SemaDeclCXX.cpp revision 393612e6c7727f1fee50039254d9f434364cc0b2
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  if (CheckEquivalentExceptionSpec(
262          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
263          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
264    Invalid = true;
265  }
266
267  return Invalid;
268}
269
270/// CheckCXXDefaultArguments - Verify that the default arguments for a
271/// function declaration are well-formed according to C++
272/// [dcl.fct.default].
273void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
274  unsigned NumParams = FD->getNumParams();
275  unsigned p;
276
277  // Find first parameter with a default argument
278  for (p = 0; p < NumParams; ++p) {
279    ParmVarDecl *Param = FD->getParamDecl(p);
280    if (Param->getDefaultArg())
281      break;
282  }
283
284  // C++ [dcl.fct.default]p4:
285  //   In a given function declaration, all parameters
286  //   subsequent to a parameter with a default argument shall
287  //   have default arguments supplied in this or previous
288  //   declarations. A default argument shall not be redefined
289  //   by a later declaration (not even to the same value).
290  unsigned LastMissingDefaultArg = 0;
291  for(; p < NumParams; ++p) {
292    ParmVarDecl *Param = FD->getParamDecl(p);
293    if (!Param->getDefaultArg()) {
294      if (Param->isInvalidDecl())
295        /* We already complained about this parameter. */;
296      else if (Param->getIdentifier())
297        Diag(Param->getLocation(),
298             diag::err_param_default_argument_missing_name)
299          << Param->getIdentifier();
300      else
301        Diag(Param->getLocation(),
302             diag::err_param_default_argument_missing);
303
304      LastMissingDefaultArg = p;
305    }
306  }
307
308  if (LastMissingDefaultArg > 0) {
309    // Some default arguments were missing. Clear out all of the
310    // default arguments up to (and including) the last missing
311    // default argument, so that we leave the function parameters
312    // in a semantically valid state.
313    for (p = 0; p <= LastMissingDefaultArg; ++p) {
314      ParmVarDecl *Param = FD->getParamDecl(p);
315      if (Param->hasDefaultArg()) {
316        if (!Param->hasUnparsedDefaultArg())
317          Param->getDefaultArg()->Destroy(Context);
318        Param->setDefaultArg(0);
319      }
320    }
321  }
322}
323
324/// isCurrentClassName - Determine whether the identifier II is the
325/// name of the class type currently being defined. In the case of
326/// nested classes, this will only return true if II is the name of
327/// the innermost class.
328bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
329                              const CXXScopeSpec *SS) {
330  CXXRecordDecl *CurDecl;
331  if (SS && SS->isSet() && !SS->isInvalid()) {
332    DeclContext *DC = computeDeclContext(*SS);
333    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
334  } else
335    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
336
337  if (CurDecl)
338    return &II == CurDecl->getIdentifier();
339  else
340    return false;
341}
342
343/// \brief Check the validity of a C++ base class specifier.
344///
345/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
346/// and returns NULL otherwise.
347CXXBaseSpecifier *
348Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
349                         SourceRange SpecifierRange,
350                         bool Virtual, AccessSpecifier Access,
351                         QualType BaseType,
352                         SourceLocation BaseLoc) {
353  // C++ [class.union]p1:
354  //   A union shall not have base classes.
355  if (Class->isUnion()) {
356    Diag(Class->getLocation(), diag::err_base_clause_on_union)
357      << SpecifierRange;
358    return 0;
359  }
360
361  if (BaseType->isDependentType())
362    return new CXXBaseSpecifier(SpecifierRange, Virtual,
363                                Class->getTagKind() == RecordDecl::TK_class,
364                                Access, BaseType);
365
366  // Base specifiers must be record types.
367  if (!BaseType->isRecordType()) {
368    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
369    return 0;
370  }
371
372  // C++ [class.union]p1:
373  //   A union shall not be used as a base class.
374  if (BaseType->isUnionType()) {
375    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
376    return 0;
377  }
378
379  // C++ [class.derived]p2:
380  //   The class-name in a base-specifier shall not be an incompletely
381  //   defined class.
382  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
383                          SpecifierRange))
384    return 0;
385
386  // If the base class is polymorphic, the new one is, too.
387  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
388  assert(BaseDecl && "Record type has no declaration");
389  BaseDecl = BaseDecl->getDefinition(Context);
390  assert(BaseDecl && "Base type is not incomplete, but has no definition");
391  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
392    Class->setPolymorphic(true);
393
394  // C++ [dcl.init.aggr]p1:
395  //   An aggregate is [...] a class with [...] no base classes [...].
396  Class->setAggregate(false);
397  Class->setPOD(false);
398
399  if (Virtual) {
400    // C++ [class.ctor]p5:
401    //   A constructor is trivial if its class has no virtual base classes.
402    Class->setHasTrivialConstructor(false);
403  } else {
404    // C++ [class.ctor]p5:
405    //   A constructor is trivial if all the direct base classes of its
406    //   class have trivial constructors.
407    Class->setHasTrivialConstructor(cast<CXXRecordDecl>(BaseDecl)->
408                                    hasTrivialConstructor());
409  }
410
411  // C++ [class.ctor]p3:
412  //   A destructor is trivial if all the direct base classes of its class
413  //   have trivial destructors.
414  Class->setHasTrivialDestructor(cast<CXXRecordDecl>(BaseDecl)->
415                                 hasTrivialDestructor());
416
417  // Create the base specifier.
418  // FIXME: Allocate via ASTContext?
419  return new CXXBaseSpecifier(SpecifierRange, Virtual,
420                              Class->getTagKind() == RecordDecl::TK_class,
421                              Access, BaseType);
422}
423
424/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
425/// one entry in the base class list of a class specifier, for
426/// example:
427///    class foo : public bar, virtual private baz {
428/// 'public bar' and 'virtual private baz' are each base-specifiers.
429Sema::BaseResult
430Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
431                         bool Virtual, AccessSpecifier Access,
432                         TypeTy *basetype, SourceLocation BaseLoc) {
433  if (!classdecl)
434    return true;
435
436  AdjustDeclIfTemplate(classdecl);
437  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
438  QualType BaseType = QualType::getFromOpaquePtr(basetype);
439  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
440                                                      Virtual, Access,
441                                                      BaseType, BaseLoc))
442    return BaseSpec;
443
444  return true;
445}
446
447/// \brief Performs the actual work of attaching the given base class
448/// specifiers to a C++ class.
449bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
450                                unsigned NumBases) {
451 if (NumBases == 0)
452    return false;
453
454  // Used to keep track of which base types we have already seen, so
455  // that we can properly diagnose redundant direct base types. Note
456  // that the key is always the unqualified canonical type of the base
457  // class.
458  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
459
460  // Copy non-redundant base specifiers into permanent storage.
461  unsigned NumGoodBases = 0;
462  bool Invalid = false;
463  for (unsigned idx = 0; idx < NumBases; ++idx) {
464    QualType NewBaseType
465      = Context.getCanonicalType(Bases[idx]->getType());
466    NewBaseType = NewBaseType.getUnqualifiedType();
467
468    if (KnownBaseTypes[NewBaseType]) {
469      // C++ [class.mi]p3:
470      //   A class shall not be specified as a direct base class of a
471      //   derived class more than once.
472      Diag(Bases[idx]->getSourceRange().getBegin(),
473           diag::err_duplicate_base_class)
474        << KnownBaseTypes[NewBaseType]->getType()
475        << Bases[idx]->getSourceRange();
476
477      // Delete the duplicate base class specifier; we're going to
478      // overwrite its pointer later.
479      delete Bases[idx];
480
481      Invalid = true;
482    } else {
483      // Okay, add this new base class.
484      KnownBaseTypes[NewBaseType] = Bases[idx];
485      Bases[NumGoodBases++] = Bases[idx];
486    }
487  }
488
489  // Attach the remaining base class specifiers to the derived class.
490  Class->setBases(Context, Bases, NumGoodBases);
491
492  // Delete the remaining (good) base class specifiers, since their
493  // data has been copied into the CXXRecordDecl.
494  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
495    delete Bases[idx];
496
497  return Invalid;
498}
499
500/// ActOnBaseSpecifiers - Attach the given base specifiers to the
501/// class, after checking whether there are any duplicate base
502/// classes.
503void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
504                               unsigned NumBases) {
505  if (!ClassDecl || !Bases || !NumBases)
506    return;
507
508  AdjustDeclIfTemplate(ClassDecl);
509  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
510                       (CXXBaseSpecifier**)(Bases), NumBases);
511}
512
513//===----------------------------------------------------------------------===//
514// C++ class member Handling
515//===----------------------------------------------------------------------===//
516
517/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
518/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
519/// bitfield width if there is one and 'InitExpr' specifies the initializer if
520/// any.
521Sema::DeclPtrTy
522Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
523                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
524  const DeclSpec &DS = D.getDeclSpec();
525  DeclarationName Name = GetNameForDeclarator(D);
526  Expr *BitWidth = static_cast<Expr*>(BW);
527  Expr *Init = static_cast<Expr*>(InitExpr);
528  SourceLocation Loc = D.getIdentifierLoc();
529
530  bool isFunc = D.isFunctionDeclarator();
531
532  // C++ 9.2p6: A member shall not be declared to have automatic storage
533  // duration (auto, register) or with the extern storage-class-specifier.
534  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
535  // data members and cannot be applied to names declared const or static,
536  // and cannot be applied to reference members.
537  switch (DS.getStorageClassSpec()) {
538    case DeclSpec::SCS_unspecified:
539    case DeclSpec::SCS_typedef:
540    case DeclSpec::SCS_static:
541      // FALL THROUGH.
542      break;
543    case DeclSpec::SCS_mutable:
544      if (isFunc) {
545        if (DS.getStorageClassSpecLoc().isValid())
546          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
547        else
548          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
549
550        // FIXME: It would be nicer if the keyword was ignored only for this
551        // declarator. Otherwise we could get follow-up errors.
552        D.getMutableDeclSpec().ClearStorageClassSpecs();
553      } else {
554        QualType T = GetTypeForDeclarator(D, S);
555        diag::kind err = static_cast<diag::kind>(0);
556        if (T->isReferenceType())
557          err = diag::err_mutable_reference;
558        else if (T.isConstQualified())
559          err = diag::err_mutable_const;
560        if (err != 0) {
561          if (DS.getStorageClassSpecLoc().isValid())
562            Diag(DS.getStorageClassSpecLoc(), err);
563          else
564            Diag(DS.getThreadSpecLoc(), err);
565          // FIXME: It would be nicer if the keyword was ignored only for this
566          // declarator. Otherwise we could get follow-up errors.
567          D.getMutableDeclSpec().ClearStorageClassSpecs();
568        }
569      }
570      break;
571    default:
572      if (DS.getStorageClassSpecLoc().isValid())
573        Diag(DS.getStorageClassSpecLoc(),
574             diag::err_storageclass_invalid_for_member);
575      else
576        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
577      D.getMutableDeclSpec().ClearStorageClassSpecs();
578  }
579
580  if (!isFunc &&
581      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
582      D.getNumTypeObjects() == 0) {
583    // Check also for this case:
584    //
585    // typedef int f();
586    // f a;
587    //
588    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
589    isFunc = TDType->isFunctionType();
590  }
591
592  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
593                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
594                      !isFunc);
595
596  Decl *Member;
597  if (isInstField) {
598    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
599                         AS);
600    assert(Member && "HandleField never returns null");
601  } else {
602    Member = ActOnDeclarator(S, D).getAs<Decl>();
603    if (!Member) {
604      if (BitWidth) DeleteExpr(BitWidth);
605      return DeclPtrTy();
606    }
607
608    // Non-instance-fields can't have a bitfield.
609    if (BitWidth) {
610      if (Member->isInvalidDecl()) {
611        // don't emit another diagnostic.
612      } else if (isa<VarDecl>(Member)) {
613        // C++ 9.6p3: A bit-field shall not be a static member.
614        // "static member 'A' cannot be a bit-field"
615        Diag(Loc, diag::err_static_not_bitfield)
616          << Name << BitWidth->getSourceRange();
617      } else if (isa<TypedefDecl>(Member)) {
618        // "typedef member 'x' cannot be a bit-field"
619        Diag(Loc, diag::err_typedef_not_bitfield)
620          << Name << BitWidth->getSourceRange();
621      } else {
622        // A function typedef ("typedef int f(); f a;").
623        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
624        Diag(Loc, diag::err_not_integral_type_bitfield)
625          << Name << cast<ValueDecl>(Member)->getType()
626          << BitWidth->getSourceRange();
627      }
628
629      DeleteExpr(BitWidth);
630      BitWidth = 0;
631      Member->setInvalidDecl();
632    }
633
634    Member->setAccess(AS);
635  }
636
637  assert((Name || isInstField) && "No identifier for non-field ?");
638
639  if (Init)
640    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
641  if (Deleted) // FIXME: Source location is not very good.
642    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
643
644  if (isInstField) {
645    FieldCollector->Add(cast<FieldDecl>(Member));
646    return DeclPtrTy();
647  }
648  return DeclPtrTy::make(Member);
649}
650
651/// ActOnMemInitializer - Handle a C++ member initializer.
