SemaDeclCXX.cpp revision 383616cd2e61131a534afd9364ef53f643e1f834
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // If this function has a basic noexcept, it doesn't affect the outcome.
133  if (EST == EST_BasicNoexcept)
134    return;
135
136  // If we have a throw-all spec at this point, ignore the function.
137  if (ComputedEST == EST_None)
138    return;
139
140  // If we're still at noexcept(true) and there's a nothrow() callee,
141  // change to that specification.
142  if (EST == EST_DynamicNone) {
143    if (ComputedEST == EST_BasicNoexcept)
144      ComputedEST = EST_DynamicNone;
145    return;
146  }
147
148  // Check out noexcept specs.
149  if (EST == EST_ComputedNoexcept) {
150    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
151    assert(NR != FunctionProtoType::NR_NoNoexcept &&
152           "Must have noexcept result for EST_ComputedNoexcept.");
153    assert(NR != FunctionProtoType::NR_Dependent &&
154           "Should not generate implicit declarations for dependent cases, "
155           "and don't know how to handle them anyway.");
156
157    // noexcept(false) -> no spec on the new function
158    if (NR == FunctionProtoType::NR_Throw) {
159      ClearExceptions();
160      ComputedEST = EST_None;
161    }
162    // noexcept(true) won't change anything either.
163    return;
164  }
165
166  assert(EST == EST_Dynamic && "EST case not considered earlier.");
167  assert(ComputedEST != EST_None &&
168         "Shouldn't collect exceptions when throw-all is guaranteed.");
169  ComputedEST = EST_Dynamic;
170  // Record the exceptions in this function's exception specification.
171  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
172                                          EEnd = Proto->exception_end();
173       E != EEnd; ++E)
174    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
175      Exceptions.push_back(*E);
176}
177
178bool
179Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
180                              SourceLocation EqualLoc) {
181  if (RequireCompleteType(Param->getLocation(), Param->getType(),
182                          diag::err_typecheck_decl_incomplete_type)) {
183    Param->setInvalidDecl();
184    return true;
185  }
186
187  // C++ [dcl.fct.default]p5
188  //   A default argument expression is implicitly converted (clause
189  //   4) to the parameter type. The default argument expression has
190  //   the same semantic constraints as the initializer expression in
191  //   a declaration of a variable of the parameter type, using the
192  //   copy-initialization semantics (8.5).
193  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
194                                                                    Param);
195  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
196                                                           EqualLoc);
197  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
198  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
199                                      MultiExprArg(*this, &Arg, 1));
200  if (Result.isInvalid())
201    return true;
202  Arg = Result.takeAs<Expr>();
203
204  CheckImplicitConversions(Arg, EqualLoc);
205  Arg = MaybeCreateExprWithCleanups(Arg);
206
207  // Okay: add the default argument to the parameter
208  Param->setDefaultArg(Arg);
209
210  // We have already instantiated this parameter; provide each of the
211  // instantiations with the uninstantiated default argument.
212  UnparsedDefaultArgInstantiationsMap::iterator InstPos
213    = UnparsedDefaultArgInstantiations.find(Param);
214  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
215    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
216      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
217
218    // We're done tracking this parameter's instantiations.
219    UnparsedDefaultArgInstantiations.erase(InstPos);
220  }
221
222  return false;
223}
224
225/// ActOnParamDefaultArgument - Check whether the default argument
226/// provided for a function parameter is well-formed. If so, attach it
227/// to the parameter declaration.
228void
229Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
230                                Expr *DefaultArg) {
231  if (!param || !DefaultArg)
232    return;
233
234  ParmVarDecl *Param = cast<ParmVarDecl>(param);
235  UnparsedDefaultArgLocs.erase(Param);
236
237  // Default arguments are only permitted in C++
238  if (!getLangOptions().CPlusPlus) {
239    Diag(EqualLoc, diag::err_param_default_argument)
240      << DefaultArg->getSourceRange();
241    Param->setInvalidDecl();
242    return;
243  }
244
245  // Check for unexpanded parameter packs.
246  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
247    Param->setInvalidDecl();
248    return;
249  }
250
251  // Check that the default argument is well-formed
252  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
253  if (DefaultArgChecker.Visit(DefaultArg)) {
254    Param->setInvalidDecl();
255    return;
256  }
257
258  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
259}
260
261/// ActOnParamUnparsedDefaultArgument - We've seen a default
262/// argument for a function parameter, but we can't parse it yet
263/// because we're inside a class definition. Note that this default
264/// argument will be parsed later.
265void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
266                                             SourceLocation EqualLoc,
267                                             SourceLocation ArgLoc) {
268  if (!param)
269    return;
270
271  ParmVarDecl *Param = cast<ParmVarDecl>(param);
272  if (Param)
273    Param->setUnparsedDefaultArg();
274
275  UnparsedDefaultArgLocs[Param] = ArgLoc;
276}
277
278/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
279/// the default argument for the parameter param failed.
280void Sema::ActOnParamDefaultArgumentError(Decl *param) {
281  if (!param)
282    return;
283
284  ParmVarDecl *Param = cast<ParmVarDecl>(param);
285
286  Param->setInvalidDecl();
287
288  UnparsedDefaultArgLocs.erase(Param);
289}
290
291/// CheckExtraCXXDefaultArguments - Check for any extra default
292/// arguments in the declarator, which is not a function declaration
293/// or definition and therefore is not permitted to have default
294/// arguments. This routine should be invoked for every declarator
295/// that is not a function declaration or definition.
296void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
297  // C++ [dcl.fct.default]p3
298  //   A default argument expression shall be specified only in the
299  //   parameter-declaration-clause of a function declaration or in a
300  //   template-parameter (14.1). It shall not be specified for a
301  //   parameter pack. If it is specified in a
302  //   parameter-declaration-clause, it shall not occur within a
303  //   declarator or abstract-declarator of a parameter-declaration.
304  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
305    DeclaratorChunk &chunk = D.getTypeObject(i);
306    if (chunk.Kind == DeclaratorChunk::Function) {
307      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
308        ParmVarDecl *Param =
309          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
310        if (Param->hasUnparsedDefaultArg()) {
311          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
312          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
313            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
314          delete Toks;
315          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
316        } else if (Param->getDefaultArg()) {
317          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
318            << Param->getDefaultArg()->getSourceRange();
319          Param->setDefaultArg(0);
320        }
321      }
322    }
323  }
324}
325
326// MergeCXXFunctionDecl - Merge two declarations of the same C++
327// function, once we already know that they have the same
328// type. Subroutine of MergeFunctionDecl. Returns true if there was an
329// error, false otherwise.
330bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
331  bool Invalid = false;
332
333  // C++ [dcl.fct.default]p4:
334  //   For non-template functions, default arguments can be added in
335  //   later declarations of a function in the same
336  //   scope. Declarations in different scopes have completely
337  //   distinct sets of default arguments. That is, declarations in
338  //   inner scopes do not acquire default arguments from
339  //   declarations in outer scopes, and vice versa. In a given
340  //   function declaration, all parameters subsequent to a
341  //   parameter with a default argument shall have default
342  //   arguments supplied in this or previous declarations. A
343  //   default argument shall not be redefined by a later
344  //   declaration (not even to the same value).
345  //
346  // C++ [dcl.fct.default]p6:
347  //   Except for member functions of class templates, the default arguments
348  //   in a member function definition that appears outside of the class
349  //   definition are added to the set of default arguments provided by the
350  //   member function declaration in the class definition.
351  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
352    ParmVarDecl *OldParam = Old->getParamDecl(p);
353    ParmVarDecl *NewParam = New->getParamDecl(p);
354
355    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
356
357      unsigned DiagDefaultParamID =
358        diag::err_param_default_argument_redefinition;
359
360      // MSVC accepts that default parameters be redefined for member functions
361      // of template class. The new default parameter's value is ignored.
362      Invalid = true;
363      if (getLangOptions().Microsoft) {
364        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
365        if (MD && MD->getParent()->getDescribedClassTemplate()) {
366          // Merge the old default argument into the new parameter.
367          NewParam->setHasInheritedDefaultArg();
368          if (OldParam->hasUninstantiatedDefaultArg())
369            NewParam->setUninstantiatedDefaultArg(
370                                      OldParam->getUninstantiatedDefaultArg());
371          else
372            NewParam->setDefaultArg(OldParam->getInit());
373          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
374          Invalid = false;
375        }
376      }
377
378      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
379      // hint here. Alternatively, we could walk the type-source information
380      // for NewParam to find the last source location in the type... but it
381      // isn't worth the effort right now. This is the kind of test case that
382      // is hard to get right:
383      //   int f(int);
384      //   void g(int (*fp)(int) = f);
385      //   void g(int (*fp)(int) = &f);
386      Diag(NewParam->getLocation(), DiagDefaultParamID)
387        << NewParam->getDefaultArgRange();
388
389      // Look for the function declaration where the default argument was
390      // actually written, which may be a declaration prior to Old.
391      for (FunctionDecl *Older = Old->getPreviousDeclaration();
392           Older; Older = Older->getPreviousDeclaration()) {
393        if (!Older->getParamDecl(p)->hasDefaultArg())
394          break;
395
396        OldParam = Older->getParamDecl(p);
397      }
398
399      Diag(OldParam->getLocation(), diag::note_previous_definition)
400        << OldParam->getDefaultArgRange();
401    } else if (OldParam->hasDefaultArg()) {
402      // Merge the old default argument into the new parameter.
403      // It's important to use getInit() here;  getDefaultArg()
404      // strips off any top-level ExprWithCleanups.
405      NewParam->setHasInheritedDefaultArg();
406      if (OldParam->hasUninstantiatedDefaultArg())
407        NewParam->setUninstantiatedDefaultArg(
408                                      OldParam->getUninstantiatedDefaultArg());
409      else
410        NewParam->setDefaultArg(OldParam->getInit());
411    } else if (NewParam->hasDefaultArg()) {
412      if (New->getDescribedFunctionTemplate()) {
413        // Paragraph 4, quoted above, only applies to non-template functions.
414        Diag(NewParam->getLocation(),
415             diag::err_param_default_argument_template_redecl)
416          << NewParam->getDefaultArgRange();
417        Diag(Old->getLocation(), diag::note_template_prev_declaration)
418          << false;
419      } else if (New->getTemplateSpecializationKind()
420                   != TSK_ImplicitInstantiation &&
421                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
422        // C++ [temp.expr.spec]p21:
423        //   Default function arguments shall not be specified in a declaration
424        //   or a definition for one of the following explicit specializations:
425        //     - the explicit specialization of a function template;
426        //     - the explicit specialization of a member function template;
427        //     - the explicit specialization of a member function of a class
428        //       template where the class template specialization to which the
429        //       member function specialization belongs is implicitly
430        //       instantiated.
431        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
432          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
433          << New->getDeclName()
434          << NewParam->getDefaultArgRange();
435      } else if (New->getDeclContext()->isDependentContext()) {
436        // C++ [dcl.fct.default]p6 (DR217):
437        //   Default arguments for a member function of a class template shall
438        //   be specified on the initial declaration of the member function
439        //   within the class template.
440        //
441        // Reading the tea leaves a bit in DR217 and its reference to DR205
442        // leads me to the conclusion that one cannot add default function
443        // arguments for an out-of-line definition of a member function of a
444        // dependent type.
445        int WhichKind = 2;
446        if (CXXRecordDecl *Record
447              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
448          if (Record->getDescribedClassTemplate())
449            WhichKind = 0;
450          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
451            WhichKind = 1;
452          else
453            WhichKind = 2;
454        }
455
456        Diag(NewParam->getLocation(),
457             diag::err_param_default_argument_member_template_redecl)
458          << WhichKind
459          << NewParam->getDefaultArgRange();
460      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
461        CXXSpecialMember NewSM = getSpecialMember(Ctor),
462                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
463        if (NewSM != OldSM) {
464          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
465            << NewParam->getDefaultArgRange() << NewSM;
466          Diag(Old->getLocation(), diag::note_previous_declaration_special)
467            << OldSM;
468        }
469      }
470    }
471  }
472
473  if (CheckEquivalentExceptionSpec(Old, New))
474    Invalid = true;
475
476  return Invalid;
477}
478
479/// \brief Merge the exception specifications of two variable declarations.
480///
481/// This is called when there's a redeclaration of a VarDecl. The function
482/// checks if the redeclaration might have an exception specification and
483/// validates compatibility and merges the specs if necessary.
484void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
485  // Shortcut if exceptions are disabled.
486  if (!getLangOptions().CXXExceptions)
487    return;
488
489  assert(Context.hasSameType(New->getType(), Old->getType()) &&
490         "Should only be called if types are otherwise the same.");
491
492  QualType NewType = New->getType();
493  QualType OldType = Old->getType();
494
495  // We're only interested in pointers and references to functions, as well
496  // as pointers to member functions.
497  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
498    NewType = R->getPointeeType();
499    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
500  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
501    NewType = P->getPointeeType();
502    OldType = OldType->getAs<PointerType>()->getPointeeType();
503  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
504    NewType = M->getPointeeType();
505    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
506  }
507
508  if (!NewType->isFunctionProtoType())
509    return;
510
511  // There's lots of special cases for functions. For function pointers, system
512  // libraries are hopefully not as broken so that we don't need these
513  // workarounds.
514  if (CheckEquivalentExceptionSpec(
515        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
516        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
517    New->setInvalidDecl();
518  }
519}
520
521/// CheckCXXDefaultArguments - Verify that the default arguments for a
522/// function declaration are well-formed according to C++
523/// [dcl.fct.default].
524void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
525  unsigned NumParams = FD->getNumParams();
526  unsigned p;
527
528  // Find first parameter with a default argument
529  for (p = 0; p < NumParams; ++p) {
530    ParmVarDecl *Param = FD->getParamDecl(p);
531    if (Param->hasDefaultArg())
532      break;
533  }
534
535  // C++ [dcl.fct.default]p4:
536  //   In a given function declaration, all parameters
537  //   subsequent to a parameter with a default argument shall
538  //   have default arguments supplied in this or previous
539  //   declarations. A default argument shall not be redefined
540  //   by a later declaration (not even to the same value).
541  unsigned LastMissingDefaultArg = 0;
542  for (; p < NumParams; ++p) {
543    ParmVarDecl *Param = FD->getParamDecl(p);
544    if (!Param->hasDefaultArg()) {
545      if (Param->isInvalidDecl())
546        /* We already complained about this parameter. */;
547      else if (Param->getIdentifier())
548        Diag(Param->getLocation(),
549             diag::err_param_default_argument_missing_name)
550          << Param->getIdentifier();
551      else
552        Diag(Param->getLocation(),
553             diag::err_param_default_argument_missing);
554
555      LastMissingDefaultArg = p;
556    }
557  }
558
559  if (LastMissingDefaultArg > 0) {
560    // Some default arguments were missing. Clear out all of the
561    // default arguments up to (and including) the last missing
562    // default argument, so that we leave the function parameters
563    // in a semantically valid state.
564    for (p = 0; p <= LastMissingDefaultArg; ++p) {
565      ParmVarDecl *Param = FD->getParamDecl(p);
566      if (Param->hasDefaultArg()) {
567        Param->setDefaultArg(0);
568      }
569    }
570  }
571}
572
573/// isCurrentClassName - Determine whether the identifier II is the
574/// name of the class type currently being defined. In the case of
575/// nested classes, this will only return true if II is the name of
576/// the innermost class.
577bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
578                              const CXXScopeSpec *SS) {
579  assert(getLangOptions().CPlusPlus && "No class names in C!");
580
581  CXXRecordDecl *CurDecl;
582  if (SS && SS->isSet() && !SS->isInvalid()) {
583    DeclContext *DC = computeDeclContext(*SS, true);
584    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
585  } else
586    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
587
588  if (CurDecl && CurDecl->getIdentifier())
589    return &II == CurDecl->getIdentifier();
590  else
591    return false;
592}
593
594/// \brief Check the validity of a C++ base class specifier.
595///
596/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
597/// and returns NULL otherwise.
598CXXBaseSpecifier *
599Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
600                         SourceRange SpecifierRange,
601                         bool Virtual, AccessSpecifier Access,
602                         TypeSourceInfo *TInfo,
603                         SourceLocation EllipsisLoc) {
604  QualType BaseType = TInfo->getType();
605
606  // C++ [class.union]p1:
607  //   A union shall not have base classes.
608  if (Class->isUnion()) {
609    Diag(Class->getLocation(), diag::err_base_clause_on_union)
610      << SpecifierRange;
611    return 0;
612  }
613
614  if (EllipsisLoc.isValid() &&
615      !TInfo->getType()->containsUnexpandedParameterPack()) {
616    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
617      << TInfo->getTypeLoc().getSourceRange();
618    EllipsisLoc = SourceLocation();
619  }
620
621  if (BaseType->isDependentType())
622    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
623                                          Class->getTagKind() == TTK_Class,
624                                          Access, TInfo, EllipsisLoc);
625
626  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
627
628  // Base specifiers must be record types.
629  if (!BaseType->isRecordType()) {
630    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
631    return 0;
632  }
633
634  // C++ [class.union]p1:
635  //   A union shall not be used as a base class.
636  if (BaseType->isUnionType()) {
637    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
638    return 0;
639  }
640
641  // C++ [class.derived]p2:
642  //   The class-name in a base-specifier shall not be an incompletely
643  //   defined class.
644  if (RequireCompleteType(BaseLoc, BaseType,
645                          PDiag(diag::err_incomplete_base_class)
646                            << SpecifierRange)) {
647    Class->setInvalidDecl();
648    return 0;
649  }
650
651  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
652  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
653  assert(BaseDecl && "Record type has no declaration");
654  BaseDecl = BaseDecl->getDefinition();
655  assert(BaseDecl && "Base type is not incomplete, but has no definition");
656  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
657  assert(CXXBaseDecl && "Base type is not a C++ type");
658
659  // C++ [class]p3:
660  //   If a class is marked final and it appears as a base-type-specifier in
661  //   base-clause, the program is ill-formed.
662  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
663    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
664      << CXXBaseDecl->getDeclName();
665    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
666      << CXXBaseDecl->getDeclName();
667    return 0;
668  }
669
670  if (BaseDecl->isInvalidDecl())
671    Class->setInvalidDecl();
672
673  // Create the base specifier.
674  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
675                                        Class->getTagKind() == TTK_Class,
676                                        Access, TInfo, EllipsisLoc);
677}
678
679/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
680/// one entry in the base class list of a class specifier, for
681/// example:
682///    class foo : public bar, virtual private baz {
683/// 'public bar' and 'virtual private baz' are each base-specifiers.
684BaseResult
685Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
686                         bool Virtual, AccessSpecifier Access,
687                         ParsedType basetype, SourceLocation BaseLoc,
688                         SourceLocation EllipsisLoc) {
689  if (!classdecl)
690    return true;
691
692  AdjustDeclIfTemplate(classdecl);
693  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
694  if (!Class)
695    return true;
696
697  TypeSourceInfo *TInfo = 0;
698  GetTypeFromParser(basetype, &TInfo);
699
700  if (EllipsisLoc.isInvalid() &&
701      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
702                                      UPPC_BaseType))
703    return true;
704
705  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
706                                                      Virtual, Access, TInfo,
707                                                      EllipsisLoc))
708    return BaseSpec;
709
710  return true;
711}
712
713/// \brief Performs the actual work of attaching the given base class
714/// specifiers to a C++ class.
715bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
716                                unsigned NumBases) {
717 if (NumBases == 0)
718    return false;
719
720  // Used to keep track of which base types we have already seen, so
721  // that we can properly diagnose redundant direct base types. Note
722  // that the key is always the unqualified canonical type of the base
723  // class.
724  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
725
726  // Copy non-redundant base specifiers into permanent storage.
727  unsigned NumGoodBases = 0;
728  bool Invalid = false;
729  for (unsigned idx = 0; idx < NumBases; ++idx) {
730    QualType NewBaseType
731      = Context.getCanonicalType(Bases[idx]->getType());
732    NewBaseType = NewBaseType.getLocalUnqualifiedType();
733    if (!Class->hasObjectMember()) {
734      if (const RecordType *FDTTy =
735            NewBaseType.getTypePtr()->getAs<RecordType>())
736        if (FDTTy->getDecl()->hasObjectMember())
737          Class->setHasObjectMember(true);
738    }
739
740    if (KnownBaseTypes[NewBaseType]) {
741      // C++ [class.mi]p3:
742      //   A class shall not be specified as a direct base class of a
743      //   derived class more than once.
744      Diag(Bases[idx]->getSourceRange().getBegin(),
745           diag::err_duplicate_base_class)
746        << KnownBaseTypes[NewBaseType]->getType()
747        << Bases[idx]->getSourceRange();
748
749      // Delete the duplicate base class specifier; we're going to
750      // overwrite its pointer later.
751      Context.Deallocate(Bases[idx]);
752
753      Invalid = true;
754    } else {
755      // Okay, add this new base class.
756      KnownBaseTypes[NewBaseType] = Bases[idx];
757      Bases[NumGoodBases++] = Bases[idx];
758    }
759  }
760
761  // Attach the remaining base class specifiers to the derived class.
762  Class->setBases(Bases, NumGoodBases);
763
764  // Delete the remaining (good) base class specifiers, since their
765  // data has been copied into the CXXRecordDecl.
766  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
767    Context.Deallocate(Bases[idx]);
768
769  return Invalid;
770}
771
772/// ActOnBaseSpecifiers - Attach the given base specifiers to the
773/// class, after checking whether there are any duplicate base
774/// classes.
775void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
776                               unsigned NumBases) {
777  if (!ClassDecl || !Bases || !NumBases)
778    return;
779
780  AdjustDeclIfTemplate(ClassDecl);
781  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
782                       (CXXBaseSpecifier**)(Bases), NumBases);
783}
784
785static CXXRecordDecl *GetClassForType(QualType T) {
786  if (const RecordType *RT = T->getAs<RecordType>())
787    return cast<CXXRecordDecl>(RT->getDecl());
788  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
789    return ICT->getDecl();
790  else
791    return 0;
792}
793
794/// \brief Determine whether the type \p Derived is a C++ class that is
795/// derived from the type \p Base.
796bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
797  if (!getLangOptions().CPlusPlus)
798    return false;
799
800  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
801  if (!DerivedRD)
802    return false;
803
804  CXXRecordDecl *BaseRD = GetClassForType(Base);
805  if (!BaseRD)
806    return false;
807
808  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
809  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
810}
811
812/// \brief Determine whether the type \p Derived is a C++ class that is
813/// derived from the type \p Base.
814bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
815  if (!getLangOptions().CPlusPlus)
816    return false;
817
818  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
819  if (!DerivedRD)
820    return false;
821
822  CXXRecordDecl *BaseRD = GetClassForType(Base);
823  if (!BaseRD)
824    return false;
825
826  return DerivedRD->isDerivedFrom(BaseRD, Paths);
827}
828
829void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
830                              CXXCastPath &BasePathArray) {
831  assert(BasePathArray.empty() && "Base path array must be empty!");
832  assert(Paths.isRecordingPaths() && "Must record paths!");
833
834  const CXXBasePath &Path = Paths.front();
835
836  // We first go backward and check if we have a virtual base.
837  // FIXME: It would be better if CXXBasePath had the base specifier for
838  // the nearest virtual base.
839  unsigned Start = 0;
840  for (unsigned I = Path.size(); I != 0; --I) {
841    if (Path[I - 1].Base->isVirtual()) {
842      Start = I - 1;
843      break;
844    }
845  }
846
847  // Now add all bases.
848  for (unsigned I = Start, E = Path.size(); I != E; ++I)
849    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
850}
851
852/// \brief Determine whether the given base path includes a virtual
853/// base class.
854bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
855  for (CXXCastPath::const_iterator B = BasePath.begin(),
856                                BEnd = BasePath.end();
857       B != BEnd; ++B)
858    if ((*B)->isVirtual())
859      return true;
860
861  return false;
862}
863
864/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
865/// conversion (where Derived and Base are class types) is
866/// well-formed, meaning that the conversion is unambiguous (and
867/// that all of the base classes are accessible). Returns true
868/// and emits a diagnostic if the code is ill-formed, returns false
869/// otherwise. Loc is the location where this routine should point to
870/// if there is an error, and Range is the source range to highlight
871/// if there is an error.
872bool
873Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
874                                   unsigned InaccessibleBaseID,
875                                   unsigned AmbigiousBaseConvID,
876                                   SourceLocation Loc, SourceRange Range,
877                                   DeclarationName Name,
878                                   CXXCastPath *BasePath) {
879  // First, determine whether the path from Derived to Base is
880  // ambiguous. This is slightly more expensive than checking whether
881  // the Derived to Base conversion exists, because here we need to
882  // explore multiple paths to determine if there is an ambiguity.
883  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
884                     /*DetectVirtual=*/false);
885  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
886  assert(DerivationOkay &&
887         "Can only be used with a derived-to-base conversion");
888  (void)DerivationOkay;
889
890  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
891    if (InaccessibleBaseID) {
892      // Check that the base class can be accessed.
893      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
894                                   InaccessibleBaseID)) {
895        case AR_inaccessible:
896          return true;
897        case AR_accessible:
898        case AR_dependent:
899        case AR_delayed:
900          break;
901      }
902    }
903
904    // Build a base path if necessary.
905    if (BasePath)
906      BuildBasePathArray(Paths, *BasePath);
907    return false;
908  }
909
910  // We know that the derived-to-base conversion is ambiguous, and
911  // we're going to produce a diagnostic. Perform the derived-to-base
912  // search just one more time to compute all of the possible paths so
913  // that we can print them out. This is more expensive than any of
914  // the previous derived-to-base checks we've done, but at this point
915  // performance isn't as much of an issue.
916  Paths.clear();
917  Paths.setRecordingPaths(true);
918  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
919  assert(StillOkay && "Can only be used with a derived-to-base conversion");
920  (void)StillOkay;
921
922  // Build up a textual representation of the ambiguous paths, e.g.,
923  // D -> B -> A, that will be used to illustrate the ambiguous
924  // conversions in the diagnostic. We only print one of the paths
925  // to each base class subobject.
926  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
927
928  Diag(Loc, AmbigiousBaseConvID)
929  << Derived << Base << PathDisplayStr << Range << Name;
930  return true;
931}
932
933bool
934Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
935                                   SourceLocation Loc, SourceRange Range,
936                                   CXXCastPath *BasePath,
937                                   bool IgnoreAccess) {
938  return CheckDerivedToBaseConversion(Derived, Base,
939                                      IgnoreAccess ? 0
940                                       : diag::err_upcast_to_inaccessible_base,
941                                      diag::err_ambiguous_derived_to_base_conv,
942                                      Loc, Range, DeclarationName(),
943                                      BasePath);
944}
945
946
947/// @brief Builds a string representing ambiguous paths from a
948/// specific derived class to different subobjects of the same base
949/// class.
950///
951/// This function builds a string that can be used in error messages
952/// to show the different paths that one can take through the
953/// inheritance hierarchy to go from the derived class to different
954/// subobjects of a base class. The result looks something like this:
955/// @code
956/// struct D -> struct B -> struct A
957/// struct D -> struct C -> struct A
958/// @endcode
959std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
960  std::string PathDisplayStr;
961  std::set<unsigned> DisplayedPaths;
962  for (CXXBasePaths::paths_iterator Path = Paths.begin();
963       Path != Paths.end(); ++Path) {
964    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
965      // We haven't displayed a path to this particular base
966      // class subobject yet.
967      PathDisplayStr += "\n    ";
968      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
969      for (CXXBasePath::const_iterator Element = Path->begin();
970           Element != Path->end(); ++Element)
971        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
972    }
973  }
974
975  return PathDisplayStr;
976}
977
978//===----------------------------------------------------------------------===//
979// C++ class member Handling
980//===----------------------------------------------------------------------===//
981
982/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
983Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
984                                 SourceLocation ASLoc,
985                                 SourceLocation ColonLoc) {
986  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
987  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
988                                                  ASLoc, ColonLoc);
989  CurContext->addHiddenDecl(ASDecl);
990  return ASDecl;
991}
992
993/// CheckOverrideControl - Check C++0x override control semantics.
994void Sema::CheckOverrideControl(const Decl *D) {
995  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
996  if (!MD || !MD->isVirtual())
997    return;
998
999  if (MD->isDependentContext())
1000    return;
1001
1002  // C++0x [class.virtual]p3:
1003  //   If a virtual function is marked with the virt-specifier override and does
1004  //   not override a member function of a base class,
1005  //   the program is ill-formed.
1006  bool HasOverriddenMethods =
1007    MD->begin_overridden_methods() != MD->end_overridden_methods();
1008  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1009    Diag(MD->getLocation(),
1010                 diag::err_function_marked_override_not_overriding)
1011      << MD->getDeclName();
1012    return;
1013  }
1014}
1015
1016/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1017/// function overrides a virtual member function marked 'final', according to
1018/// C++0x [class.virtual]p3.
1019bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1020                                                  const CXXMethodDecl *Old) {
1021  if (!Old->hasAttr<FinalAttr>())
1022    return false;
1023
1024  Diag(New->getLocation(), diag::err_final_function_overridden)
1025    << New->getDeclName();
1026  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1027  return true;
1028}
1029
1030/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1031/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1032/// bitfield width if there is one and 'InitExpr' specifies the initializer if
1033/// any.
1034Decl *
1035Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1036                               MultiTemplateParamsArg TemplateParameterLists,
1037                               ExprTy *BW, const VirtSpecifiers &VS,
1038                               ExprTy *InitExpr, bool IsDefinition) {
1039  const DeclSpec &DS = D.getDeclSpec();
1040  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1041  DeclarationName Name = NameInfo.getName();
1042  SourceLocation Loc = NameInfo.getLoc();
1043
1044  // For anonymous bitfields, the location should point to the type.
1045  if (Loc.isInvalid())
1046    Loc = D.getSourceRange().getBegin();
1047
1048  Expr *BitWidth = static_cast<Expr*>(BW);
1049  Expr *Init = static_cast<Expr*>(InitExpr);
1050
1051  assert(isa<CXXRecordDecl>(CurContext));
1052  assert(!DS.isFriendSpecified());
1053
1054  bool isFunc = false;
1055  if (D.isFunctionDeclarator())
1056    isFunc = true;
1057  else if (D.getNumTypeObjects() == 0 &&
1058           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
1059    QualType TDType = GetTypeFromParser(DS.getRepAsType());
1060    isFunc = TDType->isFunctionType();
1061  }
1062
1063  // C++ 9.2p6: A member shall not be declared to have automatic storage
1064  // duration (auto, register) or with the extern storage-class-specifier.
1065  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1066  // data members and cannot be applied to names declared const or static,
1067  // and cannot be applied to reference members.
1068  switch (DS.getStorageClassSpec()) {
1069    case DeclSpec::SCS_unspecified:
1070    case DeclSpec::SCS_typedef:
1071    case DeclSpec::SCS_static:
1072      // FALL THROUGH.
1073      break;
1074    case DeclSpec::SCS_mutable:
1075      if (isFunc) {
1076        if (DS.getStorageClassSpecLoc().isValid())
1077          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1078        else
1079          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1080
1081        // FIXME: It would be nicer if the keyword was ignored only for this
1082        // declarator. Otherwise we could get follow-up errors.
1083        D.getMutableDeclSpec().ClearStorageClassSpecs();
1084      }
1085      break;
1086    default:
1087      if (DS.getStorageClassSpecLoc().isValid())
1088        Diag(DS.getStorageClassSpecLoc(),
1089             diag::err_storageclass_invalid_for_member);
1090      else
1091        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1092      D.getMutableDeclSpec().ClearStorageClassSpecs();
1093  }
1094
1095  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1096                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1097                      !isFunc);
1098
1099  Decl *Member;
1100  if (isInstField) {
1101    CXXScopeSpec &SS = D.getCXXScopeSpec();
1102
1103    if (SS.isSet() && !SS.isInvalid()) {
1104      // The user provided a superfluous scope specifier inside a class
1105      // definition:
1106      //
1107      // class X {
1108      //   int X::member;
1109      // };
1110      DeclContext *DC = 0;
1111      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1112        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1113        << Name << FixItHint::CreateRemoval(SS.getRange());
1114      else
1115        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1116          << Name << SS.getRange();
1117
1118      SS.clear();
1119    }
1120
1121    // FIXME: Check for template parameters!
1122    // FIXME: Check that the name is an identifier!
1123    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1124                         AS);
1125    assert(Member && "HandleField never returns null");
1126  } else {
1127    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1128    if (!Member) {
1129      return 0;
1130    }
1131
1132    // Non-instance-fields can't have a bitfield.
1133    if (BitWidth) {
1134      if (Member->isInvalidDecl()) {
1135        // don't emit another diagnostic.
1136      } else if (isa<VarDecl>(Member)) {
1137        // C++ 9.6p3: A bit-field shall not be a static member.
1138        // "static member 'A' cannot be a bit-field"
1139        Diag(Loc, diag::err_static_not_bitfield)
1140          << Name << BitWidth->getSourceRange();
1141      } else if (isa<TypedefDecl>(Member)) {
1142        // "typedef member 'x' cannot be a bit-field"
1143        Diag(Loc, diag::err_typedef_not_bitfield)
1144          << Name << BitWidth->getSourceRange();
1145      } else {
1146        // A function typedef ("typedef int f(); f a;").
1147        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1148        Diag(Loc, diag::err_not_integral_type_bitfield)
1149          << Name << cast<ValueDecl>(Member)->getType()
1150          << BitWidth->getSourceRange();
1151      }
1152
1153      BitWidth = 0;
1154      Member->setInvalidDecl();
1155    }
1156
1157    Member->setAccess(AS);
1158
1159    // If we have declared a member function template, set the access of the
1160    // templated declaration as well.
1161    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1162      FunTmpl->getTemplatedDecl()->setAccess(AS);
1163  }
1164
1165  if (VS.isOverrideSpecified()) {
1166    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1167    if (!MD || !MD->isVirtual()) {
1168      Diag(Member->getLocStart(),
1169           diag::override_keyword_only_allowed_on_virtual_member_functions)
1170        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1171    } else
1172      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1173  }
1174  if (VS.isFinalSpecified()) {
1175    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1176    if (!MD || !MD->isVirtual()) {
1177      Diag(Member->getLocStart(),
1178           diag::override_keyword_only_allowed_on_virtual_member_functions)
1179      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1180    } else
1181      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1182  }
1183
1184  if (VS.getLastLocation().isValid()) {
1185    // Update the end location of a method that has a virt-specifiers.
1186    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1187      MD->setRangeEnd(VS.getLastLocation());
1188  }
1189
1190  CheckOverrideControl(Member);
1191
1192  assert((Name || isInstField) && "No identifier for non-field ?");
1193
1194  if (Init)
1195    AddInitializerToDecl(Member, Init, false,
1196                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1197
1198  FinalizeDeclaration(Member);
1199
1200  if (isInstField)
1201    FieldCollector->Add(cast<FieldDecl>(Member));
1202  return Member;
1203}
1204
1205/// \brief Find the direct and/or virtual base specifiers that
1206/// correspond to the given base type, for use in base initialization
1207/// within a constructor.
1208static bool FindBaseInitializer(Sema &SemaRef,
1209                                CXXRecordDecl *ClassDecl,
1210                                QualType BaseType,
1211                                const CXXBaseSpecifier *&DirectBaseSpec,
1212                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1213  // First, check for a direct base class.
1214  DirectBaseSpec = 0;
1215  for (CXXRecordDecl::base_class_const_iterator Base
1216         = ClassDecl->bases_begin();
1217       Base != ClassDecl->bases_end(); ++Base) {
1218    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1219      // We found a direct base of this type. That's what we're
1220      // initializing.
1221      DirectBaseSpec = &*Base;
1222      break;
1223    }
1224  }
1225
1226  // Check for a virtual base class.
1227  // FIXME: We might be able to short-circuit this if we know in advance that
1228  // there are no virtual bases.
1229  VirtualBaseSpec = 0;
1230  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1231    // We haven't found a base yet; search the class hierarchy for a
1232    // virtual base class.
1233    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1234                       /*DetectVirtual=*/false);
1235    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1236                              BaseType, Paths)) {
1237      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1238           Path != Paths.end(); ++Path) {
1239        if (Path->back().Base->isVirtual()) {
1240          VirtualBaseSpec = Path->back().Base;
1241          break;
1242        }
1243      }
1244    }
1245  }
1246
1247  return DirectBaseSpec || VirtualBaseSpec;
1248}
1249
1250/// ActOnMemInitializer - Handle a C++ member initializer.
1251MemInitResult
1252Sema::ActOnMemInitializer(Decl *ConstructorD,
1253                          Scope *S,
1254                          CXXScopeSpec &SS,
1255                          IdentifierInfo *MemberOrBase,
1256                          ParsedType TemplateTypeTy,
1257                          SourceLocation IdLoc,
1258                          SourceLocation LParenLoc,
1259                          ExprTy **Args, unsigned NumArgs,
1260                          SourceLocation RParenLoc,
1261                          SourceLocation EllipsisLoc) {
1262  if (!ConstructorD)
1263    return true;
1264
1265  AdjustDeclIfTemplate(ConstructorD);
1266
1267  CXXConstructorDecl *Constructor
1268    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1269  if (!Constructor) {
1270    // The user wrote a constructor initializer on a function that is
1271    // not a C++ constructor. Ignore the error for now, because we may
1272    // have more member initializers coming; we'll diagnose it just
1273    // once in ActOnMemInitializers.
