SemaDeclCXX.cpp revision 37b372b76a3fafe77186d7e6079e5642e2017478
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  if (CheckEquivalentExceptionSpec(
262          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
263          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
264    Invalid = true;
265  }
266
267  return Invalid;
268}
269
270/// CheckCXXDefaultArguments - Verify that the default arguments for a
271/// function declaration are well-formed according to C++
272/// [dcl.fct.default].
273void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
274  unsigned NumParams = FD->getNumParams();
275  unsigned p;
276
277  // Find first parameter with a default argument
278  for (p = 0; p < NumParams; ++p) {
279    ParmVarDecl *Param = FD->getParamDecl(p);
280    if (Param->getDefaultArg())
281      break;
282  }
283
284  // C++ [dcl.fct.default]p4:
285  //   In a given function declaration, all parameters
286  //   subsequent to a parameter with a default argument shall
287  //   have default arguments supplied in this or previous
288  //   declarations. A default argument shall not be redefined
289  //   by a later declaration (not even to the same value).
290  unsigned LastMissingDefaultArg = 0;
291  for(; p < NumParams; ++p) {
292    ParmVarDecl *Param = FD->getParamDecl(p);
293    if (!Param->getDefaultArg()) {
294      if (Param->isInvalidDecl())
295        /* We already complained about this parameter. */;
296      else if (Param->getIdentifier())
297        Diag(Param->getLocation(),
298             diag::err_param_default_argument_missing_name)
299          << Param->getIdentifier();
300      else
301        Diag(Param->getLocation(),
302             diag::err_param_default_argument_missing);
303
304      LastMissingDefaultArg = p;
305    }
306  }
307
308  if (LastMissingDefaultArg > 0) {
309    // Some default arguments were missing. Clear out all of the
310    // default arguments up to (and including) the last missing
311    // default argument, so that we leave the function parameters
312    // in a semantically valid state.
313    for (p = 0; p <= LastMissingDefaultArg; ++p) {
314      ParmVarDecl *Param = FD->getParamDecl(p);
315      if (Param->hasDefaultArg()) {
316        if (!Param->hasUnparsedDefaultArg())
317          Param->getDefaultArg()->Destroy(Context);
318        Param->setDefaultArg(0);
319      }
320    }
321  }
322}
323
324/// isCurrentClassName - Determine whether the identifier II is the
325/// name of the class type currently being defined. In the case of
326/// nested classes, this will only return true if II is the name of
327/// the innermost class.
328bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
329                              const CXXScopeSpec *SS) {
330  CXXRecordDecl *CurDecl;
331  if (SS && SS->isSet() && !SS->isInvalid()) {
332    DeclContext *DC = computeDeclContext(*SS);
333    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
334  } else
335    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
336
337  if (CurDecl)
338    return &II == CurDecl->getIdentifier();
339  else
340    return false;
341}
342
343/// \brief Check the validity of a C++ base class specifier.
344///
345/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
346/// and returns NULL otherwise.
347CXXBaseSpecifier *
348Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
349                         SourceRange SpecifierRange,
350                         bool Virtual, AccessSpecifier Access,
351                         QualType BaseType,
352                         SourceLocation BaseLoc) {
353  // C++ [class.union]p1:
354  //   A union shall not have base classes.
355  if (Class->isUnion()) {
356    Diag(Class->getLocation(), diag::err_base_clause_on_union)
357      << SpecifierRange;
358    return 0;
359  }
360
361  if (BaseType->isDependentType())
362    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
363                                Class->getTagKind() == RecordDecl::TK_class,
364                                Access, BaseType);
365
366  // Base specifiers must be record types.
367  if (!BaseType->isRecordType()) {
368    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
369    return 0;
370  }
371
372  // C++ [class.union]p1:
373  //   A union shall not be used as a base class.
374  if (BaseType->isUnionType()) {
375    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
376    return 0;
377  }
378
379  // C++ [class.derived]p2:
380  //   The class-name in a base-specifier shall not be an incompletely
381  //   defined class.
382  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
383                          SpecifierRange))
384    return 0;
385
386  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
387  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
388  assert(BaseDecl && "Record type has no declaration");
389  BaseDecl = BaseDecl->getDefinition(Context);
390  assert(BaseDecl && "Base type is not incomplete, but has no definition");
391  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
392  assert(CXXBaseDecl && "Base type is not a C++ type");
393  if (!CXXBaseDecl->isEmpty())
394    Class->setEmpty(false);
395  if (CXXBaseDecl->isPolymorphic())
396    Class->setPolymorphic(true);
397
398  // C++ [dcl.init.aggr]p1:
399  //   An aggregate is [...] a class with [...] no base classes [...].
400  Class->setAggregate(false);
401  Class->setPOD(false);
402
403  if (Virtual) {
404    // C++ [class.ctor]p5:
405    //   A constructor is trivial if its class has no virtual base classes.
406    Class->setHasTrivialConstructor(false);
407
408    // C++ [class.copy]p6:
409    //   A copy constructor is trivial if its class has no virtual base classes.
410    Class->setHasTrivialCopyConstructor(false);
411
412    // C++ [class.copy]p11:
413    //   A copy assignment operator is trivial if its class has no virtual
414    //   base classes.
415    Class->setHasTrivialCopyAssignment(false);
416
417    // C++0x [meta.unary.prop] is_empty:
418    //    T is a class type, but not a union type, with ... no virtual base
419    //    classes
420    Class->setEmpty(false);
421  } else {
422    // C++ [class.ctor]p5:
423    //   A constructor is trivial if all the direct base classes of its
424    //   class have trivial constructors.
425    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
426      Class->setHasTrivialConstructor(false);
427
428    // C++ [class.copy]p6:
429    //   A copy constructor is trivial if all the direct base classes of its
430    //   class have trivial copy constructors.
431    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
432      Class->setHasTrivialCopyConstructor(false);
433
434    // C++ [class.copy]p11:
435    //   A copy assignment operator is trivial if all the direct base classes
436    //   of its class have trivial copy assignment operators.
437    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
438      Class->setHasTrivialCopyAssignment(false);
439  }
440
441  // C++ [class.ctor]p3:
442  //   A destructor is trivial if all the direct base classes of its class
443  //   have trivial destructors.
444  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
445    Class->setHasTrivialDestructor(false);
446
447  // Create the base specifier.
448  // FIXME: Allocate via ASTContext?
449  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
450                              Class->getTagKind() == RecordDecl::TK_class,
451                              Access, BaseType);
452}
453
454/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
455/// one entry in the base class list of a class specifier, for
456/// example:
457///    class foo : public bar, virtual private baz {
458/// 'public bar' and 'virtual private baz' are each base-specifiers.
459Sema::BaseResult
460Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
461                         bool Virtual, AccessSpecifier Access,
462                         TypeTy *basetype, SourceLocation BaseLoc) {
463  if (!classdecl)
464    return true;
465
466  AdjustDeclIfTemplate(classdecl);
467  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
468  QualType BaseType = GetTypeFromParser(basetype);
469  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
470                                                      Virtual, Access,
471                                                      BaseType, BaseLoc))
472    return BaseSpec;
473
474  return true;
475}
476
477/// \brief Performs the actual work of attaching the given base class
478/// specifiers to a C++ class.
479bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
480                                unsigned NumBases) {
481 if (NumBases == 0)
482    return false;
483
484  // Used to keep track of which base types we have already seen, so
485  // that we can properly diagnose redundant direct base types. Note
486  // that the key is always the unqualified canonical type of the base
487  // class.
488  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
489
490  // Copy non-redundant base specifiers into permanent storage.
491  unsigned NumGoodBases = 0;
492  bool Invalid = false;
493  for (unsigned idx = 0; idx < NumBases; ++idx) {
494    QualType NewBaseType
495      = Context.getCanonicalType(Bases[idx]->getType());
496    NewBaseType = NewBaseType.getUnqualifiedType();
497
498    if (KnownBaseTypes[NewBaseType]) {
499      // C++ [class.mi]p3:
500      //   A class shall not be specified as a direct base class of a
501      //   derived class more than once.
502      Diag(Bases[idx]->getSourceRange().getBegin(),
503           diag::err_duplicate_base_class)
504        << KnownBaseTypes[NewBaseType]->getType()
505        << Bases[idx]->getSourceRange();
506
507      // Delete the duplicate base class specifier; we're going to
508      // overwrite its pointer later.
509      Context.Deallocate(Bases[idx]);
510
511      Invalid = true;
512    } else {
513      // Okay, add this new base class.
514      KnownBaseTypes[NewBaseType] = Bases[idx];
515      Bases[NumGoodBases++] = Bases[idx];
516    }
517  }
518
519  // Attach the remaining base class specifiers to the derived class.
520  Class->setBases(Context, Bases, NumGoodBases);
521
522  // Delete the remaining (good) base class specifiers, since their
523  // data has been copied into the CXXRecordDecl.
524  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
525    Context.Deallocate(Bases[idx]);
526
527  return Invalid;
528}
529
530/// ActOnBaseSpecifiers - Attach the given base specifiers to the
531/// class, after checking whether there are any duplicate base
532/// classes.
533void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
534                               unsigned NumBases) {
535  if (!ClassDecl || !Bases || !NumBases)
536    return;
537
538  AdjustDeclIfTemplate(ClassDecl);
539  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
540                       (CXXBaseSpecifier**)(Bases), NumBases);
541}
542
543//===----------------------------------------------------------------------===//
544// C++ class member Handling
545//===----------------------------------------------------------------------===//
546
547/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
548/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
549/// bitfield width if there is one and 'InitExpr' specifies the initializer if
550/// any.
551Sema::DeclPtrTy
552Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
553                               MultiTemplateParamsArg TemplateParameterLists,
554                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
555  const DeclSpec &DS = D.getDeclSpec();
556  DeclarationName Name = GetNameForDeclarator(D);
557  Expr *BitWidth = static_cast<Expr*>(BW);
558  Expr *Init = static_cast<Expr*>(InitExpr);
559  SourceLocation Loc = D.getIdentifierLoc();
560
561  bool isFunc = D.isFunctionDeclarator();
562
563  assert(!DS.isFriendSpecified());
564
565  // C++ 9.2p6: A member shall not be declared to have automatic storage
566  // duration (auto, register) or with the extern storage-class-specifier.
567  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
568  // data members and cannot be applied to names declared const or static,
569  // and cannot be applied to reference members.
570  switch (DS.getStorageClassSpec()) {
571    case DeclSpec::SCS_unspecified:
572    case DeclSpec::SCS_typedef:
573    case DeclSpec::SCS_static:
574      // FALL THROUGH.
575      break;
576    case DeclSpec::SCS_mutable:
577      if (isFunc) {
578        if (DS.getStorageClassSpecLoc().isValid())
579          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
580        else
581          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
582
583        // FIXME: It would be nicer if the keyword was ignored only for this
584        // declarator. Otherwise we could get follow-up errors.
585        D.getMutableDeclSpec().ClearStorageClassSpecs();
586      } else {
587        QualType T = GetTypeForDeclarator(D, S);
588        diag::kind err = static_cast<diag::kind>(0);
589        if (T->isReferenceType())
590          err = diag::err_mutable_reference;
591        else if (T.isConstQualified())
592          err = diag::err_mutable_const;
593        if (err != 0) {
594          if (DS.getStorageClassSpecLoc().isValid())
595            Diag(DS.getStorageClassSpecLoc(), err);
596          else
597            Diag(DS.getThreadSpecLoc(), err);
598          // FIXME: It would be nicer if the keyword was ignored only for this
599          // declarator. Otherwise we could get follow-up errors.
600          D.getMutableDeclSpec().ClearStorageClassSpecs();
601        }
602      }
603      break;
604    default:
605      if (DS.getStorageClassSpecLoc().isValid())
606        Diag(DS.getStorageClassSpecLoc(),
607             diag::err_storageclass_invalid_for_member);
608      else
609        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
610      D.getMutableDeclSpec().ClearStorageClassSpecs();
611  }
612
613  if (!isFunc &&
614      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
615      D.getNumTypeObjects() == 0) {
616    // Check also for this case:
617    //
618    // typedef int f();
619    // f a;
620    //
621    QualType TDType = GetTypeFromParser(DS.getTypeRep());
622    isFunc = TDType->isFunctionType();
623  }
624
625  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
626                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
627                      !isFunc);
628
629  Decl *Member;
630  if (isInstField) {
631    // FIXME: Check for template parameters!
632    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
633                         AS);
634    assert(Member && "HandleField never returns null");
635  } else {
636    Member = HandleDeclarator(S, D, move(TemplateParameterLists), false)
637               .getAs<Decl>();
638    if (!Member) {
639      if (BitWidth) DeleteExpr(BitWidth);
640      return DeclPtrTy();
641    }
642
643    // Non-instance-fields can't have a bitfield.
644    if (BitWidth) {
645      if (Member->isInvalidDecl()) {
646        // don't emit another diagnostic.
647      } else if (isa<VarDecl>(Member)) {
648        // C++ 9.6p3: A bit-field shall not be a static member.
649        // "static member 'A' cannot be a bit-field"
650        Diag(Loc, diag::err_static_not_bitfield)
651          << Name << BitWidth->getSourceRange();
652      } else if (isa<TypedefDecl>(Member)) {
653        // "typedef member 'x' cannot be a bit-field"
654        Diag(Loc, diag::err_typedef_not_bitfield)
655          << Name << BitWidth->getSourceRange();
656      } else {
657        // A function typedef ("typedef int f(); f a;").
658        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
659        Diag(Loc, diag::err_not_integral_type_bitfield)
660          << Name << cast<ValueDecl>(Member)->getType()
661          << BitWidth->getSourceRange();
662      }
663
664      DeleteExpr(BitWidth);
665      BitWidth = 0;
666      Member->setInvalidDecl();
667    }
668
669    Member->setAccess(AS);
670
671    // If we have declared a member function template, set the access of the
672    // templated declaration as well.
673    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
674      FunTmpl->getTemplatedDecl()->setAccess(AS);
675  }
676
677  assert((Name || isInstField) && "No identifier for non-field ?");
678
679  if (Init)
680    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
681  if (Deleted) // FIXME: Source location is not very good.
682    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
683
684  if (isInstField) {
685    FieldCollector->Add(cast<FieldDecl>(Member));
686    return DeclPtrTy();
687  }
688  return DeclPtrTy::make(Member);
689}
690
691/// ActOnMemInitializer - Handle a C++ member initializer.
692Sema::MemInitResult
693Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
694                          Scope *S,
695                          const CXXScopeSpec &SS,
696                          IdentifierInfo *MemberOrBase,
697                          TypeTy *TemplateTypeTy,
698                          SourceLocation IdLoc,
699                          SourceLocation LParenLoc,
700                          ExprTy **Args, unsigned NumArgs,
701                          SourceLocation *CommaLocs,
702                          SourceLocation RParenLoc) {
703  if (!ConstructorD)
704    return true;
705
706  CXXConstructorDecl *Constructor
707    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
708  if (!Constructor) {
709    // The user wrote a constructor initializer on a function that is
710    // not a C++ constructor. Ignore the error for now, because we may
711    // have more member initializers coming; we'll diagnose it just
712    // once in ActOnMemInitializers.