652Sema::MemInitResult
653Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
654                          Scope *S,
655                          const CXXScopeSpec &SS,
656                          IdentifierInfo *MemberOrBase,
657                          TypeTy *TemplateTypeTy,
658                          SourceLocation IdLoc,
659                          SourceLocation LParenLoc,
660                          ExprTy **Args, unsigned NumArgs,
661                          SourceLocation *CommaLocs,
662                          SourceLocation RParenLoc) {
663  if (!ConstructorD)
664    return true;
665
666  CXXConstructorDecl *Constructor
667    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
668  if (!Constructor) {
669    // The user wrote a constructor initializer on a function that is
670    // not a C++ constructor. Ignore the error for now, because we may
671    // have more member initializers coming; we'll diagnose it just
672    // once in ActOnMemInitializers.
673    return true;
674  }
675
676  CXXRecordDecl *ClassDecl = Constructor->getParent();
677
678  // C++ [class.base.init]p2:
679  //   Names in a mem-initializer-id are looked up in the scope of the
680  //   constructor’s class and, if not found in that scope, are looked
681  //   up in the scope containing the constructor’s
682  //   definition. [Note: if the constructor’s class contains a member
683  //   with the same name as a direct or virtual base class of the
684  //   class, a mem-initializer-id naming the member or base class and
685  //   composed of a single identifier refers to the class member. A
686  //   mem-initializer-id for the hidden base class may be specified
687  //   using a qualified name. ]
688  if (!SS.getScopeRep() && !TemplateTypeTy) {
689    // Look for a member, first.
690    FieldDecl *Member = 0;
691    DeclContext::lookup_result Result
692      = ClassDecl->lookup(MemberOrBase);
693    if (Result.first != Result.second)
694      Member = dyn_cast<FieldDecl>(*Result.first);
695
696    // FIXME: Handle members of an anonymous union.
697
698    if (Member) {
699      // FIXME: Perform direct initialization of the member.
700      return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs,
701                                            IdLoc);
702    }
703  }
704  // It didn't name a member, so see if it names a class.
705  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
706                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
707  if (!BaseTy)
708    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
709      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
710
711  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
712  if (!BaseType->isRecordType() && !BaseType->isDependentType())
713    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
714      << BaseType << SourceRange(IdLoc, RParenLoc);
715
716  // C++ [class.base.init]p2:
717  //   [...] Unless the mem-initializer-id names a nonstatic data
718  //   member of the constructor’s class or a direct or virtual base
719  //   of that class, the mem-initializer is ill-formed. A
720  //   mem-initializer-list can initialize a base class using any
721  //   name that denotes that base class type.
722
723  // First, check for a direct base class.
724  const CXXBaseSpecifier *DirectBaseSpec = 0;
725  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
726       Base != ClassDecl->bases_end(); ++Base) {
727    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
728        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
729      // We found a direct base of this type. That's what we're
730      // initializing.
731      DirectBaseSpec = &*Base;
732      break;
733    }
734  }
735
736  // Check for a virtual base class.
737  // FIXME: We might be able to short-circuit this if we know in advance that
738  // there are no virtual bases.
739  const CXXBaseSpecifier *VirtualBaseSpec = 0;
740  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
741    // We haven't found a base yet; search the class hierarchy for a
742    // virtual base class.
743    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
744                    /*DetectVirtual=*/false);
745    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
746      for (BasePaths::paths_iterator Path = Paths.begin();
747           Path != Paths.end(); ++Path) {
748        if (Path->back().Base->isVirtual()) {
749          VirtualBaseSpec = Path->back().Base;
750          break;
751        }
752      }
753    }
754  }
755
756  // C++ [base.class.init]p2:
757  //   If a mem-initializer-id is ambiguous because it designates both
758  //   a direct non-virtual base class and an inherited virtual base
759  //   class, the mem-initializer is ill-formed.
760  if (DirectBaseSpec && VirtualBaseSpec)
761    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
762      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
763  // C++ [base.class.init]p2:
764  // Unless the mem-initializer-id names a nonstatic data membeer of the
765  // constructor's class ot a direst or virtual base of that class, the
766  // mem-initializer is ill-formed.
767  if (!DirectBaseSpec && !VirtualBaseSpec)
768    return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
769    << BaseType << ClassDecl->getNameAsCString()
770    << SourceRange(IdLoc, RParenLoc);
771
772
773  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs,
774                                        IdLoc);
775}
776
777static void *GetKeyForTopLevelField(FieldDecl *Field) {
778  // For anonymous unions, use the class declaration as the key.
779  if (const RecordType *RT = Field->getType()->getAsRecordType()) {
780    if (RT->getDecl()->isAnonymousStructOrUnion())
781      return static_cast<void *>(RT->getDecl());
782  }
783  return static_cast<void *>(Field);
784}
785
786static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member) {
787  // For fields injected into the class via declaration of an anonymous union,
788  // use its anonymous union class declaration as the unique key.
789  if (FieldDecl *Field = Member->getMember()) {
790    if (Field->getDeclContext()->isRecord()) {
791      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
792      if (RD->isAnonymousStructOrUnion())
793        return static_cast<void *>(RD);
794    }
795    return static_cast<void *>(Field);
796  }
797  return static_cast<RecordType *>(Member->getBaseClass());
798}
799
800void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
801                                SourceLocation ColonLoc,
802                                MemInitTy **MemInits, unsigned NumMemInits) {
803  if (!ConstructorDecl)
804    return;
805
806  CXXConstructorDecl *Constructor
807    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
808
809  if (!Constructor) {
810    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
811    return;
812  }
813  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
814  bool err = false;
815  for (unsigned i = 0; i < NumMemInits; i++) {
816    CXXBaseOrMemberInitializer *Member =
817      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
818    void *KeyToMember = GetKeyForMember(Member);
819    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
820    if (!PrevMember) {
821      PrevMember = Member;
822      continue;
823    }
824    if (FieldDecl *Field = Member->getMember())
825      Diag(Member->getSourceLocation(),
826           diag::error_multiple_mem_initialization)
827      << Field->getNameAsString();
828    else {
829      Type *BaseClass = Member->getBaseClass();
830      assert(BaseClass && "ActOnMemInitializers - neither field or base");
831      Diag(Member->getSourceLocation(),
832           diag::error_multiple_base_initialization)
833        << BaseClass->getDesugaredType(true);
834    }
835    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
836      << 0;
837    err = true;
838  }
839  if (!err) {
840    Constructor->setBaseOrMemberInitializers(Context,
841                    reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
842                    NumMemInits);
843  }
844  if (!err && (Diags.getDiagnosticLevel(diag::warn_base_initialized)
845               != Diagnostic::Ignored ||
846               Diags.getDiagnosticLevel(diag::warn_field_initialized)
847               != Diagnostic::Ignored)) {
848    // Also issue warning if order of ctor-initializer list does not match order
849    // of 1) base class declarations and 2) order of non-static data members.
850    llvm::SmallVector<const void*, 32> AllBaseOrMembers;
851
852    CXXRecordDecl *ClassDecl
853      = cast<CXXRecordDecl>(Constructor->getDeclContext());
854    // Push virtual bases before others.
855    for (CXXRecordDecl::base_class_iterator VBase =
856         ClassDecl->vbases_begin(),
857         E = ClassDecl->vbases_end(); VBase != E; ++VBase)
858      AllBaseOrMembers.push_back(VBase->getType()->getAsRecordType());
859
860    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
861         E = ClassDecl->bases_end(); Base != E; ++Base) {
862      // Virtuals are alread in the virtual base list and are constructed
863      // first.
864      if (Base->isVirtual())
865        continue;
866      AllBaseOrMembers.push_back(Base->getType()->getAsRecordType());
867    }
868
869    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
870         E = ClassDecl->field_end(); Field != E; ++Field)
871      AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
872
873    int Last = AllBaseOrMembers.size();
874    int curIndex = 0;
875    CXXBaseOrMemberInitializer *PrevMember = 0;
876    for (unsigned i = 0; i < NumMemInits; i++) {
877      CXXBaseOrMemberInitializer *Member =
878        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
879      void *MemberInCtorList = GetKeyForMember(Member);
880
881      for (; curIndex < Last; curIndex++)
882        if (MemberInCtorList == AllBaseOrMembers[curIndex])
883          break;
884      if (curIndex == Last) {
885        assert(PrevMember && "Member not in member list?!");
886        // Initializer as specified in ctor-initializer list is out of order.
887        // Issue a warning diagnostic.
888        if (PrevMember->isBaseInitializer()) {
889          // Diagnostics is for an initialized base class.
890          Type *BaseClass = PrevMember->getBaseClass();
891          Diag(PrevMember->getSourceLocation(),
892               diag::warn_base_initialized)
893                << BaseClass->getDesugaredType(true);
894        }
895        else {
896          FieldDecl *Field = PrevMember->getMember();
897          Diag(PrevMember->getSourceLocation(),
898               diag::warn_field_initialized)
899            << Field->getNameAsString();
900        }
901        // Also the note!
902        if (FieldDecl *Field = Member->getMember())
903          Diag(Member->getSourceLocation(),
904               diag::note_fieldorbase_initialized_here) << 0
905            << Field->getNameAsString();
906        else {
907          Type *BaseClass = Member->getBaseClass();
908          Diag(Member->getSourceLocation(),
909               diag::note_fieldorbase_initialized_here) << 1
910            << BaseClass->getDesugaredType(true);
911        }
912        for (curIndex = 0; curIndex < Last; curIndex++)
913          if (MemberInCtorList == AllBaseOrMembers[curIndex])
914            break;
915      }
916      PrevMember = Member;
917    }
918  }
919}
920
921void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
922  if (!CDtorDecl)
923    return;
924
925  if (CXXConstructorDecl *Constructor
926      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
927    Constructor->setBaseOrMemberInitializers(Context,
928                                           (CXXBaseOrMemberInitializer **)0, 0);
929}
930
931namespace {
932  /// PureVirtualMethodCollector - traverses a class and its superclasses
933  /// and determines if it has any pure virtual methods.
934  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
935    ASTContext &Context;
936
937  public:
938    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
939
940  private:
941    MethodList Methods;
942
943    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
944
945  public:
946    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
947      : Context(Ctx) {
948
949      MethodList List;
950      Collect(RD, List);
951
952      // Copy the temporary list to methods, and make sure to ignore any
953      // null entries.
954      for (size_t i = 0, e = List.size(); i != e; ++i) {
955        if (List[i])
956          Methods.push_back(List[i]);
957      }
958    }
959
960    bool empty() const { return Methods.empty(); }
961
962    MethodList::const_iterator methods_begin() { return Methods.begin(); }
963    MethodList::const_iterator methods_end() { return Methods.end(); }
964  };
965
966  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
967                                           MethodList& Methods) {
968    // First, collect the pure virtual methods for the base classes.
969    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
970         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
971      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
972        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
973        if (BaseDecl && BaseDecl->isAbstract())
974          Collect(BaseDecl, Methods);
975      }
976    }
977
978    // Next, zero out any pure virtual methods that this class overrides.
979    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
980
981    MethodSetTy OverriddenMethods;
982    size_t MethodsSize = Methods.size();
983
984    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
985         i != e; ++i) {
986      // Traverse the record, looking for methods.
987      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
988        // If the method is pure virtual, add it to the methods vector.
989        if (MD->isPure()) {
990          Methods.push_back(MD);
991          continue;
992        }
993
994        // Otherwise, record all the overridden methods in our set.
995        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
996             E = MD->end_overridden_methods(); I != E; ++I) {
997          // Keep track of the overridden methods.
998          OverriddenMethods.insert(*I);
999        }
1000      }
1001    }
1002
1003    // Now go through the methods and zero out all the ones we know are
1004    // overridden.
1005    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1006      if (OverriddenMethods.count(Methods[i]))
1007        Methods[i] = 0;
1008    }
1009
1010  }
1011}
1012
1013bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1014                                  unsigned DiagID, AbstractDiagSelID SelID,
1015                                  const CXXRecordDecl *CurrentRD) {
1016
1017  if (!getLangOptions().CPlusPlus)
1018    return false;
1019
1020  if (const ArrayType *AT = Context.getAsArrayType(T))
1021    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1022                                  CurrentRD);
1023
1024  if (const PointerType *PT = T->getAsPointerType()) {
1025    // Find the innermost pointer type.
1026    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
1027      PT = T;
1028
1029    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1030      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1031                                    CurrentRD);
1032  }
1033
1034  const RecordType *RT = T->getAsRecordType();
1035  if (!RT)
1036    return false;
1037
1038  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1039  if (!RD)
1040    return false;
1041
1042  if (CurrentRD && CurrentRD != RD)
1043    return false;
1044
1045  if (!RD->isAbstract())
1046    return false;
1047
1048  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
1049
1050  // Check if we've already emitted the list of pure virtual functions for this
1051  // class.