1274    return true;
1275  }
1276
1277  CXXRecordDecl *ClassDecl = Constructor->getParent();
1278
1279  // C++ [class.base.init]p2:
1280  //   Names in a mem-initializer-id are looked up in the scope of the
1281  //   constructor's class and, if not found in that scope, are looked
1282  //   up in the scope containing the constructor's definition.
1283  //   [Note: if the constructor's class contains a member with the
1284  //   same name as a direct or virtual base class of the class, a
1285  //   mem-initializer-id naming the member or base class and composed
1286  //   of a single identifier refers to the class member. A
1287  //   mem-initializer-id for the hidden base class may be specified
1288  //   using a qualified name. ]
1289  if (!SS.getScopeRep() && !TemplateTypeTy) {
1290    // Look for a member, first.
1291    FieldDecl *Member = 0;
1292    DeclContext::lookup_result Result
1293      = ClassDecl->lookup(MemberOrBase);
1294    if (Result.first != Result.second) {
1295      Member = dyn_cast<FieldDecl>(*Result.first);
1296
1297      if (Member) {
1298        if (EllipsisLoc.isValid())
1299          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1300            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1301
1302        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1303                                    LParenLoc, RParenLoc);
1304      }
1305
1306      // Handle anonymous union case.
1307      if (IndirectFieldDecl* IndirectField
1308            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1309        if (EllipsisLoc.isValid())
1310          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1311            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1312
1313         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1314                                       NumArgs, IdLoc,
1315                                       LParenLoc, RParenLoc);
1316      }
1317    }
1318  }
1319  // It didn't name a member, so see if it names a class.
1320  QualType BaseType;
1321  TypeSourceInfo *TInfo = 0;
1322
1323  if (TemplateTypeTy) {
1324    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1325  } else {
1326    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1327    LookupParsedName(R, S, &SS);
1328
1329    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1330    if (!TyD) {
1331      if (R.isAmbiguous()) return true;
1332
1333      // We don't want access-control diagnostics here.
1334      R.suppressDiagnostics();
1335
1336      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1337        bool NotUnknownSpecialization = false;
1338        DeclContext *DC = computeDeclContext(SS, false);
1339        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1340          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1341
1342        if (!NotUnknownSpecialization) {
1343          // When the scope specifier can refer to a member of an unknown
1344          // specialization, we take it as a type name.
1345          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1346                                       SS.getWithLocInContext(Context),
1347                                       *MemberOrBase, IdLoc);
1348          if (BaseType.isNull())
1349            return true;
1350
1351          R.clear();
1352          R.setLookupName(MemberOrBase);
1353        }
1354      }
1355
1356      // If no results were found, try to correct typos.
1357      if (R.empty() && BaseType.isNull() &&
1358          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1359          R.isSingleResult()) {
1360        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1361          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1362            // We have found a non-static data member with a similar
1363            // name to what was typed; complain and initialize that
1364            // member.
1365            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1366              << MemberOrBase << true << R.getLookupName()
1367              << FixItHint::CreateReplacement(R.getNameLoc(),
1368                                              R.getLookupName().getAsString());
1369            Diag(Member->getLocation(), diag::note_previous_decl)
1370              << Member->getDeclName();
1371
1372            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1373                                          LParenLoc, RParenLoc);
1374          }
1375        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1376          const CXXBaseSpecifier *DirectBaseSpec;
1377          const CXXBaseSpecifier *VirtualBaseSpec;
1378          if (FindBaseInitializer(*this, ClassDecl,
1379                                  Context.getTypeDeclType(Type),
1380                                  DirectBaseSpec, VirtualBaseSpec)) {
1381            // We have found a direct or virtual base class with a
1382            // similar name to what was typed; complain and initialize
1383            // that base class.
1384            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1385              << MemberOrBase << false << R.getLookupName()
1386              << FixItHint::CreateReplacement(R.getNameLoc(),
1387                                              R.getLookupName().getAsString());
1388
1389            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1390                                                             : VirtualBaseSpec;
1391            Diag(BaseSpec->getSourceRange().getBegin(),
1392                 diag::note_base_class_specified_here)
1393              << BaseSpec->getType()
1394              << BaseSpec->getSourceRange();
1395
1396            TyD = Type;
1397          }
1398        }
1399      }
1400
1401      if (!TyD && BaseType.isNull()) {
1402        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1403          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1404        return true;
1405      }
1406    }
1407
1408    if (BaseType.isNull()) {
1409      BaseType = Context.getTypeDeclType(TyD);
1410      if (SS.isSet()) {
1411        NestedNameSpecifier *Qualifier =
1412          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1413
1414        // FIXME: preserve source range information
1415        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1416      }
1417    }
1418  }
1419
1420  if (!TInfo)
1421    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1422
1423  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1424                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1425}
1426
1427/// Checks an initializer expression for use of uninitialized fields, such as
1428/// containing the field that is being initialized. Returns true if there is an
1429/// uninitialized field was used an updates the SourceLocation parameter; false
1430/// otherwise.
1431static bool InitExprContainsUninitializedFields(const Stmt *S,
1432                                                const ValueDecl *LhsField,
1433                                                SourceLocation *L) {
1434  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1435
1436  if (isa<CallExpr>(S)) {
1437    // Do not descend into function calls or constructors, as the use
1438    // of an uninitialized field may be valid. One would have to inspect
1439    // the contents of the function/ctor to determine if it is safe or not.
1440    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1441    // may be safe, depending on what the function/ctor does.
1442    return false;
1443  }
1444  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1445    const NamedDecl *RhsField = ME->getMemberDecl();
1446
1447    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1448      // The member expression points to a static data member.
1449      assert(VD->isStaticDataMember() &&
1450             "Member points to non-static data member!");
1451      (void)VD;
1452      return false;
1453    }
1454
1455    if (isa<EnumConstantDecl>(RhsField)) {
1456      // The member expression points to an enum.
1457      return false;
1458    }
1459
1460    if (RhsField == LhsField) {
1461      // Initializing a field with itself. Throw a warning.
1462      // But wait; there are exceptions!
1463      // Exception #1:  The field may not belong to this record.
1464      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1465      const Expr *base = ME->getBase();
1466      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1467        // Even though the field matches, it does not belong to this record.
1468        return false;
1469      }
1470      // None of the exceptions triggered; return true to indicate an
1471      // uninitialized field was used.
1472      *L = ME->getMemberLoc();
1473      return true;
1474    }
1475  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
1476    // sizeof/alignof doesn't reference contents, do not warn.
1477    return false;
1478  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1479    // address-of doesn't reference contents (the pointer may be dereferenced
1480    // in the same expression but it would be rare; and weird).
1481    if (UOE->getOpcode() == UO_AddrOf)
1482      return false;
1483  }
1484  for (Stmt::const_child_range it = S->children(); it; ++it) {
1485    if (!*it) {
1486      // An expression such as 'member(arg ?: "")' may trigger this.
1487      continue;
1488    }
1489    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1490      return true;
1491  }
1492  return false;
1493}
1494
1495MemInitResult
1496Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1497                             unsigned NumArgs, SourceLocation IdLoc,
1498                             SourceLocation LParenLoc,
1499                             SourceLocation RParenLoc) {
1500  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1501  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1502  assert((DirectMember || IndirectMember) &&
1503         "Member must be a FieldDecl or IndirectFieldDecl");
1504
1505  if (Member->isInvalidDecl())
1506    return true;
1507
1508  // Diagnose value-uses of fields to initialize themselves, e.g.
1509  //   foo(foo)
1510  // where foo is not also a parameter to the constructor.
1511  // TODO: implement -Wuninitialized and fold this into that framework.
1512  for (unsigned i = 0; i < NumArgs; ++i) {
1513    SourceLocation L;
1514    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1515      // FIXME: Return true in the case when other fields are used before being
1516      // uninitialized. For example, let this field be the i'th field. When
1517      // initializing the i'th field, throw a warning if any of the >= i'th
1518      // fields are used, as they are not yet initialized.
1519      // Right now we are only handling the case where the i'th field uses
1520      // itself in its initializer.
1521      Diag(L, diag::warn_field_is_uninit);
1522    }
1523  }
1524
1525  bool HasDependentArg = false;
1526  for (unsigned i = 0; i < NumArgs; i++)
1527    HasDependentArg |= Args[i]->isTypeDependent();
1528
1529  Expr *Init;
1530  if (Member->getType()->isDependentType() || HasDependentArg) {
1531    // Can't check initialization for a member of dependent type or when
1532    // any of the arguments are type-dependent expressions.
1533    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1534                                       RParenLoc);
1535
1536    // Erase any temporaries within this evaluation context; we're not
1537    // going to track them in the AST, since we'll be rebuilding the
1538    // ASTs during template instantiation.
1539    ExprTemporaries.erase(
1540              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1541                          ExprTemporaries.end());
1542  } else {
1543    // Initialize the member.
1544    InitializedEntity MemberEntity =
1545      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1546                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1547    InitializationKind Kind =
1548      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1549
1550    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1551
1552    ExprResult MemberInit =
1553      InitSeq.Perform(*this, MemberEntity, Kind,
1554                      MultiExprArg(*this, Args, NumArgs), 0);
1555    if (MemberInit.isInvalid())
1556      return true;
1557
1558    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1559
1560    // C++0x [class.base.init]p7:
1561    //   The initialization of each base and member constitutes a
1562    //   full-expression.
1563    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1564    if (MemberInit.isInvalid())
1565      return true;
1566
1567    // If we are in a dependent context, template instantiation will
1568    // perform this type-checking again. Just save the arguments that we
1569    // received in a ParenListExpr.
1570    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1571    // of the information that we have about the member
1572    // initializer. However, deconstructing the ASTs is a dicey process,
1573    // and this approach is far more likely to get the corner cases right.
1574    if (CurContext->isDependentContext())
1575      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1576                                               RParenLoc);
1577    else
1578      Init = MemberInit.get();
1579  }
1580
1581  if (DirectMember) {
1582    return new (Context) CXXCtorInitializer(Context, DirectMember,
1583                                                    IdLoc, LParenLoc, Init,
1584                                                    RParenLoc);
1585  } else {
1586    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1587                                                    IdLoc, LParenLoc, Init,
1588                                                    RParenLoc);
1589  }
1590}
1591
1592MemInitResult
1593Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1594                                 Expr **Args, unsigned NumArgs,
1595                                 SourceLocation NameLoc,
1596                                 SourceLocation LParenLoc,
1597                                 SourceLocation RParenLoc,
1598                                 CXXRecordDecl *ClassDecl) {
1599  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1600  if (!LangOpts.CPlusPlus0x)
1601    return Diag(Loc, diag::err_delegation_0x_only)
1602      << TInfo->getTypeLoc().getLocalSourceRange();
1603
1604  // Initialize the object.
1605  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
1606                                     QualType(ClassDecl->getTypeForDecl(), 0));
1607  InitializationKind Kind =
1608    InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
1609
1610  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
1611
1612  ExprResult DelegationInit =
1613    InitSeq.Perform(*this, DelegationEntity, Kind,
1614                    MultiExprArg(*this, Args, NumArgs), 0);
1615  if (DelegationInit.isInvalid())
1616    return true;
1617
1618  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
1619  CXXConstructorDecl *Constructor
1620    = ConExpr->getConstructor();
1621  assert(Constructor && "Delegating constructor with no target?");
1622
1623  CheckImplicitConversions(DelegationInit.get(), LParenLoc);
1624
1625  // C++0x [class.base.init]p7:
1626  //   The initialization of each base and member constitutes a
1627  //   full-expression.
1628  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
1629  if (DelegationInit.isInvalid())
1630    return true;
1631
1632  // If we are in a dependent context, template instantiation will
1633  // perform this type-checking again. Just save the arguments that we
1634  // received in a ParenListExpr.
1635  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1636  // of the information that we have about the base
1637  // initializer. However, deconstructing the ASTs is a dicey process,
1638  // and this approach is far more likely to get the corner cases right.
1639  if (CurContext->isDependentContext()) {
1640    ExprResult Init
1641      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args,
1642                                          NumArgs, RParenLoc));
1643    return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc,
1644                                            Constructor, Init.takeAs<Expr>(),
1645                                            RParenLoc);
1646  }
1647
1648  return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
1649                                          DelegationInit.takeAs<Expr>(),
1650                                          RParenLoc);
1651}
1652
1653MemInitResult
1654Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1655                           Expr **Args, unsigned NumArgs,
1656                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1657                           CXXRecordDecl *ClassDecl,
1658                           SourceLocation EllipsisLoc) {
1659  bool HasDependentArg = false;
1660  for (unsigned i = 0; i < NumArgs; i++)
1661    HasDependentArg |= Args[i]->isTypeDependent();
1662
1663  SourceLocation BaseLoc
1664    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1665
1666  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1667    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1668             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1669
1670  // C++ [class.base.init]p2:
1671  //   [...] Unless the mem-initializer-id names a nonstatic data
1672  //   member of the constructor's class or a direct or virtual base
1673  //   of that class, the mem-initializer is ill-formed. A
1674  //   mem-initializer-list can initialize a base class using any
1675  //   name that denotes that base class type.
1676  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1677
1678  if (EllipsisLoc.isValid()) {
1679    // This is a pack expansion.
1680    if (!BaseType->containsUnexpandedParameterPack())  {
1681      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1682        << SourceRange(BaseLoc, RParenLoc);
1683
1684      EllipsisLoc = SourceLocation();
1685    }
1686  } else {
1687    // Check for any unexpanded parameter packs.
1688    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1689      return true;
1690
1691    for (unsigned I = 0; I != NumArgs; ++I)
1692      if (DiagnoseUnexpandedParameterPack(Args[I]))
1693        return true;
1694  }
1695
1696  // Check for direct and virtual base classes.
1697  const CXXBaseSpecifier *DirectBaseSpec = 0;
1698  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1699  if (!Dependent) {
1700    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1701                                       BaseType))
1702      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
1703                                        LParenLoc, RParenLoc, ClassDecl);
1704
1705    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1706                        VirtualBaseSpec);
1707
1708    // C++ [base.class.init]p2:
1709    // Unless the mem-initializer-id names a nonstatic data member of the
1710    // constructor's class or a direct or virtual base of that class, the
1711    // mem-initializer is ill-formed.
1712    if (!DirectBaseSpec && !VirtualBaseSpec) {
1713      // If the class has any dependent bases, then it's possible that
1714      // one of those types will resolve to the same type as
1715      // BaseType. Therefore, just treat this as a dependent base
1716      // class initialization.  FIXME: Should we try to check the
1717      // initialization anyway? It seems odd.
1718      if (ClassDecl->hasAnyDependentBases())
1719        Dependent = true;
1720      else
1721        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1722          << BaseType << Context.getTypeDeclType(ClassDecl)
1723          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1724    }
1725  }
1726
1727  if (Dependent) {
1728    // Can't check initialization for a base of dependent type or when
1729    // any of the arguments are type-dependent expressions.
1730    ExprResult BaseInit
1731      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1732                                          RParenLoc));
1733
1734    // Erase any temporaries within this evaluation context; we're not
1735    // going to track them in the AST, since we'll be rebuilding the
1736    // ASTs during template instantiation.
1737    ExprTemporaries.erase(
1738              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1739                          ExprTemporaries.end());
1740
1741    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1742                                                    /*IsVirtual=*/false,
1743                                                    LParenLoc,
1744                                                    BaseInit.takeAs<Expr>(),
1745                                                    RParenLoc,
1746                                                    EllipsisLoc);
1747  }
1748
1749  // C++ [base.class.init]p2:
1750  //   If a mem-initializer-id is ambiguous because it designates both
1751  //   a direct non-virtual base class and an inherited virtual base
1752  //   class, the mem-initializer is ill-formed.
1753  if (DirectBaseSpec && VirtualBaseSpec)
1754    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1755      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1756
1757  CXXBaseSpecifier *BaseSpec
1758    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1759  if (!BaseSpec)
1760    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1761
1762  // Initialize the base.
1763  InitializedEntity BaseEntity =
1764    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1765  InitializationKind Kind =
1766    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1767
1768  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1769
1770  ExprResult BaseInit =
1771    InitSeq.Perform(*this, BaseEntity, Kind,
1772                    MultiExprArg(*this, Args, NumArgs), 0);
1773  if (BaseInit.isInvalid())
1774    return true;
1775
1776  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1777
1778  // C++0x [class.base.init]p7:
1779  //   The initialization of each base and member constitutes a
1780  //   full-expression.
1781  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1782  if (BaseInit.isInvalid())
1783    return true;
1784
1785  // If we are in a dependent context, template instantiation will
1786  // perform this type-checking again. Just save the arguments that we
1787  // received in a ParenListExpr.
1788  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1789  // of the information that we have about the base
1790  // initializer. However, deconstructing the ASTs is a dicey process,
1791  // and this approach is far more likely to get the corner cases right.
1792  if (CurContext->isDependentContext()) {
1793    ExprResult Init
1794      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1795                                          RParenLoc));
1796    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1797                                                    BaseSpec->isVirtual(),
1798                                                    LParenLoc,
1799                                                    Init.takeAs<Expr>(),
1800                                                    RParenLoc,
1801                                                    EllipsisLoc);
1802  }
1803
1804  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1805                                                  BaseSpec->isVirtual(),
1806                                                  LParenLoc,
1807                                                  BaseInit.takeAs<Expr>(),
1808                                                  RParenLoc,
1809                                                  EllipsisLoc);
1810}
1811
1812/// ImplicitInitializerKind - How an implicit base or member initializer should
1813/// initialize its base or member.
1814enum ImplicitInitializerKind {
1815  IIK_Default,
1816  IIK_Copy,
1817  IIK_Move
1818};
1819
1820static bool
1821BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1822                             ImplicitInitializerKind ImplicitInitKind,
1823                             CXXBaseSpecifier *BaseSpec,
1824                             bool IsInheritedVirtualBase,
1825                             CXXCtorInitializer *&CXXBaseInit) {
1826  InitializedEntity InitEntity
1827    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1828                                        IsInheritedVirtualBase);
1829
1830  ExprResult BaseInit;
1831
1832  switch (ImplicitInitKind) {
1833  case IIK_Default: {
1834    InitializationKind InitKind
1835      = InitializationKind::CreateDefault(Constructor->getLocation());
1836    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1837    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1838                               MultiExprArg(SemaRef, 0, 0));
1839    break;
1840  }
1841
1842  case IIK_Copy: {
1843    ParmVarDecl *Param = Constructor->getParamDecl(0);
1844    QualType ParamType = Param->getType().getNonReferenceType();
1845
1846    Expr *CopyCtorArg =
1847      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1848                          Constructor->getLocation(), ParamType,
1849                          VK_LValue, 0);
1850
1851    // Cast to the base class to avoid ambiguities.
1852    QualType ArgTy =
1853      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1854                                       ParamType.getQualifiers());
1855
1856    CXXCastPath BasePath;
1857    BasePath.push_back(BaseSpec);
1858    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1859                                            CK_UncheckedDerivedToBase,
1860                                            VK_LValue, &BasePath).take();
1861
1862    InitializationKind InitKind
1863      = InitializationKind::CreateDirect(Constructor->getLocation(),
1864                                         SourceLocation(), SourceLocation());
1865    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1866                                   &CopyCtorArg, 1);
1867    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1868                               MultiExprArg(&CopyCtorArg, 1));
1869    break;
1870  }
1871
1872  case IIK_Move:
1873    assert(false && "Unhandled initializer kind!");
1874  }
1875
1876  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1877  if (BaseInit.isInvalid())
1878    return true;
1879
1880  CXXBaseInit =
1881    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1882               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1883                                                        SourceLocation()),
1884                                             BaseSpec->isVirtual(),
1885                                             SourceLocation(),
1886                                             BaseInit.takeAs<Expr>(),
1887                                             SourceLocation(),
1888                                             SourceLocation());
1889
1890  return false;
1891}
1892
1893static bool
1894BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1895                               ImplicitInitializerKind ImplicitInitKind,
1896                               FieldDecl *Field,
1897                               CXXCtorInitializer *&CXXMemberInit) {
1898  if (Field->isInvalidDecl())
1899    return true;
1900
1901  SourceLocation Loc = Constructor->getLocation();
1902
1903  if (ImplicitInitKind == IIK_Copy) {
1904    ParmVarDecl *Param = Constructor->getParamDecl(0);
1905    QualType ParamType = Param->getType().getNonReferenceType();
1906
1907    Expr *MemberExprBase =
1908      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1909                          Loc, ParamType, VK_LValue, 0);
1910
1911    // Build a reference to this field within the parameter.
1912    CXXScopeSpec SS;
1913    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1914                              Sema::LookupMemberName);
1915    MemberLookup.addDecl(Field, AS_public);
1916    MemberLookup.resolveKind();
1917    ExprResult CopyCtorArg
1918      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1919                                         ParamType, Loc,
1920                                         /*IsArrow=*/false,
1921                                         SS,
1922                                         /*FirstQualifierInScope=*/0,
1923                                         MemberLookup,
1924                                         /*TemplateArgs=*/0);
1925    if (CopyCtorArg.isInvalid())
1926      return true;
1927
1928    // When the field we are copying is an array, create index variables for
1929    // each dimension of the array. We use these index variables to subscript
1930    // the source array, and other clients (e.g., CodeGen) will perform the
1931    // necessary iteration with these index variables.
1932    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1933    QualType BaseType = Field->getType();
1934    QualType SizeType = SemaRef.Context.getSizeType();
1935    while (const ConstantArrayType *Array
1936                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1937      // Create the iteration variable for this array index.
1938      IdentifierInfo *IterationVarName = 0;
1939      {
1940        llvm::SmallString<8> Str;
1941        llvm::raw_svector_ostream OS(Str);
1942        OS << "__i" << IndexVariables.size();
1943        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1944      }
1945      VarDecl *IterationVar
1946        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
1947                          IterationVarName, SizeType,
1948                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1949                          SC_None, SC_None);
1950      IndexVariables.push_back(IterationVar);
1951
1952      // Create a reference to the iteration variable.
1953      ExprResult IterationVarRef
1954        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1955      assert(!IterationVarRef.isInvalid() &&
1956             "Reference to invented variable cannot fail!");
1957
1958      // Subscript the array with this iteration variable.
1959      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1960                                                            Loc,
1961                                                        IterationVarRef.take(),
1962                                                            Loc);
1963      if (CopyCtorArg.isInvalid())
1964        return true;
1965
1966      BaseType = Array->getElementType();
1967    }
1968
1969    // Construct the entity that we will be initializing. For an array, this
1970    // will be first element in the array, which may require several levels
1971    // of array-subscript entities.
1972    llvm::SmallVector<InitializedEntity, 4> Entities;
1973    Entities.reserve(1 + IndexVariables.size());
1974    Entities.push_back(InitializedEntity::InitializeMember(Field));
1975    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1976      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1977                                                              0,
1978                                                              Entities.back()));
1979
1980    // Direct-initialize to use the copy constructor.
1981    InitializationKind InitKind =
1982      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1983
1984    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1985    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1986                                   &CopyCtorArgE, 1);
1987
1988    ExprResult MemberInit
1989      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1990                        MultiExprArg(&CopyCtorArgE, 1));
1991    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1992    if (MemberInit.isInvalid())
1993      return true;
1994
1995    CXXMemberInit
1996      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1997                                           MemberInit.takeAs<Expr>(), Loc,
1998                                           IndexVariables.data(),
1999                                           IndexVariables.size());
2000    return false;
2001  }
2002
2003  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2004
2005  QualType FieldBaseElementType =
2006    SemaRef.Context.getBaseElementType(Field->getType());
2007
2008  if (FieldBaseElementType->isRecordType()) {
2009    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
2010    InitializationKind InitKind =
2011      InitializationKind::CreateDefault(Loc);
2012
2013    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2014    ExprResult MemberInit =
2015      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2016
2017    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2018    if (MemberInit.isInvalid())
2019      return true;
2020
2021    CXXMemberInit =
2022      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2023                                                       Field, Loc, Loc,
2024                                                       MemberInit.get(),
2025                                                       Loc);
2026    return false;
2027  }
2028
2029  if (!Field->getParent()->isUnion()) {
2030    if (FieldBaseElementType->isReferenceType()) {
2031      SemaRef.Diag(Constructor->getLocation(),
2032                   diag::err_uninitialized_member_in_ctor)
2033      << (int)Constructor->isImplicit()
2034      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2035      << 0 << Field->getDeclName();
2036      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2037      return true;
2038    }
2039
2040    if (FieldBaseElementType.isConstQualified()) {
2041      SemaRef.Diag(Constructor->getLocation(),
2042                   diag::err_uninitialized_member_in_ctor)
2043      << (int)Constructor->isImplicit()
2044      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2045      << 1 << Field->getDeclName();
2046      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2047      return true;
2048    }
2049  }
2050
2051  // Nothing to initialize.
2052  CXXMemberInit = 0;
2053  return false;
2054}
2055
2056namespace {
2057struct BaseAndFieldInfo {
2058  Sema &S;
2059  CXXConstructorDecl *Ctor;
2060  bool AnyErrorsInInits;
2061  ImplicitInitializerKind IIK;
2062  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2063  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
2064
2065  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2066    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2067    // FIXME: Handle implicit move constructors.
2068    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
2069      IIK = IIK_Copy;
2070    else
2071      IIK = IIK_Default;
2072  }
2073};
2074}
2075
2076static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
2077                                    FieldDecl *Top, FieldDecl *Field) {
2078
2079  // Overwhelmingly common case: we have a direct initializer for this field.
2080  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2081    Info.AllToInit.push_back(Init);
2082    return false;
2083  }
2084
2085  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
2086    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
2087    assert(FieldClassType && "anonymous struct/union without record type");
2088    CXXRecordDecl *FieldClassDecl
2089      = cast<CXXRecordDecl>(FieldClassType->getDecl());
2090
2091    // Even though union members never have non-trivial default
2092    // constructions in C++03, we still build member initializers for aggregate
2093    // record types which can be union members, and C++0x allows non-trivial
2094    // default constructors for union members, so we ensure that only one
2095    // member is initialized for these.
2096    if (FieldClassDecl->isUnion()) {
2097      // First check for an explicit initializer for one field.
2098      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2099           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2100        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
2101          Info.AllToInit.push_back(Init);
2102
2103          // Once we've initialized a field of an anonymous union, the union
2104          // field in the class is also initialized, so exit immediately.
2105          return false;
2106        } else if ((*FA)->isAnonymousStructOrUnion()) {
2107          if (CollectFieldInitializer(Info, Top, *FA))
2108            return true;
2109        }
2110      }
2111
2112      // Fallthrough and construct a default initializer for the union as
2113      // a whole, which can call its default constructor if such a thing exists
2114      // (C++0x perhaps). FIXME: It's not clear that this is the correct
2115      // behavior going forward with C++0x, when anonymous unions there are
2116      // finalized, we should revisit this.
2117    } else {
2118      // For structs, we simply descend through to initialize all members where
2119      // necessary.
2120      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2121           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2122        if (CollectFieldInitializer(Info, Top, *FA))
2123          return true;
2124      }
2125    }
2126  }
2127
2128  // Don't try to build an implicit initializer if there were semantic
2129  // errors in any of the initializers (and therefore we might be
2130  // missing some that the user actually wrote).
2131  if (Info.AnyErrorsInInits)
2132    return false;
2133
2134  CXXCtorInitializer *Init = 0;
2135  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
2136    return true;
2137
2138  if (Init)
2139    Info.AllToInit.push_back(Init);
2140
2141  return false;
2142}
2143
2144bool
2145Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2146                               CXXCtorInitializer *Initializer) {
2147  assert(Initializer->isDelegatingInitializer());
2148  Constructor->setNumCtorInitializers(1);
2149  CXXCtorInitializer **initializer =
2150    new (Context) CXXCtorInitializer*[1];
2151  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2152  Constructor->setCtorInitializers(initializer);
2153
2154  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2155    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2156    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2157  }
2158
2159  DelegatingCtorDecls.push_back(Constructor);
2160
2161  return false;
2162}
2163
2164bool
2165Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2166                                  CXXCtorInitializer **Initializers,
2167                                  unsigned NumInitializers,
2168                                  bool AnyErrors) {
2169  if (Constructor->getDeclContext()->isDependentContext()) {
2170    // Just store the initializers as written, they will be checked during
2171    // instantiation.
2172    if (NumInitializers > 0) {
2173      Constructor->setNumCtorInitializers(NumInitializers);
2174      CXXCtorInitializer **baseOrMemberInitializers =
2175        new (Context) CXXCtorInitializer*[NumInitializers];
2176      memcpy(baseOrMemberInitializers, Initializers,
2177             NumInitializers * sizeof(CXXCtorInitializer*));
2178      Constructor->setCtorInitializers(baseOrMemberInitializers);
2179    }
2180
2181    return false;
2182  }
2183
2184  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2185
2186  // We need to build the initializer AST according to order of construction
2187  // and not what user specified in the Initializers list.
2188  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2189  if (!ClassDecl)
2190    return true;
2191
2192  bool HadError = false;
2193
2194  for (unsigned i = 0; i < NumInitializers; i++) {
2195    CXXCtorInitializer *Member = Initializers[i];
2196
2197    if (Member->isBaseInitializer())
2198      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2199    else
2200      Info.AllBaseFields[Member->getAnyMember()] = Member;
2201  }
2202
2203  // Keep track of the direct virtual bases.
2204  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2205  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2206       E = ClassDecl->bases_end(); I != E; ++I) {
2207    if (I->isVirtual())
2208      DirectVBases.insert(I);
2209  }
2210
2211  // Push virtual bases before others.
2212  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2213       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2214
2215    if (CXXCtorInitializer *Value
2216        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2217      Info.AllToInit.push_back(Value);
2218    } else if (!AnyErrors) {
2219      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2220      CXXCtorInitializer *CXXBaseInit;
2221      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2222                                       VBase, IsInheritedVirtualBase,
2223                                       CXXBaseInit)) {
2224        HadError = true;
2225        continue;
2226      }
2227
2228      Info.AllToInit.push_back(CXXBaseInit);
2229    }
2230  }
2231
2232  // Non-virtual bases.
2233  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2234       E = ClassDecl->bases_end(); Base != E; ++Base) {
2235    // Virtuals are in the virtual base list and already constructed.
2236    if (Base->isVirtual())
2237      continue;
2238
2239    if (CXXCtorInitializer *Value
2240          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2241      Info.AllToInit.push_back(Value);
2242    } else if (!AnyErrors) {
2243      CXXCtorInitializer *CXXBaseInit;
2244      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2245                                       Base, /*IsInheritedVirtualBase=*/false,
2246                                       CXXBaseInit)) {
2247        HadError = true;
2248        continue;
2249      }
2250
2251      Info.AllToInit.push_back(CXXBaseInit);
2252    }
2253  }
2254
2255  // Fields.
2256  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2257       E = ClassDecl->field_end(); Field != E; ++Field) {
2258    if ((*Field)->getType()->isIncompleteArrayType()) {
2259      assert(ClassDecl->hasFlexibleArrayMember() &&
2260             "Incomplete array type is not valid");
2261      continue;
2262    }
2263    if (CollectFieldInitializer(Info, *Field, *Field))
2264      HadError = true;
2265  }
2266
2267  NumInitializers = Info.AllToInit.size();
2268  if (NumInitializers > 0) {
2269    Constructor->setNumCtorInitializers(NumInitializers);
2270    CXXCtorInitializer **baseOrMemberInitializers =
2271      new (Context) CXXCtorInitializer*[NumInitializers];
2272    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2273           NumInitializers * sizeof(CXXCtorInitializer*));
2274    Constructor->setCtorInitializers(baseOrMemberInitializers);
2275
2276    // Constructors implicitly reference the base and member
2277    // destructors.
2278    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2279                                           Constructor->getParent());
2280  }
2281
2282  return HadError;
2283}
2284
2285static void *GetKeyForTopLevelField(FieldDecl *Field) {
2286  // For anonymous unions, use the class declaration as the key.
2287  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2288    if (RT->getDecl()->isAnonymousStructOrUnion())
2289      return static_cast<void *>(RT->getDecl());
2290  }
2291  return static_cast<void *>(Field);
2292}
2293
2294static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2295  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2296}
2297
2298static void *GetKeyForMember(ASTContext &Context,
2299                             CXXCtorInitializer *Member) {
2300  if (!Member->isAnyMemberInitializer())
2301    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2302
2303  // For fields injected into the class via declaration of an anonymous union,
2304  // use its anonymous union class declaration as the unique key.
2305  FieldDecl *Field = Member->getAnyMember();
2306
2307  // If the field is a member of an anonymous struct or union, our key
2308  // is the anonymous record decl that's a direct child of the class.
2309  RecordDecl *RD = Field->getParent();
2310  if (RD->isAnonymousStructOrUnion()) {
2311    while (true) {
2312      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2313      if (Parent->isAnonymousStructOrUnion())
2314        RD = Parent;
2315      else
2316        break;
2317    }
2318
2319    return static_cast<void *>(RD);
2320  }
2321
2322  return static_cast<void *>(Field);
2323}
2324
2325static void
2326DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2327                                  const CXXConstructorDecl *Constructor,
2328                                  CXXCtorInitializer **Inits,
2329                                  unsigned NumInits) {
2330  if (Constructor->getDeclContext()->isDependentContext())
2331    return;
2332
2333  // Don't check initializers order unless the warning is enabled at the
2334  // location of at least one initializer.
2335  bool ShouldCheckOrder = false;
2336  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2337    CXXCtorInitializer *Init = Inits[InitIndex];
2338    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2339                                         Init->getSourceLocation())
2340          != Diagnostic::Ignored) {
2341      ShouldCheckOrder = true;
2342      break;
2343    }
2344  }
2345  if (!ShouldCheckOrder)
2346    return;
2347
2348  // Build the list of bases and members in the order that they'll
2349  // actually be initialized.  The explicit initializers should be in
2350  // this same order but may be missing things.
2351  llvm::SmallVector<const void*, 32> IdealInitKeys;
2352
2353  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2354
2355  // 1. Virtual bases.
2356  for (CXXRecordDecl::base_class_const_iterator VBase =
2357       ClassDecl->vbases_begin(),
2358       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2359    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2360
2361  // 2. Non-virtual bases.
2362  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2363       E = ClassDecl->bases_end(); Base != E; ++Base) {
2364    if (Base->isVirtual())
2365      continue;
2366    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2367  }
2368
2369  // 3. Direct fields.
2370  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2371       E = ClassDecl->field_end(); Field != E; ++Field)
2372    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2373
2374  unsigned NumIdealInits = IdealInitKeys.size();
2375  unsigned IdealIndex = 0;
2376
2377  CXXCtorInitializer *PrevInit = 0;
2378  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2379    CXXCtorInitializer *Init = Inits[InitIndex];
2380    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2381
2382    // Scan forward to try to find this initializer in the idealized
2383    // initializers list.
2384    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2385      if (InitKey == IdealInitKeys[IdealIndex])
2386        break;
2387
2388    // If we didn't find this initializer, it must be because we
2389    // scanned past it on a previous iteration.  That can only
2390    // happen if we're out of order;  emit a warning.
2391    if (IdealIndex == NumIdealInits && PrevInit) {
2392      Sema::SemaDiagnosticBuilder D =
2393        SemaRef.Diag(PrevInit->getSourceLocation(),
2394                     diag::warn_initializer_out_of_order);
2395
2396      if (PrevInit->isAnyMemberInitializer())
2397        D << 0 << PrevInit->getAnyMember()->getDeclName();
2398      else
2399        D << 1 << PrevInit->getBaseClassInfo()->getType();
2400
2401      if (Init->isAnyMemberInitializer())
2402        D << 0 << Init->getAnyMember()->getDeclName();
2403      else
2404        D << 1 << Init->getBaseClassInfo()->getType();
2405
2406      // Move back to the initializer's location in the ideal list.
