplicitlyDefaulted());
3978
3979  // Whether this was the first-declared instance of the operator
3980  bool First = MD == MD->getCanonicalDecl();
3981
3982  bool HadError = false;
3983  if (MD->getNumParams() != 1) {
3984    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
3985      << MD->getSourceRange();
3986    HadError = true;
3987  }
3988
3989  QualType ReturnType =
3990    MD->getType()->getAs<FunctionType>()->getResultType();
3991  if (!ReturnType->isLValueReferenceType() ||
3992      !Context.hasSameType(
3993        Context.getCanonicalType(ReturnType->getPointeeType()),
3994        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3995    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
3996    HadError = true;
3997  }
3998
3999  ImplicitExceptionSpecification Spec(
4000      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4001
4002  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4003  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4004                          *ExceptionType = Context.getFunctionType(
4005                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4006
4007  QualType ArgType = OperType->getArgType(0);
4008  if (!ArgType->isRValueReferenceType()) {
4009    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4010    HadError = true;
4011  } else {
4012    if (ArgType->getPointeeType().isVolatileQualified()) {
4013      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4014      HadError = true;
4015    }
4016    if (ArgType->getPointeeType().isConstQualified()) {
4017      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4018      HadError = true;
4019    }
4020  }
4021
4022  if (OperType->getTypeQuals()) {
4023    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4024    HadError = true;
4025  }
4026
4027  if (OperType->hasExceptionSpec()) {
4028    if (CheckEquivalentExceptionSpec(
4029          PDiag(diag::err_incorrect_defaulted_exception_spec)
4030            << CXXMoveAssignment,
4031          PDiag(),
4032          ExceptionType, SourceLocation(),
4033          OperType, MD->getLocation())) {
4034      HadError = true;
4035    }
4036  } else if (First) {
4037    // We set the declaration to have the computed exception spec here.
4038    // We duplicate the one parameter type.
4039    EPI.RefQualifier = OperType->getRefQualifier();
4040    EPI.ExtInfo = OperType->getExtInfo();
4041    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4042  }
4043
4044  if (HadError) {
4045    MD->setInvalidDecl();
4046    return;
4047  }
4048
4049  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4050    if (First) {
4051      MD->setDeletedAsWritten();
4052    } else {
4053      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4054        << CXXMoveAssignment;
4055      MD->setInvalidDecl();
4056    }
4057  }
4058}
4059
4060void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4061  assert(DD->isExplicitlyDefaulted());
4062
4063  // Whether this was the first-declared instance of the destructor.
4064  bool First = DD == DD->getCanonicalDecl();
4065
4066  ImplicitExceptionSpecification Spec
4067    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4068  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4069  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4070                          *ExceptionType = Context.getFunctionType(
4071                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4072
4073  if (DtorType->hasExceptionSpec()) {
4074    if (CheckEquivalentExceptionSpec(
4075          PDiag(diag::err_incorrect_defaulted_exception_spec)
4076            << CXXDestructor,
4077          PDiag(),
4078          ExceptionType, SourceLocation(),
4079          DtorType, DD->getLocation())) {
4080      DD->setInvalidDecl();
4081      return;
4082    }
4083  } else if (First) {
4084    // We set the declaration to have the computed exception spec here.
4085    // There are no parameters.
4086    EPI.ExtInfo = DtorType->getExtInfo();
4087    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4088  }
4089
4090  if (ShouldDeleteDestructor(DD)) {
4091    if (First) {
4092      DD->setDeletedAsWritten();
4093    } else {
4094      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4095        << CXXDestructor;
4096      DD->setInvalidDecl();
4097    }
4098  }
4099}
4100
4101/// This function implements the following C++0x paragraphs:
4102///  - [class.ctor]/5
4103///  - [class.copy]/11
4104bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4105  assert(!MD->isInvalidDecl());
4106  CXXRecordDecl *RD = MD->getParent();
4107  assert(!RD->isDependentType() && "do deletion after instantiation");
4108  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4109    return false;
4110
4111  bool IsUnion = RD->isUnion();
4112  bool IsConstructor = false;
4113  bool IsAssignment = false;
4114  bool IsMove = false;
4115
4116  bool ConstArg = false;
4117
4118  switch (CSM) {
4119  case CXXDefaultConstructor:
4120    IsConstructor = true;
4121    break;
4122  case CXXCopyConstructor:
4123    IsConstructor = true;
4124    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4125    break;
4126  case CXXMoveConstructor:
4127    IsConstructor = true;
4128    IsMove = true;
4129    break;
4130  default:
4131    llvm_unreachable("function only currently implemented for default ctors");
4132  }
4133
4134  SourceLocation Loc = MD->getLocation();
4135
4136  // Do access control from the special member function
4137  ContextRAII MethodContext(*this, MD);
4138
4139  bool AllConst = true;
4140
4141  // We do this because we should never actually use an anonymous
4142  // union's constructor.
4143  if (IsUnion && RD->isAnonymousStructOrUnion())
4144    return false;
4145
4146  // FIXME: We should put some diagnostic logic right into this function.
4147
4148  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4149                                          BE = RD->bases_end();
4150       BI != BE; ++BI) {
4151    // We'll handle this one later
4152    if (BI->isVirtual())
4153      continue;
4154
4155    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4156    assert(BaseDecl && "base isn't a CXXRecordDecl");
4157
4158    // Unless we have an assignment operator, the base's destructor must
4159    // be accessible and not deleted.
4160    if (!IsAssignment) {
4161      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4162      if (BaseDtor->isDeleted())
4163        return true;
4164      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4165          AR_accessible)
4166        return true;
4167    }
4168
4169    // Finding the corresponding member in the base should lead to a
4170    // unique, accessible, non-deleted function. If we are doing
4171    // a destructor, we have already checked this case.
4172    if (CSM != CXXDestructor) {
4173      SpecialMemberOverloadResult *SMOR =
4174        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4175                            false);
4176      if (!SMOR->hasSuccess())
4177        return true;
4178      CXXMethodDecl *BaseMember = SMOR->getMethod();
4179      if (IsConstructor) {
4180        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4181        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4182                                   PDiag()) != AR_accessible)
4183          return true;
4184
4185        // For a move operation, the corresponding operation must actually
4186        // be a move operation (and not a copy selected by overload
4187        // resolution) unless we are working on a trivially copyable class.
4188        if (IsMove && !BaseCtor->isMoveConstructor() &&
4189            !BaseDecl->isTriviallyCopyable())
4190          return true;
4191      }
4192    }
4193  }
4194
4195  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4196                                          BE = RD->vbases_end();
4197       BI != BE; ++BI) {
4198    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4199    assert(BaseDecl && "base isn't a CXXRecordDecl");
4200
4201    // Unless we have an assignment operator, the base's destructor must
4202    // be accessible and not deleted.
4203    if (!IsAssignment) {
4204      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4205      if (BaseDtor->isDeleted())
4206        return true;
4207      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4208          AR_accessible)
4209        return true;
4210    }
4211
4212    // Finding the corresponding member in the base should lead to a
4213    // unique, accessible, non-deleted function.
4214    if (CSM != CXXDestructor) {
4215      SpecialMemberOverloadResult *SMOR =
4216        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4217                            false);
4218      if (!SMOR->hasSuccess())
4219        return true;
4220      CXXMethodDecl *BaseMember = SMOR->getMethod();
4221      if (IsConstructor) {
4222        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4223        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4224                                   PDiag()) != AR_accessible)
4225          return true;
4226
4227        // For a move operation, the corresponding operation must actually
4228        // be a move operation (and not a copy selected by overload
4229        // resolution) unless we are working on a trivially copyable class.
4230        if (IsMove && !BaseCtor->isMoveConstructor() &&
4231            !BaseDecl->isTriviallyCopyable())
4232          return true;
4233      }
4234    }
4235  }
4236
4237  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4238                                     FE = RD->field_end();
4239       FI != FE; ++FI) {
4240    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4241      continue;
4242
4243    QualType FieldType = Context.getBaseElementType(FI->getType());
4244    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4245
4246    // For a default constructor, all references must be initialized in-class
4247    // and, if a union, it must have a non-const member.
4248    if (CSM == CXXDefaultConstructor) {
4249      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4250        return true;
4251
4252      if (IsUnion && !FieldType.isConstQualified())
4253        AllConst = false;
4254    // For a copy constructor, data members must not be of rvalue reference
4255    // type.
4256    } else if (CSM == CXXCopyConstructor) {
4257      if (FieldType->isRValueReferenceType())
4258        return true;
4259    }
4260
4261    if (FieldRecord) {
4262      // For a default constructor, a const member must have a user-provided
4263      // default constructor or else be explicitly initialized.
4264      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4265          !FI->hasInClassInitializer() &&
4266          !FieldRecord->hasUserProvidedDefaultConstructor())
4267        return true;
4268
4269      // Some additional restrictions exist on the variant members.
4270      if (!IsUnion && FieldRecord->isUnion() &&
4271          FieldRecord->isAnonymousStructOrUnion()) {
4272        // We're okay to reuse AllConst here since we only care about the
4273        // value otherwise if we're in a union.
4274        AllConst = true;
4275
4276        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4277                                           UE = FieldRecord->field_end();
4278             UI != UE; ++UI) {
4279          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4280          CXXRecordDecl *UnionFieldRecord =
4281            UnionFieldType->getAsCXXRecordDecl();
4282
4283          if (!UnionFieldType.isConstQualified())
4284            AllConst = false;
4285
4286          if (UnionFieldRecord) {
4287            // FIXME: Checking for accessibility and validity of this
4288            //        destructor is technically going beyond the
4289            //        standard, but this is believed to be a defect.
4290            if (!IsAssignment) {
4291              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4292              if (FieldDtor->isDeleted())
4293                return true;
4294              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4295                  AR_accessible)
4296                return true;
4297              if (!FieldDtor->isTrivial())
4298                return true;
4299            }
4300
4301            if (CSM != CXXDestructor) {
4302              SpecialMemberOverloadResult *SMOR =
4303                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4304                                    false, false, false);
4305              // FIXME: Checking for accessibility and validity of this
4306              //        corresponding member is technically going beyond the
4307              //        standard, but this is believed to be a defect.
4308              if (!SMOR->hasSuccess())
4309                return true;
4310
4311              CXXMethodDecl *FieldMember = SMOR->getMethod();
4312              // A member of a union must have a trivial corresponding
4313              // constructor.
4314              if (!FieldMember->isTrivial())
4315                return true;
4316
4317              if (IsConstructor) {
4318                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4319                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4320                                           PDiag()) != AR_accessible)
4321                return true;
4322              }
4323            }
4324          }
4325        }
4326
4327        // At least one member in each anonymous union must be non-const
4328        if (CSM == CXXDefaultConstructor && AllConst)
4329          return true;
4330
4331        // Don't try to initialize the anonymous union
4332        // This is technically non-conformant, but sanity demands it.
4333        continue;
4334      }
4335
4336      // Unless we're doing assignment, the field's destructor must be
4337      // accessible and not deleted.
4338      if (!IsAssignment) {
4339        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4340        if (FieldDtor->isDeleted())
4341          return true;
4342        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4343            AR_accessible)
4344          return true;
4345      }
4346
4347      // Check that the corresponding member of the field is accessible,
4348      // unique, and non-deleted. We don't do this if it has an explicit
4349      // initialization when default-constructing.
4350      if (CSM != CXXDestructor &&
4351          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4352        SpecialMemberOverloadResult *SMOR =
4353          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4354                              false);
4355        if (!SMOR->hasSuccess())
4356          return true;
4357
4358        CXXMethodDecl *FieldMember = SMOR->getMethod();
4359        if (IsConstructor) {
4360          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4361          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4362                                     PDiag()) != AR_accessible)
4363          return true;
4364
4365          // For a move operation, the corresponding operation must actually
4366          // be a move operation (and not a copy selected by overload
4367          // resolution) unless we are working on a trivially copyable class.
4368          if (IsMove && !FieldCtor->isMoveConstructor() &&
4369              !FieldRecord->isTriviallyCopyable())
4370            return true;
4371        }
4372
4373        // We need the corresponding member of a union to be trivial so that
4374        // we can safely copy them all simultaneously.
4375        // FIXME: Note that performing the check here (where we rely on the lack
4376        // of an in-class initializer) is technically ill-formed. However, this
4377        // seems most obviously to be a bug in the standard.
4378        if (IsUnion && !FieldMember->isTrivial())
4379          return true;
4380      }
4381    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4382               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4383      // We can't initialize a const member of non-class type to any value.
4384      return true;
4385    }
4386  }
4387
4388  // We can't have all const members in a union when default-constructing,
4389  // or else they're all nonsensical garbage values that can't be changed.
4390  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4391    return true;
4392
4393  return false;
4394}
4395
4396bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4397  CXXRecordDecl *RD = MD->getParent();
4398  assert(!RD->isDependentType() && "do deletion after instantiation");
4399  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4400    return false;
4401
4402  SourceLocation Loc = MD->getLocation();
4403
4404  // Do access control from the constructor
4405  ContextRAII MethodContext(*this, MD);
4406
4407  bool Union = RD->isUnion();
4408
4409  unsigned ArgQuals =
4410    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4411      Qualifiers::Const : 0;
4412
4413  // We do this because we should never actually use an anonymous
4414  // union's constructor.
4415  if (Union && RD->isAnonymousStructOrUnion())
4416    return false;
4417
4418  // FIXME: We should put some diagnostic logic right into this function.
4419
4420  // C++0x [class.copy]/20
4421  //    A defaulted [copy] assignment operator for class X is defined as deleted
4422  //    if X has:
4423
4424  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4425                                          BE = RD->bases_end();
4426       BI != BE; ++BI) {
4427    // We'll handle this one later
4428    if (BI->isVirtual())
4429      continue;
4430
4431    QualType BaseType = BI->getType();
4432    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4433    assert(BaseDecl && "base isn't a CXXRecordDecl");
4434
4435    // -- a [direct base class] B that cannot be [copied] because overload
4436    //    resolution, as applied to B's [copy] assignment operator, results in
4437    //    an ambiguity or a function that is deleted or inaccessible from the
4438    //    assignment operator
4439    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4440                                                      0);
4441    if (!CopyOper || CopyOper->isDeleted())
4442      return true;
4443    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4444      return true;
4445  }
4446
4447  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4448                                          BE = RD->vbases_end();
4449       BI != BE; ++BI) {
4450    QualType BaseType = BI->getType();
4451    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4452    assert(BaseDecl && "base isn't a CXXRecordDecl");
4453
4454    // -- a [virtual base class] B that cannot be [copied] because overload
4455    //    resolution, as applied to B's [copy] assignment operator, results in
4456    //    an ambiguity or a function that is deleted or inaccessible from the
4457    //    assignment operator
4458    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4459                                                      0);
4460    if (!CopyOper || CopyOper->isDeleted())
4461      return true;
4462    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4463      return true;
4464  }
4465
4466  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4467                                     FE = RD->field_end();
4468       FI != FE; ++FI) {
4469    if (FI->isUnnamedBitfield())
4470      continue;
4471
4472    QualType FieldType = Context.getBaseElementType(FI->getType());
4473
4474    // -- a non-static data member of reference type
4475    if (FieldType->isReferenceType())
4476      return true;
4477
4478    // -- a non-static data member of const non-class type (or array thereof)
4479    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4480      return true;
4481
4482    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4483
4484    if (FieldRecord) {
4485      // This is an anonymous union
4486      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4487        // Anonymous unions inside unions do not variant members create
4488        if (!Union) {
4489          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4490                                             UE = FieldRecord->field_end();
4491               UI != UE; ++UI) {
4492            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4493            CXXRecordDecl *UnionFieldRecord =
4494              UnionFieldType->getAsCXXRecordDecl();
4495
4496            // -- a variant member with a non-trivial [copy] assignment operator
4497            //    and X is a union-like class
4498            if (UnionFieldRecord &&
4499                !UnionFieldRecord->hasTrivialCopyAssignment())
4500              return true;
4501          }
4502        }
4503
4504        // Don't try to initalize an anonymous union
4505        continue;
4506      // -- a variant member with a non-trivial [copy] assignment operator
4507      //    and X is a union-like class
4508      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4509          return true;
4510      }
4511
4512      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4513                                                        false, 0);
4514      if (!CopyOper || CopyOper->isDeleted())
4515        return true;
4516      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4517        return true;
4518    }
4519  }
4520
4521  return false;
4522}
4523
4524bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4525  CXXRecordDecl *RD = MD->getParent();
4526  assert(!RD->isDependentType() && "do deletion after instantiation");
4527  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4528    return false;
4529
4530  SourceLocation Loc = MD->getLocation();
4531
4532  // Do access control from the constructor
4533  ContextRAII MethodContext(*this, MD);
4534
4535  bool Union = RD->isUnion();
4536
4537  // We do this because we should never actually use an anonymous
4538  // union's constructor.
4539  if (Union && RD->isAnonymousStructOrUnion())
4540    return false;
4541
4542  // C++0x [class.copy]/20
4543  //    A defaulted [move] assignment operator for class X is defined as deleted
4544  //    if X has:
4545
4546  //    -- for the move constructor, [...] any direct or indirect virtual base
4547  //       class.
4548  if (RD->getNumVBases() != 0)
4549    return true;
4550
4551  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4552                                          BE = RD->bases_end();
4553       BI != BE; ++BI) {
4554
4555    QualType BaseType = BI->getType();
4556    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4557    assert(BaseDecl && "base isn't a CXXRecordDecl");
4558
4559    // -- a [direct base class] B that cannot be [moved] because overload
4560    //    resolution, as applied to B's [move] assignment operator, results in
4561    //    an ambiguity or a function that is deleted or inaccessible from the
4562    //    assignment operator
4563    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4564    if (!MoveOper || MoveOper->isDeleted())
4565      return true;
4566    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4567      return true;
4568
4569    // -- for the move assignment operator, a [direct base class] with a type
4570    //    that does not have a move assignment operator and is not trivially
4571    //    copyable.
4572    if (!MoveOper->isMoveAssignmentOperator() &&
4573        !BaseDecl->isTriviallyCopyable())
4574      return true;
4575  }
4576
4577  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4578                                     FE = RD->field_end();
4579       FI != FE; ++FI) {
4580    if (FI->isUnnamedBitfield())
4581      continue;
4582
4583    QualType FieldType = Context.getBaseElementType(FI->getType());
4584
4585    // -- a non-static data member of reference type
4586    if (FieldType->isReferenceType())
4587      return true;
4588
4589    // -- a non-static data member of const non-class type (or array thereof)
4590    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4591      return true;
4592
4593    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4594
4595    if (FieldRecord) {
4596      // This is an anonymous union
4597      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4598        // Anonymous unions inside unions do not variant members create
4599        if (!Union) {
4600          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4601                                             UE = FieldRecord->field_end();
4602               UI != UE; ++UI) {
4603            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4604            CXXRecordDecl *UnionFieldRecord =
4605              UnionFieldType->getAsCXXRecordDecl();
4606
4607            // -- a variant member with a non-trivial [move] assignment operator
4608            //    and X is a union-like class
4609            if (UnionFieldRecord &&
4610                !UnionFieldRecord->hasTrivialMoveAssignment())
4611              return true;
4612          }
4613        }
4614
4615        // Don't try to initalize an anonymous union
4616        continue;
4617      // -- a variant member with a non-trivial [move] assignment operator
4618      //    and X is a union-like class
4619      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4620          return true;
4621      }
4622
4623      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4624      if (!MoveOper || MoveOper->isDeleted())
4625        return true;
4626      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4627        return true;
4628
4629      // -- for the move assignment operator, a [non-static data member] with a
4630      //    type that does not have a move assignment operator and is not
4631      //    trivially copyable.
4632      if (!MoveOper->isMoveAssignmentOperator() &&
4633          !FieldRecord->isTriviallyCopyable())
4634        return true;
4635    }
4636  }
4637
4638  return false;
4639}
4640
4641bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4642  CXXRecordDecl *RD = DD->getParent();
4643  assert(!RD->isDependentType() && "do deletion after instantiation");
4644  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4645    return false;
4646
4647  SourceLocation Loc = DD->getLocation();
4648
4649  // Do access control from the destructor
4650  ContextRAII CtorContext(*this, DD);
4651
4652  bool Union = RD->isUnion();
4653
4654  // We do this because we should never actually use an anonymous
4655  // union's destructor.
4656  if (Union && RD->isAnonymousStructOrUnion())
4657    return false;
4658
4659  // C++0x [class.dtor]p5
4660  //    A defaulted destructor for a class X is defined as deleted if:
4661  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4662                                          BE = RD->bases_end();
4663       BI != BE; ++BI) {
4664    // We'll handle this one later
4665    if (BI->isVirtual())
4666      continue;
4667
4668    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4669    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4670    assert(BaseDtor && "base has no destructor");
4671
4672    // -- any direct or virtual base class has a deleted destructor or
4673    //    a destructor that is inaccessible from the defaulted destructor
4674    if (BaseDtor->isDeleted())
4675      return true;
4676    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4677        AR_accessible)
4678      return true;
4679  }
4680
4681  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4682                                          BE = RD->vbases_end();
4683       BI != BE; ++BI) {
4684    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4685    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4686    assert(BaseDtor && "base has no destructor");
4687
4688    // -- any direct or virtual base class has a deleted destructor or
4689    //    a destructor that is inaccessible from the defaulted destructor
4690    if (BaseDtor->isDeleted())
4691      return true;
4692    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4693        AR_accessible)
4694      return true;
4695  }
4696
4697  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4698                                     FE = RD->field_end();
4699       FI != FE; ++FI) {
4700    QualType FieldType = Context.getBaseElementType(FI->getType());
4701    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4702    if (FieldRecord) {
4703      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4704         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4705                                            UE = FieldRecord->field_end();
4706              UI != UE; ++UI) {
4707           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4708           CXXRecordDecl *UnionFieldRecord =
4709             UnionFieldType->getAsCXXRecordDecl();
4710
4711           // -- X is a union-like class that has a variant member with a non-
4712           //    trivial destructor.
4713           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4714             return true;
4715         }
4716      // Technically we are supposed to do this next check unconditionally.
4717      // But that makes absolutely no sense.
4718      } else {
4719        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4720
4721        // -- any of the non-static data members has class type M (or array
4722        //    thereof) and M has a deleted destructor or a destructor that is
4723        //    inaccessible from the defaulted destructor
4724        if (FieldDtor->isDeleted())
4725          return true;
4726        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4727          AR_accessible)
4728        return true;
4729
4730        // -- X is a union-like class that has a variant member with a non-
4731        //    trivial destructor.
4732        if (Union && !FieldDtor->isTrivial())
4733          return true;
4734      }
4735    }
4736  }
4737
4738  if (DD->isVirtual()) {
4739    FunctionDecl *OperatorDelete = 0;
4740    DeclarationName Name =
4741      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4742    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4743          false))
4744      return true;
4745  }
4746
4747
4748  return false;
4749}
4750
4751/// \brief Data used with FindHiddenVirtualMethod
4752namespace {
4753  struct FindHiddenVirtualMethodData {
4754    Sema *S;
4755    CXXMethodDecl *Method;
4756    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4757    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4758  };
4759}
4760
4761/// \brief Member lookup function that determines whether a given C++
4762/// method overloads virtual methods in a base class without overriding any,
4763/// to be used with CXXRecordDecl::lookupInBases().
4764static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4765                                    CXXBasePath &Path,
4766                                    void *UserData) {
4767  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4768
4769  FindHiddenVirtualMethodData &Data
4770    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4771
4772  DeclarationName Name = Data.Method->getDeclName();
4773  assert(Name.getNameKind() == DeclarationName::Identifier);
4774
4775  bool foundSameNameMethod = false;
4776  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4777  for (Path.Decls = BaseRecord->lookup(Name);
4778       Path.Decls.first != Path.Decls.second;
4779       ++Path.Decls.first) {
4780    NamedDecl *D = *Path.Decls.first;
4781    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4782      MD = MD->getCanonicalDecl();
4783      foundSameNameMethod = true;
4784      // Interested only in hidden virtual methods.
4785      if (!MD->isVirtual())
4786        continue;
4787      // If the method we are checking overrides a method from its base
4788      // don't warn about the other overloaded methods.
4789      if (!Data.S->IsOverload(Data.Method, MD, false))
4790        return true;
4791      // Collect the overload only if its hidden.
4792      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4793        overloadedMethods.push_back(MD);
4794    }
4795  }
4796
4797  if (foundSameNameMethod)
4798    Data.OverloadedMethods.append(overloadedMethods.begin(),
4799                                   overloadedMethods.end());
4800  return foundSameNameMethod;
4801}
4802
4803/// \brief See if a method overloads virtual methods in a base class without
4804/// overriding any.
4805void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4806  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4807                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4808    return;
4809  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4810    return;
4811
4812  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4813                     /*bool RecordPaths=*/false,
4814                     /*bool DetectVirtual=*/false);
4815  FindHiddenVirtualMethodData Data;
4816  Data.Method = MD;
4817  Data.S = this;
4818
4819  // Keep the base methods that were overriden or introduced in the subclass
4820  // by 'using' in a set. A base method not in this set is hidden.
4821  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4822       res.first != res.second; ++res.first) {
4823    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4824      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4825                                          E = MD->end_overridden_methods();
4826           I != E; ++I)
4827        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4828    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4829      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4830        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4831  }
4832
4833  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4834      !Data.OverloadedMethods.empty()) {
4835    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4836      << MD << (Data.OverloadedMethods.size() > 1);
4837
4838    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4839      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4840      Diag(overloadedMD->getLocation(),
4841           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4842    }
4843  }
4844}
4845
4846void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4847                                             Decl *TagDecl,
4848                                             SourceLocation LBrac,
4849                                             SourceLocation RBrac,
4850                                             AttributeList *AttrList) {
4851  if (!TagDecl)
4852    return;
4853
4854  AdjustDeclIfTemplate(TagDecl);
4855
4856  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4857              // strict aliasing violation!
4858              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4859              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4860
4861  CheckCompletedCXXClass(
4862                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4863}
4864
4865/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4866/// special functions, such as the default constructor, copy
4867/// constructor, or destructor, to the given C++ class (C++
4868/// [special]p1).  This routine can only be executed just before the
4869/// definition of the class is complete.
4870void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4871  if (!ClassDecl->hasUserDeclaredConstructor())
4872    ++ASTContext::NumImplicitDefaultConstructors;
4873
4874  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4875    ++ASTContext::NumImplicitCopyConstructors;
4876
4877  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4878    ++ASTContext::NumImplicitCopyAssignmentOperators;
4879
4880    // If we have a dynamic class, then the copy assignment operator may be
4881    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4882    // it shows up in the right place in the vtable and that we diagnose
4883    // problems with the implicit exception specification.
4884    if (ClassDecl->isDynamicClass())
4885      DeclareImplicitCopyAssignment(ClassDecl);
4886  }
4887
4888  if (!ClassDecl->hasUserDeclaredDestructor()) {
4889    ++ASTContext::NumImplicitDestructors;
4890
4891    // If we have a dynamic class, then the destructor may be virtual, so we
4892    // have to declare the destructor immediately. This ensures that, e.g., it
4893    // shows up in the right place in the vtable and that we diagnose problems
4894    // with the implicit exception specification.