1052  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1053    return true;
1054
1055  PureVirtualMethodCollector Collector(Context, RD);
1056
1057  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1058       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1059    const CXXMethodDecl *MD = *I;
1060
1061    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1062      MD->getDeclName();
1063  }
1064
1065  if (!PureVirtualClassDiagSet)
1066    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1067  PureVirtualClassDiagSet->insert(RD);
1068
1069  return true;
1070}
1071
1072namespace {
1073  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1074    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1075    Sema &SemaRef;
1076    CXXRecordDecl *AbstractClass;
1077
1078    bool VisitDeclContext(const DeclContext *DC) {
1079      bool Invalid = false;
1080
1081      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1082           E = DC->decls_end(); I != E; ++I)
1083        Invalid |= Visit(*I);
1084
1085      return Invalid;
1086    }
1087
1088  public:
1089    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1090      : SemaRef(SemaRef), AbstractClass(ac) {
1091        Visit(SemaRef.Context.getTranslationUnitDecl());
1092    }
1093
1094    bool VisitFunctionDecl(const FunctionDecl *FD) {
1095      if (FD->isThisDeclarationADefinition()) {
1096        // No need to do the check if we're in a definition, because it requires
1097        // that the return/param types are complete.
1098        // because that requires
1099        return VisitDeclContext(FD);
1100      }
1101
1102      // Check the return type.
1103      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1104      bool Invalid =
1105        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1106                                       diag::err_abstract_type_in_decl,
1107                                       Sema::AbstractReturnType,
1108                                       AbstractClass);
1109
1110      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1111           E = FD->param_end(); I != E; ++I) {
1112        const ParmVarDecl *VD = *I;
1113        Invalid |=
1114          SemaRef.RequireNonAbstractType(VD->getLocation(),
1115                                         VD->getOriginalType(),
1116                                         diag::err_abstract_type_in_decl,
1117                                         Sema::AbstractParamType,
1118                                         AbstractClass);
1119      }
1120
1121      return Invalid;
1122    }
1123
1124    bool VisitDecl(const Decl* D) {
1125      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1126        return VisitDeclContext(DC);
1127
1128      return false;
1129    }
1130  };
1131}
1132
1133void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1134                                             DeclPtrTy TagDecl,
1135                                             SourceLocation LBrac,
1136                                             SourceLocation RBrac) {
1137  if (!TagDecl)
1138    return;
1139
1140  AdjustDeclIfTemplate(TagDecl);
1141  ActOnFields(S, RLoc, TagDecl,
1142              (DeclPtrTy*)FieldCollector->getCurFields(),
1143              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1144
1145  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1146  if (!RD->isAbstract()) {
1147    // Collect all the pure virtual methods and see if this is an abstract
1148    // class after all.
1149    PureVirtualMethodCollector Collector(Context, RD);
1150    if (!Collector.empty())
1151      RD->setAbstract(true);
1152  }
1153
1154  if (RD->isAbstract())
1155    AbstractClassUsageDiagnoser(*this, RD);
1156
1157  if (RD->hasTrivialConstructor() || RD->hasTrivialDestructor()) {
1158    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1159         i != e; ++i) {
1160      // All the nonstatic data members must have trivial constructors.
1161      QualType FTy = i->getType();
1162      while (const ArrayType *AT = Context.getAsArrayType(FTy))
1163        FTy = AT->getElementType();
1164
1165      if (const RecordType *RT = FTy->getAsRecordType()) {
1166        CXXRecordDecl *FieldRD = cast<CXXRecordDecl>(RT->getDecl());
1167
1168        if (!FieldRD->hasTrivialConstructor())
1169          RD->setHasTrivialConstructor(false);
1170        if (!FieldRD->hasTrivialDestructor())
1171          RD->setHasTrivialDestructor(false);
1172
1173        // If RD has neither a trivial constructor nor a trivial destructor
1174        // we don't need to continue checking.
1175        if (!RD->hasTrivialConstructor() && !RD->hasTrivialDestructor())
1176          break;
1177      }
1178    }
1179  }
1180
1181  if (!RD->isDependentType())
1182    AddImplicitlyDeclaredMembersToClass(RD);
1183}
1184
1185/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1186/// special functions, such as the default constructor, copy
1187/// constructor, or destructor, to the given C++ class (C++
1188/// [special]p1).  This routine can only be executed just before the
1189/// definition of the class is complete.
1190void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1191  QualType ClassType = Context.getTypeDeclType(ClassDecl);
1192  ClassType = Context.getCanonicalType(ClassType);
1193
1194  // FIXME: Implicit declarations have exception specifications, which are
1195  // the union of the specifications of the implicitly called functions.
1196
1197  if (!ClassDecl->hasUserDeclaredConstructor()) {
1198    // C++ [class.ctor]p5:
1199    //   A default constructor for a class X is a constructor of class X
1200    //   that can be called without an argument. If there is no
1201    //   user-declared constructor for class X, a default constructor is
1202    //   implicitly declared. An implicitly-declared default constructor
1203    //   is an inline public member of its class.
1204    DeclarationName Name
1205      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1206    CXXConstructorDecl *DefaultCon =
1207      CXXConstructorDecl::Create(Context, ClassDecl,
1208                                 ClassDecl->getLocation(), Name,
1209                                 Context.getFunctionType(Context.VoidTy,
1210                                                         0, 0, false, 0),
1211                                 /*isExplicit=*/false,
1212                                 /*isInline=*/true,
1213                                 /*isImplicitlyDeclared=*/true);
1214    DefaultCon->setAccess(AS_public);
1215    DefaultCon->setImplicit();
1216    ClassDecl->addDecl(DefaultCon);
1217  }
1218
1219  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1220    // C++ [class.copy]p4:
1221    //   If the class definition does not explicitly declare a copy
1222    //   constructor, one is declared implicitly.
1223
1224    // C++ [class.copy]p5:
1225    //   The implicitly-declared copy constructor for a class X will
1226    //   have the form
1227    //
1228    //       X::X(const X&)
1229    //
1230    //   if
1231    bool HasConstCopyConstructor = true;
1232
1233    //     -- each direct or virtual base class B of X has a copy
1234    //        constructor whose first parameter is of type const B& or
1235    //        const volatile B&, and
1236    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1237         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1238      const CXXRecordDecl *BaseClassDecl
1239        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1240      HasConstCopyConstructor
1241        = BaseClassDecl->hasConstCopyConstructor(Context);
1242    }
1243
1244    //     -- for all the nonstatic data members of X that are of a
1245    //        class type M (or array thereof), each such class type
1246    //        has a copy constructor whose first parameter is of type
1247    //        const M& or const volatile M&.
1248    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1249         HasConstCopyConstructor && Field != ClassDecl->field_end();
1250         ++Field) {
1251      QualType FieldType = (*Field)->getType();
1252      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1253        FieldType = Array->getElementType();
1254      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1255        const CXXRecordDecl *FieldClassDecl
1256          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1257        HasConstCopyConstructor
1258          = FieldClassDecl->hasConstCopyConstructor(Context);
1259      }
1260    }
1261
1262    //   Otherwise, the implicitly declared copy constructor will have
1263    //   the form
1264    //
1265    //       X::X(X&)
1266    QualType ArgType = ClassType;
1267    if (HasConstCopyConstructor)
1268      ArgType = ArgType.withConst();
1269    ArgType = Context.getLValueReferenceType(ArgType);
1270
1271    //   An implicitly-declared copy constructor is an inline public
1272    //   member of its class.
1273    DeclarationName Name
1274      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1275    CXXConstructorDecl *CopyConstructor
1276      = CXXConstructorDecl::Create(Context, ClassDecl,
1277                                   ClassDecl->getLocation(), Name,
1278                                   Context.getFunctionType(Context.VoidTy,
1279                                                           &ArgType, 1,
1280                                                           false, 0),
1281                                   /*isExplicit=*/false,
1282                                   /*isInline=*/true,
1283                                   /*isImplicitlyDeclared=*/true);
1284    CopyConstructor->setAccess(AS_public);
1285    CopyConstructor->setImplicit();
1286
1287    // Add the parameter to the constructor.
1288    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1289                                                 ClassDecl->getLocation(),
1290                                                 /*IdentifierInfo=*/0,
1291                                                 ArgType, VarDecl::None, 0);
1292    CopyConstructor->setParams(Context, &FromParam, 1);
1293    ClassDecl->addDecl(CopyConstructor);
1294  }
1295
1296  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1297    // Note: The following rules are largely analoguous to the copy
1298    // constructor rules. Note that virtual bases are not taken into account
1299    // for determining the argument type of the operator. Note also that
1300    // operators taking an object instead of a reference are allowed.
1301    //
1302    // C++ [class.copy]p10:
1303    //   If the class definition does not explicitly declare a copy
1304    //   assignment operator, one is declared implicitly.
1305    //   The implicitly-defined copy assignment operator for a class X
1306    //   will have the form
1307    //
1308    //       X& X::operator=(const X&)
1309    //
1310    //   if
1311    bool HasConstCopyAssignment = true;
1312
1313    //       -- each direct base class B of X has a copy assignment operator
1314    //          whose parameter is of type const B&, const volatile B& or B,
1315    //          and
1316    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1317         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1318      const CXXRecordDecl *BaseClassDecl
1319        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1320      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1321    }
1322
1323    //       -- for all the nonstatic data members of X that are of a class
1324    //          type M (or array thereof), each such class type has a copy
1325    //          assignment operator whose parameter is of type const M&,
1326    //          const volatile M& or M.
1327    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1328         HasConstCopyAssignment && Field != ClassDecl->field_end();
1329         ++Field) {
1330      QualType FieldType = (*Field)->getType();
1331      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1332        FieldType = Array->getElementType();
1333      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1334        const CXXRecordDecl *FieldClassDecl
1335          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1336        HasConstCopyAssignment
1337          = FieldClassDecl->hasConstCopyAssignment(Context);
1338      }
1339    }
1340
1341    //   Otherwise, the implicitly declared copy assignment operator will
1342    //   have the form
1343    //
1344    //       X& X::operator=(X&)
1345    QualType ArgType = ClassType;
1346    QualType RetType = Context.getLValueReferenceType(ArgType);
1347    if (HasConstCopyAssignment)
1348      ArgType = ArgType.withConst();
1349    ArgType = Context.getLValueReferenceType(ArgType);
1350
1351    //   An implicitly-declared copy assignment operator is an inline public
1352    //   member of its class.
1353    DeclarationName Name =
1354      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1355    CXXMethodDecl *CopyAssignment =
1356      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1357                            Context.getFunctionType(RetType, &ArgType, 1,
1358                                                    false, 0),
1359                            /*isStatic=*/false, /*isInline=*/true);
1360    CopyAssignment->setAccess(AS_public);
1361    CopyAssignment->setImplicit();
1362
1363    // Add the parameter to the operator.
1364    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1365                                                 ClassDecl->getLocation(),
1366                                                 /*IdentifierInfo=*/0,
1367                                                 ArgType, VarDecl::None, 0);
1368    CopyAssignment->setParams(Context, &FromParam, 1);
1369
1370    // Don't call addedAssignmentOperator. There is no way to distinguish an
1371    // implicit from an explicit assignment operator.
1372    ClassDecl->addDecl(CopyAssignment);
1373  }
1374
1375  if (!ClassDecl->hasUserDeclaredDestructor()) {
1376    // C++ [class.dtor]p2:
1377    //   If a class has no user-declared destructor, a destructor is
1378    //   declared implicitly. An implicitly-declared destructor is an
1379    //   inline public member of its class.
1380    DeclarationName Name
1381      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1382    CXXDestructorDecl *Destructor
1383      = CXXDestructorDecl::Create(Context, ClassDecl,
1384                                  ClassDecl->getLocation(), Name,
1385                                  Context.getFunctionType(Context.VoidTy,
1386                                                          0, 0, false, 0),
1387                                  /*isInline=*/true,
1388                                  /*isImplicitlyDeclared=*/true);
1389    Destructor->setAccess(AS_public);
1390    Destructor->setImplicit();
1391    ClassDecl->addDecl(Destructor);
1392  }
1393}
1394
1395void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1396  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1397  if (!Template)
1398    return;
1399
1400  TemplateParameterList *Params = Template->getTemplateParameters();
1401  for (TemplateParameterList::iterator Param = Params->begin(),
1402                                    ParamEnd = Params->end();
1403       Param != ParamEnd; ++Param) {
1404    NamedDecl *Named = cast<NamedDecl>(*Param);
1405    if (Named->getDeclName()) {
1406      S->AddDecl(DeclPtrTy::make(Named));
1407      IdResolver.AddDecl(Named);
1408    }
1409  }
1410}
1411
1412/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1413/// parsing a top-level (non-nested) C++ class, and we are now
1414/// parsing those parts of the given Method declaration that could
1415/// not be parsed earlier (C++ [class.mem]p2), such as default
1416/// arguments. This action should enter the scope of the given
1417/// Method declaration as if we had just parsed the qualified method
1418/// name. However, it should not bring the parameters into scope;
1419/// that will be performed by ActOnDelayedCXXMethodParameter.