2407      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2408        if (InitKey == IdealInitKeys[IdealIndex])
2409          break;
2410
2411      assert(IdealIndex != NumIdealInits &&
2412             "initializer not found in initializer list");
2413    }
2414
2415    PrevInit = Init;
2416  }
2417}
2418
2419namespace {
2420bool CheckRedundantInit(Sema &S,
2421                        CXXCtorInitializer *Init,
2422                        CXXCtorInitializer *&PrevInit) {
2423  if (!PrevInit) {
2424    PrevInit = Init;
2425    return false;
2426  }
2427
2428  if (FieldDecl *Field = Init->getMember())
2429    S.Diag(Init->getSourceLocation(),
2430           diag::err_multiple_mem_initialization)
2431      << Field->getDeclName()
2432      << Init->getSourceRange();
2433  else {
2434    const Type *BaseClass = Init->getBaseClass();
2435    assert(BaseClass && "neither field nor base");
2436    S.Diag(Init->getSourceLocation(),
2437           diag::err_multiple_base_initialization)
2438      << QualType(BaseClass, 0)
2439      << Init->getSourceRange();
2440  }
2441  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2442    << 0 << PrevInit->getSourceRange();
2443
2444  return true;
2445}
2446
2447typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2448typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2449
2450bool CheckRedundantUnionInit(Sema &S,
2451                             CXXCtorInitializer *Init,
2452                             RedundantUnionMap &Unions) {
2453  FieldDecl *Field = Init->getAnyMember();
2454  RecordDecl *Parent = Field->getParent();
2455  if (!Parent->isAnonymousStructOrUnion())
2456    return false;
2457
2458  NamedDecl *Child = Field;
2459  do {
2460    if (Parent->isUnion()) {
2461      UnionEntry &En = Unions[Parent];
2462      if (En.first && En.first != Child) {
2463        S.Diag(Init->getSourceLocation(),
2464               diag::err_multiple_mem_union_initialization)
2465          << Field->getDeclName()
2466          << Init->getSourceRange();
2467        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2468          << 0 << En.second->getSourceRange();
2469        return true;
2470      } else if (!En.first) {
2471        En.first = Child;
2472        En.second = Init;
2473      }
2474    }
2475
2476    Child = Parent;
2477    Parent = cast<RecordDecl>(Parent->getDeclContext());
2478  } while (Parent->isAnonymousStructOrUnion());
2479
2480  return false;
2481}
2482}
2483
2484/// ActOnMemInitializers - Handle the member initializers for a constructor.
2485void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2486                                SourceLocation ColonLoc,
2487                                MemInitTy **meminits, unsigned NumMemInits,
2488                                bool AnyErrors) {
2489  if (!ConstructorDecl)
2490    return;
2491
2492  AdjustDeclIfTemplate(ConstructorDecl);
2493
2494  CXXConstructorDecl *Constructor
2495    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2496
2497  if (!Constructor) {
2498    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2499    return;
2500  }
2501
2502  CXXCtorInitializer **MemInits =
2503    reinterpret_cast<CXXCtorInitializer **>(meminits);
2504
2505  // Mapping for the duplicate initializers check.
2506  // For member initializers, this is keyed with a FieldDecl*.
2507  // For base initializers, this is keyed with a Type*.
2508  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2509
2510  // Mapping for the inconsistent anonymous-union initializers check.
2511  RedundantUnionMap MemberUnions;
2512
2513  bool HadError = false;
2514  for (unsigned i = 0; i < NumMemInits; i++) {
2515    CXXCtorInitializer *Init = MemInits[i];
2516
2517    // Set the source order index.
2518    Init->setSourceOrder(i);
2519
2520    if (Init->isAnyMemberInitializer()) {
2521      FieldDecl *Field = Init->getAnyMember();
2522      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2523          CheckRedundantUnionInit(*this, Init, MemberUnions))
2524        HadError = true;
2525    } else if (Init->isBaseInitializer()) {
2526      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2527      if (CheckRedundantInit(*this, Init, Members[Key]))
2528        HadError = true;
2529    } else {
2530      assert(Init->isDelegatingInitializer());
2531      // This must be the only initializer
2532      if (i != 0 || NumMemInits > 1) {
2533        Diag(MemInits[0]->getSourceLocation(),
2534             diag::err_delegating_initializer_alone)
2535          << MemInits[0]->getSourceRange();
2536        HadError = true;
2537        // We will treat this as being the only initializer.
2538      }
2539      SetDelegatingInitializer(Constructor, MemInits[i]);
2540      // Return immediately as the initializer is set.
2541      return;
2542    }
2543  }
2544
2545  if (HadError)
2546    return;
2547
2548  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2549
2550  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2551}
2552
2553void
2554Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2555                                             CXXRecordDecl *ClassDecl) {
2556  // Ignore dependent contexts.
2557  if (ClassDecl->isDependentContext())
2558    return;
2559
2560  // FIXME: all the access-control diagnostics are positioned on the
2561  // field/base declaration.  That's probably good; that said, the
2562  // user might reasonably want to know why the destructor is being
2563  // emitted, and we currently don't say.
2564
2565  // Non-static data members.
2566  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2567       E = ClassDecl->field_end(); I != E; ++I) {
2568    FieldDecl *Field = *I;
2569    if (Field->isInvalidDecl())
2570      continue;
2571    QualType FieldType = Context.getBaseElementType(Field->getType());
2572
2573    const RecordType* RT = FieldType->getAs<RecordType>();
2574    if (!RT)
2575      continue;
2576
2577    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2578    if (FieldClassDecl->isInvalidDecl())
2579      continue;
2580    if (FieldClassDecl->hasTrivialDestructor())
2581      continue;
2582
2583    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2584    assert(Dtor && "No dtor found for FieldClassDecl!");
2585    CheckDestructorAccess(Field->getLocation(), Dtor,
2586                          PDiag(diag::err_access_dtor_field)
2587                            << Field->getDeclName()
2588                            << FieldType);
2589
2590    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2591  }
2592
2593  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2594
2595  // Bases.
2596  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2597       E = ClassDecl->bases_end(); Base != E; ++Base) {
2598    // Bases are always records in a well-formed non-dependent class.
2599    const RecordType *RT = Base->getType()->getAs<RecordType>();
2600
2601    // Remember direct virtual bases.
2602    if (Base->isVirtual())
2603      DirectVirtualBases.insert(RT);
2604
2605    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2606    // If our base class is invalid, we probably can't get its dtor anyway.
2607    if (BaseClassDecl->isInvalidDecl())
2608      continue;
2609    // Ignore trivial destructors.
2610    if (BaseClassDecl->hasTrivialDestructor())
2611      continue;
2612
2613    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2614    assert(Dtor && "No dtor found for BaseClassDecl!");
2615
2616    // FIXME: caret should be on the start of the class name
2617    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2618                          PDiag(diag::err_access_dtor_base)
2619                            << Base->getType()
2620                            << Base->getSourceRange());
2621
2622    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2623  }
2624
2625  // Virtual bases.
2626  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2627       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2628
2629    // Bases are always records in a well-formed non-dependent class.
2630    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2631
2632    // Ignore direct virtual bases.
2633    if (DirectVirtualBases.count(RT))
2634      continue;
2635
2636    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2637    // If our base class is invalid, we probably can't get its dtor anyway.
2638    if (BaseClassDecl->isInvalidDecl())
2639      continue;
2640    // Ignore trivial destructors.
2641    if (BaseClassDecl->hasTrivialDestructor())
2642      continue;
2643
2644    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2645    assert(Dtor && "No dtor found for BaseClassDecl!");
2646    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2647                          PDiag(diag::err_access_dtor_vbase)
2648                            << VBase->getType());
2649
2650    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2651  }
2652}
2653
2654void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2655  if (!CDtorDecl)
2656    return;
2657
2658  if (CXXConstructorDecl *Constructor
2659      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2660    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2661}
2662
2663bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2664                                  unsigned DiagID, AbstractDiagSelID SelID) {
2665  if (SelID == -1)
2666    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2667  else
2668    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2669}
2670
2671bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2672                                  const PartialDiagnostic &PD) {
2673  if (!getLangOptions().CPlusPlus)
2674    return false;
2675
2676  if (const ArrayType *AT = Context.getAsArrayType(T))
2677    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2678
2679  if (const PointerType *PT = T->getAs<PointerType>()) {
2680    // Find the innermost pointer type.
2681    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2682      PT = T;
2683
2684    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2685      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2686  }
2687
2688  const RecordType *RT = T->getAs<RecordType>();
2689  if (!RT)
2690    return false;
2691
2692  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2693
2694  // We can't answer whether something is abstract until it has a
2695  // definition.  If it's currently being defined, we'll walk back
2696  // over all the declarations when we have a full definition.
2697  const CXXRecordDecl *Def = RD->getDefinition();
2698  if (!Def || Def->isBeingDefined())
2699    return false;
2700
2701  if (!RD->isAbstract())
2702    return false;
2703
2704  Diag(Loc, PD) << RD->getDeclName();
2705  DiagnoseAbstractType(RD);
2706
2707  return true;
2708}
2709
2710void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2711  // Check if we've already emitted the list of pure virtual functions
2712  // for this class.
2713  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2714    return;
2715
2716  CXXFinalOverriderMap FinalOverriders;
2717  RD->getFinalOverriders(FinalOverriders);
2718
2719  // Keep a set of seen pure methods so we won't diagnose the same method
2720  // more than once.
2721  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2722
2723  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2724                                   MEnd = FinalOverriders.end();
2725       M != MEnd;
2726       ++M) {
2727    for (OverridingMethods::iterator SO = M->second.begin(),
2728                                  SOEnd = M->second.end();
2729         SO != SOEnd; ++SO) {
2730      // C++ [class.abstract]p4:
2731      //   A class is abstract if it contains or inherits at least one
2732      //   pure virtual function for which the final overrider is pure
2733      //   virtual.
2734
2735      //
2736      if (SO->second.size() != 1)
2737        continue;
2738
2739      if (!SO->second.front().Method->isPure())
2740        continue;
2741
2742      if (!SeenPureMethods.insert(SO->second.front().Method))
2743        continue;
2744
2745      Diag(SO->second.front().Method->getLocation(),
2746           diag::note_pure_virtual_function)
2747        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2748    }
2749  }
2750
2751  if (!PureVirtualClassDiagSet)
2752    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2753  PureVirtualClassDiagSet->insert(RD);
2754}
2755
2756namespace {
2757struct AbstractUsageInfo {
2758  Sema &S;
2759  CXXRecordDecl *Record;
2760  CanQualType AbstractType;
2761  bool Invalid;
2762
2763  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2764    : S(S), Record(Record),
2765      AbstractType(S.Context.getCanonicalType(
2766                   S.Context.getTypeDeclType(Record))),
2767      Invalid(false) {}
2768
2769  void DiagnoseAbstractType() {
2770    if (Invalid) return;
2771    S.DiagnoseAbstractType(Record);
2772    Invalid = true;
2773  }
2774
2775  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2776};
2777
2778struct CheckAbstractUsage {
2779  AbstractUsageInfo &Info;
2780  const NamedDecl *Ctx;
2781
2782  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2783    : Info(Info), Ctx(Ctx) {}
2784
2785  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2786    switch (TL.getTypeLocClass()) {
2787#define ABSTRACT_TYPELOC(CLASS, PARENT)
2788#define TYPELOC(CLASS, PARENT) \
2789    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2790#include "clang/AST/TypeLocNodes.def"
2791    }
2792  }
2793
2794  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2795    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2796    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2797      if (!TL.getArg(I))
2798        continue;
2799
2800      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2801      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2802    }
2803  }
2804
2805  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2806    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2807  }
2808
2809  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2810    // Visit the type parameters from a permissive context.
2811    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2812      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2813      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2814        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2815          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2816      // TODO: other template argument types?
2817    }
2818  }
2819
2820  // Visit pointee types from a permissive context.
2821#define CheckPolymorphic(Type) \
2822  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2823    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2824  }
2825  CheckPolymorphic(PointerTypeLoc)
2826  CheckPolymorphic(ReferenceTypeLoc)
2827  CheckPolymorphic(MemberPointerTypeLoc)
2828  CheckPolymorphic(BlockPointerTypeLoc)
2829
2830  /// Handle all the types we haven't given a more specific
2831  /// implementation for above.
2832  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2833    // Every other kind of type that we haven't called out already
2834    // that has an inner type is either (1) sugar or (2) contains that
2835    // inner type in some way as a subobject.
2836    if (TypeLoc Next = TL.getNextTypeLoc())
2837      return Visit(Next, Sel);
2838
2839    // If there's no inner type and we're in a permissive context,
2840    // don't diagnose.
2841    if (Sel == Sema::AbstractNone) return;
2842
2843    // Check whether the type matches the abstract type.
2844    QualType T = TL.getType();
2845    if (T->isArrayType()) {
2846      Sel = Sema::AbstractArrayType;
2847      T = Info.S.Context.getBaseElementType(T);
2848    }
2849    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2850    if (CT != Info.AbstractType) return;
2851
2852    // It matched; do some magic.
2853    if (Sel == Sema::AbstractArrayType) {
2854      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2855        << T << TL.getSourceRange();
2856    } else {
2857      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2858        << Sel << T << TL.getSourceRange();
2859    }
2860    Info.DiagnoseAbstractType();
2861  }
2862};
2863
2864void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2865                                  Sema::AbstractDiagSelID Sel) {
2866  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2867}
2868
2869}
2870
2871/// Check for invalid uses of an abstract type in a method declaration.
2872static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2873                                    CXXMethodDecl *MD) {
2874  // No need to do the check on definitions, which require that
2875  // the return/param types be complete.
2876  if (MD->doesThisDeclarationHaveABody())
2877    return;
2878
2879  // For safety's sake, just ignore it if we don't have type source
2880  // information.  This should never happen for non-implicit methods,
2881  // but...
2882  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2883    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2884}
2885
2886/// Check for invalid uses of an abstract type within a class definition.
2887static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2888                                    CXXRecordDecl *RD) {
2889  for (CXXRecordDecl::decl_iterator
2890         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2891    Decl *D = *I;
2892    if (D->isImplicit()) continue;
2893
2894    // Methods and method templates.
2895    if (isa<CXXMethodDecl>(D)) {
2896      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2897    } else if (isa<FunctionTemplateDecl>(D)) {
2898      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2899      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2900
2901    // Fields and static variables.
2902    } else if (isa<FieldDecl>(D)) {
2903      FieldDecl *FD = cast<FieldDecl>(D);
2904      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2905        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2906    } else if (isa<VarDecl>(D)) {
2907      VarDecl *VD = cast<VarDecl>(D);
2908      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2909        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2910
2911    // Nested classes and class templates.
2912    } else if (isa<CXXRecordDecl>(D)) {
2913      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2914    } else if (isa<ClassTemplateDecl>(D)) {
2915      CheckAbstractClassUsage(Info,
2916                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2917    }
2918  }
2919}
2920
2921/// \brief Perform semantic checks on a class definition that has been
2922/// completing, introducing implicitly-declared members, checking for
2923/// abstract types, etc.
2924void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2925  if (!Record)
2926    return;
2927
2928  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2929    AbstractUsageInfo Info(*this, Record);
2930    CheckAbstractClassUsage(Info, Record);
2931  }
2932
2933  // If this is not an aggregate type and has no user-declared constructor,
2934  // complain about any non-static data members of reference or const scalar
2935  // type, since they will never get initializers.
2936  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2937      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2938    bool Complained = false;
2939    for (RecordDecl::field_iterator F = Record->field_begin(),
2940                                 FEnd = Record->field_end();
2941         F != FEnd; ++F) {
2942      if (F->getType()->isReferenceType() ||
2943          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2944        if (!Complained) {
2945          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2946            << Record->getTagKind() << Record;
2947          Complained = true;
2948        }
2949
2950        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2951          << F->getType()->isReferenceType()
2952          << F->getDeclName();
2953      }
2954    }
2955  }
2956
2957  if (Record->isDynamicClass() && !Record->isDependentType())
2958    DynamicClasses.push_back(Record);
2959
2960  if (Record->getIdentifier()) {
2961    // C++ [class.mem]p13:
2962    //   If T is the name of a class, then each of the following shall have a
2963    //   name different from T:
2964    //     - every member of every anonymous union that is a member of class T.
2965    //
2966    // C++ [class.mem]p14:
2967    //   In addition, if class T has a user-declared constructor (12.1), every
2968    //   non-static data member of class T shall have a name different from T.
2969    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2970         R.first != R.second; ++R.first) {
2971      NamedDecl *D = *R.first;
2972      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2973          isa<IndirectFieldDecl>(D)) {
2974        Diag(D->getLocation(), diag::err_member_name_of_class)
2975          << D->getDeclName();
2976        break;
2977      }
2978    }
2979  }
2980
2981  // Warn if the class has virtual methods but non-virtual public destructor.
2982  if (Record->isPolymorphic() && !Record->isDependentType()) {
2983    CXXDestructorDecl *dtor = Record->getDestructor();
2984    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
2985      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
2986           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
2987  }
2988
2989  // See if a method overloads virtual methods in a base
2990  /// class without overriding any.
2991  if (!Record->isDependentType()) {
2992    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
2993                                     MEnd = Record->method_end();
2994         M != MEnd; ++M) {
2995      if (!(*M)->isStatic())
2996        DiagnoseHiddenVirtualMethods(Record, *M);
2997    }
2998  }
2999
3000  // Declare inherited constructors. We do this eagerly here because:
3001  // - The standard requires an eager diagnostic for conflicting inherited
3002  //   constructors from different classes.
3003  // - The lazy declaration of the other implicit constructors is so as to not
3004  //   waste space and performance on classes that are not meant to be
3005  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3006  //   have inherited constructors.
3007  DeclareInheritedConstructors(Record);
3008
3009  if (!Record->isDependentType())
3010    CheckExplicitlyDefaultedMethods(Record);
3011}
3012
3013void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3014  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3015                                      ME = Record->method_end();
3016       MI != ME; ++MI) {
3017    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3018      switch (getSpecialMember(*MI)) {
3019      case CXXDefaultConstructor:
3020        CheckExplicitlyDefaultedDefaultConstructor(
3021                                                  cast<CXXConstructorDecl>(*MI));
3022        break;
3023
3024      case CXXDestructor:
3025        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3026        break;
3027
3028      case CXXCopyConstructor:
3029        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3030        break;
3031
3032      case CXXCopyAssignment:
3033        CheckExplicitlyDefaultedCopyAssignment(*MI);
3034        break;
3035
3036      case CXXMoveConstructor:
3037      case CXXMoveAssignment:
3038        Diag(MI->getLocation(), diag::err_defaulted_move_unsupported);
3039        break;
3040
3041      default:
3042        // FIXME: Do moves once they exist
3043        llvm_unreachable("non-special member explicitly defaulted!");
3044      }
3045    }
3046  }
3047
3048}
3049
3050void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3051  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3052
3053  // Whether this was the first-declared instance of the constructor.
3054  // This affects whether we implicitly add an exception spec (and, eventually,
3055  // constexpr). It is also ill-formed to explicitly default a constructor such
3056  // that it would be deleted. (C++0x [decl.fct.def.default])
3057  bool First = CD == CD->getCanonicalDecl();
3058
3059  bool HadError = false;
3060  if (CD->getNumParams() != 0) {
3061    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3062      << CD->getSourceRange();
3063    HadError = true;
3064  }
3065
3066  ImplicitExceptionSpecification Spec
3067    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3068  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3069  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3070                          *ExceptionType = Context.getFunctionType(
3071                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3072
3073  if (CtorType->hasExceptionSpec()) {
3074    if (CheckEquivalentExceptionSpec(
3075          PDiag(diag::err_incorrect_defaulted_exception_spec)
3076            << CXXDefaultConstructor,
3077          PDiag(),
3078          ExceptionType, SourceLocation(),
3079          CtorType, CD->getLocation())) {
3080      HadError = true;
3081    }
3082  } else if (First) {
3083    // We set the declaration to have the computed exception spec here.
3084    // We know there are no parameters.
3085    EPI.ExtInfo = CtorType->getExtInfo();
3086    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3087  }
3088
3089  if (HadError) {
3090    CD->setInvalidDecl();
3091    return;
3092  }
3093
3094  if (ShouldDeleteDefaultConstructor(CD)) {
3095    if (First) {
3096      CD->setDeletedAsWritten();
3097    } else {
3098      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3099        << CXXDefaultConstructor;
3100      CD->setInvalidDecl();
3101    }
3102  }
3103}
3104
3105void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3106  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3107
3108  // Whether this was the first-declared instance of the constructor.
3109  bool First = CD == CD->getCanonicalDecl();
3110
3111  bool HadError = false;
3112  if (CD->getNumParams() != 1) {
3113    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3114      << CD->getSourceRange();
3115    HadError = true;
3116  }
3117
3118  ImplicitExceptionSpecification Spec(Context);
3119  bool Const;
3120  llvm::tie(Spec, Const) =
3121    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3122
3123  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3124  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3125                          *ExceptionType = Context.getFunctionType(
3126                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3127
3128  // Check for parameter type matching.
3129  // This is a copy ctor so we know it's a cv-qualified reference to T.
3130  QualType ArgType = CtorType->getArgType(0);
3131  if (ArgType->getPointeeType().isVolatileQualified()) {
3132    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3133    HadError = true;
3134  }
3135  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3136    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3137    HadError = true;
3138  }
3139
3140  if (CtorType->hasExceptionSpec()) {
3141    if (CheckEquivalentExceptionSpec(
3142          PDiag(diag::err_incorrect_defaulted_exception_spec)
3143            << CXXCopyConstructor,
3144          PDiag(),
3145          ExceptionType, SourceLocation(),
3146          CtorType, CD->getLocation())) {
3147      HadError = true;
3148    }
3149  } else if (First) {
3150    // We set the declaration to have the computed exception spec here.
3151    // We duplicate the one parameter type.
3152    EPI.ExtInfo = CtorType->getExtInfo();
3153    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3154  }
3155
3156  if (HadError) {
3157    CD->setInvalidDecl();
3158    return;
3159  }
3160
3161  if (ShouldDeleteCopyConstructor(CD)) {
3162    if (First) {
3163      CD->setDeletedAsWritten();
3164    } else {
3165      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3166        << CXXCopyConstructor;
3167      CD->setInvalidDecl();
3168    }
3169  }
3170}
3171
3172void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3173  assert(MD->isExplicitlyDefaulted());
3174
3175  // Whether this was the first-declared instance of the operator
3176  bool First = MD == MD->getCanonicalDecl();
3177
3178  bool HadError = false;
3179  if (MD->getNumParams() != 1) {
3180    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3181      << MD->getSourceRange();
3182    HadError = true;
3183  }
3184
3185  QualType ReturnType =
3186    MD->getType()->getAs<FunctionType>()->getResultType();
3187  if (!ReturnType->isLValueReferenceType() ||
3188      !Context.hasSameType(
3189        Context.getCanonicalType(ReturnType->getPointeeType()),
3190        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3191    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3192    HadError = true;
3193  }
3194
3195  ImplicitExceptionSpecification Spec(Context);
3196  bool Const;
3197  llvm::tie(Spec, Const) =
3198    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3199
3200  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3201  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3202                          *ExceptionType = Context.getFunctionType(
3203                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3204
3205  QualType ArgType = OperType->getArgType(0);
3206  if (!ArgType->isReferenceType()) {
3207    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3208    HadError = true;
3209  } else {
3210    if (ArgType->getPointeeType().isVolatileQualified()) {
3211      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3212      HadError = true;
3213    }
3214    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3215      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3216      HadError = true;
3217    }
3218  }
3219
3220  if (OperType->getTypeQuals()) {
3221    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3222    HadError = true;
3223  }
3224
3225  if (OperType->hasExceptionSpec()) {
3226    if (CheckEquivalentExceptionSpec(
3227          PDiag(diag::err_incorrect_defaulted_exception_spec)
3228            << CXXCopyAssignment,
3229          PDiag(),
3230          ExceptionType, SourceLocation(),
3231          OperType, MD->getLocation())) {
3232      HadError = true;
3233    }
3234  } else if (First) {
3235    // We set the declaration to have the computed exception spec here.
3236    // We duplicate the one parameter type.
3237    EPI.RefQualifier = OperType->getRefQualifier();
3238    EPI.ExtInfo = OperType->getExtInfo();
3239    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3240  }
3241
3242  if (HadError) {
3243    MD->setInvalidDecl();
3244    return;
3245  }
3246
3247  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3248    if (First) {
3249      MD->setDeletedAsWritten();
3250    } else {
3251      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3252        << CXXCopyAssignment;
3253      MD->setInvalidDecl();
3254    }
3255  }
3256}
3257
3258void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
3259  assert(DD->isExplicitlyDefaulted());
3260
3261  // Whether this was the first-declared instance of the destructor.
3262  bool First = DD == DD->getCanonicalDecl();
3263
3264  ImplicitExceptionSpecification Spec
3265    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
3266  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3267  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
3268                          *ExceptionType = Context.getFunctionType(
3269                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3270
3271  if (DtorType->hasExceptionSpec()) {
3272    if (CheckEquivalentExceptionSpec(
3273          PDiag(diag::err_incorrect_defaulted_exception_spec)
3274            << CXXDestructor,
3275          PDiag(),
3276          ExceptionType, SourceLocation(),
3277          DtorType, DD->getLocation())) {
3278      DD->setInvalidDecl();
3279      return;
3280    }
3281  } else if (First) {
3282    // We set the declaration to have the computed exception spec here.
3283    // There are no parameters.
3284    EPI.ExtInfo = DtorType->getExtInfo();
3285    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3286  }
3287
3288  if (ShouldDeleteDestructor(DD)) {
3289    if (First) {
3290      DD->setDeletedAsWritten();
3291    } else {
3292      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
3293        << CXXDestructor;
3294      DD->setInvalidDecl();
3295    }
3296  }
3297}
3298
3299bool Sema::ShouldDeleteDefaultConstructor(CXXConstructorDecl *CD) {
3300  CXXRecordDecl *RD = CD->getParent();
3301  assert(!RD->isDependentType() && "do deletion after instantiation");
3302  if (!LangOpts.CPlusPlus0x)
3303    return false;
3304
3305  SourceLocation Loc = CD->getLocation();
3306
3307  // Do access control from the constructor
3308  ContextRAII CtorContext(*this, CD);
3309
3310  bool Union = RD->isUnion();
3311  bool AllConst = true;
3312
3313  // We do this because we should never actually use an anonymous
3314  // union's constructor.
3315  if (Union && RD->isAnonymousStructOrUnion())
3316    return false;
3317
3318  // FIXME: We should put some diagnostic logic right into this function.
3319
3320  // C++0x [class.ctor]/5
3321  //    A defaulted default constructor for class X is defined as delete if:
3322
3323  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3324                                          BE = RD->bases_end();
3325       BI != BE; ++BI) {
3326    // We'll handle this one later
3327    if (BI->isVirtual())
3328      continue;
3329
3330    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3331    assert(BaseDecl && "base isn't a CXXRecordDecl");
3332
3333    // -- any [direct base class] has a type with a destructor that is
3334    //    delete or inaccessible from the defaulted default constructor
3335    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3336    if (BaseDtor->isDeleted())
3337      return true;
3338    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3339        AR_accessible)
3340      return true;
3341
3342    // -- any [direct base class either] has no default constructor or
3343    //    overload resolution as applied to [its] default constructor
3344    //    results in an ambiguity or in a function that is deleted or
3345    //    inaccessible from the defaulted default constructor
3346    InitializedEntity BaseEntity =
3347      InitializedEntity::InitializeBase(Context, BI, 0);
3348    InitializationKind Kind =
3349      InitializationKind::CreateDirect(Loc, Loc, Loc);
3350
3351    InitializationSequence InitSeq(*this, BaseEntity, Kind, 0, 0);
3352
3353    if (InitSeq.Failed())
3354      return true;
3355  }
3356
3357  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3358                                          BE = RD->vbases_end();
3359       BI != BE; ++BI) {
3360    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3361    assert(BaseDecl && "base isn't a CXXRecordDecl");
3362
3363    // -- any [virtual base class] has a type with a destructor that is
3364    //    delete or inaccessible from the defaulted default constructor
3365    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3366    if (BaseDtor->isDeleted())
3367      return true;
3368    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3369        AR_accessible)
3370      return true;
3371
3372    // -- any [virtual base class either] has no default constructor or
3373    //    overload resolution as applied to [its] default constructor
3374    //    results in an ambiguity or in a function that is deleted or
3375    //    inaccessible from the defaulted default constructor
3376    InitializedEntity BaseEntity =
3377      InitializedEntity::InitializeBase(Context, BI, BI);
3378    InitializationKind Kind =
3379      InitializationKind::CreateDirect(Loc, Loc, Loc);
3380
3381    InitializationSequence InitSeq(*this, BaseEntity, Kind, 0, 0);
3382
3383    if (InitSeq.Failed())
3384      return true;
3385  }
3386
3387  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3388                                     FE = RD->field_end();
3389       FI != FE; ++FI) {
3390    QualType FieldType = Context.getBaseElementType(FI->getType());
3391    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3392
3393    // -- any non-static data member with no brace-or-equal-initializer is of
3394    //    reference type
3395    if (FieldType->isReferenceType())
3396      return true;
3397
3398    // -- X is a union and all its variant members are of const-qualified type
3399    //    (or array thereof)
3400    if (Union && !FieldType.isConstQualified())
3401      AllConst = false;
3402
3403    if (FieldRecord) {
3404      // -- X is a union-like class that has a variant member with a non-trivial
3405      //    default constructor
3406      if (Union && !FieldRecord->hasTrivialDefaultConstructor())
3407        return true;
3408
3409      CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3410      if (FieldDtor->isDeleted())
3411        return true;
3412      if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3413          AR_accessible)
3414        return true;
3415
3416      // -- any non-variant non-static data member of const-qualified type (or
3417      //    array thereof) with no brace-or-equal-initializer does not have a
3418      //    user-provided default constructor
3419      if (FieldType.isConstQualified() &&
3420          !FieldRecord->hasUserProvidedDefaultConstructor())
3421        return true;
3422
3423      if (!Union && FieldRecord->isUnion() &&
3424          FieldRecord->isAnonymousStructOrUnion()) {
3425        // We're okay to reuse AllConst here since we only care about the
3426        // value otherwise if we're in a union.
3427        AllConst = true;
3428
3429        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3430                                           UE = FieldRecord->field_end();
3431             UI != UE; ++UI) {
3432          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3433          CXXRecordDecl *UnionFieldRecord =
3434            UnionFieldType->getAsCXXRecordDecl();
3435
3436          if (!UnionFieldType.isConstQualified())
3437            AllConst = false;
3438
3439          if (UnionFieldRecord &&
3440              !UnionFieldRecord->hasTrivialDefaultConstructor())
3441            return true;
3442        }
3443
3444        if (AllConst)
3445          return true;
3446
3447        // Don't try to initialize the anonymous union
3448        // This is technically non-conformant, but sanity demands it.
3449        continue;
3450      }
3451    } else if (!Union && FieldType.isConstQualified()) {
3452      // -- any non-variant non-static data member of const-qualified type (or
3453      //    array thereof) with no brace-or-equal-initializer does not have a
3454      //    user-provided default constructor
3455      return true;
3456    }
3457
3458    InitializedEntity MemberEntity =
3459      InitializedEntity::InitializeMember(*FI, 0);
3460    InitializationKind Kind =
3461      InitializationKind::CreateDirect(Loc, Loc, Loc);
3462
3463    InitializationSequence InitSeq(*this, MemberEntity, Kind, 0, 0);
3464
3465    if (InitSeq.Failed())
3466      return true;
3467  }
3468
3469  if (Union && AllConst)
3470    return true;
3471
3472  return false;
3473}
3474
3475bool Sema::ShouldDeleteCopyConstructor(CXXConstructorDecl *CD) {
3476  CXXRecordDecl *RD = CD->getParent();
3477  assert(!RD->isDependentType() && "do deletion after instantiation");
3478  if (!LangOpts.CPlusPlus0x)
3479    return false;
3480
3481  SourceLocation Loc = CD->getLocation();
3482
3483  // Do access control from the constructor
3484  ContextRAII CtorContext(*this, CD);
3485
3486    bool Union = RD->isUnion();
3487
3488  assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() &&
3489         "copy assignment arg has no pointee type");
3490  bool ConstArg =
3491    CD->getParamDecl(0)->getType()->getPointeeType().isConstQualified();
3492
3493  // We do this because we should never actually use an anonymous
3494  // union's constructor.
3495  if (Union && RD->isAnonymousStructOrUnion())
3496    return false;
3497
3498  // FIXME: We should put some diagnostic logic right into this function.
3499
3500  // C++0x [class.copy]/11
3501  //    A defaulted [copy] constructor for class X is defined as delete if X has:
3502
3503  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3504                                          BE = RD->bases_end();
3505       BI != BE; ++BI) {
3506    // We'll handle this one later
3507    if (BI->isVirtual())
3508      continue;
3509
3510    QualType BaseType = BI->getType();
3511    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3512    assert(BaseDecl && "base isn't a CXXRecordDecl");
3513
3514    // -- any [direct base class] of a type with a destructor that is deleted or
3515    //    inaccessible from the defaulted constructor
3516    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3517    if (BaseDtor->isDeleted())
3518      return true;
3519    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3520        AR_accessible)
3521      return true;
3522
3523    // -- a [direct base class] B that cannot be [copied] because overload
3524    //    resolution, as applied to B's [copy] constructor, results in an
3525    //    ambiguity or a function that is deleted or inaccessible from the
3526    //    defaulted constructor
3527    InitializedEntity BaseEntity =
3528      InitializedEntity::InitializeBase(Context, BI, 0);
3529    InitializationKind Kind =
3530      InitializationKind::CreateDirect(Loc, Loc, Loc);
3531
3532    // Construct a fake expression to perform the copy overloading.
3533    QualType ArgType = BaseType.getUnqualifiedType();
3534    if (ConstArg)
3535      ArgType.addConst();
3536    Expr *Arg = new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue);
3537
3538    InitializationSequence InitSeq(*this, BaseEntity, Kind, &Arg, 1);
3539
3540    if (InitSeq.Failed())
3541      return true;
3542  }
3543
3544  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3545                                          BE = RD->vbases_end();
3546       BI != BE; ++BI) {
3547    QualType BaseType = BI->getType();
3548    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3549    assert(BaseDecl && "base isn't a CXXRecordDecl");
3550
3551    // -- any [direct base class] of a type with a destructor that is deleted or
3552    //    inaccessible from the defaulted constructor
3553    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3554    if (BaseDtor->isDeleted())
3555      return true;
3556    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3557        AR_accessible)
3558      return true;
3559
3560    // -- a [virtual base class] B that cannot be [copied] because overload
3561    //    resolution, as applied to B's [copy] constructor, results in an
3562    //    ambiguity or a function that is deleted or inaccessible from the
3563    //    defaulted constructor
3564    InitializedEntity BaseEntity =
3565      InitializedEntity::InitializeBase(Context, BI, BI);
3566    InitializationKind Kind =
3567      InitializationKind::CreateDirect(Loc, Loc, Loc);
3568
3569    // Construct a fake expression to perform the copy overloading.
3570    QualType ArgType = BaseType.getUnqualifiedType();
3571    if (ConstArg)
3572      ArgType.addConst();
3573    Expr *Arg = new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue);
3574
3575    InitializationSequence InitSeq(*this, BaseEntity, Kind, &Arg, 1);
3576
3577    if (InitSeq.Failed())
3578      return true;
3579  }
3580
3581  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3582                                     FE = RD->field_end();
3583       FI != FE; ++FI) {
3584    QualType FieldType = Context.getBaseElementType(FI->getType());
3585
3586    // -- for a copy constructor, a non-static data member of rvalue reference
3587    //    type
3588    if (FieldType->isRValueReferenceType())
3589      return true;
3590
3591    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3592
3593    if (FieldRecord) {
3594      // This is an anonymous union
3595      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3596        // Anonymous unions inside unions do not variant members create
3597        if (!Union) {
3598          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3599                                             UE = FieldRecord->field_end();
3600               UI != UE; ++UI) {
3601            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3602            CXXRecordDecl *UnionFieldRecord =
3603              UnionFieldType->getAsCXXRecordDecl();
3604
3605            // -- a variant member with a non-trivial [copy] constructor and X
3606            //    is a union-like class
3607            if (UnionFieldRecord &&
3608                !UnionFieldRecord->hasTrivialCopyConstructor())
3609              return true;
3610          }
3611        }
3612
3613        // Don't try to initalize an anonymous union
3614        continue;
3615      } else {
3616         // -- a variant member with a non-trivial [copy] constructor and X is a
3617         //    union-like class
3618        if (Union && !FieldRecord->hasTrivialCopyConstructor())
3619          return true;
3620
3621        // -- any [non-static data member] of a type with a destructor that is
3622        //    deleted or inaccessible from the defaulted constructor
3623        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3624        if (FieldDtor->isDeleted())
3625          return true;
3626        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3627            AR_accessible)
3628          return true;
3629      }
3630    }
3631
3632    llvm::SmallVector<InitializedEntity, 4> Entities;
3633    QualType CurType = FI->getType();
3634    Entities.push_back(InitializedEntity::InitializeMember(*FI, 0));
3635    while (CurType->isArrayType()) {
3636      Entities.push_back(InitializedEntity::InitializeElement(Context, 0,
3637                                                              Entities.back()));
3638      CurType = Context.getAsArrayType(CurType)->getElementType();
3639    }
3640
3641    InitializationKind Kind =
3642      InitializationKind::CreateDirect(Loc, Loc, Loc);
3643
3644    // Construct a fake expression to perform the copy overloading.
3645    QualType ArgType = FieldType;
3646    if (ArgType->isReferenceType())
3647      ArgType = ArgType->getPointeeType();
3648    else if (ConstArg)
3649      ArgType.addConst();
3650    Expr *Arg = new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue);
3651
3652    InitializationSequence InitSeq(*this, Entities.back(), Kind, &Arg, 1);
3653
3654    if (InitSeq.Failed())
3655      return true;
3656  }
3657
3658  return false;
3659}
3660
3661bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
3662  CXXRecordDecl *RD = MD->getParent();
3663  assert(!RD->isDependentType() && "do deletion after instantiation");
3664  if (!LangOpts.CPlusPlus0x)
3665    return false;
3666
3667  SourceLocation Loc = MD->getLocation();
3668
3669  // Do access control from the constructor
3670  ContextRAII MethodContext(*this, MD);
3671
3672  bool Union = RD->isUnion();
3673
3674  bool ConstArg =
3675    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified();
3676
3677  // We do this because we should never actually use an anonymous
3678  // union's constructor.