713    return true;
714  }
715
716  CXXRecordDecl *ClassDecl = Constructor->getParent();
717
718  // C++ [class.base.init]p2:
719  //   Names in a mem-initializer-id are looked up in the scope of the
720  //   constructor’s class and, if not found in that scope, are looked
721  //   up in the scope containing the constructor’s
722  //   definition. [Note: if the constructor’s class contains a member
723  //   with the same name as a direct or virtual base class of the
724  //   class, a mem-initializer-id naming the member or base class and
725  //   composed of a single identifier refers to the class member. A
726  //   mem-initializer-id for the hidden base class may be specified
727  //   using a qualified name. ]
728  if (!SS.getScopeRep() && !TemplateTypeTy) {
729    // Look for a member, first.
730    FieldDecl *Member = 0;
731    DeclContext::lookup_result Result
732      = ClassDecl->lookup(MemberOrBase);
733    if (Result.first != Result.second)
734      Member = dyn_cast<FieldDecl>(*Result.first);
735
736    // FIXME: Handle members of an anonymous union.
737
738    if (Member)
739      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
740                                    RParenLoc);
741  }
742  // It didn't name a member, so see if it names a class.
743  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
744                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
745  if (!BaseTy)
746    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
747      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
748
749  QualType BaseType = GetTypeFromParser(BaseTy);
750
751  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
752                              RParenLoc, ClassDecl);
753}
754
755Sema::MemInitResult
756Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
757                             unsigned NumArgs, SourceLocation IdLoc,
758                             SourceLocation RParenLoc) {
759  bool HasDependentArg = false;
760  for (unsigned i = 0; i < NumArgs; i++)
761    HasDependentArg |= Args[i]->isTypeDependent();
762
763  CXXConstructorDecl *C = 0;
764  QualType FieldType = Member->getType();
765  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
766    FieldType = Array->getElementType();
767  if (FieldType->isDependentType()) {
768    // Can't check init for dependent type.
769  } else if (FieldType->getAs<RecordType>()) {
770    if (!HasDependentArg)
771      C = PerformInitializationByConstructor(
772            FieldType, (Expr **)Args, NumArgs, IdLoc,
773            SourceRange(IdLoc, RParenLoc), Member->getDeclName(), IK_Direct);
774  } else if (NumArgs != 1) {
775    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
776                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
777  } else if (!HasDependentArg) {
778    Expr *NewExp = (Expr*)Args[0];
779    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
780      return true;
781    Args[0] = NewExp;
782  }
783  // FIXME: Perform direct initialization of the member.
784  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
785                                                  NumArgs, C, IdLoc);
786}
787
788Sema::MemInitResult
789Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
790                           unsigned NumArgs, SourceLocation IdLoc,
791                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
792  bool HasDependentArg = false;
793  for (unsigned i = 0; i < NumArgs; i++)
794    HasDependentArg |= Args[i]->isTypeDependent();
795
796  if (!BaseType->isDependentType()) {
797    if (!BaseType->isRecordType())
798      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
799        << BaseType << SourceRange(IdLoc, RParenLoc);
800
801    // C++ [class.base.init]p2:
802    //   [...] Unless the mem-initializer-id names a nonstatic data
803    //   member of the constructor’s class or a direct or virtual base
804    //   of that class, the mem-initializer is ill-formed. A
805    //   mem-initializer-list can initialize a base class using any
806    //   name that denotes that base class type.
807
808    // First, check for a direct base class.
809    const CXXBaseSpecifier *DirectBaseSpec = 0;
810    for (CXXRecordDecl::base_class_const_iterator Base =
811         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
812      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
813          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
814        // We found a direct base of this type. That's what we're
815        // initializing.
816        DirectBaseSpec = &*Base;
817        break;
818      }
819    }
820
821    // Check for a virtual base class.
822    // FIXME: We might be able to short-circuit this if we know in advance that
823    // there are no virtual bases.
824    const CXXBaseSpecifier *VirtualBaseSpec = 0;
825    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
826      // We haven't found a base yet; search the class hierarchy for a
827      // virtual base class.
828      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
829                      /*DetectVirtual=*/false);
830      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
831        for (BasePaths::paths_iterator Path = Paths.begin();
832             Path != Paths.end(); ++Path) {
833          if (Path->back().Base->isVirtual()) {
834            VirtualBaseSpec = Path->back().Base;
835            break;
836          }
837        }
838      }
839    }
840
841    // C++ [base.class.init]p2:
842    //   If a mem-initializer-id is ambiguous because it designates both
843    //   a direct non-virtual base class and an inherited virtual base
844    //   class, the mem-initializer is ill-formed.
845    if (DirectBaseSpec && VirtualBaseSpec)
846      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
847        << BaseType << SourceRange(IdLoc, RParenLoc);
848    // C++ [base.class.init]p2:
849    // Unless the mem-initializer-id names a nonstatic data membeer of the
850    // constructor's class ot a direst or virtual base of that class, the
851    // mem-initializer is ill-formed.
852    if (!DirectBaseSpec && !VirtualBaseSpec)
853      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
854      << BaseType << ClassDecl->getNameAsCString()
855      << SourceRange(IdLoc, RParenLoc);
856  }
857
858  CXXConstructorDecl *C = 0;
859  if (!BaseType->isDependentType() && !HasDependentArg) {
860    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
861                                            Context.getCanonicalType(BaseType));
862    C = PerformInitializationByConstructor(BaseType, (Expr **)Args, NumArgs,
863                                           IdLoc, SourceRange(IdLoc, RParenLoc),
864                                           Name, IK_Direct);
865  }
866
867  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
868                                                  NumArgs, C, IdLoc);
869}
870
871void
872Sema::BuildBaseOrMemberInitializers(ASTContext &C,
873                                 CXXConstructorDecl *Constructor,
874                                 CXXBaseOrMemberInitializer **Initializers,
875                                 unsigned NumInitializers
876                                 ) {
877  llvm::SmallVector<CXXBaseSpecifier *, 4>Bases;
878  llvm::SmallVector<FieldDecl *, 4>Members;
879
880  Constructor->setBaseOrMemberInitializers(C,
881                                           Initializers, NumInitializers,
882                                           Bases, Members);
883  for (unsigned int i = 0; i < Bases.size(); i++)
884    Diag(Bases[i]->getSourceRange().getBegin(),
885         diag::err_missing_default_constructor) << 0 << Bases[i]->getType();
886  for (unsigned int i = 0; i < Members.size(); i++)
887    Diag(Members[i]->getLocation(), diag::err_missing_default_constructor)
888          << 1 << Members[i]->getType();
889}
890
891static void *GetKeyForTopLevelField(FieldDecl *Field) {
892  // For anonymous unions, use the class declaration as the key.
893  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
894    if (RT->getDecl()->isAnonymousStructOrUnion())
895      return static_cast<void *>(RT->getDecl());
896  }
897  return static_cast<void *>(Field);
898}
899
900static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
901                             bool MemberMaybeAnon=false) {
902  // For fields injected into the class via declaration of an anonymous union,
903  // use its anonymous union class declaration as the unique key.
904  if (FieldDecl *Field = Member->getMember()) {
905    // After BuildBaseOrMemberInitializers call, Field is the anonymous union
906    // data member of the class. Data member used in the initializer list is
907    // in AnonUnionMember field.
908    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
909      Field = Member->getAnonUnionMember();
910    if (Field->getDeclContext()->isRecord()) {
911      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
912      if (RD->isAnonymousStructOrUnion())
913        return static_cast<void *>(RD);
914    }
915    return static_cast<void *>(Field);
916  }
917  return static_cast<RecordType *>(Member->getBaseClass());
918}
919
920void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
921                                SourceLocation ColonLoc,
922                                MemInitTy **MemInits, unsigned NumMemInits) {
923  if (!ConstructorDecl)
924    return;
925
926  CXXConstructorDecl *Constructor
927    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
928
929  if (!Constructor) {
930    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
931    return;
932  }
933  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
934  bool err = false;
935  for (unsigned i = 0; i < NumMemInits; i++) {
936    CXXBaseOrMemberInitializer *Member =
937      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
938    void *KeyToMember = GetKeyForMember(Member);
939    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
940    if (!PrevMember) {
941      PrevMember = Member;
942      continue;
943    }
944    if (FieldDecl *Field = Member->getMember())
945      Diag(Member->getSourceLocation(),
946           diag::error_multiple_mem_initialization)
947      << Field->getNameAsString();
948    else {
949      Type *BaseClass = Member->getBaseClass();
950      assert(BaseClass && "ActOnMemInitializers - neither field or base");
951      Diag(Member->getSourceLocation(),
952           diag::error_multiple_base_initialization)
953        << BaseClass->getDesugaredType(true);
954    }
955    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
956      << 0;
957    err = true;
958  }
959  if (!err)
960    BuildBaseOrMemberInitializers(Context, Constructor,
961                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
962                      NumMemInits);
963
964  if (!err && (Diags.getDiagnosticLevel(diag::warn_base_initialized)
965               != Diagnostic::Ignored ||
966               Diags.getDiagnosticLevel(diag::warn_field_initialized)
967               != Diagnostic::Ignored)) {
968    // Also issue warning if order of ctor-initializer list does not match order
969    // of 1) base class declarations and 2) order of non-static data members.
970    llvm::SmallVector<const void*, 32> AllBaseOrMembers;
971
972    CXXRecordDecl *ClassDecl
973      = cast<CXXRecordDecl>(Constructor->getDeclContext());
974    // Push virtual bases before others.
975    for (CXXRecordDecl::base_class_iterator VBase =
976         ClassDecl->vbases_begin(),
977         E = ClassDecl->vbases_end(); VBase != E; ++VBase)
978      AllBaseOrMembers.push_back(VBase->getType()->getAs<RecordType>());
979
980    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
981         E = ClassDecl->bases_end(); Base != E; ++Base) {
982      // Virtuals are alread in the virtual base list and are constructed
983      // first.
984      if (Base->isVirtual())
985        continue;
986      AllBaseOrMembers.push_back(Base->getType()->getAs<RecordType>());
987    }
988
989    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
990         E = ClassDecl->field_end(); Field != E; ++Field)
991      AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
992
993    int Last = AllBaseOrMembers.size();
994    int curIndex = 0;
995    CXXBaseOrMemberInitializer *PrevMember = 0;
996    for (unsigned i = 0; i < NumMemInits; i++) {
997      CXXBaseOrMemberInitializer *Member =
998        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
999      void *MemberInCtorList = GetKeyForMember(Member, true);
1000
1001      for (; curIndex < Last; curIndex++)
1002        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1003          break;
1004      if (curIndex == Last) {
1005        assert(PrevMember && "Member not in member list?!");
1006        // Initializer as specified in ctor-initializer list is out of order.
1007        // Issue a warning diagnostic.
1008        if (PrevMember->isBaseInitializer()) {
1009          // Diagnostics is for an initialized base class.
1010          Type *BaseClass = PrevMember->getBaseClass();
1011          Diag(PrevMember->getSourceLocation(),
1012               diag::warn_base_initialized)
1013                << BaseClass->getDesugaredType(true);
1014        } else {
1015          FieldDecl *Field = PrevMember->getMember();
1016          Diag(PrevMember->getSourceLocation(),
1017               diag::warn_field_initialized)
1018            << Field->getNameAsString();
1019        }
1020        // Also the note!
1021        if (FieldDecl *Field = Member->getMember())
1022          Diag(Member->getSourceLocation(),
1023               diag::note_fieldorbase_initialized_here) << 0
1024            << Field->getNameAsString();
1025        else {
1026          Type *BaseClass = Member->getBaseClass();
1027          Diag(Member->getSourceLocation(),
1028               diag::note_fieldorbase_initialized_here) << 1
1029            << BaseClass->getDesugaredType(true);
1030        }
1031        for (curIndex = 0; curIndex < Last; curIndex++)
1032          if (MemberInCtorList == AllBaseOrMembers[curIndex])
1033            break;
1034      }
1035      PrevMember = Member;
1036    }
1037  }
1038}
1039
1040void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1041  if (!CDtorDecl)
1042    return;
1043
1044  if (CXXConstructorDecl *Constructor
1045      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1046    BuildBaseOrMemberInitializers(Context,
1047                                     Constructor,
1048                                     (CXXBaseOrMemberInitializer **)0, 0);
1049}
1050
1051namespace {
1052  /// PureVirtualMethodCollector - traverses a class and its superclasses
1053  /// and determines if it has any pure virtual methods.
1054  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1055    ASTContext &Context;
1056
1057  public:
1058    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1059
1060  private:
1061    MethodList Methods;
1062
1063    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1064
1065  public:
1066    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1067      : Context(Ctx) {
1068
1069      MethodList List;
1070      Collect(RD, List);
1071
1072      // Copy the temporary list to methods, and make sure to ignore any
1073      // null entries.
1074      for (size_t i = 0, e = List.size(); i != e; ++i) {
1075        if (List[i])
1076          Methods.push_back(List[i]);
1077      }
1078    }
1079
1080    bool empty() const { return Methods.empty(); }
1081
1082    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1083    MethodList::const_iterator methods_end() { return Methods.end(); }
1084  };
1085
1086  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1087                                           MethodList& Methods) {
1088    // First, collect the pure virtual methods for the base classes.
1089    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1090         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1091      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1092        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1093        if (BaseDecl && BaseDecl->isAbstract())
1094          Collect(BaseDecl, Methods);
1095      }
1096    }
1097
1098    // Next, zero out any pure virtual methods that this class overrides.
1099    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1100
1101    MethodSetTy OverriddenMethods;
1102    size_t MethodsSize = Methods.size();
1103
1104    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1105         i != e; ++i) {
1106      // Traverse the record, looking for methods.
1107      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1108        // If the method is pure virtual, add it to the methods vector.
1109        if (MD->isPure()) {
1110          Methods.push_back(MD);
1111          continue;
1112        }
1113
1114        // Otherwise, record all the overridden methods in our set.
1115        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1116             E = MD->end_overridden_methods(); I != E; ++I) {
1117          // Keep track of the overridden methods.
1118          OverriddenMethods.insert(*I);
1119        }
1120      }
1121    }
1122
1123    // Now go through the methods and zero out all the ones we know are
1124    // overridden.
1125    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1126      if (OverriddenMethods.count(Methods[i]))
1127        Methods[i] = 0;
1128    }
1129
1130  }
1131}
1132
1133bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1134                                  unsigned DiagID, AbstractDiagSelID SelID,
1135                                  const CXXRecordDecl *CurrentRD) {
1136
1137  if (!getLangOptions().CPlusPlus)
1138    return false;
1139
1140  if (const ArrayType *AT = Context.getAsArrayType(T))
1141    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1142                                  CurrentRD);
1143
1144  if (const PointerType *PT = T->getAs<PointerType>()) {
1145    // Find the innermost pointer type.
1146    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1147      PT = T;
1148
1149    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1150      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1151                                    CurrentRD);
1152  }
1153
1154  const RecordType *RT = T->getAs<RecordType>();
1155  if (!RT)
1156    return false;
1157
1158  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1159  if (!RD)
1160    return false;
1161
1162  if (CurrentRD && CurrentRD != RD)
1163    return false;
1164
1165  if (!RD->isAbstract())
1166    return false;
1167
1168  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
1169
1170  // Check if we've already emitted the list of pure virtual functions for this
1171  // class.