1420void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1421  if (!MethodD)
1422    return;
1423
1424  CXXScopeSpec SS;
1425  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1426  QualType ClassTy
1427    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1428  SS.setScopeRep(
1429    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1430  ActOnCXXEnterDeclaratorScope(S, SS);
1431}
1432
1433/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1434/// C++ method declaration. We're (re-)introducing the given
1435/// function parameter into scope for use in parsing later parts of
1436/// the method declaration. For example, we could see an
1437/// ActOnParamDefaultArgument event for this parameter.
1438void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1439  if (!ParamD)
1440    return;
1441
1442  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1443
1444  // If this parameter has an unparsed default argument, clear it out
1445  // to make way for the parsed default argument.
1446  if (Param->hasUnparsedDefaultArg())
1447    Param->setDefaultArg(0);
1448
1449  S->AddDecl(DeclPtrTy::make(Param));
1450  if (Param->getDeclName())
1451    IdResolver.AddDecl(Param);
1452}
1453
1454/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1455/// processing the delayed method declaration for Method. The method
1456/// declaration is now considered finished. There may be a separate
1457/// ActOnStartOfFunctionDef action later (not necessarily
1458/// immediately!) for this method, if it was also defined inside the
1459/// class body.
1460void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1461  if (!MethodD)
1462    return;
1463
1464  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1465  CXXScopeSpec SS;
1466  QualType ClassTy
1467    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1468  SS.setScopeRep(
1469    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1470  ActOnCXXExitDeclaratorScope(S, SS);
1471
1472  // Now that we have our default arguments, check the constructor
1473  // again. It could produce additional diagnostics or affect whether
1474  // the class has implicitly-declared destructors, among other
1475  // things.
1476  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1477    CheckConstructor(Constructor);
1478
1479  // Check the default arguments, which we may have added.
1480  if (!Method->isInvalidDecl())
1481    CheckCXXDefaultArguments(Method);
1482}
1483
1484/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1485/// the well-formedness of the constructor declarator @p D with type @p
1486/// R. If there are any errors in the declarator, this routine will
1487/// emit diagnostics and set the invalid bit to true.  In any case, the type
1488/// will be updated to reflect a well-formed type for the constructor and
1489/// returned.
1490QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1491                                          FunctionDecl::StorageClass &SC) {
1492  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1493
1494  // C++ [class.ctor]p3:
1495  //   A constructor shall not be virtual (10.3) or static (9.4). A
1496  //   constructor can be invoked for a const, volatile or const
1497  //   volatile object. A constructor shall not be declared const,
1498  //   volatile, or const volatile (9.3.2).
1499  if (isVirtual) {
1500    if (!D.isInvalidType())
1501      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1502        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1503        << SourceRange(D.getIdentifierLoc());
1504    D.setInvalidType();
1505  }
1506  if (SC == FunctionDecl::Static) {
1507    if (!D.isInvalidType())
1508      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1509        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1510        << SourceRange(D.getIdentifierLoc());
1511    D.setInvalidType();
1512    SC = FunctionDecl::None;
1513  }
1514
1515  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1516  if (FTI.TypeQuals != 0) {
1517    if (FTI.TypeQuals & QualType::Const)
1518      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1519        << "const" << SourceRange(D.getIdentifierLoc());
1520    if (FTI.TypeQuals & QualType::Volatile)
1521      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1522        << "volatile" << SourceRange(D.getIdentifierLoc());
1523    if (FTI.TypeQuals & QualType::Restrict)
1524      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1525        << "restrict" << SourceRange(D.getIdentifierLoc());
1526  }
1527
1528  // Rebuild the function type "R" without any type qualifiers (in
1529  // case any of the errors above fired) and with "void" as the
1530  // return type, since constructors don't have return types. We
1531  // *always* have to do this, because GetTypeForDeclarator will
1532  // put in a result type of "int" when none was specified.
1533  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1534  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1535                                 Proto->getNumArgs(),
1536                                 Proto->isVariadic(), 0);
1537}
1538
1539/// CheckConstructor - Checks a fully-formed constructor for
1540/// well-formedness, issuing any diagnostics required. Returns true if
1541/// the constructor declarator is invalid.
1542void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1543  CXXRecordDecl *ClassDecl
1544    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1545  if (!ClassDecl)
1546    return Constructor->setInvalidDecl();
1547
1548  // C++ [class.copy]p3:
1549  //   A declaration of a constructor for a class X is ill-formed if
1550  //   its first parameter is of type (optionally cv-qualified) X and
1551  //   either there are no other parameters or else all other
1552  //   parameters have default arguments.
1553  if (!Constructor->isInvalidDecl() &&
1554      ((Constructor->getNumParams() == 1) ||
1555       (Constructor->getNumParams() > 1 &&
1556        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1557    QualType ParamType = Constructor->getParamDecl(0)->getType();
1558    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1559    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1560      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1561      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1562        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1563      Constructor->setInvalidDecl();
1564    }
1565  }
1566
1567  // Notify the class that we've added a constructor.
1568  ClassDecl->addedConstructor(Context, Constructor);
1569}
1570
1571static inline bool
1572FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1573  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1574          FTI.ArgInfo[0].Param &&
1575          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1576}
1577
1578/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1579/// the well-formednes of the destructor declarator @p D with type @p
1580/// R. If there are any errors in the declarator, this routine will
1581/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1582/// will be updated to reflect a well-formed type for the destructor and
1583/// returned.
1584QualType Sema::CheckDestructorDeclarator(Declarator &D,
1585                                         FunctionDecl::StorageClass& SC) {
1586  // C++ [class.dtor]p1:
1587  //   [...] A typedef-name that names a class is a class-name
1588  //   (7.1.3); however, a typedef-name that names a class shall not
1589  //   be used as the identifier in the declarator for a destructor
1590  //   declaration.
1591  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1592  if (isa<TypedefType>(DeclaratorType)) {
1593    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1594      << DeclaratorType;
1595    D.setInvalidType();
1596  }
1597
1598  // C++ [class.dtor]p2:
1599  //   A destructor is used to destroy objects of its class type. A
1600  //   destructor takes no parameters, and no return type can be
1601  //   specified for it (not even void). The address of a destructor
1602  //   shall not be taken. A destructor shall not be static. A
1603  //   destructor can be invoked for a const, volatile or const
1604  //   volatile object. A destructor shall not be declared const,
1605  //   volatile or const volatile (9.3.2).
1606  if (SC == FunctionDecl::Static) {
1607    if (!D.isInvalidType())
1608      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1609        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1610        << SourceRange(D.getIdentifierLoc());
1611    SC = FunctionDecl::None;
1612    D.setInvalidType();
1613  }
1614  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1615    // Destructors don't have return types, but the parser will
1616    // happily parse something like:
1617    //
1618    //   class X {
1619    //     float ~X();
1620    //   };
1621    //
1622    // The return type will be eliminated later.
1623    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1624      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1625      << SourceRange(D.getIdentifierLoc());
1626  }
1627
1628  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1629  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1630    if (FTI.TypeQuals & QualType::Const)
1631      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1632        << "const" << SourceRange(D.getIdentifierLoc());
1633    if (FTI.TypeQuals & QualType::Volatile)
1634      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1635        << "volatile" << SourceRange(D.getIdentifierLoc());
1636    if (FTI.TypeQuals & QualType::Restrict)
1637      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1638        << "restrict" << SourceRange(D.getIdentifierLoc());
1639    D.setInvalidType();
1640  }
1641
1642  // Make sure we don't have any parameters.
1643  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1644    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1645
1646    // Delete the parameters.
1647    FTI.freeArgs();
1648    D.setInvalidType();
1649  }
1650
1651  // Make sure the destructor isn't variadic.
1652  if (FTI.isVariadic) {
1653    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1654    D.setInvalidType();
1655  }
1656
1657  // Rebuild the function type "R" without any type qualifiers or
1658  // parameters (in case any of the errors above fired) and with
1659  // "void" as the return type, since destructors don't have return
1660  // types. We *always* have to do this, because GetTypeForDeclarator
1661  // will put in a result type of "int" when none was specified.
1662  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1663}
1664
1665/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1666/// well-formednes of the conversion function declarator @p D with
1667/// type @p R. If there are any errors in the declarator, this routine
1668/// will emit diagnostics and return true. Otherwise, it will return
1669/// false. Either way, the type @p R will be updated to reflect a
1670/// well-formed type for the conversion operator.
1671void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1672                                     FunctionDecl::StorageClass& SC) {
1673  // C++ [class.conv.fct]p1:
1674  //   Neither parameter types nor return type can be specified. The
1675  //   type of a conversion function (8.3.5) is “function taking no
1676  //   parameter returning conversion-type-id.”
1677  if (SC == FunctionDecl::Static) {
1678    if (!D.isInvalidType())
1679      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1680        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1681        << SourceRange(D.getIdentifierLoc());
1682    D.setInvalidType();
1683    SC = FunctionDecl::None;
1684  }
1685  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1686    // Conversion functions don't have return types, but the parser will
1687    // happily parse something like:
1688    //
1689    //   class X {
1690    //     float operator bool();
1691    //   };
1692    //
1693    // The return type will be changed later anyway.
1694    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1695      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1696      << SourceRange(D.getIdentifierLoc());
1697  }
1698
1699  // Make sure we don't have any parameters.
1700  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1701    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1702
1703    // Delete the parameters.
1704    D.getTypeObject(0).Fun.freeArgs();
1705    D.setInvalidType();
1706  }
1707
1708  // Make sure the conversion function isn't variadic.
1709  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1710    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1711    D.setInvalidType();
1712  }
1713
1714  // C++ [class.conv.fct]p4:
1715  //   The conversion-type-id shall not represent a function type nor
1716  //   an array type.
1717  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1718  if (ConvType->isArrayType()) {
1719    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1720    ConvType = Context.getPointerType(ConvType);
1721    D.setInvalidType();
1722  } else if (ConvType->isFunctionType()) {
1723    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1724    ConvType = Context.getPointerType(ConvType);
1725    D.setInvalidType();
1726  }
1727
1728  // Rebuild the function type "R" without any parameters (in case any
1729  // of the errors above fired) and with the conversion type as the
1730  // return type.
1731  R = Context.getFunctionType(ConvType, 0, 0, false,
1732                              R->getAsFunctionProtoType()->getTypeQuals());
1733
1734  // C++0x explicit conversion operators.
1735  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1736    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1737         diag::warn_explicit_conversion_functions)
1738      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1739}
1740
1741/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1742/// the declaration of the given C++ conversion function. This routine
1743/// is responsible for recording the conversion function in the C++
1744/// class, if possible.
1745Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1746  assert(Conversion && "Expected to receive a conversion function declaration");
1747
1748  // Set the lexical context of this conversion function
1749  Conversion->setLexicalDeclContext(CurContext);
1750
1751  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1752
1753  // Make sure we aren't redeclaring the conversion function.
1754  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1755
1756  // C++ [class.conv.fct]p1:
1757  //   [...] A conversion function is never used to convert a
1758  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1759  //   same object type (or a reference to it), to a (possibly
1760  //   cv-qualified) base class of that type (or a reference to it),
1761  //   or to (possibly cv-qualified) void.
1762  // FIXME: Suppress this warning if the conversion function ends up being a
1763  // virtual function that overrides a virtual function in a base class.
1764  QualType ClassType
1765    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1766  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1767    ConvType = ConvTypeRef->getPointeeType();
1768  if (ConvType->isRecordType()) {
1769    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1770    if (ConvType == ClassType)
1771      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1772        << ClassType;
1773    else if (IsDerivedFrom(ClassType, ConvType))
1774      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1775        <<  ClassType << ConvType;
1776  } else if (ConvType->isVoidType()) {
1777    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1778      << ClassType << ConvType;
1779  }
1780
1781  if (Conversion->getPreviousDeclaration()) {
1782    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1783    for (OverloadedFunctionDecl::function_iterator
1784           Conv = Conversions->function_begin(),
1785           ConvEnd = Conversions->function_end();
1786         Conv != ConvEnd; ++Conv) {
1787      if (*Conv
1788            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1789        *Conv = Conversion;
1790        return DeclPtrTy::make(Conversion);
1791      }
1792    }
1793    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1794  } else
1795    ClassDecl->addConversionFunction(Context, Conversion);
1796
1797  return DeclPtrTy::make(Conversion);
1798}
1799
1800//===----------------------------------------------------------------------===//
1801// Namespace Handling
1802//===----------------------------------------------------------------------===//
1803
1804/// ActOnStartNamespaceDef - This is called at the start of a namespace
1805/// definition.
1806Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1807                                             SourceLocation IdentLoc,
1808                                             IdentifierInfo *II,
1809                                             SourceLocation LBrace) {
1810  NamespaceDecl *Namespc =
1811      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1812  Namespc->setLBracLoc(LBrace);
1813
1814  Scope *DeclRegionScope = NamespcScope->getParent();
1815
1816  if (II) {
1817    // C++ [namespace.def]p2:
1818    // The identifier in an original-namespace-definition shall not have been
1819    // previously defined in the declarative region in which the
1820    // original-namespace-definition appears. The identifier in an
1821    // original-namespace-definition is the name of the namespace. Subsequently
1822    // in that declarative region, it is treated as an original-namespace-name.
1823
1824    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1825                                     true);
1826
1827    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1828      // This is an extended namespace definition.