4895    if (ClassDecl->isDynamicClass())
4896      DeclareImplicitDestructor(ClassDecl);
4897  }
4898}
4899
4900void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4901  if (!D)
4902    return;
4903
4904  int NumParamList = D->getNumTemplateParameterLists();
4905  for (int i = 0; i < NumParamList; i++) {
4906    TemplateParameterList* Params = D->getTemplateParameterList(i);
4907    for (TemplateParameterList::iterator Param = Params->begin(),
4908                                      ParamEnd = Params->end();
4909          Param != ParamEnd; ++Param) {
4910      NamedDecl *Named = cast<NamedDecl>(*Param);
4911      if (Named->getDeclName()) {
4912        S->AddDecl(Named);
4913        IdResolver.AddDecl(Named);
4914      }
4915    }
4916  }
4917}
4918
4919void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4920  if (!D)
4921    return;
4922
4923  TemplateParameterList *Params = 0;
4924  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4925    Params = Template->getTemplateParameters();
4926  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4927           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4928    Params = PartialSpec->getTemplateParameters();
4929  else
4930    return;
4931
4932  for (TemplateParameterList::iterator Param = Params->begin(),
4933                                    ParamEnd = Params->end();
4934       Param != ParamEnd; ++Param) {
4935    NamedDecl *Named = cast<NamedDecl>(*Param);
4936    if (Named->getDeclName()) {
4937      S->AddDecl(Named);
4938      IdResolver.AddDecl(Named);
4939    }
4940  }
4941}
4942
4943void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4944  if (!RecordD) return;
4945  AdjustDeclIfTemplate(RecordD);
4946  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4947  PushDeclContext(S, Record);
4948}
4949
4950void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4951  if (!RecordD) return;
4952  PopDeclContext();
4953}
4954
4955/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4956/// parsing a top-level (non-nested) C++ class, and we are now
4957/// parsing those parts of the given Method declaration that could
4958/// not be parsed earlier (C++ [class.mem]p2), such as default
4959/// arguments. This action should enter the scope of the given
4960/// Method declaration as if we had just parsed the qualified method
4961/// name. However, it should not bring the parameters into scope;
4962/// that will be performed by ActOnDelayedCXXMethodParameter.
4963void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4964}
4965
4966/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4967/// C++ method declaration. We're (re-)introducing the given
4968/// function parameter into scope for use in parsing later parts of
4969/// the method declaration. For example, we could see an
4970/// ActOnParamDefaultArgument event for this parameter.
4971void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4972  if (!ParamD)
4973    return;
4974
4975  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4976
4977  // If this parameter has an unparsed default argument, clear it out
4978  // to make way for the parsed default argument.
4979  if (Param->hasUnparsedDefaultArg())
4980    Param->setDefaultArg(0);
4981
4982  S->AddDecl(Param);
4983  if (Param->getDeclName())
4984    IdResolver.AddDecl(Param);
4985}
4986
4987/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4988/// processing the delayed method declaration for Method. The method
4989/// declaration is now considered finished. There may be a separate
4990/// ActOnStartOfFunctionDef action later (not necessarily
4991/// immediately!) for this method, if it was also defined inside the
4992/// class body.
4993void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4994  if (!MethodD)
4995    return;
4996
4997  AdjustDeclIfTemplate(MethodD);
4998
4999  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5000
5001  // Now that we have our default arguments, check the constructor
5002  // again. It could produce additional diagnostics or affect whether
5003  // the class has implicitly-declared destructors, among other
5004  // things.
5005  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5006    CheckConstructor(Constructor);
5007
5008  // Check the default arguments, which we may have added.
5009  if (!Method->isInvalidDecl())
5010    CheckCXXDefaultArguments(Method);
5011}
5012
5013/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5014/// the well-formedness of the constructor declarator @p D with type @p
5015/// R. If there are any errors in the declarator, this routine will
5016/// emit diagnostics and set the invalid bit to true.  In any case, the type
5017/// will be updated to reflect a well-formed type for the constructor and
5018/// returned.
5019QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5020                                          StorageClass &SC) {
5021  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5022
5023  // C++ [class.ctor]p3:
5024  //   A constructor shall not be virtual (10.3) or static (9.4). A
5025  //   constructor can be invoked for a const, volatile or const
5026  //   volatile object. A constructor shall not be declared const,
5027  //   volatile, or const volatile (9.3.2).
5028  if (isVirtual) {
5029    if (!D.isInvalidType())
5030      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5031        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5032        << SourceRange(D.getIdentifierLoc());
5033    D.setInvalidType();
5034  }
5035  if (SC == SC_Static) {
5036    if (!D.isInvalidType())
5037      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5038        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5039        << SourceRange(D.getIdentifierLoc());
5040    D.setInvalidType();
5041    SC = SC_None;
5042  }
5043
5044  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5045  if (FTI.TypeQuals != 0) {
5046    if (FTI.TypeQuals & Qualifiers::Const)
5047      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5048        << "const" << SourceRange(D.getIdentifierLoc());
5049    if (FTI.TypeQuals & Qualifiers::Volatile)
5050      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5051        << "volatile" << SourceRange(D.getIdentifierLoc());
5052    if (FTI.TypeQuals & Qualifiers::Restrict)
5053      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5054        << "restrict" << SourceRange(D.getIdentifierLoc());
5055    D.setInvalidType();
5056  }
5057
5058  // C++0x [class.ctor]p4:
5059  //   A constructor shall not be declared with a ref-qualifier.
5060  if (FTI.hasRefQualifier()) {
5061    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5062      << FTI.RefQualifierIsLValueRef
5063      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5064    D.setInvalidType();
5065  }
5066
5067  // Rebuild the function type "R" without any type qualifiers (in
5068  // case any of the errors above fired) and with "void" as the
5069  // return type, since constructors don't have return types.
5070  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5071  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5072    return R;
5073
5074  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5075  EPI.TypeQuals = 0;
5076  EPI.RefQualifier = RQ_None;
5077
5078  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5079                                 Proto->getNumArgs(), EPI);
5080}
5081
5082/// CheckConstructor - Checks a fully-formed constructor for
5083/// well-formedness, issuing any diagnostics required. Returns true if
5084/// the constructor declarator is invalid.
5085void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5086  CXXRecordDecl *ClassDecl
5087    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5088  if (!ClassDecl)
5089    return Constructor->setInvalidDecl();
5090
5091  // C++ [class.copy]p3:
5092  //   A declaration of a constructor for a class X is ill-formed if
5093  //   its first parameter is of type (optionally cv-qualified) X and
5094  //   either there are no other parameters or else all other
5095  //   parameters have default arguments.
5096  if (!Constructor->isInvalidDecl() &&
5097      ((Constructor->getNumParams() == 1) ||
5098       (Constructor->getNumParams() > 1 &&
5099        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5100      Constructor->getTemplateSpecializationKind()
5101                                              != TSK_ImplicitInstantiation) {
5102    QualType ParamType = Constructor->getParamDecl(0)->getType();
5103    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5104    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5105      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5106      const char *ConstRef
5107        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5108                                                        : " const &";
5109      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5110        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5111
5112      // FIXME: Rather that making the constructor invalid, we should endeavor
5113      // to fix the type.
5114      Constructor->setInvalidDecl();
5115    }
5116  }
5117}
5118
5119/// CheckDestructor - Checks a fully-formed destructor definition for
5120/// well-formedness, issuing any diagnostics required.  Returns true
5121/// on error.
5122bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5123  CXXRecordDecl *RD = Destructor->getParent();
5124
5125  if (Destructor->isVirtual()) {
5126    SourceLocation Loc;
5127
5128    if (!Destructor->isImplicit())
5129      Loc = Destructor->getLocation();
5130    else
5131      Loc = RD->getLocation();
5132
5133    // If we have a virtual destructor, look up the deallocation function
5134    FunctionDecl *OperatorDelete = 0;
5135    DeclarationName Name =
5136    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5137    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5138      return true;
5139
5140    MarkDeclarationReferenced(Loc, OperatorDelete);
5141
5142    Destructor->setOperatorDelete(OperatorDelete);
5143  }
5144
5145  return false;
5146}
5147
5148static inline bool
5149FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5150  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5151          FTI.ArgInfo[0].Param &&
5152          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5153}
5154
5155/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5156/// the well-formednes of the destructor declarator @p D with type @p
5157/// R. If there are any errors in the declarator, this routine will
5158/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5159/// will be updated to reflect a well-formed type for the destructor and
5160/// returned.
5161QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5162                                         StorageClass& SC) {
5163  // C++ [class.dtor]p1:
5164  //   [...] A typedef-name that names a class is a class-name
5165  //   (7.1.3); however, a typedef-name that names a class shall not
5166  //   be used as the identifier in the declarator for a destructor
5167  //   declaration.
5168  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5169  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5170    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5171      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5172  else if (const TemplateSpecializationType *TST =
5173             DeclaratorType->getAs<TemplateSpecializationType>())
5174    if (TST->isTypeAlias())
5175      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5176        << DeclaratorType << 1;
5177
5178  // C++ [class.dtor]p2:
5179  //   A destructor is used to destroy objects of its class type. A
5180  //   destructor takes no parameters, and no return type can be
5181  //   specified for it (not even void). The address of a destructor
5182  //   shall not be taken. A destructor shall not be static. A
5183  //   destructor can be invoked for a const, volatile or const
5184  //   volatile object. A destructor shall not be declared const,
5185  //   volatile or const volatile (9.3.2).
5186  if (SC == SC_Static) {
5187    if (!D.isInvalidType())
5188      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5189        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5190        << SourceRange(D.getIdentifierLoc())
5191        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5192
5193    SC = SC_None;
5194  }
5195  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5196    // Destructors don't have return types, but the parser will
5197    // happily parse something like:
5198    //
5199    //   class X {
5200    //     float ~X();
5201    //   };
5202    //
5203    // The return type will be eliminated later.
5204    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5205      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5206      << SourceRange(D.getIdentifierLoc());
5207  }
5208
5209  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5210  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5211    if (FTI.TypeQuals & Qualifiers::Const)
5212      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5213        << "const" << SourceRange(D.getIdentifierLoc());
5214    if (FTI.TypeQuals & Qualifiers::Volatile)
5215      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5216        << "volatile" << SourceRange(D.getIdentifierLoc());
5217    if (FTI.TypeQuals & Qualifiers::Restrict)
5218      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5219        << "restrict" << SourceRange(D.getIdentifierLoc());
5220    D.setInvalidType();
5221  }
5222
5223  // C++0x [class.dtor]p2:
5224  //   A destructor shall not be declared with a ref-qualifier.
5225  if (FTI.hasRefQualifier()) {
5226    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5227      << FTI.RefQualifierIsLValueRef
5228      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5229    D.setInvalidType();
5230  }
5231
5232  // Make sure we don't have any parameters.
5233  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5234    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5235
5236    // Delete the parameters.
5237    FTI.freeArgs();
5238    D.setInvalidType();
5239  }
5240
5241  // Make sure the destructor isn't variadic.
5242  if (FTI.isVariadic) {
5243    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5244    D.setInvalidType();
5245  }
5246
5247  // Rebuild the function type "R" without any type qualifiers or
5248  // parameters (in case any of the errors above fired) and with
5249  // "void" as the return type, since destructors don't have return
5250  // types.
5251  if (!D.isInvalidType())
5252    return R;
5253
5254  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5255  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5256  EPI.Variadic = false;
5257  EPI.TypeQuals = 0;
5258  EPI.RefQualifier = RQ_None;
5259  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5260}
5261
5262/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5263/// well-formednes of the conversion function declarator @p D with
5264/// type @p R. If there are any errors in the declarator, this routine
5265/// will emit diagnostics and return true. Otherwise, it will return
5266/// false. Either way, the type @p R will be updated to reflect a
5267/// well-formed type for the conversion operator.
5268void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5269                                     StorageClass& SC) {
5270  // C++ [class.conv.fct]p1:
5271  //   Neither parameter types nor return type can be specified. The
5272  //   type of a conversion function (8.3.5) is "function taking no
5273  //   parameter returning conversion-type-id."
5274  if (SC == SC_Static) {
5275    if (!D.isInvalidType())
5276      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5277        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5278        << SourceRange(D.getIdentifierLoc());
5279    D.setInvalidType();
5280    SC = SC_None;
5281  }
5282
5283  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5284
5285  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5286    // Conversion functions don't have return types, but the parser will
5287    // happily parse something like:
5288    //
5289    //   class X {
5290    //     float operator bool();
5291    //   };
5292    //
5293    // The return type will be changed later anyway.
5294    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5295      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5296      << SourceRange(D.getIdentifierLoc());
5297    D.setInvalidType();
5298  }
5299
5300  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5301
5302  // Make sure we don't have any parameters.
5303  if (Proto->getNumArgs() > 0) {
5304    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5305
5306    // Delete the parameters.
5307    D.getFunctionTypeInfo().freeArgs();
5308    D.setInvalidType();
5309  } else if (Proto->isVariadic()) {
5310    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5311    D.setInvalidType();
5312  }
5313
5314  // Diagnose "&operator bool()" and other such nonsense.  This
5315  // is actually a gcc extension which we don't support.
5316  if (Proto->getResultType() != ConvType) {
5317    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5318      << Proto->getResultType();
5319    D.setInvalidType();
5320    ConvType = Proto->getResultType();
5321  }
5322
5323  // C++ [class.conv.fct]p4:
5324  //   The conversion-type-id shall not represent a function type nor
5325  //   an array type.
5326  if (ConvType->isArrayType()) {
5327    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5328    ConvType = Context.getPointerType(ConvType);
5329    D.setInvalidType();
5330  } else if (ConvType->isFunctionType()) {
5331    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5332    ConvType = Context.getPointerType(ConvType);
5333    D.setInvalidType();
5334  }
5335
5336  // Rebuild the function type "R" without any parameters (in case any
5337  // of the errors above fired) and with the conversion type as the
5338  // return type.
5339  if (D.isInvalidType())
5340    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5341
5342  // C++0x explicit conversion operators.
5343  if (D.getDeclSpec().isExplicitSpecified())
5344    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5345         getLangOptions().CPlusPlus0x ?
5346           diag::warn_cxx98_compat_explicit_conversion_functions :
5347           diag::ext_explicit_conversion_functions)
5348      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5349}
5350
5351/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5352/// the declaration of the given C++ conversion function. This routine
5353/// is responsible for recording the conversion function in the C++
5354/// class, if possible.
5355Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5356  assert(Conversion && "Expected to receive a conversion function declaration");
5357
5358  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5359
5360  // Make sure we aren't redeclaring the conversion function.
5361  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5362
5363  // C++ [class.conv.fct]p1:
5364  //   [...] A conversion function is never used to convert a
5365  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5366  //   same object type (or a reference to it), to a (possibly
5367  //   cv-qualified) base class of that type (or a reference to it),
5368  //   or to (possibly cv-qualified) void.
5369  // FIXME: Suppress this warning if the conversion function ends up being a
5370  // virtual function that overrides a virtual function in a base class.
5371  QualType ClassType
5372    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5373  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5374    ConvType = ConvTypeRef->getPointeeType();
5375  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5376      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5377    /* Suppress diagnostics for instantiations. */;
5378  else if (ConvType->isRecordType()) {
5379    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5380    if (ConvType == ClassType)
5381      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5382        << ClassType;
5383    else if (IsDerivedFrom(ClassType, ConvType))
5384      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5385        <<  ClassType << ConvType;
5386  } else if (ConvType->isVoidType()) {
5387    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5388      << ClassType << ConvType;
5389  }
5390
5391  if (FunctionTemplateDecl *ConversionTemplate
5392                                = Conversion->getDescribedFunctionTemplate())
5393    return ConversionTemplate;
5394
5395  return Conversion;
5396}
5397
5398//===----------------------------------------------------------------------===//
5399// Namespace Handling
5400//===----------------------------------------------------------------------===//
5401
5402
5403
5404/// ActOnStartNamespaceDef - This is called at the start of a namespace
5405/// definition.
5406Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5407                                   SourceLocation InlineLoc,
5408                                   SourceLocation NamespaceLoc,
5409                                   SourceLocation IdentLoc,
5410                                   IdentifierInfo *II,
5411                                   SourceLocation LBrace,
5412                                   AttributeList *AttrList) {
5413  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5414  // For anonymous namespace, take the location of the left brace.
5415  SourceLocation Loc = II ? IdentLoc : LBrace;
5416  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
5417                                                 StartLoc, Loc, II);
5418  Namespc->setInline(InlineLoc.isValid());
5419
5420  Scope *DeclRegionScope = NamespcScope->getParent();
5421
5422  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5423
5424  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5425    PushNamespaceVisibilityAttr(Attr);
5426
5427  if (II) {
5428    // C++ [namespace.def]p2:
5429    //   The identifier in an original-namespace-definition shall not
5430    //   have been previously defined in the declarative region in
5431    //   which the original-namespace-definition appears. The
5432    //   identifier in an original-namespace-definition is the name of
5433    //   the namespace. Subsequently in that declarative region, it is
5434    //   treated as an original-namespace-name.
5435    //
5436    // Since namespace names are unique in their scope, and we don't
5437    // look through using directives, just look for any ordinary names.
5438
5439    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5440      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5441      Decl::IDNS_Namespace;
5442    NamedDecl *PrevDecl = 0;
5443    for (DeclContext::lookup_result R
5444            = CurContext->getRedeclContext()->lookup(II);
5445         R.first != R.second; ++R.first) {
5446      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5447        PrevDecl = *R.first;
5448        break;
5449      }
5450    }
5451
5452    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
5453      // This is an extended namespace definition.
5454      if (Namespc->isInline() != OrigNS->isInline()) {
5455        // inline-ness must match
5456        if (OrigNS->isInline()) {
5457          // The user probably just forgot the 'inline', so suggest that it
5458          // be added back.
5459          Diag(Namespc->getLocation(),
5460               diag::warn_inline_namespace_reopened_noninline)
5461            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5462        } else {
5463          Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
5464            << Namespc->isInline();
5465        }
5466        Diag(OrigNS->getLocation(), diag::note_previous_definition);
5467
5468        // Recover by ignoring the new namespace's inline status.
5469        Namespc->setInline(OrigNS->isInline());
5470      }
5471
5472      // Attach this namespace decl to the chain of extended namespace
5473      // definitions.
5474      OrigNS->setNextNamespace(Namespc);
5475      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
5476
5477      // Remove the previous declaration from the scope.
5478      if (DeclRegionScope->isDeclScope(OrigNS)) {
5479        IdResolver.RemoveDecl(OrigNS);
5480        DeclRegionScope->RemoveDecl(OrigNS);
5481      }
5482    } else if (PrevDecl) {
5483      // This is an invalid name redefinition.
5484      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
5485       << Namespc->getDeclName();
5486      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5487      Namespc->setInvalidDecl();
5488      // Continue on to push Namespc as current DeclContext and return it.
5489    } else if (II->isStr("std") &&
5490               CurContext->getRedeclContext()->isTranslationUnit()) {
5491      // This is the first "real" definition of the namespace "std", so update
5492      // our cache of the "std" namespace to point at this definition.
5493      if (NamespaceDecl *StdNS = getStdNamespace()) {
5494        // We had already defined a dummy namespace "std". Link this new
5495        // namespace definition to the dummy namespace "std".
5496        StdNS->setNextNamespace(Namespc);
5497        StdNS->setLocation(IdentLoc);
5498        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
5499      }
5500
5501      // Make our StdNamespace cache point at the first real definition of the
5502      // "std" namespace.
5503      StdNamespace = Namespc;
5504
5505      // Add this instance of "std" to the set of known namespaces
5506      KnownNamespaces[Namespc] = false;
5507    } else if (!Namespc->isInline()) {
5508      // Since this is an "original" namespace, add it to the known set of
5509      // namespaces if it is not an inline namespace.
5510      KnownNamespaces[Namespc] = false;
5511    }
5512
5513    PushOnScopeChains(Namespc, DeclRegionScope);
5514  } else {
5515    // Anonymous namespaces.
5516    assert(Namespc->isAnonymousNamespace());
5517
5518    // Link the anonymous namespace into its parent.
5519    NamespaceDecl *PrevDecl;
5520    DeclContext *Parent = CurContext->getRedeclContext();
5521    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5522      PrevDecl = TU->getAnonymousNamespace();
5523      TU->setAnonymousNamespace(Namespc);
5524    } else {
5525      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5526      PrevDecl = ND->getAnonymousNamespace();
5527      ND->setAnonymousNamespace(Namespc);
5528    }
5529
5530    // Link the anonymous namespace with its previous declaration.
5531    if (PrevDecl) {
5532      assert(PrevDecl->isAnonymousNamespace());
5533      assert(!PrevDecl->getNextNamespace());
5534      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
5535      PrevDecl->setNextNamespace(Namespc);
5536
5537      if (Namespc->isInline() != PrevDecl->isInline()) {
5538        // inline-ness must match
5539        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
5540          << Namespc->isInline();
5541        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5542        Namespc->setInvalidDecl();
5543        // Recover by ignoring the new namespace's inline status.
5544        Namespc->setInline(PrevDecl->isInline());
5545      }
5546    }
5547
5548    CurContext->addDecl(Namespc);
5549
5550    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5551    //   behaves as if it were replaced by
5552    //     namespace unique { /* empty body */ }
5553    //     using namespace unique;
5554    //     namespace unique { namespace-body }
5555    //   where all occurrences of 'unique' in a translation unit are
5556    //   replaced by the same identifier and this identifier differs
5557    //   from all other identifiers in the entire program.
5558
5559    // We just create the namespace with an empty name and then add an
5560    // implicit using declaration, just like the standard suggests.
5561    //
5562    // CodeGen enforces the "universally unique" aspect by giving all
5563    // declarations semantically contained within an anonymous
5564    // namespace internal linkage.
5565
5566    if (!PrevDecl) {
5567      UsingDirectiveDecl* UD
5568        = UsingDirectiveDecl::Create(Context, CurContext,
5569                                     /* 'using' */ LBrace,
5570                                     /* 'namespace' */ SourceLocation(),
5571                                     /* qualifier */ NestedNameSpecifierLoc(),
5572                                     /* identifier */ SourceLocation(),
5573                                     Namespc,
5574                                     /* Ancestor */ CurContext);
5575      UD->setImplicit();
5576      CurContext->addDecl(UD);
5577    }
5578  }
5579
5580  // Although we could have an invalid decl (i.e. the namespace name is a
5581  // redefinition), push it as current DeclContext and try to continue parsing.
5582  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5583  // for the namespace has the declarations that showed up in that particular
5584  // namespace definition.
5585  PushDeclContext(NamespcScope, Namespc);
5586  return Namespc;
5587}
5588
5589/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5590/// is a namespace alias, returns the namespace it points to.
5591static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5592  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5593    return AD->getNamespace();
5594  return dyn_cast_or_null<NamespaceDecl>(D);
5595}
5596
5597/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5598/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5599void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5600  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5601  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5602  Namespc->setRBraceLoc(RBrace);
5603  PopDeclContext();
5604  if (Namespc->hasAttr<VisibilityAttr>())
5605    PopPragmaVisibility();
5606}
5607
5608CXXRecordDecl *Sema::getStdBadAlloc() const {
5609  return cast_or_null<CXXRecordDecl>(
5610                                  StdBadAlloc.get(Context.getExternalSource()));
5611}
5612
5613NamespaceDecl *Sema::getStdNamespace() const {
5614  return cast_or_null<NamespaceDecl>(
5615                                 StdNamespace.get(Context.getExternalSource()));
5616}
5617
5618/// \brief Retrieve the special "std" namespace, which may require us to
5619/// implicitly define the namespace.
5620NamespaceDecl *Sema::getOrCreateStdNamespace() {
5621  if (!StdNamespace) {
5622    // The "std" namespace has not yet been defined, so build one implicitly.
5623    StdNamespace = NamespaceDecl::Create(Context,
5624                                         Context.getTranslationUnitDecl(),
5625                                         SourceLocation(), SourceLocation(),
5626                                         &PP.getIdentifierTable().get("std"));
5627    getStdNamespace()->setImplicit(true);
5628  }
5629
5630  return getStdNamespace();
5631}
5632
5633/// \brief Determine whether a using statement is in a context where it will be
5634/// apply in all contexts.
5635static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5636  switch (CurContext->getDeclKind()) {
5637    case Decl::TranslationUnit:
5638      return true;
5639    case Decl::LinkageSpec:
5640      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5641    default:
5642      return false;
5643  }
5644}
5645
5646static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5647                                       CXXScopeSpec &SS,
5648                                       SourceLocation IdentLoc,
5649                                       IdentifierInfo *Ident) {
5650  R.clear();
5651  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5652                                               R.getLookupKind(), Sc, &SS, NULL,
5653                                               false, S.CTC_NoKeywords, NULL)) {
5654    if (Corrected.getCorrectionDeclAs<NamespaceDecl>() ||
5655        Corrected.getCorrectionDeclAs<NamespaceAliasDecl>()) {
5656      std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5657      std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5658      if (DeclContext *DC = S.computeDeclContext(SS, false))
5659        S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5660          << Ident << DC << CorrectedQuotedStr << SS.getRange()
5661          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5662      else
5663        S.Diag(IdentLoc, diag::err_using_directive_suggest)
5664          << Ident << CorrectedQuotedStr
5665          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5666
5667      S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5668           diag::note_namespace_defined_here) << CorrectedQuotedStr;
5669
5670      Ident = Corrected.getCorrectionAsIdentifierInfo();
5671      R.addDecl(Corrected.getCorrectionDecl());
5672      return true;
5673    }
5674    R.setLookupName(Ident);
5675  }
5676  return false;
5677}
5678
5679Decl *Sema::ActOnUsingDirective(Scope *S,
5680                                          SourceLocation UsingLoc,
5681                                          SourceLocation NamespcLoc,
5682                                          CXXScopeSpec &SS,
5683                                          SourceLocation IdentLoc,
5684                                          IdentifierInfo *NamespcName,
5685                                          AttributeList *AttrList) {
5686  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5687  assert(NamespcName && "Invalid NamespcName.");
5688  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5689
5690  // This can only happen along a recovery path.
5691  while (S->getFlags() & Scope::TemplateParamScope)
5692    S = S->getParent();
5693  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5694
5695  UsingDirectiveDecl *UDir = 0;
5696  NestedNameSpecifier *Qualifier = 0;
5697  if (SS.isSet())
5698    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5699
5700  // Lookup namespace name.
5701  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5702  LookupParsedName(R, S, &SS);
5703  if (R.isAmbiguous())
5704    return 0;
5705
5706  if (R.empty()) {
5707    R.clear();
5708    // Allow "using namespace std;" or "using namespace ::std;" even if
5709    // "std" hasn't been defined yet, for GCC compatibility.
5710    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5711        NamespcName->isStr("std")) {
5712      Diag(IdentLoc, diag::ext_using_undefined_std);
5713      R.addDecl(getOrCreateStdNamespace());
5714      R.resolveKind();
5715    }
5716    // Otherwise, attempt typo correction.
5717    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5718  }
5719
5720  if (!R.empty()) {
5721    NamedDecl *Named = R.getFoundDecl();
5722    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5723        && "expected namespace decl");
5724    // C++ [namespace.udir]p1:
5725    //   A using-directive specifies that the names in the nominated
5726    //   namespace can be used in the scope in which the
5727    //   using-directive appears after the using-directive. During
5728    //   unqualified name lookup (3.4.1), the names appear as if they
5729    //   were declared in the nearest enclosing namespace which
5730    //   contains both the using-directive and the nominated
5731    //   namespace. [Note: in this context, "contains" means "contains
5732    //   directly or indirectly". ]
5733
5734    // Find enclosing context containing both using-directive and
5735    // nominated namespace.
5736    NamespaceDecl *NS = getNamespaceDecl(Named);
5737    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5738    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5739      CommonAncestor = CommonAncestor->getParent();
5740
5741    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5742                                      SS.getWithLocInContext(Context),
5743                                      IdentLoc, Named, CommonAncestor);
5744
5745    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5746        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5747      Diag(IdentLoc, diag::warn_using_directive_in_header);
5748    }
5749
5750    PushUsingDirective(S, UDir);
5751  } else {
5752    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5753  }
5754
5755  // FIXME: We ignore attributes for now.