1172  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1173    return true;
1174
1175  PureVirtualMethodCollector Collector(Context, RD);
1176
1177  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1178       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1179    const CXXMethodDecl *MD = *I;
1180
1181    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1182      MD->getDeclName();
1183  }
1184
1185  if (!PureVirtualClassDiagSet)
1186    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1187  PureVirtualClassDiagSet->insert(RD);
1188
1189  return true;
1190}
1191
1192namespace {
1193  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1194    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1195    Sema &SemaRef;
1196    CXXRecordDecl *AbstractClass;
1197
1198    bool VisitDeclContext(const DeclContext *DC) {
1199      bool Invalid = false;
1200
1201      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1202           E = DC->decls_end(); I != E; ++I)
1203        Invalid |= Visit(*I);
1204
1205      return Invalid;
1206    }
1207
1208  public:
1209    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1210      : SemaRef(SemaRef), AbstractClass(ac) {
1211        Visit(SemaRef.Context.getTranslationUnitDecl());
1212    }
1213
1214    bool VisitFunctionDecl(const FunctionDecl *FD) {
1215      if (FD->isThisDeclarationADefinition()) {
1216        // No need to do the check if we're in a definition, because it requires
1217        // that the return/param types are complete.
1218        // because that requires
1219        return VisitDeclContext(FD);
1220      }
1221
1222      // Check the return type.
1223      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1224      bool Invalid =
1225        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1226                                       diag::err_abstract_type_in_decl,
1227                                       Sema::AbstractReturnType,
1228                                       AbstractClass);
1229
1230      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1231           E = FD->param_end(); I != E; ++I) {
1232        const ParmVarDecl *VD = *I;
1233        Invalid |=
1234          SemaRef.RequireNonAbstractType(VD->getLocation(),
1235                                         VD->getOriginalType(),
1236                                         diag::err_abstract_type_in_decl,
1237                                         Sema::AbstractParamType,
1238                                         AbstractClass);
1239      }
1240
1241      return Invalid;
1242    }
1243
1244    bool VisitDecl(const Decl* D) {
1245      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1246        return VisitDeclContext(DC);
1247
1248      return false;
1249    }
1250  };
1251}
1252
1253void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1254                                             DeclPtrTy TagDecl,
1255                                             SourceLocation LBrac,
1256                                             SourceLocation RBrac) {
1257  if (!TagDecl)
1258    return;
1259
1260  AdjustDeclIfTemplate(TagDecl);
1261  ActOnFields(S, RLoc, TagDecl,
1262              (DeclPtrTy*)FieldCollector->getCurFields(),
1263              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1264
1265  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1266  if (!RD->isAbstract()) {
1267    // Collect all the pure virtual methods and see if this is an abstract
1268    // class after all.
1269    PureVirtualMethodCollector Collector(Context, RD);
1270    if (!Collector.empty())
1271      RD->setAbstract(true);
1272  }
1273
1274  if (RD->isAbstract())
1275    AbstractClassUsageDiagnoser(*this, RD);
1276
1277  if (!RD->isDependentType())
1278    AddImplicitlyDeclaredMembersToClass(RD);
1279}
1280
1281/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1282/// special functions, such as the default constructor, copy
1283/// constructor, or destructor, to the given C++ class (C++
1284/// [special]p1).  This routine can only be executed just before the
1285/// definition of the class is complete.
1286void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1287  CanQualType ClassType
1288    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1289
1290  // FIXME: Implicit declarations have exception specifications, which are
1291  // the union of the specifications of the implicitly called functions.
1292
1293  if (!ClassDecl->hasUserDeclaredConstructor()) {
1294    // C++ [class.ctor]p5:
1295    //   A default constructor for a class X is a constructor of class X
1296    //   that can be called without an argument. If there is no
1297    //   user-declared constructor for class X, a default constructor is
1298    //   implicitly declared. An implicitly-declared default constructor
1299    //   is an inline public member of its class.
1300    DeclarationName Name
1301      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1302    CXXConstructorDecl *DefaultCon =
1303      CXXConstructorDecl::Create(Context, ClassDecl,
1304                                 ClassDecl->getLocation(), Name,
1305                                 Context.getFunctionType(Context.VoidTy,
1306                                                         0, 0, false, 0),
1307                                 /*DInfo=*/0,
1308                                 /*isExplicit=*/false,
1309                                 /*isInline=*/true,
1310                                 /*isImplicitlyDeclared=*/true);
1311    DefaultCon->setAccess(AS_public);
1312    DefaultCon->setImplicit();
1313    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1314    ClassDecl->addDecl(DefaultCon);
1315  }
1316
1317  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1318    // C++ [class.copy]p4:
1319    //   If the class definition does not explicitly declare a copy
1320    //   constructor, one is declared implicitly.
1321
1322    // C++ [class.copy]p5:
1323    //   The implicitly-declared copy constructor for a class X will
1324    //   have the form
1325    //
1326    //       X::X(const X&)
1327    //
1328    //   if
1329    bool HasConstCopyConstructor = true;
1330
1331    //     -- each direct or virtual base class B of X has a copy
1332    //        constructor whose first parameter is of type const B& or
1333    //        const volatile B&, and
1334    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1335         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1336      const CXXRecordDecl *BaseClassDecl
1337        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1338      HasConstCopyConstructor
1339        = BaseClassDecl->hasConstCopyConstructor(Context);
1340    }
1341
1342    //     -- for all the nonstatic data members of X that are of a
1343    //        class type M (or array thereof), each such class type
1344    //        has a copy constructor whose first parameter is of type
1345    //        const M& or const volatile M&.
1346    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1347         HasConstCopyConstructor && Field != ClassDecl->field_end();
1348         ++Field) {
1349      QualType FieldType = (*Field)->getType();
1350      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1351        FieldType = Array->getElementType();
1352      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1353        const CXXRecordDecl *FieldClassDecl
1354          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1355        HasConstCopyConstructor
1356          = FieldClassDecl->hasConstCopyConstructor(Context);
1357      }
1358    }
1359
1360    //   Otherwise, the implicitly declared copy constructor will have
1361    //   the form
1362    //
1363    //       X::X(X&)
1364    QualType ArgType = ClassType;
1365    if (HasConstCopyConstructor)
1366      ArgType = ArgType.withConst();
1367    ArgType = Context.getLValueReferenceType(ArgType);
1368
1369    //   An implicitly-declared copy constructor is an inline public
1370    //   member of its class.
1371    DeclarationName Name
1372      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1373    CXXConstructorDecl *CopyConstructor
1374      = CXXConstructorDecl::Create(Context, ClassDecl,
1375                                   ClassDecl->getLocation(), Name,
1376                                   Context.getFunctionType(Context.VoidTy,
1377                                                           &ArgType, 1,
1378                                                           false, 0),
1379                                   /*DInfo=*/0,
1380                                   /*isExplicit=*/false,
1381                                   /*isInline=*/true,
1382                                   /*isImplicitlyDeclared=*/true);
1383    CopyConstructor->setAccess(AS_public);
1384    CopyConstructor->setImplicit();
1385    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1386
1387    // Add the parameter to the constructor.
1388    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1389                                                 ClassDecl->getLocation(),
1390                                                 /*IdentifierInfo=*/0,
1391                                                 ArgType, /*DInfo=*/0,
1392                                                 VarDecl::None, 0);
1393    CopyConstructor->setParams(Context, &FromParam, 1);
1394    ClassDecl->addDecl(CopyConstructor);
1395  }
1396
1397  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1398    // Note: The following rules are largely analoguous to the copy
1399    // constructor rules. Note that virtual bases are not taken into account
1400    // for determining the argument type of the operator. Note also that
1401    // operators taking an object instead of a reference are allowed.
1402    //
1403    // C++ [class.copy]p10:
1404    //   If the class definition does not explicitly declare a copy
1405    //   assignment operator, one is declared implicitly.
1406    //   The implicitly-defined copy assignment operator for a class X
1407    //   will have the form
1408    //
1409    //       X& X::operator=(const X&)
1410    //
1411    //   if
1412    bool HasConstCopyAssignment = true;
1413
1414    //       -- each direct base class B of X has a copy assignment operator
1415    //          whose parameter is of type const B&, const volatile B& or B,
1416    //          and
1417    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1418         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1419      const CXXRecordDecl *BaseClassDecl
1420        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1421      const CXXMethodDecl *MD = 0;
1422      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
1423                                                                     MD);
1424    }
1425
1426    //       -- for all the nonstatic data members of X that are of a class
1427    //          type M (or array thereof), each such class type has a copy
1428    //          assignment operator whose parameter is of type const M&,
1429    //          const volatile M& or M.
1430    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1431         HasConstCopyAssignment && Field != ClassDecl->field_end();
1432         ++Field) {
1433      QualType FieldType = (*Field)->getType();
1434      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1435        FieldType = Array->getElementType();
1436      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1437        const CXXRecordDecl *FieldClassDecl
1438          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1439        const CXXMethodDecl *MD = 0;
1440        HasConstCopyAssignment
1441          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
1442      }
1443    }
1444
1445    //   Otherwise, the implicitly declared copy assignment operator will
1446    //   have the form
1447    //
1448    //       X& X::operator=(X&)
1449    QualType ArgType = ClassType;
1450    QualType RetType = Context.getLValueReferenceType(ArgType);
1451    if (HasConstCopyAssignment)
1452      ArgType = ArgType.withConst();
1453    ArgType = Context.getLValueReferenceType(ArgType);
1454
1455    //   An implicitly-declared copy assignment operator is an inline public
1456    //   member of its class.
1457    DeclarationName Name =
1458      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1459    CXXMethodDecl *CopyAssignment =
1460      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1461                            Context.getFunctionType(RetType, &ArgType, 1,
1462                                                    false, 0),
1463                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
1464    CopyAssignment->setAccess(AS_public);
1465    CopyAssignment->setImplicit();
1466    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
1467    CopyAssignment->setCopyAssignment(true);
1468
1469    // Add the parameter to the operator.
1470    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1471                                                 ClassDecl->getLocation(),
1472                                                 /*IdentifierInfo=*/0,
1473                                                 ArgType, /*DInfo=*/0,
1474                                                 VarDecl::None, 0);
1475    CopyAssignment->setParams(Context, &FromParam, 1);
1476
1477    // Don't call addedAssignmentOperator. There is no way to distinguish an
1478    // implicit from an explicit assignment operator.
1479    ClassDecl->addDecl(CopyAssignment);
1480  }
1481
1482  if (!ClassDecl->hasUserDeclaredDestructor()) {
1483    // C++ [class.dtor]p2:
1484    //   If a class has no user-declared destructor, a destructor is
1485    //   declared implicitly. An implicitly-declared destructor is an
1486    //   inline public member of its class.
1487    DeclarationName Name
1488      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1489    CXXDestructorDecl *Destructor
1490      = CXXDestructorDecl::Create(Context, ClassDecl,
1491                                  ClassDecl->getLocation(), Name,
1492                                  Context.getFunctionType(Context.VoidTy,
1493                                                          0, 0, false, 0),
1494                                  /*isInline=*/true,
1495                                  /*isImplicitlyDeclared=*/true);
1496    Destructor->setAccess(AS_public);
1497    Destructor->setImplicit();
1498    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
1499    ClassDecl->addDecl(Destructor);
1500  }
1501}
1502
1503void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1504  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1505  if (!Template)
1506    return;
1507
1508  TemplateParameterList *Params = Template->getTemplateParameters();
1509  for (TemplateParameterList::iterator Param = Params->begin(),
1510                                    ParamEnd = Params->end();
1511       Param != ParamEnd; ++Param) {
1512    NamedDecl *Named = cast<NamedDecl>(*Param);
1513    if (Named->getDeclName()) {
1514      S->AddDecl(DeclPtrTy::make(Named));
1515      IdResolver.AddDecl(Named);
1516    }
1517  }
1518}
1519
1520/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1521/// parsing a top-level (non-nested) C++ class, and we are now
1522/// parsing those parts of the given Method declaration that could
1523/// not be parsed earlier (C++ [class.mem]p2), such as default
1524/// arguments. This action should enter the scope of the given
1525/// Method declaration as if we had just parsed the qualified method
1526/// name. However, it should not bring the parameters into scope;
1527/// that will be performed by ActOnDelayedCXXMethodParameter.
1528void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1529  if (!MethodD)
1530    return;
1531
1532  CXXScopeSpec SS;
1533  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1534  QualType ClassTy
1535    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1536  SS.setScopeRep(
1537    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1538  ActOnCXXEnterDeclaratorScope(S, SS);
1539}
1540
1541/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1542/// C++ method declaration. We're (re-)introducing the given
1543/// function parameter into scope for use in parsing later parts of
1544/// the method declaration. For example, we could see an
1545/// ActOnParamDefaultArgument event for this parameter.
1546void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1547  if (!ParamD)
1548    return;
1549
1550  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1551
1552  // If this parameter has an unparsed default argument, clear it out
1553  // to make way for the parsed default argument.
1554  if (Param->hasUnparsedDefaultArg())
1555    Param->setDefaultArg(0);
1556
1557  S->AddDecl(DeclPtrTy::make(Param));
1558  if (Param->getDeclName())
1559    IdResolver.AddDecl(Param);
1560}
1561
1562/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1563/// processing the delayed method declaration for Method. The method
1564/// declaration is now considered finished. There may be a separate
1565/// ActOnStartOfFunctionDef action later (not necessarily
1566/// immediately!) for this method, if it was also defined inside the
1567/// class body.
1568void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1569  if (!MethodD)
1570    return;
1571
1572  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1573  CXXScopeSpec SS;
1574  QualType ClassTy
1575    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1576  SS.setScopeRep(
1577    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1578  ActOnCXXExitDeclaratorScope(S, SS);
1579
1580  // Now that we have our default arguments, check the constructor
1581  // again. It could produce additional diagnostics or affect whether
1582  // the class has implicitly-declared destructors, among other
1583  // things.
1584  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1585    CheckConstructor(Constructor);
1586
1587  // Check the default arguments, which we may have added.
1588  if (!Method->isInvalidDecl())
1589    CheckCXXDefaultArguments(Method);
1590}
1591
1592/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1593/// the well-formedness of the constructor declarator @p D with type @p
1594/// R. If there are any errors in the declarator, this routine will
1595/// emit diagnostics and set the invalid bit to true.  In any case, the type
1596/// will be updated to reflect a well-formed type for the constructor and
1597/// returned.
1598QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1599                                          FunctionDecl::StorageClass &SC) {
1600  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1601
1602  // C++ [class.ctor]p3:
1603  //   A constructor shall not be virtual (10.3) or static (9.4). A
1604  //   constructor can be invoked for a const, volatile or const
1605  //   volatile object. A constructor shall not be declared const,
1606  //   volatile, or const volatile (9.3.2).