1829      // Attach this namespace decl to the chain of extended namespace
1830      // definitions.
1831      OrigNS->setNextNamespace(Namespc);
1832      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1833
1834      // Remove the previous declaration from the scope.
1835      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1836        IdResolver.RemoveDecl(OrigNS);
1837        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1838      }
1839    } else if (PrevDecl) {
1840      // This is an invalid name redefinition.
1841      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1842       << Namespc->getDeclName();
1843      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1844      Namespc->setInvalidDecl();
1845      // Continue on to push Namespc as current DeclContext and return it.
1846    }
1847
1848    PushOnScopeChains(Namespc, DeclRegionScope);
1849  } else {
1850    // FIXME: Handle anonymous namespaces
1851  }
1852
1853  // Although we could have an invalid decl (i.e. the namespace name is a
1854  // redefinition), push it as current DeclContext and try to continue parsing.
1855  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1856  // for the namespace has the declarations that showed up in that particular
1857  // namespace definition.
1858  PushDeclContext(NamespcScope, Namespc);
1859  return DeclPtrTy::make(Namespc);
1860}
1861
1862/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1863/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1864void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1865  Decl *Dcl = D.getAs<Decl>();
1866  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1867  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1868  Namespc->setRBracLoc(RBrace);
1869  PopDeclContext();
1870}
1871
1872Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1873                                          SourceLocation UsingLoc,
1874                                          SourceLocation NamespcLoc,
1875                                          const CXXScopeSpec &SS,
1876                                          SourceLocation IdentLoc,
1877                                          IdentifierInfo *NamespcName,
1878                                          AttributeList *AttrList) {
1879  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1880  assert(NamespcName && "Invalid NamespcName.");
1881  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1882  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1883
1884  UsingDirectiveDecl *UDir = 0;
1885
1886  // Lookup namespace name.
1887  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1888                                    LookupNamespaceName, false);
1889  if (R.isAmbiguous()) {
1890    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1891    return DeclPtrTy();
1892  }
1893  if (NamedDecl *NS = R) {
1894    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1895    // C++ [namespace.udir]p1:
1896    //   A using-directive specifies that the names in the nominated
1897    //   namespace can be used in the scope in which the
1898    //   using-directive appears after the using-directive. During
1899    //   unqualified name lookup (3.4.1), the names appear as if they
1900    //   were declared in the nearest enclosing namespace which
1901    //   contains both the using-directive and the nominated
1902    //   namespace. [Note: in this context, “contains” means “contains
1903    //   directly or indirectly”. ]
1904
1905    // Find enclosing context containing both using-directive and
1906    // nominated namespace.
1907    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1908    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1909      CommonAncestor = CommonAncestor->getParent();
1910
1911    UDir = UsingDirectiveDecl::Create(Context,
1912                                      CurContext, UsingLoc,
1913                                      NamespcLoc,
1914                                      SS.getRange(),
1915                                      (NestedNameSpecifier *)SS.getScopeRep(),
1916                                      IdentLoc,
1917                                      cast<NamespaceDecl>(NS),
1918                                      CommonAncestor);
1919    PushUsingDirective(S, UDir);
1920  } else {
1921    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1922  }
1923
1924  // FIXME: We ignore attributes for now.
1925  delete AttrList;
1926  return DeclPtrTy::make(UDir);
1927}
1928
1929void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1930  // If scope has associated entity, then using directive is at namespace
1931  // or translation unit scope. We add UsingDirectiveDecls, into
1932  // it's lookup structure.
1933  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1934    Ctx->addDecl(UDir);
1935  else
1936    // Otherwise it is block-sope. using-directives will affect lookup
1937    // only to the end of scope.
1938    S->PushUsingDirective(DeclPtrTy::make(UDir));
1939}
1940
1941
1942Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
1943                                          SourceLocation UsingLoc,
1944                                          const CXXScopeSpec &SS,
1945                                          SourceLocation IdentLoc,
1946                                          IdentifierInfo *TargetName,
1947                                          OverloadedOperatorKind Op,
1948                                          AttributeList *AttrList,
1949                                          bool IsTypeName) {
1950  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1951  assert((TargetName || Op) && "Invalid TargetName.");
1952  assert(IdentLoc.isValid() && "Invalid TargetName location.");
1953  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1954
1955  UsingDecl *UsingAlias = 0;
1956
1957  DeclarationName Name;
1958  if (TargetName)
1959    Name = TargetName;
1960  else
1961    Name = Context.DeclarationNames.getCXXOperatorName(Op);
1962
1963  // Lookup target name.
1964  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
1965
1966  if (NamedDecl *NS = R) {
1967    if (IsTypeName && !isa<TypeDecl>(NS)) {
1968      Diag(IdentLoc, diag::err_using_typename_non_type);
1969    }
1970    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
1971        NS->getLocation(), UsingLoc, NS,
1972        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
1973        IsTypeName);
1974    PushOnScopeChains(UsingAlias, S);
1975  } else {
1976    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
1977  }
1978
1979  // FIXME: We ignore attributes for now.
1980  delete AttrList;
1981  return DeclPtrTy::make(UsingAlias);
1982}
1983
1984/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1985/// is a namespace alias, returns the namespace it points to.
1986static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1987  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1988    return AD->getNamespace();
1989  return dyn_cast_or_null<NamespaceDecl>(D);
1990}
1991
1992Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1993                                             SourceLocation NamespaceLoc,
1994                                             SourceLocation AliasLoc,
1995                                             IdentifierInfo *Alias,
1996                                             const CXXScopeSpec &SS,
1997                                             SourceLocation IdentLoc,
1998                                             IdentifierInfo *Ident) {
1999
2000  // Lookup the namespace name.
2001  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
2002
2003  // Check if we have a previous declaration with the same name.
2004  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
2005    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2006      // We already have an alias with the same name that points to the same
2007      // namespace, so don't create a new one.
2008      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
2009        return DeclPtrTy();
2010    }
2011
2012    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2013      diag::err_redefinition_different_kind;
2014    Diag(AliasLoc, DiagID) << Alias;
2015    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2016    return DeclPtrTy();
2017  }
2018
2019  if (R.isAmbiguous()) {
2020    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2021    return DeclPtrTy();
2022  }
2023
2024  if (!R) {
2025    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2026    return DeclPtrTy();
2027  }
2028
2029  NamespaceAliasDecl *AliasDecl =
2030    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2031                               Alias, SS.getRange(),
2032                               (NestedNameSpecifier *)SS.getScopeRep(),
2033                               IdentLoc, R);
2034
2035  CurContext->addDecl(AliasDecl);
2036  return DeclPtrTy::make(AliasDecl);
2037}
2038
2039void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2040                                            CXXConstructorDecl *Constructor) {
2041  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2042          !Constructor->isUsed()) &&
2043    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2044
2045  CXXRecordDecl *ClassDecl
2046    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2047  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2048  // Before the implicitly-declared default constructor for a class is
2049  // implicitly defined, all the implicitly-declared default constructors
2050  // for its base class and its non-static data members shall have been
2051  // implicitly defined.
2052  bool err = false;
2053  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2054       E = ClassDecl->bases_end(); Base != E; ++Base) {
2055    CXXRecordDecl *BaseClassDecl
2056      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2057    if (!BaseClassDecl->hasTrivialConstructor()) {
2058      if (CXXConstructorDecl *BaseCtor =
2059            BaseClassDecl->getDefaultConstructor(Context))
2060        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2061      else {
2062        Diag(CurrentLocation, diag::err_defining_default_ctor)
2063          << Context.getTagDeclType(ClassDecl) << 1
2064          << Context.getTagDeclType(BaseClassDecl);
2065        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2066              << Context.getTagDeclType(BaseClassDecl);
2067        err = true;
2068      }
2069    }
2070  }
2071  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2072       E = ClassDecl->field_end(); Field != E; ++Field) {
2073    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2074    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2075      FieldType = Array->getElementType();
2076    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2077      CXXRecordDecl *FieldClassDecl
2078        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2079      if (!FieldClassDecl->hasTrivialConstructor()) {
2080        if (CXXConstructorDecl *FieldCtor =
2081            FieldClassDecl->getDefaultConstructor(Context))
2082          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2083        else {
2084          Diag(CurrentLocation, diag::err_defining_default_ctor)
2085          << Context.getTagDeclType(ClassDecl) << 0 <<
2086              Context.getTagDeclType(FieldClassDecl);
2087          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2088          << Context.getTagDeclType(FieldClassDecl);
2089          err = true;
2090        }
2091      }
2092    }
2093    else if (FieldType->isReferenceType()) {
2094      Diag(CurrentLocation, diag::err_unintialized_member)
2095        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2096      Diag((*Field)->getLocation(), diag::note_declared_at);
2097      err = true;
2098    }
2099    else if (FieldType.isConstQualified()) {
2100      Diag(CurrentLocation, diag::err_unintialized_member)
2101        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2102       Diag((*Field)->getLocation(), diag::note_declared_at);
2103      err = true;
2104    }
2105  }
2106  if (!err)
2107    Constructor->setUsed();
2108  else
2109    Constructor->setInvalidDecl();
2110}
2111
2112void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2113                                            CXXDestructorDecl *Destructor) {
2114  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2115         "DefineImplicitDestructor - call it for implicit default dtor");
2116
2117  CXXRecordDecl *ClassDecl
2118  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2119  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2120  // C++ [class.dtor] p5
2121  // Before the implicitly-declared default destructor for a class is
2122  // implicitly defined, all the implicitly-declared default destructors
2123  // for its base class and its non-static data members shall have been
2124  // implicitly defined.
2125  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2126       E = ClassDecl->bases_end(); Base != E; ++Base) {
2127    CXXRecordDecl *BaseClassDecl
2128      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2129    if (!BaseClassDecl->hasTrivialDestructor()) {
2130      if (CXXDestructorDecl *BaseDtor =
2131          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2132        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2133      else
2134        assert(false &&
2135               "DefineImplicitDestructor - missing dtor in a base class");
2136    }
2137  }
2138
2139  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2140       E = ClassDecl->field_end(); Field != E; ++Field) {
2141    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2142    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2143      FieldType = Array->getElementType();
2144    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2145      CXXRecordDecl *FieldClassDecl
2146        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2147      if (!FieldClassDecl->hasTrivialDestructor()) {
2148        if (CXXDestructorDecl *FieldDtor =
2149            const_cast<CXXDestructorDecl*>(
2150                                        FieldClassDecl->getDestructor(Context)))
2151          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2152        else
2153          assert(false &&
2154          "DefineImplicitDestructor - missing dtor in class of a data member");
2155      }
2156    }
2157  }
2158  Destructor->setUsed();
2159}
2160
2161void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2162                                          CXXMethodDecl *MethodDecl) {
2163  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2164          MethodDecl->getOverloadedOperator() == OO_Equal &&
2165          !MethodDecl->isUsed()) &&
2166         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2167
2168  CXXRecordDecl *ClassDecl
2169    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2170
2171  // C++[class.copy] p12
2172  // Before the implicitly-declared copy assignment operator for a class is
2173  // implicitly defined, all implicitly-declared copy assignment operators
2174  // for its direct base classes and its nonstatic data members shall have
2175  // been implicitly defined.
2176  bool err = false;
2177  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2178       E = ClassDecl->bases_end(); Base != E; ++Base) {
2179    CXXRecordDecl *BaseClassDecl
2180      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2181    if (CXXMethodDecl *BaseAssignOpMethod =
2182          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2183      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2184  }
2185  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2186       E = ClassDecl->field_end(); Field != E; ++Field) {
2187    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2188    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2189      FieldType = Array->getElementType();
2190    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2191      CXXRecordDecl *FieldClassDecl
2192        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2193      if (CXXMethodDecl *FieldAssignOpMethod =
2194          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2195        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2196    }
2197    else if (FieldType->isReferenceType()) {
2198      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2199      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2200      Diag(Field->getLocation(), diag::note_declared_at);
2201      Diag(CurrentLocation, diag::note_first_required_here);
2202      err = true;
2203    }
2204    else if (FieldType.isConstQualified()) {
2205      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2206      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2207      Diag(Field->getLocation(), diag::note_declared_at);
2208      Diag(CurrentLocation, diag::note_first_required_here);
2209      err = true;
2210    }
2211  }
2212  if (!err)
2213    MethodDecl->setUsed();
2214}
2215
2216CXXMethodDecl *
2217Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2218                              CXXRecordDecl *ClassDecl) {
2219  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2220  QualType RHSType(LHSType);
2221  // If class's assignment operator argument is const/volatile qualified,
2222  // look for operator = (const/volatile B&). Otherwise, look for
2223  // operator = (B&).