5756  return UDir;
5757}
5758
5759void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5760  // If scope has associated entity, then using directive is at namespace
5761  // or translation unit scope. We add UsingDirectiveDecls, into
5762  // it's lookup structure.
5763  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
5764    Ctx->addDecl(UDir);
5765  else
5766    // Otherwise it is block-sope. using-directives will affect lookup
5767    // only to the end of scope.
5768    S->PushUsingDirective(UDir);
5769}
5770
5771
5772Decl *Sema::ActOnUsingDeclaration(Scope *S,
5773                                  AccessSpecifier AS,
5774                                  bool HasUsingKeyword,
5775                                  SourceLocation UsingLoc,
5776                                  CXXScopeSpec &SS,
5777                                  UnqualifiedId &Name,
5778                                  AttributeList *AttrList,
5779                                  bool IsTypeName,
5780                                  SourceLocation TypenameLoc) {
5781  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5782
5783  switch (Name.getKind()) {
5784  case UnqualifiedId::IK_ImplicitSelfParam:
5785  case UnqualifiedId::IK_Identifier:
5786  case UnqualifiedId::IK_OperatorFunctionId:
5787  case UnqualifiedId::IK_LiteralOperatorId:
5788  case UnqualifiedId::IK_ConversionFunctionId:
5789    break;
5790
5791  case UnqualifiedId::IK_ConstructorName:
5792  case UnqualifiedId::IK_ConstructorTemplateId:
5793    // C++0x inherited constructors.
5794    Diag(Name.getSourceRange().getBegin(),
5795         getLangOptions().CPlusPlus0x ?
5796           diag::warn_cxx98_compat_using_decl_constructor :
5797           diag::err_using_decl_constructor)
5798      << SS.getRange();
5799
5800    if (getLangOptions().CPlusPlus0x) break;
5801
5802    return 0;
5803
5804  case UnqualifiedId::IK_DestructorName:
5805    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5806      << SS.getRange();
5807    return 0;
5808
5809  case UnqualifiedId::IK_TemplateId:
5810    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5811      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5812    return 0;
5813  }
5814
5815  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5816  DeclarationName TargetName = TargetNameInfo.getName();
5817  if (!TargetName)
5818    return 0;
5819
5820  // Warn about using declarations.
5821  // TODO: store that the declaration was written without 'using' and
5822  // talk about access decls instead of using decls in the
5823  // diagnostics.
5824  if (!HasUsingKeyword) {
5825    UsingLoc = Name.getSourceRange().getBegin();
5826
5827    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5828      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5829  }
5830
5831  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5832      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5833    return 0;
5834
5835  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5836                                        TargetNameInfo, AttrList,
5837                                        /* IsInstantiation */ false,
5838                                        IsTypeName, TypenameLoc);
5839  if (UD)
5840    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5841
5842  return UD;
5843}
5844
5845/// \brief Determine whether a using declaration considers the given
5846/// declarations as "equivalent", e.g., if they are redeclarations of
5847/// the same entity or are both typedefs of the same type.
5848static bool
5849IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5850                         bool &SuppressRedeclaration) {
5851  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5852    SuppressRedeclaration = false;
5853    return true;
5854  }
5855
5856  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5857    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5858      SuppressRedeclaration = true;
5859      return Context.hasSameType(TD1->getUnderlyingType(),
5860                                 TD2->getUnderlyingType());
5861    }
5862
5863  return false;
5864}
5865
5866
5867/// Determines whether to create a using shadow decl for a particular
5868/// decl, given the set of decls existing prior to this using lookup.
5869bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5870                                const LookupResult &Previous) {
5871  // Diagnose finding a decl which is not from a base class of the
5872  // current class.  We do this now because there are cases where this
5873  // function will silently decide not to build a shadow decl, which
5874  // will pre-empt further diagnostics.
5875  //
5876  // We don't need to do this in C++0x because we do the check once on
5877  // the qualifier.
5878  //
5879  // FIXME: diagnose the following if we care enough:
5880  //   struct A { int foo; };
5881  //   struct B : A { using A::foo; };
5882  //   template <class T> struct C : A {};
5883  //   template <class T> struct D : C<T> { using B::foo; } // <---
5884  // This is invalid (during instantiation) in C++03 because B::foo
5885  // resolves to the using decl in B, which is not a base class of D<T>.
5886  // We can't diagnose it immediately because C<T> is an unknown
5887  // specialization.  The UsingShadowDecl in D<T> then points directly
5888  // to A::foo, which will look well-formed when we instantiate.
5889  // The right solution is to not collapse the shadow-decl chain.
5890  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5891    DeclContext *OrigDC = Orig->getDeclContext();
5892
5893    // Handle enums and anonymous structs.
5894    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5895    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5896    while (OrigRec->isAnonymousStructOrUnion())
5897      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5898
5899    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5900      if (OrigDC == CurContext) {
5901        Diag(Using->getLocation(),
5902             diag::err_using_decl_nested_name_specifier_is_current_class)
5903          << Using->getQualifierLoc().getSourceRange();
5904        Diag(Orig->getLocation(), diag::note_using_decl_target);
5905        return true;
5906      }
5907
5908      Diag(Using->getQualifierLoc().getBeginLoc(),
5909           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5910        << Using->getQualifier()
5911        << cast<CXXRecordDecl>(CurContext)
5912        << Using->getQualifierLoc().getSourceRange();
5913      Diag(Orig->getLocation(), diag::note_using_decl_target);
5914      return true;
5915    }
5916  }
5917
5918  if (Previous.empty()) return false;
5919
5920  NamedDecl *Target = Orig;
5921  if (isa<UsingShadowDecl>(Target))
5922    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5923
5924  // If the target happens to be one of the previous declarations, we
5925  // don't have a conflict.
5926  //
5927  // FIXME: but we might be increasing its access, in which case we
5928  // should redeclare it.
5929  NamedDecl *NonTag = 0, *Tag = 0;
5930  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5931         I != E; ++I) {
5932    NamedDecl *D = (*I)->getUnderlyingDecl();
5933    bool Result;
5934    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5935      return Result;
5936
5937    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5938  }
5939
5940  if (Target->isFunctionOrFunctionTemplate()) {
5941    FunctionDecl *FD;
5942    if (isa<FunctionTemplateDecl>(Target))
5943      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5944    else
5945      FD = cast<FunctionDecl>(Target);
5946
5947    NamedDecl *OldDecl = 0;
5948    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5949    case Ovl_Overload:
5950      return false;
5951
5952    case Ovl_NonFunction:
5953      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5954      break;
5955
5956    // We found a decl with the exact signature.
5957    case Ovl_Match:
5958      // If we're in a record, we want to hide the target, so we
5959      // return true (without a diagnostic) to tell the caller not to
5960      // build a shadow decl.
5961      if (CurContext->isRecord())
5962        return true;
5963
5964      // If we're not in a record, this is an error.
5965      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5966      break;
5967    }
5968
5969    Diag(Target->getLocation(), diag::note_using_decl_target);
5970    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5971    return true;
5972  }
5973
5974  // Target is not a function.
5975
5976  if (isa<TagDecl>(Target)) {
5977    // No conflict between a tag and a non-tag.
5978    if (!Tag) return false;
5979
5980    Diag(Using->getLocation(), diag::err_using_decl_conflict);
5981    Diag(Target->getLocation(), diag::note_using_decl_target);
5982    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5983    return true;
5984  }
5985
5986  // No conflict between a tag and a non-tag.
5987  if (!NonTag) return false;
5988
5989  Diag(Using->getLocation(), diag::err_using_decl_conflict);
5990  Diag(Target->getLocation(), diag::note_using_decl_target);
5991  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5992  return true;
5993}
5994
5995/// Builds a shadow declaration corresponding to a 'using' declaration.
5996UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
5997                                            UsingDecl *UD,
5998                                            NamedDecl *Orig) {
5999
6000  // If we resolved to another shadow declaration, just coalesce them.
6001  NamedDecl *Target = Orig;
6002  if (isa<UsingShadowDecl>(Target)) {
6003    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6004    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6005  }
6006
6007  UsingShadowDecl *Shadow
6008    = UsingShadowDecl::Create(Context, CurContext,
6009                              UD->getLocation(), UD, Target);
6010  UD->addShadowDecl(Shadow);
6011
6012  Shadow->setAccess(UD->getAccess());
6013  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6014    Shadow->setInvalidDecl();
6015
6016  if (S)
6017    PushOnScopeChains(Shadow, S);
6018  else
6019    CurContext->addDecl(Shadow);
6020
6021
6022  return Shadow;
6023}
6024
6025/// Hides a using shadow declaration.  This is required by the current
6026/// using-decl implementation when a resolvable using declaration in a
6027/// class is followed by a declaration which would hide or override
6028/// one or more of the using decl's targets; for example:
6029///
6030///   struct Base { void foo(int); };
6031///   struct Derived : Base {
6032///     using Base::foo;
6033///     void foo(int);
6034///   };
6035///
6036/// The governing language is C++03 [namespace.udecl]p12:
6037///
6038///   When a using-declaration brings names from a base class into a
6039///   derived class scope, member functions in the derived class
6040///   override and/or hide member functions with the same name and
6041///   parameter types in a base class (rather than conflicting).
6042///
6043/// There are two ways to implement this:
6044///   (1) optimistically create shadow decls when they're not hidden
6045///       by existing declarations, or
6046///   (2) don't create any shadow decls (or at least don't make them
6047///       visible) until we've fully parsed/instantiated the class.
6048/// The problem with (1) is that we might have to retroactively remove
6049/// a shadow decl, which requires several O(n) operations because the
6050/// decl structures are (very reasonably) not designed for removal.
6051/// (2) avoids this but is very fiddly and phase-dependent.
6052void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6053  if (Shadow->getDeclName().getNameKind() ==
6054        DeclarationName::CXXConversionFunctionName)
6055    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6056
6057  // Remove it from the DeclContext...
6058  Shadow->getDeclContext()->removeDecl(Shadow);
6059
6060  // ...and the scope, if applicable...
6061  if (S) {
6062    S->RemoveDecl(Shadow);
6063    IdResolver.RemoveDecl(Shadow);
6064  }
6065
6066  // ...and the using decl.
6067  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6068
6069  // TODO: complain somehow if Shadow was used.  It shouldn't
6070  // be possible for this to happen, because...?
6071}
6072
6073/// Builds a using declaration.
6074///
6075/// \param IsInstantiation - Whether this call arises from an
6076///   instantiation of an unresolved using declaration.  We treat
6077///   the lookup differently for these declarations.
6078NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6079                                       SourceLocation UsingLoc,
6080                                       CXXScopeSpec &SS,
6081                                       const DeclarationNameInfo &NameInfo,
6082                                       AttributeList *AttrList,
6083                                       bool IsInstantiation,
6084                                       bool IsTypeName,
6085                                       SourceLocation TypenameLoc) {
6086  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6087  SourceLocation IdentLoc = NameInfo.getLoc();
6088  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6089
6090  // FIXME: We ignore attributes for now.
6091
6092  if (SS.isEmpty()) {
6093    Diag(IdentLoc, diag::err_using_requires_qualname);
6094    return 0;
6095  }
6096
6097  // Do the redeclaration lookup in the current scope.
6098  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6099                        ForRedeclaration);
6100  Previous.setHideTags(false);
6101  if (S) {
6102    LookupName(Previous, S);
6103
6104    // It is really dumb that we have to do this.
6105    LookupResult::Filter F = Previous.makeFilter();
6106    while (F.hasNext()) {
6107      NamedDecl *D = F.next();
6108      if (!isDeclInScope(D, CurContext, S))
6109        F.erase();
6110    }
6111    F.done();
6112  } else {
6113    assert(IsInstantiation && "no scope in non-instantiation");
6114    assert(CurContext->isRecord() && "scope not record in instantiation");
6115    LookupQualifiedName(Previous, CurContext);
6116  }
6117
6118  // Check for invalid redeclarations.
6119  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6120    return 0;
6121
6122  // Check for bad qualifiers.
6123  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6124    return 0;
6125
6126  DeclContext *LookupContext = computeDeclContext(SS);
6127  NamedDecl *D;
6128  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6129  if (!LookupContext) {
6130    if (IsTypeName) {
6131      // FIXME: not all declaration name kinds are legal here
6132      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6133                                              UsingLoc, TypenameLoc,
6134                                              QualifierLoc,
6135                                              IdentLoc, NameInfo.getName());
6136    } else {
6137      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6138                                           QualifierLoc, NameInfo);
6139    }
6140  } else {
6141    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6142                          NameInfo, IsTypeName);
6143  }
6144  D->setAccess(AS);
6145  CurContext->addDecl(D);
6146
6147  if (!LookupContext) return D;
6148  UsingDecl *UD = cast<UsingDecl>(D);
6149
6150  if (RequireCompleteDeclContext(SS, LookupContext)) {
6151    UD->setInvalidDecl();
6152    return UD;
6153  }
6154
6155  // Constructor inheriting using decls get special treatment.
6156  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6157    if (CheckInheritedConstructorUsingDecl(UD))
6158      UD->setInvalidDecl();
6159    return UD;
6160  }
6161
6162  // Otherwise, look up the target name.
6163
6164  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6165
6166  // Unlike most lookups, we don't always want to hide tag
6167  // declarations: tag names are visible through the using declaration
6168  // even if hidden by ordinary names, *except* in a dependent context
6169  // where it's important for the sanity of two-phase lookup.
6170  if (!IsInstantiation)
6171    R.setHideTags(false);
6172
6173  LookupQualifiedName(R, LookupContext);
6174
6175  if (R.empty()) {
6176    Diag(IdentLoc, diag::err_no_member)
6177      << NameInfo.getName() << LookupContext << SS.getRange();
6178    UD->setInvalidDecl();
6179    return UD;
6180  }
6181
6182  if (R.isAmbiguous()) {
6183    UD->setInvalidDecl();
6184    return UD;
6185  }
6186
6187  if (IsTypeName) {
6188    // If we asked for a typename and got a non-type decl, error out.
6189    if (!R.getAsSingle<TypeDecl>()) {
6190      Diag(IdentLoc, diag::err_using_typename_non_type);
6191      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6192        Diag((*I)->getUnderlyingDecl()->getLocation(),
6193             diag::note_using_decl_target);
6194      UD->setInvalidDecl();
6195      return UD;
6196    }
6197  } else {
6198    // If we asked for a non-typename and we got a type, error out,
6199    // but only if this is an instantiation of an unresolved using
6200    // decl.  Otherwise just silently find the type name.
6201    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6202      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6203      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6204      UD->setInvalidDecl();
6205      return UD;
6206    }
6207  }
6208
6209  // C++0x N2914 [namespace.udecl]p6:
6210  // A using-declaration shall not name a namespace.
6211  if (R.getAsSingle<NamespaceDecl>()) {
6212    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6213      << SS.getRange();
6214    UD->setInvalidDecl();
6215    return UD;
6216  }
6217
6218  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6219    if (!CheckUsingShadowDecl(UD, *I, Previous))
6220      BuildUsingShadowDecl(S, UD, *I);
6221  }
6222
6223  return UD;
6224}
6225
6226/// Additional checks for a using declaration referring to a constructor name.
6227bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6228  if (UD->isTypeName()) {
6229    // FIXME: Cannot specify typename when specifying constructor
6230    return true;
6231  }
6232
6233  const Type *SourceType = UD->getQualifier()->getAsType();
6234  assert(SourceType &&
6235         "Using decl naming constructor doesn't have type in scope spec.");
6236  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6237
6238  // Check whether the named type is a direct base class.
6239  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6240  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6241  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6242       BaseIt != BaseE; ++BaseIt) {
6243    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6244    if (CanonicalSourceType == BaseType)
6245      break;
6246  }
6247
6248  if (BaseIt == BaseE) {
6249    // Did not find SourceType in the bases.
6250    Diag(UD->getUsingLocation(),
6251         diag::err_using_decl_constructor_not_in_direct_base)
6252      << UD->getNameInfo().getSourceRange()
6253      << QualType(SourceType, 0) << TargetClass;
6254    return true;
6255  }
6256
6257  BaseIt->setInheritConstructors();
6258
6259  return false;
6260}
6261
6262/// Checks that the given using declaration is not an invalid
6263/// redeclaration.  Note that this is checking only for the using decl
6264/// itself, not for any ill-formedness among the UsingShadowDecls.
6265bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6266                                       bool isTypeName,
6267                                       const CXXScopeSpec &SS,
6268                                       SourceLocation NameLoc,
6269                                       const LookupResult &Prev) {
6270  // C++03 [namespace.udecl]p8:
6271  // C++0x [namespace.udecl]p10:
6272  //   A using-declaration is a declaration and can therefore be used
6273  //   repeatedly where (and only where) multiple declarations are
6274  //   allowed.
6275  //
6276  // That's in non-member contexts.
6277  if (!CurContext->getRedeclContext()->isRecord())
6278    return false;
6279
6280  NestedNameSpecifier *Qual
6281    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6282
6283  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6284    NamedDecl *D = *I;
6285
6286    bool DTypename;
6287    NestedNameSpecifier *DQual;
6288    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6289      DTypename = UD->isTypeName();
6290      DQual = UD->getQualifier();
6291    } else if (UnresolvedUsingValueDecl *UD
6292                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6293      DTypename = false;
6294      DQual = UD->getQualifier();
6295    } else if (UnresolvedUsingTypenameDecl *UD
6296                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6297      DTypename = true;
6298      DQual = UD->getQualifier();
6299    } else continue;
6300
6301    // using decls differ if one says 'typename' and the other doesn't.
6302    // FIXME: non-dependent using decls?
6303    if (isTypeName != DTypename) continue;
6304
6305    // using decls differ if they name different scopes (but note that
6306    // template instantiation can cause this check to trigger when it
6307    // didn't before instantiation).
6308    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6309        Context.getCanonicalNestedNameSpecifier(DQual))
6310      continue;
6311
6312    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6313    Diag(D->getLocation(), diag::note_using_decl) << 1;
6314    return true;
6315  }
6316
6317  return false;
6318}
6319
6320
6321/// Checks that the given nested-name qualifier used in a using decl
6322/// in the current context is appropriately related to the current
6323/// scope.  If an error is found, diagnoses it and returns true.
6324bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6325                                   const CXXScopeSpec &SS,
6326                                   SourceLocation NameLoc) {
6327  DeclContext *NamedContext = computeDeclContext(SS);
6328
6329  if (!CurContext->isRecord()) {
6330    // C++03 [namespace.udecl]p3:
6331    // C++0x [namespace.udecl]p8:
6332    //   A using-declaration for a class member shall be a member-declaration.
6333
6334    // If we weren't able to compute a valid scope, it must be a
6335    // dependent class scope.
6336    if (!NamedContext || NamedContext->isRecord()) {
6337      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6338        << SS.getRange();
6339      return true;
6340    }
6341
6342    // Otherwise, everything is known to be fine.
6343    return false;
6344  }
6345
6346  // The current scope is a record.
6347
6348  // If the named context is dependent, we can't decide much.
6349  if (!NamedContext) {
6350    // FIXME: in C++0x, we can diagnose if we can prove that the
6351    // nested-name-specifier does not refer to a base class, which is
6352    // still possible in some cases.
6353
6354    // Otherwise we have to conservatively report that things might be
6355    // okay.
6356    return false;
6357  }
6358
6359  if (!NamedContext->isRecord()) {
6360    // Ideally this would point at the last name in the specifier,
6361    // but we don't have that level of source info.
6362    Diag(SS.getRange().getBegin(),
6363         diag::err_using_decl_nested_name_specifier_is_not_class)
6364      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6365    return true;
6366  }
6367
6368  if (!NamedContext->isDependentContext() &&
6369      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6370    return true;
6371
6372  if (getLangOptions().CPlusPlus0x) {
6373    // C++0x [namespace.udecl]p3:
6374    //   In a using-declaration used as a member-declaration, the
6375    //   nested-name-specifier shall name a base class of the class
6376    //   being defined.
6377
6378    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6379                                 cast<CXXRecordDecl>(NamedContext))) {
6380      if (CurContext == NamedContext) {
6381        Diag(NameLoc,
6382             diag::err_using_decl_nested_name_specifier_is_current_class)
6383          << SS.getRange();
6384        return true;
6385      }
6386
6387      Diag(SS.getRange().getBegin(),
6388           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6389        << (NestedNameSpecifier*) SS.getScopeRep()
6390        << cast<CXXRecordDecl>(CurContext)
6391        << SS.getRange();
6392      return true;
6393    }
6394
6395    return false;
6396  }
6397
6398  // C++03 [namespace.udecl]p4:
6399  //   A using-declaration used as a member-declaration shall refer
6400  //   to a member of a base class of the class being defined [etc.].
6401
6402  // Salient point: SS doesn't have to name a base class as long as
6403  // lookup only finds members from base classes.  Therefore we can
6404  // diagnose here only if we can prove that that can't happen,
6405  // i.e. if the class hierarchies provably don't intersect.
6406
6407  // TODO: it would be nice if "definitely valid" results were cached
6408  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6409  // need to be repeated.
6410
6411  struct UserData {
6412    llvm::DenseSet<const CXXRecordDecl*> Bases;
6413
6414    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6415      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6416      Data->Bases.insert(Base);
6417      return true;
6418    }
6419
6420    bool hasDependentBases(const CXXRecordDecl *Class) {
6421      return !Class->forallBases(collect, this);
6422    }
6423
6424    /// Returns true if the base is dependent or is one of the
6425    /// accumulated base classes.
6426    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6427      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6428      return !Data->Bases.count(Base);
6429    }
6430
6431    bool mightShareBases(const CXXRecordDecl *Class) {
6432      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6433    }
6434  };
6435
6436  UserData Data;
6437
6438  // Returns false if we find a dependent base.
6439  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6440    return false;
6441
6442  // Returns false if the class has a dependent base or if it or one
6443  // of its bases is present in the base set of the current context.
6444  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6445    return false;
6446
6447  Diag(SS.getRange().getBegin(),
6448       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6449    << (NestedNameSpecifier*) SS.getScopeRep()
6450    << cast<CXXRecordDecl>(CurContext)
6451    << SS.getRange();
6452
6453  return true;
6454}
6455
6456Decl *Sema::ActOnAliasDeclaration(Scope *S,
6457                                  AccessSpecifier AS,
6458                                  MultiTemplateParamsArg TemplateParamLists,
6459                                  SourceLocation UsingLoc,
6460                                  UnqualifiedId &Name,
6461                                  TypeResult Type) {
6462  // Skip up to the relevant declaration scope.
6463  while (S->getFlags() & Scope::TemplateParamScope)
6464    S = S->getParent();
6465  assert((S->getFlags() & Scope::DeclScope) &&
6466         "got alias-declaration outside of declaration scope");
6467
6468  if (Type.isInvalid())
6469    return 0;
6470
6471  bool Invalid = false;
6472  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6473  TypeSourceInfo *TInfo = 0;
6474  GetTypeFromParser(Type.get(), &TInfo);
6475
6476  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6477    return 0;
6478
6479  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6480                                      UPPC_DeclarationType)) {
6481    Invalid = true;
6482    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6483                                             TInfo->getTypeLoc().getBeginLoc());
6484  }
6485
6486  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6487  LookupName(Previous, S);
6488
6489  // Warn about shadowing the name of a template parameter.
6490  if (Previous.isSingleResult() &&
6491      Previous.getFoundDecl()->isTemplateParameter()) {
6492    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6493    Previous.clear();
6494  }
6495
6496  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6497         "name in alias declaration must be an identifier");
6498  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6499                                               Name.StartLocation,
6500                                               Name.Identifier, TInfo);
6501
6502  NewTD->setAccess(AS);
6503
6504  if (Invalid)
6505    NewTD->setInvalidDecl();
6506
6507  CheckTypedefForVariablyModifiedType(S, NewTD);
6508  Invalid |= NewTD->isInvalidDecl();
6509
6510  bool Redeclaration = false;
6511
6512  NamedDecl *NewND;
6513  if (TemplateParamLists.size()) {
6514    TypeAliasTemplateDecl *OldDecl = 0;
6515    TemplateParameterList *OldTemplateParams = 0;
6516
6517    if (TemplateParamLists.size() != 1) {
6518      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6519        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6520         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6521    }
6522    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6523
6524    // Only consider previous declarations in the same scope.
6525    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6526                         /*ExplicitInstantiationOrSpecialization*/false);
6527    if (!Previous.empty()) {
6528      Redeclaration = true;
6529
6530      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6531      if (!OldDecl && !Invalid) {
6532        Diag(UsingLoc, diag::err_redefinition_different_kind)
6533          << Name.Identifier;
6534
6535        NamedDecl *OldD = Previous.getRepresentativeDecl();
6536        if (OldD->getLocation().isValid())
6537          Diag(OldD->getLocation(), diag::note_previous_definition);
6538
6539        Invalid = true;
6540      }
6541
6542      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6543        if (TemplateParameterListsAreEqual(TemplateParams,
6544                                           OldDecl->getTemplateParameters(),
6545                                           /*Complain=*/true,
6546                                           TPL_TemplateMatch))
6547          OldTemplateParams = OldDecl->getTemplateParameters();
6548        else
6549          Invalid = true;
6550
6551        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6552        if (!Invalid &&
6553            !Context.hasSameType(OldTD->getUnderlyingType(),
6554                                 NewTD->getUnderlyingType())) {
6555          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6556          // but we can't reasonably accept it.
6557          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6558            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6559          if (OldTD->getLocation().isValid())
6560            Diag(OldTD->getLocation(), diag::note_previous_definition);
6561          Invalid = true;
6562        }
6563      }
6564    }
6565
6566    // Merge any previous default template arguments into our parameters,
6567    // and check the parameter list.
6568    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6569                                   TPC_TypeAliasTemplate))
6570      return 0;
6571
6572    TypeAliasTemplateDecl *NewDecl =
6573      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6574                                    Name.Identifier, TemplateParams,
6575                                    NewTD);
6576
6577    NewDecl->setAccess(AS);
6578
6579    if (Invalid)
6580      NewDecl->setInvalidDecl();
6581    else if (OldDecl)
6582      NewDecl->setPreviousDeclaration(OldDecl);
6583
6584    NewND = NewDecl;
6585  } else {
6586    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6587    NewND = NewTD;
6588  }
6589
6590  if (!Redeclaration)
6591    PushOnScopeChains(NewND, S);
6592
6593  return NewND;
6594}
6595
6596Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6597                                             SourceLocation NamespaceLoc,
6598                                             SourceLocation AliasLoc,
6599                                             IdentifierInfo *Alias,
6600                                             CXXScopeSpec &SS,
6601                                             SourceLocation IdentLoc,
6602                                             IdentifierInfo *Ident) {
6603
6604  // Lookup the namespace name.
6605  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6606  LookupParsedName(R, S, &SS);
6607
6608  // Check if we have a previous declaration with the same name.
6609  NamedDecl *PrevDecl
6610    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6611                       ForRedeclaration);
6612  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6613    PrevDecl = 0;
6614
6615  if (PrevDecl) {
6616    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6617      // We already have an alias with the same name that points to the same
6618      // namespace, so don't create a new one.
6619      // FIXME: At some point, we'll want to create the (redundant)
6620      // declaration to maintain better source information.