1607  if (isVirtual) {
1608    if (!D.isInvalidType())
1609      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1610        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1611        << SourceRange(D.getIdentifierLoc());
1612    D.setInvalidType();
1613  }
1614  if (SC == FunctionDecl::Static) {
1615    if (!D.isInvalidType())
1616      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1617        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1618        << SourceRange(D.getIdentifierLoc());
1619    D.setInvalidType();
1620    SC = FunctionDecl::None;
1621  }
1622
1623  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1624  if (FTI.TypeQuals != 0) {
1625    if (FTI.TypeQuals & QualType::Const)
1626      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1627        << "const" << SourceRange(D.getIdentifierLoc());
1628    if (FTI.TypeQuals & QualType::Volatile)
1629      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1630        << "volatile" << SourceRange(D.getIdentifierLoc());
1631    if (FTI.TypeQuals & QualType::Restrict)
1632      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1633        << "restrict" << SourceRange(D.getIdentifierLoc());
1634  }
1635
1636  // Rebuild the function type "R" without any type qualifiers (in
1637  // case any of the errors above fired) and with "void" as the
1638  // return type, since constructors don't have return types. We
1639  // *always* have to do this, because GetTypeForDeclarator will
1640  // put in a result type of "int" when none was specified.
1641  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1642  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1643                                 Proto->getNumArgs(),
1644                                 Proto->isVariadic(), 0);
1645}
1646
1647/// CheckConstructor - Checks a fully-formed constructor for
1648/// well-formedness, issuing any diagnostics required. Returns true if
1649/// the constructor declarator is invalid.
1650void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1651  CXXRecordDecl *ClassDecl
1652    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1653  if (!ClassDecl)
1654    return Constructor->setInvalidDecl();
1655
1656  // C++ [class.copy]p3:
1657  //   A declaration of a constructor for a class X is ill-formed if
1658  //   its first parameter is of type (optionally cv-qualified) X and
1659  //   either there are no other parameters or else all other
1660  //   parameters have default arguments.
1661  if (!Constructor->isInvalidDecl() &&
1662      ((Constructor->getNumParams() == 1) ||
1663       (Constructor->getNumParams() > 1 &&
1664        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1665    QualType ParamType = Constructor->getParamDecl(0)->getType();
1666    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1667    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1668      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1669      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1670        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1671      Constructor->setInvalidDecl();
1672    }
1673  }
1674
1675  // Notify the class that we've added a constructor.
1676  ClassDecl->addedConstructor(Context, Constructor);
1677}
1678
1679static inline bool
1680FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1681  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1682          FTI.ArgInfo[0].Param &&
1683          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1684}
1685
1686/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1687/// the well-formednes of the destructor declarator @p D with type @p
1688/// R. If there are any errors in the declarator, this routine will
1689/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1690/// will be updated to reflect a well-formed type for the destructor and
1691/// returned.
1692QualType Sema::CheckDestructorDeclarator(Declarator &D,
1693                                         FunctionDecl::StorageClass& SC) {
1694  // C++ [class.dtor]p1:
1695  //   [...] A typedef-name that names a class is a class-name
1696  //   (7.1.3); however, a typedef-name that names a class shall not
1697  //   be used as the identifier in the declarator for a destructor
1698  //   declaration.
1699  QualType DeclaratorType = GetTypeFromParser(D.getDeclaratorIdType());
1700  if (isa<TypedefType>(DeclaratorType)) {
1701    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1702      << DeclaratorType;
1703    D.setInvalidType();
1704  }
1705
1706  // C++ [class.dtor]p2:
1707  //   A destructor is used to destroy objects of its class type. A
1708  //   destructor takes no parameters, and no return type can be
1709  //   specified for it (not even void). The address of a destructor
1710  //   shall not be taken. A destructor shall not be static. A
1711  //   destructor can be invoked for a const, volatile or const
1712  //   volatile object. A destructor shall not be declared const,
1713  //   volatile or const volatile (9.3.2).
1714  if (SC == FunctionDecl::Static) {
1715    if (!D.isInvalidType())
1716      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1717        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1718        << SourceRange(D.getIdentifierLoc());
1719    SC = FunctionDecl::None;
1720    D.setInvalidType();
1721  }
1722  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1723    // Destructors don't have return types, but the parser will
1724    // happily parse something like:
1725    //
1726    //   class X {
1727    //     float ~X();
1728    //   };
1729    //
1730    // The return type will be eliminated later.
1731    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1732      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1733      << SourceRange(D.getIdentifierLoc());
1734  }
1735
1736  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1737  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1738    if (FTI.TypeQuals & QualType::Const)
1739      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1740        << "const" << SourceRange(D.getIdentifierLoc());
1741    if (FTI.TypeQuals & QualType::Volatile)
1742      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1743        << "volatile" << SourceRange(D.getIdentifierLoc());
1744    if (FTI.TypeQuals & QualType::Restrict)
1745      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1746        << "restrict" << SourceRange(D.getIdentifierLoc());
1747    D.setInvalidType();
1748  }
1749
1750  // Make sure we don't have any parameters.
1751  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1752    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1753
1754    // Delete the parameters.
1755    FTI.freeArgs();
1756    D.setInvalidType();
1757  }
1758
1759  // Make sure the destructor isn't variadic.
1760  if (FTI.isVariadic) {
1761    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1762    D.setInvalidType();
1763  }
1764
1765  // Rebuild the function type "R" without any type qualifiers or
1766  // parameters (in case any of the errors above fired) and with
1767  // "void" as the return type, since destructors don't have return
1768  // types. We *always* have to do this, because GetTypeForDeclarator
1769  // will put in a result type of "int" when none was specified.
1770  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1771}
1772
1773/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1774/// well-formednes of the conversion function declarator @p D with
1775/// type @p R. If there are any errors in the declarator, this routine
1776/// will emit diagnostics and return true. Otherwise, it will return
1777/// false. Either way, the type @p R will be updated to reflect a
1778/// well-formed type for the conversion operator.
1779void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1780                                     FunctionDecl::StorageClass& SC) {
1781  // C++ [class.conv.fct]p1:
1782  //   Neither parameter types nor return type can be specified. The
1783  //   type of a conversion function (8.3.5) is "function taking no
1784  //   parameter returning conversion-type-id."
1785  if (SC == FunctionDecl::Static) {
1786    if (!D.isInvalidType())
1787      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1788        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1789        << SourceRange(D.getIdentifierLoc());
1790    D.setInvalidType();
1791    SC = FunctionDecl::None;
1792  }
1793  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1794    // Conversion functions don't have return types, but the parser will
1795    // happily parse something like:
1796    //
1797    //   class X {
1798    //     float operator bool();
1799    //   };
1800    //
1801    // The return type will be changed later anyway.
1802    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1803      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1804      << SourceRange(D.getIdentifierLoc());
1805  }
1806
1807  // Make sure we don't have any parameters.
1808  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1809    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1810
1811    // Delete the parameters.
1812    D.getTypeObject(0).Fun.freeArgs();
1813    D.setInvalidType();
1814  }
1815
1816  // Make sure the conversion function isn't variadic.
1817  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1818    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1819    D.setInvalidType();
1820  }
1821
1822  // C++ [class.conv.fct]p4:
1823  //   The conversion-type-id shall not represent a function type nor
1824  //   an array type.
1825  QualType ConvType = GetTypeFromParser(D.getDeclaratorIdType());
1826  if (ConvType->isArrayType()) {
1827    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1828    ConvType = Context.getPointerType(ConvType);
1829    D.setInvalidType();
1830  } else if (ConvType->isFunctionType()) {
1831    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1832    ConvType = Context.getPointerType(ConvType);
1833    D.setInvalidType();
1834  }
1835
1836  // Rebuild the function type "R" without any parameters (in case any
1837  // of the errors above fired) and with the conversion type as the
1838  // return type.
1839  R = Context.getFunctionType(ConvType, 0, 0, false,
1840                              R->getAsFunctionProtoType()->getTypeQuals());
1841
1842  // C++0x explicit conversion operators.
1843  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1844    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1845         diag::warn_explicit_conversion_functions)
1846      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1847}
1848
1849/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1850/// the declaration of the given C++ conversion function. This routine
1851/// is responsible for recording the conversion function in the C++
1852/// class, if possible.
1853Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1854  assert(Conversion && "Expected to receive a conversion function declaration");
1855
1856  // Set the lexical context of this conversion function
1857  Conversion->setLexicalDeclContext(CurContext);
1858
1859  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1860
1861  // Make sure we aren't redeclaring the conversion function.
1862  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1863
1864  // C++ [class.conv.fct]p1:
1865  //   [...] A conversion function is never used to convert a
1866  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1867  //   same object type (or a reference to it), to a (possibly
1868  //   cv-qualified) base class of that type (or a reference to it),
1869  //   or to (possibly cv-qualified) void.
1870  // FIXME: Suppress this warning if the conversion function ends up being a
1871  // virtual function that overrides a virtual function in a base class.
1872  QualType ClassType
1873    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1874  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
1875    ConvType = ConvTypeRef->getPointeeType();
1876  if (ConvType->isRecordType()) {
1877    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1878    if (ConvType == ClassType)
1879      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1880        << ClassType;
1881    else if (IsDerivedFrom(ClassType, ConvType))
1882      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1883        <<  ClassType << ConvType;
1884  } else if (ConvType->isVoidType()) {
1885    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1886      << ClassType << ConvType;
1887  }
1888
1889  if (Conversion->getPreviousDeclaration()) {
1890    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1891    for (OverloadedFunctionDecl::function_iterator
1892           Conv = Conversions->function_begin(),
1893           ConvEnd = Conversions->function_end();
1894         Conv != ConvEnd; ++Conv) {
1895      if (*Conv
1896            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1897        *Conv = Conversion;
1898        return DeclPtrTy::make(Conversion);
1899      }
1900    }
1901    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1902  } else
1903    ClassDecl->addConversionFunction(Context, Conversion);
1904
1905  return DeclPtrTy::make(Conversion);
1906}
1907
1908//===----------------------------------------------------------------------===//
1909// Namespace Handling
1910//===----------------------------------------------------------------------===//
1911
1912/// ActOnStartNamespaceDef - This is called at the start of a namespace
1913/// definition.
1914Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1915                                             SourceLocation IdentLoc,
1916                                             IdentifierInfo *II,
1917                                             SourceLocation LBrace) {
1918  NamespaceDecl *Namespc =
1919      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1920  Namespc->setLBracLoc(LBrace);
1921
1922  Scope *DeclRegionScope = NamespcScope->getParent();
1923
1924  if (II) {
1925    // C++ [namespace.def]p2:
1926    // The identifier in an original-namespace-definition shall not have been
1927    // previously defined in the declarative region in which the
1928    // original-namespace-definition appears. The identifier in an
1929    // original-namespace-definition is the name of the namespace. Subsequently
1930    // in that declarative region, it is treated as an original-namespace-name.
1931
1932    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1933                                     true);
1934
1935    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1936      // This is an extended namespace definition.
1937      // Attach this namespace decl to the chain of extended namespace
1938      // definitions.
1939      OrigNS->setNextNamespace(Namespc);
1940      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1941
1942      // Remove the previous declaration from the scope.
1943      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1944        IdResolver.RemoveDecl(OrigNS);
1945        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1946      }
1947    } else if (PrevDecl) {
1948      // This is an invalid name redefinition.
1949      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1950       << Namespc->getDeclName();
1951      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1952      Namespc->setInvalidDecl();
1953      // Continue on to push Namespc as current DeclContext and return it.
1954    }
1955
1956    PushOnScopeChains(Namespc, DeclRegionScope);
1957  } else {
1958    // FIXME: Handle anonymous namespaces
1959  }
1960
1961  // Although we could have an invalid decl (i.e. the namespace name is a
1962  // redefinition), push it as current DeclContext and try to continue parsing.
1963  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1964  // for the namespace has the declarations that showed up in that particular
1965  // namespace definition.
1966  PushDeclContext(NamespcScope, Namespc);
1967  return DeclPtrTy::make(Namespc);
1968}
1969
1970/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1971/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1972void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1973  Decl *Dcl = D.getAs<Decl>();
1974  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1975  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1976  Namespc->setRBracLoc(RBrace);
1977  PopDeclContext();
1978}
1979
1980Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1981                                          SourceLocation UsingLoc,
1982                                          SourceLocation NamespcLoc,
1983                                          const CXXScopeSpec &SS,
1984                                          SourceLocation IdentLoc,
1985                                          IdentifierInfo *NamespcName,
1986                                          AttributeList *AttrList) {
1987  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1988  assert(NamespcName && "Invalid NamespcName.");
1989  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1990  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1991
1992  UsingDirectiveDecl *UDir = 0;
1993
1994  // Lookup namespace name.
1995  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1996                                    LookupNamespaceName, false);
1997  if (R.isAmbiguous()) {
1998    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1999    return DeclPtrTy();
2000  }
2001  if (NamedDecl *NS = R) {
2002    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
2003    // C++ [namespace.udir]p1:
2004    //   A using-directive specifies that the names in the nominated
2005    //   namespace can be used in the scope in which the
2006    //   using-directive appears after the using-directive. During
2007    //   unqualified name lookup (3.4.1), the names appear as if they
2008    //   were declared in the nearest enclosing namespace which
2009    //   contains both the using-directive and the nominated
2010    //   namespace. [Note: in this context, "contains" means "contains
2011    //   directly or indirectly". ]
2012
2013    // Find enclosing context containing both using-directive and
2014    // nominated namespace.
2015    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2016    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2017      CommonAncestor = CommonAncestor->getParent();
2018
2019    UDir = UsingDirectiveDecl::Create(Context,
2020                                      CurContext, UsingLoc,
2021                                      NamespcLoc,
2022                                      SS.getRange(),
2023                                      (NestedNameSpecifier *)SS.getScopeRep(),
2024                                      IdentLoc,
2025                                      cast<NamespaceDecl>(NS),
2026                                      CommonAncestor);
2027    PushUsingDirective(S, UDir);
2028  } else {
2029    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2030  }
2031
2032  // FIXME: We ignore attributes for now.
2033  delete AttrList;
2034  return DeclPtrTy::make(UDir);
2035}
2036
2037void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2038  // If scope has associated entity, then using directive is at namespace
2039  // or translation unit scope. We add UsingDirectiveDecls, into
2040  // it's lookup structure.
2041  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2042    Ctx->addDecl(UDir);
2043  else
2044    // Otherwise it is block-sope. using-directives will affect lookup
2045    // only to the end of scope.
2046    S->PushUsingDirective(DeclPtrTy::make(UDir));
2047}
2048
2049
2050Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2051                                          SourceLocation UsingLoc,
2052                                          const CXXScopeSpec &SS,
2053                                          SourceLocation IdentLoc,
2054                                          IdentifierInfo *TargetName,
2055                                          OverloadedOperatorKind Op,
2056                                          AttributeList *AttrList,
2057                                          bool IsTypeName) {
2058  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2059  assert((TargetName || Op) && "Invalid TargetName.");
2060  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2061  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2062
2063  UsingDecl *UsingAlias = 0;
2064
2065  DeclarationName Name;
2066  if (TargetName)
2067    Name = TargetName;
2068  else
2069    Name = Context.DeclarationNames.getCXXOperatorName(Op);
2070
2071  // Lookup target name.