2224  if (ParmDecl->getType().isConstQualified())
2225    RHSType.addConst();
2226  if (ParmDecl->getType().isVolatileQualified())
2227    RHSType.addVolatile();
2228  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2229                                                          LHSType,
2230                                                          SourceLocation()));
2231  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2232                                                          RHSType,
2233                                                          SourceLocation()));
2234  Expr *Args[2] = { &*LHS, &*RHS };
2235  OverloadCandidateSet CandidateSet;
2236  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2237                              CandidateSet);
2238  OverloadCandidateSet::iterator Best;
2239  if (BestViableFunction(CandidateSet,
2240                         ClassDecl->getLocation(), Best) == OR_Success)
2241    return cast<CXXMethodDecl>(Best->Function);
2242  assert(false &&
2243         "getAssignOperatorMethod - copy assignment operator method not found");
2244  return 0;
2245}
2246
2247void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2248                                   CXXConstructorDecl *CopyConstructor,
2249                                   unsigned TypeQuals) {
2250  assert((CopyConstructor->isImplicit() &&
2251          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2252          !CopyConstructor->isUsed()) &&
2253         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2254
2255  CXXRecordDecl *ClassDecl
2256    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2257  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2258  // C++ [class.copy] p209
2259  // Before the implicitly-declared copy constructor for a class is
2260  // implicitly defined, all the implicitly-declared copy constructors
2261  // for its base class and its non-static data members shall have been
2262  // implicitly defined.
2263  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2264       Base != ClassDecl->bases_end(); ++Base) {
2265    CXXRecordDecl *BaseClassDecl
2266      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2267    if (CXXConstructorDecl *BaseCopyCtor =
2268        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2269      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2270  }
2271  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2272                                  FieldEnd = ClassDecl->field_end();
2273       Field != FieldEnd; ++Field) {
2274    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2275    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2276      FieldType = Array->getElementType();
2277    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2278      CXXRecordDecl *FieldClassDecl
2279        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2280      if (CXXConstructorDecl *FieldCopyCtor =
2281          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2282        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2283    }
2284  }
2285  CopyConstructor->setUsed();
2286}
2287
2288void Sema::InitializeVarWithConstructor(VarDecl *VD,
2289                                        CXXConstructorDecl *Constructor,
2290                                        QualType DeclInitType,
2291                                        Expr **Exprs, unsigned NumExprs) {
2292  Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
2293                                        false, Exprs, NumExprs);
2294  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2295  VD->setInit(Context, Temp);
2296}
2297
2298void Sema::MarkDestructorReferenced(SourceLocation Loc, QualType DeclInitType)
2299{
2300  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2301                                  DeclInitType->getAsRecordType()->getDecl());
2302  if (!ClassDecl->hasTrivialDestructor())
2303    if (CXXDestructorDecl *Destructor =
2304        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2305      MarkDeclarationReferenced(Loc, Destructor);
2306}
2307
2308/// AddCXXDirectInitializerToDecl - This action is called immediately after
2309/// ActOnDeclarator, when a C++ direct initializer is present.
2310/// e.g: "int x(1);"
2311void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2312                                         SourceLocation LParenLoc,
2313                                         MultiExprArg Exprs,
2314                                         SourceLocation *CommaLocs,
2315                                         SourceLocation RParenLoc) {
2316  unsigned NumExprs = Exprs.size();
2317  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2318  Decl *RealDecl = Dcl.getAs<Decl>();
2319
2320  // If there is no declaration, there was an error parsing it.  Just ignore
2321  // the initializer.
2322  if (RealDecl == 0)
2323    return;
2324
2325  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2326  if (!VDecl) {
2327    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2328    RealDecl->setInvalidDecl();
2329    return;
2330  }
2331
2332  // FIXME: Need to handle dependent types and expressions here.
2333
2334  // We will treat direct-initialization as a copy-initialization:
2335  //    int x(1);  -as-> int x = 1;
2336  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2337  //
2338  // Clients that want to distinguish between the two forms, can check for
2339  // direct initializer using VarDecl::hasCXXDirectInitializer().
2340  // A major benefit is that clients that don't particularly care about which
2341  // exactly form was it (like the CodeGen) can handle both cases without
2342  // special case code.
2343
2344  // C++ 8.5p11:
2345  // The form of initialization (using parentheses or '=') is generally
2346  // insignificant, but does matter when the entity being initialized has a
2347  // class type.
2348  QualType DeclInitType = VDecl->getType();
2349  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2350    DeclInitType = Array->getElementType();
2351
2352  // FIXME: This isn't the right place to complete the type.
2353  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2354                          diag::err_typecheck_decl_incomplete_type)) {
2355    VDecl->setInvalidDecl();
2356    return;
2357  }
2358
2359  if (VDecl->getType()->isRecordType()) {
2360    CXXConstructorDecl *Constructor
2361      = PerformInitializationByConstructor(DeclInitType,
2362                                           (Expr **)Exprs.get(), NumExprs,
2363                                           VDecl->getLocation(),
2364                                           SourceRange(VDecl->getLocation(),
2365                                                       RParenLoc),
2366                                           VDecl->getDeclName(),
2367                                           IK_Direct);
2368    if (!Constructor)
2369      RealDecl->setInvalidDecl();
2370    else {
2371      VDecl->setCXXDirectInitializer(true);
2372      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2373                                   (Expr**)Exprs.release(), NumExprs);
2374      // FIXME. Must do all that is needed to destroy the object
2375      // on scope exit. For now, just mark the destructor as used.
2376      MarkDestructorReferenced(VDecl->getLocation(), DeclInitType);
2377    }
2378    return;
2379  }
2380
2381  if (NumExprs > 1) {
2382    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2383      << SourceRange(VDecl->getLocation(), RParenLoc);
2384    RealDecl->setInvalidDecl();
2385    return;
2386  }
2387
2388  // Let clients know that initialization was done with a direct initializer.
2389  VDecl->setCXXDirectInitializer(true);
2390
2391  assert(NumExprs == 1 && "Expected 1 expression");
2392  // Set the init expression, handles conversions.
2393  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2394                       /*DirectInit=*/true);
2395}
2396
2397/// PerformInitializationByConstructor - Perform initialization by
2398/// constructor (C++ [dcl.init]p14), which may occur as part of
2399/// direct-initialization or copy-initialization. We are initializing
2400/// an object of type @p ClassType with the given arguments @p
2401/// Args. @p Loc is the location in the source code where the
2402/// initializer occurs (e.g., a declaration, member initializer,
2403/// functional cast, etc.) while @p Range covers the whole
2404/// initialization. @p InitEntity is the entity being initialized,
2405/// which may by the name of a declaration or a type. @p Kind is the
2406/// kind of initialization we're performing, which affects whether
2407/// explicit constructors will be considered. When successful, returns
2408/// the constructor that will be used to perform the initialization;
2409/// when the initialization fails, emits a diagnostic and returns
2410/// null.
2411CXXConstructorDecl *
2412Sema::PerformInitializationByConstructor(QualType ClassType,
2413                                         Expr **Args, unsigned NumArgs,
2414                                         SourceLocation Loc, SourceRange Range,
2415                                         DeclarationName InitEntity,
2416                                         InitializationKind Kind) {
2417  const RecordType *ClassRec = ClassType->getAsRecordType();
2418  assert(ClassRec && "Can only initialize a class type here");
2419
2420  // C++ [dcl.init]p14:
2421  //
2422  //   If the initialization is direct-initialization, or if it is
2423  //   copy-initialization where the cv-unqualified version of the
2424  //   source type is the same class as, or a derived class of, the
2425  //   class of the destination, constructors are considered. The
2426  //   applicable constructors are enumerated (13.3.1.3), and the
2427  //   best one is chosen through overload resolution (13.3). The
2428  //   constructor so selected is called to initialize the object,
2429  //   with the initializer expression(s) as its argument(s). If no
2430  //   constructor applies, or the overload resolution is ambiguous,
2431  //   the initialization is ill-formed.
2432  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2433  OverloadCandidateSet CandidateSet;
2434
2435  // Add constructors to the overload set.
2436  DeclarationName ConstructorName
2437    = Context.DeclarationNames.getCXXConstructorName(
2438                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2439  DeclContext::lookup_const_iterator Con, ConEnd;
2440  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2441       Con != ConEnd; ++Con) {
2442    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2443    if ((Kind == IK_Direct) ||
2444        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2445        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2446      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2447  }
2448
2449  // FIXME: When we decide not to synthesize the implicitly-declared
2450  // constructors, we'll need to make them appear here.
2451
2452  OverloadCandidateSet::iterator Best;
2453  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2454  case OR_Success:
2455    // We found a constructor. Return it.
2456    return cast<CXXConstructorDecl>(Best->Function);
2457
2458  case OR_No_Viable_Function:
2459    if (InitEntity)
2460      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2461        << InitEntity << Range;
2462    else
2463      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2464        << ClassType << Range;
2465    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2466    return 0;
2467
2468  case OR_Ambiguous:
2469    if (InitEntity)
2470      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2471    else
2472      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2473    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2474    return 0;
2475
2476  case OR_Deleted:
2477    if (InitEntity)
2478      Diag(Loc, diag::err_ovl_deleted_init)
2479        << Best->Function->isDeleted()
2480        << InitEntity << Range;
2481    else
2482      Diag(Loc, diag::err_ovl_deleted_init)
2483        << Best->Function->isDeleted()
2484        << InitEntity << Range;
2485    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2486    return 0;
2487  }
2488
2489  return 0;
2490}
2491
2492/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2493/// determine whether they are reference-related,
2494/// reference-compatible, reference-compatible with added
2495/// qualification, or incompatible, for use in C++ initialization by
2496/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2497/// type, and the first type (T1) is the pointee type of the reference
2498/// type being initialized.
2499Sema::ReferenceCompareResult
2500Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2501                                   bool& DerivedToBase) {
2502  assert(!T1->isReferenceType() &&
2503    "T1 must be the pointee type of the reference type");
2504  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2505
2506  T1 = Context.getCanonicalType(T1);
2507  T2 = Context.getCanonicalType(T2);
2508  QualType UnqualT1 = T1.getUnqualifiedType();
2509  QualType UnqualT2 = T2.getUnqualifiedType();
2510
2511  // C++ [dcl.init.ref]p4:
2512  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
2513  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
2514  //   T1 is a base class of T2.
2515  if (UnqualT1 == UnqualT2)
2516    DerivedToBase = false;
2517  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2518    DerivedToBase = true;
2519  else
2520    return Ref_Incompatible;
2521
2522  // At this point, we know that T1 and T2 are reference-related (at
2523  // least).
2524
2525  // C++ [dcl.init.ref]p4:
2526  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2527  //   reference-related to T2 and cv1 is the same cv-qualification
2528  //   as, or greater cv-qualification than, cv2. For purposes of
2529  //   overload resolution, cases for which cv1 is greater
2530  //   cv-qualification than cv2 are identified as
2531  //   reference-compatible with added qualification (see 13.3.3.2).
2532  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2533    return Ref_Compatible;
2534  else if (T1.isMoreQualifiedThan(T2))
2535    return Ref_Compatible_With_Added_Qualification;
2536  else
2537    return Ref_Related;
2538}
2539
2540/// CheckReferenceInit - Check the initialization of a reference
2541/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2542/// the initializer (either a simple initializer or an initializer
2543/// list), and DeclType is the type of the declaration. When ICS is
2544/// non-null, this routine will compute the implicit conversion
2545/// sequence according to C++ [over.ics.ref] and will not produce any
2546/// diagnostics; when ICS is null, it will emit diagnostics when any
2547/// errors are found. Either way, a return value of true indicates
2548/// that there was a failure, a return value of false indicates that
2549/// the reference initialization succeeded.
2550///
2551/// When @p SuppressUserConversions, user-defined conversions are
2552/// suppressed.
2553/// When @p AllowExplicit, we also permit explicit user-defined
2554/// conversion functions.
2555/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2556bool
2557Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2558                         ImplicitConversionSequence *ICS,
2559                         bool SuppressUserConversions,
2560                         bool AllowExplicit, bool ForceRValue) {
2561  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2562
2563  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2564  QualType T2 = Init->getType();
2565
2566  // If the initializer is the address of an overloaded function, try
2567  // to resolve the overloaded function. If all goes well, T2 is the
2568  // type of the resulting function.
2569  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2570    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2571                                                          ICS != 0);
2572    if (Fn) {
2573      // Since we're performing this reference-initialization for
2574      // real, update the initializer with the resulting function.
2575      if (!ICS) {
2576        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2577          return true;
2578
2579        FixOverloadedFunctionReference(Init, Fn);
2580      }
2581
2582      T2 = Fn->getType();
2583    }
2584  }
2585
2586  // Compute some basic properties of the types and the initializer.
2587  bool isRValRef = DeclType->isRValueReferenceType();
2588  bool DerivedToBase = false;
2589  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2590                                                  Init->isLvalue(Context);
2591  ReferenceCompareResult RefRelationship
2592    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2593
2594  // Most paths end in a failed conversion.
2595  if (ICS)
2596    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2597
2598  // C++ [dcl.init.ref]p5:
2599  //   A reference to type “cv1 T1” is initialized by an expression
2600  //   of type “cv2 T2” as follows:
2601
2602  //     -- If the initializer expression
2603
2604  // Rvalue references cannot bind to lvalues (N2812).