6621      if (!R.isAmbiguous() && !R.empty() &&
6622          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6623        return 0;
6624    }
6625
6626    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6627      diag::err_redefinition_different_kind;
6628    Diag(AliasLoc, DiagID) << Alias;
6629    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6630    return 0;
6631  }
6632
6633  if (R.isAmbiguous())
6634    return 0;
6635
6636  if (R.empty()) {
6637    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6638      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6639      return 0;
6640    }
6641  }
6642
6643  NamespaceAliasDecl *AliasDecl =
6644    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6645                               Alias, SS.getWithLocInContext(Context),
6646                               IdentLoc, R.getFoundDecl());
6647
6648  PushOnScopeChains(AliasDecl, S);
6649  return AliasDecl;
6650}
6651
6652namespace {
6653  /// \brief Scoped object used to handle the state changes required in Sema
6654  /// to implicitly define the body of a C++ member function;
6655  class ImplicitlyDefinedFunctionScope {
6656    Sema &S;
6657    Sema::ContextRAII SavedContext;
6658
6659  public:
6660    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6661      : S(S), SavedContext(S, Method)
6662    {
6663      S.PushFunctionScope();
6664      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6665    }
6666
6667    ~ImplicitlyDefinedFunctionScope() {
6668      S.PopExpressionEvaluationContext();
6669      S.PopFunctionOrBlockScope();
6670    }
6671  };
6672}
6673
6674Sema::ImplicitExceptionSpecification
6675Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6676  // C++ [except.spec]p14:
6677  //   An implicitly declared special member function (Clause 12) shall have an
6678  //   exception-specification. [...]
6679  ImplicitExceptionSpecification ExceptSpec(Context);
6680  if (ClassDecl->isInvalidDecl())
6681    return ExceptSpec;
6682
6683  // Direct base-class constructors.
6684  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6685                                       BEnd = ClassDecl->bases_end();
6686       B != BEnd; ++B) {
6687    if (B->isVirtual()) // Handled below.
6688      continue;
6689
6690    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6691      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6692      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6693      // If this is a deleted function, add it anyway. This might be conformant
6694      // with the standard. This might not. I'm not sure. It might not matter.
6695      if (Constructor)
6696        ExceptSpec.CalledDecl(Constructor);
6697    }
6698  }
6699
6700  // Virtual base-class constructors.
6701  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6702                                       BEnd = ClassDecl->vbases_end();
6703       B != BEnd; ++B) {
6704    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6705      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6706      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6707      // If this is a deleted function, add it anyway. This might be conformant
6708      // with the standard. This might not. I'm not sure. It might not matter.
6709      if (Constructor)
6710        ExceptSpec.CalledDecl(Constructor);
6711    }
6712  }
6713
6714  // Field constructors.
6715  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6716                               FEnd = ClassDecl->field_end();
6717       F != FEnd; ++F) {
6718    if (F->hasInClassInitializer()) {
6719      if (Expr *E = F->getInClassInitializer())
6720        ExceptSpec.CalledExpr(E);
6721      else if (!F->isInvalidDecl())
6722        ExceptSpec.SetDelayed();
6723    } else if (const RecordType *RecordTy
6724              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6725      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6726      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6727      // If this is a deleted function, add it anyway. This might be conformant
6728      // with the standard. This might not. I'm not sure. It might not matter.
6729      // In particular, the problem is that this function never gets called. It
6730      // might just be ill-formed because this function attempts to refer to
6731      // a deleted function here.
6732      if (Constructor)
6733        ExceptSpec.CalledDecl(Constructor);
6734    }
6735  }
6736
6737  return ExceptSpec;
6738}
6739
6740CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6741                                                     CXXRecordDecl *ClassDecl) {
6742  // C++ [class.ctor]p5:
6743  //   A default constructor for a class X is a constructor of class X
6744  //   that can be called without an argument. If there is no
6745  //   user-declared constructor for class X, a default constructor is
6746  //   implicitly declared. An implicitly-declared default constructor
6747  //   is an inline public member of its class.
6748  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6749         "Should not build implicit default constructor!");
6750
6751  ImplicitExceptionSpecification Spec =
6752    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6753  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6754
6755  // Create the actual constructor declaration.
6756  CanQualType ClassType
6757    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6758  SourceLocation ClassLoc = ClassDecl->getLocation();
6759  DeclarationName Name
6760    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6761  DeclarationNameInfo NameInfo(Name, ClassLoc);
6762  CXXConstructorDecl *DefaultCon
6763    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6764                                 Context.getFunctionType(Context.VoidTy,
6765                                                         0, 0, EPI),
6766                                 /*TInfo=*/0,
6767                                 /*isExplicit=*/false,
6768                                 /*isInline=*/true,
6769                                 /*isImplicitlyDeclared=*/true,
6770                                 // FIXME: apply the rules for definitions here
6771                                 /*isConstexpr=*/false);
6772  DefaultCon->setAccess(AS_public);
6773  DefaultCon->setDefaulted();
6774  DefaultCon->setImplicit();
6775  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6776
6777  // Note that we have declared this constructor.
6778  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6779
6780  if (Scope *S = getScopeForContext(ClassDecl))
6781    PushOnScopeChains(DefaultCon, S, false);
6782  ClassDecl->addDecl(DefaultCon);
6783
6784  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6785    DefaultCon->setDeletedAsWritten();
6786
6787  return DefaultCon;
6788}
6789
6790void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6791                                            CXXConstructorDecl *Constructor) {
6792  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6793          !Constructor->doesThisDeclarationHaveABody() &&
6794          !Constructor->isDeleted()) &&
6795    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6796
6797  CXXRecordDecl *ClassDecl = Constructor->getParent();
6798  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6799
6800  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6801  DiagnosticErrorTrap Trap(Diags);
6802  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6803      Trap.hasErrorOccurred()) {
6804    Diag(CurrentLocation, diag::note_member_synthesized_at)
6805      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6806    Constructor->setInvalidDecl();
6807    return;
6808  }
6809
6810  SourceLocation Loc = Constructor->getLocation();
6811  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6812
6813  Constructor->setUsed();
6814  MarkVTableUsed(CurrentLocation, ClassDecl);
6815
6816  if (ASTMutationListener *L = getASTMutationListener()) {
6817    L->CompletedImplicitDefinition(Constructor);
6818  }
6819}
6820
6821/// Get any existing defaulted default constructor for the given class. Do not
6822/// implicitly define one if it does not exist.
6823static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6824                                                             CXXRecordDecl *D) {
6825  ASTContext &Context = Self.Context;
6826  QualType ClassType = Context.getTypeDeclType(D);
6827  DeclarationName ConstructorName
6828    = Context.DeclarationNames.getCXXConstructorName(
6829                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6830
6831  DeclContext::lookup_const_iterator Con, ConEnd;
6832  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6833       Con != ConEnd; ++Con) {
6834    // A function template cannot be defaulted.
6835    if (isa<FunctionTemplateDecl>(*Con))
6836      continue;
6837
6838    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6839    if (Constructor->isDefaultConstructor())
6840      return Constructor->isDefaulted() ? Constructor : 0;
6841  }
6842  return 0;
6843}
6844
6845void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6846  if (!D) return;
6847  AdjustDeclIfTemplate(D);
6848
6849  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6850  CXXConstructorDecl *CtorDecl
6851    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6852
6853  if (!CtorDecl) return;
6854
6855  // Compute the exception specification for the default constructor.
6856  const FunctionProtoType *CtorTy =
6857    CtorDecl->getType()->castAs<FunctionProtoType>();
6858  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6859    ImplicitExceptionSpecification Spec =
6860      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6861    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6862    assert(EPI.ExceptionSpecType != EST_Delayed);
6863
6864    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6865  }
6866
6867  // If the default constructor is explicitly defaulted, checking the exception
6868  // specification is deferred until now.
6869  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6870      !ClassDecl->isDependentType())
6871    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
6872}
6873
6874void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6875  // We start with an initial pass over the base classes to collect those that
6876  // inherit constructors from. If there are none, we can forgo all further
6877  // processing.
6878  typedef SmallVector<const RecordType *, 4> BasesVector;
6879  BasesVector BasesToInheritFrom;
6880  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6881                                          BaseE = ClassDecl->bases_end();
6882         BaseIt != BaseE; ++BaseIt) {
6883    if (BaseIt->getInheritConstructors()) {
6884      QualType Base = BaseIt->getType();
6885      if (Base->isDependentType()) {
6886        // If we inherit constructors from anything that is dependent, just
6887        // abort processing altogether. We'll get another chance for the
6888        // instantiations.
6889        return;
6890      }
6891      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6892    }
6893  }
6894  if (BasesToInheritFrom.empty())
6895    return;
6896
6897  // Now collect the constructors that we already have in the current class.
6898  // Those take precedence over inherited constructors.
6899  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6900  //   unless there is a user-declared constructor with the same signature in
6901  //   the class where the using-declaration appears.
6902  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6903  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6904                                    CtorE = ClassDecl->ctor_end();
6905       CtorIt != CtorE; ++CtorIt) {
6906    ExistingConstructors.insert(
6907        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6908  }
6909
6910  Scope *S = getScopeForContext(ClassDecl);
6911  DeclarationName CreatedCtorName =
6912      Context.DeclarationNames.getCXXConstructorName(
6913          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6914
6915  // Now comes the true work.
6916  // First, we keep a map from constructor types to the base that introduced
6917  // them. Needed for finding conflicting constructors. We also keep the
6918  // actually inserted declarations in there, for pretty diagnostics.
6919  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6920  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6921  ConstructorToSourceMap InheritedConstructors;
6922  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6923                             BaseE = BasesToInheritFrom.end();
6924       BaseIt != BaseE; ++BaseIt) {
6925    const RecordType *Base = *BaseIt;
6926    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6927    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6928    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6929                                      CtorE = BaseDecl->ctor_end();
6930         CtorIt != CtorE; ++CtorIt) {
6931      // Find the using declaration for inheriting this base's constructors.
6932      DeclarationName Name =
6933          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6934      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6935          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6936      SourceLocation UsingLoc = UD ? UD->getLocation() :
6937                                     ClassDecl->getLocation();
6938
6939      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6940      //   from the class X named in the using-declaration consists of actual
6941      //   constructors and notional constructors that result from the
6942      //   transformation of defaulted parameters as follows:
6943      //   - all non-template default constructors of X, and
6944      //   - for each non-template constructor of X that has at least one
6945      //     parameter with a default argument, the set of constructors that
6946      //     results from omitting any ellipsis parameter specification and
6947      //     successively omitting parameters with a default argument from the
6948      //     end of the parameter-type-list.
6949      CXXConstructorDecl *BaseCtor = *CtorIt;
6950      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6951      const FunctionProtoType *BaseCtorType =
6952          BaseCtor->getType()->getAs<FunctionProtoType>();
6953
6954      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6955                    maxParams = BaseCtor->getNumParams();
6956           params <= maxParams; ++params) {
6957        // Skip default constructors. They're never inherited.
6958        if (params == 0)
6959          continue;
6960        // Skip copy and move constructors for the same reason.
6961        if (CanBeCopyOrMove && params == 1)
6962          continue;
6963
6964        // Build up a function type for this particular constructor.
6965        // FIXME: The working paper does not consider that the exception spec
6966        // for the inheriting constructor might be larger than that of the
6967        // source. This code doesn't yet, either. When it does, this code will
6968        // need to be delayed until after exception specifications and in-class
6969        // member initializers are attached.
6970        const Type *NewCtorType;
6971        if (params == maxParams)
6972          NewCtorType = BaseCtorType;
6973        else {
6974          SmallVector<QualType, 16> Args;
6975          for (unsigned i = 0; i < params; ++i) {
6976            Args.push_back(BaseCtorType->getArgType(i));
6977          }
6978          FunctionProtoType::ExtProtoInfo ExtInfo =
6979              BaseCtorType->getExtProtoInfo();
6980          ExtInfo.Variadic = false;
6981          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6982                                                Args.data(), params, ExtInfo)
6983                       .getTypePtr();
6984        }
6985        const Type *CanonicalNewCtorType =
6986            Context.getCanonicalType(NewCtorType);
6987
6988        // Now that we have the type, first check if the class already has a
6989        // constructor with this signature.
6990        if (ExistingConstructors.count(CanonicalNewCtorType))
6991          continue;
6992
6993        // Then we check if we have already declared an inherited constructor
6994        // with this signature.
6995        std::pair<ConstructorToSourceMap::iterator, bool> result =
6996            InheritedConstructors.insert(std::make_pair(
6997                CanonicalNewCtorType,
6998                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
6999        if (!result.second) {
7000          // Already in the map. If it came from a different class, that's an
7001          // error. Not if it's from the same.
7002          CanQualType PreviousBase = result.first->second.first;
7003          if (CanonicalBase != PreviousBase) {
7004            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7005            const CXXConstructorDecl *PrevBaseCtor =
7006                PrevCtor->getInheritedConstructor();
7007            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7008
7009            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7010            Diag(BaseCtor->getLocation(),
7011                 diag::note_using_decl_constructor_conflict_current_ctor);
7012            Diag(PrevBaseCtor->getLocation(),
7013                 diag::note_using_decl_constructor_conflict_previous_ctor);
7014            Diag(PrevCtor->getLocation(),
7015                 diag::note_using_decl_constructor_conflict_previous_using);
7016          }
7017          continue;
7018        }
7019
7020        // OK, we're there, now add the constructor.
7021        // C++0x [class.inhctor]p8: [...] that would be performed by a
7022        //   user-written inline constructor [...]
7023        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7024        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7025            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7026            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7027            /*ImplicitlyDeclared=*/true,
7028            // FIXME: Due to a defect in the standard, we treat inherited
7029            // constructors as constexpr even if that makes them ill-formed.
7030            /*Constexpr=*/BaseCtor->isConstexpr());
7031        NewCtor->setAccess(BaseCtor->getAccess());
7032
7033        // Build up the parameter decls and add them.
7034        SmallVector<ParmVarDecl *, 16> ParamDecls;
7035        for (unsigned i = 0; i < params; ++i) {
7036          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7037                                                   UsingLoc, UsingLoc,
7038                                                   /*IdentifierInfo=*/0,
7039                                                   BaseCtorType->getArgType(i),
7040                                                   /*TInfo=*/0, SC_None,
7041                                                   SC_None, /*DefaultArg=*/0));
7042        }
7043        NewCtor->setParams(ParamDecls);
7044        NewCtor->setInheritedConstructor(BaseCtor);
7045
7046        PushOnScopeChains(NewCtor, S, false);
7047        ClassDecl->addDecl(NewCtor);
7048        result.first->second.second = NewCtor;
7049      }
7050    }
7051  }
7052}
7053
7054Sema::ImplicitExceptionSpecification
7055Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7056  // C++ [except.spec]p14:
7057  //   An implicitly declared special member function (Clause 12) shall have
7058  //   an exception-specification.
7059  ImplicitExceptionSpecification ExceptSpec(Context);
7060  if (ClassDecl->isInvalidDecl())
7061    return ExceptSpec;
7062
7063  // Direct base-class destructors.
7064  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7065                                       BEnd = ClassDecl->bases_end();
7066       B != BEnd; ++B) {
7067    if (B->isVirtual()) // Handled below.
7068      continue;
7069
7070    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7071      ExceptSpec.CalledDecl(
7072                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7073  }
7074
7075  // Virtual base-class destructors.
7076  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7077                                       BEnd = ClassDecl->vbases_end();
7078       B != BEnd; ++B) {
7079    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7080      ExceptSpec.CalledDecl(
7081                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7082  }
7083
7084  // Field destructors.
7085  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7086                               FEnd = ClassDecl->field_end();
7087       F != FEnd; ++F) {
7088    if (const RecordType *RecordTy
7089        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7090      ExceptSpec.CalledDecl(
7091                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7092  }
7093
7094  return ExceptSpec;
7095}
7096
7097CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7098  // C++ [class.dtor]p2:
7099  //   If a class has no user-declared destructor, a destructor is
7100  //   declared implicitly. An implicitly-declared destructor is an
7101  //   inline public member of its class.
7102
7103  ImplicitExceptionSpecification Spec =
7104      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7105  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7106
7107  // Create the actual destructor declaration.
7108  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7109
7110  CanQualType ClassType
7111    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7112  SourceLocation ClassLoc = ClassDecl->getLocation();
7113  DeclarationName Name
7114    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7115  DeclarationNameInfo NameInfo(Name, ClassLoc);
7116  CXXDestructorDecl *Destructor
7117      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7118                                  /*isInline=*/true,
7119                                  /*isImplicitlyDeclared=*/true);
7120  Destructor->setAccess(AS_public);
7121  Destructor->setDefaulted();
7122  Destructor->setImplicit();
7123  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7124
7125  // Note that we have declared this destructor.
7126  ++ASTContext::NumImplicitDestructorsDeclared;
7127
7128  // Introduce this destructor into its scope.
7129  if (Scope *S = getScopeForContext(ClassDecl))
7130    PushOnScopeChains(Destructor, S, false);
7131  ClassDecl->addDecl(Destructor);
7132
7133  // This could be uniqued if it ever proves significant.
7134  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7135
7136  if (ShouldDeleteDestructor(Destructor))
7137    Destructor->setDeletedAsWritten();
7138
7139  AddOverriddenMethods(ClassDecl, Destructor);
7140
7141  return Destructor;
7142}
7143
7144void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7145                                    CXXDestructorDecl *Destructor) {
7146  assert((Destructor->isDefaulted() &&
7147          !Destructor->doesThisDeclarationHaveABody()) &&
7148         "DefineImplicitDestructor - call it for implicit default dtor");
7149  CXXRecordDecl *ClassDecl = Destructor->getParent();
7150  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7151
7152  if (Destructor->isInvalidDecl())
7153    return;
7154
7155  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7156
7157  DiagnosticErrorTrap Trap(Diags);
7158  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7159                                         Destructor->getParent());
7160
7161  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7162    Diag(CurrentLocation, diag::note_member_synthesized_at)
7163      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7164
7165    Destructor->setInvalidDecl();
7166    return;
7167  }
7168
7169  SourceLocation Loc = Destructor->getLocation();
7170  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7171  Destructor->setImplicitlyDefined(true);
7172  Destructor->setUsed();
7173  MarkVTableUsed(CurrentLocation, ClassDecl);
7174
7175  if (ASTMutationListener *L = getASTMutationListener()) {
7176    L->CompletedImplicitDefinition(Destructor);
7177  }
7178}
7179
7180void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7181                                         CXXDestructorDecl *destructor) {
7182  // C++11 [class.dtor]p3:
7183  //   A declaration of a destructor that does not have an exception-
7184  //   specification is implicitly considered to have the same exception-
7185  //   specification as an implicit declaration.
7186  const FunctionProtoType *dtorType = destructor->getType()->
7187                                        getAs<FunctionProtoType>();
7188  if (dtorType->hasExceptionSpec())
7189    return;
7190
7191  ImplicitExceptionSpecification exceptSpec =
7192      ComputeDefaultedDtorExceptionSpec(classDecl);
7193
7194  // Replace the destructor's type, building off the existing one. Fortunately,
7195  // the only thing of interest in the destructor type is its extended info.
7196  // The return and arguments are fixed.
7197  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7198  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7199  epi.NumExceptions = exceptSpec.size();
7200  epi.Exceptions = exceptSpec.data();
7201  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7202
7203  destructor->setType(ty);
7204
7205  // FIXME: If the destructor has a body that could throw, and the newly created
7206  // spec doesn't allow exceptions, we should emit a warning, because this
7207  // change in behavior can break conforming C++03 programs at runtime.
7208  // However, we don't have a body yet, so it needs to be done somewhere else.
7209}
7210
7211/// \brief Builds a statement that copies/moves the given entity from \p From to
7212/// \c To.
7213///
7214/// This routine is used to copy/move the members of a class with an
7215/// implicitly-declared copy/move assignment operator. When the entities being
7216/// copied are arrays, this routine builds for loops to copy them.
7217///
7218/// \param S The Sema object used for type-checking.
7219///
7220/// \param Loc The location where the implicit copy/move is being generated.
7221///
7222/// \param T The type of the expressions being copied/moved. Both expressions
7223/// must have this type.
7224///
7225/// \param To The expression we are copying/moving to.
7226///
7227/// \param From The expression we are copying/moving from.
7228///
7229/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7230/// Otherwise, it's a non-static member subobject.
7231///
7232/// \param Copying Whether we're copying or moving.
7233///
7234/// \param Depth Internal parameter recording the depth of the recursion.
7235///
7236/// \returns A statement or a loop that copies the expressions.
7237static StmtResult
7238BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7239                      Expr *To, Expr *From,
7240                      bool CopyingBaseSubobject, bool Copying,
7241                      unsigned Depth = 0) {
7242  // C++0x [class.copy]p28:
7243  //   Each subobject is assigned in the manner appropriate to its type:
7244  //
7245  //     - if the subobject is of class type, as if by a call to operator= with
7246  //       the subobject as the object expression and the corresponding
7247  //       subobject of x as a single function argument (as if by explicit
7248  //       qualification; that is, ignoring any possible virtual overriding
7249  //       functions in more derived classes);
7250  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7251    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7252
7253    // Look for operator=.
7254    DeclarationName Name
7255      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7256    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7257    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7258
7259    // Filter out any result that isn't a copy/move-assignment operator.
7260    LookupResult::Filter F = OpLookup.makeFilter();
7261    while (F.hasNext()) {
7262      NamedDecl *D = F.next();
7263      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7264        if (Copying ? Method->isCopyAssignmentOperator() :
7265                      Method->isMoveAssignmentOperator())
7266          continue;
7267
7268      F.erase();
7269    }
7270    F.done();
7271
7272    // Suppress the protected check (C++ [class.protected]) for each of the
7273    // assignment operators we found. This strange dance is required when
7274    // we're assigning via a base classes's copy-assignment operator. To
7275    // ensure that we're getting the right base class subobject (without
7276    // ambiguities), we need to cast "this" to that subobject type; to
7277    // ensure that we don't go through the virtual call mechanism, we need
7278    // to qualify the operator= name with the base class (see below). However,
7279    // this means that if the base class has a protected copy assignment
7280    // operator, the protected member access check will fail. So, we
7281    // rewrite "protected" access to "public" access in this case, since we
7282    // know by construction that we're calling from a derived class.
7283    if (CopyingBaseSubobject) {
7284      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7285           L != LEnd; ++L) {
7286        if (L.getAccess() == AS_protected)
7287          L.setAccess(AS_public);
7288      }
7289    }
7290
7291    // Create the nested-name-specifier that will be used to qualify the
7292    // reference to operator=; this is required to suppress the virtual
7293    // call mechanism.
7294    CXXScopeSpec SS;
7295    SS.MakeTrivial(S.Context,
7296                   NestedNameSpecifier::Create(S.Context, 0, false,
7297                                               T.getTypePtr()),
7298                   Loc);
7299
7300    // Create the reference to operator=.
7301    ExprResult OpEqualRef
7302      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7303                                   /*FirstQualifierInScope=*/0, OpLookup,
7304                                   /*TemplateArgs=*/0,
7305                                   /*SuppressQualifierCheck=*/true);
7306    if (OpEqualRef.isInvalid())
7307      return StmtError();
7308
7309    // Build the call to the assignment operator.
7310
7311    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7312                                                  OpEqualRef.takeAs<Expr>(),
7313                                                  Loc, &From, 1, Loc);
7314    if (Call.isInvalid())
7315      return StmtError();
7316
7317    return S.Owned(Call.takeAs<Stmt>());
7318  }
7319
7320  //     - if the subobject is of scalar type, the built-in assignment
7321  //       operator is used.
7322  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7323  if (!ArrayTy) {
7324    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7325    if (Assignment.isInvalid())
7326      return StmtError();
7327
7328    return S.Owned(Assignment.takeAs<Stmt>());
7329  }
7330
7331  //     - if the subobject is an array, each element is assigned, in the
7332  //       manner appropriate to the element type;
7333
7334  // Construct a loop over the array bounds, e.g.,
7335  //
7336  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7337  //
7338  // that will copy each of the array elements.
7339  QualType SizeType = S.Context.getSizeType();
7340
7341  // Create the iteration variable.
7342  IdentifierInfo *IterationVarName = 0;
7343  {
7344    llvm::SmallString<8> Str;
7345    llvm::raw_svector_ostream OS(Str);
7346    OS << "__i" << Depth;
7347    IterationVarName = &S.Context.Idents.get(OS.str());
7348  }
7349  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7350                                          IterationVarName, SizeType,
7351                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7352                                          SC_None, SC_None);
7353
7354  // Initialize the iteration variable to zero.
7355  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7356  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7357
7358  // Create a reference to the iteration variable; we'll use this several
7359  // times throughout.
7360  Expr *IterationVarRef
7361    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
7362  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7363
7364  // Create the DeclStmt that holds the iteration variable.
7365  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7366
7367  // Create the comparison against the array bound.
7368  llvm::APInt Upper
7369    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7370  Expr *Comparison
7371    = new (S.Context) BinaryOperator(IterationVarRef,
7372                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7373                                     BO_NE, S.Context.BoolTy,
7374                                     VK_RValue, OK_Ordinary, Loc);
7375
7376  // Create the pre-increment of the iteration variable.
7377  Expr *Increment
7378    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7379                                    VK_LValue, OK_Ordinary, Loc);
7380
7381  // Subscript the "from" and "to" expressions with the iteration variable.
7382  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7383                                                         IterationVarRef, Loc));
7384  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7385                                                       IterationVarRef, Loc));
7386  if (!Copying) // Cast to rvalue
7387    From = CastForMoving(S, From);
7388
7389  // Build the copy/move for an individual element of the array.
7390  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7391                                          To, From, CopyingBaseSubobject,
7392                                          Copying, Depth + 1);
7393  if (Copy.isInvalid())
7394    return StmtError();
7395
7396  // Construct the loop that copies all elements of this array.
7397  return S.ActOnForStmt(Loc, Loc, InitStmt,
7398                        S.MakeFullExpr(Comparison),
7399                        0, S.MakeFullExpr(Increment),
7400                        Loc, Copy.take());
7401}
7402
7403std::pair<Sema::ImplicitExceptionSpecification, bool>
7404Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7405                                                   CXXRecordDecl *ClassDecl) {
7406  if (ClassDecl->isInvalidDecl())
7407    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7408
7409  // C++ [class.copy]p10:
7410  //   If the class definition does not explicitly declare a copy
7411  //   assignment operator, one is declared implicitly.
7412  //   The implicitly-defined copy assignment operator for a class X
7413  //   will have the form
7414  //
7415  //       X& X::operator=(const X&)
7416  //
7417  //   if
7418  bool HasConstCopyAssignment = true;
7419
7420  //       -- each direct base class B of X has a copy assignment operator
7421  //          whose parameter is of type const B&, const volatile B& or B,
7422  //          and
7423  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7424                                       BaseEnd = ClassDecl->bases_end();
7425       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7426    // We'll handle this below
7427    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7428      continue;
7429
7430    assert(!Base->getType()->isDependentType() &&
7431           "Cannot generate implicit members for class with dependent bases.");
7432    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7433    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7434                            &HasConstCopyAssignment);
7435  }
7436
7437  // In C++11, the above citation has "or virtual" added
7438  if (LangOpts.CPlusPlus0x) {
7439    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7440                                         BaseEnd = ClassDecl->vbases_end();
7441         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7442      assert(!Base->getType()->isDependentType() &&
7443             "Cannot generate implicit members for class with dependent bases.");
7444      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7445      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7446                              &HasConstCopyAssignment);
7447    }
7448  }
7449
7450  //       -- for all the nonstatic data members of X that are of a class
7451  //          type M (or array thereof), each such class type has a copy
7452  //          assignment operator whose parameter is of type const M&,
7453  //          const volatile M& or M.