3679  if (Union && RD->isAnonymousStructOrUnion())
3680    return false;
3681
3682  DeclarationName OperatorName =
3683    Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3684  LookupResult R(*this, OperatorName, Loc, LookupOrdinaryName);
3685  R.suppressDiagnostics();
3686
3687  // FIXME: We should put some diagnostic logic right into this function.
3688
3689  // C++0x [class.copy]/11
3690  //    A defaulted [copy] assignment operator for class X is defined as deleted
3691  //    if X has:
3692
3693  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3694                                          BE = RD->bases_end();
3695       BI != BE; ++BI) {
3696    // We'll handle this one later
3697    if (BI->isVirtual())
3698      continue;
3699
3700    QualType BaseType = BI->getType();
3701    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3702    assert(BaseDecl && "base isn't a CXXRecordDecl");
3703
3704    // -- a [direct base class] B that cannot be [copied] because overload
3705    //    resolution, as applied to B's [copy] assignment operator, results in
3706    //    an ambiguity or a function that is deleted or inaccessible from the
3707    //    assignment operator
3708
3709    LookupQualifiedName(R, BaseDecl, false);
3710
3711    // Filter out any result that isn't a copy-assignment operator.
3712    LookupResult::Filter F = R.makeFilter();
3713    while (F.hasNext()) {
3714      NamedDecl *D = F.next();
3715      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
3716        if (Method->isCopyAssignmentOperator())
3717          continue;
3718
3719      F.erase();
3720    }
3721    F.done();
3722
3723    // Build a fake argument expression
3724    QualType ArgType = BaseType;
3725    QualType ThisType = BaseType;
3726    if (ConstArg)
3727      ArgType.addConst();
3728    Expr *Args[] = { new (Context) OpaqueValueExpr(Loc, ThisType, VK_LValue)
3729                   , new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue)
3730                   };
3731
3732    OverloadCandidateSet OCS((Loc));
3733    OverloadCandidateSet::iterator Best;
3734
3735    AddFunctionCandidates(R.asUnresolvedSet(), Args, 2, OCS);
3736
3737    if (OCS.BestViableFunction(*this, Loc, Best, false) !=
3738        OR_Success)
3739      return true;
3740  }
3741
3742  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3743                                          BE = RD->vbases_end();
3744       BI != BE; ++BI) {
3745    QualType BaseType = BI->getType();
3746    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3747    assert(BaseDecl && "base isn't a CXXRecordDecl");
3748
3749    // -- a [virtual base class] B that cannot be [copied] because overload
3750    //    resolution, as applied to B's [copy] assignment operator, results in
3751    //    an ambiguity or a function that is deleted or inaccessible from the
3752    //    assignment operator
3753
3754    LookupQualifiedName(R, BaseDecl, false);
3755
3756    // Filter out any result that isn't a copy-assignment operator.
3757    LookupResult::Filter F = R.makeFilter();
3758    while (F.hasNext()) {
3759      NamedDecl *D = F.next();
3760      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
3761        if (Method->isCopyAssignmentOperator())
3762          continue;
3763
3764      F.erase();
3765    }
3766    F.done();
3767
3768    // Build a fake argument expression
3769    QualType ArgType = BaseType;
3770    QualType ThisType = BaseType;
3771    if (ConstArg)
3772      ArgType.addConst();
3773    Expr *Args[] = { new (Context) OpaqueValueExpr(Loc, ThisType, VK_LValue)
3774                   , new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue)
3775                   };
3776
3777    OverloadCandidateSet OCS((Loc));
3778    OverloadCandidateSet::iterator Best;
3779
3780    AddFunctionCandidates(R.asUnresolvedSet(), Args, 2, OCS);
3781
3782    if (OCS.BestViableFunction(*this, Loc, Best, false) !=
3783        OR_Success)
3784      return true;
3785  }
3786
3787  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3788                                     FE = RD->field_end();
3789       FI != FE; ++FI) {
3790    QualType FieldType = Context.getBaseElementType(FI->getType());
3791
3792    // -- a non-static data member of reference type
3793    if (FieldType->isReferenceType())
3794      return true;
3795
3796    // -- a non-static data member of const non-class type (or array thereof)
3797    if (FieldType.isConstQualified() && !FieldType->isRecordType())
3798      return true;
3799
3800    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3801
3802    if (FieldRecord) {
3803      // This is an anonymous union
3804      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3805        // Anonymous unions inside unions do not variant members create
3806        if (!Union) {
3807          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3808                                             UE = FieldRecord->field_end();
3809               UI != UE; ++UI) {
3810            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3811            CXXRecordDecl *UnionFieldRecord =
3812              UnionFieldType->getAsCXXRecordDecl();
3813
3814            // -- a variant member with a non-trivial [copy] assignment operator
3815            //    and X is a union-like class
3816            if (UnionFieldRecord &&
3817                !UnionFieldRecord->hasTrivialCopyAssignment())
3818              return true;
3819          }
3820        }
3821
3822        // Don't try to initalize an anonymous union
3823        continue;
3824      // -- a variant member with a non-trivial [copy] assignment operator
3825      //    and X is a union-like class
3826      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
3827          return true;
3828      }
3829
3830      LookupQualifiedName(R, FieldRecord, false);
3831
3832      // Filter out any result that isn't a copy-assignment operator.
3833      LookupResult::Filter F = R.makeFilter();
3834      while (F.hasNext()) {
3835        NamedDecl *D = F.next();
3836        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
3837          if (Method->isCopyAssignmentOperator())
3838            continue;
3839
3840        F.erase();
3841      }
3842      F.done();
3843
3844      // Build a fake argument expression
3845      QualType ArgType = FieldType;
3846      QualType ThisType = FieldType;
3847      if (ConstArg)
3848        ArgType.addConst();
3849      Expr *Args[] = { new (Context) OpaqueValueExpr(Loc, ThisType, VK_LValue)
3850                     , new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue)
3851                     };
3852
3853      OverloadCandidateSet OCS((Loc));
3854      OverloadCandidateSet::iterator Best;
3855
3856      AddFunctionCandidates(R.asUnresolvedSet(), Args, 2, OCS);
3857
3858      if (OCS.BestViableFunction(*this, Loc, Best, false) !=
3859          OR_Success)
3860        return true;
3861    }
3862  }
3863
3864  return false;
3865}
3866
3867bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
3868  CXXRecordDecl *RD = DD->getParent();
3869  assert(!RD->isDependentType() && "do deletion after instantiation");
3870  if (!LangOpts.CPlusPlus0x)
3871    return false;
3872
3873  SourceLocation Loc = DD->getLocation();
3874
3875  // Do access control from the destructor
3876  ContextRAII CtorContext(*this, DD);
3877
3878  bool Union = RD->isUnion();
3879
3880  // We do this because we should never actually use an anonymous
3881  // union's destructor.
3882  if (Union && RD->isAnonymousStructOrUnion())
3883    return false;
3884
3885  // C++0x [class.dtor]p5
3886  //    A defaulted destructor for a class X is defined as deleted if:
3887  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3888                                          BE = RD->bases_end();
3889       BI != BE; ++BI) {
3890    // We'll handle this one later
3891    if (BI->isVirtual())
3892      continue;
3893
3894    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3895    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3896    assert(BaseDtor && "base has no destructor");
3897
3898    // -- any direct or virtual base class has a deleted destructor or
3899    //    a destructor that is inaccessible from the defaulted destructor
3900    if (BaseDtor->isDeleted())
3901      return true;
3902    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3903        AR_accessible)
3904      return true;
3905  }
3906
3907  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3908                                          BE = RD->vbases_end();
3909       BI != BE; ++BI) {
3910    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3911    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3912    assert(BaseDtor && "base has no destructor");
3913
3914    // -- any direct or virtual base class has a deleted destructor or
3915    //    a destructor that is inaccessible from the defaulted destructor
3916    if (BaseDtor->isDeleted())
3917      return true;
3918    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3919        AR_accessible)
3920      return true;
3921  }
3922
3923  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3924                                     FE = RD->field_end();
3925       FI != FE; ++FI) {
3926    QualType FieldType = Context.getBaseElementType(FI->getType());
3927    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3928    if (FieldRecord) {
3929      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3930         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3931                                            UE = FieldRecord->field_end();
3932              UI != UE; ++UI) {
3933           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
3934           CXXRecordDecl *UnionFieldRecord =
3935             UnionFieldType->getAsCXXRecordDecl();
3936
3937           // -- X is a union-like class that has a variant member with a non-
3938           //    trivial destructor.
3939           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
3940             return true;
3941         }
3942      // Technically we are supposed to do this next check unconditionally.
3943      // But that makes absolutely no sense.
3944      } else {
3945        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3946
3947        // -- any of the non-static data members has class type M (or array
3948        //    thereof) and M has a deleted destructor or a destructor that is
3949        //    inaccessible from the defaulted destructor
3950        if (FieldDtor->isDeleted())
3951          return true;
3952        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3953          AR_accessible)
3954        return true;
3955
3956        // -- X is a union-like class that has a variant member with a non-
3957        //    trivial destructor.
3958        if (Union && !FieldDtor->isTrivial())
3959          return true;
3960      }
3961    }
3962  }
3963
3964  if (DD->isVirtual()) {
3965    FunctionDecl *OperatorDelete = 0;
3966    DeclarationName Name =
3967      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3968    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
3969          false))
3970      return true;
3971  }
3972
3973
3974  return false;
3975}
3976
3977/// \brief Data used with FindHiddenVirtualMethod
3978namespace {
3979  struct FindHiddenVirtualMethodData {
3980    Sema *S;
3981    CXXMethodDecl *Method;
3982    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
3983    llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
3984  };
3985}
3986
3987/// \brief Member lookup function that determines whether a given C++
3988/// method overloads virtual methods in a base class without overriding any,
3989/// to be used with CXXRecordDecl::lookupInBases().
3990static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
3991                                    CXXBasePath &Path,
3992                                    void *UserData) {
3993  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3994
3995  FindHiddenVirtualMethodData &Data
3996    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
3997
3998  DeclarationName Name = Data.Method->getDeclName();
3999  assert(Name.getNameKind() == DeclarationName::Identifier);
4000
4001  bool foundSameNameMethod = false;
4002  llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4003  for (Path.Decls = BaseRecord->lookup(Name);
4004       Path.Decls.first != Path.Decls.second;
4005       ++Path.Decls.first) {
4006    NamedDecl *D = *Path.Decls.first;
4007    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4008      MD = MD->getCanonicalDecl();
4009      foundSameNameMethod = true;
4010      // Interested only in hidden virtual methods.
4011      if (!MD->isVirtual())
4012        continue;
4013      // If the method we are checking overrides a method from its base
4014      // don't warn about the other overloaded methods.
4015      if (!Data.S->IsOverload(Data.Method, MD, false))
4016        return true;
4017      // Collect the overload only if its hidden.
4018      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4019        overloadedMethods.push_back(MD);
4020    }
4021  }
4022
4023  if (foundSameNameMethod)
4024    Data.OverloadedMethods.append(overloadedMethods.begin(),
4025                                   overloadedMethods.end());
4026  return foundSameNameMethod;
4027}
4028
4029/// \brief See if a method overloads virtual methods in a base class without
4030/// overriding any.
4031void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4032  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4033                               MD->getLocation()) == Diagnostic::Ignored)
4034    return;
4035  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4036    return;
4037
4038  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4039                     /*bool RecordPaths=*/false,
4040                     /*bool DetectVirtual=*/false);
4041  FindHiddenVirtualMethodData Data;
4042  Data.Method = MD;
4043  Data.S = this;
4044
4045  // Keep the base methods that were overriden or introduced in the subclass
4046  // by 'using' in a set. A base method not in this set is hidden.
4047  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4048       res.first != res.second; ++res.first) {
4049    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4050      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4051                                          E = MD->end_overridden_methods();
4052           I != E; ++I)
4053        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4054    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4055      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4056        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4057  }
4058
4059  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4060      !Data.OverloadedMethods.empty()) {
4061    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4062      << MD << (Data.OverloadedMethods.size() > 1);
4063
4064    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4065      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4066      Diag(overloadedMD->getLocation(),
4067           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4068    }
4069  }
4070}
4071
4072void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4073                                             Decl *TagDecl,
4074                                             SourceLocation LBrac,
4075                                             SourceLocation RBrac,
4076                                             AttributeList *AttrList) {
4077  if (!TagDecl)
4078    return;
4079
4080  AdjustDeclIfTemplate(TagDecl);
4081
4082  ActOnFields(S, RLoc, TagDecl,
4083              // strict aliasing violation!
4084              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4085              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
4086
4087  CheckCompletedCXXClass(
4088                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4089}
4090
4091/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4092/// special functions, such as the default constructor, copy
4093/// constructor, or destructor, to the given C++ class (C++
4094/// [special]p1).  This routine can only be executed just before the
4095/// definition of the class is complete.
4096void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4097  if (!ClassDecl->hasUserDeclaredConstructor())
4098    ++ASTContext::NumImplicitDefaultConstructors;
4099
4100  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4101    ++ASTContext::NumImplicitCopyConstructors;
4102
4103  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4104    ++ASTContext::NumImplicitCopyAssignmentOperators;
4105
4106    // If we have a dynamic class, then the copy assignment operator may be
4107    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4108    // it shows up in the right place in the vtable and that we diagnose
4109    // problems with the implicit exception specification.
4110    if (ClassDecl->isDynamicClass())
4111      DeclareImplicitCopyAssignment(ClassDecl);
4112  }
4113
4114  if (!ClassDecl->hasUserDeclaredDestructor()) {
4115    ++ASTContext::NumImplicitDestructors;
4116
4117    // If we have a dynamic class, then the destructor may be virtual, so we
4118    // have to declare the destructor immediately. This ensures that, e.g., it
4119    // shows up in the right place in the vtable and that we diagnose problems
4120    // with the implicit exception specification.
4121    if (ClassDecl->isDynamicClass())
4122      DeclareImplicitDestructor(ClassDecl);
4123  }
4124}
4125
4126void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4127  if (!D)
4128    return;
4129
4130  int NumParamList = D->getNumTemplateParameterLists();
4131  for (int i = 0; i < NumParamList; i++) {
4132    TemplateParameterList* Params = D->getTemplateParameterList(i);
4133    for (TemplateParameterList::iterator Param = Params->begin(),
4134                                      ParamEnd = Params->end();
4135          Param != ParamEnd; ++Param) {
4136      NamedDecl *Named = cast<NamedDecl>(*Param);
4137      if (Named->getDeclName()) {
4138        S->AddDecl(Named);
4139        IdResolver.AddDecl(Named);
4140      }
4141    }
4142  }
4143}
4144
4145void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4146  if (!D)
4147    return;
4148
4149  TemplateParameterList *Params = 0;
4150  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4151    Params = Template->getTemplateParameters();
4152  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4153           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4154    Params = PartialSpec->getTemplateParameters();
4155  else
4156    return;
4157
4158  for (TemplateParameterList::iterator Param = Params->begin(),
4159                                    ParamEnd = Params->end();
4160       Param != ParamEnd; ++Param) {
4161    NamedDecl *Named = cast<NamedDecl>(*Param);
4162    if (Named->getDeclName()) {
4163      S->AddDecl(Named);
4164      IdResolver.AddDecl(Named);
4165    }
4166  }
4167}
4168
4169void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4170  if (!RecordD) return;
4171  AdjustDeclIfTemplate(RecordD);
4172  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4173  PushDeclContext(S, Record);
4174}
4175
4176void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4177  if (!RecordD) return;
4178  PopDeclContext();
4179}
4180
4181/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4182/// parsing a top-level (non-nested) C++ class, and we are now
4183/// parsing those parts of the given Method declaration that could
4184/// not be parsed earlier (C++ [class.mem]p2), such as default
4185/// arguments. This action should enter the scope of the given
4186/// Method declaration as if we had just parsed the qualified method
4187/// name. However, it should not bring the parameters into scope;
4188/// that will be performed by ActOnDelayedCXXMethodParameter.
4189void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4190}
4191
4192/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4193/// C++ method declaration. We're (re-)introducing the given
4194/// function parameter into scope for use in parsing later parts of
4195/// the method declaration. For example, we could see an
4196/// ActOnParamDefaultArgument event for this parameter.
4197void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4198  if (!ParamD)
4199    return;
4200
4201  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4202
4203  // If this parameter has an unparsed default argument, clear it out
4204  // to make way for the parsed default argument.
4205  if (Param->hasUnparsedDefaultArg())
4206    Param->setDefaultArg(0);
4207
4208  S->AddDecl(Param);
4209  if (Param->getDeclName())
4210    IdResolver.AddDecl(Param);
4211}
4212
4213/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4214/// processing the delayed method declaration for Method. The method
4215/// declaration is now considered finished. There may be a separate
4216/// ActOnStartOfFunctionDef action later (not necessarily
4217/// immediately!) for this method, if it was also defined inside the
4218/// class body.
4219void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4220  if (!MethodD)
4221    return;
4222
4223  AdjustDeclIfTemplate(MethodD);
4224
4225  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4226
4227  // Now that we have our default arguments, check the constructor
4228  // again. It could produce additional diagnostics or affect whether
4229  // the class has implicitly-declared destructors, among other
4230  // things.
4231  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4232    CheckConstructor(Constructor);
4233
4234  // Check the default arguments, which we may have added.
4235  if (!Method->isInvalidDecl())
4236    CheckCXXDefaultArguments(Method);
4237}
4238
4239/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4240/// the well-formedness of the constructor declarator @p D with type @p
4241/// R. If there are any errors in the declarator, this routine will
4242/// emit diagnostics and set the invalid bit to true.  In any case, the type
4243/// will be updated to reflect a well-formed type for the constructor and
4244/// returned.
4245QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4246                                          StorageClass &SC) {
4247  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4248
4249  // C++ [class.ctor]p3:
4250  //   A constructor shall not be virtual (10.3) or static (9.4). A
4251  //   constructor can be invoked for a const, volatile or const
4252  //   volatile object. A constructor shall not be declared const,
4253  //   volatile, or const volatile (9.3.2).
4254  if (isVirtual) {
4255    if (!D.isInvalidType())
4256      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4257        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4258        << SourceRange(D.getIdentifierLoc());
4259    D.setInvalidType();
4260  }
4261  if (SC == SC_Static) {
4262    if (!D.isInvalidType())
4263      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4264        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4265        << SourceRange(D.getIdentifierLoc());
4266    D.setInvalidType();
4267    SC = SC_None;
4268  }
4269
4270  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4271  if (FTI.TypeQuals != 0) {
4272    if (FTI.TypeQuals & Qualifiers::Const)
4273      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4274        << "const" << SourceRange(D.getIdentifierLoc());
4275    if (FTI.TypeQuals & Qualifiers::Volatile)
4276      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4277        << "volatile" << SourceRange(D.getIdentifierLoc());
4278    if (FTI.TypeQuals & Qualifiers::Restrict)
4279      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4280        << "restrict" << SourceRange(D.getIdentifierLoc());
4281    D.setInvalidType();
4282  }
4283
4284  // C++0x [class.ctor]p4:
4285  //   A constructor shall not be declared with a ref-qualifier.
4286  if (FTI.hasRefQualifier()) {
4287    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4288      << FTI.RefQualifierIsLValueRef
4289      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4290    D.setInvalidType();
4291  }
4292
4293  // Rebuild the function type "R" without any type qualifiers (in
4294  // case any of the errors above fired) and with "void" as the
4295  // return type, since constructors don't have return types.
4296  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4297  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4298    return R;
4299
4300  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4301  EPI.TypeQuals = 0;
4302  EPI.RefQualifier = RQ_None;
4303
4304  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
4305                                 Proto->getNumArgs(), EPI);
4306}
4307
4308/// CheckConstructor - Checks a fully-formed constructor for
4309/// well-formedness, issuing any diagnostics required. Returns true if
4310/// the constructor declarator is invalid.
4311void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
4312  CXXRecordDecl *ClassDecl
4313    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
4314  if (!ClassDecl)
4315    return Constructor->setInvalidDecl();
4316
4317  // C++ [class.copy]p3:
4318  //   A declaration of a constructor for a class X is ill-formed if
4319  //   its first parameter is of type (optionally cv-qualified) X and
4320  //   either there are no other parameters or else all other
4321  //   parameters have default arguments.
4322  if (!Constructor->isInvalidDecl() &&
4323      ((Constructor->getNumParams() == 1) ||
4324       (Constructor->getNumParams() > 1 &&
4325        Constructor->getParamDecl(1)->hasDefaultArg())) &&
4326      Constructor->getTemplateSpecializationKind()
4327                                              != TSK_ImplicitInstantiation) {
4328    QualType ParamType = Constructor->getParamDecl(0)->getType();
4329    QualType ClassTy = Context.getTagDeclType(ClassDecl);
4330    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
4331      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
4332      const char *ConstRef
4333        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
4334                                                        : " const &";
4335      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
4336        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
4337
4338      // FIXME: Rather that making the constructor invalid, we should endeavor
4339      // to fix the type.
4340      Constructor->setInvalidDecl();
4341    }
4342  }
4343}
4344
4345/// CheckDestructor - Checks a fully-formed destructor definition for
4346/// well-formedness, issuing any diagnostics required.  Returns true
4347/// on error.
4348bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
4349  CXXRecordDecl *RD = Destructor->getParent();
4350
4351  if (Destructor->isVirtual()) {
4352    SourceLocation Loc;
4353
4354    if (!Destructor->isImplicit())
4355      Loc = Destructor->getLocation();
4356    else
4357      Loc = RD->getLocation();
4358
4359    // If we have a virtual destructor, look up the deallocation function
4360    FunctionDecl *OperatorDelete = 0;
4361    DeclarationName Name =
4362    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4363    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
4364      return true;
4365
4366    MarkDeclarationReferenced(Loc, OperatorDelete);
4367
4368    Destructor->setOperatorDelete(OperatorDelete);
4369  }
4370
4371  return false;
4372}
4373
4374static inline bool
4375FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
4376  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4377          FTI.ArgInfo[0].Param &&
4378          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
4379}
4380
4381/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
4382/// the well-formednes of the destructor declarator @p D with type @p
4383/// R. If there are any errors in the declarator, this routine will
4384/// emit diagnostics and set the declarator to invalid.  Even if this happens,
4385/// will be updated to reflect a well-formed type for the destructor and
4386/// returned.
4387QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
4388                                         StorageClass& SC) {
4389  // C++ [class.dtor]p1:
4390  //   [...] A typedef-name that names a class is a class-name
4391  //   (7.1.3); however, a typedef-name that names a class shall not
4392  //   be used as the identifier in the declarator for a destructor
4393  //   declaration.
4394  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
4395  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
4396    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4397      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
4398  else if (const TemplateSpecializationType *TST =
4399             DeclaratorType->getAs<TemplateSpecializationType>())
4400    if (TST->isTypeAlias())
4401      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4402        << DeclaratorType << 1;
4403
4404  // C++ [class.dtor]p2:
4405  //   A destructor is used to destroy objects of its class type. A
4406  //   destructor takes no parameters, and no return type can be
4407  //   specified for it (not even void). The address of a destructor
4408  //   shall not be taken. A destructor shall not be static. A
4409  //   destructor can be invoked for a const, volatile or const
4410  //   volatile object. A destructor shall not be declared const,
4411  //   volatile or const volatile (9.3.2).
4412  if (SC == SC_Static) {
4413    if (!D.isInvalidType())
4414      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
4415        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4416        << SourceRange(D.getIdentifierLoc())
4417        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4418
4419    SC = SC_None;
4420  }
4421  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4422    // Destructors don't have return types, but the parser will
4423    // happily parse something like:
4424    //
4425    //   class X {
4426    //     float ~X();
4427    //   };
4428    //
4429    // The return type will be eliminated later.
4430    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
4431      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4432      << SourceRange(D.getIdentifierLoc());
4433  }
4434
4435  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4436  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
4437    if (FTI.TypeQuals & Qualifiers::Const)
4438      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4439        << "const" << SourceRange(D.getIdentifierLoc());
4440    if (FTI.TypeQuals & Qualifiers::Volatile)
4441      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4442        << "volatile" << SourceRange(D.getIdentifierLoc());
4443    if (FTI.TypeQuals & Qualifiers::Restrict)
4444      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4445        << "restrict" << SourceRange(D.getIdentifierLoc());
4446    D.setInvalidType();
4447  }
4448
4449  // C++0x [class.dtor]p2:
4450  //   A destructor shall not be declared with a ref-qualifier.
4451  if (FTI.hasRefQualifier()) {
4452    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
4453      << FTI.RefQualifierIsLValueRef
4454      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4455    D.setInvalidType();
4456  }
4457
4458  // Make sure we don't have any parameters.
4459  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
4460    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
4461
4462    // Delete the parameters.
4463    FTI.freeArgs();
4464    D.setInvalidType();
4465  }
4466
4467  // Make sure the destructor isn't variadic.
4468  if (FTI.isVariadic) {
4469    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
4470    D.setInvalidType();
4471  }
4472
4473  // Rebuild the function type "R" without any type qualifiers or
4474  // parameters (in case any of the errors above fired) and with
4475  // "void" as the return type, since destructors don't have return
4476  // types.
4477  if (!D.isInvalidType())
4478    return R;
4479
4480  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4481  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4482  EPI.Variadic = false;
4483  EPI.TypeQuals = 0;
4484  EPI.RefQualifier = RQ_None;
4485  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4486}
4487
4488/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
4489/// well-formednes of the conversion function declarator @p D with
4490/// type @p R. If there are any errors in the declarator, this routine
4491/// will emit diagnostics and return true. Otherwise, it will return
4492/// false. Either way, the type @p R will be updated to reflect a
4493/// well-formed type for the conversion operator.
4494void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
4495                                     StorageClass& SC) {
4496  // C++ [class.conv.fct]p1:
4497  //   Neither parameter types nor return type can be specified. The
4498  //   type of a conversion function (8.3.5) is "function taking no
4499  //   parameter returning conversion-type-id."
4500  if (SC == SC_Static) {
4501    if (!D.isInvalidType())
4502      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
4503        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4504        << SourceRange(D.getIdentifierLoc());
4505    D.setInvalidType();
4506    SC = SC_None;
4507  }
4508
4509  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
4510
4511  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4512    // Conversion functions don't have return types, but the parser will
4513    // happily parse something like:
4514    //
4515    //   class X {
4516    //     float operator bool();
4517    //   };
4518    //
4519    // The return type will be changed later anyway.
4520    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
4521      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4522      << SourceRange(D.getIdentifierLoc());
4523    D.setInvalidType();
4524  }
4525
4526  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4527
4528  // Make sure we don't have any parameters.
4529  if (Proto->getNumArgs() > 0) {
4530    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
4531
4532    // Delete the parameters.
4533    D.getFunctionTypeInfo().freeArgs();
4534    D.setInvalidType();
4535  } else if (Proto->isVariadic()) {
4536    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
4537    D.setInvalidType();
4538  }
4539
4540  // Diagnose "&operator bool()" and other such nonsense.  This
4541  // is actually a gcc extension which we don't support.
4542  if (Proto->getResultType() != ConvType) {
4543    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
4544      << Proto->getResultType();
4545    D.setInvalidType();
4546    ConvType = Proto->getResultType();
4547  }
4548
4549  // C++ [class.conv.fct]p4:
4550  //   The conversion-type-id shall not represent a function type nor
4551  //   an array type.
4552  if (ConvType->isArrayType()) {
4553    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
4554    ConvType = Context.getPointerType(ConvType);
4555    D.setInvalidType();
4556  } else if (ConvType->isFunctionType()) {
4557    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
4558    ConvType = Context.getPointerType(ConvType);
4559    D.setInvalidType();
4560  }
4561
4562  // Rebuild the function type "R" without any parameters (in case any
4563  // of the errors above fired) and with the conversion type as the
4564  // return type.
4565  if (D.isInvalidType())
4566    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
4567
4568  // C++0x explicit conversion operators.
4569  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
4570    Diag(D.getDeclSpec().getExplicitSpecLoc(),
4571         diag::warn_explicit_conversion_functions)
4572      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
4573}
4574
4575/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
4576/// the declaration of the given C++ conversion function. This routine
4577/// is responsible for recording the conversion function in the C++
4578/// class, if possible.
4579Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
4580  assert(Conversion && "Expected to receive a conversion function declaration");
4581
4582  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
4583
4584  // Make sure we aren't redeclaring the conversion function.
4585  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
4586
4587  // C++ [class.conv.fct]p1:
4588  //   [...] A conversion function is never used to convert a
4589  //   (possibly cv-qualified) object to the (possibly cv-qualified)
4590  //   same object type (or a reference to it), to a (possibly
4591  //   cv-qualified) base class of that type (or a reference to it),
4592  //   or to (possibly cv-qualified) void.
4593  // FIXME: Suppress this warning if the conversion function ends up being a
4594  // virtual function that overrides a virtual function in a base class.
4595  QualType ClassType
4596    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4597  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
4598    ConvType = ConvTypeRef->getPointeeType();
4599  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
4600      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4601    /* Suppress diagnostics for instantiations. */;
4602  else if (ConvType->isRecordType()) {
4603    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
4604    if (ConvType == ClassType)
4605      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
4606        << ClassType;
4607    else if (IsDerivedFrom(ClassType, ConvType))
4608      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
4609        <<  ClassType << ConvType;
4610  } else if (ConvType->isVoidType()) {
4611    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
4612      << ClassType << ConvType;
4613  }
4614
4615  if (FunctionTemplateDecl *ConversionTemplate
4616                                = Conversion->getDescribedFunctionTemplate())
4617    return ConversionTemplate;
4618
4619  return Conversion;
4620}
4621
4622//===----------------------------------------------------------------------===//
4623// Namespace Handling
4624//===----------------------------------------------------------------------===//
4625
4626
4627
4628/// ActOnStartNamespaceDef - This is called at the start of a namespace
4629/// definition.
4630Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
4631                                   SourceLocation InlineLoc,
4632                                   SourceLocation NamespaceLoc,
4633                                   SourceLocation IdentLoc,
4634                                   IdentifierInfo *II,
4635                                   SourceLocation LBrace,
4636                                   AttributeList *AttrList) {
4637  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
4638  // For anonymous namespace, take the location of the left brace.
4639  SourceLocation Loc = II ? IdentLoc : LBrace;
4640  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
4641                                                 StartLoc, Loc, II);
4642  Namespc->setInline(InlineLoc.isValid());
4643
4644  Scope *DeclRegionScope = NamespcScope->getParent();
4645
4646  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
4647
4648  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
4649    PushNamespaceVisibilityAttr(Attr);
4650
4651  if (II) {
4652    // C++ [namespace.def]p2:
4653    //   The identifier in an original-namespace-definition shall not
4654    //   have been previously defined in the declarative region in
4655    //   which the original-namespace-definition appears. The
4656    //   identifier in an original-namespace-definition is the name of
4657    //   the namespace. Subsequently in that declarative region, it is
4658    //   treated as an original-namespace-name.
4659    //
4660    // Since namespace names are unique in their scope, and we don't
4661    // look through using directives, just look for any ordinary names.
4662
4663    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
4664      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
4665      Decl::IDNS_Namespace;
4666    NamedDecl *PrevDecl = 0;
4667    for (DeclContext::lookup_result R
4668            = CurContext->getRedeclContext()->lookup(II);
4669         R.first != R.second; ++R.first) {
4670      if ((*R.first)->getIdentifierNamespace() & IDNS) {
4671        PrevDecl = *R.first;
4672        break;
4673      }
4674    }
4675
4676    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
4677      // This is an extended namespace definition.
4678      if (Namespc->isInline() != OrigNS->isInline()) {
4679        // inline-ness must match
4680        if (OrigNS->isInline()) {
4681          // The user probably just forgot the 'inline', so suggest that it
4682          // be added back.
4683          Diag(Namespc->getLocation(),
4684               diag::warn_inline_namespace_reopened_noninline)
4685            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
4686        } else {
4687          Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4688            << Namespc->isInline();
4689        }
4690        Diag(OrigNS->getLocation(), diag::note_previous_definition);
4691
4692        // Recover by ignoring the new namespace's inline status.
4693        Namespc->setInline(OrigNS->isInline());
4694      }
4695
4696      // Attach this namespace decl to the chain of extended namespace
4697      // definitions.
4698      OrigNS->setNextNamespace(Namespc);
4699      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
4700
4701      // Remove the previous declaration from the scope.
4702      if (DeclRegionScope->isDeclScope(OrigNS)) {
4703        IdResolver.RemoveDecl(OrigNS);
4704        DeclRegionScope->RemoveDecl(OrigNS);
4705      }
4706    } else if (PrevDecl) {
4707      // This is an invalid name redefinition.
4708      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
4709       << Namespc->getDeclName();
4710      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4711      Namespc->setInvalidDecl();
4712      // Continue on to push Namespc as current DeclContext and return it.
4713    } else if (II->isStr("std") &&
4714               CurContext->getRedeclContext()->isTranslationUnit()) {
4715      // This is the first "real" definition of the namespace "std", so update
4716      // our cache of the "std" namespace to point at this definition.
4717      if (NamespaceDecl *StdNS = getStdNamespace()) {
4718        // We had already defined a dummy namespace "std". Link this new
4719        // namespace definition to the dummy namespace "std".
4720        StdNS->setNextNamespace(Namespc);
4721        StdNS->setLocation(IdentLoc);
4722        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
4723      }
4724
4725      // Make our StdNamespace cache point at the first real definition of the
4726      // "std" namespace.
4727      StdNamespace = Namespc;
4728    }
4729
4730    PushOnScopeChains(Namespc, DeclRegionScope);
4731  } else {
4732    // Anonymous namespaces.
4733    assert(Namespc->isAnonymousNamespace());
4734
4735    // Link the anonymous namespace into its parent.
4736    NamespaceDecl *PrevDecl;
4737    DeclContext *Parent = CurContext->getRedeclContext();
4738    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
4739      PrevDecl = TU->getAnonymousNamespace();
4740      TU->setAnonymousNamespace(Namespc);
4741    } else {
4742      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
4743      PrevDecl = ND->getAnonymousNamespace();
4744      ND->setAnonymousNamespace(Namespc);
4745    }
4746
4747    // Link the anonymous namespace with its previous declaration.
4748    if (PrevDecl) {
4749      assert(PrevDecl->isAnonymousNamespace());
4750      assert(!PrevDecl->getNextNamespace());
4751      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
4752      PrevDecl->setNextNamespace(Namespc);
4753
4754      if (Namespc->isInline() != PrevDecl->isInline()) {
4755        // inline-ness must match
4756        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4757          << Namespc->isInline();
4758        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4759        Namespc->setInvalidDecl();
4760        // Recover by ignoring the new namespace's inline status.
4761        Namespc->setInline(PrevDecl->isInline());
4762      }
4763    }
4764
4765    CurContext->addDecl(Namespc);
4766
4767    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
4768    //   behaves as if it were replaced by
4769    //     namespace unique { /* empty body */ }
4770    //     using namespace unique;
4771    //     namespace unique { namespace-body }
4772    //   where all occurrences of 'unique' in a translation unit are
4773    //   replaced by the same identifier and this identifier differs
4774    //   from all other identifiers in the entire program.
4775
4776    // We just create the namespace with an empty name and then add an
4777    // implicit using declaration, just like the standard suggests.
4778    //
4779    // CodeGen enforces the "universally unique" aspect by giving all
4780    // declarations semantically contained within an anonymous
4781    // namespace internal linkage.
4782
4783    if (!PrevDecl) {
4784      UsingDirectiveDecl* UD
4785        = UsingDirectiveDecl::Create(Context, CurContext,
4786                                     /* 'using' */ LBrace,
4787                                     /* 'namespace' */ SourceLocation(),
4788                                     /* qualifier */ NestedNameSpecifierLoc(),
4789                                     /* identifier */ SourceLocation(),
4790                                     Namespc,
4791                                     /* Ancestor */ CurContext);
4792      UD->setImplicit();
4793      CurContext->addDecl(UD);
4794    }
4795  }
4796
4797  // Although we could have an invalid decl (i.e. the namespace name is a
4798  // redefinition), push it as current DeclContext and try to continue parsing.
4799  // FIXME: We should be able to push Namespc here, so that the each DeclContext
4800  // for the namespace has the declarations that showed up in that particular
4801  // namespace definition.
4802  PushDeclContext(NamespcScope, Namespc);
4803  return Namespc;
4804}
4805
4806/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
4807/// is a namespace alias, returns the namespace it points to.