2072  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
2073
2074  if (NamedDecl *NS = R) {
2075    if (IsTypeName && !isa<TypeDecl>(NS)) {
2076      Diag(IdentLoc, diag::err_using_typename_non_type);
2077    }
2078    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2079        NS->getLocation(), UsingLoc, NS,
2080        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
2081        IsTypeName);
2082    PushOnScopeChains(UsingAlias, S);
2083  } else {
2084    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
2085  }
2086
2087  // FIXME: We ignore attributes for now.
2088  delete AttrList;
2089  return DeclPtrTy::make(UsingAlias);
2090}
2091
2092/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2093/// is a namespace alias, returns the namespace it points to.
2094static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2095  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2096    return AD->getNamespace();
2097  return dyn_cast_or_null<NamespaceDecl>(D);
2098}
2099
2100Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2101                                             SourceLocation NamespaceLoc,
2102                                             SourceLocation AliasLoc,
2103                                             IdentifierInfo *Alias,
2104                                             const CXXScopeSpec &SS,
2105                                             SourceLocation IdentLoc,
2106                                             IdentifierInfo *Ident) {
2107
2108  // Lookup the namespace name.
2109  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
2110
2111  // Check if we have a previous declaration with the same name.
2112  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
2113    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2114      // We already have an alias with the same name that points to the same
2115      // namespace, so don't create a new one.
2116      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
2117        return DeclPtrTy();
2118    }
2119
2120    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2121      diag::err_redefinition_different_kind;
2122    Diag(AliasLoc, DiagID) << Alias;
2123    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2124    return DeclPtrTy();
2125  }
2126
2127  if (R.isAmbiguous()) {
2128    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2129    return DeclPtrTy();
2130  }
2131
2132  if (!R) {
2133    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2134    return DeclPtrTy();
2135  }
2136
2137  NamespaceAliasDecl *AliasDecl =
2138    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2139                               Alias, SS.getRange(),
2140                               (NestedNameSpecifier *)SS.getScopeRep(),
2141                               IdentLoc, R);
2142
2143  CurContext->addDecl(AliasDecl);
2144  return DeclPtrTy::make(AliasDecl);
2145}
2146
2147void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2148                                            CXXConstructorDecl *Constructor) {
2149  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2150          !Constructor->isUsed()) &&
2151    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2152
2153  CXXRecordDecl *ClassDecl
2154    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2155  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2156  // Before the implicitly-declared default constructor for a class is
2157  // implicitly defined, all the implicitly-declared default constructors
2158  // for its base class and its non-static data members shall have been
2159  // implicitly defined.
2160  bool err = false;
2161  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2162       E = ClassDecl->bases_end(); Base != E; ++Base) {
2163    CXXRecordDecl *BaseClassDecl
2164      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2165    if (!BaseClassDecl->hasTrivialConstructor()) {
2166      if (CXXConstructorDecl *BaseCtor =
2167            BaseClassDecl->getDefaultConstructor(Context))
2168        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2169      else {
2170        Diag(CurrentLocation, diag::err_defining_default_ctor)
2171          << Context.getTagDeclType(ClassDecl) << 1
2172          << Context.getTagDeclType(BaseClassDecl);
2173        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2174              << Context.getTagDeclType(BaseClassDecl);
2175        err = true;
2176      }
2177    }
2178  }
2179  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2180       E = ClassDecl->field_end(); Field != E; ++Field) {
2181    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2182    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2183      FieldType = Array->getElementType();
2184    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2185      CXXRecordDecl *FieldClassDecl
2186        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2187      if (!FieldClassDecl->hasTrivialConstructor()) {
2188        if (CXXConstructorDecl *FieldCtor =
2189            FieldClassDecl->getDefaultConstructor(Context))
2190          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2191        else {
2192          Diag(CurrentLocation, diag::err_defining_default_ctor)
2193          << Context.getTagDeclType(ClassDecl) << 0 <<
2194              Context.getTagDeclType(FieldClassDecl);
2195          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2196          << Context.getTagDeclType(FieldClassDecl);
2197          err = true;
2198        }
2199      }
2200    } else if (FieldType->isReferenceType()) {
2201      Diag(CurrentLocation, diag::err_unintialized_member)
2202        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2203      Diag((*Field)->getLocation(), diag::note_declared_at);
2204      err = true;
2205    } else if (FieldType.isConstQualified()) {
2206      Diag(CurrentLocation, diag::err_unintialized_member)
2207        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2208       Diag((*Field)->getLocation(), diag::note_declared_at);
2209      err = true;
2210    }
2211  }
2212  if (!err)
2213    Constructor->setUsed();
2214  else
2215    Constructor->setInvalidDecl();
2216}
2217
2218void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2219                                            CXXDestructorDecl *Destructor) {
2220  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2221         "DefineImplicitDestructor - call it for implicit default dtor");
2222
2223  CXXRecordDecl *ClassDecl
2224  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2225  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2226  // C++ [class.dtor] p5
2227  // Before the implicitly-declared default destructor for a class is
2228  // implicitly defined, all the implicitly-declared default destructors
2229  // for its base class and its non-static data members shall have been
2230  // implicitly defined.
2231  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2232       E = ClassDecl->bases_end(); Base != E; ++Base) {
2233    CXXRecordDecl *BaseClassDecl
2234      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2235    if (!BaseClassDecl->hasTrivialDestructor()) {
2236      if (CXXDestructorDecl *BaseDtor =
2237          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2238        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2239      else
2240        assert(false &&
2241               "DefineImplicitDestructor - missing dtor in a base class");
2242    }
2243  }
2244
2245  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2246       E = ClassDecl->field_end(); Field != E; ++Field) {
2247    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2248    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2249      FieldType = Array->getElementType();
2250    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2251      CXXRecordDecl *FieldClassDecl
2252        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2253      if (!FieldClassDecl->hasTrivialDestructor()) {
2254        if (CXXDestructorDecl *FieldDtor =
2255            const_cast<CXXDestructorDecl*>(
2256                                        FieldClassDecl->getDestructor(Context)))
2257          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2258        else
2259          assert(false &&
2260          "DefineImplicitDestructor - missing dtor in class of a data member");
2261      }
2262    }
2263  }
2264  Destructor->setUsed();
2265}
2266
2267void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2268                                          CXXMethodDecl *MethodDecl) {
2269  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2270          MethodDecl->getOverloadedOperator() == OO_Equal &&
2271          !MethodDecl->isUsed()) &&
2272         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2273
2274  CXXRecordDecl *ClassDecl
2275    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2276
2277  // C++[class.copy] p12
2278  // Before the implicitly-declared copy assignment operator for a class is
2279  // implicitly defined, all implicitly-declared copy assignment operators
2280  // for its direct base classes and its nonstatic data members shall have
2281  // been implicitly defined.
2282  bool err = false;
2283  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2284       E = ClassDecl->bases_end(); Base != E; ++Base) {
2285    CXXRecordDecl *BaseClassDecl
2286      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2287    if (CXXMethodDecl *BaseAssignOpMethod =
2288          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2289      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2290  }
2291  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2292       E = ClassDecl->field_end(); Field != E; ++Field) {
2293    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2294    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2295      FieldType = Array->getElementType();
2296    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2297      CXXRecordDecl *FieldClassDecl
2298        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2299      if (CXXMethodDecl *FieldAssignOpMethod =
2300          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2301        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2302    } else if (FieldType->isReferenceType()) {
2303      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2304      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2305      Diag(Field->getLocation(), diag::note_declared_at);
2306      Diag(CurrentLocation, diag::note_first_required_here);
2307      err = true;
2308    } else if (FieldType.isConstQualified()) {
2309      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2310      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2311      Diag(Field->getLocation(), diag::note_declared_at);
2312      Diag(CurrentLocation, diag::note_first_required_here);
2313      err = true;
2314    }
2315  }
2316  if (!err)
2317    MethodDecl->setUsed();
2318}
2319
2320CXXMethodDecl *
2321Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2322                              CXXRecordDecl *ClassDecl) {
2323  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2324  QualType RHSType(LHSType);
2325  // If class's assignment operator argument is const/volatile qualified,
2326  // look for operator = (const/volatile B&). Otherwise, look for
2327  // operator = (B&).
2328  if (ParmDecl->getType().isConstQualified())
2329    RHSType.addConst();
2330  if (ParmDecl->getType().isVolatileQualified())
2331    RHSType.addVolatile();
2332  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2333                                                          LHSType,
2334                                                          SourceLocation()));
2335  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2336                                                          RHSType,
2337                                                          SourceLocation()));
2338  Expr *Args[2] = { &*LHS, &*RHS };
2339  OverloadCandidateSet CandidateSet;
2340  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2341                              CandidateSet);
2342  OverloadCandidateSet::iterator Best;
2343  if (BestViableFunction(CandidateSet,
2344                         ClassDecl->getLocation(), Best) == OR_Success)
2345    return cast<CXXMethodDecl>(Best->Function);
2346  assert(false &&
2347         "getAssignOperatorMethod - copy assignment operator method not found");
2348  return 0;
2349}
2350
2351void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2352                                   CXXConstructorDecl *CopyConstructor,
2353                                   unsigned TypeQuals) {
2354  assert((CopyConstructor->isImplicit() &&
2355          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2356          !CopyConstructor->isUsed()) &&
2357         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2358
2359  CXXRecordDecl *ClassDecl
2360    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2361  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2362  // C++ [class.copy] p209
2363  // Before the implicitly-declared copy constructor for a class is
2364  // implicitly defined, all the implicitly-declared copy constructors
2365  // for its base class and its non-static data members shall have been
2366  // implicitly defined.
2367  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2368       Base != ClassDecl->bases_end(); ++Base) {
2369    CXXRecordDecl *BaseClassDecl
2370      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2371    if (CXXConstructorDecl *BaseCopyCtor =
2372        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2373      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2374  }
2375  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2376                                  FieldEnd = ClassDecl->field_end();
2377       Field != FieldEnd; ++Field) {
2378    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2379    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2380      FieldType = Array->getElementType();
2381    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2382      CXXRecordDecl *FieldClassDecl
2383        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2384      if (CXXConstructorDecl *FieldCopyCtor =
2385          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2386        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2387    }
2388  }
2389  CopyConstructor->setUsed();
2390}
2391
2392Expr *Sema::BuildCXXConstructExpr(QualType DeclInitType,
2393                                  CXXConstructorDecl *Constructor,
2394                                  Expr **Exprs, unsigned NumExprs) {
2395  bool Elidable = false;
2396
2397  // [class.copy]p15:
2398  // Whenever a temporary class object is copied using a copy constructor, and
2399  // this object and the copy have the same cv-unqualified type, an
2400  // implementation is permitted to treat the original and the copy as two
2401  // different ways of referring to the same object and not perform a copy at
2402  //all, even if the class copy constructor or destructor have side effects.
2403
2404  // FIXME: Is this enough?
2405  if (Constructor->isCopyConstructor(Context) && NumExprs == 1) {
2406    Expr *E = Exprs[0];
2407    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2408      E = BE->getSubExpr();
2409
2410    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
2411      Elidable = true;
2412  }
2413
2414  return BuildCXXConstructExpr(DeclInitType, Constructor, Elidable,
2415                               Exprs, NumExprs);
2416}
2417
2418/// BuildCXXConstructExpr - Creates a complete call to a constructor,
2419/// including handling of its default argument expressions.
2420Expr *Sema::BuildCXXConstructExpr(QualType DeclInitType,
2421                                  CXXConstructorDecl *Constructor,
2422                                  bool Elidable,
2423                                  Expr **Exprs, unsigned NumExprs) {
2424  CXXConstructExpr *Temp = CXXConstructExpr::Create(Context, DeclInitType,
2425                                                    Constructor,
2426                                                    Elidable, Exprs, NumExprs);
2427  // default arguments must be added to constructor call expression.
2428  FunctionDecl *FDecl = cast<FunctionDecl>(Constructor);
2429  unsigned NumArgsInProto = FDecl->param_size();
2430  for (unsigned j = NumExprs; j != NumArgsInProto; j++) {
2431    Expr *DefaultExpr = FDecl->getParamDecl(j)->getDefaultArg();
2432
2433    // If the default expression creates temporaries, we need to
2434    // push them to the current stack of expression temporaries so they'll
2435    // be properly destroyed.
2436    if (CXXExprWithTemporaries *E
2437        = dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
2438      assert(!E->shouldDestroyTemporaries() &&
2439             "Can't destroy temporaries in a default argument expr!");
2440      for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
2441        ExprTemporaries.push_back(E->getTemporary(I));
2442    }
2443    Expr *Arg = CXXDefaultArgExpr::Create(Context, FDecl->getParamDecl(j));
2444    Temp->setArg(j, Arg);
2445  }
2446  return Temp;
2447}
2448
2449void Sema::InitializeVarWithConstructor(VarDecl *VD,
2450                                        CXXConstructorDecl *Constructor,
2451                                        QualType DeclInitType,
2452                                        Expr **Exprs, unsigned NumExprs) {
2453  Expr *Temp = BuildCXXConstructExpr(DeclInitType, Constructor,
2454                                     Exprs, NumExprs);
2455  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2456  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
2457  VD->setInit(Context, Temp);
2458}
2459
2460void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType)
2461{
2462  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2463                                  DeclInitType->getAs<RecordType>()->getDecl());
2464  if (!ClassDecl->hasTrivialDestructor())
2465    if (CXXDestructorDecl *Destructor =
2466        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2467      MarkDeclarationReferenced(VD->getLocation(), Destructor);
2468}
2469
2470/// AddCXXDirectInitializerToDecl - This action is called immediately after
2471/// ActOnDeclarator, when a C++ direct initializer is present.
2472/// e.g: "int x(1);"
2473void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2474                                         SourceLocation LParenLoc,
2475                                         MultiExprArg Exprs,
2476                                         SourceLocation *CommaLocs,
2477                                         SourceLocation RParenLoc) {
2478  unsigned NumExprs = Exprs.size();
2479  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2480  Decl *RealDecl = Dcl.getAs<Decl>();
2481
2482  // If there is no declaration, there was an error parsing it.  Just ignore
2483  // the initializer.
2484  if (RealDecl == 0)
2485    return;
2486
2487  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2488  if (!VDecl) {
2489    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2490    RealDecl->setInvalidDecl();
2491    return;
2492  }
2493
2494  // FIXME: Need to handle dependent types and expressions here.
2495
2496  // We will treat direct-initialization as a copy-initialization:
2497  //    int x(1);  -as-> int x = 1;
2498  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2499  //
2500  // Clients that want to distinguish between the two forms, can check for
2501  // direct initializer using VarDecl::hasCXXDirectInitializer().
2502  // A major benefit is that clients that don't particularly care about which
2503  // exactly form was it (like the CodeGen) can handle both cases without
2504  // special case code.
2505
2506  // C++ 8.5p11:
2507  // The form of initialization (using parentheses or '=') is generally
2508  // insignificant, but does matter when the entity being initialized has a
2509  // class type.
2510  QualType DeclInitType = VDecl->getType();
2511  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2512    DeclInitType = Array->getElementType();
2513
2514  // FIXME: This isn't the right place to complete the type.