7454  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7455                                  FieldEnd = ClassDecl->field_end();
7456       HasConstCopyAssignment && Field != FieldEnd;
7457       ++Field) {
7458    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7459    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7460      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7461                              &HasConstCopyAssignment);
7462    }
7463  }
7464
7465  //   Otherwise, the implicitly declared copy assignment operator will
7466  //   have the form
7467  //
7468  //       X& X::operator=(X&)
7469
7470  // C++ [except.spec]p14:
7471  //   An implicitly declared special member function (Clause 12) shall have an
7472  //   exception-specification. [...]
7473
7474  // It is unspecified whether or not an implicit copy assignment operator
7475  // attempts to deduplicate calls to assignment operators of virtual bases are
7476  // made. As such, this exception specification is effectively unspecified.
7477  // Based on a similar decision made for constness in C++0x, we're erring on
7478  // the side of assuming such calls to be made regardless of whether they
7479  // actually happen.
7480  ImplicitExceptionSpecification ExceptSpec(Context);
7481  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7482  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7483                                       BaseEnd = ClassDecl->bases_end();
7484       Base != BaseEnd; ++Base) {
7485    if (Base->isVirtual())
7486      continue;
7487
7488    CXXRecordDecl *BaseClassDecl
7489      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7490    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7491                                                            ArgQuals, false, 0))
7492      ExceptSpec.CalledDecl(CopyAssign);
7493  }
7494
7495  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7496                                       BaseEnd = ClassDecl->vbases_end();
7497       Base != BaseEnd; ++Base) {
7498    CXXRecordDecl *BaseClassDecl
7499      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7500    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7501                                                            ArgQuals, false, 0))
7502      ExceptSpec.CalledDecl(CopyAssign);
7503  }
7504
7505  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7506                                  FieldEnd = ClassDecl->field_end();
7507       Field != FieldEnd;
7508       ++Field) {
7509    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7510    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7511      if (CXXMethodDecl *CopyAssign =
7512          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7513        ExceptSpec.CalledDecl(CopyAssign);
7514    }
7515  }
7516
7517  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7518}
7519
7520CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7521  // Note: The following rules are largely analoguous to the copy
7522  // constructor rules. Note that virtual bases are not taken into account
7523  // for determining the argument type of the operator. Note also that
7524  // operators taking an object instead of a reference are allowed.
7525
7526  ImplicitExceptionSpecification Spec(Context);
7527  bool Const;
7528  llvm::tie(Spec, Const) =
7529    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7530
7531  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7532  QualType RetType = Context.getLValueReferenceType(ArgType);
7533  if (Const)
7534    ArgType = ArgType.withConst();
7535  ArgType = Context.getLValueReferenceType(ArgType);
7536
7537  //   An implicitly-declared copy assignment operator is an inline public
7538  //   member of its class.
7539  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7540  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7541  SourceLocation ClassLoc = ClassDecl->getLocation();
7542  DeclarationNameInfo NameInfo(Name, ClassLoc);
7543  CXXMethodDecl *CopyAssignment
7544    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7545                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7546                            /*TInfo=*/0, /*isStatic=*/false,
7547                            /*StorageClassAsWritten=*/SC_None,
7548                            /*isInline=*/true, /*isConstexpr=*/false,
7549                            SourceLocation());
7550  CopyAssignment->setAccess(AS_public);
7551  CopyAssignment->setDefaulted();
7552  CopyAssignment->setImplicit();
7553  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7554
7555  // Add the parameter to the operator.
7556  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7557                                               ClassLoc, ClassLoc, /*Id=*/0,
7558                                               ArgType, /*TInfo=*/0,
7559                                               SC_None,
7560                                               SC_None, 0);
7561  CopyAssignment->setParams(FromParam);
7562
7563  // Note that we have added this copy-assignment operator.
7564  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7565
7566  if (Scope *S = getScopeForContext(ClassDecl))
7567    PushOnScopeChains(CopyAssignment, S, false);
7568  ClassDecl->addDecl(CopyAssignment);
7569
7570  // C++0x [class.copy]p18:
7571  //   ... If the class definition declares a move constructor or move
7572  //   assignment operator, the implicitly declared copy assignment operator is
7573  //   defined as deleted; ...
7574  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
7575      ClassDecl->hasUserDeclaredMoveAssignment() ||
7576      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7577    CopyAssignment->setDeletedAsWritten();
7578
7579  AddOverriddenMethods(ClassDecl, CopyAssignment);
7580  return CopyAssignment;
7581}
7582
7583void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7584                                        CXXMethodDecl *CopyAssignOperator) {
7585  assert((CopyAssignOperator->isDefaulted() &&
7586          CopyAssignOperator->isOverloadedOperator() &&
7587          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7588          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7589         "DefineImplicitCopyAssignment called for wrong function");
7590
7591  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7592
7593  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7594    CopyAssignOperator->setInvalidDecl();
7595    return;
7596  }
7597
7598  CopyAssignOperator->setUsed();
7599
7600  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7601  DiagnosticErrorTrap Trap(Diags);
7602
7603  // C++0x [class.copy]p30:
7604  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7605  //   for a non-union class X performs memberwise copy assignment of its
7606  //   subobjects. The direct base classes of X are assigned first, in the
7607  //   order of their declaration in the base-specifier-list, and then the
7608  //   immediate non-static data members of X are assigned, in the order in
7609  //   which they were declared in the class definition.
7610
7611  // The statements that form the synthesized function body.
7612  ASTOwningVector<Stmt*> Statements(*this);
7613
7614  // The parameter for the "other" object, which we are copying from.
7615  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7616  Qualifiers OtherQuals = Other->getType().getQualifiers();
7617  QualType OtherRefType = Other->getType();
7618  if (const LValueReferenceType *OtherRef
7619                                = OtherRefType->getAs<LValueReferenceType>()) {
7620    OtherRefType = OtherRef->getPointeeType();
7621    OtherQuals = OtherRefType.getQualifiers();
7622  }
7623
7624  // Our location for everything implicitly-generated.
7625  SourceLocation Loc = CopyAssignOperator->getLocation();
7626
7627  // Construct a reference to the "other" object. We'll be using this
7628  // throughout the generated ASTs.
7629  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7630  assert(OtherRef && "Reference to parameter cannot fail!");
7631
7632  // Construct the "this" pointer. We'll be using this throughout the generated
7633  // ASTs.
7634  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7635  assert(This && "Reference to this cannot fail!");
7636
7637  // Assign base classes.
7638  bool Invalid = false;
7639  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7640       E = ClassDecl->bases_end(); Base != E; ++Base) {
7641    // Form the assignment:
7642    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7643    QualType BaseType = Base->getType().getUnqualifiedType();
7644    if (!BaseType->isRecordType()) {
7645      Invalid = true;
7646      continue;
7647    }
7648
7649    CXXCastPath BasePath;
7650    BasePath.push_back(Base);
7651
7652    // Construct the "from" expression, which is an implicit cast to the
7653    // appropriately-qualified base type.
7654    Expr *From = OtherRef;
7655    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7656                             CK_UncheckedDerivedToBase,
7657                             VK_LValue, &BasePath).take();
7658
7659    // Dereference "this".
7660    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7661
7662    // Implicitly cast "this" to the appropriately-qualified base type.
7663    To = ImpCastExprToType(To.take(),
7664                           Context.getCVRQualifiedType(BaseType,
7665                                     CopyAssignOperator->getTypeQualifiers()),
7666                           CK_UncheckedDerivedToBase,
7667                           VK_LValue, &BasePath);
7668
7669    // Build the copy.
7670    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7671                                            To.get(), From,
7672                                            /*CopyingBaseSubobject=*/true,
7673                                            /*Copying=*/true);
7674    if (Copy.isInvalid()) {
7675      Diag(CurrentLocation, diag::note_member_synthesized_at)
7676        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7677      CopyAssignOperator->setInvalidDecl();
7678      return;
7679    }
7680
7681    // Success! Record the copy.
7682    Statements.push_back(Copy.takeAs<Expr>());
7683  }
7684
7685  // \brief Reference to the __builtin_memcpy function.
7686  Expr *BuiltinMemCpyRef = 0;
7687  // \brief Reference to the __builtin_objc_memmove_collectable function.
7688  Expr *CollectableMemCpyRef = 0;
7689
7690  // Assign non-static members.
7691  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7692                                  FieldEnd = ClassDecl->field_end();
7693       Field != FieldEnd; ++Field) {
7694    if (Field->isUnnamedBitfield())
7695      continue;
7696
7697    // Check for members of reference type; we can't copy those.
7698    if (Field->getType()->isReferenceType()) {
7699      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7700        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7701      Diag(Field->getLocation(), diag::note_declared_at);
7702      Diag(CurrentLocation, diag::note_member_synthesized_at)
7703        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7704      Invalid = true;
7705      continue;
7706    }
7707
7708    // Check for members of const-qualified, non-class type.
7709    QualType BaseType = Context.getBaseElementType(Field->getType());
7710    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7711      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7712        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7713      Diag(Field->getLocation(), diag::note_declared_at);
7714      Diag(CurrentLocation, diag::note_member_synthesized_at)
7715        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7716      Invalid = true;
7717      continue;
7718    }
7719
7720    // Suppress assigning zero-width bitfields.
7721    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7722      continue;
7723
7724    QualType FieldType = Field->getType().getNonReferenceType();
7725    if (FieldType->isIncompleteArrayType()) {
7726      assert(ClassDecl->hasFlexibleArrayMember() &&
7727             "Incomplete array type is not valid");
7728      continue;
7729    }
7730
7731    // Build references to the field in the object we're copying from and to.
7732    CXXScopeSpec SS; // Intentionally empty
7733    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7734                              LookupMemberName);
7735    MemberLookup.addDecl(*Field);
7736    MemberLookup.resolveKind();
7737    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7738                                               Loc, /*IsArrow=*/false,
7739                                               SS, 0, MemberLookup, 0);
7740    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7741                                             Loc, /*IsArrow=*/true,
7742                                             SS, 0, MemberLookup, 0);
7743    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7744    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7745
7746    // If the field should be copied with __builtin_memcpy rather than via
7747    // explicit assignments, do so. This optimization only applies for arrays
7748    // of scalars and arrays of class type with trivial copy-assignment
7749    // operators.
7750    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7751        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7752      // Compute the size of the memory buffer to be copied.
7753      QualType SizeType = Context.getSizeType();
7754      llvm::APInt Size(Context.getTypeSize(SizeType),
7755                       Context.getTypeSizeInChars(BaseType).getQuantity());
7756      for (const ConstantArrayType *Array
7757              = Context.getAsConstantArrayType(FieldType);
7758           Array;
7759           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7760        llvm::APInt ArraySize
7761          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7762        Size *= ArraySize;
7763      }
7764
7765      // Take the address of the field references for "from" and "to".
7766      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7767      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7768
7769      bool NeedsCollectableMemCpy =
7770          (BaseType->isRecordType() &&
7771           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7772
7773      if (NeedsCollectableMemCpy) {
7774        if (!CollectableMemCpyRef) {
7775          // Create a reference to the __builtin_objc_memmove_collectable function.
7776          LookupResult R(*this,
7777                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7778                         Loc, LookupOrdinaryName);
7779          LookupName(R, TUScope, true);
7780
7781          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7782          if (!CollectableMemCpy) {
7783            // Something went horribly wrong earlier, and we will have
7784            // complained about it.
7785            Invalid = true;
7786            continue;
7787          }
7788
7789          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7790                                                  CollectableMemCpy->getType(),
7791                                                  VK_LValue, Loc, 0).take();
7792          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7793        }
7794      }
7795      // Create a reference to the __builtin_memcpy builtin function.
7796      else if (!BuiltinMemCpyRef) {
7797        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7798                       LookupOrdinaryName);
7799        LookupName(R, TUScope, true);
7800
7801        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7802        if (!BuiltinMemCpy) {
7803          // Something went horribly wrong earlier, and we will have complained
7804          // about it.
7805          Invalid = true;
7806          continue;
7807        }
7808
7809        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7810                                            BuiltinMemCpy->getType(),
7811                                            VK_LValue, Loc, 0).take();
7812        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7813      }
7814
7815      ASTOwningVector<Expr*> CallArgs(*this);
7816      CallArgs.push_back(To.takeAs<Expr>());
7817      CallArgs.push_back(From.takeAs<Expr>());
7818      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7819      ExprResult Call = ExprError();
7820      if (NeedsCollectableMemCpy)
7821        Call = ActOnCallExpr(/*Scope=*/0,
7822                             CollectableMemCpyRef,
7823                             Loc, move_arg(CallArgs),
7824                             Loc);
7825      else
7826        Call = ActOnCallExpr(/*Scope=*/0,
7827                             BuiltinMemCpyRef,
7828                             Loc, move_arg(CallArgs),
7829                             Loc);
7830
7831      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7832      Statements.push_back(Call.takeAs<Expr>());
7833      continue;
7834    }
7835
7836    // Build the copy of this field.
7837    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7838                                            To.get(), From.get(),
7839                                            /*CopyingBaseSubobject=*/false,
7840                                            /*Copying=*/true);
7841    if (Copy.isInvalid()) {
7842      Diag(CurrentLocation, diag::note_member_synthesized_at)
7843        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7844      CopyAssignOperator->setInvalidDecl();
7845      return;
7846    }
7847
7848    // Success! Record the copy.
7849    Statements.push_back(Copy.takeAs<Stmt>());
7850  }
7851
7852  if (!Invalid) {
7853    // Add a "return *this;"
7854    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7855
7856    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7857    if (Return.isInvalid())
7858      Invalid = true;
7859    else {
7860      Statements.push_back(Return.takeAs<Stmt>());
7861
7862      if (Trap.hasErrorOccurred()) {
7863        Diag(CurrentLocation, diag::note_member_synthesized_at)
7864          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7865        Invalid = true;
7866      }
7867    }
7868  }
7869
7870  if (Invalid) {
7871    CopyAssignOperator->setInvalidDecl();
7872    return;
7873  }
7874
7875  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7876                                            /*isStmtExpr=*/false);
7877  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7878  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7879
7880  if (ASTMutationListener *L = getASTMutationListener()) {
7881    L->CompletedImplicitDefinition(CopyAssignOperator);
7882  }
7883}
7884
7885Sema::ImplicitExceptionSpecification
7886Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
7887  ImplicitExceptionSpecification ExceptSpec(Context);
7888
7889  if (ClassDecl->isInvalidDecl())
7890    return ExceptSpec;
7891
7892  // C++0x [except.spec]p14:
7893  //   An implicitly declared special member function (Clause 12) shall have an
7894  //   exception-specification. [...]
7895
7896  // It is unspecified whether or not an implicit move assignment operator
7897  // attempts to deduplicate calls to assignment operators of virtual bases are
7898  // made. As such, this exception specification is effectively unspecified.
7899  // Based on a similar decision made for constness in C++0x, we're erring on
7900  // the side of assuming such calls to be made regardless of whether they
7901  // actually happen.
7902  // Note that a move constructor is not implicitly declared when there are
7903  // virtual bases, but it can still be user-declared and explicitly defaulted.
7904  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7905                                       BaseEnd = ClassDecl->bases_end();
7906       Base != BaseEnd; ++Base) {
7907    if (Base->isVirtual())
7908      continue;
7909
7910    CXXRecordDecl *BaseClassDecl
7911      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7912    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7913                                                           false, 0))
7914      ExceptSpec.CalledDecl(MoveAssign);
7915  }
7916
7917  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7918                                       BaseEnd = ClassDecl->vbases_end();
7919       Base != BaseEnd; ++Base) {
7920    CXXRecordDecl *BaseClassDecl
7921      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7922    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7923                                                           false, 0))
7924      ExceptSpec.CalledDecl(MoveAssign);
7925  }
7926
7927  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7928                                  FieldEnd = ClassDecl->field_end();
7929       Field != FieldEnd;
7930       ++Field) {
7931    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7932    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7933      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
7934                                                             false, 0))
7935        ExceptSpec.CalledDecl(MoveAssign);
7936    }
7937  }
7938
7939  return ExceptSpec;
7940}
7941
7942CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
7943  // Note: The following rules are largely analoguous to the move
7944  // constructor rules.
7945
7946  ImplicitExceptionSpecification Spec(
7947      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
7948
7949  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7950  QualType RetType = Context.getLValueReferenceType(ArgType);
7951  ArgType = Context.getRValueReferenceType(ArgType);
7952
7953  //   An implicitly-declared move assignment operator is an inline public
7954  //   member of its class.
7955  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7956  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7957  SourceLocation ClassLoc = ClassDecl->getLocation();
7958  DeclarationNameInfo NameInfo(Name, ClassLoc);
7959  CXXMethodDecl *MoveAssignment
7960    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7961                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7962                            /*TInfo=*/0, /*isStatic=*/false,
7963                            /*StorageClassAsWritten=*/SC_None,
7964                            /*isInline=*/true,
7965                            /*isConstexpr=*/false,
7966                            SourceLocation());
7967  MoveAssignment->setAccess(AS_public);
7968  MoveAssignment->setDefaulted();
7969  MoveAssignment->setImplicit();
7970  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
7971
7972  // Add the parameter to the operator.
7973  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
7974                                               ClassLoc, ClassLoc, /*Id=*/0,
7975                                               ArgType, /*TInfo=*/0,
7976                                               SC_None,
7977                                               SC_None, 0);
7978  MoveAssignment->setParams(FromParam);
7979
7980  // Note that we have added this copy-assignment operator.
7981  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
7982
7983  // C++0x [class.copy]p9:
7984  //   If the definition of a class X does not explicitly declare a move
7985  //   assignment operator, one will be implicitly declared as defaulted if and
7986  //   only if:
7987  //   [...]
7988  //   - the move assignment operator would not be implicitly defined as
7989  //     deleted.
7990  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
7991    // Cache this result so that we don't try to generate this over and over
7992    // on every lookup, leaking memory and wasting time.
7993    ClassDecl->setFailedImplicitMoveAssignment();
7994    return 0;
7995  }
7996
7997  if (Scope *S = getScopeForContext(ClassDecl))
7998    PushOnScopeChains(MoveAssignment, S, false);
7999  ClassDecl->addDecl(MoveAssignment);
8000
8001  AddOverriddenMethods(ClassDecl, MoveAssignment);
8002  return MoveAssignment;
8003}
8004
8005void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8006                                        CXXMethodDecl *MoveAssignOperator) {
8007  assert((MoveAssignOperator->isDefaulted() &&
8008          MoveAssignOperator->isOverloadedOperator() &&
8009          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8010          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8011         "DefineImplicitMoveAssignment called for wrong function");
8012
8013  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8014
8015  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8016    MoveAssignOperator->setInvalidDecl();
8017    return;
8018  }
8019
8020  MoveAssignOperator->setUsed();
8021
8022  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8023  DiagnosticErrorTrap Trap(Diags);
8024
8025  // C++0x [class.copy]p28:
8026  //   The implicitly-defined or move assignment operator for a non-union class
8027  //   X performs memberwise move assignment of its subobjects. The direct base
8028  //   classes of X are assigned first, in the order of their declaration in the
8029  //   base-specifier-list, and then the immediate non-static data members of X
8030  //   are assigned, in the order in which they were declared in the class
8031  //   definition.
8032
8033  // The statements that form the synthesized function body.
8034  ASTOwningVector<Stmt*> Statements(*this);
8035
8036  // The parameter for the "other" object, which we are move from.
8037  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8038  QualType OtherRefType = Other->getType()->
8039      getAs<RValueReferenceType>()->getPointeeType();
8040  assert(OtherRefType.getQualifiers() == 0 &&
8041         "Bad argument type of defaulted move assignment");
8042
8043  // Our location for everything implicitly-generated.
8044  SourceLocation Loc = MoveAssignOperator->getLocation();
8045
8046  // Construct a reference to the "other" object. We'll be using this
8047  // throughout the generated ASTs.
8048  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8049  assert(OtherRef && "Reference to parameter cannot fail!");
8050  // Cast to rvalue.
8051  OtherRef = CastForMoving(*this, OtherRef);
8052
8053  // Construct the "this" pointer. We'll be using this throughout the generated
8054  // ASTs.
8055  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8056  assert(This && "Reference to this cannot fail!");
8057
8058  // Assign base classes.
8059  bool Invalid = false;
8060  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8061       E = ClassDecl->bases_end(); Base != E; ++Base) {
8062    // Form the assignment:
8063    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8064    QualType BaseType = Base->getType().getUnqualifiedType();
8065    if (!BaseType->isRecordType()) {
8066      Invalid = true;
8067      continue;
8068    }
8069
8070    CXXCastPath BasePath;
8071    BasePath.push_back(Base);
8072
8073    // Construct the "from" expression, which is an implicit cast to the
8074    // appropriately-qualified base type.
8075    Expr *From = OtherRef;
8076    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8077                             VK_XValue, &BasePath).take();
8078
8079    // Dereference "this".
8080    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8081
8082    // Implicitly cast "this" to the appropriately-qualified base type.
8083    To = ImpCastExprToType(To.take(),
8084                           Context.getCVRQualifiedType(BaseType,
8085                                     MoveAssignOperator->getTypeQualifiers()),
8086                           CK_UncheckedDerivedToBase,
8087                           VK_LValue, &BasePath);
8088
8089    // Build the move.
8090    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8091                                            To.get(), From,
8092                                            /*CopyingBaseSubobject=*/true,
8093                                            /*Copying=*/false);
8094    if (Move.isInvalid()) {
8095      Diag(CurrentLocation, diag::note_member_synthesized_at)
8096        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8097      MoveAssignOperator->setInvalidDecl();
8098      return;
8099    }
8100
8101    // Success! Record the move.
8102    Statements.push_back(Move.takeAs<Expr>());
8103  }
8104
8105  // \brief Reference to the __builtin_memcpy function.
8106  Expr *BuiltinMemCpyRef = 0;
8107  // \brief Reference to the __builtin_objc_memmove_collectable function.
8108  Expr *CollectableMemCpyRef = 0;
8109
8110  // Assign non-static members.
8111  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8112                                  FieldEnd = ClassDecl->field_end();
8113       Field != FieldEnd; ++Field) {
8114    if (Field->isUnnamedBitfield())
8115      continue;
8116
8117    // Check for members of reference type; we can't move those.
8118    if (Field->getType()->isReferenceType()) {
8119      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8120        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8121      Diag(Field->getLocation(), diag::note_declared_at);
8122      Diag(CurrentLocation, diag::note_member_synthesized_at)
8123        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8124      Invalid = true;
8125      continue;
8126    }
8127
8128    // Check for members of const-qualified, non-class type.
8129    QualType BaseType = Context.getBaseElementType(Field->getType());
8130    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8131      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8132        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8133      Diag(Field->getLocation(), diag::note_declared_at);
8134      Diag(CurrentLocation, diag::note_member_synthesized_at)
8135        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8136      Invalid = true;
8137      continue;
8138    }
8139
8140    // Suppress assigning zero-width bitfields.
8141    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8142      continue;
8143
8144    QualType FieldType = Field->getType().getNonReferenceType();
8145    if (FieldType->isIncompleteArrayType()) {
8146      assert(ClassDecl->hasFlexibleArrayMember() &&
8147             "Incomplete array type is not valid");
8148      continue;
8149    }
8150
8151    // Build references to the field in the object we're copying from and to.
8152    CXXScopeSpec SS; // Intentionally empty
8153    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8154                              LookupMemberName);
8155    MemberLookup.addDecl(*Field);
8156    MemberLookup.resolveKind();
8157    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8158                                               Loc, /*IsArrow=*/false,
8159                                               SS, 0, MemberLookup, 0);
8160    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8161                                             Loc, /*IsArrow=*/true,
8162                                             SS, 0, MemberLookup, 0);
8163    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8164    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8165
8166    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8167        "Member reference with rvalue base must be rvalue except for reference "
8168        "members, which aren't allowed for move assignment.");
8169
8170    // If the field should be copied with __builtin_memcpy rather than via
8171    // explicit assignments, do so. This optimization only applies for arrays
8172    // of scalars and arrays of class type with trivial move-assignment
8173    // operators.
8174    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8175        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8176      // Compute the size of the memory buffer to be copied.
8177      QualType SizeType = Context.getSizeType();
8178      llvm::APInt Size(Context.getTypeSize(SizeType),
8179                       Context.getTypeSizeInChars(BaseType).getQuantity());
8180      for (const ConstantArrayType *Array
8181              = Context.getAsConstantArrayType(FieldType);
8182           Array;
8183           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8184        llvm::APInt ArraySize
8185          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8186        Size *= ArraySize;
8187      }
8188
8189      // Take the address of the field references for "from" and "to". We
8190      // directly construct UnaryOperators here because semantic analysis
8191      // does not permit us to take the address of an xvalue.
8192      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8193                             Context.getPointerType(From.get()->getType()),
8194                             VK_RValue, OK_Ordinary, Loc);
8195      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8196                           Context.getPointerType(To.get()->getType()),
8197                           VK_RValue, OK_Ordinary, Loc);
8198
8199      bool NeedsCollectableMemCpy =
8200          (BaseType->isRecordType() &&
8201           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8202
8203      if (NeedsCollectableMemCpy) {
8204        if (!CollectableMemCpyRef) {
8205          // Create a reference to the __builtin_objc_memmove_collectable function.
8206          LookupResult R(*this,
8207                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8208                         Loc, LookupOrdinaryName);
8209          LookupName(R, TUScope, true);
8210
8211          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8212          if (!CollectableMemCpy) {
8213            // Something went horribly wrong earlier, and we will have
8214            // complained about it.
8215            Invalid = true;
8216            continue;
8217          }
8218
8219          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8220                                                  CollectableMemCpy->getType(),
8221                                                  VK_LValue, Loc, 0).take();
8222          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8223        }
8224      }
8225      // Create a reference to the __builtin_memcpy builtin function.
8226      else if (!BuiltinMemCpyRef) {
8227        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8228                       LookupOrdinaryName);
8229        LookupName(R, TUScope, true);
8230
8231        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8232        if (!BuiltinMemCpy) {
8233          // Something went horribly wrong earlier, and we will have complained
8234          // about it.
8235          Invalid = true;
8236          continue;
8237        }
8238
8239        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8240                                            BuiltinMemCpy->getType(),
8241                                            VK_LValue, Loc, 0).take();
8242        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8243      }
8244
8245      ASTOwningVector<Expr*> CallArgs(*this);
8246      CallArgs.push_back(To.takeAs<Expr>());
8247      CallArgs.push_back(From.takeAs<Expr>());
8248      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8249      ExprResult Call = ExprError();
8250      if (NeedsCollectableMemCpy)
8251        Call = ActOnCallExpr(/*Scope=*/0,
8252                             CollectableMemCpyRef,
8253                             Loc, move_arg(CallArgs),
8254                             Loc);
8255      else
8256        Call = ActOnCallExpr(/*Scope=*/0,
8257                             BuiltinMemCpyRef,
8258                             Loc, move_arg(CallArgs),
8259                             Loc);
8260
8261      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8262      Statements.push_back(Call.takeAs<Expr>());
8263      continue;
8264    }
8265
8266    // Build the move of this field.
8267    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8268                                            To.get(), From.get(),
8269                                            /*CopyingBaseSubobject=*/false,
8270                                            /*Copying=*/false);
8271    if (Move.isInvalid()) {
8272      Diag(CurrentLocation, diag::note_member_synthesized_at)
8273        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8274      MoveAssignOperator->setInvalidDecl();
8275      return;
8276    }
8277
8278    // Success! Record the copy.