4808static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
4809  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
4810    return AD->getNamespace();
4811  return dyn_cast_or_null<NamespaceDecl>(D);
4812}
4813
4814/// ActOnFinishNamespaceDef - This callback is called after a namespace is
4815/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
4816void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
4817  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
4818  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
4819  Namespc->setRBraceLoc(RBrace);
4820  PopDeclContext();
4821  if (Namespc->hasAttr<VisibilityAttr>())
4822    PopPragmaVisibility();
4823}
4824
4825CXXRecordDecl *Sema::getStdBadAlloc() const {
4826  return cast_or_null<CXXRecordDecl>(
4827                                  StdBadAlloc.get(Context.getExternalSource()));
4828}
4829
4830NamespaceDecl *Sema::getStdNamespace() const {
4831  return cast_or_null<NamespaceDecl>(
4832                                 StdNamespace.get(Context.getExternalSource()));
4833}
4834
4835/// \brief Retrieve the special "std" namespace, which may require us to
4836/// implicitly define the namespace.
4837NamespaceDecl *Sema::getOrCreateStdNamespace() {
4838  if (!StdNamespace) {
4839    // The "std" namespace has not yet been defined, so build one implicitly.
4840    StdNamespace = NamespaceDecl::Create(Context,
4841                                         Context.getTranslationUnitDecl(),
4842                                         SourceLocation(), SourceLocation(),
4843                                         &PP.getIdentifierTable().get("std"));
4844    getStdNamespace()->setImplicit(true);
4845  }
4846
4847  return getStdNamespace();
4848}
4849
4850/// \brief Determine whether a using statement is in a context where it will be
4851/// apply in all contexts.
4852static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
4853  switch (CurContext->getDeclKind()) {
4854    case Decl::TranslationUnit:
4855      return true;
4856    case Decl::LinkageSpec:
4857      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
4858    default:
4859      return false;
4860  }
4861}
4862
4863Decl *Sema::ActOnUsingDirective(Scope *S,
4864                                          SourceLocation UsingLoc,
4865                                          SourceLocation NamespcLoc,
4866                                          CXXScopeSpec &SS,
4867                                          SourceLocation IdentLoc,
4868                                          IdentifierInfo *NamespcName,
4869                                          AttributeList *AttrList) {
4870  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4871  assert(NamespcName && "Invalid NamespcName.");
4872  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
4873
4874  // This can only happen along a recovery path.
4875  while (S->getFlags() & Scope::TemplateParamScope)
4876    S = S->getParent();
4877  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4878
4879  UsingDirectiveDecl *UDir = 0;
4880  NestedNameSpecifier *Qualifier = 0;
4881  if (SS.isSet())
4882    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4883
4884  // Lookup namespace name.
4885  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
4886  LookupParsedName(R, S, &SS);
4887  if (R.isAmbiguous())
4888    return 0;
4889
4890  if (R.empty()) {
4891    // Allow "using namespace std;" or "using namespace ::std;" even if
4892    // "std" hasn't been defined yet, for GCC compatibility.
4893    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
4894        NamespcName->isStr("std")) {
4895      Diag(IdentLoc, diag::ext_using_undefined_std);
4896      R.addDecl(getOrCreateStdNamespace());
4897      R.resolveKind();
4898    }
4899    // Otherwise, attempt typo correction.
4900    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4901                                                       CTC_NoKeywords, 0)) {
4902      if (R.getAsSingle<NamespaceDecl>() ||
4903          R.getAsSingle<NamespaceAliasDecl>()) {
4904        if (DeclContext *DC = computeDeclContext(SS, false))
4905          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4906            << NamespcName << DC << Corrected << SS.getRange()
4907            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4908        else
4909          Diag(IdentLoc, diag::err_using_directive_suggest)
4910            << NamespcName << Corrected
4911            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4912        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4913          << Corrected;
4914
4915        NamespcName = Corrected.getAsIdentifierInfo();
4916      } else {
4917        R.clear();
4918        R.setLookupName(NamespcName);
4919      }
4920    }
4921  }
4922
4923  if (!R.empty()) {
4924    NamedDecl *Named = R.getFoundDecl();
4925    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
4926        && "expected namespace decl");
4927    // C++ [namespace.udir]p1:
4928    //   A using-directive specifies that the names in the nominated
4929    //   namespace can be used in the scope in which the
4930    //   using-directive appears after the using-directive. During
4931    //   unqualified name lookup (3.4.1), the names appear as if they
4932    //   were declared in the nearest enclosing namespace which
4933    //   contains both the using-directive and the nominated
4934    //   namespace. [Note: in this context, "contains" means "contains
4935    //   directly or indirectly". ]
4936
4937    // Find enclosing context containing both using-directive and
4938    // nominated namespace.
4939    NamespaceDecl *NS = getNamespaceDecl(Named);
4940    DeclContext *CommonAncestor = cast<DeclContext>(NS);
4941    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
4942      CommonAncestor = CommonAncestor->getParent();
4943
4944    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
4945                                      SS.getWithLocInContext(Context),
4946                                      IdentLoc, Named, CommonAncestor);
4947
4948    if (IsUsingDirectiveInToplevelContext(CurContext) &&
4949        !SourceMgr.isFromMainFile(SourceMgr.getInstantiationLoc(IdentLoc))) {
4950      Diag(IdentLoc, diag::warn_using_directive_in_header);
4951    }
4952
4953    PushUsingDirective(S, UDir);
4954  } else {
4955    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
4956  }
4957
4958  // FIXME: We ignore attributes for now.
4959  return UDir;
4960}
4961
4962void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
4963  // If scope has associated entity, then using directive is at namespace
4964  // or translation unit scope. We add UsingDirectiveDecls, into
4965  // it's lookup structure.
4966  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
4967    Ctx->addDecl(UDir);
4968  else
4969    // Otherwise it is block-sope. using-directives will affect lookup
4970    // only to the end of scope.
4971    S->PushUsingDirective(UDir);
4972}
4973
4974
4975Decl *Sema::ActOnUsingDeclaration(Scope *S,
4976                                  AccessSpecifier AS,
4977                                  bool HasUsingKeyword,
4978                                  SourceLocation UsingLoc,
4979                                  CXXScopeSpec &SS,
4980                                  UnqualifiedId &Name,
4981                                  AttributeList *AttrList,
4982                                  bool IsTypeName,
4983                                  SourceLocation TypenameLoc) {
4984  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4985
4986  switch (Name.getKind()) {
4987  case UnqualifiedId::IK_Identifier:
4988  case UnqualifiedId::IK_OperatorFunctionId:
4989  case UnqualifiedId::IK_LiteralOperatorId:
4990  case UnqualifiedId::IK_ConversionFunctionId:
4991    break;
4992
4993  case UnqualifiedId::IK_ConstructorName:
4994  case UnqualifiedId::IK_ConstructorTemplateId:
4995    // C++0x inherited constructors.
4996    if (getLangOptions().CPlusPlus0x) break;
4997
4998    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
4999      << SS.getRange();
5000    return 0;
5001
5002  case UnqualifiedId::IK_DestructorName:
5003    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5004      << SS.getRange();
5005    return 0;
5006
5007  case UnqualifiedId::IK_TemplateId:
5008    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5009      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5010    return 0;
5011  }
5012
5013  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5014  DeclarationName TargetName = TargetNameInfo.getName();
5015  if (!TargetName)
5016    return 0;
5017
5018  // Warn about using declarations.
5019  // TODO: store that the declaration was written without 'using' and
5020  // talk about access decls instead of using decls in the
5021  // diagnostics.
5022  if (!HasUsingKeyword) {
5023    UsingLoc = Name.getSourceRange().getBegin();
5024
5025    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5026      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5027  }
5028
5029  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5030      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5031    return 0;
5032
5033  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5034                                        TargetNameInfo, AttrList,
5035                                        /* IsInstantiation */ false,
5036                                        IsTypeName, TypenameLoc);
5037  if (UD)
5038    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5039
5040  return UD;
5041}
5042
5043/// \brief Determine whether a using declaration considers the given
5044/// declarations as "equivalent", e.g., if they are redeclarations of
5045/// the same entity or are both typedefs of the same type.
5046static bool
5047IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5048                         bool &SuppressRedeclaration) {
5049  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5050    SuppressRedeclaration = false;
5051    return true;
5052  }
5053
5054  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5055    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5056      SuppressRedeclaration = true;
5057      return Context.hasSameType(TD1->getUnderlyingType(),
5058                                 TD2->getUnderlyingType());
5059    }
5060
5061  return false;
5062}
5063
5064
5065/// Determines whether to create a using shadow decl for a particular
5066/// decl, given the set of decls existing prior to this using lookup.
5067bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5068                                const LookupResult &Previous) {
5069  // Diagnose finding a decl which is not from a base class of the
5070  // current class.  We do this now because there are cases where this
5071  // function will silently decide not to build a shadow decl, which
5072  // will pre-empt further diagnostics.
5073  //
5074  // We don't need to do this in C++0x because we do the check once on
5075  // the qualifier.
5076  //
5077  // FIXME: diagnose the following if we care enough:
5078  //   struct A { int foo; };
5079  //   struct B : A { using A::foo; };
5080  //   template <class T> struct C : A {};
5081  //   template <class T> struct D : C<T> { using B::foo; } // <---
5082  // This is invalid (during instantiation) in C++03 because B::foo
5083  // resolves to the using decl in B, which is not a base class of D<T>.
5084  // We can't diagnose it immediately because C<T> is an unknown
5085  // specialization.  The UsingShadowDecl in D<T> then points directly
5086  // to A::foo, which will look well-formed when we instantiate.
5087  // The right solution is to not collapse the shadow-decl chain.
5088  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5089    DeclContext *OrigDC = Orig->getDeclContext();
5090
5091    // Handle enums and anonymous structs.
5092    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5093    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5094    while (OrigRec->isAnonymousStructOrUnion())
5095      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5096
5097    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5098      if (OrigDC == CurContext) {
5099        Diag(Using->getLocation(),
5100             diag::err_using_decl_nested_name_specifier_is_current_class)
5101          << Using->getQualifierLoc().getSourceRange();
5102        Diag(Orig->getLocation(), diag::note_using_decl_target);
5103        return true;
5104      }
5105
5106      Diag(Using->getQualifierLoc().getBeginLoc(),
5107           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5108        << Using->getQualifier()
5109        << cast<CXXRecordDecl>(CurContext)
5110        << Using->getQualifierLoc().getSourceRange();
5111      Diag(Orig->getLocation(), diag::note_using_decl_target);
5112      return true;
5113    }
5114  }
5115
5116  if (Previous.empty()) return false;
5117
5118  NamedDecl *Target = Orig;
5119  if (isa<UsingShadowDecl>(Target))
5120    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5121
5122  // If the target happens to be one of the previous declarations, we
5123  // don't have a conflict.
5124  //
5125  // FIXME: but we might be increasing its access, in which case we
5126  // should redeclare it.
5127  NamedDecl *NonTag = 0, *Tag = 0;
5128  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5129         I != E; ++I) {
5130    NamedDecl *D = (*I)->getUnderlyingDecl();
5131    bool Result;
5132    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5133      return Result;
5134
5135    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5136  }
5137
5138  if (Target->isFunctionOrFunctionTemplate()) {
5139    FunctionDecl *FD;
5140    if (isa<FunctionTemplateDecl>(Target))
5141      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5142    else
5143      FD = cast<FunctionDecl>(Target);
5144
5145    NamedDecl *OldDecl = 0;
5146    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5147    case Ovl_Overload:
5148      return false;
5149
5150    case Ovl_NonFunction:
5151      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5152      break;
5153
5154    // We found a decl with the exact signature.
5155    case Ovl_Match:
5156      // If we're in a record, we want to hide the target, so we
5157      // return true (without a diagnostic) to tell the caller not to
5158      // build a shadow decl.
5159      if (CurContext->isRecord())
5160        return true;
5161
5162      // If we're not in a record, this is an error.
5163      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5164      break;
5165    }
5166
5167    Diag(Target->getLocation(), diag::note_using_decl_target);
5168    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5169    return true;
5170  }
5171
5172  // Target is not a function.
5173
5174  if (isa<TagDecl>(Target)) {
5175    // No conflict between a tag and a non-tag.
5176    if (!Tag) return false;
5177
5178    Diag(Using->getLocation(), diag::err_using_decl_conflict);
5179    Diag(Target->getLocation(), diag::note_using_decl_target);
5180    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5181    return true;
5182  }
5183
5184  // No conflict between a tag and a non-tag.
5185  if (!NonTag) return false;
5186
5187  Diag(Using->getLocation(), diag::err_using_decl_conflict);
5188  Diag(Target->getLocation(), diag::note_using_decl_target);
5189  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5190  return true;
5191}
5192
5193/// Builds a shadow declaration corresponding to a 'using' declaration.
5194UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
5195                                            UsingDecl *UD,
5196                                            NamedDecl *Orig) {
5197
5198  // If we resolved to another shadow declaration, just coalesce them.
5199  NamedDecl *Target = Orig;
5200  if (isa<UsingShadowDecl>(Target)) {
5201    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5202    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
5203  }
5204
5205  UsingShadowDecl *Shadow
5206    = UsingShadowDecl::Create(Context, CurContext,
5207                              UD->getLocation(), UD, Target);
5208  UD->addShadowDecl(Shadow);
5209
5210  Shadow->setAccess(UD->getAccess());
5211  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
5212    Shadow->setInvalidDecl();
5213
5214  if (S)
5215    PushOnScopeChains(Shadow, S);
5216  else
5217    CurContext->addDecl(Shadow);
5218
5219
5220  return Shadow;
5221}
5222
5223/// Hides a using shadow declaration.  This is required by the current
5224/// using-decl implementation when a resolvable using declaration in a
5225/// class is followed by a declaration which would hide or override
5226/// one or more of the using decl's targets; for example:
5227///
5228///   struct Base { void foo(int); };
5229///   struct Derived : Base {
5230///     using Base::foo;
5231///     void foo(int);
5232///   };
5233///
5234/// The governing language is C++03 [namespace.udecl]p12:
5235///
5236///   When a using-declaration brings names from a base class into a
5237///   derived class scope, member functions in the derived class
5238///   override and/or hide member functions with the same name and
5239///   parameter types in a base class (rather than conflicting).
5240///
5241/// There are two ways to implement this:
5242///   (1) optimistically create shadow decls when they're not hidden
5243///       by existing declarations, or
5244///   (2) don't create any shadow decls (or at least don't make them
5245///       visible) until we've fully parsed/instantiated the class.
5246/// The problem with (1) is that we might have to retroactively remove
5247/// a shadow decl, which requires several O(n) operations because the
5248/// decl structures are (very reasonably) not designed for removal.
5249/// (2) avoids this but is very fiddly and phase-dependent.
5250void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
5251  if (Shadow->getDeclName().getNameKind() ==
5252        DeclarationName::CXXConversionFunctionName)
5253    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
5254
5255  // Remove it from the DeclContext...
5256  Shadow->getDeclContext()->removeDecl(Shadow);
5257
5258  // ...and the scope, if applicable...
5259  if (S) {
5260    S->RemoveDecl(Shadow);
5261    IdResolver.RemoveDecl(Shadow);
5262  }
5263
5264  // ...and the using decl.
5265  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
5266
5267  // TODO: complain somehow if Shadow was used.  It shouldn't
5268  // be possible for this to happen, because...?
5269}
5270
5271/// Builds a using declaration.
5272///
5273/// \param IsInstantiation - Whether this call arises from an
5274///   instantiation of an unresolved using declaration.  We treat
5275///   the lookup differently for these declarations.
5276NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
5277                                       SourceLocation UsingLoc,
5278                                       CXXScopeSpec &SS,
5279                                       const DeclarationNameInfo &NameInfo,
5280                                       AttributeList *AttrList,
5281                                       bool IsInstantiation,
5282                                       bool IsTypeName,
5283                                       SourceLocation TypenameLoc) {
5284  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5285  SourceLocation IdentLoc = NameInfo.getLoc();
5286  assert(IdentLoc.isValid() && "Invalid TargetName location.");
5287
5288  // FIXME: We ignore attributes for now.
5289
5290  if (SS.isEmpty()) {
5291    Diag(IdentLoc, diag::err_using_requires_qualname);
5292    return 0;
5293  }
5294
5295  // Do the redeclaration lookup in the current scope.
5296  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
5297                        ForRedeclaration);
5298  Previous.setHideTags(false);
5299  if (S) {
5300    LookupName(Previous, S);
5301
5302    // It is really dumb that we have to do this.
5303    LookupResult::Filter F = Previous.makeFilter();
5304    while (F.hasNext()) {
5305      NamedDecl *D = F.next();
5306      if (!isDeclInScope(D, CurContext, S))
5307        F.erase();
5308    }
5309    F.done();
5310  } else {
5311    assert(IsInstantiation && "no scope in non-instantiation");
5312    assert(CurContext->isRecord() && "scope not record in instantiation");
5313    LookupQualifiedName(Previous, CurContext);
5314  }
5315
5316  // Check for invalid redeclarations.
5317  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
5318    return 0;
5319
5320  // Check for bad qualifiers.
5321  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
5322    return 0;
5323
5324  DeclContext *LookupContext = computeDeclContext(SS);
5325  NamedDecl *D;
5326  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
5327  if (!LookupContext) {
5328    if (IsTypeName) {
5329      // FIXME: not all declaration name kinds are legal here
5330      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
5331                                              UsingLoc, TypenameLoc,
5332                                              QualifierLoc,
5333                                              IdentLoc, NameInfo.getName());
5334    } else {
5335      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
5336                                           QualifierLoc, NameInfo);
5337    }
5338  } else {
5339    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
5340                          NameInfo, IsTypeName);
5341  }
5342  D->setAccess(AS);
5343  CurContext->addDecl(D);
5344
5345  if (!LookupContext) return D;
5346  UsingDecl *UD = cast<UsingDecl>(D);
5347
5348  if (RequireCompleteDeclContext(SS, LookupContext)) {
5349    UD->setInvalidDecl();
5350    return UD;
5351  }
5352
5353  // Constructor inheriting using decls get special treatment.
5354  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
5355    if (CheckInheritedConstructorUsingDecl(UD))
5356      UD->setInvalidDecl();
5357    return UD;
5358  }
5359
5360  // Otherwise, look up the target name.
5361
5362  LookupResult R(*this, NameInfo, LookupOrdinaryName);
5363  R.setUsingDeclaration(true);
5364
5365  // Unlike most lookups, we don't always want to hide tag
5366  // declarations: tag names are visible through the using declaration
5367  // even if hidden by ordinary names, *except* in a dependent context
5368  // where it's important for the sanity of two-phase lookup.
5369  if (!IsInstantiation)
5370    R.setHideTags(false);
5371
5372  LookupQualifiedName(R, LookupContext);
5373
5374  if (R.empty()) {
5375    Diag(IdentLoc, diag::err_no_member)
5376      << NameInfo.getName() << LookupContext << SS.getRange();
5377    UD->setInvalidDecl();
5378    return UD;
5379  }
5380
5381  if (R.isAmbiguous()) {
5382    UD->setInvalidDecl();
5383    return UD;
5384  }
5385
5386  if (IsTypeName) {
5387    // If we asked for a typename and got a non-type decl, error out.
5388    if (!R.getAsSingle<TypeDecl>()) {
5389      Diag(IdentLoc, diag::err_using_typename_non_type);
5390      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
5391        Diag((*I)->getUnderlyingDecl()->getLocation(),
5392             diag::note_using_decl_target);
5393      UD->setInvalidDecl();
5394      return UD;
5395    }
5396  } else {
5397    // If we asked for a non-typename and we got a type, error out,
5398    // but only if this is an instantiation of an unresolved using
5399    // decl.  Otherwise just silently find the type name.
5400    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
5401      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
5402      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
5403      UD->setInvalidDecl();
5404      return UD;
5405    }
5406  }
5407
5408  // C++0x N2914 [namespace.udecl]p6:
5409  // A using-declaration shall not name a namespace.
5410  if (R.getAsSingle<NamespaceDecl>()) {
5411    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
5412      << SS.getRange();
5413    UD->setInvalidDecl();
5414    return UD;
5415  }
5416
5417  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
5418    if (!CheckUsingShadowDecl(UD, *I, Previous))
5419      BuildUsingShadowDecl(S, UD, *I);
5420  }
5421
5422  return UD;
5423}
5424
5425/// Additional checks for a using declaration referring to a constructor name.
5426bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
5427  if (UD->isTypeName()) {
5428    // FIXME: Cannot specify typename when specifying constructor
5429    return true;
5430  }
5431
5432  const Type *SourceType = UD->getQualifier()->getAsType();
5433  assert(SourceType &&
5434         "Using decl naming constructor doesn't have type in scope spec.");
5435  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
5436
5437  // Check whether the named type is a direct base class.
5438  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
5439  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
5440  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
5441       BaseIt != BaseE; ++BaseIt) {
5442    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
5443    if (CanonicalSourceType == BaseType)
5444      break;
5445  }
5446
5447  if (BaseIt == BaseE) {
5448    // Did not find SourceType in the bases.
5449    Diag(UD->getUsingLocation(),
5450         diag::err_using_decl_constructor_not_in_direct_base)
5451      << UD->getNameInfo().getSourceRange()
5452      << QualType(SourceType, 0) << TargetClass;
5453    return true;
5454  }
5455
5456  BaseIt->setInheritConstructors();
5457
5458  return false;
5459}
5460
5461/// Checks that the given using declaration is not an invalid
5462/// redeclaration.  Note that this is checking only for the using decl
5463/// itself, not for any ill-formedness among the UsingShadowDecls.
5464bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
5465                                       bool isTypeName,
5466                                       const CXXScopeSpec &SS,
5467                                       SourceLocation NameLoc,
5468                                       const LookupResult &Prev) {
5469  // C++03 [namespace.udecl]p8:
5470  // C++0x [namespace.udecl]p10:
5471  //   A using-declaration is a declaration and can therefore be used
5472  //   repeatedly where (and only where) multiple declarations are
5473  //   allowed.
5474  //
5475  // That's in non-member contexts.
5476  if (!CurContext->getRedeclContext()->isRecord())
5477    return false;
5478
5479  NestedNameSpecifier *Qual
5480    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5481
5482  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
5483    NamedDecl *D = *I;
5484
5485    bool DTypename;
5486    NestedNameSpecifier *DQual;
5487    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
5488      DTypename = UD->isTypeName();
5489      DQual = UD->getQualifier();
5490    } else if (UnresolvedUsingValueDecl *UD
5491                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
5492      DTypename = false;
5493      DQual = UD->getQualifier();
5494    } else if (UnresolvedUsingTypenameDecl *UD
5495                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
5496      DTypename = true;
5497      DQual = UD->getQualifier();
5498    } else continue;
5499
5500    // using decls differ if one says 'typename' and the other doesn't.
5501    // FIXME: non-dependent using decls?
5502    if (isTypeName != DTypename) continue;
5503
5504    // using decls differ if they name different scopes (but note that
5505    // template instantiation can cause this check to trigger when it
5506    // didn't before instantiation).
5507    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
5508        Context.getCanonicalNestedNameSpecifier(DQual))
5509      continue;
5510
5511    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
5512    Diag(D->getLocation(), diag::note_using_decl) << 1;
5513    return true;
5514  }
5515
5516  return false;
5517}
5518
5519
5520/// Checks that the given nested-name qualifier used in a using decl
5521/// in the current context is appropriately related to the current
5522/// scope.  If an error is found, diagnoses it and returns true.
5523bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
5524                                   const CXXScopeSpec &SS,
5525                                   SourceLocation NameLoc) {
5526  DeclContext *NamedContext = computeDeclContext(SS);
5527
5528  if (!CurContext->isRecord()) {
5529    // C++03 [namespace.udecl]p3:
5530    // C++0x [namespace.udecl]p8:
5531    //   A using-declaration for a class member shall be a member-declaration.
5532
5533    // If we weren't able to compute a valid scope, it must be a
5534    // dependent class scope.
5535    if (!NamedContext || NamedContext->isRecord()) {
5536      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
5537        << SS.getRange();
5538      return true;
5539    }
5540
5541    // Otherwise, everything is known to be fine.
5542    return false;
5543  }
5544
5545  // The current scope is a record.
5546
5547  // If the named context is dependent, we can't decide much.
5548  if (!NamedContext) {
5549    // FIXME: in C++0x, we can diagnose if we can prove that the
5550    // nested-name-specifier does not refer to a base class, which is
5551    // still possible in some cases.
5552
5553    // Otherwise we have to conservatively report that things might be
5554    // okay.
5555    return false;
5556  }
5557
5558  if (!NamedContext->isRecord()) {
5559    // Ideally this would point at the last name in the specifier,
5560    // but we don't have that level of source info.
5561    Diag(SS.getRange().getBegin(),
5562         diag::err_using_decl_nested_name_specifier_is_not_class)
5563      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
5564    return true;
5565  }
5566
5567  if (!NamedContext->isDependentContext() &&
5568      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
5569    return true;
5570
5571  if (getLangOptions().CPlusPlus0x) {
5572    // C++0x [namespace.udecl]p3:
5573    //   In a using-declaration used as a member-declaration, the
5574    //   nested-name-specifier shall name a base class of the class
5575    //   being defined.
5576
5577    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
5578                                 cast<CXXRecordDecl>(NamedContext))) {
5579      if (CurContext == NamedContext) {
5580        Diag(NameLoc,
5581             diag::err_using_decl_nested_name_specifier_is_current_class)
5582          << SS.getRange();
5583        return true;
5584      }
5585
5586      Diag(SS.getRange().getBegin(),
5587           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5588        << (NestedNameSpecifier*) SS.getScopeRep()
5589        << cast<CXXRecordDecl>(CurContext)
5590        << SS.getRange();
5591      return true;
5592    }
5593
5594    return false;
5595  }
5596
5597  // C++03 [namespace.udecl]p4:
5598  //   A using-declaration used as a member-declaration shall refer
5599  //   to a member of a base class of the class being defined [etc.].
5600
5601  // Salient point: SS doesn't have to name a base class as long as
5602  // lookup only finds members from base classes.  Therefore we can
5603  // diagnose here only if we can prove that that can't happen,
5604  // i.e. if the class hierarchies provably don't intersect.
5605
5606  // TODO: it would be nice if "definitely valid" results were cached
5607  // in the UsingDecl and UsingShadowDecl so that these checks didn't
5608  // need to be repeated.
5609
5610  struct UserData {
5611    llvm::DenseSet<const CXXRecordDecl*> Bases;
5612
5613    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
5614      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5615      Data->Bases.insert(Base);
5616      return true;
5617    }
5618
5619    bool hasDependentBases(const CXXRecordDecl *Class) {
5620      return !Class->forallBases(collect, this);
5621    }
5622
5623    /// Returns true if the base is dependent or is one of the
5624    /// accumulated base classes.
5625    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
5626      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5627      return !Data->Bases.count(Base);
5628    }
5629
5630    bool mightShareBases(const CXXRecordDecl *Class) {
5631      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
5632    }
5633  };
5634
5635  UserData Data;
5636
5637  // Returns false if we find a dependent base.
5638  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
5639    return false;
5640
5641  // Returns false if the class has a dependent base or if it or one
5642  // of its bases is present in the base set of the current context.
5643  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
5644    return false;
5645
5646  Diag(SS.getRange().getBegin(),
5647       diag::err_using_decl_nested_name_specifier_is_not_base_class)
5648    << (NestedNameSpecifier*) SS.getScopeRep()
5649    << cast<CXXRecordDecl>(CurContext)
5650    << SS.getRange();
5651
5652  return true;
5653}
5654
5655Decl *Sema::ActOnAliasDeclaration(Scope *S,
5656                                  AccessSpecifier AS,
5657                                  MultiTemplateParamsArg TemplateParamLists,
5658                                  SourceLocation UsingLoc,
5659                                  UnqualifiedId &Name,
5660                                  TypeResult Type) {
5661  // Skip up to the relevant declaration scope.
5662  while (S->getFlags() & Scope::TemplateParamScope)
5663    S = S->getParent();
5664  assert((S->getFlags() & Scope::DeclScope) &&
5665         "got alias-declaration outside of declaration scope");
5666
5667  if (Type.isInvalid())
5668    return 0;
5669
5670  bool Invalid = false;
5671  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
5672  TypeSourceInfo *TInfo = 0;
5673  GetTypeFromParser(Type.get(), &TInfo);
5674
5675  if (DiagnoseClassNameShadow(CurContext, NameInfo))
5676    return 0;
5677
5678  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
5679                                      UPPC_DeclarationType)) {
5680    Invalid = true;
5681    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
5682                                             TInfo->getTypeLoc().getBeginLoc());
5683  }
5684
5685  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
5686  LookupName(Previous, S);
5687
5688  // Warn about shadowing the name of a template parameter.
5689  if (Previous.isSingleResult() &&
5690      Previous.getFoundDecl()->isTemplateParameter()) {
5691    if (DiagnoseTemplateParameterShadow(Name.StartLocation,
5692                                        Previous.getFoundDecl()))
5693      Invalid = true;
5694    Previous.clear();
5695  }
5696
5697  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
5698         "name in alias declaration must be an identifier");
5699  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
5700                                               Name.StartLocation,
5701                                               Name.Identifier, TInfo);
5702
5703  NewTD->setAccess(AS);
5704
5705  if (Invalid)
5706    NewTD->setInvalidDecl();
5707
5708  CheckTypedefForVariablyModifiedType(S, NewTD);
5709  Invalid |= NewTD->isInvalidDecl();
5710
5711  bool Redeclaration = false;
5712
5713  NamedDecl *NewND;
5714  if (TemplateParamLists.size()) {
5715    TypeAliasTemplateDecl *OldDecl = 0;
5716    TemplateParameterList *OldTemplateParams = 0;
5717
5718    if (TemplateParamLists.size() != 1) {
5719      Diag(UsingLoc, diag::err_alias_template_extra_headers)
5720        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
5721         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
5722    }
5723    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
5724
5725    // Only consider previous declarations in the same scope.
5726    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
5727                         /*ExplicitInstantiationOrSpecialization*/false);
5728    if (!Previous.empty()) {
5729      Redeclaration = true;
5730
5731      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
5732      if (!OldDecl && !Invalid) {
5733        Diag(UsingLoc, diag::err_redefinition_different_kind)
5734          << Name.Identifier;
5735
5736        NamedDecl *OldD = Previous.getRepresentativeDecl();
5737        if (OldD->getLocation().isValid())
5738          Diag(OldD->getLocation(), diag::note_previous_definition);
5739
5740        Invalid = true;
5741      }
5742
5743      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
5744        if (TemplateParameterListsAreEqual(TemplateParams,
5745                                           OldDecl->getTemplateParameters(),
5746                                           /*Complain=*/true,
5747                                           TPL_TemplateMatch))
5748          OldTemplateParams = OldDecl->getTemplateParameters();
5749        else
5750          Invalid = true;
5751
5752        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
5753        if (!Invalid &&
5754            !Context.hasSameType(OldTD->getUnderlyingType(),
5755                                 NewTD->getUnderlyingType())) {
5756          // FIXME: The C++0x standard does not clearly say this is ill-formed,
5757          // but we can't reasonably accept it.
5758          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
5759            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
5760          if (OldTD->getLocation().isValid())
5761            Diag(OldTD->getLocation(), diag::note_previous_definition);
5762          Invalid = true;
5763        }
5764      }
5765    }
5766
5767    // Merge any previous default template arguments into our parameters,
5768    // and check the parameter list.
5769    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
5770                                   TPC_TypeAliasTemplate))
5771      return 0;
5772
5773    TypeAliasTemplateDecl *NewDecl =
5774      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
5775                                    Name.Identifier, TemplateParams,
5776                                    NewTD);
5777
5778    NewDecl->setAccess(AS);
5779
5780    if (Invalid)
5781      NewDecl->setInvalidDecl();
5782    else if (OldDecl)
5783      NewDecl->setPreviousDeclaration(OldDecl);
5784
5785    NewND = NewDecl;
5786  } else {
5787    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
5788    NewND = NewTD;
5789  }
5790
5791  if (!Redeclaration)
5792    PushOnScopeChains(NewND, S);
5793
5794  return NewND;
5795}
5796
5797Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
5798                                             SourceLocation NamespaceLoc,
5799                                             SourceLocation AliasLoc,
5800                                             IdentifierInfo *Alias,
5801                                             CXXScopeSpec &SS,
5802                                             SourceLocation IdentLoc,
5803                                             IdentifierInfo *Ident) {
5804
5805  // Lookup the namespace name.
5806  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
5807  LookupParsedName(R, S, &SS);
5808
5809  // Check if we have a previous declaration with the same name.
5810  NamedDecl *PrevDecl
5811    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
5812                       ForRedeclaration);
5813  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
5814    PrevDecl = 0;
5815
5816  if (PrevDecl) {
5817    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
5818      // We already have an alias with the same name that points to the same
5819      // namespace, so don't create a new one.
5820      // FIXME: At some point, we'll want to create the (redundant)
5821      // declaration to maintain better source information.
5822      if (!R.isAmbiguous() && !R.empty() &&
5823          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
5824        return 0;
5825    }
5826
5827    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
5828      diag::err_redefinition_different_kind;
5829    Diag(AliasLoc, DiagID) << Alias;
5830    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5831    return 0;
5832  }
5833
5834  if (R.isAmbiguous())
5835    return 0;
5836
5837  if (R.empty()) {
5838    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
5839                                                CTC_NoKeywords, 0)) {
5840      if (R.getAsSingle<NamespaceDecl>() ||
5841          R.getAsSingle<NamespaceAliasDecl>()) {
5842        if (DeclContext *DC = computeDeclContext(SS, false))
5843          Diag(IdentLoc, diag::err_using_directive_member_suggest)
5844            << Ident << DC << Corrected << SS.getRange()
5845            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
5846        else
5847          Diag(IdentLoc, diag::err_using_directive_suggest)
5848            << Ident << Corrected
5849            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
5850
5851        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
5852          << Corrected;
5853
5854        Ident = Corrected.getAsIdentifierInfo();
5855      } else {
5856        R.clear();
5857        R.setLookupName(Ident);
5858      }
5859    }
5860
5861    if (R.empty()) {
5862      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
5863      return 0;
5864    }
5865  }
5866
5867  NamespaceAliasDecl *AliasDecl =
5868    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
5869                               Alias, SS.getWithLocInContext(Context),
5870                               IdentLoc, R.getFoundDecl());
5871
5872  PushOnScopeChains(AliasDecl, S);
5873  return AliasDecl;
5874}
5875
5876namespace {
5877  /// \brief Scoped object used to handle the state changes required in Sema
5878  /// to implicitly define the body of a C++ member function;
5879  class ImplicitlyDefinedFunctionScope {
5880    Sema &S;
5881    Sema::ContextRAII SavedContext;
5882
5883  public:
5884    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
5885      : S(S), SavedContext(S, Method)
5886    {
5887      S.PushFunctionScope();
5888      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
5889    }
5890
5891    ~ImplicitlyDefinedFunctionScope() {
5892      S.PopExpressionEvaluationContext();
5893      S.PopFunctionOrBlockScope();
5894    }
5895  };
5896}
5897
5898static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
5899                                                       CXXRecordDecl *D) {
5900  ASTContext &Context = Self.Context;
5901  QualType ClassType = Context.getTypeDeclType(D);
5902  DeclarationName ConstructorName
5903    = Context.DeclarationNames.getCXXConstructorName(
5904                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
5905
5906  DeclContext::lookup_const_iterator Con, ConEnd;
5907  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
5908       Con != ConEnd; ++Con) {
5909    // FIXME: In C++0x, a constructor template can be a default constructor.
5910    if (isa<FunctionTemplateDecl>(*Con))
5911      continue;
5912
5913    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
5914    if (Constructor->isDefaultConstructor())
5915      return Constructor;
5916  }
5917  return 0;
5918}
5919
5920Sema::ImplicitExceptionSpecification
5921Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
5922  // C++ [except.spec]p14:
5923  //   An implicitly declared special member function (Clause 12) shall have an
5924  //   exception-specification. [...]
5925  ImplicitExceptionSpecification ExceptSpec(Context);
5926
5927  // Direct base-class constructors.
5928  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
5929                                       BEnd = ClassDecl->bases_end();
5930       B != BEnd; ++B) {
5931    if (B->isVirtual()) // Handled below.
5932      continue;
5933
5934    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5935      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5936      if (BaseClassDecl->needsImplicitDefaultConstructor())
5937        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
5938      else if (CXXConstructorDecl *Constructor
5939                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
5940        ExceptSpec.CalledDecl(Constructor);
5941    }
5942  }
5943
5944  // Virtual base-class constructors.
5945  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
5946                                       BEnd = ClassDecl->vbases_end();
5947       B != BEnd; ++B) {
5948    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5949      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5950      if (BaseClassDecl->needsImplicitDefaultConstructor())
5951        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
5952      else if (CXXConstructorDecl *Constructor
5953                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
5954        ExceptSpec.CalledDecl(Constructor);
5955    }
5956  }
5957
5958  // Field constructors.
5959  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
5960                               FEnd = ClassDecl->field_end();
5961       F != FEnd; ++F) {
5962    if (const RecordType *RecordTy
5963              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
5964      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5965      if (FieldClassDecl->needsImplicitDefaultConstructor())
5966        ExceptSpec.CalledDecl(
5967                            DeclareImplicitDefaultConstructor(FieldClassDecl));
5968      else if (CXXConstructorDecl *Constructor
5969                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
5970        ExceptSpec.CalledDecl(Constructor);
5971    }
5972  }
5973
5974  return ExceptSpec;
5975}
5976
5977CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
5978                                                     CXXRecordDecl *ClassDecl) {
5979  // C++ [class.ctor]p5:
5980  //   A default constructor for a class X is a constructor of class X
5981  //   that can be called without an argument. If there is no
5982  //   user-declared constructor for class X, a default constructor is
5983  //   implicitly declared. An implicitly-declared default constructor
5984  //   is an inline public member of its class.