2515  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2516                          diag::err_typecheck_decl_incomplete_type)) {
2517    VDecl->setInvalidDecl();
2518    return;
2519  }
2520
2521  if (VDecl->getType()->isRecordType()) {
2522    CXXConstructorDecl *Constructor
2523      = PerformInitializationByConstructor(DeclInitType,
2524                                           (Expr **)Exprs.get(), NumExprs,
2525                                           VDecl->getLocation(),
2526                                           SourceRange(VDecl->getLocation(),
2527                                                       RParenLoc),
2528                                           VDecl->getDeclName(),
2529                                           IK_Direct);
2530    if (!Constructor)
2531      RealDecl->setInvalidDecl();
2532    else {
2533      VDecl->setCXXDirectInitializer(true);
2534      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2535                                   (Expr**)Exprs.release(), NumExprs);
2536      FinalizeVarWithDestructor(VDecl, DeclInitType);
2537    }
2538    return;
2539  }
2540
2541  if (NumExprs > 1) {
2542    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2543      << SourceRange(VDecl->getLocation(), RParenLoc);
2544    RealDecl->setInvalidDecl();
2545    return;
2546  }
2547
2548  // Let clients know that initialization was done with a direct initializer.
2549  VDecl->setCXXDirectInitializer(true);
2550
2551  assert(NumExprs == 1 && "Expected 1 expression");
2552  // Set the init expression, handles conversions.
2553  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2554                       /*DirectInit=*/true);
2555}
2556
2557/// PerformInitializationByConstructor - Perform initialization by
2558/// constructor (C++ [dcl.init]p14), which may occur as part of
2559/// direct-initialization or copy-initialization. We are initializing
2560/// an object of type @p ClassType with the given arguments @p
2561/// Args. @p Loc is the location in the source code where the
2562/// initializer occurs (e.g., a declaration, member initializer,
2563/// functional cast, etc.) while @p Range covers the whole
2564/// initialization. @p InitEntity is the entity being initialized,
2565/// which may by the name of a declaration or a type. @p Kind is the
2566/// kind of initialization we're performing, which affects whether
2567/// explicit constructors will be considered. When successful, returns
2568/// the constructor that will be used to perform the initialization;
2569/// when the initialization fails, emits a diagnostic and returns
2570/// null.
2571CXXConstructorDecl *
2572Sema::PerformInitializationByConstructor(QualType ClassType,
2573                                         Expr **Args, unsigned NumArgs,
2574                                         SourceLocation Loc, SourceRange Range,
2575                                         DeclarationName InitEntity,
2576                                         InitializationKind Kind) {
2577  const RecordType *ClassRec = ClassType->getAs<RecordType>();
2578  assert(ClassRec && "Can only initialize a class type here");
2579
2580  // C++ [dcl.init]p14:
2581  //
2582  //   If the initialization is direct-initialization, or if it is
2583  //   copy-initialization where the cv-unqualified version of the
2584  //   source type is the same class as, or a derived class of, the
2585  //   class of the destination, constructors are considered. The
2586  //   applicable constructors are enumerated (13.3.1.3), and the
2587  //   best one is chosen through overload resolution (13.3). The
2588  //   constructor so selected is called to initialize the object,
2589  //   with the initializer expression(s) as its argument(s). If no
2590  //   constructor applies, or the overload resolution is ambiguous,
2591  //   the initialization is ill-formed.
2592  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2593  OverloadCandidateSet CandidateSet;
2594
2595  // Add constructors to the overload set.
2596  DeclarationName ConstructorName
2597    = Context.DeclarationNames.getCXXConstructorName(
2598                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2599  DeclContext::lookup_const_iterator Con, ConEnd;
2600  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2601       Con != ConEnd; ++Con) {
2602    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2603    if ((Kind == IK_Direct) ||
2604        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2605        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2606      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2607  }
2608
2609  // FIXME: When we decide not to synthesize the implicitly-declared
2610  // constructors, we'll need to make them appear here.
2611
2612  OverloadCandidateSet::iterator Best;
2613  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2614  case OR_Success:
2615    // We found a constructor. Return it.
2616    return cast<CXXConstructorDecl>(Best->Function);
2617
2618  case OR_No_Viable_Function:
2619    if (InitEntity)
2620      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2621        << InitEntity << Range;
2622    else
2623      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2624        << ClassType << Range;
2625    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2626    return 0;
2627
2628  case OR_Ambiguous:
2629    if (InitEntity)
2630      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2631    else
2632      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2633    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2634    return 0;
2635
2636  case OR_Deleted:
2637    if (InitEntity)
2638      Diag(Loc, diag::err_ovl_deleted_init)
2639        << Best->Function->isDeleted()
2640        << InitEntity << Range;
2641    else
2642      Diag(Loc, diag::err_ovl_deleted_init)
2643        << Best->Function->isDeleted()
2644        << InitEntity << Range;
2645    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2646    return 0;
2647  }
2648
2649  return 0;
2650}
2651
2652/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2653/// determine whether they are reference-related,
2654/// reference-compatible, reference-compatible with added
2655/// qualification, or incompatible, for use in C++ initialization by
2656/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2657/// type, and the first type (T1) is the pointee type of the reference
2658/// type being initialized.
2659Sema::ReferenceCompareResult
2660Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2661                                   bool& DerivedToBase) {
2662  assert(!T1->isReferenceType() &&
2663    "T1 must be the pointee type of the reference type");
2664  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2665
2666  T1 = Context.getCanonicalType(T1);
2667  T2 = Context.getCanonicalType(T2);
2668  QualType UnqualT1 = T1.getUnqualifiedType();
2669  QualType UnqualT2 = T2.getUnqualifiedType();
2670
2671  // C++ [dcl.init.ref]p4:
2672  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2673  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2674  //   T1 is a base class of T2.
2675  if (UnqualT1 == UnqualT2)
2676    DerivedToBase = false;
2677  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2678    DerivedToBase = true;
2679  else
2680    return Ref_Incompatible;
2681
2682  // At this point, we know that T1 and T2 are reference-related (at
2683  // least).
2684
2685  // C++ [dcl.init.ref]p4:
2686  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2687  //   reference-related to T2 and cv1 is the same cv-qualification
2688  //   as, or greater cv-qualification than, cv2. For purposes of
2689  //   overload resolution, cases for which cv1 is greater
2690  //   cv-qualification than cv2 are identified as
2691  //   reference-compatible with added qualification (see 13.3.3.2).
2692  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2693    return Ref_Compatible;
2694  else if (T1.isMoreQualifiedThan(T2))
2695    return Ref_Compatible_With_Added_Qualification;
2696  else
2697    return Ref_Related;
2698}
2699
2700/// CheckReferenceInit - Check the initialization of a reference
2701/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2702/// the initializer (either a simple initializer or an initializer
2703/// list), and DeclType is the type of the declaration. When ICS is
2704/// non-null, this routine will compute the implicit conversion
2705/// sequence according to C++ [over.ics.ref] and will not produce any
2706/// diagnostics; when ICS is null, it will emit diagnostics when any
2707/// errors are found. Either way, a return value of true indicates
2708/// that there was a failure, a return value of false indicates that
2709/// the reference initialization succeeded.
2710///
2711/// When @p SuppressUserConversions, user-defined conversions are
2712/// suppressed.
2713/// When @p AllowExplicit, we also permit explicit user-defined
2714/// conversion functions.
2715/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2716bool
2717Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2718                         ImplicitConversionSequence *ICS,
2719                         bool SuppressUserConversions,
2720                         bool AllowExplicit, bool ForceRValue) {
2721  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2722
2723  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2724  QualType T2 = Init->getType();
2725
2726  // If the initializer is the address of an overloaded function, try
2727  // to resolve the overloaded function. If all goes well, T2 is the
2728  // type of the resulting function.
2729  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2730    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2731                                                          ICS != 0);
2732    if (Fn) {
2733      // Since we're performing this reference-initialization for
2734      // real, update the initializer with the resulting function.
2735      if (!ICS) {
2736        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2737          return true;
2738
2739        FixOverloadedFunctionReference(Init, Fn);
2740      }
2741
2742      T2 = Fn->getType();
2743    }
2744  }
2745
2746  // Compute some basic properties of the types and the initializer.
2747  bool isRValRef = DeclType->isRValueReferenceType();
2748  bool DerivedToBase = false;
2749  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2750                                                  Init->isLvalue(Context);
2751  ReferenceCompareResult RefRelationship
2752    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2753
2754  // Most paths end in a failed conversion.
2755  if (ICS)
2756    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2757
2758  // C++ [dcl.init.ref]p5:
2759  //   A reference to type "cv1 T1" is initialized by an expression
2760  //   of type "cv2 T2" as follows:
2761
2762  //     -- If the initializer expression
2763
2764  // Rvalue references cannot bind to lvalues (N2812).
2765  // There is absolutely no situation where they can. In particular, note that
2766  // this is ill-formed, even if B has a user-defined conversion to A&&:
2767  //   B b;
2768  //   A&& r = b;
2769  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2770    if (!ICS)
2771      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2772        << Init->getSourceRange();
2773    return true;
2774  }
2775
2776  bool BindsDirectly = false;
2777  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2778  //          reference-compatible with "cv2 T2," or
2779  //
2780  // Note that the bit-field check is skipped if we are just computing
2781  // the implicit conversion sequence (C++ [over.best.ics]p2).
2782  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2783      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2784    BindsDirectly = true;
2785
2786    if (ICS) {
2787      // C++ [over.ics.ref]p1:
2788      //   When a parameter of reference type binds directly (8.5.3)
2789      //   to an argument expression, the implicit conversion sequence
2790      //   is the identity conversion, unless the argument expression
2791      //   has a type that is a derived class of the parameter type,
2792      //   in which case the implicit conversion sequence is a
2793      //   derived-to-base Conversion (13.3.3.1).
2794      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2795      ICS->Standard.First = ICK_Identity;
2796      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2797      ICS->Standard.Third = ICK_Identity;
2798      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2799      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2800      ICS->Standard.ReferenceBinding = true;
2801      ICS->Standard.DirectBinding = true;
2802      ICS->Standard.RRefBinding = false;
2803      ICS->Standard.CopyConstructor = 0;
2804
2805      // Nothing more to do: the inaccessibility/ambiguity check for
2806      // derived-to-base conversions is suppressed when we're
2807      // computing the implicit conversion sequence (C++
2808      // [over.best.ics]p2).
2809      return false;
2810    } else {
2811      // Perform the conversion.
2812      // FIXME: Binding to a subobject of the lvalue is going to require more
2813      // AST annotation than this.
2814      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
2815    }
2816  }
2817
2818  //       -- has a class type (i.e., T2 is a class type) and can be
2819  //          implicitly converted to an lvalue of type "cv3 T3,"
2820  //          where "cv1 T1" is reference-compatible with "cv3 T3"
2821  //          92) (this conversion is selected by enumerating the
2822  //          applicable conversion functions (13.3.1.6) and choosing
2823  //          the best one through overload resolution (13.3)),
2824  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2825    // FIXME: Look for conversions in base classes!
2826    CXXRecordDecl *T2RecordDecl
2827      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2828
2829    OverloadCandidateSet CandidateSet;
2830    OverloadedFunctionDecl *Conversions
2831      = T2RecordDecl->getConversionFunctions();
2832    for (OverloadedFunctionDecl::function_iterator Func
2833           = Conversions->function_begin();
2834         Func != Conversions->function_end(); ++Func) {
2835      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2836
2837      // If the conversion function doesn't return a reference type,
2838      // it can't be considered for this conversion.
2839      if (Conv->getConversionType()->isLValueReferenceType() &&
2840          (AllowExplicit || !Conv->isExplicit()))
2841        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2842    }
2843
2844    OverloadCandidateSet::iterator Best;
2845    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2846    case OR_Success:
2847      // This is a direct binding.
2848      BindsDirectly = true;
2849
2850      if (ICS) {
2851        // C++ [over.ics.ref]p1:
2852        //
2853        //   [...] If the parameter binds directly to the result of
2854        //   applying a conversion function to the argument
2855        //   expression, the implicit conversion sequence is a
2856        //   user-defined conversion sequence (13.3.3.1.2), with the
2857        //   second standard conversion sequence either an identity
2858        //   conversion or, if the conversion function returns an
2859        //   entity of a type that is a derived class of the parameter
2860        //   type, a derived-to-base Conversion.
2861        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2862        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2863        ICS->UserDefined.After = Best->FinalConversion;
2864        ICS->UserDefined.ConversionFunction = Best->Function;
2865        assert(ICS->UserDefined.After.ReferenceBinding &&
2866               ICS->UserDefined.After.DirectBinding &&
2867               "Expected a direct reference binding!");
2868        return false;
2869      } else {
2870        // Perform the conversion.
2871        // FIXME: Binding to a subobject of the lvalue is going to require more
2872        // AST annotation than this.
2873        ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
2874      }
2875      break;
2876
2877    case OR_Ambiguous:
2878      assert(false && "Ambiguous reference binding conversions not implemented.");
2879      return true;
2880
2881    case OR_No_Viable_Function:
2882    case OR_Deleted:
2883      // There was no suitable conversion, or we found a deleted
2884      // conversion; continue with other checks.
2885      break;
2886    }
2887  }
2888
2889  if (BindsDirectly) {
2890    // C++ [dcl.init.ref]p4:
2891    //   [...] In all cases where the reference-related or
2892    //   reference-compatible relationship of two types is used to
2893    //   establish the validity of a reference binding, and T1 is a
2894    //   base class of T2, a program that necessitates such a binding
2895    //   is ill-formed if T1 is an inaccessible (clause 11) or
2896    //   ambiguous (10.2) base class of T2.
2897    //
2898    // Note that we only check this condition when we're allowed to
2899    // complain about errors, because we should not be checking for
2900    // ambiguity (or inaccessibility) unless the reference binding
2901    // actually happens.
2902    if (DerivedToBase)
2903      return CheckDerivedToBaseConversion(T2, T1,
2904                                          Init->getSourceRange().getBegin(),
2905                                          Init->getSourceRange());
2906    else
2907      return false;
2908  }
2909
2910  //     -- Otherwise, the reference shall be to a non-volatile const
2911  //        type (i.e., cv1 shall be const), or the reference shall be an
2912  //        rvalue reference and the initializer expression shall be an rvalue.
2913  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2914    if (!ICS)
2915      Diag(Init->getSourceRange().getBegin(),
2916           diag::err_not_reference_to_const_init)
2917        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2918        << T2 << Init->getSourceRange();
2919    return true;
2920  }
2921
2922  //       -- If the initializer expression is an rvalue, with T2 a
2923  //          class type, and "cv1 T1" is reference-compatible with
2924  //          "cv2 T2," the reference is bound in one of the
2925  //          following ways (the choice is implementation-defined):
2926  //
2927  //          -- The reference is bound to the object represented by
2928  //             the rvalue (see 3.10) or to a sub-object within that
2929  //             object.
2930  //
2931  //          -- A temporary of type "cv1 T2" [sic] is created, and
2932  //             a constructor is called to copy the entire rvalue
2933  //             object into the temporary. The reference is bound to
2934  //             the temporary or to a sub-object within the
2935  //             temporary.