8279    Statements.push_back(Move.takeAs<Stmt>());
8280  }
8281
8282  if (!Invalid) {
8283    // Add a "return *this;"
8284    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8285
8286    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8287    if (Return.isInvalid())
8288      Invalid = true;
8289    else {
8290      Statements.push_back(Return.takeAs<Stmt>());
8291
8292      if (Trap.hasErrorOccurred()) {
8293        Diag(CurrentLocation, diag::note_member_synthesized_at)
8294          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8295        Invalid = true;
8296      }
8297    }
8298  }
8299
8300  if (Invalid) {
8301    MoveAssignOperator->setInvalidDecl();
8302    return;
8303  }
8304
8305  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8306                                            /*isStmtExpr=*/false);
8307  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8308  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8309
8310  if (ASTMutationListener *L = getASTMutationListener()) {
8311    L->CompletedImplicitDefinition(MoveAssignOperator);
8312  }
8313}
8314
8315std::pair<Sema::ImplicitExceptionSpecification, bool>
8316Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8317  if (ClassDecl->isInvalidDecl())
8318    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8319
8320  // C++ [class.copy]p5:
8321  //   The implicitly-declared copy constructor for a class X will
8322  //   have the form
8323  //
8324  //       X::X(const X&)
8325  //
8326  //   if
8327  // FIXME: It ought to be possible to store this on the record.
8328  bool HasConstCopyConstructor = true;
8329
8330  //     -- each direct or virtual base class B of X has a copy
8331  //        constructor whose first parameter is of type const B& or
8332  //        const volatile B&, and
8333  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8334                                       BaseEnd = ClassDecl->bases_end();
8335       HasConstCopyConstructor && Base != BaseEnd;
8336       ++Base) {
8337    // Virtual bases are handled below.
8338    if (Base->isVirtual())
8339      continue;
8340
8341    CXXRecordDecl *BaseClassDecl
8342      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8343    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8344                             &HasConstCopyConstructor);
8345  }
8346
8347  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8348                                       BaseEnd = ClassDecl->vbases_end();
8349       HasConstCopyConstructor && Base != BaseEnd;
8350       ++Base) {
8351    CXXRecordDecl *BaseClassDecl
8352      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8353    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8354                             &HasConstCopyConstructor);
8355  }
8356
8357  //     -- for all the nonstatic data members of X that are of a
8358  //        class type M (or array thereof), each such class type
8359  //        has a copy constructor whose first parameter is of type
8360  //        const M& or const volatile M&.
8361  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8362                                  FieldEnd = ClassDecl->field_end();
8363       HasConstCopyConstructor && Field != FieldEnd;
8364       ++Field) {
8365    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8366    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8367      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8368                               &HasConstCopyConstructor);
8369    }
8370  }
8371  //   Otherwise, the implicitly declared copy constructor will have
8372  //   the form
8373  //
8374  //       X::X(X&)
8375
8376  // C++ [except.spec]p14:
8377  //   An implicitly declared special member function (Clause 12) shall have an
8378  //   exception-specification. [...]
8379  ImplicitExceptionSpecification ExceptSpec(Context);
8380  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8381  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8382                                       BaseEnd = ClassDecl->bases_end();
8383       Base != BaseEnd;
8384       ++Base) {
8385    // Virtual bases are handled below.
8386    if (Base->isVirtual())
8387      continue;
8388
8389    CXXRecordDecl *BaseClassDecl
8390      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8391    if (CXXConstructorDecl *CopyConstructor =
8392          LookupCopyingConstructor(BaseClassDecl, Quals))
8393      ExceptSpec.CalledDecl(CopyConstructor);
8394  }
8395  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8396                                       BaseEnd = ClassDecl->vbases_end();
8397       Base != BaseEnd;
8398       ++Base) {
8399    CXXRecordDecl *BaseClassDecl
8400      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8401    if (CXXConstructorDecl *CopyConstructor =
8402          LookupCopyingConstructor(BaseClassDecl, Quals))
8403      ExceptSpec.CalledDecl(CopyConstructor);
8404  }
8405  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8406                                  FieldEnd = ClassDecl->field_end();
8407       Field != FieldEnd;
8408       ++Field) {
8409    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8410    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8411      if (CXXConstructorDecl *CopyConstructor =
8412        LookupCopyingConstructor(FieldClassDecl, Quals))
8413      ExceptSpec.CalledDecl(CopyConstructor);
8414    }
8415  }
8416
8417  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8418}
8419
8420CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8421                                                    CXXRecordDecl *ClassDecl) {
8422  // C++ [class.copy]p4:
8423  //   If the class definition does not explicitly declare a copy
8424  //   constructor, one is declared implicitly.
8425
8426  ImplicitExceptionSpecification Spec(Context);
8427  bool Const;
8428  llvm::tie(Spec, Const) =
8429    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8430
8431  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8432  QualType ArgType = ClassType;
8433  if (Const)
8434    ArgType = ArgType.withConst();
8435  ArgType = Context.getLValueReferenceType(ArgType);
8436
8437  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8438
8439  DeclarationName Name
8440    = Context.DeclarationNames.getCXXConstructorName(
8441                                           Context.getCanonicalType(ClassType));
8442  SourceLocation ClassLoc = ClassDecl->getLocation();
8443  DeclarationNameInfo NameInfo(Name, ClassLoc);
8444
8445  //   An implicitly-declared copy constructor is an inline public
8446  //   member of its class.
8447  CXXConstructorDecl *CopyConstructor
8448    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8449                                 Context.getFunctionType(Context.VoidTy,
8450                                                         &ArgType, 1, EPI),
8451                                 /*TInfo=*/0,
8452                                 /*isExplicit=*/false,
8453                                 /*isInline=*/true,
8454                                 /*isImplicitlyDeclared=*/true,
8455                                 // FIXME: apply the rules for definitions here
8456                                 /*isConstexpr=*/false);
8457  CopyConstructor->setAccess(AS_public);
8458  CopyConstructor->setDefaulted();
8459  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8460
8461  // Note that we have declared this constructor.
8462  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8463
8464  // Add the parameter to the constructor.
8465  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8466                                               ClassLoc, ClassLoc,
8467                                               /*IdentifierInfo=*/0,
8468                                               ArgType, /*TInfo=*/0,
8469                                               SC_None,
8470                                               SC_None, 0);
8471  CopyConstructor->setParams(FromParam);
8472
8473  if (Scope *S = getScopeForContext(ClassDecl))
8474    PushOnScopeChains(CopyConstructor, S, false);
8475  ClassDecl->addDecl(CopyConstructor);
8476
8477  // C++0x [class.copy]p7:
8478  //   ... If the class definition declares a move constructor or move
8479  //   assignment operator, the implicitly declared constructor is defined as
8480  //   deleted; ...
8481  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8482      ClassDecl->hasUserDeclaredMoveAssignment() ||
8483      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8484    CopyConstructor->setDeletedAsWritten();
8485
8486  return CopyConstructor;
8487}
8488
8489void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8490                                   CXXConstructorDecl *CopyConstructor) {
8491  assert((CopyConstructor->isDefaulted() &&
8492          CopyConstructor->isCopyConstructor() &&
8493          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8494         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8495
8496  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8497  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8498
8499  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8500  DiagnosticErrorTrap Trap(Diags);
8501
8502  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8503      Trap.hasErrorOccurred()) {
8504    Diag(CurrentLocation, diag::note_member_synthesized_at)
8505      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8506    CopyConstructor->setInvalidDecl();
8507  }  else {
8508    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8509                                               CopyConstructor->getLocation(),
8510                                               MultiStmtArg(*this, 0, 0),
8511                                               /*isStmtExpr=*/false)
8512                                                              .takeAs<Stmt>());
8513    CopyConstructor->setImplicitlyDefined(true);
8514  }
8515
8516  CopyConstructor->setUsed();
8517  if (ASTMutationListener *L = getASTMutationListener()) {
8518    L->CompletedImplicitDefinition(CopyConstructor);
8519  }
8520}
8521
8522Sema::ImplicitExceptionSpecification
8523Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8524  // C++ [except.spec]p14:
8525  //   An implicitly declared special member function (Clause 12) shall have an
8526  //   exception-specification. [...]
8527  ImplicitExceptionSpecification ExceptSpec(Context);
8528  if (ClassDecl->isInvalidDecl())
8529    return ExceptSpec;
8530
8531  // Direct base-class constructors.
8532  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8533                                       BEnd = ClassDecl->bases_end();
8534       B != BEnd; ++B) {
8535    if (B->isVirtual()) // Handled below.
8536      continue;
8537
8538    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8539      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8540      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8541      // If this is a deleted function, add it anyway. This might be conformant
8542      // with the standard. This might not. I'm not sure. It might not matter.
8543      if (Constructor)
8544        ExceptSpec.CalledDecl(Constructor);
8545    }
8546  }
8547
8548  // Virtual base-class constructors.
8549  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8550                                       BEnd = ClassDecl->vbases_end();
8551       B != BEnd; ++B) {
8552    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8553      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8554      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8555      // If this is a deleted function, add it anyway. This might be conformant
8556      // with the standard. This might not. I'm not sure. It might not matter.
8557      if (Constructor)
8558        ExceptSpec.CalledDecl(Constructor);
8559    }
8560  }
8561
8562  // Field constructors.
8563  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8564                               FEnd = ClassDecl->field_end();
8565       F != FEnd; ++F) {
8566    if (F->hasInClassInitializer()) {
8567      if (Expr *E = F->getInClassInitializer())
8568        ExceptSpec.CalledExpr(E);
8569      else if (!F->isInvalidDecl())
8570        ExceptSpec.SetDelayed();
8571    } else if (const RecordType *RecordTy
8572              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8573      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8574      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8575      // If this is a deleted function, add it anyway. This might be conformant
8576      // with the standard. This might not. I'm not sure. It might not matter.
8577      // In particular, the problem is that this function never gets called. It
8578      // might just be ill-formed because this function attempts to refer to
8579      // a deleted function here.
8580      if (Constructor)
8581        ExceptSpec.CalledDecl(Constructor);
8582    }
8583  }
8584
8585  return ExceptSpec;
8586}
8587
8588CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8589                                                    CXXRecordDecl *ClassDecl) {
8590  ImplicitExceptionSpecification Spec(
8591      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8592
8593  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8594  QualType ArgType = Context.getRValueReferenceType(ClassType);
8595
8596  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8597
8598  DeclarationName Name
8599    = Context.DeclarationNames.getCXXConstructorName(
8600                                           Context.getCanonicalType(ClassType));
8601  SourceLocation ClassLoc = ClassDecl->getLocation();
8602  DeclarationNameInfo NameInfo(Name, ClassLoc);
8603
8604  // C++0x [class.copy]p11:
8605  //   An implicitly-declared copy/move constructor is an inline public
8606  //   member of its class.
8607  CXXConstructorDecl *MoveConstructor
8608    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8609                                 Context.getFunctionType(Context.VoidTy,
8610                                                         &ArgType, 1, EPI),
8611                                 /*TInfo=*/0,
8612                                 /*isExplicit=*/false,
8613                                 /*isInline=*/true,
8614                                 /*isImplicitlyDeclared=*/true,
8615                                 // FIXME: apply the rules for definitions here
8616                                 /*isConstexpr=*/false);
8617  MoveConstructor->setAccess(AS_public);
8618  MoveConstructor->setDefaulted();
8619  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8620
8621  // Add the parameter to the constructor.
8622  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8623                                               ClassLoc, ClassLoc,
8624                                               /*IdentifierInfo=*/0,
8625                                               ArgType, /*TInfo=*/0,
8626                                               SC_None,
8627                                               SC_None, 0);
8628  MoveConstructor->setParams(FromParam);
8629
8630  // C++0x [class.copy]p9:
8631  //   If the definition of a class X does not explicitly declare a move
8632  //   constructor, one will be implicitly declared as defaulted if and only if:
8633  //   [...]
8634  //   - the move constructor would not be implicitly defined as deleted.
8635  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8636    // Cache this result so that we don't try to generate this over and over
8637    // on every lookup, leaking memory and wasting time.
8638    ClassDecl->setFailedImplicitMoveConstructor();
8639    return 0;
8640  }
8641
8642  // Note that we have declared this constructor.
8643  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8644
8645  if (Scope *S = getScopeForContext(ClassDecl))
8646    PushOnScopeChains(MoveConstructor, S, false);
8647  ClassDecl->addDecl(MoveConstructor);
8648
8649  return MoveConstructor;
8650}
8651
8652void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8653                                   CXXConstructorDecl *MoveConstructor) {
8654  assert((MoveConstructor->isDefaulted() &&
8655          MoveConstructor->isMoveConstructor() &&
8656          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8657         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8658
8659  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8660  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8661
8662  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8663  DiagnosticErrorTrap Trap(Diags);
8664
8665  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8666      Trap.hasErrorOccurred()) {
8667    Diag(CurrentLocation, diag::note_member_synthesized_at)
8668      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8669    MoveConstructor->setInvalidDecl();
8670  }  else {
8671    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8672                                               MoveConstructor->getLocation(),
8673                                               MultiStmtArg(*this, 0, 0),
8674                                               /*isStmtExpr=*/false)
8675                                                              .takeAs<Stmt>());
8676    MoveConstructor->setImplicitlyDefined(true);
8677  }
8678
8679  MoveConstructor->setUsed();
8680
8681  if (ASTMutationListener *L = getASTMutationListener()) {
8682    L->CompletedImplicitDefinition(MoveConstructor);
8683  }
8684}
8685
8686ExprResult
8687Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8688                            CXXConstructorDecl *Constructor,
8689                            MultiExprArg ExprArgs,
8690                            bool HadMultipleCandidates,
8691                            bool RequiresZeroInit,
8692                            unsigned ConstructKind,
8693                            SourceRange ParenRange) {
8694  bool Elidable = false;
8695
8696  // C++0x [class.copy]p34:
8697  //   When certain criteria are met, an implementation is allowed to
8698  //   omit the copy/move construction of a class object, even if the
8699  //   copy/move constructor and/or destructor for the object have
8700  //   side effects. [...]
8701  //     - when a temporary class object that has not been bound to a
8702  //       reference (12.2) would be copied/moved to a class object
8703  //       with the same cv-unqualified type, the copy/move operation
8704  //       can be omitted by constructing the temporary object
8705  //       directly into the target of the omitted copy/move
8706  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8707      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
8708    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8709    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8710  }
8711
8712  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8713                               Elidable, move(ExprArgs), HadMultipleCandidates,
8714                               RequiresZeroInit, ConstructKind, ParenRange);
8715}
8716
8717/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8718/// including handling of its default argument expressions.
8719ExprResult
8720Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8721                            CXXConstructorDecl *Constructor, bool Elidable,
8722                            MultiExprArg ExprArgs,
8723                            bool HadMultipleCandidates,
8724                            bool RequiresZeroInit,
8725                            unsigned ConstructKind,
8726                            SourceRange ParenRange) {
8727  unsigned NumExprs = ExprArgs.size();
8728  Expr **Exprs = (Expr **)ExprArgs.release();
8729
8730  for (specific_attr_iterator<NonNullAttr>
8731           i = Constructor->specific_attr_begin<NonNullAttr>(),
8732           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
8733    const NonNullAttr *NonNull = *i;
8734    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
8735  }
8736
8737  MarkDeclarationReferenced(ConstructLoc, Constructor);
8738  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
8739                                        Constructor, Elidable, Exprs, NumExprs,
8740                                        HadMultipleCandidates, RequiresZeroInit,
8741              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
8742                                        ParenRange));
8743}
8744
8745bool Sema::InitializeVarWithConstructor(VarDecl *VD,
8746                                        CXXConstructorDecl *Constructor,
8747                                        MultiExprArg Exprs,
8748                                        bool HadMultipleCandidates) {
8749  // FIXME: Provide the correct paren SourceRange when available.
8750  ExprResult TempResult =
8751    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
8752                          move(Exprs), HadMultipleCandidates, false,
8753                          CXXConstructExpr::CK_Complete, SourceRange());
8754  if (TempResult.isInvalid())
8755    return true;
8756
8757  Expr *Temp = TempResult.takeAs<Expr>();
8758  CheckImplicitConversions(Temp, VD->getLocation());
8759  MarkDeclarationReferenced(VD->getLocation(), Constructor);
8760  Temp = MaybeCreateExprWithCleanups(Temp);
8761  VD->setInit(Temp);
8762
8763  return false;
8764}
8765
8766void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
8767  if (VD->isInvalidDecl()) return;
8768
8769  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
8770  if (ClassDecl->isInvalidDecl()) return;
8771  if (ClassDecl->hasTrivialDestructor()) return;
8772  if (ClassDecl->isDependentContext()) return;
8773
8774  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
8775  MarkDeclarationReferenced(VD->getLocation(), Destructor);
8776  CheckDestructorAccess(VD->getLocation(), Destructor,
8777                        PDiag(diag::err_access_dtor_var)
8778                        << VD->getDeclName()
8779                        << VD->getType());
8780
8781  if (!VD->hasGlobalStorage()) return;
8782
8783  // Emit warning for non-trivial dtor in global scope (a real global,
8784  // class-static, function-static).
8785  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
8786
8787  // TODO: this should be re-enabled for static locals by !CXAAtExit
8788  if (!VD->isStaticLocal())
8789    Diag(VD->getLocation(), diag::warn_global_destructor);
8790}
8791
8792/// AddCXXDirectInitializerToDecl - This action is called immediately after
8793/// ActOnDeclarator, when a C++ direct initializer is present.
8794/// e.g: "int x(1);"
8795void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
8796                                         SourceLocation LParenLoc,
8797                                         MultiExprArg Exprs,
8798                                         SourceLocation RParenLoc,
8799                                         bool TypeMayContainAuto) {
8800  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
8801
8802  // If there is no declaration, there was an error parsing it.  Just ignore
8803  // the initializer.
8804  if (RealDecl == 0)
8805    return;
8806
8807  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
8808  if (!VDecl) {
8809    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
8810    RealDecl->setInvalidDecl();
8811    return;
8812  }
8813
8814  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
8815  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
8816    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
8817    if (Exprs.size() > 1) {
8818      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
8819           diag::err_auto_var_init_multiple_expressions)
8820        << VDecl->getDeclName() << VDecl->getType()
8821        << VDecl->getSourceRange();
8822      RealDecl->setInvalidDecl();
8823      return;
8824    }
8825
8826    Expr *Init = Exprs.get()[0];
8827    TypeSourceInfo *DeducedType = 0;
8828    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
8829      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
8830        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
8831        << Init->getSourceRange();
8832    if (!DeducedType) {
8833      RealDecl->setInvalidDecl();
8834      return;
8835    }
8836    VDecl->setTypeSourceInfo(DeducedType);
8837    VDecl->setType(DeducedType->getType());
8838
8839    // In ARC, infer lifetime.
8840    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
8841      VDecl->setInvalidDecl();
8842
8843    // If this is a redeclaration, check that the type we just deduced matches
8844    // the previously declared type.
8845    if (VarDecl *Old = VDecl->getPreviousDeclaration())
8846      MergeVarDeclTypes(VDecl, Old);
8847  }
8848
8849  // We will represent direct-initialization similarly to copy-initialization:
8850  //    int x(1);  -as-> int x = 1;
8851  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
8852  //
8853  // Clients that want to distinguish between the two forms, can check for
8854  // direct initializer using VarDecl::hasCXXDirectInitializer().
8855  // A major benefit is that clients that don't particularly care about which
8856  // exactly form was it (like the CodeGen) can handle both cases without
8857  // special case code.
8858
8859  // C++ 8.5p11:
8860  // The form of initialization (using parentheses or '=') is generally
8861  // insignificant, but does matter when the entity being initialized has a
8862  // class type.
8863
8864  if (!VDecl->getType()->isDependentType() &&
8865      !VDecl->getType()->isIncompleteArrayType() &&
8866      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
8867                          diag::err_typecheck_decl_incomplete_type)) {
8868    VDecl->setInvalidDecl();
8869    return;
8870  }
8871
8872  // The variable can not have an abstract class type.
8873  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
8874                             diag::err_abstract_type_in_decl,
8875                             AbstractVariableType))
8876    VDecl->setInvalidDecl();
8877
8878  const VarDecl *Def;
8879  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
8880    Diag(VDecl->getLocation(), diag::err_redefinition)
8881    << VDecl->getDeclName();
8882    Diag(Def->getLocation(), diag::note_previous_definition);
8883    VDecl->setInvalidDecl();
8884    return;
8885  }
8886
8887  // C++ [class.static.data]p4
8888  //   If a static data member is of const integral or const
8889  //   enumeration type, its declaration in the class definition can
8890  //   specify a constant-initializer which shall be an integral
8891  //   constant expression (5.19). In that case, the member can appear
8892  //   in integral constant expressions. The member shall still be
8893  //   defined in a namespace scope if it is used in the program and the
8894  //   namespace scope definition shall not contain an initializer.
8895  //
8896  // We already performed a redefinition check above, but for static
8897  // data members we also need to check whether there was an in-class
8898  // declaration with an initializer.
8899  const VarDecl* PrevInit = 0;
8900  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
8901    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
8902    Diag(PrevInit->getLocation(), diag::note_previous_definition);
8903    return;
8904  }
8905
8906  bool IsDependent = false;
8907  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
8908    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
8909      VDecl->setInvalidDecl();
8910      return;
8911    }
8912
8913    if (Exprs.get()[I]->isTypeDependent())
8914      IsDependent = true;
8915  }
8916
8917  // If either the declaration has a dependent type or if any of the
8918  // expressions is type-dependent, we represent the initialization
8919  // via a ParenListExpr for later use during template instantiation.
8920  if (VDecl->getType()->isDependentType() || IsDependent) {
8921    // Let clients know that initialization was done with a direct initializer.
8922    VDecl->setCXXDirectInitializer(true);
8923
8924    // Store the initialization expressions as a ParenListExpr.
8925    unsigned NumExprs = Exprs.size();
8926    VDecl->setInit(new (Context) ParenListExpr(
8927        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
8928        VDecl->getType().getNonReferenceType()));
8929    return;
8930  }
8931
8932  // Capture the variable that is being initialized and the style of
8933  // initialization.
8934  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
8935
8936  // FIXME: Poor source location information.
8937  InitializationKind Kind
8938    = InitializationKind::CreateDirect(VDecl->getLocation(),
8939                                       LParenLoc, RParenLoc);
8940
8941  QualType T = VDecl->getType();
8942  InitializationSequence InitSeq(*this, Entity, Kind,
8943                                 Exprs.get(), Exprs.size());
8944  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs), &T);
8945  if (Result.isInvalid()) {
8946    VDecl->setInvalidDecl();
8947    return;
8948  } else if (T != VDecl->getType()) {
8949    VDecl->setType(T);
8950    Result.get()->setType(T);
8951  }
8952
8953
8954  Expr *Init = Result.get();
8955  CheckImplicitConversions(Init, LParenLoc);
8956
8957  if (VDecl->isConstexpr() && !VDecl->isInvalidDecl() &&
8958      !Init->isValueDependent() &&
8959      !Init->isConstantInitializer(Context,
8960                                   VDecl->getType()->isReferenceType())) {
8961    // FIXME: Improve this diagnostic to explain why the initializer is not
8962    // a constant expression.
8963    Diag(VDecl->getLocation(), diag::err_constexpr_var_requires_const_init)
8964      << VDecl << Init->getSourceRange();
8965  }
8966
8967  Init = MaybeCreateExprWithCleanups(Init);
8968  VDecl->setInit(Init);
8969  VDecl->setCXXDirectInitializer(true);
8970
8971  CheckCompleteVariableDeclaration(VDecl);
8972}
8973
8974/// \brief Given a constructor and the set of arguments provided for the
8975/// constructor, convert the arguments and add any required default arguments
8976/// to form a proper call to this constructor.
8977///
8978/// \returns true if an error occurred, false otherwise.
8979bool
8980Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
8981                              MultiExprArg ArgsPtr,
8982                              SourceLocation Loc,
8983                              ASTOwningVector<Expr*> &ConvertedArgs) {
8984  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
8985  unsigned NumArgs = ArgsPtr.size();
8986  Expr **Args = (Expr **)ArgsPtr.get();
8987
8988  const FunctionProtoType *Proto
8989    = Constructor->getType()->getAs<FunctionProtoType>();
8990  assert(Proto && "Constructor without a prototype?");
8991  unsigned NumArgsInProto = Proto->getNumArgs();
8992
8993  // If too few arguments are available, we'll fill in the rest with defaults.
8994  if (NumArgs < NumArgsInProto)
8995    ConvertedArgs.reserve(NumArgsInProto);
8996  else
8997    ConvertedArgs.reserve(NumArgs);
8998
8999  VariadicCallType CallType =
9000    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9001  SmallVector<Expr *, 8> AllArgs;
9002  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9003                                        Proto, 0, Args, NumArgs, AllArgs,
9004                                        CallType);
9005  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9006    ConvertedArgs.push_back(AllArgs[i]);
9007  return Invalid;
9008}
9009
9010static inline bool
9011CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9012                                       const FunctionDecl *FnDecl) {
9013  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9014  if (isa<NamespaceDecl>(DC)) {
9015    return SemaRef.Diag(FnDecl->getLocation(),
9016                        diag::err_operator_new_delete_declared_in_namespace)
9017      << FnDecl->getDeclName();
9018  }
9019
9020  if (isa<TranslationUnitDecl>(DC) &&
9021      FnDecl->getStorageClass() == SC_Static) {
9022    return SemaRef.Diag(FnDecl->getLocation(),
9023                        diag::err_operator_new_delete_declared_static)
9024      << FnDecl->getDeclName();
9025  }
9026
9027  return false;
9028}
9029
9030static inline bool
9031CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9032                            CanQualType ExpectedResultType,
9033                            CanQualType ExpectedFirstParamType,
9034                            unsigned DependentParamTypeDiag,
9035                            unsigned InvalidParamTypeDiag) {
9036  QualType ResultType =
9037    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9038
9039  // Check that the result type is not dependent.
9040  if (ResultType->isDependentType())
9041    return SemaRef.Diag(FnDecl->getLocation(),
9042                        diag::err_operator_new_delete_dependent_result_type)
9043    << FnDecl->getDeclName() << ExpectedResultType;
9044
9045  // Check that the result type is what we expect.
9046  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9047    return SemaRef.Diag(FnDecl->getLocation(),
9048                        diag::err_operator_new_delete_invalid_result_type)
9049    << FnDecl->getDeclName() << ExpectedResultType;
9050
9051  // A function template must have at least 2 parameters.
9052  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9053    return SemaRef.Diag(FnDecl->getLocation(),
9054                      diag::err_operator_new_delete_template_too_few_parameters)
9055        << FnDecl->getDeclName();
9056
9057  // The function decl must have at least 1 parameter.
9058  if (FnDecl->getNumParams() == 0)
9059    return SemaRef.Diag(FnDecl->getLocation(),
9060                        diag::err_operator_new_delete_too_few_parameters)
9061      << FnDecl->getDeclName();
9062
9063  // Check the the first parameter type is not dependent.
9064  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9065  if (FirstParamType->isDependentType())
9066    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9067      << FnDecl->getDeclName() << ExpectedFirstParamType;
9068
9069  // Check that the first parameter type is what we expect.
9070  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9071      ExpectedFirstParamType)
9072    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9073    << FnDecl->getDeclName() << ExpectedFirstParamType;
9074
9075  return false;
9076}
9077
9078static bool
9079CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9080  // C++ [basic.stc.dynamic.allocation]p1:
9081  //   A program is ill-formed if an allocation function is declared in a
9082  //   namespace scope other than global scope or declared static in global
9083  //   scope.
9084  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9085    return true;
9086
9087  CanQualType SizeTy =
9088    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9089
9090  // C++ [basic.stc.dynamic.allocation]p1:
9091  //  The return type shall be void*. The first parameter shall have type
9092  //  std::size_t.