5985  assert(!ClassDecl->hasUserDeclaredConstructor() &&
5986         "Should not build implicit default constructor!");
5987
5988  ImplicitExceptionSpecification Spec =
5989    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
5990  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
5991
5992  // Create the actual constructor declaration.
5993  CanQualType ClassType
5994    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5995  SourceLocation ClassLoc = ClassDecl->getLocation();
5996  DeclarationName Name
5997    = Context.DeclarationNames.getCXXConstructorName(ClassType);
5998  DeclarationNameInfo NameInfo(Name, ClassLoc);
5999  CXXConstructorDecl *DefaultCon
6000    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6001                                 Context.getFunctionType(Context.VoidTy,
6002                                                         0, 0, EPI),
6003                                 /*TInfo=*/0,
6004                                 /*isExplicit=*/false,
6005                                 /*isInline=*/true,
6006                                 /*isImplicitlyDeclared=*/true);
6007  DefaultCon->setAccess(AS_public);
6008  DefaultCon->setDefaulted();
6009  DefaultCon->setImplicit();
6010  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6011
6012  // Note that we have declared this constructor.
6013  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6014
6015  if (Scope *S = getScopeForContext(ClassDecl))
6016    PushOnScopeChains(DefaultCon, S, false);
6017  ClassDecl->addDecl(DefaultCon);
6018
6019  if (ShouldDeleteDefaultConstructor(DefaultCon))
6020    DefaultCon->setDeletedAsWritten();
6021
6022  return DefaultCon;
6023}
6024
6025void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6026                                            CXXConstructorDecl *Constructor) {
6027  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6028          !Constructor->doesThisDeclarationHaveABody() &&
6029          !Constructor->isDeleted()) &&
6030    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6031
6032  CXXRecordDecl *ClassDecl = Constructor->getParent();
6033  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6034
6035  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6036  DiagnosticErrorTrap Trap(Diags);
6037  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6038      Trap.hasErrorOccurred()) {
6039    Diag(CurrentLocation, diag::note_member_synthesized_at)
6040      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6041    Constructor->setInvalidDecl();
6042    return;
6043  }
6044
6045  SourceLocation Loc = Constructor->getLocation();
6046  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6047
6048  Constructor->setUsed();
6049  MarkVTableUsed(CurrentLocation, ClassDecl);
6050
6051  if (ASTMutationListener *L = getASTMutationListener()) {
6052    L->CompletedImplicitDefinition(Constructor);
6053  }
6054}
6055
6056void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6057  // We start with an initial pass over the base classes to collect those that
6058  // inherit constructors from. If there are none, we can forgo all further
6059  // processing.
6060  typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
6061  BasesVector BasesToInheritFrom;
6062  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6063                                          BaseE = ClassDecl->bases_end();
6064         BaseIt != BaseE; ++BaseIt) {
6065    if (BaseIt->getInheritConstructors()) {
6066      QualType Base = BaseIt->getType();
6067      if (Base->isDependentType()) {
6068        // If we inherit constructors from anything that is dependent, just
6069        // abort processing altogether. We'll get another chance for the
6070        // instantiations.
6071        return;
6072      }
6073      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6074    }
6075  }
6076  if (BasesToInheritFrom.empty())
6077    return;
6078
6079  // Now collect the constructors that we already have in the current class.
6080  // Those take precedence over inherited constructors.
6081  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6082  //   unless there is a user-declared constructor with the same signature in
6083  //   the class where the using-declaration appears.
6084  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6085  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6086                                    CtorE = ClassDecl->ctor_end();
6087       CtorIt != CtorE; ++CtorIt) {
6088    ExistingConstructors.insert(
6089        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6090  }
6091
6092  Scope *S = getScopeForContext(ClassDecl);
6093  DeclarationName CreatedCtorName =
6094      Context.DeclarationNames.getCXXConstructorName(
6095          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6096
6097  // Now comes the true work.
6098  // First, we keep a map from constructor types to the base that introduced
6099  // them. Needed for finding conflicting constructors. We also keep the
6100  // actually inserted declarations in there, for pretty diagnostics.
6101  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6102  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6103  ConstructorToSourceMap InheritedConstructors;
6104  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6105                             BaseE = BasesToInheritFrom.end();
6106       BaseIt != BaseE; ++BaseIt) {
6107    const RecordType *Base = *BaseIt;
6108    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6109    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6110    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6111                                      CtorE = BaseDecl->ctor_end();
6112         CtorIt != CtorE; ++CtorIt) {
6113      // Find the using declaration for inheriting this base's constructors.
6114      DeclarationName Name =
6115          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6116      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6117          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6118      SourceLocation UsingLoc = UD ? UD->getLocation() :
6119                                     ClassDecl->getLocation();
6120
6121      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6122      //   from the class X named in the using-declaration consists of actual
6123      //   constructors and notional constructors that result from the
6124      //   transformation of defaulted parameters as follows:
6125      //   - all non-template default constructors of X, and
6126      //   - for each non-template constructor of X that has at least one
6127      //     parameter with a default argument, the set of constructors that
6128      //     results from omitting any ellipsis parameter specification and
6129      //     successively omitting parameters with a default argument from the
6130      //     end of the parameter-type-list.
6131      CXXConstructorDecl *BaseCtor = *CtorIt;
6132      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6133      const FunctionProtoType *BaseCtorType =
6134          BaseCtor->getType()->getAs<FunctionProtoType>();
6135
6136      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6137                    maxParams = BaseCtor->getNumParams();
6138           params <= maxParams; ++params) {
6139        // Skip default constructors. They're never inherited.
6140        if (params == 0)
6141          continue;
6142        // Skip copy and move constructors for the same reason.
6143        if (CanBeCopyOrMove && params == 1)
6144          continue;
6145
6146        // Build up a function type for this particular constructor.
6147        // FIXME: The working paper does not consider that the exception spec
6148        // for the inheriting constructor might be larger than that of the
6149        // source. This code doesn't yet, either.
6150        const Type *NewCtorType;
6151        if (params == maxParams)
6152          NewCtorType = BaseCtorType;
6153        else {
6154          llvm::SmallVector<QualType, 16> Args;
6155          for (unsigned i = 0; i < params; ++i) {
6156            Args.push_back(BaseCtorType->getArgType(i));
6157          }
6158          FunctionProtoType::ExtProtoInfo ExtInfo =
6159              BaseCtorType->getExtProtoInfo();
6160          ExtInfo.Variadic = false;
6161          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6162                                                Args.data(), params, ExtInfo)
6163                       .getTypePtr();
6164        }
6165        const Type *CanonicalNewCtorType =
6166            Context.getCanonicalType(NewCtorType);
6167
6168        // Now that we have the type, first check if the class already has a
6169        // constructor with this signature.
6170        if (ExistingConstructors.count(CanonicalNewCtorType))
6171          continue;
6172
6173        // Then we check if we have already declared an inherited constructor
6174        // with this signature.
6175        std::pair<ConstructorToSourceMap::iterator, bool> result =
6176            InheritedConstructors.insert(std::make_pair(
6177                CanonicalNewCtorType,
6178                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
6179        if (!result.second) {
6180          // Already in the map. If it came from a different class, that's an
6181          // error. Not if it's from the same.
6182          CanQualType PreviousBase = result.first->second.first;
6183          if (CanonicalBase != PreviousBase) {
6184            const CXXConstructorDecl *PrevCtor = result.first->second.second;
6185            const CXXConstructorDecl *PrevBaseCtor =
6186                PrevCtor->getInheritedConstructor();
6187            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
6188
6189            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
6190            Diag(BaseCtor->getLocation(),
6191                 diag::note_using_decl_constructor_conflict_current_ctor);
6192            Diag(PrevBaseCtor->getLocation(),
6193                 diag::note_using_decl_constructor_conflict_previous_ctor);
6194            Diag(PrevCtor->getLocation(),
6195                 diag::note_using_decl_constructor_conflict_previous_using);
6196          }
6197          continue;
6198        }
6199
6200        // OK, we're there, now add the constructor.
6201        // C++0x [class.inhctor]p8: [...] that would be performed by a
6202        //   user-writtern inline constructor [...]
6203        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
6204        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
6205            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
6206            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
6207            /*ImplicitlyDeclared=*/true);
6208        NewCtor->setAccess(BaseCtor->getAccess());
6209
6210        // Build up the parameter decls and add them.
6211        llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
6212        for (unsigned i = 0; i < params; ++i) {
6213          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
6214                                                   UsingLoc, UsingLoc,
6215                                                   /*IdentifierInfo=*/0,
6216                                                   BaseCtorType->getArgType(i),
6217                                                   /*TInfo=*/0, SC_None,
6218                                                   SC_None, /*DefaultArg=*/0));
6219        }
6220        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
6221        NewCtor->setInheritedConstructor(BaseCtor);
6222
6223        PushOnScopeChains(NewCtor, S, false);
6224        ClassDecl->addDecl(NewCtor);
6225        result.first->second.second = NewCtor;
6226      }
6227    }
6228  }
6229}
6230
6231Sema::ImplicitExceptionSpecification
6232Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6233  // C++ [except.spec]p14:
6234  //   An implicitly declared special member function (Clause 12) shall have
6235  //   an exception-specification.
6236  ImplicitExceptionSpecification ExceptSpec(Context);
6237
6238  // Direct base-class destructors.
6239  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6240                                       BEnd = ClassDecl->bases_end();
6241       B != BEnd; ++B) {
6242    if (B->isVirtual()) // Handled below.
6243      continue;
6244
6245    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6246      ExceptSpec.CalledDecl(
6247                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6248  }
6249
6250  // Virtual base-class destructors.
6251  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6252                                       BEnd = ClassDecl->vbases_end();
6253       B != BEnd; ++B) {
6254    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6255      ExceptSpec.CalledDecl(
6256                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6257  }
6258
6259  // Field destructors.
6260  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6261                               FEnd = ClassDecl->field_end();
6262       F != FEnd; ++F) {
6263    if (const RecordType *RecordTy
6264        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
6265      ExceptSpec.CalledDecl(
6266                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
6267  }
6268
6269  return ExceptSpec;
6270}
6271
6272CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
6273  // C++ [class.dtor]p2:
6274  //   If a class has no user-declared destructor, a destructor is
6275  //   declared implicitly. An implicitly-declared destructor is an
6276  //   inline public member of its class.
6277
6278  ImplicitExceptionSpecification Spec =
6279      ComputeDefaultedDtorExceptionSpec(ClassDecl);
6280  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6281
6282  // Create the actual destructor declaration.
6283  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
6284
6285  CanQualType ClassType
6286    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6287  SourceLocation ClassLoc = ClassDecl->getLocation();
6288  DeclarationName Name
6289    = Context.DeclarationNames.getCXXDestructorName(ClassType);
6290  DeclarationNameInfo NameInfo(Name, ClassLoc);
6291  CXXDestructorDecl *Destructor
6292      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
6293                                  /*isInline=*/true,
6294                                  /*isImplicitlyDeclared=*/true);
6295  Destructor->setAccess(AS_public);
6296  Destructor->setDefaulted();
6297  Destructor->setImplicit();
6298  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
6299
6300  // Note that we have declared this destructor.
6301  ++ASTContext::NumImplicitDestructorsDeclared;
6302
6303  // Introduce this destructor into its scope.
6304  if (Scope *S = getScopeForContext(ClassDecl))
6305    PushOnScopeChains(Destructor, S, false);
6306  ClassDecl->addDecl(Destructor);
6307
6308  // This could be uniqued if it ever proves significant.
6309  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
6310
6311  if (ShouldDeleteDestructor(Destructor))
6312    Destructor->setDeletedAsWritten();
6313
6314  AddOverriddenMethods(ClassDecl, Destructor);
6315
6316  return Destructor;
6317}
6318
6319void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
6320                                    CXXDestructorDecl *Destructor) {
6321  assert((Destructor->isDefaulted() &&
6322          !Destructor->doesThisDeclarationHaveABody()) &&
6323         "DefineImplicitDestructor - call it for implicit default dtor");
6324  CXXRecordDecl *ClassDecl = Destructor->getParent();
6325  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
6326
6327  if (Destructor->isInvalidDecl())
6328    return;
6329
6330  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
6331
6332  DiagnosticErrorTrap Trap(Diags);
6333  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6334                                         Destructor->getParent());
6335
6336  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
6337    Diag(CurrentLocation, diag::note_member_synthesized_at)
6338      << CXXDestructor << Context.getTagDeclType(ClassDecl);
6339
6340    Destructor->setInvalidDecl();
6341    return;
6342  }
6343
6344  SourceLocation Loc = Destructor->getLocation();
6345  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6346
6347  Destructor->setUsed();
6348  MarkVTableUsed(CurrentLocation, ClassDecl);
6349
6350  if (ASTMutationListener *L = getASTMutationListener()) {
6351    L->CompletedImplicitDefinition(Destructor);
6352  }
6353}
6354
6355void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
6356                                         CXXDestructorDecl *destructor) {
6357  // C++11 [class.dtor]p3:
6358  //   A declaration of a destructor that does not have an exception-
6359  //   specification is implicitly considered to have the same exception-
6360  //   specification as an implicit declaration.
6361  const FunctionProtoType *dtorType = destructor->getType()->
6362                                        getAs<FunctionProtoType>();
6363  if (dtorType->hasExceptionSpec())
6364    return;
6365
6366  ImplicitExceptionSpecification exceptSpec =
6367      ComputeDefaultedDtorExceptionSpec(classDecl);
6368
6369  // Replace the destructor's type.
6370  FunctionProtoType::ExtProtoInfo epi;
6371  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
6372  epi.NumExceptions = exceptSpec.size();
6373  epi.Exceptions = exceptSpec.data();
6374  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
6375
6376  destructor->setType(ty);
6377
6378  // FIXME: If the destructor has a body that could throw, and the newly created
6379  // spec doesn't allow exceptions, we should emit a warning, because this
6380  // change in behavior can break conforming C++03 programs at runtime.
6381  // However, we don't have a body yet, so it needs to be done somewhere else.
6382}
6383
6384/// \brief Builds a statement that copies the given entity from \p From to
6385/// \c To.
6386///
6387/// This routine is used to copy the members of a class with an
6388/// implicitly-declared copy assignment operator. When the entities being
6389/// copied are arrays, this routine builds for loops to copy them.
6390///
6391/// \param S The Sema object used for type-checking.
6392///
6393/// \param Loc The location where the implicit copy is being generated.
6394///
6395/// \param T The type of the expressions being copied. Both expressions must
6396/// have this type.
6397///
6398/// \param To The expression we are copying to.
6399///
6400/// \param From The expression we are copying from.
6401///
6402/// \param CopyingBaseSubobject Whether we're copying a base subobject.
6403/// Otherwise, it's a non-static member subobject.
6404///
6405/// \param Depth Internal parameter recording the depth of the recursion.
6406///
6407/// \returns A statement or a loop that copies the expressions.
6408static StmtResult
6409BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
6410                      Expr *To, Expr *From,
6411                      bool CopyingBaseSubobject, unsigned Depth = 0) {
6412  // C++0x [class.copy]p30:
6413  //   Each subobject is assigned in the manner appropriate to its type:
6414  //
6415  //     - if the subobject is of class type, the copy assignment operator
6416  //       for the class is used (as if by explicit qualification; that is,
6417  //       ignoring any possible virtual overriding functions in more derived
6418  //       classes);
6419  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
6420    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6421
6422    // Look for operator=.
6423    DeclarationName Name
6424      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6425    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
6426    S.LookupQualifiedName(OpLookup, ClassDecl, false);
6427
6428    // Filter out any result that isn't a copy-assignment operator.
6429    LookupResult::Filter F = OpLookup.makeFilter();
6430    while (F.hasNext()) {
6431      NamedDecl *D = F.next();
6432      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
6433        if (Method->isCopyAssignmentOperator())
6434          continue;
6435
6436      F.erase();
6437    }
6438    F.done();
6439
6440    // Suppress the protected check (C++ [class.protected]) for each of the
6441    // assignment operators we found. This strange dance is required when
6442    // we're assigning via a base classes's copy-assignment operator. To
6443    // ensure that we're getting the right base class subobject (without
6444    // ambiguities), we need to cast "this" to that subobject type; to
6445    // ensure that we don't go through the virtual call mechanism, we need
6446    // to qualify the operator= name with the base class (see below). However,
6447    // this means that if the base class has a protected copy assignment
6448    // operator, the protected member access check will fail. So, we
6449    // rewrite "protected" access to "public" access in this case, since we
6450    // know by construction that we're calling from a derived class.
6451    if (CopyingBaseSubobject) {
6452      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
6453           L != LEnd; ++L) {
6454        if (L.getAccess() == AS_protected)
6455          L.setAccess(AS_public);
6456      }
6457    }
6458
6459    // Create the nested-name-specifier that will be used to qualify the
6460    // reference to operator=; this is required to suppress the virtual
6461    // call mechanism.
6462    CXXScopeSpec SS;
6463    SS.MakeTrivial(S.Context,
6464                   NestedNameSpecifier::Create(S.Context, 0, false,
6465                                               T.getTypePtr()),
6466                   Loc);
6467
6468    // Create the reference to operator=.
6469    ExprResult OpEqualRef
6470      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
6471                                   /*FirstQualifierInScope=*/0, OpLookup,
6472                                   /*TemplateArgs=*/0,
6473                                   /*SuppressQualifierCheck=*/true);
6474    if (OpEqualRef.isInvalid())
6475      return StmtError();
6476
6477    // Build the call to the assignment operator.
6478
6479    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
6480                                                  OpEqualRef.takeAs<Expr>(),
6481                                                  Loc, &From, 1, Loc);
6482    if (Call.isInvalid())
6483      return StmtError();
6484
6485    return S.Owned(Call.takeAs<Stmt>());
6486  }
6487
6488  //     - if the subobject is of scalar type, the built-in assignment
6489  //       operator is used.
6490  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
6491  if (!ArrayTy) {
6492    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
6493    if (Assignment.isInvalid())
6494      return StmtError();
6495
6496    return S.Owned(Assignment.takeAs<Stmt>());
6497  }
6498
6499  //     - if the subobject is an array, each element is assigned, in the
6500  //       manner appropriate to the element type;
6501
6502  // Construct a loop over the array bounds, e.g.,
6503  //
6504  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
6505  //
6506  // that will copy each of the array elements.
6507  QualType SizeType = S.Context.getSizeType();
6508
6509  // Create the iteration variable.
6510  IdentifierInfo *IterationVarName = 0;
6511  {
6512    llvm::SmallString<8> Str;
6513    llvm::raw_svector_ostream OS(Str);
6514    OS << "__i" << Depth;
6515    IterationVarName = &S.Context.Idents.get(OS.str());
6516  }
6517  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
6518                                          IterationVarName, SizeType,
6519                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
6520                                          SC_None, SC_None);
6521
6522  // Initialize the iteration variable to zero.
6523  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
6524  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
6525
6526  // Create a reference to the iteration variable; we'll use this several
6527  // times throughout.
6528  Expr *IterationVarRef
6529    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
6530  assert(IterationVarRef && "Reference to invented variable cannot fail!");
6531
6532  // Create the DeclStmt that holds the iteration variable.
6533  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
6534
6535  // Create the comparison against the array bound.
6536  llvm::APInt Upper
6537    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
6538  Expr *Comparison
6539    = new (S.Context) BinaryOperator(IterationVarRef,
6540                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
6541                                     BO_NE, S.Context.BoolTy,
6542                                     VK_RValue, OK_Ordinary, Loc);
6543
6544  // Create the pre-increment of the iteration variable.
6545  Expr *Increment
6546    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
6547                                    VK_LValue, OK_Ordinary, Loc);
6548
6549  // Subscript the "from" and "to" expressions with the iteration variable.
6550  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
6551                                                         IterationVarRef, Loc));
6552  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
6553                                                       IterationVarRef, Loc));
6554
6555  // Build the copy for an individual element of the array.
6556  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
6557                                          To, From, CopyingBaseSubobject,
6558                                          Depth + 1);
6559  if (Copy.isInvalid())
6560    return StmtError();
6561
6562  // Construct the loop that copies all elements of this array.
6563  return S.ActOnForStmt(Loc, Loc, InitStmt,
6564                        S.MakeFullExpr(Comparison),
6565                        0, S.MakeFullExpr(Increment),
6566                        Loc, Copy.take());
6567}
6568
6569/// \brief Determine whether the given class has a copy assignment operator
6570/// that accepts a const-qualified argument.
6571static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
6572  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
6573
6574  if (!Class->hasDeclaredCopyAssignment())
6575    S.DeclareImplicitCopyAssignment(Class);
6576
6577  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
6578  DeclarationName OpName
6579    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6580
6581  DeclContext::lookup_const_iterator Op, OpEnd;
6582  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
6583    // C++ [class.copy]p9:
6584    //   A user-declared copy assignment operator is a non-static non-template
6585    //   member function of class X with exactly one parameter of type X, X&,
6586    //   const X&, volatile X& or const volatile X&.
6587    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
6588    if (!Method)
6589      continue;
6590
6591    if (Method->isStatic())
6592      continue;
6593    if (Method->getPrimaryTemplate())
6594      continue;
6595    const FunctionProtoType *FnType =
6596    Method->getType()->getAs<FunctionProtoType>();
6597    assert(FnType && "Overloaded operator has no prototype.");
6598    // Don't assert on this; an invalid decl might have been left in the AST.
6599    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
6600      continue;
6601    bool AcceptsConst = true;
6602    QualType ArgType = FnType->getArgType(0);
6603    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
6604      ArgType = Ref->getPointeeType();
6605      // Is it a non-const lvalue reference?
6606      if (!ArgType.isConstQualified())
6607        AcceptsConst = false;
6608    }
6609    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
6610      continue;
6611
6612    // We have a single argument of type cv X or cv X&, i.e. we've found the
6613    // copy assignment operator. Return whether it accepts const arguments.
6614    return AcceptsConst;
6615  }
6616  assert(Class->isInvalidDecl() &&
6617         "No copy assignment operator declared in valid code.");
6618  return false;
6619}
6620
6621std::pair<Sema::ImplicitExceptionSpecification, bool>
6622Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
6623                                                   CXXRecordDecl *ClassDecl) {
6624  // C++ [class.copy]p10:
6625  //   If the class definition does not explicitly declare a copy
6626  //   assignment operator, one is declared implicitly.
6627  //   The implicitly-defined copy assignment operator for a class X
6628  //   will have the form
6629  //
6630  //       X& X::operator=(const X&)
6631  //
6632  //   if
6633  bool HasConstCopyAssignment = true;
6634
6635  //       -- each direct base class B of X has a copy assignment operator
6636  //          whose parameter is of type const B&, const volatile B& or B,
6637  //          and
6638  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6639                                       BaseEnd = ClassDecl->bases_end();
6640       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
6641    assert(!Base->getType()->isDependentType() &&
6642           "Cannot generate implicit members for class with dependent bases.");
6643    const CXXRecordDecl *BaseClassDecl
6644      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6645    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
6646  }
6647
6648  //       -- for all the nonstatic data members of X that are of a class
6649  //          type M (or array thereof), each such class type has a copy
6650  //          assignment operator whose parameter is of type const M&,
6651  //          const volatile M& or M.
6652  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6653                                  FieldEnd = ClassDecl->field_end();
6654       HasConstCopyAssignment && Field != FieldEnd;
6655       ++Field) {
6656    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6657    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
6658      const CXXRecordDecl *FieldClassDecl
6659        = cast<CXXRecordDecl>(FieldClassType->getDecl());
6660      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
6661    }
6662  }
6663
6664  //   Otherwise, the implicitly declared copy assignment operator will
6665  //   have the form
6666  //
6667  //       X& X::operator=(X&)
6668
6669  // C++ [except.spec]p14:
6670  //   An implicitly declared special member function (Clause 12) shall have an
6671  //   exception-specification. [...]
6672  ImplicitExceptionSpecification ExceptSpec(Context);
6673  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6674                                       BaseEnd = ClassDecl->bases_end();
6675       Base != BaseEnd; ++Base) {
6676    CXXRecordDecl *BaseClassDecl
6677      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6678
6679    if (!BaseClassDecl->hasDeclaredCopyAssignment())
6680      DeclareImplicitCopyAssignment(BaseClassDecl);
6681
6682    if (CXXMethodDecl *CopyAssign
6683           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
6684      ExceptSpec.CalledDecl(CopyAssign);
6685  }
6686  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6687                                  FieldEnd = ClassDecl->field_end();
6688       Field != FieldEnd;
6689       ++Field) {
6690    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6691    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
6692      CXXRecordDecl *FieldClassDecl
6693        = cast<CXXRecordDecl>(FieldClassType->getDecl());
6694
6695      if (!FieldClassDecl->hasDeclaredCopyAssignment())
6696        DeclareImplicitCopyAssignment(FieldClassDecl);
6697
6698      if (CXXMethodDecl *CopyAssign
6699            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
6700        ExceptSpec.CalledDecl(CopyAssign);
6701    }
6702  }
6703
6704  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
6705}
6706
6707CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
6708  // Note: The following rules are largely analoguous to the copy
6709  // constructor rules. Note that virtual bases are not taken into account
6710  // for determining the argument type of the operator. Note also that
6711  // operators taking an object instead of a reference are allowed.
6712
6713  ImplicitExceptionSpecification Spec(Context);
6714  bool Const;
6715  llvm::tie(Spec, Const) =
6716    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
6717
6718  QualType ArgType = Context.getTypeDeclType(ClassDecl);
6719  QualType RetType = Context.getLValueReferenceType(ArgType);
6720  if (Const)
6721    ArgType = ArgType.withConst();
6722  ArgType = Context.getLValueReferenceType(ArgType);
6723
6724  //   An implicitly-declared copy assignment operator is an inline public
6725  //   member of its class.
6726  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6727  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6728  SourceLocation ClassLoc = ClassDecl->getLocation();
6729  DeclarationNameInfo NameInfo(Name, ClassLoc);
6730  CXXMethodDecl *CopyAssignment
6731    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6732                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
6733                            /*TInfo=*/0, /*isStatic=*/false,
6734                            /*StorageClassAsWritten=*/SC_None,
6735                            /*isInline=*/true,
6736                            SourceLocation());
6737  CopyAssignment->setAccess(AS_public);
6738  CopyAssignment->setDefaulted();
6739  CopyAssignment->setImplicit();
6740  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
6741
6742  // Add the parameter to the operator.
6743  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
6744                                               ClassLoc, ClassLoc, /*Id=*/0,
6745                                               ArgType, /*TInfo=*/0,
6746                                               SC_None,
6747                                               SC_None, 0);
6748  CopyAssignment->setParams(&FromParam, 1);
6749
6750  // Note that we have added this copy-assignment operator.
6751  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
6752
6753  if (Scope *S = getScopeForContext(ClassDecl))
6754    PushOnScopeChains(CopyAssignment, S, false);
6755  ClassDecl->addDecl(CopyAssignment);
6756
6757  if (ShouldDeleteCopyAssignmentOperator(CopyAssignment))
6758    CopyAssignment->setDeletedAsWritten();
6759
6760  AddOverriddenMethods(ClassDecl, CopyAssignment);
6761  return CopyAssignment;
6762}
6763
6764void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
6765                                        CXXMethodDecl *CopyAssignOperator) {
6766  assert((CopyAssignOperator->isDefaulted() &&
6767          CopyAssignOperator->isOverloadedOperator() &&
6768          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
6769          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
6770         "DefineImplicitCopyAssignment called for wrong function");
6771
6772  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
6773
6774  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
6775    CopyAssignOperator->setInvalidDecl();
6776    return;
6777  }
6778
6779  CopyAssignOperator->setUsed();
6780
6781  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
6782  DiagnosticErrorTrap Trap(Diags);
6783
6784  // C++0x [class.copy]p30:
6785  //   The implicitly-defined or explicitly-defaulted copy assignment operator
6786  //   for a non-union class X performs memberwise copy assignment of its
6787  //   subobjects. The direct base classes of X are assigned first, in the
6788  //   order of their declaration in the base-specifier-list, and then the
6789  //   immediate non-static data members of X are assigned, in the order in
6790  //   which they were declared in the class definition.
6791
6792  // The statements that form the synthesized function body.
6793  ASTOwningVector<Stmt*> Statements(*this);
6794
6795  // The parameter for the "other" object, which we are copying from.
6796  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
6797  Qualifiers OtherQuals = Other->getType().getQualifiers();
6798  QualType OtherRefType = Other->getType();
6799  if (const LValueReferenceType *OtherRef
6800                                = OtherRefType->getAs<LValueReferenceType>()) {
6801    OtherRefType = OtherRef->getPointeeType();
6802    OtherQuals = OtherRefType.getQualifiers();
6803  }
6804
6805  // Our location for everything implicitly-generated.
6806  SourceLocation Loc = CopyAssignOperator->getLocation();
6807
6808  // Construct a reference to the "other" object. We'll be using this
6809  // throughout the generated ASTs.
6810  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
6811  assert(OtherRef && "Reference to parameter cannot fail!");
6812
6813  // Construct the "this" pointer. We'll be using this throughout the generated
6814  // ASTs.
6815  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
6816  assert(This && "Reference to this cannot fail!");
6817
6818  // Assign base classes.
6819  bool Invalid = false;
6820  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6821       E = ClassDecl->bases_end(); Base != E; ++Base) {
6822    // Form the assignment:
6823    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
6824    QualType BaseType = Base->getType().getUnqualifiedType();
6825    if (!BaseType->isRecordType()) {
6826      Invalid = true;
6827      continue;
6828    }
6829
6830    CXXCastPath BasePath;
6831    BasePath.push_back(Base);
6832
6833    // Construct the "from" expression, which is an implicit cast to the
6834    // appropriately-qualified base type.
6835    Expr *From = OtherRef;
6836    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
6837                             CK_UncheckedDerivedToBase,
6838                             VK_LValue, &BasePath).take();
6839
6840    // Dereference "this".
6841    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
6842
6843    // Implicitly cast "this" to the appropriately-qualified base type.
6844    To = ImpCastExprToType(To.take(),
6845                           Context.getCVRQualifiedType(BaseType,
6846                                     CopyAssignOperator->getTypeQualifiers()),
6847                           CK_UncheckedDerivedToBase,
6848                           VK_LValue, &BasePath);
6849
6850    // Build the copy.
6851    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
6852                                            To.get(), From,
6853                                            /*CopyingBaseSubobject=*/true);
6854    if (Copy.isInvalid()) {
6855      Diag(CurrentLocation, diag::note_member_synthesized_at)
6856        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6857      CopyAssignOperator->setInvalidDecl();
6858      return;
6859    }
6860
6861    // Success! Record the copy.
6862    Statements.push_back(Copy.takeAs<Expr>());
6863  }
6864
6865  // \brief Reference to the __builtin_memcpy function.
6866  Expr *BuiltinMemCpyRef = 0;
6867  // \brief Reference to the __builtin_objc_memmove_collectable function.
6868  Expr *CollectableMemCpyRef = 0;
6869
6870  // Assign non-static members.
6871  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6872                                  FieldEnd = ClassDecl->field_end();
6873       Field != FieldEnd; ++Field) {
6874    // Check for members of reference type; we can't copy those.
6875    if (Field->getType()->isReferenceType()) {
6876      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6877        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
6878      Diag(Field->getLocation(), diag::note_declared_at);
6879      Diag(CurrentLocation, diag::note_member_synthesized_at)
6880        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6881      Invalid = true;
6882      continue;
6883    }
6884
6885    // Check for members of const-qualified, non-class type.
6886    QualType BaseType = Context.getBaseElementType(Field->getType());
6887    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
6888      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6889        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
6890      Diag(Field->getLocation(), diag::note_declared_at);
6891      Diag(CurrentLocation, diag::note_member_synthesized_at)
6892        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6893      Invalid = true;
6894      continue;
6895    }
6896
6897    QualType FieldType = Field->getType().getNonReferenceType();
6898    if (FieldType->isIncompleteArrayType()) {
6899      assert(ClassDecl->hasFlexibleArrayMember() &&
6900             "Incomplete array type is not valid");
6901      continue;
6902    }
6903
6904    // Build references to the field in the object we're copying from and to.
6905    CXXScopeSpec SS; // Intentionally empty
6906    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
6907                              LookupMemberName);
6908    MemberLookup.addDecl(*Field);
6909    MemberLookup.resolveKind();
6910    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
6911                                               Loc, /*IsArrow=*/false,
6912                                               SS, 0, MemberLookup, 0);
6913    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
6914                                             Loc, /*IsArrow=*/true,
6915                                             SS, 0, MemberLookup, 0);
6916    assert(!From.isInvalid() && "Implicit field reference cannot fail");
6917    assert(!To.isInvalid() && "Implicit field reference cannot fail");
6918
6919    // If the field should be copied with __builtin_memcpy rather than via
6920    // explicit assignments, do so. This optimization only applies for arrays
6921    // of scalars and arrays of class type with trivial copy-assignment
6922    // operators.
6923    if (FieldType->isArrayType() &&
6924        (!BaseType->isRecordType() ||
6925         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
6926           ->hasTrivialCopyAssignment())) {
6927      // Compute the size of the memory buffer to be copied.
6928      QualType SizeType = Context.getSizeType();
6929      llvm::APInt Size(Context.getTypeSize(SizeType),
6930                       Context.getTypeSizeInChars(BaseType).getQuantity());
6931      for (const ConstantArrayType *Array
6932              = Context.getAsConstantArrayType(FieldType);
6933           Array;
6934           Array = Context.getAsConstantArrayType(Array->getElementType())) {
6935        llvm::APInt ArraySize
6936          = Array->getSize().zextOrTrunc(Size.getBitWidth());
6937        Size *= ArraySize;
6938      }
6939
6940      // Take the address of the field references for "from" and "to".
6941      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
6942      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
6943
6944      bool NeedsCollectableMemCpy =
6945          (BaseType->isRecordType() &&
6946           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
6947
6948      if (NeedsCollectableMemCpy) {
6949        if (!CollectableMemCpyRef) {
6950          // Create a reference to the __builtin_objc_memmove_collectable function.
6951          LookupResult R(*this,
6952                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
6953                         Loc, LookupOrdinaryName);
6954          LookupName(R, TUScope, true);
6955
6956          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
6957          if (!CollectableMemCpy) {
6958            // Something went horribly wrong earlier, and we will have
6959            // complained about it.
6960            Invalid = true;
6961            continue;
6962          }
6963
6964          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
6965                                                  CollectableMemCpy->getType(),
6966                                                  VK_LValue, Loc, 0).take();
6967          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
6968        }
6969      }
6970      // Create a reference to the __builtin_memcpy builtin function.
6971      else if (!BuiltinMemCpyRef) {
6972        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
6973                       LookupOrdinaryName);
6974        LookupName(R, TUScope, true);
6975
6976        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
6977        if (!BuiltinMemCpy) {
6978          // Something went horribly wrong earlier, and we will have complained
6979          // about it.
6980          Invalid = true;
6981          continue;
6982        }
6983
6984        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
6985                                            BuiltinMemCpy->getType(),
6986                                            VK_LValue, Loc, 0).take();
6987        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
6988      }
6989
6990      ASTOwningVector<Expr*> CallArgs(*this);
6991      CallArgs.push_back(To.takeAs<Expr>());
6992      CallArgs.push_back(From.takeAs<Expr>());
6993      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
6994      ExprResult Call = ExprError();
6995      if (NeedsCollectableMemCpy)
6996        Call = ActOnCallExpr(/*Scope=*/0,
6997                             CollectableMemCpyRef,
6998                             Loc, move_arg(CallArgs),
6999                             Loc);
7000      else
7001        Call = ActOnCallExpr(/*Scope=*/0,
7002                             BuiltinMemCpyRef,
7003                             Loc, move_arg(CallArgs),
7004                             Loc);
7005
7006      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7007      Statements.push_back(Call.takeAs<Expr>());
7008      continue;
7009    }
7010
7011    // Build the copy of this field.
7012    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7013                                                  To.get(), From.get(),
7014                                              /*CopyingBaseSubobject=*/false);
7015    if (Copy.isInvalid()) {
7016      Diag(CurrentLocation, diag::note_member_synthesized_at)
7017        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7018      CopyAssignOperator->setInvalidDecl();
7019      return;
7020    }
7021
7022    // Success! Record the copy.