2936  //
2937  //          The constructor that would be used to make the copy
2938  //          shall be callable whether or not the copy is actually
2939  //          done.
2940  //
2941  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2942  // freedom, so we will always take the first option and never build
2943  // a temporary in this case. FIXME: We will, however, have to check
2944  // for the presence of a copy constructor in C++98/03 mode.
2945  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2946      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2947    if (ICS) {
2948      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2949      ICS->Standard.First = ICK_Identity;
2950      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2951      ICS->Standard.Third = ICK_Identity;
2952      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2953      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2954      ICS->Standard.ReferenceBinding = true;
2955      ICS->Standard.DirectBinding = false;
2956      ICS->Standard.RRefBinding = isRValRef;
2957      ICS->Standard.CopyConstructor = 0;
2958    } else {
2959      // FIXME: Binding to a subobject of the rvalue is going to require more
2960      // AST annotation than this.
2961      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/false);
2962    }
2963    return false;
2964  }
2965
2966  //       -- Otherwise, a temporary of type "cv1 T1" is created and
2967  //          initialized from the initializer expression using the
2968  //          rules for a non-reference copy initialization (8.5). The
2969  //          reference is then bound to the temporary. If T1 is
2970  //          reference-related to T2, cv1 must be the same
2971  //          cv-qualification as, or greater cv-qualification than,
2972  //          cv2; otherwise, the program is ill-formed.
2973  if (RefRelationship == Ref_Related) {
2974    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2975    // we would be reference-compatible or reference-compatible with
2976    // added qualification. But that wasn't the case, so the reference
2977    // initialization fails.
2978    if (!ICS)
2979      Diag(Init->getSourceRange().getBegin(),
2980           diag::err_reference_init_drops_quals)
2981        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2982        << T2 << Init->getSourceRange();
2983    return true;
2984  }
2985
2986  // If at least one of the types is a class type, the types are not
2987  // related, and we aren't allowed any user conversions, the
2988  // reference binding fails. This case is important for breaking
2989  // recursion, since TryImplicitConversion below will attempt to
2990  // create a temporary through the use of a copy constructor.
2991  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2992      (T1->isRecordType() || T2->isRecordType())) {
2993    if (!ICS)
2994      Diag(Init->getSourceRange().getBegin(),
2995           diag::err_typecheck_convert_incompatible)
2996        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2997    return true;
2998  }
2999
3000  // Actually try to convert the initializer to T1.
3001  if (ICS) {
3002    // C++ [over.ics.ref]p2:
3003    //
3004    //   When a parameter of reference type is not bound directly to
3005    //   an argument expression, the conversion sequence is the one
3006    //   required to convert the argument expression to the
3007    //   underlying type of the reference according to
3008    //   13.3.3.1. Conceptually, this conversion sequence corresponds
3009    //   to copy-initializing a temporary of the underlying type with
3010    //   the argument expression. Any difference in top-level
3011    //   cv-qualification is subsumed by the initialization itself
3012    //   and does not constitute a conversion.
3013    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
3014    // Of course, that's still a reference binding.
3015    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
3016      ICS->Standard.ReferenceBinding = true;
3017      ICS->Standard.RRefBinding = isRValRef;
3018    } else if(ICS->ConversionKind ==
3019              ImplicitConversionSequence::UserDefinedConversion) {
3020      ICS->UserDefined.After.ReferenceBinding = true;
3021      ICS->UserDefined.After.RRefBinding = isRValRef;
3022    }
3023    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
3024  } else {
3025    return PerformImplicitConversion(Init, T1, "initializing");
3026  }
3027}
3028
3029/// CheckOverloadedOperatorDeclaration - Check whether the declaration
3030/// of this overloaded operator is well-formed. If so, returns false;
3031/// otherwise, emits appropriate diagnostics and returns true.
3032bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
3033  assert(FnDecl && FnDecl->isOverloadedOperator() &&
3034         "Expected an overloaded operator declaration");
3035
3036  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
3037
3038  // C++ [over.oper]p5:
3039  //   The allocation and deallocation functions, operator new,
3040  //   operator new[], operator delete and operator delete[], are
3041  //   described completely in 3.7.3. The attributes and restrictions
3042  //   found in the rest of this subclause do not apply to them unless
3043  //   explicitly stated in 3.7.3.
3044  // FIXME: Write a separate routine for checking this. For now, just allow it.
3045  if (Op == OO_New || Op == OO_Array_New ||
3046      Op == OO_Delete || Op == OO_Array_Delete)
3047    return false;
3048
3049  // C++ [over.oper]p6:
3050  //   An operator function shall either be a non-static member
3051  //   function or be a non-member function and have at least one
3052  //   parameter whose type is a class, a reference to a class, an
3053  //   enumeration, or a reference to an enumeration.
3054  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
3055    if (MethodDecl->isStatic())
3056      return Diag(FnDecl->getLocation(),
3057                  diag::err_operator_overload_static) << FnDecl->getDeclName();
3058  } else {
3059    bool ClassOrEnumParam = false;
3060    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
3061                                   ParamEnd = FnDecl->param_end();
3062         Param != ParamEnd; ++Param) {
3063      QualType ParamType = (*Param)->getType().getNonReferenceType();
3064      if (ParamType->isDependentType() || ParamType->isRecordType() ||
3065          ParamType->isEnumeralType()) {
3066        ClassOrEnumParam = true;
3067        break;
3068      }
3069    }
3070
3071    if (!ClassOrEnumParam)
3072      return Diag(FnDecl->getLocation(),
3073                  diag::err_operator_overload_needs_class_or_enum)
3074        << FnDecl->getDeclName();
3075  }
3076
3077  // C++ [over.oper]p8:
3078  //   An operator function cannot have default arguments (8.3.6),
3079  //   except where explicitly stated below.
3080  //
3081  // Only the function-call operator allows default arguments
3082  // (C++ [over.call]p1).
3083  if (Op != OO_Call) {
3084    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
3085         Param != FnDecl->param_end(); ++Param) {
3086      if ((*Param)->hasUnparsedDefaultArg())
3087        return Diag((*Param)->getLocation(),
3088                    diag::err_operator_overload_default_arg)
3089          << FnDecl->getDeclName();
3090      else if (Expr *DefArg = (*Param)->getDefaultArg())
3091        return Diag((*Param)->getLocation(),
3092                    diag::err_operator_overload_default_arg)
3093          << FnDecl->getDeclName() << DefArg->getSourceRange();
3094    }
3095  }
3096
3097  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
3098    { false, false, false }
3099#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
3100    , { Unary, Binary, MemberOnly }
3101#include "clang/Basic/OperatorKinds.def"
3102  };
3103
3104  bool CanBeUnaryOperator = OperatorUses[Op][0];
3105  bool CanBeBinaryOperator = OperatorUses[Op][1];
3106  bool MustBeMemberOperator = OperatorUses[Op][2];
3107
3108  // C++ [over.oper]p8:
3109  //   [...] Operator functions cannot have more or fewer parameters
3110  //   than the number required for the corresponding operator, as
3111  //   described in the rest of this subclause.
3112  unsigned NumParams = FnDecl->getNumParams()
3113                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
3114  if (Op != OO_Call &&
3115      ((NumParams == 1 && !CanBeUnaryOperator) ||
3116       (NumParams == 2 && !CanBeBinaryOperator) ||
3117       (NumParams < 1) || (NumParams > 2))) {
3118    // We have the wrong number of parameters.
3119    unsigned ErrorKind;
3120    if (CanBeUnaryOperator && CanBeBinaryOperator) {
3121      ErrorKind = 2;  // 2 -> unary or binary.
3122    } else if (CanBeUnaryOperator) {
3123      ErrorKind = 0;  // 0 -> unary
3124    } else {
3125      assert(CanBeBinaryOperator &&
3126             "All non-call overloaded operators are unary or binary!");
3127      ErrorKind = 1;  // 1 -> binary
3128    }
3129
3130    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
3131      << FnDecl->getDeclName() << NumParams << ErrorKind;
3132  }
3133
3134  // Overloaded operators other than operator() cannot be variadic.
3135  if (Op != OO_Call &&
3136      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
3137    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
3138      << FnDecl->getDeclName();
3139  }
3140
3141  // Some operators must be non-static member functions.
3142  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
3143    return Diag(FnDecl->getLocation(),
3144                diag::err_operator_overload_must_be_member)
3145      << FnDecl->getDeclName();
3146  }
3147
3148  // C++ [over.inc]p1:
3149  //   The user-defined function called operator++ implements the
3150  //   prefix and postfix ++ operator. If this function is a member
3151  //   function with no parameters, or a non-member function with one
3152  //   parameter of class or enumeration type, it defines the prefix
3153  //   increment operator ++ for objects of that type. If the function
3154  //   is a member function with one parameter (which shall be of type
3155  //   int) or a non-member function with two parameters (the second
3156  //   of which shall be of type int), it defines the postfix
3157  //   increment operator ++ for objects of that type.
3158  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
3159    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
3160    bool ParamIsInt = false;
3161    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
3162      ParamIsInt = BT->getKind() == BuiltinType::Int;
3163
3164    if (!ParamIsInt)
3165      return Diag(LastParam->getLocation(),
3166                  diag::err_operator_overload_post_incdec_must_be_int)
3167        << LastParam->getType() << (Op == OO_MinusMinus);
3168  }
3169
3170  // Notify the class if it got an assignment operator.
3171  if (Op == OO_Equal) {
3172    // Would have returned earlier otherwise.
3173    assert(isa<CXXMethodDecl>(FnDecl) &&
3174      "Overloaded = not member, but not filtered.");
3175    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3176    Method->setCopyAssignment(true);
3177    Method->getParent()->addedAssignmentOperator(Context, Method);
3178  }
3179
3180  return false;
3181}
3182
3183/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3184/// linkage specification, including the language and (if present)
3185/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3186/// the location of the language string literal, which is provided
3187/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3188/// the '{' brace. Otherwise, this linkage specification does not
3189/// have any braces.
3190Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3191                                                     SourceLocation ExternLoc,
3192                                                     SourceLocation LangLoc,
3193                                                     const char *Lang,
3194                                                     unsigned StrSize,
3195                                                     SourceLocation LBraceLoc) {
3196  LinkageSpecDecl::LanguageIDs Language;
3197  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3198    Language = LinkageSpecDecl::lang_c;
3199  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3200    Language = LinkageSpecDecl::lang_cxx;
3201  else {
3202    Diag(LangLoc, diag::err_bad_language);
3203    return DeclPtrTy();
3204  }
3205
3206  // FIXME: Add all the various semantics of linkage specifications
3207
3208  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3209                                               LangLoc, Language,
3210                                               LBraceLoc.isValid());
3211  CurContext->addDecl(D);
3212  PushDeclContext(S, D);
3213  return DeclPtrTy::make(D);
3214}
3215
3216/// ActOnFinishLinkageSpecification - Completely the definition of
3217/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3218/// valid, it's the position of the closing '}' brace in a linkage
3219/// specification that uses braces.
3220Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3221                                                      DeclPtrTy LinkageSpec,
3222                                                      SourceLocation RBraceLoc) {
3223  if (LinkageSpec)
3224    PopDeclContext();
3225  return LinkageSpec;
3226}
3227
3228/// \brief Perform semantic analysis for the variable declaration that
3229/// occurs within a C++ catch clause, returning the newly-created
3230/// variable.
3231VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3232                                         DeclaratorInfo *DInfo,
3233                                         IdentifierInfo *Name,
3234                                         SourceLocation Loc,
3235                                         SourceRange Range) {
3236  bool Invalid = false;
3237
3238  // Arrays and functions decay.
3239  if (ExDeclType->isArrayType())
3240    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3241  else if (ExDeclType->isFunctionType())
3242    ExDeclType = Context.getPointerType(ExDeclType);
3243
3244  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3245  // The exception-declaration shall not denote a pointer or reference to an
3246  // incomplete type, other than [cv] void*.
3247  // N2844 forbids rvalue references.
3248  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3249    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3250    Invalid = true;
3251  }
3252
3253  QualType BaseType = ExDeclType;
3254  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3255  unsigned DK = diag::err_catch_incomplete;
3256  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
3257    BaseType = Ptr->getPointeeType();
3258    Mode = 1;
3259    DK = diag::err_catch_incomplete_ptr;
3260  } else if(const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
3261    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3262    BaseType = Ref->getPointeeType();
3263    Mode = 2;
3264    DK = diag::err_catch_incomplete_ref;
3265  }
3266  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3267      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3268    Invalid = true;
3269
3270  if (!Invalid && !ExDeclType->isDependentType() &&
3271      RequireNonAbstractType(Loc, ExDeclType,
3272                             diag::err_abstract_type_in_decl,
3273                             AbstractVariableType))
3274    Invalid = true;
3275
3276  // FIXME: Need to test for ability to copy-construct and destroy the
3277  // exception variable.
3278
3279  // FIXME: Need to check for abstract classes.
3280
3281  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3282                                    Name, ExDeclType, DInfo, VarDecl::None,
3283                                    Range.getBegin());
3284
3285  if (Invalid)
3286    ExDecl->setInvalidDecl();
3287
3288  return ExDecl;
3289}
3290
3291/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3292/// handler.
3293Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3294  DeclaratorInfo *DInfo = 0;
3295  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
3296
3297  bool Invalid = D.isInvalidType();
3298  IdentifierInfo *II = D.getIdentifier();
3299  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3300    // The scope should be freshly made just for us. There is just no way
3301    // it contains any previous declaration.
3302    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3303    if (PrevDecl->isTemplateParameter()) {
3304      // Maybe we will complain about the shadowed template parameter.
3305      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3306    }
3307  }
3308
3309  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3310    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3311      << D.getCXXScopeSpec().getRange();
3312    Invalid = true;
3313  }
3314
3315  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
3316                                              D.getIdentifier(),
3317                                              D.getIdentifierLoc(),
3318                                            D.getDeclSpec().getSourceRange());
3319
3320  if (Invalid)
3321    ExDecl->setInvalidDecl();
3322
3323  // Add the exception declaration into this scope.
3324  if (II)
3325    PushOnScopeChains(ExDecl, S);
3326  else
3327    CurContext->addDecl(ExDecl);
3328
3329  ProcessDeclAttributes(S, ExDecl, D);
3330  return DeclPtrTy::make(ExDecl);
3331}
3332
3333Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3334                                                   ExprArg assertexpr,
3335                                                   ExprArg assertmessageexpr) {
3336  Expr *AssertExpr = (Expr *)assertexpr.get();
3337  StringLiteral *AssertMessage =
3338    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3339
3340  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3341    llvm::APSInt Value(32);
3342    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3343      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3344        AssertExpr->getSourceRange();
3345      return DeclPtrTy();
3346    }
3347
3348    if (Value == 0) {
3349      std::string str(AssertMessage->getStrData(),
3350                      AssertMessage->getByteLength());
3351      Diag(AssertLoc, diag::err_static_assert_failed)
3352        << str << AssertExpr->getSourceRange();
3353    }
3354  }
3355
3356  assertexpr.release();
3357  assertmessageexpr.release();
3358  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3359                                        AssertExpr, AssertMessage);
3360
3361  CurContext->addDecl(Decl);
3362  return DeclPtrTy::make(Decl);
3363}
3364
3365Sema::DeclPtrTy Sema::ActOnFriendDecl(Scope *S,
3366                       llvm::PointerUnion<const DeclSpec*,Declarator*> DU,
3367                                      bool IsDefinition) {
3368  Declarator *D = DU.dyn_cast<Declarator*>();
3369  const DeclSpec &DS = (D ? D->getDeclSpec() : *DU.get<const DeclSpec*>());
3370
3371  assert(DS.isFriendSpecified());
3372  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
3373
3374  // If there's no declarator, then this can only be a friend class
3375  // declaration (or else it's just syntactically invalid).