9093  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9094                                  SizeTy,
9095                                  diag::err_operator_new_dependent_param_type,
9096                                  diag::err_operator_new_param_type))
9097    return true;
9098
9099  // C++ [basic.stc.dynamic.allocation]p1:
9100  //  The first parameter shall not have an associated default argument.
9101  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9102    return SemaRef.Diag(FnDecl->getLocation(),
9103                        diag::err_operator_new_default_arg)
9104      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9105
9106  return false;
9107}
9108
9109static bool
9110CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9111  // C++ [basic.stc.dynamic.deallocation]p1:
9112  //   A program is ill-formed if deallocation functions are declared in a
9113  //   namespace scope other than global scope or declared static in global
9114  //   scope.
9115  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9116    return true;
9117
9118  // C++ [basic.stc.dynamic.deallocation]p2:
9119  //   Each deallocation function shall return void and its first parameter
9120  //   shall be void*.
9121  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9122                                  SemaRef.Context.VoidPtrTy,
9123                                 diag::err_operator_delete_dependent_param_type,
9124                                 diag::err_operator_delete_param_type))
9125    return true;
9126
9127  return false;
9128}
9129
9130/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9131/// of this overloaded operator is well-formed. If so, returns false;
9132/// otherwise, emits appropriate diagnostics and returns true.
9133bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9134  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9135         "Expected an overloaded operator declaration");
9136
9137  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9138
9139  // C++ [over.oper]p5:
9140  //   The allocation and deallocation functions, operator new,
9141  //   operator new[], operator delete and operator delete[], are
9142  //   described completely in 3.7.3. The attributes and restrictions
9143  //   found in the rest of this subclause do not apply to them unless
9144  //   explicitly stated in 3.7.3.
9145  if (Op == OO_Delete || Op == OO_Array_Delete)
9146    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9147
9148  if (Op == OO_New || Op == OO_Array_New)
9149    return CheckOperatorNewDeclaration(*this, FnDecl);
9150
9151  // C++ [over.oper]p6:
9152  //   An operator function shall either be a non-static member
9153  //   function or be a non-member function and have at least one
9154  //   parameter whose type is a class, a reference to a class, an
9155  //   enumeration, or a reference to an enumeration.
9156  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9157    if (MethodDecl->isStatic())
9158      return Diag(FnDecl->getLocation(),
9159                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9160  } else {
9161    bool ClassOrEnumParam = false;
9162    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9163                                   ParamEnd = FnDecl->param_end();
9164         Param != ParamEnd; ++Param) {
9165      QualType ParamType = (*Param)->getType().getNonReferenceType();
9166      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9167          ParamType->isEnumeralType()) {
9168        ClassOrEnumParam = true;
9169        break;
9170      }
9171    }
9172
9173    if (!ClassOrEnumParam)
9174      return Diag(FnDecl->getLocation(),
9175                  diag::err_operator_overload_needs_class_or_enum)
9176        << FnDecl->getDeclName();
9177  }
9178
9179  // C++ [over.oper]p8:
9180  //   An operator function cannot have default arguments (8.3.6),
9181  //   except where explicitly stated below.
9182  //
9183  // Only the function-call operator allows default arguments
9184  // (C++ [over.call]p1).
9185  if (Op != OO_Call) {
9186    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9187         Param != FnDecl->param_end(); ++Param) {
9188      if ((*Param)->hasDefaultArg())
9189        return Diag((*Param)->getLocation(),
9190                    diag::err_operator_overload_default_arg)
9191          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9192    }
9193  }
9194
9195  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9196    { false, false, false }
9197#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9198    , { Unary, Binary, MemberOnly }
9199#include "clang/Basic/OperatorKinds.def"
9200  };
9201
9202  bool CanBeUnaryOperator = OperatorUses[Op][0];
9203  bool CanBeBinaryOperator = OperatorUses[Op][1];
9204  bool MustBeMemberOperator = OperatorUses[Op][2];
9205
9206  // C++ [over.oper]p8:
9207  //   [...] Operator functions cannot have more or fewer parameters
9208  //   than the number required for the corresponding operator, as
9209  //   described in the rest of this subclause.
9210  unsigned NumParams = FnDecl->getNumParams()
9211                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9212  if (Op != OO_Call &&
9213      ((NumParams == 1 && !CanBeUnaryOperator) ||
9214       (NumParams == 2 && !CanBeBinaryOperator) ||
9215       (NumParams < 1) || (NumParams > 2))) {
9216    // We have the wrong number of parameters.
9217    unsigned ErrorKind;
9218    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9219      ErrorKind = 2;  // 2 -> unary or binary.
9220    } else if (CanBeUnaryOperator) {
9221      ErrorKind = 0;  // 0 -> unary
9222    } else {
9223      assert(CanBeBinaryOperator &&
9224             "All non-call overloaded operators are unary or binary!");
9225      ErrorKind = 1;  // 1 -> binary
9226    }
9227
9228    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9229      << FnDecl->getDeclName() << NumParams << ErrorKind;
9230  }
9231
9232  // Overloaded operators other than operator() cannot be variadic.
9233  if (Op != OO_Call &&
9234      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9235    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9236      << FnDecl->getDeclName();
9237  }
9238
9239  // Some operators must be non-static member functions.
9240  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9241    return Diag(FnDecl->getLocation(),
9242                diag::err_operator_overload_must_be_member)
9243      << FnDecl->getDeclName();
9244  }
9245
9246  // C++ [over.inc]p1:
9247  //   The user-defined function called operator++ implements the
9248  //   prefix and postfix ++ operator. If this function is a member
9249  //   function with no parameters, or a non-member function with one
9250  //   parameter of class or enumeration type, it defines the prefix
9251  //   increment operator ++ for objects of that type. If the function
9252  //   is a member function with one parameter (which shall be of type
9253  //   int) or a non-member function with two parameters (the second
9254  //   of which shall be of type int), it defines the postfix
9255  //   increment operator ++ for objects of that type.
9256  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9257    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9258    bool ParamIsInt = false;
9259    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9260      ParamIsInt = BT->getKind() == BuiltinType::Int;
9261
9262    if (!ParamIsInt)
9263      return Diag(LastParam->getLocation(),
9264                  diag::err_operator_overload_post_incdec_must_be_int)
9265        << LastParam->getType() << (Op == OO_MinusMinus);
9266  }
9267
9268  return false;
9269}
9270
9271/// CheckLiteralOperatorDeclaration - Check whether the declaration
9272/// of this literal operator function is well-formed. If so, returns
9273/// false; otherwise, emits appropriate diagnostics and returns true.
9274bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9275  DeclContext *DC = FnDecl->getDeclContext();
9276  Decl::Kind Kind = DC->getDeclKind();
9277  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9278      Kind != Decl::LinkageSpec) {
9279    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9280      << FnDecl->getDeclName();
9281    return true;
9282  }
9283
9284  bool Valid = false;
9285
9286  // template <char...> type operator "" name() is the only valid template
9287  // signature, and the only valid signature with no parameters.
9288  if (FnDecl->param_size() == 0) {
9289    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9290      // Must have only one template parameter
9291      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9292      if (Params->size() == 1) {
9293        NonTypeTemplateParmDecl *PmDecl =
9294          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9295
9296        // The template parameter must be a char parameter pack.
9297        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9298            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9299          Valid = true;
9300      }
9301    }
9302  } else {
9303    // Check the first parameter
9304    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9305
9306    QualType T = (*Param)->getType();
9307
9308    // unsigned long long int, long double, and any character type are allowed
9309    // as the only parameters.
9310    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9311        Context.hasSameType(T, Context.LongDoubleTy) ||
9312        Context.hasSameType(T, Context.CharTy) ||
9313        Context.hasSameType(T, Context.WCharTy) ||
9314        Context.hasSameType(T, Context.Char16Ty) ||
9315        Context.hasSameType(T, Context.Char32Ty)) {
9316      if (++Param == FnDecl->param_end())
9317        Valid = true;
9318      goto FinishedParams;
9319    }
9320
9321    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9322    const PointerType *PT = T->getAs<PointerType>();
9323    if (!PT)
9324      goto FinishedParams;
9325    T = PT->getPointeeType();
9326    if (!T.isConstQualified())
9327      goto FinishedParams;
9328    T = T.getUnqualifiedType();
9329
9330    // Move on to the second parameter;
9331    ++Param;
9332
9333    // If there is no second parameter, the first must be a const char *
9334    if (Param == FnDecl->param_end()) {
9335      if (Context.hasSameType(T, Context.CharTy))
9336        Valid = true;
9337      goto FinishedParams;
9338    }
9339
9340    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9341    // are allowed as the first parameter to a two-parameter function
9342    if (!(Context.hasSameType(T, Context.CharTy) ||
9343          Context.hasSameType(T, Context.WCharTy) ||
9344          Context.hasSameType(T, Context.Char16Ty) ||
9345          Context.hasSameType(T, Context.Char32Ty)))
9346      goto FinishedParams;
9347
9348    // The second and final parameter must be an std::size_t
9349    T = (*Param)->getType().getUnqualifiedType();
9350    if (Context.hasSameType(T, Context.getSizeType()) &&
9351        ++Param == FnDecl->param_end())
9352      Valid = true;
9353  }
9354
9355  // FIXME: This diagnostic is absolutely terrible.
9356FinishedParams:
9357  if (!Valid) {
9358    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9359      << FnDecl->getDeclName();
9360    return true;
9361  }
9362
9363  StringRef LiteralName
9364    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9365  if (LiteralName[0] != '_') {
9366    // C++0x [usrlit.suffix]p1:
9367    //   Literal suffix identifiers that do not start with an underscore are
9368    //   reserved for future standardization.
9369    bool IsHexFloat = true;
9370    if (LiteralName.size() > 1 &&
9371        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9372      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9373        if (!isdigit(LiteralName[I])) {
9374          IsHexFloat = false;
9375          break;
9376        }
9377      }
9378    }
9379
9380    if (IsHexFloat)
9381      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9382        << LiteralName;
9383    else
9384      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9385  }
9386
9387  return false;
9388}
9389
9390/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9391/// linkage specification, including the language and (if present)
9392/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9393/// the location of the language string literal, which is provided
9394/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9395/// the '{' brace. Otherwise, this linkage specification does not
9396/// have any braces.
9397Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9398                                           SourceLocation LangLoc,
9399                                           StringRef Lang,
9400                                           SourceLocation LBraceLoc) {
9401  LinkageSpecDecl::LanguageIDs Language;
9402  if (Lang == "\"C\"")
9403    Language = LinkageSpecDecl::lang_c;
9404  else if (Lang == "\"C++\"")
9405    Language = LinkageSpecDecl::lang_cxx;
9406  else {
9407    Diag(LangLoc, diag::err_bad_language);
9408    return 0;
9409  }
9410
9411  // FIXME: Add all the various semantics of linkage specifications
9412
9413  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9414                                               ExternLoc, LangLoc, Language);
9415  CurContext->addDecl(D);
9416  PushDeclContext(S, D);
9417  return D;
9418}
9419
9420/// ActOnFinishLinkageSpecification - Complete the definition of
9421/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9422/// valid, it's the position of the closing '}' brace in a linkage
9423/// specification that uses braces.
9424Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9425                                            Decl *LinkageSpec,
9426                                            SourceLocation RBraceLoc) {
9427  if (LinkageSpec) {
9428    if (RBraceLoc.isValid()) {
9429      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9430      LSDecl->setRBraceLoc(RBraceLoc);
9431    }
9432    PopDeclContext();
9433  }
9434  return LinkageSpec;
9435}
9436
9437/// \brief Perform semantic analysis for the variable declaration that
9438/// occurs within a C++ catch clause, returning the newly-created
9439/// variable.
9440VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9441                                         TypeSourceInfo *TInfo,
9442                                         SourceLocation StartLoc,
9443                                         SourceLocation Loc,
9444                                         IdentifierInfo *Name) {
9445  bool Invalid = false;
9446  QualType ExDeclType = TInfo->getType();
9447
9448  // Arrays and functions decay.
9449  if (ExDeclType->isArrayType())
9450    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9451  else if (ExDeclType->isFunctionType())
9452    ExDeclType = Context.getPointerType(ExDeclType);
9453
9454  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9455  // The exception-declaration shall not denote a pointer or reference to an
9456  // incomplete type, other than [cv] void*.
9457  // N2844 forbids rvalue references.
9458  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9459    Diag(Loc, diag::err_catch_rvalue_ref);
9460    Invalid = true;
9461  }
9462
9463  // GCC allows catching pointers and references to incomplete types
9464  // as an extension; so do we, but we warn by default.
9465
9466  QualType BaseType = ExDeclType;
9467  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9468  unsigned DK = diag::err_catch_incomplete;
9469  bool IncompleteCatchIsInvalid = true;
9470  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9471    BaseType = Ptr->getPointeeType();
9472    Mode = 1;
9473    DK = diag::ext_catch_incomplete_ptr;
9474    IncompleteCatchIsInvalid = false;
9475  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9476    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9477    BaseType = Ref->getPointeeType();
9478    Mode = 2;
9479    DK = diag::ext_catch_incomplete_ref;
9480    IncompleteCatchIsInvalid = false;
9481  }
9482  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9483      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
9484      IncompleteCatchIsInvalid)
9485    Invalid = true;
9486
9487  if (!Invalid && !ExDeclType->isDependentType() &&
9488      RequireNonAbstractType(Loc, ExDeclType,
9489                             diag::err_abstract_type_in_decl,
9490                             AbstractVariableType))
9491    Invalid = true;
9492
9493  // Only the non-fragile NeXT runtime currently supports C++ catches
9494  // of ObjC types, and no runtime supports catching ObjC types by value.
9495  if (!Invalid && getLangOptions().ObjC1) {
9496    QualType T = ExDeclType;
9497    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9498      T = RT->getPointeeType();
9499
9500    if (T->isObjCObjectType()) {
9501      Diag(Loc, diag::err_objc_object_catch);
9502      Invalid = true;
9503    } else if (T->isObjCObjectPointerType()) {
9504      if (!getLangOptions().ObjCNonFragileABI)
9505        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9506    }
9507  }
9508
9509  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9510                                    ExDeclType, TInfo, SC_None, SC_None);
9511  ExDecl->setExceptionVariable(true);
9512
9513  if (!Invalid && !ExDeclType->isDependentType()) {
9514    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9515      // C++ [except.handle]p16:
9516      //   The object declared in an exception-declaration or, if the
9517      //   exception-declaration does not specify a name, a temporary (12.2) is
9518      //   copy-initialized (8.5) from the exception object. [...]
9519      //   The object is destroyed when the handler exits, after the destruction
9520      //   of any automatic objects initialized within the handler.
9521      //
9522      // We just pretend to initialize the object with itself, then make sure
9523      // it can be destroyed later.
9524      QualType initType = ExDeclType;
9525
9526      InitializedEntity entity =
9527        InitializedEntity::InitializeVariable(ExDecl);
9528      InitializationKind initKind =
9529        InitializationKind::CreateCopy(Loc, SourceLocation());
9530
9531      Expr *opaqueValue =
9532        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9533      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9534      ExprResult result = sequence.Perform(*this, entity, initKind,
9535                                           MultiExprArg(&opaqueValue, 1));
9536      if (result.isInvalid())
9537        Invalid = true;
9538      else {
9539        // If the constructor used was non-trivial, set this as the
9540        // "initializer".
9541        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9542        if (!construct->getConstructor()->isTrivial()) {
9543          Expr *init = MaybeCreateExprWithCleanups(construct);
9544          ExDecl->setInit(init);
9545        }
9546
9547        // And make sure it's destructable.
9548        FinalizeVarWithDestructor(ExDecl, recordType);
9549      }
9550    }
9551  }
9552
9553  if (Invalid)
9554    ExDecl->setInvalidDecl();
9555
9556  return ExDecl;
9557}
9558
9559/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9560/// handler.
9561Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9562  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9563  bool Invalid = D.isInvalidType();
9564
9565  // Check for unexpanded parameter packs.
9566  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9567                                               UPPC_ExceptionType)) {
9568    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9569                                             D.getIdentifierLoc());
9570    Invalid = true;
9571  }
9572
9573  IdentifierInfo *II = D.getIdentifier();
9574  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9575                                             LookupOrdinaryName,
9576                                             ForRedeclaration)) {
9577    // The scope should be freshly made just for us. There is just no way
9578    // it contains any previous declaration.
9579    assert(!S->isDeclScope(PrevDecl));
9580    if (PrevDecl->isTemplateParameter()) {
9581      // Maybe we will complain about the shadowed template parameter.
9582      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9583      PrevDecl = 0;
9584    }
9585  }
9586
9587  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9588    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9589      << D.getCXXScopeSpec().getRange();
9590    Invalid = true;
9591  }
9592
9593  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9594                                              D.getSourceRange().getBegin(),
9595                                              D.getIdentifierLoc(),
9596                                              D.getIdentifier());
9597  if (Invalid)
9598    ExDecl->setInvalidDecl();
9599
9600  // Add the exception declaration into this scope.
9601  if (II)
9602    PushOnScopeChains(ExDecl, S);
9603  else
9604    CurContext->addDecl(ExDecl);
9605
9606  ProcessDeclAttributes(S, ExDecl, D);
9607  return ExDecl;
9608}
9609
9610Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9611                                         Expr *AssertExpr,
9612                                         Expr *AssertMessageExpr_,
9613                                         SourceLocation RParenLoc) {
9614  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9615
9616  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9617    llvm::APSInt Value(32);
9618    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
9619      Diag(StaticAssertLoc,
9620           diag::err_static_assert_expression_is_not_constant) <<
9621        AssertExpr->getSourceRange();
9622      return 0;
9623    }
9624
9625    if (Value == 0) {
9626      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9627        << AssertMessage->getString() << AssertExpr->getSourceRange();
9628    }
9629  }
9630
9631  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9632    return 0;
9633
9634  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9635                                        AssertExpr, AssertMessage, RParenLoc);
9636
9637  CurContext->addDecl(Decl);
9638  return Decl;
9639}
9640
9641/// \brief Perform semantic analysis of the given friend type declaration.
9642///
9643/// \returns A friend declaration that.
9644FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9645                                      SourceLocation FriendLoc,
9646                                      TypeSourceInfo *TSInfo) {
9647  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9648
9649  QualType T = TSInfo->getType();
9650  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9651
9652  // C++03 [class.friend]p2:
9653  //   An elaborated-type-specifier shall be used in a friend declaration
9654  //   for a class.*
9655  //
9656  //   * The class-key of the elaborated-type-specifier is required.
9657  if (!ActiveTemplateInstantiations.empty()) {
9658    // Do not complain about the form of friend template types during
9659    // template instantiation; we will already have complained when the
9660    // template was declared.
9661  } else if (!T->isElaboratedTypeSpecifier()) {
9662    // If we evaluated the type to a record type, suggest putting
9663    // a tag in front.
9664    if (const RecordType *RT = T->getAs<RecordType>()) {
9665      RecordDecl *RD = RT->getDecl();
9666
9667      std::string InsertionText = std::string(" ") + RD->getKindName();
9668
9669      Diag(TypeRange.getBegin(),
9670           getLangOptions().CPlusPlus0x ?
9671             diag::warn_cxx98_compat_unelaborated_friend_type :
9672             diag::ext_unelaborated_friend_type)
9673        << (unsigned) RD->getTagKind()
9674        << T
9675        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9676                                      InsertionText);
9677    } else {
9678      Diag(FriendLoc,
9679           getLangOptions().CPlusPlus0x ?
9680             diag::warn_cxx98_compat_nonclass_type_friend :
9681             diag::ext_nonclass_type_friend)
9682        << T
9683        << SourceRange(FriendLoc, TypeRange.getEnd());
9684    }
9685  } else if (T->getAs<EnumType>()) {
9686    Diag(FriendLoc,
9687         getLangOptions().CPlusPlus0x ?
9688           diag::warn_cxx98_compat_enum_friend :
9689           diag::ext_enum_friend)
9690      << T
9691      << SourceRange(FriendLoc, TypeRange.getEnd());
9692  }
9693
9694  // C++0x [class.friend]p3:
9695  //   If the type specifier in a friend declaration designates a (possibly
9696  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9697  //   the friend declaration is ignored.
9698
9699  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9700  // in [class.friend]p3 that we do not implement.
9701
9702  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9703}
9704
9705/// Handle a friend tag declaration where the scope specifier was
9706/// templated.
9707Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9708                                    unsigned TagSpec, SourceLocation TagLoc,
9709                                    CXXScopeSpec &SS,
9710                                    IdentifierInfo *Name, SourceLocation NameLoc,
9711                                    AttributeList *Attr,
9712                                    MultiTemplateParamsArg TempParamLists) {
9713  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9714
9715  bool isExplicitSpecialization = false;
9716  bool Invalid = false;
9717
9718  if (TemplateParameterList *TemplateParams
9719        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9720                                                  TempParamLists.get(),
9721                                                  TempParamLists.size(),
9722                                                  /*friend*/ true,
9723                                                  isExplicitSpecialization,
9724                                                  Invalid)) {
9725    if (TemplateParams->size() > 0) {
9726      // This is a declaration of a class template.
9727      if (Invalid)
9728        return 0;
9729
9730      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9731                                SS, Name, NameLoc, Attr,
9732                                TemplateParams, AS_public,
9733                                /*ModulePrivateLoc=*/SourceLocation(),
9734                                TempParamLists.size() - 1,
9735                   (TemplateParameterList**) TempParamLists.release()).take();
9736    } else {
9737      // The "template<>" header is extraneous.
9738      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9739        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9740      isExplicitSpecialization = true;
9741    }
9742  }
9743
9744  if (Invalid) return 0;
9745
9746  bool isAllExplicitSpecializations = true;
9747  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9748    if (TempParamLists.get()[I]->size()) {
9749      isAllExplicitSpecializations = false;
9750      break;
9751    }
9752  }
9753
9754  // FIXME: don't ignore attributes.
9755
9756  // If it's explicit specializations all the way down, just forget
9757  // about the template header and build an appropriate non-templated
9758  // friend.  TODO: for source fidelity, remember the headers.
9759  if (isAllExplicitSpecializations) {
9760    if (SS.isEmpty()) {
9761      bool Owned = false;
9762      bool IsDependent = false;
9763      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9764                      Attr, AS_public,
9765                      /*ModulePrivateLoc=*/SourceLocation(),
9766                      MultiTemplateParamsArg(), Owned, IsDependent,
9767                      /*ScopedEnum=*/false,
9768                      /*ScopedEnumUsesClassTag=*/false,
9769                      /*UnderlyingType=*/TypeResult());
9770    }
9771
9772    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9773    ElaboratedTypeKeyword Keyword
9774      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9775    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9776                                   *Name, NameLoc);
9777    if (T.isNull())
9778      return 0;
9779
9780    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9781    if (isa<DependentNameType>(T)) {
9782      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9783      TL.setKeywordLoc(TagLoc);
9784      TL.setQualifierLoc(QualifierLoc);
9785      TL.setNameLoc(NameLoc);
9786    } else {
9787      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9788      TL.setKeywordLoc(TagLoc);
9789      TL.setQualifierLoc(QualifierLoc);
9790      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9791    }
9792
9793    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9794                                            TSI, FriendLoc);
9795    Friend->setAccess(AS_public);
9796    CurContext->addDecl(Friend);
9797    return Friend;
9798  }
9799
9800  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9801
9802
9803
9804  // Handle the case of a templated-scope friend class.  e.g.
9805  //   template <class T> class A<T>::B;
9806  // FIXME: we don't support these right now.
9807  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9808  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9809  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9810  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9811  TL.setKeywordLoc(TagLoc);
9812  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9813  TL.setNameLoc(NameLoc);
9814
9815  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9816                                          TSI, FriendLoc);
9817  Friend->setAccess(AS_public);
9818  Friend->setUnsupportedFriend(true);
9819  CurContext->addDecl(Friend);
9820  return Friend;
9821}
9822
9823
9824/// Handle a friend type declaration.  This works in tandem with
9825/// ActOnTag.
9826///
9827/// Notes on friend class templates:
9828///
9829/// We generally treat friend class declarations as if they were
9830/// declaring a class.  So, for example, the elaborated type specifier
9831/// in a friend declaration is required to obey the restrictions of a
9832/// class-head (i.e. no typedefs in the scope chain), template
9833/// parameters are required to match up with simple template-ids, &c.
9834/// However, unlike when declaring a template specialization, it's
9835/// okay to refer to a template specialization without an empty
9836/// template parameter declaration, e.g.
9837///   friend class A<T>::B<unsigned>;
9838/// We permit this as a special case; if there are any template
9839/// parameters present at all, require proper matching, i.e.
9840///   template <> template <class T> friend class A<int>::B;
9841Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
9842                                MultiTemplateParamsArg TempParams) {
9843  SourceLocation Loc = DS.getSourceRange().getBegin();
9844
9845  assert(DS.isFriendSpecified());
9846  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9847
9848  // Try to convert the decl specifier to a type.  This works for
9849  // friend templates because ActOnTag never produces a ClassTemplateDecl
9850  // for a TUK_Friend.
9851  Declarator TheDeclarator(DS, Declarator::MemberContext);
9852  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
9853  QualType T = TSI->getType();
9854  if (TheDeclarator.isInvalidType())
9855    return 0;
9856
9857  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
9858    return 0;
9859
9860  // This is definitely an error in C++98.  It's probably meant to
9861  // be forbidden in C++0x, too, but the specification is just
9862  // poorly written.
9863  //
9864  // The problem is with declarations like the following:
9865  //   template <T> friend A<T>::foo;
9866  // where deciding whether a class C is a friend or not now hinges
9867  // on whether there exists an instantiation of A that causes
9868  // 'foo' to equal C.  There are restrictions on class-heads
9869  // (which we declare (by fiat) elaborated friend declarations to
9870  // be) that makes this tractable.
9871  //
9872  // FIXME: handle "template <> friend class A<T>;", which
9873  // is possibly well-formed?  Who even knows?
9874  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
9875    Diag(Loc, diag::err_tagless_friend_type_template)
9876      << DS.getSourceRange();
9877    return 0;
9878  }
9879
9880  // C++98 [class.friend]p1: A friend of a class is a function
9881  //   or class that is not a member of the class . . .
9882  // This is fixed in DR77, which just barely didn't make the C++03
9883  // deadline.  It's also a very silly restriction that seriously
9884  // affects inner classes and which nobody else seems to implement;
9885  // thus we never diagnose it, not even in -pedantic.
9886  //
9887  // But note that we could warn about it: it's always useless to
9888  // friend one of your own members (it's not, however, worthless to
9889  // friend a member of an arbitrary specialization of your template).
9890
9891  Decl *D;
9892  if (unsigned NumTempParamLists = TempParams.size())
9893    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
9894                                   NumTempParamLists,
9895                                   TempParams.release(),
9896                                   TSI,
9897                                   DS.getFriendSpecLoc());
9898  else
9899    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
9900
9901  if (!D)
9902    return 0;
9903
9904  D->setAccess(AS_public);
9905  CurContext->addDecl(D);
9906
9907  return D;
9908}
9909
9910Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
9911                                    MultiTemplateParamsArg TemplateParams) {
9912  const DeclSpec &DS = D.getDeclSpec();
9913
9914  assert(DS.isFriendSpecified());
9915  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9916
9917  SourceLocation Loc = D.getIdentifierLoc();
9918  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9919
9920  // C++ [class.friend]p1
9921  //   A friend of a class is a function or class....
9922  // Note that this sees through typedefs, which is intended.