2605  // There is absolutely no situation where they can. In particular, note that
2606  // this is ill-formed, even if B has a user-defined conversion to A&&:
2607  //   B b;
2608  //   A&& r = b;
2609  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2610    if (!ICS)
2611      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2612        << Init->getSourceRange();
2613    return true;
2614  }
2615
2616  bool BindsDirectly = false;
2617  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2618  //          reference-compatible with “cv2 T2,” or
2619  //
2620  // Note that the bit-field check is skipped if we are just computing
2621  // the implicit conversion sequence (C++ [over.best.ics]p2).
2622  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2623      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2624    BindsDirectly = true;
2625
2626    if (ICS) {
2627      // C++ [over.ics.ref]p1:
2628      //   When a parameter of reference type binds directly (8.5.3)
2629      //   to an argument expression, the implicit conversion sequence
2630      //   is the identity conversion, unless the argument expression
2631      //   has a type that is a derived class of the parameter type,
2632      //   in which case the implicit conversion sequence is a
2633      //   derived-to-base Conversion (13.3.3.1).
2634      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2635      ICS->Standard.First = ICK_Identity;
2636      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2637      ICS->Standard.Third = ICK_Identity;
2638      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2639      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2640      ICS->Standard.ReferenceBinding = true;
2641      ICS->Standard.DirectBinding = true;
2642      ICS->Standard.RRefBinding = false;
2643      ICS->Standard.CopyConstructor = 0;
2644
2645      // Nothing more to do: the inaccessibility/ambiguity check for
2646      // derived-to-base conversions is suppressed when we're
2647      // computing the implicit conversion sequence (C++
2648      // [over.best.ics]p2).
2649      return false;
2650    } else {
2651      // Perform the conversion.
2652      // FIXME: Binding to a subobject of the lvalue is going to require more
2653      // AST annotation than this.
2654      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2655    }
2656  }
2657
2658  //       -- has a class type (i.e., T2 is a class type) and can be
2659  //          implicitly converted to an lvalue of type “cv3 T3,”
2660  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2661  //          92) (this conversion is selected by enumerating the
2662  //          applicable conversion functions (13.3.1.6) and choosing
2663  //          the best one through overload resolution (13.3)),
2664  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2665    // FIXME: Look for conversions in base classes!
2666    CXXRecordDecl *T2RecordDecl
2667      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2668
2669    OverloadCandidateSet CandidateSet;
2670    OverloadedFunctionDecl *Conversions
2671      = T2RecordDecl->getConversionFunctions();
2672    for (OverloadedFunctionDecl::function_iterator Func
2673           = Conversions->function_begin();
2674         Func != Conversions->function_end(); ++Func) {
2675      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2676
2677      // If the conversion function doesn't return a reference type,
2678      // it can't be considered for this conversion.
2679      if (Conv->getConversionType()->isLValueReferenceType() &&
2680          (AllowExplicit || !Conv->isExplicit()))
2681        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2682    }
2683
2684    OverloadCandidateSet::iterator Best;
2685    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2686    case OR_Success:
2687      // This is a direct binding.
2688      BindsDirectly = true;
2689
2690      if (ICS) {
2691        // C++ [over.ics.ref]p1:
2692        //
2693        //   [...] If the parameter binds directly to the result of
2694        //   applying a conversion function to the argument
2695        //   expression, the implicit conversion sequence is a
2696        //   user-defined conversion sequence (13.3.3.1.2), with the
2697        //   second standard conversion sequence either an identity
2698        //   conversion or, if the conversion function returns an
2699        //   entity of a type that is a derived class of the parameter
2700        //   type, a derived-to-base Conversion.
2701        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2702        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2703        ICS->UserDefined.After = Best->FinalConversion;
2704        ICS->UserDefined.ConversionFunction = Best->Function;
2705        assert(ICS->UserDefined.After.ReferenceBinding &&
2706               ICS->UserDefined.After.DirectBinding &&
2707               "Expected a direct reference binding!");
2708        return false;
2709      } else {
2710        // Perform the conversion.
2711        // FIXME: Binding to a subobject of the lvalue is going to require more
2712        // AST annotation than this.
2713        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2714      }
2715      break;
2716
2717    case OR_Ambiguous:
2718      assert(false && "Ambiguous reference binding conversions not implemented.");
2719      return true;
2720
2721    case OR_No_Viable_Function:
2722    case OR_Deleted:
2723      // There was no suitable conversion, or we found a deleted
2724      // conversion; continue with other checks.
2725      break;
2726    }
2727  }
2728
2729  if (BindsDirectly) {
2730    // C++ [dcl.init.ref]p4:
2731    //   [...] In all cases where the reference-related or
2732    //   reference-compatible relationship of two types is used to
2733    //   establish the validity of a reference binding, and T1 is a
2734    //   base class of T2, a program that necessitates such a binding
2735    //   is ill-formed if T1 is an inaccessible (clause 11) or
2736    //   ambiguous (10.2) base class of T2.
2737    //
2738    // Note that we only check this condition when we're allowed to
2739    // complain about errors, because we should not be checking for
2740    // ambiguity (or inaccessibility) unless the reference binding
2741    // actually happens.
2742    if (DerivedToBase)
2743      return CheckDerivedToBaseConversion(T2, T1,
2744                                          Init->getSourceRange().getBegin(),
2745                                          Init->getSourceRange());
2746    else
2747      return false;
2748  }
2749
2750  //     -- Otherwise, the reference shall be to a non-volatile const
2751  //        type (i.e., cv1 shall be const), or the reference shall be an
2752  //        rvalue reference and the initializer expression shall be an rvalue.
2753  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2754    if (!ICS)
2755      Diag(Init->getSourceRange().getBegin(),
2756           diag::err_not_reference_to_const_init)
2757        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2758        << T2 << Init->getSourceRange();
2759    return true;
2760  }
2761
2762  //       -- If the initializer expression is an rvalue, with T2 a
2763  //          class type, and “cv1 T1” is reference-compatible with
2764  //          “cv2 T2,” the reference is bound in one of the
2765  //          following ways (the choice is implementation-defined):
2766  //
2767  //          -- The reference is bound to the object represented by
2768  //             the rvalue (see 3.10) or to a sub-object within that
2769  //             object.
2770  //
2771  //          -- A temporary of type “cv1 T2” [sic] is created, and
2772  //             a constructor is called to copy the entire rvalue
2773  //             object into the temporary. The reference is bound to
2774  //             the temporary or to a sub-object within the
2775  //             temporary.
2776  //
2777  //          The constructor that would be used to make the copy
2778  //          shall be callable whether or not the copy is actually
2779  //          done.
2780  //
2781  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2782  // freedom, so we will always take the first option and never build
2783  // a temporary in this case. FIXME: We will, however, have to check
2784  // for the presence of a copy constructor in C++98/03 mode.
2785  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2786      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2787    if (ICS) {
2788      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2789      ICS->Standard.First = ICK_Identity;
2790      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2791      ICS->Standard.Third = ICK_Identity;
2792      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2793      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2794      ICS->Standard.ReferenceBinding = true;
2795      ICS->Standard.DirectBinding = false;
2796      ICS->Standard.RRefBinding = isRValRef;
2797      ICS->Standard.CopyConstructor = 0;
2798    } else {
2799      // FIXME: Binding to a subobject of the rvalue is going to require more
2800      // AST annotation than this.
2801      ImpCastExprToType(Init, T1, /*isLvalue=*/false);
2802    }
2803    return false;
2804  }
2805
2806  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2807  //          initialized from the initializer expression using the
2808  //          rules for a non-reference copy initialization (8.5). The
2809  //          reference is then bound to the temporary. If T1 is
2810  //          reference-related to T2, cv1 must be the same
2811  //          cv-qualification as, or greater cv-qualification than,
2812  //          cv2; otherwise, the program is ill-formed.
2813  if (RefRelationship == Ref_Related) {
2814    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2815    // we would be reference-compatible or reference-compatible with
2816    // added qualification. But that wasn't the case, so the reference
2817    // initialization fails.
2818    if (!ICS)
2819      Diag(Init->getSourceRange().getBegin(),
2820           diag::err_reference_init_drops_quals)
2821        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2822        << T2 << Init->getSourceRange();
2823    return true;
2824  }
2825
2826  // If at least one of the types is a class type, the types are not
2827  // related, and we aren't allowed any user conversions, the
2828  // reference binding fails. This case is important for breaking
2829  // recursion, since TryImplicitConversion below will attempt to
2830  // create a temporary through the use of a copy constructor.
2831  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2832      (T1->isRecordType() || T2->isRecordType())) {
2833    if (!ICS)
2834      Diag(Init->getSourceRange().getBegin(),
2835           diag::err_typecheck_convert_incompatible)
2836        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2837    return true;
2838  }
2839
2840  // Actually try to convert the initializer to T1.
2841  if (ICS) {
2842    // C++ [over.ics.ref]p2:
2843    //
2844    //   When a parameter of reference type is not bound directly to
2845    //   an argument expression, the conversion sequence is the one
2846    //   required to convert the argument expression to the
2847    //   underlying type of the reference according to
2848    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2849    //   to copy-initializing a temporary of the underlying type with
2850    //   the argument expression. Any difference in top-level
2851    //   cv-qualification is subsumed by the initialization itself
2852    //   and does not constitute a conversion.
2853    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2854    // Of course, that's still a reference binding.
2855    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2856      ICS->Standard.ReferenceBinding = true;
2857      ICS->Standard.RRefBinding = isRValRef;
2858    } else if(ICS->ConversionKind ==
2859              ImplicitConversionSequence::UserDefinedConversion) {
2860      ICS->UserDefined.After.ReferenceBinding = true;
2861      ICS->UserDefined.After.RRefBinding = isRValRef;
2862    }
2863    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2864  } else {
2865    return PerformImplicitConversion(Init, T1, "initializing");
2866  }
2867}
2868
2869/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2870/// of this overloaded operator is well-formed. If so, returns false;
2871/// otherwise, emits appropriate diagnostics and returns true.
2872bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2873  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2874         "Expected an overloaded operator declaration");
2875
2876  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2877
2878  // C++ [over.oper]p5:
2879  //   The allocation and deallocation functions, operator new,
2880  //   operator new[], operator delete and operator delete[], are
2881  //   described completely in 3.7.3. The attributes and restrictions
2882  //   found in the rest of this subclause do not apply to them unless
2883  //   explicitly stated in 3.7.3.
2884  // FIXME: Write a separate routine for checking this. For now, just allow it.
2885  if (Op == OO_New || Op == OO_Array_New ||
2886      Op == OO_Delete || Op == OO_Array_Delete)
2887    return false;
2888
2889  // C++ [over.oper]p6:
2890  //   An operator function shall either be a non-static member
2891  //   function or be a non-member function and have at least one
2892  //   parameter whose type is a class, a reference to a class, an
2893  //   enumeration, or a reference to an enumeration.
2894  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2895    if (MethodDecl->isStatic())
2896      return Diag(FnDecl->getLocation(),
2897                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2898  } else {
2899    bool ClassOrEnumParam = false;
2900    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2901                                   ParamEnd = FnDecl->param_end();
2902         Param != ParamEnd; ++Param) {
2903      QualType ParamType = (*Param)->getType().getNonReferenceType();
2904      if (ParamType->isDependentType() || ParamType->isRecordType() ||
2905          ParamType->isEnumeralType()) {
2906        ClassOrEnumParam = true;
2907        break;
2908      }
2909    }
2910
2911    if (!ClassOrEnumParam)
2912      return Diag(FnDecl->getLocation(),
2913                  diag::err_operator_overload_needs_class_or_enum)
2914        << FnDecl->getDeclName();
2915  }
2916
2917  // C++ [over.oper]p8:
2918  //   An operator function cannot have default arguments (8.3.6),
2919  //   except where explicitly stated below.
2920  //
2921  // Only the function-call operator allows default arguments
2922  // (C++ [over.call]p1).
2923  if (Op != OO_Call) {
2924    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2925         Param != FnDecl->param_end(); ++Param) {
2926      if ((*Param)->hasUnparsedDefaultArg())
2927        return Diag((*Param)->getLocation(),
2928                    diag::err_operator_overload_default_arg)
2929          << FnDecl->getDeclName();
2930      else if (Expr *DefArg = (*Param)->getDefaultArg())
2931        return Diag((*Param)->getLocation(),
2932                    diag::err_operator_overload_default_arg)
2933          << FnDecl->getDeclName() << DefArg->getSourceRange();
2934    }
2935  }
2936
2937  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2938    { false, false, false }
2939#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2940    , { Unary, Binary, MemberOnly }
2941#include "clang/Basic/OperatorKinds.def"
2942  };
2943
2944  bool CanBeUnaryOperator = OperatorUses[Op][0];
2945  bool CanBeBinaryOperator = OperatorUses[Op][1];
2946  bool MustBeMemberOperator = OperatorUses[Op][2];
2947
2948  // C++ [over.oper]p8:
2949  //   [...] Operator functions cannot have more or fewer parameters
2950  //   than the number required for the corresponding operator, as
2951  //   described in the rest of this subclause.
2952  unsigned NumParams = FnDecl->getNumParams()
2953                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2954  if (Op != OO_Call &&
2955      ((NumParams == 1 && !CanBeUnaryOperator) ||
2956       (NumParams == 2 && !CanBeBinaryOperator) ||
2957       (NumParams < 1) || (NumParams > 2))) {
2958    // We have the wrong number of parameters.