7023    Statements.push_back(Copy.takeAs<Stmt>());
7024  }
7025
7026  if (!Invalid) {
7027    // Add a "return *this;"
7028    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7029
7030    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7031    if (Return.isInvalid())
7032      Invalid = true;
7033    else {
7034      Statements.push_back(Return.takeAs<Stmt>());
7035
7036      if (Trap.hasErrorOccurred()) {
7037        Diag(CurrentLocation, diag::note_member_synthesized_at)
7038          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7039        Invalid = true;
7040      }
7041    }
7042  }
7043
7044  if (Invalid) {
7045    CopyAssignOperator->setInvalidDecl();
7046    return;
7047  }
7048
7049  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7050                                            /*isStmtExpr=*/false);
7051  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7052  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7053
7054  if (ASTMutationListener *L = getASTMutationListener()) {
7055    L->CompletedImplicitDefinition(CopyAssignOperator);
7056  }
7057}
7058
7059std::pair<Sema::ImplicitExceptionSpecification, bool>
7060Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
7061  // C++ [class.copy]p5:
7062  //   The implicitly-declared copy constructor for a class X will
7063  //   have the form
7064  //
7065  //       X::X(const X&)
7066  //
7067  //   if
7068  bool HasConstCopyConstructor = true;
7069
7070  //     -- each direct or virtual base class B of X has a copy
7071  //        constructor whose first parameter is of type const B& or
7072  //        const volatile B&, and
7073  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7074                                       BaseEnd = ClassDecl->bases_end();
7075       HasConstCopyConstructor && Base != BaseEnd;
7076       ++Base) {
7077    // Virtual bases are handled below.
7078    if (Base->isVirtual())
7079      continue;
7080
7081    CXXRecordDecl *BaseClassDecl
7082      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7083    if (!BaseClassDecl->hasDeclaredCopyConstructor())
7084      DeclareImplicitCopyConstructor(BaseClassDecl);
7085
7086    HasConstCopyConstructor = BaseClassDecl->hasConstCopyConstructor();
7087  }
7088
7089  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7090                                       BaseEnd = ClassDecl->vbases_end();
7091       HasConstCopyConstructor && Base != BaseEnd;
7092       ++Base) {
7093    CXXRecordDecl *BaseClassDecl
7094      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7095    if (!BaseClassDecl->hasDeclaredCopyConstructor())
7096      DeclareImplicitCopyConstructor(BaseClassDecl);
7097
7098    HasConstCopyConstructor= BaseClassDecl->hasConstCopyConstructor();
7099  }
7100
7101  //     -- for all the nonstatic data members of X that are of a
7102  //        class type M (or array thereof), each such class type
7103  //        has a copy constructor whose first parameter is of type
7104  //        const M& or const volatile M&.
7105  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7106                                  FieldEnd = ClassDecl->field_end();
7107       HasConstCopyConstructor && Field != FieldEnd;
7108       ++Field) {
7109    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7110    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
7111      CXXRecordDecl *FieldClassDecl
7112        = cast<CXXRecordDecl>(FieldClassType->getDecl());
7113      if (!FieldClassDecl->hasDeclaredCopyConstructor())
7114        DeclareImplicitCopyConstructor(FieldClassDecl);
7115
7116      HasConstCopyConstructor = FieldClassDecl->hasConstCopyConstructor();
7117    }
7118  }
7119  //   Otherwise, the implicitly declared copy constructor will have
7120  //   the form
7121  //
7122  //       X::X(X&)
7123
7124  // C++ [except.spec]p14:
7125  //   An implicitly declared special member function (Clause 12) shall have an
7126  //   exception-specification. [...]
7127  ImplicitExceptionSpecification ExceptSpec(Context);
7128  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
7129  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7130                                       BaseEnd = ClassDecl->bases_end();
7131       Base != BaseEnd;
7132       ++Base) {
7133    // Virtual bases are handled below.
7134    if (Base->isVirtual())
7135      continue;
7136
7137    CXXRecordDecl *BaseClassDecl
7138      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7139    if (!BaseClassDecl->hasDeclaredCopyConstructor())
7140      DeclareImplicitCopyConstructor(BaseClassDecl);
7141
7142    if (CXXConstructorDecl *CopyConstructor
7143                          = BaseClassDecl->getCopyConstructor(Quals))
7144      ExceptSpec.CalledDecl(CopyConstructor);
7145  }
7146  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7147                                       BaseEnd = ClassDecl->vbases_end();
7148       Base != BaseEnd;
7149       ++Base) {
7150    CXXRecordDecl *BaseClassDecl
7151      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7152    if (!BaseClassDecl->hasDeclaredCopyConstructor())
7153      DeclareImplicitCopyConstructor(BaseClassDecl);
7154
7155    if (CXXConstructorDecl *CopyConstructor
7156                          = BaseClassDecl->getCopyConstructor(Quals))
7157      ExceptSpec.CalledDecl(CopyConstructor);
7158  }
7159  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7160                                  FieldEnd = ClassDecl->field_end();
7161       Field != FieldEnd;
7162       ++Field) {
7163    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7164    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
7165      CXXRecordDecl *FieldClassDecl
7166        = cast<CXXRecordDecl>(FieldClassType->getDecl());
7167      if (!FieldClassDecl->hasDeclaredCopyConstructor())
7168        DeclareImplicitCopyConstructor(FieldClassDecl);
7169
7170      if (CXXConstructorDecl *CopyConstructor
7171                          = FieldClassDecl->getCopyConstructor(Quals))
7172        ExceptSpec.CalledDecl(CopyConstructor);
7173    }
7174  }
7175
7176  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
7177}
7178
7179CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
7180                                                    CXXRecordDecl *ClassDecl) {
7181  // C++ [class.copy]p4:
7182  //   If the class definition does not explicitly declare a copy
7183  //   constructor, one is declared implicitly.
7184
7185  ImplicitExceptionSpecification Spec(Context);
7186  bool Const;
7187  llvm::tie(Spec, Const) =
7188    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
7189
7190  QualType ClassType = Context.getTypeDeclType(ClassDecl);
7191  QualType ArgType = ClassType;
7192  if (Const)
7193    ArgType = ArgType.withConst();
7194  ArgType = Context.getLValueReferenceType(ArgType);
7195
7196  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7197
7198  DeclarationName Name
7199    = Context.DeclarationNames.getCXXConstructorName(
7200                                           Context.getCanonicalType(ClassType));
7201  SourceLocation ClassLoc = ClassDecl->getLocation();
7202  DeclarationNameInfo NameInfo(Name, ClassLoc);
7203
7204  //   An implicitly-declared copy constructor is an inline public
7205  //   member of its class.
7206  CXXConstructorDecl *CopyConstructor
7207    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7208                                 Context.getFunctionType(Context.VoidTy,
7209                                                         &ArgType, 1, EPI),
7210                                 /*TInfo=*/0,
7211                                 /*isExplicit=*/false,
7212                                 /*isInline=*/true,
7213                                 /*isImplicitlyDeclared=*/true);
7214  CopyConstructor->setAccess(AS_public);
7215  CopyConstructor->setDefaulted();
7216  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
7217
7218  // Note that we have declared this constructor.
7219  ++ASTContext::NumImplicitCopyConstructorsDeclared;
7220
7221  // Add the parameter to the constructor.
7222  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
7223                                               ClassLoc, ClassLoc,
7224                                               /*IdentifierInfo=*/0,
7225                                               ArgType, /*TInfo=*/0,
7226                                               SC_None,
7227                                               SC_None, 0);
7228  CopyConstructor->setParams(&FromParam, 1);
7229
7230  if (Scope *S = getScopeForContext(ClassDecl))
7231    PushOnScopeChains(CopyConstructor, S, false);
7232  ClassDecl->addDecl(CopyConstructor);
7233
7234  if (ShouldDeleteCopyConstructor(CopyConstructor))
7235    CopyConstructor->setDeletedAsWritten();
7236
7237  return CopyConstructor;
7238}
7239
7240void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
7241                                   CXXConstructorDecl *CopyConstructor) {
7242  assert((CopyConstructor->isDefaulted() &&
7243          CopyConstructor->isCopyConstructor() &&
7244          !CopyConstructor->doesThisDeclarationHaveABody()) &&
7245         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
7246
7247  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
7248  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
7249
7250  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
7251  DiagnosticErrorTrap Trap(Diags);
7252
7253  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
7254      Trap.hasErrorOccurred()) {
7255    Diag(CurrentLocation, diag::note_member_synthesized_at)
7256      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
7257    CopyConstructor->setInvalidDecl();
7258  }  else {
7259    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
7260                                               CopyConstructor->getLocation(),
7261                                               MultiStmtArg(*this, 0, 0),
7262                                               /*isStmtExpr=*/false)
7263                                                              .takeAs<Stmt>());
7264  }
7265
7266  CopyConstructor->setUsed();
7267
7268  if (ASTMutationListener *L = getASTMutationListener()) {
7269    L->CompletedImplicitDefinition(CopyConstructor);
7270  }
7271}
7272
7273ExprResult
7274Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7275                            CXXConstructorDecl *Constructor,
7276                            MultiExprArg ExprArgs,
7277                            bool RequiresZeroInit,
7278                            unsigned ConstructKind,
7279                            SourceRange ParenRange) {
7280  bool Elidable = false;
7281
7282  // C++0x [class.copy]p34:
7283  //   When certain criteria are met, an implementation is allowed to
7284  //   omit the copy/move construction of a class object, even if the
7285  //   copy/move constructor and/or destructor for the object have
7286  //   side effects. [...]
7287  //     - when a temporary class object that has not been bound to a
7288  //       reference (12.2) would be copied/moved to a class object
7289  //       with the same cv-unqualified type, the copy/move operation
7290  //       can be omitted by constructing the temporary object
7291  //       directly into the target of the omitted copy/move
7292  if (ConstructKind == CXXConstructExpr::CK_Complete &&
7293      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
7294    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
7295    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
7296  }
7297
7298  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
7299                               Elidable, move(ExprArgs), RequiresZeroInit,
7300                               ConstructKind, ParenRange);
7301}
7302
7303/// BuildCXXConstructExpr - Creates a complete call to a constructor,
7304/// including handling of its default argument expressions.
7305ExprResult
7306Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7307                            CXXConstructorDecl *Constructor, bool Elidable,
7308                            MultiExprArg ExprArgs,
7309                            bool RequiresZeroInit,
7310                            unsigned ConstructKind,
7311                            SourceRange ParenRange) {
7312  unsigned NumExprs = ExprArgs.size();
7313  Expr **Exprs = (Expr **)ExprArgs.release();
7314
7315  for (specific_attr_iterator<NonNullAttr>
7316           i = Constructor->specific_attr_begin<NonNullAttr>(),
7317           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
7318    const NonNullAttr *NonNull = *i;
7319    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
7320  }
7321
7322  MarkDeclarationReferenced(ConstructLoc, Constructor);
7323  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
7324                                        Constructor, Elidable, Exprs, NumExprs,
7325                                        RequiresZeroInit,
7326              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
7327                                        ParenRange));
7328}
7329
7330bool Sema::InitializeVarWithConstructor(VarDecl *VD,
7331                                        CXXConstructorDecl *Constructor,
7332                                        MultiExprArg Exprs) {
7333  // FIXME: Provide the correct paren SourceRange when available.
7334  ExprResult TempResult =
7335    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
7336                          move(Exprs), false, CXXConstructExpr::CK_Complete,
7337                          SourceRange());
7338  if (TempResult.isInvalid())
7339    return true;
7340
7341  Expr *Temp = TempResult.takeAs<Expr>();
7342  CheckImplicitConversions(Temp, VD->getLocation());
7343  MarkDeclarationReferenced(VD->getLocation(), Constructor);
7344  Temp = MaybeCreateExprWithCleanups(Temp);
7345  VD->setInit(Temp);
7346
7347  return false;
7348}
7349
7350void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
7351  if (VD->isInvalidDecl()) return;
7352
7353  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
7354  if (ClassDecl->isInvalidDecl()) return;
7355  if (ClassDecl->hasTrivialDestructor()) return;
7356  if (ClassDecl->isDependentContext()) return;
7357
7358  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
7359  MarkDeclarationReferenced(VD->getLocation(), Destructor);
7360  CheckDestructorAccess(VD->getLocation(), Destructor,
7361                        PDiag(diag::err_access_dtor_var)
7362                        << VD->getDeclName()
7363                        << VD->getType());
7364
7365  if (!VD->hasGlobalStorage()) return;
7366
7367  // Emit warning for non-trivial dtor in global scope (a real global,
7368  // class-static, function-static).
7369  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
7370
7371  // TODO: this should be re-enabled for static locals by !CXAAtExit
7372  if (!VD->isStaticLocal())
7373    Diag(VD->getLocation(), diag::warn_global_destructor);
7374}
7375
7376/// AddCXXDirectInitializerToDecl - This action is called immediately after
7377/// ActOnDeclarator, when a C++ direct initializer is present.
7378/// e.g: "int x(1);"
7379void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
7380                                         SourceLocation LParenLoc,
7381                                         MultiExprArg Exprs,
7382                                         SourceLocation RParenLoc,
7383                                         bool TypeMayContainAuto) {
7384  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
7385
7386  // If there is no declaration, there was an error parsing it.  Just ignore
7387  // the initializer.
7388  if (RealDecl == 0)
7389    return;
7390
7391  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7392  if (!VDecl) {
7393    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7394    RealDecl->setInvalidDecl();
7395    return;
7396  }
7397
7398  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7399  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
7400    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
7401    if (Exprs.size() > 1) {
7402      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
7403           diag::err_auto_var_init_multiple_expressions)
7404        << VDecl->getDeclName() << VDecl->getType()
7405        << VDecl->getSourceRange();
7406      RealDecl->setInvalidDecl();
7407      return;
7408    }
7409
7410    Expr *Init = Exprs.get()[0];
7411    TypeSourceInfo *DeducedType = 0;
7412    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
7413      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
7414        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
7415        << Init->getSourceRange();
7416    if (!DeducedType) {
7417      RealDecl->setInvalidDecl();
7418      return;
7419    }
7420    VDecl->setTypeSourceInfo(DeducedType);
7421    VDecl->setType(DeducedType->getType());
7422
7423    // If this is a redeclaration, check that the type we just deduced matches
7424    // the previously declared type.
7425    if (VarDecl *Old = VDecl->getPreviousDeclaration())
7426      MergeVarDeclTypes(VDecl, Old);
7427  }
7428
7429  // We will represent direct-initialization similarly to copy-initialization:
7430  //    int x(1);  -as-> int x = 1;
7431  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7432  //
7433  // Clients that want to distinguish between the two forms, can check for
7434  // direct initializer using VarDecl::hasCXXDirectInitializer().
7435  // A major benefit is that clients that don't particularly care about which
7436  // exactly form was it (like the CodeGen) can handle both cases without
7437  // special case code.
7438
7439  // C++ 8.5p11:
7440  // The form of initialization (using parentheses or '=') is generally
7441  // insignificant, but does matter when the entity being initialized has a
7442  // class type.
7443
7444  if (!VDecl->getType()->isDependentType() &&
7445      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
7446                          diag::err_typecheck_decl_incomplete_type)) {
7447    VDecl->setInvalidDecl();
7448    return;
7449  }
7450
7451  // The variable can not have an abstract class type.
7452  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7453                             diag::err_abstract_type_in_decl,
7454                             AbstractVariableType))
7455    VDecl->setInvalidDecl();
7456
7457  const VarDecl *Def;
7458  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7459    Diag(VDecl->getLocation(), diag::err_redefinition)
7460    << VDecl->getDeclName();
7461    Diag(Def->getLocation(), diag::note_previous_definition);
7462    VDecl->setInvalidDecl();
7463    return;
7464  }
7465
7466  // C++ [class.static.data]p4
7467  //   If a static data member is of const integral or const
7468  //   enumeration type, its declaration in the class definition can
7469  //   specify a constant-initializer which shall be an integral
7470  //   constant expression (5.19). In that case, the member can appear
7471  //   in integral constant expressions. The member shall still be
7472  //   defined in a namespace scope if it is used in the program and the
7473  //   namespace scope definition shall not contain an initializer.
7474  //
7475  // We already performed a redefinition check above, but for static
7476  // data members we also need to check whether there was an in-class
7477  // declaration with an initializer.
7478  const VarDecl* PrevInit = 0;
7479  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7480    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
7481    Diag(PrevInit->getLocation(), diag::note_previous_definition);
7482    return;
7483  }
7484
7485  bool IsDependent = false;
7486  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
7487    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
7488      VDecl->setInvalidDecl();
7489      return;
7490    }
7491
7492    if (Exprs.get()[I]->isTypeDependent())
7493      IsDependent = true;
7494  }
7495
7496  // If either the declaration has a dependent type or if any of the
7497  // expressions is type-dependent, we represent the initialization
7498  // via a ParenListExpr for later use during template instantiation.
7499  if (VDecl->getType()->isDependentType() || IsDependent) {
7500    // Let clients know that initialization was done with a direct initializer.
7501    VDecl->setCXXDirectInitializer(true);
7502
7503    // Store the initialization expressions as a ParenListExpr.
7504    unsigned NumExprs = Exprs.size();
7505    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
7506                                               (Expr **)Exprs.release(),
7507                                               NumExprs, RParenLoc));
7508    return;
7509  }
7510
7511  // Capture the variable that is being initialized and the style of
7512  // initialization.
7513  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7514
7515  // FIXME: Poor source location information.
7516  InitializationKind Kind
7517    = InitializationKind::CreateDirect(VDecl->getLocation(),
7518                                       LParenLoc, RParenLoc);
7519
7520  InitializationSequence InitSeq(*this, Entity, Kind,
7521                                 Exprs.get(), Exprs.size());
7522  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
7523  if (Result.isInvalid()) {
7524    VDecl->setInvalidDecl();
7525    return;
7526  }
7527
7528  CheckImplicitConversions(Result.get(), LParenLoc);
7529
7530  Result = MaybeCreateExprWithCleanups(Result);
7531  VDecl->setInit(Result.takeAs<Expr>());
7532  VDecl->setCXXDirectInitializer(true);
7533
7534  CheckCompleteVariableDeclaration(VDecl);
7535}
7536
7537/// \brief Given a constructor and the set of arguments provided for the
7538/// constructor, convert the arguments and add any required default arguments
7539/// to form a proper call to this constructor.
7540///
7541/// \returns true if an error occurred, false otherwise.
7542bool
7543Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
7544                              MultiExprArg ArgsPtr,
7545                              SourceLocation Loc,
7546                              ASTOwningVector<Expr*> &ConvertedArgs) {
7547  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
7548  unsigned NumArgs = ArgsPtr.size();
7549  Expr **Args = (Expr **)ArgsPtr.get();
7550
7551  const FunctionProtoType *Proto
7552    = Constructor->getType()->getAs<FunctionProtoType>();
7553  assert(Proto && "Constructor without a prototype?");
7554  unsigned NumArgsInProto = Proto->getNumArgs();
7555
7556  // If too few arguments are available, we'll fill in the rest with defaults.
7557  if (NumArgs < NumArgsInProto)
7558    ConvertedArgs.reserve(NumArgsInProto);
7559  else
7560    ConvertedArgs.reserve(NumArgs);
7561
7562  VariadicCallType CallType =
7563    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
7564  llvm::SmallVector<Expr *, 8> AllArgs;
7565  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
7566                                        Proto, 0, Args, NumArgs, AllArgs,
7567                                        CallType);
7568  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
7569    ConvertedArgs.push_back(AllArgs[i]);
7570  return Invalid;
7571}
7572
7573static inline bool
7574CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
7575                                       const FunctionDecl *FnDecl) {
7576  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
7577  if (isa<NamespaceDecl>(DC)) {
7578    return SemaRef.Diag(FnDecl->getLocation(),
7579                        diag::err_operator_new_delete_declared_in_namespace)
7580      << FnDecl->getDeclName();
7581  }
7582
7583  if (isa<TranslationUnitDecl>(DC) &&
7584      FnDecl->getStorageClass() == SC_Static) {
7585    return SemaRef.Diag(FnDecl->getLocation(),
7586                        diag::err_operator_new_delete_declared_static)
7587      << FnDecl->getDeclName();
7588  }
7589
7590  return false;
7591}
7592
7593static inline bool
7594CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
7595                            CanQualType ExpectedResultType,
7596                            CanQualType ExpectedFirstParamType,
7597                            unsigned DependentParamTypeDiag,
7598                            unsigned InvalidParamTypeDiag) {
7599  QualType ResultType =
7600    FnDecl->getType()->getAs<FunctionType>()->getResultType();
7601
7602  // Check that the result type is not dependent.
7603  if (ResultType->isDependentType())
7604    return SemaRef.Diag(FnDecl->getLocation(),
7605                        diag::err_operator_new_delete_dependent_result_type)
7606    << FnDecl->getDeclName() << ExpectedResultType;
7607
7608  // Check that the result type is what we expect.
7609  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
7610    return SemaRef.Diag(FnDecl->getLocation(),
7611                        diag::err_operator_new_delete_invalid_result_type)
7612    << FnDecl->getDeclName() << ExpectedResultType;
7613
7614  // A function template must have at least 2 parameters.
7615  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
7616    return SemaRef.Diag(FnDecl->getLocation(),
7617                      diag::err_operator_new_delete_template_too_few_parameters)
7618        << FnDecl->getDeclName();
7619
7620  // The function decl must have at least 1 parameter.
7621  if (FnDecl->getNumParams() == 0)
7622    return SemaRef.Diag(FnDecl->getLocation(),
7623                        diag::err_operator_new_delete_too_few_parameters)
7624      << FnDecl->getDeclName();
7625
7626  // Check the the first parameter type is not dependent.
7627  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
7628  if (FirstParamType->isDependentType())
7629    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
7630      << FnDecl->getDeclName() << ExpectedFirstParamType;
7631
7632  // Check that the first parameter type is what we expect.
7633  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
7634      ExpectedFirstParamType)
7635    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
7636    << FnDecl->getDeclName() << ExpectedFirstParamType;
7637
7638  return false;
7639}
7640
7641static bool
7642CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7643  // C++ [basic.stc.dynamic.allocation]p1:
7644  //   A program is ill-formed if an allocation function is declared in a
7645  //   namespace scope other than global scope or declared static in global
7646  //   scope.
7647  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7648    return true;
7649
7650  CanQualType SizeTy =
7651    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
7652
7653  // C++ [basic.stc.dynamic.allocation]p1:
7654  //  The return type shall be void*. The first parameter shall have type
7655  //  std::size_t.
7656  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
7657                                  SizeTy,
7658                                  diag::err_operator_new_dependent_param_type,
7659                                  diag::err_operator_new_param_type))
7660    return true;
7661
7662  // C++ [basic.stc.dynamic.allocation]p1:
7663  //  The first parameter shall not have an associated default argument.
7664  if (FnDecl->getParamDecl(0)->hasDefaultArg())
7665    return SemaRef.Diag(FnDecl->getLocation(),
7666                        diag::err_operator_new_default_arg)
7667      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
7668
7669  return false;
7670}
7671
7672static bool
7673CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7674  // C++ [basic.stc.dynamic.deallocation]p1:
7675  //   A program is ill-formed if deallocation functions are declared in a
7676  //   namespace scope other than global scope or declared static in global
7677  //   scope.
7678  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7679    return true;
7680
7681  // C++ [basic.stc.dynamic.deallocation]p2:
7682  //   Each deallocation function shall return void and its first parameter
7683  //   shall be void*.
7684  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
7685                                  SemaRef.Context.VoidPtrTy,
7686                                 diag::err_operator_delete_dependent_param_type,
7687                                 diag::err_operator_delete_param_type))
7688    return true;
7689
7690  return false;
7691}
7692
7693/// CheckOverloadedOperatorDeclaration - Check whether the declaration
7694/// of this overloaded operator is well-formed. If so, returns false;
7695/// otherwise, emits appropriate diagnostics and returns true.
7696bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
7697  assert(FnDecl && FnDecl->isOverloadedOperator() &&
7698         "Expected an overloaded operator declaration");
7699
7700  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
7701
7702  // C++ [over.oper]p5:
7703  //   The allocation and deallocation functions, operator new,
7704  //   operator new[], operator delete and operator delete[], are
7705  //   described completely in 3.7.3. The attributes and restrictions
7706  //   found in the rest of this subclause do not apply to them unless
7707  //   explicitly stated in 3.7.3.
7708  if (Op == OO_Delete || Op == OO_Array_Delete)
7709    return CheckOperatorDeleteDeclaration(*this, FnDecl);
7710
7711  if (Op == OO_New || Op == OO_Array_New)
7712    return CheckOperatorNewDeclaration(*this, FnDecl);
7713
7714  // C++ [over.oper]p6:
7715  //   An operator function shall either be a non-static member
7716  //   function or be a non-member function and have at least one
7717  //   parameter whose type is a class, a reference to a class, an
7718  //   enumeration, or a reference to an enumeration.
7719  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
7720    if (MethodDecl->isStatic())
7721      return Diag(FnDecl->getLocation(),
7722                  diag::err_operator_overload_static) << FnDecl->getDeclName();
7723  } else {
7724    bool ClassOrEnumParam = false;
7725    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
7726                                   ParamEnd = FnDecl->param_end();
7727         Param != ParamEnd; ++Param) {
7728      QualType ParamType = (*Param)->getType().getNonReferenceType();
7729      if (ParamType->isDependentType() || ParamType->isRecordType() ||
7730          ParamType->isEnumeralType()) {
7731        ClassOrEnumParam = true;
7732        break;
7733      }
7734    }
7735
7736    if (!ClassOrEnumParam)
7737      return Diag(FnDecl->getLocation(),
7738                  diag::err_operator_overload_needs_class_or_enum)
7739        << FnDecl->getDeclName();
7740  }
7741
7742  // C++ [over.oper]p8:
7743  //   An operator function cannot have default arguments (8.3.6),
7744  //   except where explicitly stated below.
7745  //
7746  // Only the function-call operator allows default arguments
7747  // (C++ [over.call]p1).
7748  if (Op != OO_Call) {
7749    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
7750         Param != FnDecl->param_end(); ++Param) {
7751      if ((*Param)->hasDefaultArg())
7752        return Diag((*Param)->getLocation(),
7753                    diag::err_operator_overload_default_arg)
7754          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
7755    }
7756  }
7757
7758  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
7759    { false, false, false }
7760#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
7761    , { Unary, Binary, MemberOnly }
7762#include "clang/Basic/OperatorKinds.def"
7763  };
7764
7765  bool CanBeUnaryOperator = OperatorUses[Op][0];
7766  bool CanBeBinaryOperator = OperatorUses[Op][1];
7767  bool MustBeMemberOperator = OperatorUses[Op][2];
7768
7769  // C++ [over.oper]p8:
7770  //   [...] Operator functions cannot have more or fewer parameters
7771  //   than the number required for the corresponding operator, as
7772  //   described in the rest of this subclause.
7773  unsigned NumParams = FnDecl->getNumParams()
7774                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
7775  if (Op != OO_Call &&
7776      ((NumParams == 1 && !CanBeUnaryOperator) ||
7777       (NumParams == 2 && !CanBeBinaryOperator) ||
7778       (NumParams < 1) || (NumParams > 2))) {
7779    // We have the wrong number of parameters.
7780    unsigned ErrorKind;
7781    if (CanBeUnaryOperator && CanBeBinaryOperator) {
7782      ErrorKind = 2;  // 2 -> unary or binary.
7783    } else if (CanBeUnaryOperator) {
7784      ErrorKind = 0;  // 0 -> unary
7785    } else {
7786      assert(CanBeBinaryOperator &&
7787             "All non-call overloaded operators are unary or binary!");
7788      ErrorKind = 1;  // 1 -> binary
7789    }
7790
7791    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
7792      << FnDecl->getDeclName() << NumParams << ErrorKind;
7793  }
7794
7795  // Overloaded operators other than operator() cannot be variadic.
7796  if (Op != OO_Call &&
7797      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
7798    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
7799      << FnDecl->getDeclName();
7800  }
7801
7802  // Some operators must be non-static member functions.
7803  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
7804    return Diag(FnDecl->getLocation(),
7805                diag::err_operator_overload_must_be_member)
7806      << FnDecl->getDeclName();
7807  }
7808
7809  // C++ [over.inc]p1:
7810  //   The user-defined function called operator++ implements the
7811  //   prefix and postfix ++ operator. If this function is a member
7812  //   function with no parameters, or a non-member function with one
7813  //   parameter of class or enumeration type, it defines the prefix
7814  //   increment operator ++ for objects of that type. If the function
7815  //   is a member function with one parameter (which shall be of type
7816  //   int) or a non-member function with two parameters (the second
7817  //   of which shall be of type int), it defines the postfix
7818  //   increment operator ++ for objects of that type.
7819  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
7820    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
7821    bool ParamIsInt = false;
7822    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
7823      ParamIsInt = BT->getKind() == BuiltinType::Int;
7824
7825    if (!ParamIsInt)
7826      return Diag(LastParam->getLocation(),
7827                  diag::err_operator_overload_post_incdec_must_be_int)
7828        << LastParam->getType() << (Op == OO_MinusMinus);
7829  }
7830
7831  return false;
7832}
7833
7834/// CheckLiteralOperatorDeclaration - Check whether the declaration
7835/// of this literal operator function is well-formed. If so, returns
7836/// false; otherwise, emits appropriate diagnostics and returns true.
7837bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
7838  DeclContext *DC = FnDecl->getDeclContext();
7839  Decl::Kind Kind = DC->getDeclKind();
7840  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
7841      Kind != Decl::LinkageSpec) {
7842    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
7843      << FnDecl->getDeclName();
7844    return true;
7845  }
7846
7847  bool Valid = false;
7848
7849  // template <char...> type operator "" name() is the only valid template
7850  // signature, and the only valid signature with no parameters.
7851  if (FnDecl->param_size() == 0) {
7852    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
7853      // Must have only one template parameter
7854      TemplateParameterList *Params = TpDecl->getTemplateParameters();
7855      if (Params->size() == 1) {
7856        NonTypeTemplateParmDecl *PmDecl =
7857          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
7858
7859        // The template parameter must be a char parameter pack.
7860        if (PmDecl && PmDecl->isTemplateParameterPack() &&
7861            Context.hasSameType(PmDecl->getType(), Context.CharTy))
7862          Valid = true;
7863      }
7864    }
7865  } else {
7866    // Check the first parameter
7867    FunctionDecl::param_iterator Param = FnDecl->param_begin();
7868
7869    QualType T = (*Param)->getType();
7870
7871    // unsigned long long int, long double, and any character type are allowed
7872    // as the only parameters.
7873    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
7874        Context.hasSameType(T, Context.LongDoubleTy) ||
7875        Context.hasSameType(T, Context.CharTy) ||
7876        Context.hasSameType(T, Context.WCharTy) ||
7877        Context.hasSameType(T, Context.Char16Ty) ||
7878        Context.hasSameType(T, Context.Char32Ty)) {
7879      if (++Param == FnDecl->param_end())
7880        Valid = true;
7881      goto FinishedParams;
7882    }
7883
7884    // Otherwise it must be a pointer to const; let's strip those qualifiers.
7885    const PointerType *PT = T->getAs<PointerType>();
7886    if (!PT)
7887      goto FinishedParams;
7888    T = PT->getPointeeType();
7889    if (!T.isConstQualified())
7890      goto FinishedParams;
7891    T = T.getUnqualifiedType();
7892
7893    // Move on to the second parameter;
7894    ++Param;
7895
7896    // If there is no second parameter, the first must be a const char *
7897    if (Param == FnDecl->param_end()) {
7898      if (Context.hasSameType(T, Context.CharTy))
7899        Valid = true;
7900      goto FinishedParams;
7901    }
7902
7903    // const char *, const wchar_t*, const char16_t*, and const char32_t*
7904    // are allowed as the first parameter to a two-parameter function
7905    if (!(Context.hasSameType(T, Context.CharTy) ||
7906          Context.hasSameType(T, Context.WCharTy) ||
7907          Context.hasSameType(T, Context.Char16Ty) ||
7908          Context.hasSameType(T, Context.Char32Ty)))
7909      goto FinishedParams;
7910
7911    // The second and final parameter must be an std::size_t
7912    T = (*Param)->getType().getUnqualifiedType();
7913    if (Context.hasSameType(T, Context.getSizeType()) &&
7914        ++Param == FnDecl->param_end())
7915      Valid = true;
7916  }
7917
7918  // FIXME: This diagnostic is absolutely terrible.
7919FinishedParams:
7920  if (!Valid) {
7921    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
7922      << FnDecl->getDeclName();
7923    return true;
7924  }
7925
7926  return false;
7927}
7928
7929/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
7930/// linkage specification, including the language and (if present)
7931/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
7932/// the location of the language string literal, which is provided
7933/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
7934/// the '{' brace. Otherwise, this linkage specification does not
7935/// have any braces.
7936Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
7937                                           SourceLocation LangLoc,
7938                                           llvm::StringRef Lang,
7939                                           SourceLocation LBraceLoc) {
7940  LinkageSpecDecl::LanguageIDs Language;
7941  if (Lang == "\"C\"")
7942    Language = LinkageSpecDecl::lang_c;
7943  else if (Lang == "\"C++\"")
7944    Language = LinkageSpecDecl::lang_cxx;
7945  else {
7946    Diag(LangLoc, diag::err_bad_language);
7947    return 0;
7948  }
7949
7950  // FIXME: Add all the various semantics of linkage specifications
7951
7952  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
7953                                               ExternLoc, LangLoc, Language);
7954  CurContext->addDecl(D);
7955  PushDeclContext(S, D);
7956  return D;
7957}
7958
7959/// ActOnFinishLinkageSpecification - Complete the definition of
7960/// the C++ linkage specification LinkageSpec. If RBraceLoc is
7961/// valid, it's the position of the closing '}' brace in a linkage
7962/// specification that uses braces.
7963Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
7964                                            Decl *LinkageSpec,
7965                                            SourceLocation RBraceLoc) {
7966  if (LinkageSpec) {
7967    if (RBraceLoc.isValid()) {
7968      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
7969      LSDecl->setRBraceLoc(RBraceLoc);
7970    }
7971    PopDeclContext();
7972  }
7973  return LinkageSpec;
7974}
7975
7976/// \brief Perform semantic analysis for the variable declaration that
7977/// occurs within a C++ catch clause, returning the newly-created
7978/// variable.
7979VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
7980                                         TypeSourceInfo *TInfo,
7981                                         SourceLocation StartLoc,
7982                                         SourceLocation Loc,
7983                                         IdentifierInfo *Name) {
7984  bool Invalid = false;
7985  QualType ExDeclType = TInfo->getType();
7986
7987  // Arrays and functions decay.
7988  if (ExDeclType->isArrayType())
7989    ExDeclType = Context.getArrayDecayedType(ExDeclType);
7990  else if (ExDeclType->isFunctionType())
7991    ExDeclType = Context.getPointerType(ExDeclType);
7992
7993  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
7994  // The exception-declaration shall not denote a pointer or reference to an
7995  // incomplete type, other than [cv] void*.
7996  // N2844 forbids rvalue references.
7997  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
7998    Diag(Loc, diag::err_catch_rvalue_ref);
7999    Invalid = true;
8000  }
8001
8002  // GCC allows catching pointers and references to incomplete types
8003  // as an extension; so do we, but we warn by default.
8004
8005  QualType BaseType = ExDeclType;
8006  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
8007  unsigned DK = diag::err_catch_incomplete;
8008  bool IncompleteCatchIsInvalid = true;
8009  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
8010    BaseType = Ptr->getPointeeType();
8011    Mode = 1;
8012    DK = diag::ext_catch_incomplete_ptr;
8013    IncompleteCatchIsInvalid = false;
8014  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
8015    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
8016    BaseType = Ref->getPointeeType();
8017    Mode = 2;
8018    DK = diag::ext_catch_incomplete_ref;
8019    IncompleteCatchIsInvalid = false;
8020  }
8021  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
8022      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
8023      IncompleteCatchIsInvalid)
8024    Invalid = true;
8025
8026  if (!Invalid && !ExDeclType->isDependentType() &&
8027      RequireNonAbstractType(Loc, ExDeclType,
8028                             diag::err_abstract_type_in_decl,
8029                             AbstractVariableType))
8030    Invalid = true;
8031
8032  // Only the non-fragile NeXT runtime currently supports C++ catches
8033  // of ObjC types, and no runtime supports catching ObjC types by value.
8034  if (!Invalid && getLangOptions().ObjC1) {
8035    QualType T = ExDeclType;
8036    if (const ReferenceType *RT = T->getAs<ReferenceType>())
8037      T = RT->getPointeeType();
8038
8039    if (T->isObjCObjectType()) {
8040      Diag(Loc, diag::err_objc_object_catch);
8041      Invalid = true;
8042    } else if (T->isObjCObjectPointerType()) {
8043      if (!getLangOptions().ObjCNonFragileABI) {
8044        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
8045        Invalid = true;
8046      }
8047    }
8048  }
8049
8050  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
8051                                    ExDeclType, TInfo, SC_None, SC_None);
8052  ExDecl->setExceptionVariable(true);
8053
8054  if (!Invalid) {
8055    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
8056      // C++ [except.handle]p16:
8057      //   The object declared in an exception-declaration or, if the
8058      //   exception-declaration does not specify a name, a temporary (12.2) is
8059      //   copy-initialized (8.5) from the exception object. [...]
8060      //   The object is destroyed when the handler exits, after the destruction
8061      //   of any automatic objects initialized within the handler.
8062      //
8063      // We just pretend to initialize the object with itself, then make sure
8064      // it can be destroyed later.