9923  // It *doesn't* see through dependent types, which is correct
9924  // according to [temp.arg.type]p3:
9925  //   If a declaration acquires a function type through a
9926  //   type dependent on a template-parameter and this causes
9927  //   a declaration that does not use the syntactic form of a
9928  //   function declarator to have a function type, the program
9929  //   is ill-formed.
9930  if (!TInfo->getType()->isFunctionType()) {
9931    Diag(Loc, diag::err_unexpected_friend);
9932
9933    // It might be worthwhile to try to recover by creating an
9934    // appropriate declaration.
9935    return 0;
9936  }
9937
9938  // C++ [namespace.memdef]p3
9939  //  - If a friend declaration in a non-local class first declares a
9940  //    class or function, the friend class or function is a member
9941  //    of the innermost enclosing namespace.
9942  //  - The name of the friend is not found by simple name lookup
9943  //    until a matching declaration is provided in that namespace
9944  //    scope (either before or after the class declaration granting
9945  //    friendship).
9946  //  - If a friend function is called, its name may be found by the
9947  //    name lookup that considers functions from namespaces and
9948  //    classes associated with the types of the function arguments.
9949  //  - When looking for a prior declaration of a class or a function
9950  //    declared as a friend, scopes outside the innermost enclosing
9951  //    namespace scope are not considered.
9952
9953  CXXScopeSpec &SS = D.getCXXScopeSpec();
9954  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9955  DeclarationName Name = NameInfo.getName();
9956  assert(Name);
9957
9958  // Check for unexpanded parameter packs.
9959  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
9960      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
9961      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
9962    return 0;
9963
9964  // The context we found the declaration in, or in which we should
9965  // create the declaration.
9966  DeclContext *DC;
9967  Scope *DCScope = S;
9968  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
9969                        ForRedeclaration);
9970
9971  // FIXME: there are different rules in local classes
9972
9973  // There are four cases here.
9974  //   - There's no scope specifier, in which case we just go to the
9975  //     appropriate scope and look for a function or function template
9976  //     there as appropriate.
9977  // Recover from invalid scope qualifiers as if they just weren't there.
9978  if (SS.isInvalid() || !SS.isSet()) {
9979    // C++0x [namespace.memdef]p3:
9980    //   If the name in a friend declaration is neither qualified nor
9981    //   a template-id and the declaration is a function or an
9982    //   elaborated-type-specifier, the lookup to determine whether
9983    //   the entity has been previously declared shall not consider
9984    //   any scopes outside the innermost enclosing namespace.
9985    // C++0x [class.friend]p11:
9986    //   If a friend declaration appears in a local class and the name
9987    //   specified is an unqualified name, a prior declaration is
9988    //   looked up without considering scopes that are outside the
9989    //   innermost enclosing non-class scope. For a friend function
9990    //   declaration, if there is no prior declaration, the program is
9991    //   ill-formed.
9992    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
9993    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
9994
9995    // Find the appropriate context according to the above.
9996    DC = CurContext;
9997    while (true) {
9998      // Skip class contexts.  If someone can cite chapter and verse
9999      // for this behavior, that would be nice --- it's what GCC and
10000      // EDG do, and it seems like a reasonable intent, but the spec
10001      // really only says that checks for unqualified existing
10002      // declarations should stop at the nearest enclosing namespace,
10003      // not that they should only consider the nearest enclosing
10004      // namespace.
10005      while (DC->isRecord())
10006        DC = DC->getParent();
10007
10008      LookupQualifiedName(Previous, DC);
10009
10010      // TODO: decide what we think about using declarations.
10011      if (isLocal || !Previous.empty())
10012        break;
10013
10014      if (isTemplateId) {
10015        if (isa<TranslationUnitDecl>(DC)) break;
10016      } else {
10017        if (DC->isFileContext()) break;
10018      }
10019      DC = DC->getParent();
10020    }
10021
10022    // C++ [class.friend]p1: A friend of a class is a function or
10023    //   class that is not a member of the class . . .
10024    // C++11 changes this for both friend types and functions.
10025    // Most C++ 98 compilers do seem to give an error here, so
10026    // we do, too.
10027    if (!Previous.empty() && DC->Equals(CurContext))
10028      Diag(DS.getFriendSpecLoc(),
10029           getLangOptions().CPlusPlus0x ?
10030             diag::warn_cxx98_compat_friend_is_member :
10031             diag::err_friend_is_member);
10032
10033    DCScope = getScopeForDeclContext(S, DC);
10034
10035    // C++ [class.friend]p6:
10036    //   A function can be defined in a friend declaration of a class if and
10037    //   only if the class is a non-local class (9.8), the function name is
10038    //   unqualified, and the function has namespace scope.
10039    if (isLocal && D.isFunctionDefinition()) {
10040      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10041    }
10042
10043  //   - There's a non-dependent scope specifier, in which case we
10044  //     compute it and do a previous lookup there for a function
10045  //     or function template.
10046  } else if (!SS.getScopeRep()->isDependent()) {
10047    DC = computeDeclContext(SS);
10048    if (!DC) return 0;
10049
10050    if (RequireCompleteDeclContext(SS, DC)) return 0;
10051
10052    LookupQualifiedName(Previous, DC);
10053
10054    // Ignore things found implicitly in the wrong scope.
10055    // TODO: better diagnostics for this case.  Suggesting the right
10056    // qualified scope would be nice...
10057    LookupResult::Filter F = Previous.makeFilter();
10058    while (F.hasNext()) {
10059      NamedDecl *D = F.next();
10060      if (!DC->InEnclosingNamespaceSetOf(
10061              D->getDeclContext()->getRedeclContext()))
10062        F.erase();
10063    }
10064    F.done();
10065
10066    if (Previous.empty()) {
10067      D.setInvalidType();
10068      Diag(Loc, diag::err_qualified_friend_not_found)
10069          << Name << TInfo->getType();
10070      return 0;
10071    }
10072
10073    // C++ [class.friend]p1: A friend of a class is a function or
10074    //   class that is not a member of the class . . .
10075    if (DC->Equals(CurContext))
10076      Diag(DS.getFriendSpecLoc(),
10077           getLangOptions().CPlusPlus0x ?
10078             diag::warn_cxx98_compat_friend_is_member :
10079             diag::err_friend_is_member);
10080
10081    if (D.isFunctionDefinition()) {
10082      // C++ [class.friend]p6:
10083      //   A function can be defined in a friend declaration of a class if and
10084      //   only if the class is a non-local class (9.8), the function name is
10085      //   unqualified, and the function has namespace scope.
10086      SemaDiagnosticBuilder DB
10087        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10088
10089      DB << SS.getScopeRep();
10090      if (DC->isFileContext())
10091        DB << FixItHint::CreateRemoval(SS.getRange());
10092      SS.clear();
10093    }
10094
10095  //   - There's a scope specifier that does not match any template
10096  //     parameter lists, in which case we use some arbitrary context,
10097  //     create a method or method template, and wait for instantiation.
10098  //   - There's a scope specifier that does match some template
10099  //     parameter lists, which we don't handle right now.
10100  } else {
10101    if (D.isFunctionDefinition()) {
10102      // C++ [class.friend]p6:
10103      //   A function can be defined in a friend declaration of a class if and
10104      //   only if the class is a non-local class (9.8), the function name is
10105      //   unqualified, and the function has namespace scope.
10106      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10107        << SS.getScopeRep();
10108    }
10109
10110    DC = CurContext;
10111    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10112  }
10113
10114  if (!DC->isRecord()) {
10115    // This implies that it has to be an operator or function.
10116    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10117        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10118        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10119      Diag(Loc, diag::err_introducing_special_friend) <<
10120        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10121         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10122      return 0;
10123    }
10124  }
10125
10126  bool AddToScope = true;
10127  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10128                                          move(TemplateParams), AddToScope);
10129  if (!ND) return 0;
10130
10131  assert(ND->getDeclContext() == DC);
10132  assert(ND->getLexicalDeclContext() == CurContext);
10133
10134  // Add the function declaration to the appropriate lookup tables,
10135  // adjusting the redeclarations list as necessary.  We don't
10136  // want to do this yet if the friending class is dependent.
10137  //
10138  // Also update the scope-based lookup if the target context's
10139  // lookup context is in lexical scope.
10140  if (!CurContext->isDependentContext()) {
10141    DC = DC->getRedeclContext();
10142    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10143    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10144      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10145  }
10146
10147  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10148                                       D.getIdentifierLoc(), ND,
10149                                       DS.getFriendSpecLoc());
10150  FrD->setAccess(AS_public);
10151  CurContext->addDecl(FrD);
10152
10153  if (ND->isInvalidDecl())
10154    FrD->setInvalidDecl();
10155  else {
10156    FunctionDecl *FD;
10157    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10158      FD = FTD->getTemplatedDecl();
10159    else
10160      FD = cast<FunctionDecl>(ND);
10161
10162    // Mark templated-scope function declarations as unsupported.
10163    if (FD->getNumTemplateParameterLists())
10164      FrD->setUnsupportedFriend(true);
10165  }
10166
10167  return ND;
10168}
10169
10170void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10171  AdjustDeclIfTemplate(Dcl);
10172
10173  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10174  if (!Fn) {
10175    Diag(DelLoc, diag::err_deleted_non_function);
10176    return;
10177  }
10178  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
10179    Diag(DelLoc, diag::err_deleted_decl_not_first);
10180    Diag(Prev->getLocation(), diag::note_previous_declaration);
10181    // If the declaration wasn't the first, we delete the function anyway for
10182    // recovery.
10183  }
10184  Fn->setDeletedAsWritten();
10185}
10186
10187void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10188  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10189
10190  if (MD) {
10191    if (MD->getParent()->isDependentType()) {
10192      MD->setDefaulted();
10193      MD->setExplicitlyDefaulted();
10194      return;
10195    }
10196
10197    CXXSpecialMember Member = getSpecialMember(MD);
10198    if (Member == CXXInvalid) {
10199      Diag(DefaultLoc, diag::err_default_special_members);
10200      return;
10201    }
10202
10203    MD->setDefaulted();
10204    MD->setExplicitlyDefaulted();
10205
10206    // If this definition appears within the record, do the checking when
10207    // the record is complete.
10208    const FunctionDecl *Primary = MD;
10209    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10210      // Find the uninstantiated declaration that actually had the '= default'
10211      // on it.
10212      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10213
10214    if (Primary == Primary->getCanonicalDecl())
10215      return;
10216
10217    switch (Member) {
10218    case CXXDefaultConstructor: {
10219      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10220      CheckExplicitlyDefaultedDefaultConstructor(CD);
10221      if (!CD->isInvalidDecl())
10222        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10223      break;
10224    }
10225
10226    case CXXCopyConstructor: {
10227      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10228      CheckExplicitlyDefaultedCopyConstructor(CD);
10229      if (!CD->isInvalidDecl())
10230        DefineImplicitCopyConstructor(DefaultLoc, CD);
10231      break;
10232    }
10233
10234    case CXXCopyAssignment: {
10235      CheckExplicitlyDefaultedCopyAssignment(MD);
10236      if (!MD->isInvalidDecl())
10237        DefineImplicitCopyAssignment(DefaultLoc, MD);
10238      break;
10239    }
10240
10241    case CXXDestructor: {
10242      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10243      CheckExplicitlyDefaultedDestructor(DD);
10244      if (!DD->isInvalidDecl())
10245        DefineImplicitDestructor(DefaultLoc, DD);
10246      break;
10247    }
10248
10249    case CXXMoveConstructor: {
10250      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10251      CheckExplicitlyDefaultedMoveConstructor(CD);
10252      if (!CD->isInvalidDecl())
10253        DefineImplicitMoveConstructor(DefaultLoc, CD);
10254      break;
10255    }
10256
10257    case CXXMoveAssignment: {
10258      CheckExplicitlyDefaultedMoveAssignment(MD);
10259      if (!MD->isInvalidDecl())
10260        DefineImplicitMoveAssignment(DefaultLoc, MD);
10261      break;
10262    }
10263
10264    case CXXInvalid:
10265      llvm_unreachable("Invalid special member.");
10266    }
10267  } else {
10268    Diag(DefaultLoc, diag::err_default_special_members);
10269  }
10270}
10271
10272static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10273  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10274    Stmt *SubStmt = *CI;
10275    if (!SubStmt)
10276      continue;
10277    if (isa<ReturnStmt>(SubStmt))
10278      Self.Diag(SubStmt->getSourceRange().getBegin(),
10279           diag::err_return_in_constructor_handler);
10280    if (!isa<Expr>(SubStmt))
10281      SearchForReturnInStmt(Self, SubStmt);
10282  }
10283}
10284
10285void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10286  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10287    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10288    SearchForReturnInStmt(*this, Handler);
10289  }
10290}
10291
10292bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10293                                             const CXXMethodDecl *Old) {
10294  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10295  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10296
10297  if (Context.hasSameType(NewTy, OldTy) ||
10298      NewTy->isDependentType() || OldTy->isDependentType())
10299    return false;
10300
10301  // Check if the return types are covariant
10302  QualType NewClassTy, OldClassTy;
10303
10304  /// Both types must be pointers or references to classes.
10305  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10306    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10307      NewClassTy = NewPT->getPointeeType();
10308      OldClassTy = OldPT->getPointeeType();
10309    }
10310  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10311    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10312      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10313        NewClassTy = NewRT->getPointeeType();
10314        OldClassTy = OldRT->getPointeeType();
10315      }
10316    }
10317  }
10318
10319  // The return types aren't either both pointers or references to a class type.
10320  if (NewClassTy.isNull()) {
10321    Diag(New->getLocation(),
10322         diag::err_different_return_type_for_overriding_virtual_function)
10323      << New->getDeclName() << NewTy << OldTy;
10324    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10325
10326    return true;
10327  }
10328
10329  // C++ [class.virtual]p6:
10330  //   If the return type of D::f differs from the return type of B::f, the
10331  //   class type in the return type of D::f shall be complete at the point of
10332  //   declaration of D::f or shall be the class type D.
10333  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10334    if (!RT->isBeingDefined() &&
10335        RequireCompleteType(New->getLocation(), NewClassTy,
10336                            PDiag(diag::err_covariant_return_incomplete)
10337                              << New->getDeclName()))
10338    return true;
10339  }
10340
10341  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10342    // Check if the new class derives from the old class.
10343    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10344      Diag(New->getLocation(),
10345           diag::err_covariant_return_not_derived)
10346      << New->getDeclName() << NewTy << OldTy;
10347      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10348      return true;
10349    }
10350
10351    // Check if we the conversion from derived to base is valid.
10352    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10353                    diag::err_covariant_return_inaccessible_base,
10354                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10355                    // FIXME: Should this point to the return type?
10356                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10357      // FIXME: this note won't trigger for delayed access control
10358      // diagnostics, and it's impossible to get an undelayed error
10359      // here from access control during the original parse because
10360      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10361      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10362      return true;
10363    }
10364  }
10365
10366  // The qualifiers of the return types must be the same.
10367  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10368    Diag(New->getLocation(),
10369         diag::err_covariant_return_type_different_qualifications)
10370    << New->getDeclName() << NewTy << OldTy;
10371    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10372    return true;
10373  };
10374
10375
10376  // The new class type must have the same or less qualifiers as the old type.
10377  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10378    Diag(New->getLocation(),
10379         diag::err_covariant_return_type_class_type_more_qualified)
10380    << New->getDeclName() << NewTy << OldTy;
10381    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10382    return true;
10383  };
10384
10385  return false;
10386}
10387
10388/// \brief Mark the given method pure.
10389///
10390/// \param Method the method to be marked pure.
10391///
10392/// \param InitRange the source range that covers the "0" initializer.
10393bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10394  SourceLocation EndLoc = InitRange.getEnd();
10395  if (EndLoc.isValid())
10396    Method->setRangeEnd(EndLoc);
10397
10398  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10399    Method->setPure();
10400    return false;
10401  }
10402
10403  if (!Method->isInvalidDecl())
10404    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10405      << Method->getDeclName() << InitRange;
10406  return true;
10407}
10408
10409/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10410/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10411/// is a fresh scope pushed for just this purpose.
10412///
10413/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10414/// static data member of class X, names should be looked up in the scope of
10415/// class X.
10416void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10417  // If there is no declaration, there was an error parsing it.
10418  if (D == 0 || D->isInvalidDecl()) return;
10419
10420  // We should only get called for declarations with scope specifiers, like:
10421  //   int foo::bar;
10422  assert(D->isOutOfLine());
10423  EnterDeclaratorContext(S, D->getDeclContext());
10424}
10425
10426/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10427/// initializer for the out-of-line declaration 'D'.
10428void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10429  // If there is no declaration, there was an error parsing it.
10430  if (D == 0 || D->isInvalidDecl()) return;
10431
10432  assert(D->isOutOfLine());
10433  ExitDeclaratorContext(S);
10434}
10435
10436/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10437/// C++ if/switch/while/for statement.
10438/// e.g: "if (int x = f()) {...}"
10439DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10440  // C++ 6.4p2:
10441  // The declarator shall not specify a function or an array.
10442  // The type-specifier-seq shall not contain typedef and shall not declare a
10443  // new class or enumeration.
10444  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10445         "Parser allowed 'typedef' as storage class of condition decl.");
10446
10447  Decl *Dcl = ActOnDeclarator(S, D);
10448  if (!Dcl)
10449    return true;
10450
10451  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10452    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10453      << D.getSourceRange();
10454    return true;
10455  }
10456
10457  return Dcl;
10458}
10459
10460void Sema::LoadExternalVTableUses() {
10461  if (!ExternalSource)
10462    return;
10463
10464  SmallVector<ExternalVTableUse, 4> VTables;
10465  ExternalSource->ReadUsedVTables(VTables);
10466  SmallVector<VTableUse, 4> NewUses;
10467  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10468    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10469      = VTablesUsed.find(VTables[I].Record);
10470    // Even if a definition wasn't required before, it may be required now.
10471    if (Pos != VTablesUsed.end()) {
10472      if (!Pos->second && VTables[I].DefinitionRequired)
10473        Pos->second = true;
10474      continue;
10475    }
10476
10477    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10478    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10479  }
10480
10481  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10482}
10483
10484void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10485                          bool DefinitionRequired) {
10486  // Ignore any vtable uses in unevaluated operands or for classes that do
10487  // not have a vtable.
10488  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10489      CurContext->isDependentContext() ||
10490      ExprEvalContexts.back().Context == Unevaluated)
10491    return;
10492
10493  // Try to insert this class into the map.
10494  LoadExternalVTableUses();
10495  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10496  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10497    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10498  if (!Pos.second) {
10499    // If we already had an entry, check to see if we are promoting this vtable
10500    // to required a definition. If so, we need to reappend to the VTableUses
10501    // list, since we may have already processed the first entry.
10502    if (DefinitionRequired && !Pos.first->second) {
10503      Pos.first->second = true;
10504    } else {
10505      // Otherwise, we can early exit.
10506      return;
10507    }
10508  }
10509
10510  // Local classes need to have their virtual members marked
10511  // immediately. For all other classes, we mark their virtual members
10512  // at the end of the translation unit.
10513  if (Class->isLocalClass())
10514    MarkVirtualMembersReferenced(Loc, Class);
10515  else
10516    VTableUses.push_back(std::make_pair(Class, Loc));
10517}
10518
10519bool Sema::DefineUsedVTables() {
10520  LoadExternalVTableUses();
10521  if (VTableUses.empty())
10522    return false;
10523
10524  // Note: The VTableUses vector could grow as a result of marking
10525  // the members of a class as "used", so we check the size each
10526  // time through the loop and prefer indices (with are stable) to
10527  // iterators (which are not).
10528  bool DefinedAnything = false;
10529  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10530    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10531    if (!Class)
10532      continue;
10533
10534    SourceLocation Loc = VTableUses[I].second;
10535
10536    // If this class has a key function, but that key function is
10537    // defined in another translation unit, we don't need to emit the
10538    // vtable even though we're using it.
10539    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10540    if (KeyFunction && !KeyFunction->hasBody()) {
10541      switch (KeyFunction->getTemplateSpecializationKind()) {
10542      case TSK_Undeclared:
10543      case TSK_ExplicitSpecialization:
10544      case TSK_ExplicitInstantiationDeclaration:
10545        // The key function is in another translation unit.
10546        continue;
10547
10548      case TSK_ExplicitInstantiationDefinition:
10549      case TSK_ImplicitInstantiation:
10550        // We will be instantiating the key function.
10551        break;
10552      }
10553    } else if (!KeyFunction) {
10554      // If we have a class with no key function that is the subject
10555      // of an explicit instantiation declaration, suppress the
10556      // vtable; it will live with the explicit instantiation
10557      // definition.
10558      bool IsExplicitInstantiationDeclaration
10559        = Class->getTemplateSpecializationKind()
10560                                      == TSK_ExplicitInstantiationDeclaration;
10561      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10562                                 REnd = Class->redecls_end();
10563           R != REnd; ++R) {
10564        TemplateSpecializationKind TSK
10565          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10566        if (TSK == TSK_ExplicitInstantiationDeclaration)
10567          IsExplicitInstantiationDeclaration = true;
10568        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10569          IsExplicitInstantiationDeclaration = false;
10570          break;
10571        }
10572      }
10573
10574      if (IsExplicitInstantiationDeclaration)
10575        continue;
10576    }
10577
10578    // Mark all of the virtual members of this class as referenced, so
10579    // that we can build a vtable. Then, tell the AST consumer that a
10580    // vtable for this class is required.
10581    DefinedAnything = true;
10582    MarkVirtualMembersReferenced(Loc, Class);
10583    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10584    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10585
10586    // Optionally warn if we're emitting a weak vtable.
10587    if (Class->getLinkage() == ExternalLinkage &&
10588        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10589      const FunctionDecl *KeyFunctionDef = 0;
10590      if (!KeyFunction ||
10591          (KeyFunction->hasBody(KeyFunctionDef) &&
10592           KeyFunctionDef->isInlined()))
10593        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
10594    }
10595  }
10596  VTableUses.clear();
10597
10598  return DefinedAnything;
10599}
10600
10601void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10602                                        const CXXRecordDecl *RD) {
10603  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10604       e = RD->method_end(); i != e; ++i) {
10605    CXXMethodDecl *MD = *i;
10606
10607    // C++ [basic.def.odr]p2:
10608    //   [...] A virtual member function is used if it is not pure. [...]
10609    if (MD->isVirtual() && !MD->isPure())
10610      MarkDeclarationReferenced(Loc, MD);
10611  }
10612
10613  // Only classes that have virtual bases need a VTT.
10614  if (RD->getNumVBases() == 0)
10615    return;
10616
10617  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10618           e = RD->bases_end(); i != e; ++i) {
10619    const CXXRecordDecl *Base =
10620        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10621    if (Base->getNumVBases() == 0)
10622      continue;
10623    MarkVirtualMembersReferenced(Loc, Base);
10624  }
10625}
10626
10627/// SetIvarInitializers - This routine builds initialization ASTs for the
10628/// Objective-C implementation whose ivars need be initialized.
10629void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10630  if (!getLangOptions().CPlusPlus)
10631    return;
10632  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10633    SmallVector<ObjCIvarDecl*, 8> ivars;
10634    CollectIvarsToConstructOrDestruct(OID, ivars);
10635    if (ivars.empty())
10636      return;
10637    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10638    for (unsigned i = 0; i < ivars.size(); i++) {
10639      FieldDecl *Field = ivars[i];
10640      if (Field->isInvalidDecl())
10641        continue;
10642
10643      CXXCtorInitializer *Member;
10644      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10645      InitializationKind InitKind =
10646        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10647
10648      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10649      ExprResult MemberInit =
10650        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10651      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10652      // Note, MemberInit could actually come back empty if no initialization
10653      // is required (e.g., because it would call a trivial default constructor)
10654      if (!MemberInit.get() || MemberInit.isInvalid())
10655        continue;
10656
10657      Member =
10658        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10659                                         SourceLocation(),
10660                                         MemberInit.takeAs<Expr>(),
10661                                         SourceLocation());
10662      AllToInit.push_back(Member);
10663
10664      // Be sure that the destructor is accessible and is marked as referenced.
10665      if (const RecordType *RecordTy
10666                  = Context.getBaseElementType(Field->getType())
10667                                                        ->getAs<RecordType>()) {
10668                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10669        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10670          MarkDeclarationReferenced(Field->getLocation(), Destructor);
10671          CheckDestructorAccess(Field->getLocation(), Destructor,
10672                            PDiag(diag::err_access_dtor_ivar)
10673                              << Context.getBaseElementType(Field->getType()));
10674        }
10675      }
10676    }
10677    ObjCImplementation->setIvarInitializers(Context,
10678                                            AllToInit.data(), AllToInit.size());
10679  }
10680}
10681
10682static
10683void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10684                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10685                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10686                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10687                           Sema &S) {
10688  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10689                                                   CE = Current.end();
10690  if (Ctor->isInvalidDecl())
10691    return;
10692
10693  const FunctionDecl *FNTarget = 0;
10694  CXXConstructorDecl *Target;
10695
10696  // We ignore the result here since if we don't have a body, Target will be
10697  // null below.
10698  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10699  Target
10700= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10701
10702  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10703                     // Avoid dereferencing a null pointer here.
10704                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10705
10706  if (!Current.insert(Canonical))
10707    return;
10708
10709  // We know that beyond here, we aren't chaining into a cycle.
10710  if (!Target || !Target->isDelegatingConstructor() ||
10711      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10712    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10713      Valid.insert(*CI);
10714    Current.clear();
10715  // We've hit a cycle.
10716  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10717             Current.count(TCanonical)) {
10718    // If we haven't diagnosed this cycle yet, do so now.
10719    if (!Invalid.count(TCanonical)) {
10720      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10721             diag::warn_delegating_ctor_cycle)
10722        << Ctor;
10723
10724      // Don't add a note for a function delegating directo to itself.
10725      if (TCanonical != Canonical)
10726        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10727
10728      CXXConstructorDecl *C = Target;
10729      while (C->getCanonicalDecl() != Canonical) {
10730        (void)C->getTargetConstructor()->hasBody(FNTarget);
10731        assert(FNTarget && "Ctor cycle through bodiless function");
10732
10733        C
10734       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10735        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10736      }
10737    }
10738
10739    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10740      Invalid.insert(*CI);
10741    Current.clear();
10742  } else {
10743    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10744  }
10745}
10746
10747
10748void Sema::CheckDelegatingCtorCycles() {
10749  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10750
10751  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10752                                                   CE = Current.end();
10753
10754  for (DelegatingCtorDeclsType::iterator
10755         I = DelegatingCtorDecls.begin(ExternalSource),
10756         E = DelegatingCtorDecls.end();
10757       I != E; ++I) {
10758   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10759  }
10760
10761  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10762    (*CI)->setInvalidDecl();
10763}
10764
10765/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
10766Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
10767  // Implicitly declared functions (e.g. copy constructors) are
10768  // __host__ __device__
10769  if (D->isImplicit())
10770    return CFT_HostDevice;
10771
10772  if (D->hasAttr<CUDAGlobalAttr>())
10773    return CFT_Global;
10774
10775  if (D->hasAttr<CUDADeviceAttr>()) {
10776    if (D->hasAttr<CUDAHostAttr>())
10777      return CFT_HostDevice;
10778    else
10779      return CFT_Device;
10780  }
10781
10782  return CFT_Host;
10783}
10784
10785bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
10786                           CUDAFunctionTarget CalleeTarget) {
10787  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
10788  // Callable from the device only."
10789  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
10790    return true;
10791
10792  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
10793  // Callable from the host only."
10794  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
10795  // Callable from the host only."
10796  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
10797      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
10798    return true;
10799
10800  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
10801    return true;
10802
10803  return false;
10804}
10805