2959    unsigned ErrorKind;
2960    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2961      ErrorKind = 2;  // 2 -> unary or binary.
2962    } else if (CanBeUnaryOperator) {
2963      ErrorKind = 0;  // 0 -> unary
2964    } else {
2965      assert(CanBeBinaryOperator &&
2966             "All non-call overloaded operators are unary or binary!");
2967      ErrorKind = 1;  // 1 -> binary
2968    }
2969
2970    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2971      << FnDecl->getDeclName() << NumParams << ErrorKind;
2972  }
2973
2974  // Overloaded operators other than operator() cannot be variadic.
2975  if (Op != OO_Call &&
2976      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2977    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2978      << FnDecl->getDeclName();
2979  }
2980
2981  // Some operators must be non-static member functions.
2982  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2983    return Diag(FnDecl->getLocation(),
2984                diag::err_operator_overload_must_be_member)
2985      << FnDecl->getDeclName();
2986  }
2987
2988  // C++ [over.inc]p1:
2989  //   The user-defined function called operator++ implements the
2990  //   prefix and postfix ++ operator. If this function is a member
2991  //   function with no parameters, or a non-member function with one
2992  //   parameter of class or enumeration type, it defines the prefix
2993  //   increment operator ++ for objects of that type. If the function
2994  //   is a member function with one parameter (which shall be of type
2995  //   int) or a non-member function with two parameters (the second
2996  //   of which shall be of type int), it defines the postfix
2997  //   increment operator ++ for objects of that type.
2998  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2999    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
3000    bool ParamIsInt = false;
3001    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
3002      ParamIsInt = BT->getKind() == BuiltinType::Int;
3003
3004    if (!ParamIsInt)
3005      return Diag(LastParam->getLocation(),
3006                  diag::err_operator_overload_post_incdec_must_be_int)
3007        << LastParam->getType() << (Op == OO_MinusMinus);
3008  }
3009
3010  // Notify the class if it got an assignment operator.
3011  if (Op == OO_Equal) {
3012    // Would have returned earlier otherwise.
3013    assert(isa<CXXMethodDecl>(FnDecl) &&
3014      "Overloaded = not member, but not filtered.");
3015    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3016    Method->getParent()->addedAssignmentOperator(Context, Method);
3017  }
3018
3019  return false;
3020}
3021
3022/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3023/// linkage specification, including the language and (if present)
3024/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3025/// the location of the language string literal, which is provided
3026/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3027/// the '{' brace. Otherwise, this linkage specification does not
3028/// have any braces.
3029Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3030                                                     SourceLocation ExternLoc,
3031                                                     SourceLocation LangLoc,
3032                                                     const char *Lang,
3033                                                     unsigned StrSize,
3034                                                     SourceLocation LBraceLoc) {
3035  LinkageSpecDecl::LanguageIDs Language;
3036  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3037    Language = LinkageSpecDecl::lang_c;
3038  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3039    Language = LinkageSpecDecl::lang_cxx;
3040  else {
3041    Diag(LangLoc, diag::err_bad_language);
3042    return DeclPtrTy();
3043  }
3044
3045  // FIXME: Add all the various semantics of linkage specifications
3046
3047  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3048                                               LangLoc, Language,
3049                                               LBraceLoc.isValid());
3050  CurContext->addDecl(D);
3051  PushDeclContext(S, D);
3052  return DeclPtrTy::make(D);
3053}
3054
3055/// ActOnFinishLinkageSpecification - Completely the definition of
3056/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3057/// valid, it's the position of the closing '}' brace in a linkage
3058/// specification that uses braces.
3059Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3060                                                      DeclPtrTy LinkageSpec,
3061                                                      SourceLocation RBraceLoc) {
3062  if (LinkageSpec)
3063    PopDeclContext();
3064  return LinkageSpec;
3065}
3066
3067/// \brief Perform semantic analysis for the variable declaration that
3068/// occurs within a C++ catch clause, returning the newly-created
3069/// variable.
3070VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3071                                         IdentifierInfo *Name,
3072                                         SourceLocation Loc,
3073                                         SourceRange Range) {
3074  bool Invalid = false;
3075
3076  // Arrays and functions decay.
3077  if (ExDeclType->isArrayType())
3078    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3079  else if (ExDeclType->isFunctionType())
3080    ExDeclType = Context.getPointerType(ExDeclType);
3081
3082  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3083  // The exception-declaration shall not denote a pointer or reference to an
3084  // incomplete type, other than [cv] void*.
3085  // N2844 forbids rvalue references.
3086  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3087    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3088    Invalid = true;
3089  }
3090
3091  QualType BaseType = ExDeclType;
3092  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3093  unsigned DK = diag::err_catch_incomplete;
3094  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
3095    BaseType = Ptr->getPointeeType();
3096    Mode = 1;
3097    DK = diag::err_catch_incomplete_ptr;
3098  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
3099    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3100    BaseType = Ref->getPointeeType();
3101    Mode = 2;
3102    DK = diag::err_catch_incomplete_ref;
3103  }
3104  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3105      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3106    Invalid = true;
3107
3108  if (!Invalid && !ExDeclType->isDependentType() &&
3109      RequireNonAbstractType(Loc, ExDeclType,
3110                             diag::err_abstract_type_in_decl,
3111                             AbstractVariableType))
3112    Invalid = true;
3113
3114  // FIXME: Need to test for ability to copy-construct and destroy the
3115  // exception variable.
3116
3117  // FIXME: Need to check for abstract classes.
3118
3119  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3120                                    Name, ExDeclType, VarDecl::None,
3121                                    Range.getBegin());
3122
3123  if (Invalid)
3124    ExDecl->setInvalidDecl();
3125
3126  return ExDecl;
3127}
3128
3129/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3130/// handler.
3131Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3132  QualType ExDeclType = GetTypeForDeclarator(D, S);
3133
3134  bool Invalid = D.isInvalidType();
3135  IdentifierInfo *II = D.getIdentifier();
3136  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3137    // The scope should be freshly made just for us. There is just no way
3138    // it contains any previous declaration.
3139    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3140    if (PrevDecl->isTemplateParameter()) {
3141      // Maybe we will complain about the shadowed template parameter.
3142      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3143    }
3144  }
3145
3146  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3147    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3148      << D.getCXXScopeSpec().getRange();
3149    Invalid = true;
3150  }
3151
3152  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3153                                              D.getIdentifier(),
3154                                              D.getIdentifierLoc(),
3155                                            D.getDeclSpec().getSourceRange());
3156
3157  if (Invalid)
3158    ExDecl->setInvalidDecl();
3159
3160  // Add the exception declaration into this scope.
3161  if (II)
3162    PushOnScopeChains(ExDecl, S);
3163  else
3164    CurContext->addDecl(ExDecl);
3165
3166  ProcessDeclAttributes(S, ExDecl, D);
3167  return DeclPtrTy::make(ExDecl);
3168}
3169
3170Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3171                                                   ExprArg assertexpr,
3172                                                   ExprArg assertmessageexpr) {
3173  Expr *AssertExpr = (Expr *)assertexpr.get();
3174  StringLiteral *AssertMessage =
3175    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3176
3177  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3178    llvm::APSInt Value(32);
3179    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3180      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3181        AssertExpr->getSourceRange();
3182      return DeclPtrTy();
3183    }
3184
3185    if (Value == 0) {
3186      std::string str(AssertMessage->getStrData(),
3187                      AssertMessage->getByteLength());
3188      Diag(AssertLoc, diag::err_static_assert_failed)
3189        << str << AssertExpr->getSourceRange();
3190    }
3191  }
3192
3193  assertexpr.release();
3194  assertmessageexpr.release();
3195  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3196                                        AssertExpr, AssertMessage);
3197
3198  CurContext->addDecl(Decl);
3199  return DeclPtrTy::make(Decl);
3200}
3201
3202bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
3203  if (!(S->getFlags() & Scope::ClassScope)) {
3204    Diag(FriendLoc, diag::err_friend_decl_outside_class);
3205    return true;
3206  }
3207
3208  return false;
3209}
3210
3211void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3212  Decl *Dcl = dcl.getAs<Decl>();
3213  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3214  if (!Fn) {
3215    Diag(DelLoc, diag::err_deleted_non_function);
3216    return;
3217  }
3218  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3219    Diag(DelLoc, diag::err_deleted_decl_not_first);
3220    Diag(Prev->getLocation(), diag::note_previous_declaration);
3221    // If the declaration wasn't the first, we delete the function anyway for
3222    // recovery.
3223  }
3224  Fn->setDeleted();
3225}
3226
3227static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3228  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3229       ++CI) {
3230    Stmt *SubStmt = *CI;
3231    if (!SubStmt)
3232      continue;
3233    if (isa<ReturnStmt>(SubStmt))
3234      Self.Diag(SubStmt->getSourceRange().getBegin(),
3235           diag::err_return_in_constructor_handler);
3236    if (!isa<Expr>(SubStmt))
3237      SearchForReturnInStmt(Self, SubStmt);
3238  }
3239}
3240
3241void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3242  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3243    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3244    SearchForReturnInStmt(*this, Handler);
3245  }
3246}
3247
3248bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3249                                             const CXXMethodDecl *Old) {
3250  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3251  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3252
3253  QualType CNewTy = Context.getCanonicalType(NewTy);
3254  QualType COldTy = Context.getCanonicalType(OldTy);
3255
3256  if (CNewTy == COldTy &&
3257      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3258    return false;
3259
3260  // Check if the return types are covariant
3261  QualType NewClassTy, OldClassTy;
3262
3263  /// Both types must be pointers or references to classes.
3264  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3265    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3266      NewClassTy = NewPT->getPointeeType();
3267      OldClassTy = OldPT->getPointeeType();
3268    }
3269  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3270    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3271      NewClassTy = NewRT->getPointeeType();
3272      OldClassTy = OldRT->getPointeeType();
3273    }
3274  }
3275
3276  // The return types aren't either both pointers or references to a class type.
3277  if (NewClassTy.isNull()) {
3278    Diag(New->getLocation(),
3279         diag::err_different_return_type_for_overriding_virtual_function)
3280      << New->getDeclName() << NewTy << OldTy;
3281    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3282
3283    return true;
3284  }
3285
3286  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3287    // Check if the new class derives from the old class.
3288    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3289      Diag(New->getLocation(),
3290           diag::err_covariant_return_not_derived)
3291      << New->getDeclName() << NewTy << OldTy;
3292      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3293      return true;
3294    }
3295
3296    // Check if we the conversion from derived to base is valid.
3297    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3298                      diag::err_covariant_return_inaccessible_base,
3299                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3300                      // FIXME: Should this point to the return type?
3301                      New->getLocation(), SourceRange(), New->getDeclName())) {
3302      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3303      return true;
3304    }
3305  }
3306
3307  // The qualifiers of the return types must be the same.
3308  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3309    Diag(New->getLocation(),
3310         diag::err_covariant_return_type_different_qualifications)
3311    << New->getDeclName() << NewTy << OldTy;
3312    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3313    return true;
3314  };
3315
3316
3317  // The new class type must have the same or less qualifiers as the old type.
3318  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3319    Diag(New->getLocation(),
3320         diag::err_covariant_return_type_class_type_more_qualified)
3321    << New->getDeclName() << NewTy << OldTy;
3322    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3323    return true;
3324  };
3325
3326  return false;
3327}
3328
3329bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
3330                                                const CXXMethodDecl *Old)
3331{
3332  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
3333                                  diag::note_overridden_virtual_function,
3334                                  Old->getType()->getAsFunctionProtoType(),
3335                                  Old->getLocation(),
3336                                  New->getType()->getAsFunctionProtoType(),
3337                                  New->getLocation());
3338}
3339
3340/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3341/// initializer for the declaration 'Dcl'.
3342/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3343/// static data member of class X, names should be looked up in the scope of
3344/// class X.
3345void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3346  Decl *D = Dcl.getAs<Decl>();
3347  // If there is no declaration, there was an error parsing it.
3348  if (D == 0)
3349    return;
3350
3351  // Check whether it is a declaration with a nested name specifier like
3352  // int foo::bar;
3353  if (!D->isOutOfLine())
3354    return;
3355
3356  // C++ [basic.lookup.unqual]p13
3357  //
3358  // A name used in the definition of a static data member of class X
3359  // (after the qualified-id of the static member) is looked up as if the name
3360  // was used in a member function of X.
3361
3362  // Change current context into the context of the initializing declaration.
3363  EnterDeclaratorContext(S, D->getDeclContext());
3364}
3365
3366/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3367/// initializer for the declaration 'Dcl'.
3368void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3369  Decl *D = Dcl.getAs<Decl>();
3370  // If there is no declaration, there was an error parsing it.
3371  if (D == 0)
3372    return;
3373
3374  // Check whether it is a declaration with a nested name specifier like
3375  // int foo::bar;
3376  if (!D->isOutOfLine())
3377    return;
3378
3379  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3380  ExitDeclaratorContext(S);
3381}
3382