8065      QualType initType = ExDeclType;
8066
8067      InitializedEntity entity =
8068        InitializedEntity::InitializeVariable(ExDecl);
8069      InitializationKind initKind =
8070        InitializationKind::CreateCopy(Loc, SourceLocation());
8071
8072      Expr *opaqueValue =
8073        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
8074      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
8075      ExprResult result = sequence.Perform(*this, entity, initKind,
8076                                           MultiExprArg(&opaqueValue, 1));
8077      if (result.isInvalid())
8078        Invalid = true;
8079      else {
8080        // If the constructor used was non-trivial, set this as the
8081        // "initializer".
8082        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
8083        if (!construct->getConstructor()->isTrivial()) {
8084          Expr *init = MaybeCreateExprWithCleanups(construct);
8085          ExDecl->setInit(init);
8086        }
8087
8088        // And make sure it's destructable.
8089        FinalizeVarWithDestructor(ExDecl, recordType);
8090      }
8091    }
8092  }
8093
8094  if (Invalid)
8095    ExDecl->setInvalidDecl();
8096
8097  return ExDecl;
8098}
8099
8100/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
8101/// handler.
8102Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
8103  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8104  bool Invalid = D.isInvalidType();
8105
8106  // Check for unexpanded parameter packs.
8107  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8108                                               UPPC_ExceptionType)) {
8109    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
8110                                             D.getIdentifierLoc());
8111    Invalid = true;
8112  }
8113
8114  IdentifierInfo *II = D.getIdentifier();
8115  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
8116                                             LookupOrdinaryName,
8117                                             ForRedeclaration)) {
8118    // The scope should be freshly made just for us. There is just no way
8119    // it contains any previous declaration.
8120    assert(!S->isDeclScope(PrevDecl));
8121    if (PrevDecl->isTemplateParameter()) {
8122      // Maybe we will complain about the shadowed template parameter.
8123      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8124    }
8125  }
8126
8127  if (D.getCXXScopeSpec().isSet() && !Invalid) {
8128    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
8129      << D.getCXXScopeSpec().getRange();
8130    Invalid = true;
8131  }
8132
8133  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
8134                                              D.getSourceRange().getBegin(),
8135                                              D.getIdentifierLoc(),
8136                                              D.getIdentifier());
8137  if (Invalid)
8138    ExDecl->setInvalidDecl();
8139
8140  // Add the exception declaration into this scope.
8141  if (II)
8142    PushOnScopeChains(ExDecl, S);
8143  else
8144    CurContext->addDecl(ExDecl);
8145
8146  ProcessDeclAttributes(S, ExDecl, D);
8147  return ExDecl;
8148}
8149
8150Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
8151                                         Expr *AssertExpr,
8152                                         Expr *AssertMessageExpr_,
8153                                         SourceLocation RParenLoc) {
8154  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
8155
8156  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
8157    llvm::APSInt Value(32);
8158    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
8159      Diag(StaticAssertLoc,
8160           diag::err_static_assert_expression_is_not_constant) <<
8161        AssertExpr->getSourceRange();
8162      return 0;
8163    }
8164
8165    if (Value == 0) {
8166      Diag(StaticAssertLoc, diag::err_static_assert_failed)
8167        << AssertMessage->getString() << AssertExpr->getSourceRange();
8168    }
8169  }
8170
8171  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
8172    return 0;
8173
8174  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
8175                                        AssertExpr, AssertMessage, RParenLoc);
8176
8177  CurContext->addDecl(Decl);
8178  return Decl;
8179}
8180
8181/// \brief Perform semantic analysis of the given friend type declaration.
8182///
8183/// \returns A friend declaration that.
8184FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
8185                                      TypeSourceInfo *TSInfo) {
8186  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
8187
8188  QualType T = TSInfo->getType();
8189  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
8190
8191  if (!getLangOptions().CPlusPlus0x) {
8192    // C++03 [class.friend]p2:
8193    //   An elaborated-type-specifier shall be used in a friend declaration
8194    //   for a class.*
8195    //
8196    //   * The class-key of the elaborated-type-specifier is required.
8197    if (!ActiveTemplateInstantiations.empty()) {
8198      // Do not complain about the form of friend template types during
8199      // template instantiation; we will already have complained when the
8200      // template was declared.
8201    } else if (!T->isElaboratedTypeSpecifier()) {
8202      // If we evaluated the type to a record type, suggest putting
8203      // a tag in front.
8204      if (const RecordType *RT = T->getAs<RecordType>()) {
8205        RecordDecl *RD = RT->getDecl();
8206
8207        std::string InsertionText = std::string(" ") + RD->getKindName();
8208
8209        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
8210          << (unsigned) RD->getTagKind()
8211          << T
8212          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
8213                                        InsertionText);
8214      } else {
8215        Diag(FriendLoc, diag::ext_nonclass_type_friend)
8216          << T
8217          << SourceRange(FriendLoc, TypeRange.getEnd());
8218      }
8219    } else if (T->getAs<EnumType>()) {
8220      Diag(FriendLoc, diag::ext_enum_friend)
8221        << T
8222        << SourceRange(FriendLoc, TypeRange.getEnd());
8223    }
8224  }
8225
8226  // C++0x [class.friend]p3:
8227  //   If the type specifier in a friend declaration designates a (possibly
8228  //   cv-qualified) class type, that class is declared as a friend; otherwise,
8229  //   the friend declaration is ignored.
8230
8231  // FIXME: C++0x has some syntactic restrictions on friend type declarations
8232  // in [class.friend]p3 that we do not implement.
8233
8234  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
8235}
8236
8237/// Handle a friend tag declaration where the scope specifier was
8238/// templated.
8239Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
8240                                    unsigned TagSpec, SourceLocation TagLoc,
8241                                    CXXScopeSpec &SS,
8242                                    IdentifierInfo *Name, SourceLocation NameLoc,
8243                                    AttributeList *Attr,
8244                                    MultiTemplateParamsArg TempParamLists) {
8245  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8246
8247  bool isExplicitSpecialization = false;
8248  bool Invalid = false;
8249
8250  if (TemplateParameterList *TemplateParams
8251        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
8252                                                  TempParamLists.get(),
8253                                                  TempParamLists.size(),
8254                                                  /*friend*/ true,
8255                                                  isExplicitSpecialization,
8256                                                  Invalid)) {
8257    if (TemplateParams->size() > 0) {
8258      // This is a declaration of a class template.
8259      if (Invalid)
8260        return 0;
8261
8262      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
8263                                SS, Name, NameLoc, Attr,
8264                                TemplateParams, AS_public,
8265                                TempParamLists.size() - 1,
8266                   (TemplateParameterList**) TempParamLists.release()).take();
8267    } else {
8268      // The "template<>" header is extraneous.
8269      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8270        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8271      isExplicitSpecialization = true;
8272    }
8273  }
8274
8275  if (Invalid) return 0;
8276
8277  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
8278
8279  bool isAllExplicitSpecializations = true;
8280  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
8281    if (TempParamLists.get()[I]->size()) {
8282      isAllExplicitSpecializations = false;
8283      break;
8284    }
8285  }
8286
8287  // FIXME: don't ignore attributes.
8288
8289  // If it's explicit specializations all the way down, just forget
8290  // about the template header and build an appropriate non-templated
8291  // friend.  TODO: for source fidelity, remember the headers.
8292  if (isAllExplicitSpecializations) {
8293    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8294    ElaboratedTypeKeyword Keyword
8295      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8296    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
8297                                   *Name, NameLoc);
8298    if (T.isNull())
8299      return 0;
8300
8301    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8302    if (isa<DependentNameType>(T)) {
8303      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8304      TL.setKeywordLoc(TagLoc);
8305      TL.setQualifierLoc(QualifierLoc);
8306      TL.setNameLoc(NameLoc);
8307    } else {
8308      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
8309      TL.setKeywordLoc(TagLoc);
8310      TL.setQualifierLoc(QualifierLoc);
8311      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
8312    }
8313
8314    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8315                                            TSI, FriendLoc);
8316    Friend->setAccess(AS_public);
8317    CurContext->addDecl(Friend);
8318    return Friend;
8319  }
8320
8321  // Handle the case of a templated-scope friend class.  e.g.
8322  //   template <class T> class A<T>::B;
8323  // FIXME: we don't support these right now.
8324  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8325  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
8326  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8327  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8328  TL.setKeywordLoc(TagLoc);
8329  TL.setQualifierLoc(SS.getWithLocInContext(Context));
8330  TL.setNameLoc(NameLoc);
8331
8332  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8333                                          TSI, FriendLoc);
8334  Friend->setAccess(AS_public);
8335  Friend->setUnsupportedFriend(true);
8336  CurContext->addDecl(Friend);
8337  return Friend;
8338}
8339
8340
8341/// Handle a friend type declaration.  This works in tandem with
8342/// ActOnTag.
8343///
8344/// Notes on friend class templates:
8345///
8346/// We generally treat friend class declarations as if they were
8347/// declaring a class.  So, for example, the elaborated type specifier
8348/// in a friend declaration is required to obey the restrictions of a
8349/// class-head (i.e. no typedefs in the scope chain), template
8350/// parameters are required to match up with simple template-ids, &c.
8351/// However, unlike when declaring a template specialization, it's
8352/// okay to refer to a template specialization without an empty
8353/// template parameter declaration, e.g.
8354///   friend class A<T>::B<unsigned>;
8355/// We permit this as a special case; if there are any template
8356/// parameters present at all, require proper matching, i.e.
8357///   template <> template <class T> friend class A<int>::B;
8358Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
8359                                MultiTemplateParamsArg TempParams) {
8360  SourceLocation Loc = DS.getSourceRange().getBegin();
8361
8362  assert(DS.isFriendSpecified());
8363  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8364
8365  // Try to convert the decl specifier to a type.  This works for
8366  // friend templates because ActOnTag never produces a ClassTemplateDecl
8367  // for a TUK_Friend.
8368  Declarator TheDeclarator(DS, Declarator::MemberContext);
8369  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
8370  QualType T = TSI->getType();
8371  if (TheDeclarator.isInvalidType())
8372    return 0;
8373
8374  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
8375    return 0;
8376
8377  // This is definitely an error in C++98.  It's probably meant to
8378  // be forbidden in C++0x, too, but the specification is just
8379  // poorly written.
8380  //
8381  // The problem is with declarations like the following:
8382  //   template <T> friend A<T>::foo;
8383  // where deciding whether a class C is a friend or not now hinges
8384  // on whether there exists an instantiation of A that causes
8385  // 'foo' to equal C.  There are restrictions on class-heads
8386  // (which we declare (by fiat) elaborated friend declarations to
8387  // be) that makes this tractable.
8388  //
8389  // FIXME: handle "template <> friend class A<T>;", which
8390  // is possibly well-formed?  Who even knows?
8391  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
8392    Diag(Loc, diag::err_tagless_friend_type_template)
8393      << DS.getSourceRange();
8394    return 0;
8395  }
8396
8397  // C++98 [class.friend]p1: A friend of a class is a function
8398  //   or class that is not a member of the class . . .
8399  // This is fixed in DR77, which just barely didn't make the C++03
8400  // deadline.  It's also a very silly restriction that seriously
8401  // affects inner classes and which nobody else seems to implement;
8402  // thus we never diagnose it, not even in -pedantic.
8403  //
8404  // But note that we could warn about it: it's always useless to
8405  // friend one of your own members (it's not, however, worthless to
8406  // friend a member of an arbitrary specialization of your template).
8407
8408  Decl *D;
8409  if (unsigned NumTempParamLists = TempParams.size())
8410    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
8411                                   NumTempParamLists,
8412                                   TempParams.release(),
8413                                   TSI,
8414                                   DS.getFriendSpecLoc());
8415  else
8416    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
8417
8418  if (!D)
8419    return 0;
8420
8421  D->setAccess(AS_public);
8422  CurContext->addDecl(D);
8423
8424  return D;
8425}
8426
8427Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
8428                                    MultiTemplateParamsArg TemplateParams) {
8429  const DeclSpec &DS = D.getDeclSpec();
8430
8431  assert(DS.isFriendSpecified());
8432  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8433
8434  SourceLocation Loc = D.getIdentifierLoc();
8435  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8436  QualType T = TInfo->getType();
8437
8438  // C++ [class.friend]p1
8439  //   A friend of a class is a function or class....
8440  // Note that this sees through typedefs, which is intended.
8441  // It *doesn't* see through dependent types, which is correct
8442  // according to [temp.arg.type]p3:
8443  //   If a declaration acquires a function type through a
8444  //   type dependent on a template-parameter and this causes
8445  //   a declaration that does not use the syntactic form of a
8446  //   function declarator to have a function type, the program
8447  //   is ill-formed.
8448  if (!T->isFunctionType()) {
8449    Diag(Loc, diag::err_unexpected_friend);
8450
8451    // It might be worthwhile to try to recover by creating an
8452    // appropriate declaration.
8453    return 0;
8454  }
8455
8456  // C++ [namespace.memdef]p3
8457  //  - If a friend declaration in a non-local class first declares a
8458  //    class or function, the friend class or function is a member
8459  //    of the innermost enclosing namespace.
8460  //  - The name of the friend is not found by simple name lookup
8461  //    until a matching declaration is provided in that namespace
8462  //    scope (either before or after the class declaration granting
8463  //    friendship).
8464  //  - If a friend function is called, its name may be found by the
8465  //    name lookup that considers functions from namespaces and
8466  //    classes associated with the types of the function arguments.
8467  //  - When looking for a prior declaration of a class or a function
8468  //    declared as a friend, scopes outside the innermost enclosing
8469  //    namespace scope are not considered.
8470
8471  CXXScopeSpec &SS = D.getCXXScopeSpec();
8472  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8473  DeclarationName Name = NameInfo.getName();
8474  assert(Name);
8475
8476  // Check for unexpanded parameter packs.
8477  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
8478      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
8479      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
8480    return 0;
8481
8482  // The context we found the declaration in, or in which we should
8483  // create the declaration.
8484  DeclContext *DC;
8485  Scope *DCScope = S;
8486  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8487                        ForRedeclaration);
8488
8489  // FIXME: there are different rules in local classes
8490
8491  // There are four cases here.
8492  //   - There's no scope specifier, in which case we just go to the
8493  //     appropriate scope and look for a function or function template
8494  //     there as appropriate.
8495  // Recover from invalid scope qualifiers as if they just weren't there.
8496  if (SS.isInvalid() || !SS.isSet()) {
8497    // C++0x [namespace.memdef]p3:
8498    //   If the name in a friend declaration is neither qualified nor
8499    //   a template-id and the declaration is a function or an
8500    //   elaborated-type-specifier, the lookup to determine whether
8501    //   the entity has been previously declared shall not consider
8502    //   any scopes outside the innermost enclosing namespace.
8503    // C++0x [class.friend]p11:
8504    //   If a friend declaration appears in a local class and the name
8505    //   specified is an unqualified name, a prior declaration is
8506    //   looked up without considering scopes that are outside the
8507    //   innermost enclosing non-class scope. For a friend function
8508    //   declaration, if there is no prior declaration, the program is
8509    //   ill-formed.
8510    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
8511    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
8512
8513    // Find the appropriate context according to the above.
8514    DC = CurContext;
8515    while (true) {
8516      // Skip class contexts.  If someone can cite chapter and verse
8517      // for this behavior, that would be nice --- it's what GCC and
8518      // EDG do, and it seems like a reasonable intent, but the spec
8519      // really only says that checks for unqualified existing
8520      // declarations should stop at the nearest enclosing namespace,
8521      // not that they should only consider the nearest enclosing
8522      // namespace.
8523      while (DC->isRecord())
8524        DC = DC->getParent();
8525
8526      LookupQualifiedName(Previous, DC);
8527
8528      // TODO: decide what we think about using declarations.
8529      if (isLocal || !Previous.empty())
8530        break;
8531
8532      if (isTemplateId) {
8533        if (isa<TranslationUnitDecl>(DC)) break;
8534      } else {
8535        if (DC->isFileContext()) break;
8536      }
8537      DC = DC->getParent();
8538    }
8539
8540    // C++ [class.friend]p1: A friend of a class is a function or
8541    //   class that is not a member of the class . . .
8542    // C++0x changes this for both friend types and functions.
8543    // Most C++ 98 compilers do seem to give an error here, so
8544    // we do, too.
8545    if (!Previous.empty() && DC->Equals(CurContext)
8546        && !getLangOptions().CPlusPlus0x)
8547      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8548
8549    DCScope = getScopeForDeclContext(S, DC);
8550
8551  //   - There's a non-dependent scope specifier, in which case we
8552  //     compute it and do a previous lookup there for a function
8553  //     or function template.
8554  } else if (!SS.getScopeRep()->isDependent()) {
8555    DC = computeDeclContext(SS);
8556    if (!DC) return 0;
8557
8558    if (RequireCompleteDeclContext(SS, DC)) return 0;
8559
8560    LookupQualifiedName(Previous, DC);
8561
8562    // Ignore things found implicitly in the wrong scope.
8563    // TODO: better diagnostics for this case.  Suggesting the right
8564    // qualified scope would be nice...
8565    LookupResult::Filter F = Previous.makeFilter();
8566    while (F.hasNext()) {
8567      NamedDecl *D = F.next();
8568      if (!DC->InEnclosingNamespaceSetOf(
8569              D->getDeclContext()->getRedeclContext()))
8570        F.erase();
8571    }
8572    F.done();
8573
8574    if (Previous.empty()) {
8575      D.setInvalidType();
8576      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
8577      return 0;
8578    }
8579
8580    // C++ [class.friend]p1: A friend of a class is a function or
8581    //   class that is not a member of the class . . .
8582    if (DC->Equals(CurContext))
8583      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8584
8585  //   - There's a scope specifier that does not match any template
8586  //     parameter lists, in which case we use some arbitrary context,
8587  //     create a method or method template, and wait for instantiation.
8588  //   - There's a scope specifier that does match some template
8589  //     parameter lists, which we don't handle right now.
8590  } else {
8591    DC = CurContext;
8592    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
8593  }
8594
8595  if (!DC->isRecord()) {
8596    // This implies that it has to be an operator or function.
8597    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
8598        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
8599        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
8600      Diag(Loc, diag::err_introducing_special_friend) <<
8601        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
8602         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
8603      return 0;
8604    }
8605  }
8606
8607  bool Redeclaration = false;
8608  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
8609                                          move(TemplateParams),
8610                                          IsDefinition,
8611                                          Redeclaration);
8612  if (!ND) return 0;
8613
8614  assert(ND->getDeclContext() == DC);
8615  assert(ND->getLexicalDeclContext() == CurContext);
8616
8617  // Add the function declaration to the appropriate lookup tables,
8618  // adjusting the redeclarations list as necessary.  We don't
8619  // want to do this yet if the friending class is dependent.
8620  //
8621  // Also update the scope-based lookup if the target context's
8622  // lookup context is in lexical scope.
8623  if (!CurContext->isDependentContext()) {
8624    DC = DC->getRedeclContext();
8625    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
8626    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8627      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
8628  }
8629
8630  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
8631                                       D.getIdentifierLoc(), ND,
8632                                       DS.getFriendSpecLoc());
8633  FrD->setAccess(AS_public);
8634  CurContext->addDecl(FrD);
8635
8636  if (ND->isInvalidDecl())
8637    FrD->setInvalidDecl();
8638  else {
8639    FunctionDecl *FD;
8640    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
8641      FD = FTD->getTemplatedDecl();
8642    else
8643      FD = cast<FunctionDecl>(ND);
8644
8645    // Mark templated-scope function declarations as unsupported.
8646    if (FD->getNumTemplateParameterLists())
8647      FrD->setUnsupportedFriend(true);
8648  }
8649
8650  return ND;
8651}
8652
8653void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
8654  AdjustDeclIfTemplate(Dcl);
8655
8656  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
8657  if (!Fn) {
8658    Diag(DelLoc, diag::err_deleted_non_function);
8659    return;
8660  }
8661  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
8662    Diag(DelLoc, diag::err_deleted_decl_not_first);
8663    Diag(Prev->getLocation(), diag::note_previous_declaration);
8664    // If the declaration wasn't the first, we delete the function anyway for
8665    // recovery.
8666  }
8667  Fn->setDeletedAsWritten();
8668}
8669
8670void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
8671  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
8672
8673  if (MD) {
8674    if (MD->getParent()->isDependentType()) {
8675      MD->setDefaulted();
8676      MD->setExplicitlyDefaulted();
8677      return;
8678    }
8679
8680    CXXSpecialMember Member = getSpecialMember(MD);
8681    if (Member == CXXInvalid) {
8682      Diag(DefaultLoc, diag::err_default_special_members);
8683      return;
8684    }
8685
8686    MD->setDefaulted();
8687    MD->setExplicitlyDefaulted();
8688
8689    // If this definition appears within the record, do the checking when
8690    // the record is complete.
8691    const FunctionDecl *Primary = MD;
8692    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
8693      // Find the uninstantiated declaration that actually had the '= default'
8694      // on it.
8695      MD->getTemplateInstantiationPattern()->isDefined(Primary);
8696
8697    if (Primary == Primary->getCanonicalDecl())
8698      return;
8699
8700    switch (Member) {
8701    case CXXDefaultConstructor: {
8702      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8703      CheckExplicitlyDefaultedDefaultConstructor(CD);
8704      if (!CD->isInvalidDecl())
8705        DefineImplicitDefaultConstructor(DefaultLoc, CD);
8706      break;
8707    }
8708
8709    case CXXCopyConstructor: {
8710      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8711      CheckExplicitlyDefaultedCopyConstructor(CD);
8712      if (!CD->isInvalidDecl())
8713        DefineImplicitCopyConstructor(DefaultLoc, CD);
8714      break;
8715    }
8716
8717    case CXXCopyAssignment: {
8718      CheckExplicitlyDefaultedCopyAssignment(MD);
8719      if (!MD->isInvalidDecl())
8720        DefineImplicitCopyAssignment(DefaultLoc, MD);
8721      break;
8722    }
8723
8724    case CXXDestructor: {
8725      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
8726      CheckExplicitlyDefaultedDestructor(DD);
8727      if (!DD->isInvalidDecl())
8728        DefineImplicitDestructor(DefaultLoc, DD);
8729      break;
8730    }
8731
8732    case CXXMoveConstructor:
8733    case CXXMoveAssignment:
8734      Diag(Dcl->getLocation(), diag::err_defaulted_move_unsupported);
8735      break;
8736
8737    default:
8738      // FIXME: Do the rest once we have move functions
8739      break;
8740    }
8741  } else {
8742    Diag(DefaultLoc, diag::err_default_special_members);
8743  }
8744}
8745
8746static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
8747  for (Stmt::child_range CI = S->children(); CI; ++CI) {
8748    Stmt *SubStmt = *CI;
8749    if (!SubStmt)
8750      continue;
8751    if (isa<ReturnStmt>(SubStmt))
8752      Self.Diag(SubStmt->getSourceRange().getBegin(),
8753           diag::err_return_in_constructor_handler);
8754    if (!isa<Expr>(SubStmt))
8755      SearchForReturnInStmt(Self, SubStmt);
8756  }
8757}
8758
8759void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
8760  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
8761    CXXCatchStmt *Handler = TryBlock->getHandler(I);
8762    SearchForReturnInStmt(*this, Handler);
8763  }
8764}
8765
8766bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
8767                                             const CXXMethodDecl *Old) {
8768  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
8769  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
8770
8771  if (Context.hasSameType(NewTy, OldTy) ||
8772      NewTy->isDependentType() || OldTy->isDependentType())
8773    return false;
8774
8775  // Check if the return types are covariant
8776  QualType NewClassTy, OldClassTy;
8777
8778  /// Both types must be pointers or references to classes.
8779  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
8780    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
8781      NewClassTy = NewPT->getPointeeType();
8782      OldClassTy = OldPT->getPointeeType();
8783    }
8784  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
8785    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
8786      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
8787        NewClassTy = NewRT->getPointeeType();
8788        OldClassTy = OldRT->getPointeeType();
8789      }
8790    }
8791  }
8792
8793  // The return types aren't either both pointers or references to a class type.
8794  if (NewClassTy.isNull()) {
8795    Diag(New->getLocation(),
8796         diag::err_different_return_type_for_overriding_virtual_function)
8797      << New->getDeclName() << NewTy << OldTy;
8798    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8799
8800    return true;
8801  }
8802
8803  // C++ [class.virtual]p6:
8804  //   If the return type of D::f differs from the return type of B::f, the
8805  //   class type in the return type of D::f shall be complete at the point of
8806  //   declaration of D::f or shall be the class type D.
8807  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
8808    if (!RT->isBeingDefined() &&
8809        RequireCompleteType(New->getLocation(), NewClassTy,
8810                            PDiag(diag::err_covariant_return_incomplete)
8811                              << New->getDeclName()))
8812    return true;
8813  }
8814
8815  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
8816    // Check if the new class derives from the old class.
8817    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
8818      Diag(New->getLocation(),
8819           diag::err_covariant_return_not_derived)
8820      << New->getDeclName() << NewTy << OldTy;
8821      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8822      return true;
8823    }
8824
8825    // Check if we the conversion from derived to base is valid.
8826    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
8827                    diag::err_covariant_return_inaccessible_base,
8828                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
8829                    // FIXME: Should this point to the return type?
8830                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
8831      // FIXME: this note won't trigger for delayed access control
8832      // diagnostics, and it's impossible to get an undelayed error
8833      // here from access control during the original parse because
8834      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
8835      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8836      return true;
8837    }
8838  }
8839
8840  // The qualifiers of the return types must be the same.
8841  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
8842    Diag(New->getLocation(),
8843         diag::err_covariant_return_type_different_qualifications)
8844    << New->getDeclName() << NewTy << OldTy;
8845    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8846    return true;
8847  };
8848
8849
8850  // The new class type must have the same or less qualifiers as the old type.
8851  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
8852    Diag(New->getLocation(),
8853         diag::err_covariant_return_type_class_type_more_qualified)
8854    << New->getDeclName() << NewTy << OldTy;
8855    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8856    return true;
8857  };
8858
8859  return false;
8860}
8861
8862/// \brief Mark the given method pure.
8863///
8864/// \param Method the method to be marked pure.
8865///
8866/// \param InitRange the source range that covers the "0" initializer.
8867bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
8868  SourceLocation EndLoc = InitRange.getEnd();
8869  if (EndLoc.isValid())
8870    Method->setRangeEnd(EndLoc);
8871
8872  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
8873    Method->setPure();
8874    return false;
8875  }
8876
8877  if (!Method->isInvalidDecl())
8878    Diag(Method->getLocation(), diag::err_non_virtual_pure)
8879      << Method->getDeclName() << InitRange;
8880  return true;
8881}
8882
8883/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
8884/// an initializer for the out-of-line declaration 'Dcl'.  The scope
8885/// is a fresh scope pushed for just this purpose.
8886///
8887/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
8888/// static data member of class X, names should be looked up in the scope of
8889/// class X.
8890void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
8891  // If there is no declaration, there was an error parsing it.
8892  if (D == 0 || D->isInvalidDecl()) return;
8893
8894  // We should only get called for declarations with scope specifiers, like:
8895  //   int foo::bar;
8896  assert(D->isOutOfLine());
8897  EnterDeclaratorContext(S, D->getDeclContext());
8898}
8899
8900/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
8901/// initializer for the out-of-line declaration 'D'.
8902void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
8903  // If there is no declaration, there was an error parsing it.
8904  if (D == 0 || D->isInvalidDecl()) return;
8905
8906  assert(D->isOutOfLine());
8907  ExitDeclaratorContext(S);
8908}
8909
8910/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
8911/// C++ if/switch/while/for statement.
8912/// e.g: "if (int x = f()) {...}"
8913DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
8914  // C++ 6.4p2:
8915  // The declarator shall not specify a function or an array.
8916  // The type-specifier-seq shall not contain typedef and shall not declare a
8917  // new class or enumeration.
8918  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
8919         "Parser allowed 'typedef' as storage class of condition decl.");
8920
8921  TagDecl *OwnedTag = 0;
8922  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
8923  QualType Ty = TInfo->getType();
8924
8925  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
8926                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
8927                              // would be created and CXXConditionDeclExpr wants a VarDecl.
8928    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
8929      << D.getSourceRange();
8930    return DeclResult();
8931  } else if (OwnedTag && OwnedTag->isDefinition()) {
8932    // The type-specifier-seq shall not declare a new class or enumeration.
8933    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
8934  }
8935
8936  Decl *Dcl = ActOnDeclarator(S, D);
8937  if (!Dcl)
8938    return DeclResult();
8939
8940  return Dcl;
8941}
8942
8943void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
8944                          bool DefinitionRequired) {
8945  // Ignore any vtable uses in unevaluated operands or for classes that do
8946  // not have a vtable.
8947  if (!Class->isDynamicClass() || Class->isDependentContext() ||
8948      CurContext->isDependentContext() ||
8949      ExprEvalContexts.back().Context == Unevaluated)
8950    return;
8951
8952  // Try to insert this class into the map.
8953  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
8954  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
8955    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
8956  if (!Pos.second) {
8957    // If we already had an entry, check to see if we are promoting this vtable
8958    // to required a definition. If so, we need to reappend to the VTableUses
8959    // list, since we may have already processed the first entry.
8960    if (DefinitionRequired && !Pos.first->second) {
8961      Pos.first->second = true;
8962    } else {
8963      // Otherwise, we can early exit.
8964      return;
8965    }
8966  }
8967
8968  // Local classes need to have their virtual members marked
8969  // immediately. For all other classes, we mark their virtual members
8970  // at the end of the translation unit.
8971  if (Class->isLocalClass())
8972    MarkVirtualMembersReferenced(Loc, Class);
8973  else
8974    VTableUses.push_back(std::make_pair(Class, Loc));
8975}
8976
8977bool Sema::DefineUsedVTables() {
8978  if (VTableUses.empty())
8979    return false;
8980
8981  // Note: The VTableUses vector could grow as a result of marking
8982  // the members of a class as "used", so we check the size each
8983  // time through the loop and prefer indices (with are stable) to
8984  // iterators (which are not).
8985  bool DefinedAnything = false;
8986  for (unsigned I = 0; I != VTableUses.size(); ++I) {
8987    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
8988    if (!Class)
8989      continue;
8990
8991    SourceLocation Loc = VTableUses[I].second;
8992
8993    // If this class has a key function, but that key function is
8994    // defined in another translation unit, we don't need to emit the
8995    // vtable even though we're using it.
8996    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
8997    if (KeyFunction && !KeyFunction->hasBody()) {
8998      switch (KeyFunction->getTemplateSpecializationKind()) {
8999      case TSK_Undeclared:
9000      case TSK_ExplicitSpecialization:
9001      case TSK_ExplicitInstantiationDeclaration:
9002        // The key function is in another translation unit.
9003        continue;
9004
9005      case TSK_ExplicitInstantiationDefinition:
9006      case TSK_ImplicitInstantiation:
9007        // We will be instantiating the key function.
9008        break;
9009      }
9010    } else if (!KeyFunction) {
9011      // If we have a class with no key function that is the subject
9012      // of an explicit instantiation declaration, suppress the
9013      // vtable; it will live with the explicit instantiation
9014      // definition.
9015      bool IsExplicitInstantiationDeclaration
9016        = Class->getTemplateSpecializationKind()
9017                                      == TSK_ExplicitInstantiationDeclaration;
9018      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
9019                                 REnd = Class->redecls_end();
9020           R != REnd; ++R) {
9021        TemplateSpecializationKind TSK
9022          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
9023        if (TSK == TSK_ExplicitInstantiationDeclaration)
9024          IsExplicitInstantiationDeclaration = true;
9025        else if (TSK == TSK_ExplicitInstantiationDefinition) {
9026          IsExplicitInstantiationDeclaration = false;
9027          break;
9028        }
9029      }
9030
9031      if (IsExplicitInstantiationDeclaration)
9032        continue;
9033    }
9034
9035    // Mark all of the virtual members of this class as referenced, so
9036    // that we can build a vtable. Then, tell the AST consumer that a
9037    // vtable for this class is required.
9038    DefinedAnything = true;
9039    MarkVirtualMembersReferenced(Loc, Class);
9040    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
9041    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
9042
9043    // Optionally warn if we're emitting a weak vtable.
9044    if (Class->getLinkage() == ExternalLinkage &&
9045        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
9046      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
9047        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
9048    }
9049  }
9050  VTableUses.clear();
9051
9052  return DefinedAnything;
9053}
9054
9055void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
9056                                        const CXXRecordDecl *RD) {
9057  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
9058       e = RD->method_end(); i != e; ++i) {
9059    CXXMethodDecl *MD = *i;
9060
9061    // C++ [basic.def.odr]p2:
9062    //   [...] A virtual member function is used if it is not pure. [...]
9063    if (MD->isVirtual() && !MD->isPure())
9064      MarkDeclarationReferenced(Loc, MD);
9065  }
9066
9067  // Only classes that have virtual bases need a VTT.
9068  if (RD->getNumVBases() == 0)
9069    return;
9070
9071  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
9072           e = RD->bases_end(); i != e; ++i) {
9073    const CXXRecordDecl *Base =
9074        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
9075    if (Base->getNumVBases() == 0)
9076      continue;
9077    MarkVirtualMembersReferenced(Loc, Base);
9078  }
9079}
9080
9081/// SetIvarInitializers - This routine builds initialization ASTs for the
9082/// Objective-C implementation whose ivars need be initialized.
9083void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
9084  if (!getLangOptions().CPlusPlus)
9085    return;
9086  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
9087    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
9088    CollectIvarsToConstructOrDestruct(OID, ivars);
9089    if (ivars.empty())
9090      return;
9091    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
9092    for (unsigned i = 0; i < ivars.size(); i++) {
9093      FieldDecl *Field = ivars[i];
9094      if (Field->isInvalidDecl())
9095        continue;
9096
9097      CXXCtorInitializer *Member;
9098      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
9099      InitializationKind InitKind =
9100        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
9101
9102      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
9103      ExprResult MemberInit =
9104        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
9105      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
9106      // Note, MemberInit could actually come back empty if no initialization
9107      // is required (e.g., because it would call a trivial default constructor)
9108      if (!MemberInit.get() || MemberInit.isInvalid())
9109        continue;
9110
9111      Member =
9112        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
9113                                         SourceLocation(),
9114                                         MemberInit.takeAs<Expr>(),
9115                                         SourceLocation());
9116      AllToInit.push_back(Member);
9117
9118      // Be sure that the destructor is accessible and is marked as referenced.
9119      if (const RecordType *RecordTy
9120                  = Context.getBaseElementType(Field->getType())
9121                                                        ->getAs<RecordType>()) {
9122                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
9123        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
9124          MarkDeclarationReferenced(Field->getLocation(), Destructor);
9125          CheckDestructorAccess(Field->getLocation(), Destructor,
9126                            PDiag(diag::err_access_dtor_ivar)
9127                              << Context.getBaseElementType(Field->getType()));
9128        }
9129      }
9130    }
9131    ObjCImplementation->setIvarInitializers(Context,
9132                                            AllToInit.data(), AllToInit.size());
9133  }
9134}
9135
9136static
9137void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
9138                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
9139                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
9140                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
9141                           Sema &S) {
9142  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9143                                                   CE = Current.end();
9144  if (Ctor->isInvalidDecl())
9145    return;
9146
9147  const FunctionDecl *FNTarget = 0;
9148  CXXConstructorDecl *Target;
9149
9150  // We ignore the result here since if we don't have a body, Target will be
9151  // null below.
9152  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
9153  Target
9154= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
9155
9156  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
9157                     // Avoid dereferencing a null pointer here.
9158                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
9159
9160  if (!Current.insert(Canonical))
9161    return;
9162
9163  // We know that beyond here, we aren't chaining into a cycle.
9164  if (!Target || !Target->isDelegatingConstructor() ||
9165      Target->isInvalidDecl() || Valid.count(TCanonical)) {
9166    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9167      Valid.insert(*CI);
9168    Current.clear();
9169  // We've hit a cycle.
9170  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
9171             Current.count(TCanonical)) {
9172    // If we haven't diagnosed this cycle yet, do so now.
9173    if (!Invalid.count(TCanonical)) {
9174      S.Diag((*Ctor->init_begin())->getSourceLocation(),
9175             diag::warn_delegating_ctor_cycle)
9176        << Ctor;
9177
9178      // Don't add a note for a function delegating directo to itself.
9179      if (TCanonical != Canonical)
9180        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
9181
9182      CXXConstructorDecl *C = Target;
9183      while (C->getCanonicalDecl() != Canonical) {
9184        (void)C->getTargetConstructor()->hasBody(FNTarget);
9185        assert(FNTarget && "Ctor cycle through bodiless function");
9186
9187        C
9188       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
9189        S.Diag(C->getLocation(), diag::note_which_delegates_to);
9190      }
9191    }
9192
9193    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9194      Invalid.insert(*CI);
9195    Current.clear();
9196  } else {
9197    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
9198  }
9199}
9200
9201
9202void Sema::CheckDelegatingCtorCycles() {
9203  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
9204
9205  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9206                                                   CE = Current.end();
9207
9208  for (llvm::SmallVector<CXXConstructorDecl*, 4>::iterator
9209         I = DelegatingCtorDecls.begin(),
9210         E = DelegatingCtorDecls.end();
9211       I != E; ++I) {
9212   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
9213  }
9214
9215  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
9216    (*CI)->setInvalidDecl();
9217}
9218