3376  if (!D) {
3377    SourceLocation Loc = DS.getSourceRange().getBegin();
3378
3379    QualType T;
3380    DeclContext *DC;
3381
3382    // In C++0x, we just accept any old type.
3383    if (getLangOptions().CPlusPlus0x) {
3384      bool invalid = false;
3385      QualType T = ConvertDeclSpecToType(DS, Loc, invalid);
3386      if (invalid)
3387        return DeclPtrTy();
3388
3389      // The semantic context in which to create the decl.  If it's not
3390      // a record decl (or we don't yet know if it is), create it in the
3391      // current context.
3392      DC = CurContext;
3393      if (const RecordType *RT = T->getAs<RecordType>())
3394        DC = RT->getDecl()->getDeclContext();
3395
3396    // The C++98 rules are somewhat more complex.
3397    } else {
3398      // C++ [class.friend]p2:
3399      //   An elaborated-type-specifier shall be used in a friend declaration
3400      //   for a class.*
3401      //   * The class-key of the elaborated-type-specifier is required.
3402      CXXRecordDecl *RD = 0;
3403
3404      switch (DS.getTypeSpecType()) {
3405      case DeclSpec::TST_class:
3406      case DeclSpec::TST_struct:
3407      case DeclSpec::TST_union:
3408        RD = dyn_cast_or_null<CXXRecordDecl>((Decl*) DS.getTypeRep());
3409        if (!RD) return DeclPtrTy();
3410        break;
3411
3412      case DeclSpec::TST_typename:
3413        if (const RecordType *RT =
3414            ((const Type*) DS.getTypeRep())->getAs<RecordType>())
3415          RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
3416        // fallthrough
3417      default:
3418        if (RD) {
3419          Diag(DS.getFriendSpecLoc(), diag::err_unelaborated_friend_type)
3420            << (RD->isUnion())
3421            << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
3422                                         RD->isUnion() ? " union" : " class");
3423          return DeclPtrTy::make(RD);
3424        }
3425
3426        Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
3427          << DS.getSourceRange();
3428        return DeclPtrTy();
3429      }
3430
3431      // The record declaration we get from friend declarations is not
3432      // canonicalized; see ActOnTag.
3433
3434      // C++ [class.friend]p2: A class shall not be defined inside
3435      //   a friend declaration.
3436      if (RD->isDefinition())
3437        Diag(DS.getFriendSpecLoc(), diag::err_friend_decl_defines_class)
3438          << RD->getSourceRange();
3439
3440      // C++98 [class.friend]p1: A friend of a class is a function
3441      //   or class that is not a member of the class . . .
3442      // But that's a silly restriction which nobody implements for
3443      // inner classes, and C++0x removes it anyway, so we only report
3444      // this (as a warning) if we're being pedantic.
3445      //
3446      // Also, definitions currently get treated in a way that causes
3447      // this error, so only report it if we didn't see a definition.
3448      else if (RD->getDeclContext() == CurContext &&
3449               !getLangOptions().CPlusPlus0x)
3450        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
3451
3452      T = QualType(RD->getTypeForDecl(), 0);
3453      DC = RD->getDeclContext();
3454    }
3455
3456    FriendClassDecl *FCD = FriendClassDecl::Create(Context, DC, Loc, T,
3457                                                   DS.getFriendSpecLoc());
3458    FCD->setLexicalDeclContext(CurContext);
3459
3460    if (CurContext->isDependentContext())
3461      CurContext->addHiddenDecl(FCD);
3462    else
3463      CurContext->addDecl(FCD);
3464
3465    return DeclPtrTy::make(FCD);
3466  }
3467
3468  // We have a declarator.
3469  assert(D);
3470
3471  SourceLocation Loc = D->getIdentifierLoc();
3472  DeclaratorInfo *DInfo = 0;
3473  QualType T = GetTypeForDeclarator(*D, S, &DInfo);
3474
3475  // C++ [class.friend]p1
3476  //   A friend of a class is a function or class....
3477  // Note that this sees through typedefs, which is intended.
3478  if (!T->isFunctionType()) {
3479    Diag(Loc, diag::err_unexpected_friend);
3480
3481    // It might be worthwhile to try to recover by creating an
3482    // appropriate declaration.
3483    return DeclPtrTy();
3484  }
3485
3486  // C++ [namespace.memdef]p3
3487  //  - If a friend declaration in a non-local class first declares a
3488  //    class or function, the friend class or function is a member
3489  //    of the innermost enclosing namespace.
3490  //  - The name of the friend is not found by simple name lookup
3491  //    until a matching declaration is provided in that namespace
3492  //    scope (either before or after the class declaration granting
3493  //    friendship).
3494  //  - If a friend function is called, its name may be found by the
3495  //    name lookup that considers functions from namespaces and
3496  //    classes associated with the types of the function arguments.
3497  //  - When looking for a prior declaration of a class or a function
3498  //    declared as a friend, scopes outside the innermost enclosing
3499  //    namespace scope are not considered.
3500
3501  CXXScopeSpec &ScopeQual = D->getCXXScopeSpec();
3502  DeclarationName Name = GetNameForDeclarator(*D);
3503  assert(Name);
3504
3505  // The existing declaration we found.
3506  FunctionDecl *FD = NULL;
3507
3508  // The context we found the declaration in, or in which we should
3509  // create the declaration.
3510  DeclContext *DC;
3511
3512  // FIXME: handle local classes
3513
3514  // Recover from invalid scope qualifiers as if they just weren't there.
3515  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
3516    DC = computeDeclContext(ScopeQual);
3517
3518    // FIXME: handle dependent contexts
3519    if (!DC) return DeclPtrTy();
3520
3521    Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3522
3523    // If searching in that context implicitly found a declaration in
3524    // a different context, treat it like it wasn't found at all.
3525    // TODO: better diagnostics for this case.  Suggesting the right
3526    // qualified scope would be nice...
3527    if (!Dec || Dec->getDeclContext() != DC) {
3528      D->setInvalidType();
3529      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
3530      return DeclPtrTy();
3531    }
3532
3533    // C++ [class.friend]p1: A friend of a class is a function or
3534    //   class that is not a member of the class . . .
3535    if (DC == CurContext)
3536      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3537
3538    FD = cast<FunctionDecl>(Dec);
3539
3540  // Otherwise walk out to the nearest namespace scope looking for matches.
3541  } else {
3542    // TODO: handle local class contexts.
3543
3544    DC = CurContext;
3545    while (true) {
3546      // Skip class contexts.  If someone can cite chapter and verse
3547      // for this behavior, that would be nice --- it's what GCC and
3548      // EDG do, and it seems like a reasonable intent, but the spec
3549      // really only says that checks for unqualified existing
3550      // declarations should stop at the nearest enclosing namespace,
3551      // not that they should only consider the nearest enclosing
3552      // namespace.
3553      while (DC->isRecord()) DC = DC->getParent();
3554
3555      Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3556
3557      // TODO: decide what we think about using declarations.
3558      if (Dec) {
3559        FD = cast<FunctionDecl>(Dec);
3560        break;
3561      }
3562      if (DC->isFileContext()) break;
3563      DC = DC->getParent();
3564    }
3565
3566    // C++ [class.friend]p1: A friend of a class is a function or
3567    //   class that is not a member of the class . . .
3568    // C++0x changes this for both friend types and functions.
3569    // Most C++ 98 compilers do seem to give an error here, so
3570    // we do, too.
3571    if (FD && DC == CurContext && !getLangOptions().CPlusPlus0x)
3572      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3573  }
3574
3575  bool Redeclaration = (FD != 0);
3576
3577  // If we found a match, create a friend function declaration with
3578  // that function as the previous declaration.
3579  if (Redeclaration) {
3580    // Create it in the semantic context of the original declaration.
3581    DC = FD->getDeclContext();
3582
3583  // If we didn't find something matching the type exactly, create
3584  // a declaration.  This declaration should only be findable via
3585  // argument-dependent lookup.
3586  } else {
3587    assert(DC->isFileContext());
3588
3589    // This implies that it has to be an operator or function.
3590    if (D->getKind() == Declarator::DK_Constructor ||
3591        D->getKind() == Declarator::DK_Destructor ||
3592        D->getKind() == Declarator::DK_Conversion) {
3593      Diag(Loc, diag::err_introducing_special_friend) <<
3594        (D->getKind() == Declarator::DK_Constructor ? 0 :
3595         D->getKind() == Declarator::DK_Destructor ? 1 : 2);
3596      return DeclPtrTy();
3597    }
3598  }
3599
3600  NamedDecl *ND = ActOnFunctionDeclarator(S, *D, DC, T, DInfo,
3601                                          /* PrevDecl = */ FD,
3602                                          MultiTemplateParamsArg(*this),
3603                                          IsDefinition,
3604                                          Redeclaration);
3605  FD = cast_or_null<FriendFunctionDecl>(ND);
3606
3607  assert(FD->getDeclContext() == DC);
3608  assert(FD->getLexicalDeclContext() == CurContext);
3609
3610  // If this is a dependent context, just add the decl to the
3611  // class's decl list and don't both with the lookup tables.  This
3612  // doesn't affect lookup because any call that might find this
3613  // function via ADL necessarily has to involve dependently-typed
3614  // arguments and hence can't be resolved until
3615  // template-instantiation anyway.
3616  if (CurContext->isDependentContext())
3617    CurContext->addHiddenDecl(FD);
3618  else
3619    CurContext->addDecl(FD);
3620
3621  return DeclPtrTy::make(FD);
3622}
3623
3624void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3625  Decl *Dcl = dcl.getAs<Decl>();
3626  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3627  if (!Fn) {
3628    Diag(DelLoc, diag::err_deleted_non_function);
3629    return;
3630  }
3631  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3632    Diag(DelLoc, diag::err_deleted_decl_not_first);
3633    Diag(Prev->getLocation(), diag::note_previous_declaration);
3634    // If the declaration wasn't the first, we delete the function anyway for
3635    // recovery.
3636  }
3637  Fn->setDeleted();
3638}
3639
3640static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3641  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3642       ++CI) {
3643    Stmt *SubStmt = *CI;
3644    if (!SubStmt)
3645      continue;
3646    if (isa<ReturnStmt>(SubStmt))
3647      Self.Diag(SubStmt->getSourceRange().getBegin(),
3648           diag::err_return_in_constructor_handler);
3649    if (!isa<Expr>(SubStmt))
3650      SearchForReturnInStmt(Self, SubStmt);
3651  }
3652}
3653
3654void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3655  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3656    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3657    SearchForReturnInStmt(*this, Handler);
3658  }
3659}
3660
3661bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3662                                             const CXXMethodDecl *Old) {
3663  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3664  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3665
3666  QualType CNewTy = Context.getCanonicalType(NewTy);
3667  QualType COldTy = Context.getCanonicalType(OldTy);
3668
3669  if (CNewTy == COldTy &&
3670      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3671    return false;
3672
3673  // Check if the return types are covariant
3674  QualType NewClassTy, OldClassTy;
3675
3676  /// Both types must be pointers or references to classes.
3677  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3678    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3679      NewClassTy = NewPT->getPointeeType();
3680      OldClassTy = OldPT->getPointeeType();
3681    }
3682  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3683    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3684      NewClassTy = NewRT->getPointeeType();
3685      OldClassTy = OldRT->getPointeeType();
3686    }
3687  }
3688
3689  // The return types aren't either both pointers or references to a class type.
3690  if (NewClassTy.isNull()) {
3691    Diag(New->getLocation(),
3692         diag::err_different_return_type_for_overriding_virtual_function)
3693      << New->getDeclName() << NewTy << OldTy;
3694    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3695
3696    return true;
3697  }
3698
3699  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3700    // Check if the new class derives from the old class.
3701    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3702      Diag(New->getLocation(),
3703           diag::err_covariant_return_not_derived)
3704      << New->getDeclName() << NewTy << OldTy;
3705      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3706      return true;
3707    }
3708
3709    // Check if we the conversion from derived to base is valid.
3710    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3711                      diag::err_covariant_return_inaccessible_base,
3712                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3713                      // FIXME: Should this point to the return type?
3714                      New->getLocation(), SourceRange(), New->getDeclName())) {
3715      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3716      return true;
3717    }
3718  }
3719
3720  // The qualifiers of the return types must be the same.
3721  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3722    Diag(New->getLocation(),
3723         diag::err_covariant_return_type_different_qualifications)
3724    << New->getDeclName() << NewTy << OldTy;
3725    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3726    return true;
3727  };
3728
3729
3730  // The new class type must have the same or less qualifiers as the old type.
3731  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3732    Diag(New->getLocation(),
3733         diag::err_covariant_return_type_class_type_more_qualified)
3734    << New->getDeclName() << NewTy << OldTy;
3735    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3736    return true;
3737  };
3738
3739  return false;
3740}
3741
3742bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
3743                                                const CXXMethodDecl *Old)
3744{
3745  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
3746                                  diag::note_overridden_virtual_function,
3747                                  Old->getType()->getAsFunctionProtoType(),
3748                                  Old->getLocation(),
3749                                  New->getType()->getAsFunctionProtoType(),
3750                                  New->getLocation());
3751}
3752
3753/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3754/// initializer for the declaration 'Dcl'.
3755/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3756/// static data member of class X, names should be looked up in the scope of
3757/// class X.
3758void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3759  Decl *D = Dcl.getAs<Decl>();
3760  // If there is no declaration, there was an error parsing it.
3761  if (D == 0)
3762    return;
3763
3764  // Check whether it is a declaration with a nested name specifier like
3765  // int foo::bar;
3766  if (!D->isOutOfLine())
3767    return;
3768
3769  // C++ [basic.lookup.unqual]p13
3770  //
3771  // A name used in the definition of a static data member of class X
3772  // (after the qualified-id of the static member) is looked up as if the name
3773  // was used in a member function of X.
3774
3775  // Change current context into the context of the initializing declaration.
3776  EnterDeclaratorContext(S, D->getDeclContext());
3777}
3778
3779/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3780/// initializer for the declaration 'Dcl'.
3781void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3782  Decl *D = Dcl.getAs<Decl>();
3783  // If there is no declaration, there was an error parsing it.
3784  if (D == 0)
3785    return;
3786
3787  // Check whether it is a declaration with a nested name specifier like
3788  // int foo::bar;
3789  if (!D->isOutOfLine())
3790    return;
3791
3792  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3793  ExitDeclaratorContext(S);
3794}
3795